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Abstract

This thesis designs a resource allocation algorithms for distributed cloud gaming engines
with the aim of improving QoS (Quality of Service) and QoE (Quality of Experience)
for cloud gaming. Cloud gaming is an emerging technology that allows players to play
games without high-end hardware. Games are run on cloud servers via containers and
rendered images are pushed to the user. Cloud gaming technology has many advantages
over traditional gaming technologies, but there are still factors that affect the player
experience.

In the face of such challenges, resources must be dynamically aggregated in an on-
demand manner in a cloud architecture. The first step is to analyse the design goals
for a new generation of distributed cloud gaming engines and then to design offline
algorithms. In the simulation of the algorithms, two different models, namely "bottom-up"
and "top-down", are to be built, corresponding to different allocation schemes of the cloud
gaming engine to users, and using multiple sets of different user combination data, to be
experimented, compared and analysed with the project partners, and to be compared
with the traditional cloud gaming engine. Based on the QoE and cost analysis, the best
approach is selected.
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Chapter 1

Introduction

1.1 Overview

This thesis designs a resource allocation algorithms to improve the QoS of a specific Cloud
Gaming Engine (CODEG) for improving the QoE of users.

Video games are a hugely popular form of entertainment, with the global video
game market generating an estimated 159 billion in annual revenues from hardware,
software and services by 2020. This is three times the size of the global music industry
in 2019 and four times the size of the film industry in 2019.According to [1], users want
to run games, they need a set of physical computing resources (game console or PC),
these hardware is usually expensive, inconvenient to carry and needs to be upgraded
regularly. many gamers will forgo buying equipment because of cost or other reasons. since
2015, CPUs, GPU, virtualisation, video codecs and streaming technologies are maturing,
allowing cloud gaming to break through the technical barriers to cloudification. Since the
commercialisation of 5G in 2019, the rapid construction of 5G networks and large-scale
pilots of edge computing have enabled cloud gaming to break through the channel barrier
of network bandwidth. For gamers or those in the gaming industry, cloud gaming is no
longer a novelty.

Cloud gaming is a relatively new technology where in-game simulations are performed
in high-end private data centres over the internet and the rendered results are streamed to
the end user [2]. There are already a number of cloud gaming services in operation, such
as Xbox CLoud Gaming [3], Google Stadia [4], Geforce Now [5] and Amazon Luna [6],
allowing gamers to play without owning and maintain cutting edge hardware for big
budget games. This technology has many advantages, such as gamers can store and play
many games on their PCs without having to spend money on high-end hardware and
large storage disks, and data is not easily lost.

This chapter continues as follows. In section 1.2, the problem of a cloud game engine
is explained. Section 1.3 describes the research goal of this thesis, which is to create a
model to implement a distributed game engine so as to protect the quality of service for
users. Section 1.4 summarises the contributions of the thesis. Section 1.5 provides an
overview of the structure of the thesis.
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Introduction

1.2 Problem and motivation

For existing cloud gaming engine operations, cloud gaming systems typically run in clusters
of servers in data centres and are available to multiple users at the same time. Players
can connect to the cloud gaming service through multiple servers. However, there are
problems with such a configuration.

1. The delay in connecting to the server will be uneven due to the physical distance
between the player and the server. Generally, players with lower latency will have more
advantage in multiplayer games, which will affect the fairness of the game.

2. Fluctuations in the user’s network state or the user’s region can cause connection
loss or excessive fluctuations in delay.

The user experience of cloud gaming is usually quantified by QoE. As defined by
Qualinet in 2012 [7], QoE measures the level of enjoyment or frustration a user experiences
when using a service or application. It is based on the user’s personality and current
situation in order to meet the user’s expectations of the utility and functionality of the
application or service used.

The parameter that measures the performance of the cloud gaming engine is known
as Quality of Service, which is a measure of the overall performance of the service, usually
considering some parameters of the network quality itself. QoS is also an important
condition that affects QoE, and usually high QoS also leads to high QoE [7]. When a
good QoS is already in place, QoE is measured only in relation to the user’s own mood.

In traditional cloud gaming engines, the only way to improve user QoS and QoE is to
increase hardware performance, for example by replacing faster networks and interfaces in
data centres and using more powerful computing and rendering devices. But this approach
can add significantly to budgets and can result in wasted computing resources.

And now there is a newly proposed cloud-oriented distributed gaming engine called
CODEG, which aims to leverage modern cloud technologies and edge computing and the
heterogeneity of these network resources to deliver a better cloud gaming experience and
reduce costs for service providers.

1.3 Research objects

Section 1.2 introduces the problems faced by traditional cloud gaming engines and a
new distributed solution, CODEG, which combines traditional solutions with distributed
computing to make full use of edge server resources, which can reduce round-trip times,
relieve server pressure on data centres and automatically adapt and adjust the load across
the cloud gaming engine. Therefore, this thesis proposes that by allocating computing
resources appropriately and focusing on specific QoS metrics, QoS and QoE levels for
users can be improved. These concerns are targeted at edge computing and distributed
architectures. The overall objective of this paper is to simulate a CODEG scenario, using
appropriate resource allocation algorithms to make decisions about user devices, network
node state and network state. These decisions are made to improve the QoS of the cloud
gaming engine and hence the QoE of the users, and the following are the objectives of the
study.
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1.4 – Thesis contributions

1. Review the traditional cloud gaming engine operation model to clarify the process
of cloud gaming and the type of data that is transmitted by cloud gaming.

2. To identify the key parameters that affect the QoS of the cloud gaming engine.
3. Design a resource allocation algorithms for the cloud gaming engine based on the

idea of the CODEG scheme.
4. Design a testbed with adaptive architecture to improve the QoS of the cloud gaming

engine using edge computing and distributed architecture, where the allocation algorithms
we design will help to manage resources automatically. This can then be done for different
data and connection type variations. Multiple simulations are performed.

1.4 Thesis contributions

This thesis proposes an adaptive architecture for the CODEG distributed cloud gaming
engine, which, by using a distributed architecture at the core and edge of the network,
will reduce the probability of server crashes by allowing users to use devices closer to the
client, and will make fuller use of network resources, while QoS will be improved.

The main objective of this research is to develop an adaptive architecture to emulate
the CODEG distributed cloud gaming engine, which will use distributed architecture
and edge computing to improve the QoS provided. the underlying assumption is that
distributed architecture and edge computing A new generation of cloud gaming engines
can be used to improve the QoS for cloud gaming users.

The main contributions of this study are:
1. evaluate current approaches to cloud gaming operations and provide QoS and QoE

improvements.
2. Develop a test platform for a gaming engine using distributed architecture and edge

computing (CODEG) and combine these concepts with adaptive allocation algorithms to
improve the overall QoS of the cloud gaming platform.

3. document the architectural analysis and experimental testing and compare it to a
traditional cloud gaming engine.

1.5 Thesis structure

The rest of the thesis also includes five chapters. Background and literature review,
Architecture, Experimental methods and system setup, Experimental/numerical evaluation,
and Conclusion.

Chapter 2 is a literature review of related work. The relevant research atmosphere is
in four fields: cloud gaming, distributed environments, and edge computing. It focuses on
the cloud and user data push.

Chapter 3 explains the Distributed Cloud Gaming Architecture (CODEG) for improv-
ing user QoS using distributed resources and edge computing, which is discussed in detail
from the high level to the low level, from the scenarios customers may face to the impact
on the overall architecture and then to the role of each part in the overall architecture.

Chapter 4 focuses on the architecture’s ability to make decisions on how to allocate
resources to help customers and the overall service achieve the best QoS, and explores
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Introduction

and tests a number of different allocation approaches.
Chapter 5 presents the results of the tests and the impact of the allocation methods

on overall performance. As different methods were tested under different conditions, we
were able to analyse the allocation methods with better performance and cost.

Chapter 6 concludes the thesis by evaluating the research objectives and test results
identified in Section 1.3. It also makes recommendations for future work to improve the
current work and expand the scope of the study.
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Chapter 2

Background and literature review

2.1 Overview

This chapter presents background research and literature reviews conducted in various
areas. The relevant research can be divided into five areas: cloud gaming, distributed
environments, edge computing and heterogeneous computing. Each area relates to the
overall goal of this work, which is to develop an architecture that leverages distributed
architectures to improve QoE for cloud gaming engines.

2.2 Introduction

In this chapter, existing research related to cloud gaming engines and related research
is discussed. In this study, user-perceived QoE can be improved by monitoring and
improving QoS parameters within the network, as described in Chapter 1.

The domain of cloud gaming is mainly focused on the cloud. The user connects to a
server in a data centre provided by the cloud provider and sends operational instructions
to the server, which passes the rendered data back to the client. The data flowing to the
client can take one of two forms, video or graphics instructions. Cloud gaming services
have been found to be highly adaptable to the current state of the network. One of the
research objectives in Chapter 1 highlighted the need for such an adaptive architecture. A
distributed environment means that multiple or groups of servers need to cooperate to
achieve a common goal. In the current network environment, an adaptive algorithms is
needed to manage the distribution of data across various devices.

There are many different approaches to distributed management and the research in
this paper will focus on structural and adaptive algorithms. These algorithms can be
better understood as a set of rules. In normal service operations, the adaptive algorithms
will act if one or more conditions are not met. For example, if a server does not have
enough resources to add new users, a resource allocation will be made to move the users
to other free servers.

Edge computing is very similar to cloud computing, with the difference that in edge
computing, data is processed close to the server at the user’s device end. The advantage
is that the client receives the results of the execution process faster than the results
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Background and literature review

transferred from the cloud.
With a rational allocation algorithms, network performance (QoS) can be improved,

user experience (QoS) can be improved, and by using edge computing, the load on cloud
servers can be reduced, reducing costs and energy consumption.

The final section of this chapter summarises the literature review and identifies
approaches to developing adaptive architectures.

2.3 Cloud gaming

When it comes to cloud games, we have to start with streaming media. As early as the
1980s, a team of engineers tried streaming to display media on computers. However,
due to the limitations of hardware performance and network infrastructure at the time,
streaming media did not Success. Streaming media has gained huge popularity in recent
years with improvements in network connection speeds and user device performance.

The operation mode of the cloud game platform is very similar to that of live streaming.
Games are stored and executed on the dedicated hardware of the service provider, and
the image or video data is streamed to the user’s device. The client’s device needs to
process the player’s input, These inputs will be transmitted back to the server, the server
will convert the data into actions and execute them in the game, and render images and
sounds back to the player.

The first commercial success in the cloud gaming industry was Nvidia. in May 2012,
Nvidia released the cloud gaming service Nvidia Grid, later renamed GeForce Now [5].
It is considered the best cloud gaming service available, as Nvidia is the best known
GPU manufacturer and their strength is the best combination of hardware and software.
2019 saw the launch of xCloud (now called xbox Cloud Gaming) [3], who have the
advantage of having their own console, Xbox [8] with their own exclusive games and
experience in running a console business, and their own subscription service, XGP (xbox
game pass), which allows hundreds of games to be played for free[/ref]. Google announced
its cloud-based gaming service Stadia [4] in the same year, and Amazon launched its
cloud-based gaming service Luna [6] in 2020.

2.3.1 Classification of cloud games

By computing platform

The three main markets for gaming are PC gaming, console gaming and mobile gaming.
Cloud gaming can also be divided into two categories based on the computing platform,
X86 architecture and ARM architecture (X86 architecture and ARM architecture here
refer to the cloud platform on which the games are actually run. The next generation
consoles PS5 and XBOX series also use X86 architecture [9] and Nintendo Switch uses
ARM architecture [10]). Therefore, the X86 architecture cloud platform is mainly for
PC terminal games and console games in the cloud, while the ARM architecture cloud
platform is mainly for mobile games in the cloud. This thesis also focuses on the analysis
and description of cloud gaming due to the high demand for terminal performance and
the stronger demand for cloudification for PC games and console games.
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2.3 – Cloud gaming

By resource form: virtual machine or physical machine

At present, there are two mainstream resource forms in the market, virtual machine mode
and physical machine mode. The virtual machine method generally adopts a combination
of cloud resources of servers and professional graphics cards, and allocates resources in a
virtualized way, which is more flexible. The cloud resources of the physical machine genre
exist in the form of PCs, and the graphics cards are home game graphics cards, which are
better adapted to game drivers, and players are less likely to be interfered by other users.

Compare Virtual Physical

Cloud resources Server + Professional
Graphics Card PC + home gaming graphics card

Resource allocation
Virtualization allocation,
one server to many
user

1 to 1 assignment

Advantage Flexible resource allocation,
rapid instance creation and destruction

Home game graphics cards are better
suited for game drivers

Disadvantage

The hardware cost is high;
the call delay of virtualized resources
is larger than that of physical machines,
resulting in a large end-to-end delay of
cloud games;

Resource allocation is not flexible enough;
home gaming graphics cards are less
reliable than professional graphics cards

representative Google Stadia, NVIDIA GeForceNow Amazon AWS

Table 2.1: Two main forms of cloud gaming

2.3.2 Traditional game setup

The traditional process of running video games is localized and requires specific computing
resources to perform gaming tasks (such as game consoles or PCs).

Figure 2.1: An illustration of traditional game engine

Figure 2.1 represents the basic setup of a traditional single player game, where the
game runs locally, except for the download phase. The user and the local game engine
are physically in the same place. The user runs the game and sends commands to the
game engine via the input device. The game engine renders the image and delivers it
to the user. There is a variant of the traditional local game called an online game. The
difference with stand-alone games is that part of the data exchange and computation of
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the game is given to the server, but the interaction and rendering of the game is still given
to the local game engine. Usually online games serve multiple users at the same time.

2.3.3 Cloud gaming setup

Cloud gaming is another way of streaming, as Figure 2.2

Figure 2.2: An illustration of cloud game engine

As we can see, allowing users to play video games remotely, the user does not need
a high performance PC or console, the game runs on a remote server, the user sends
commands to the server using any controller and the server streams the rendered image to
the user. Compared to local gaming, cloud gaming adds the major processes of encoding,
network transmission and decoding.

2.4 Limitations

While cloud services are currently considered adequate replacements for single and multi-
player gaming on PC or consoles, most gamers will not feel the difference in experience
between cloud and local gaming. However, there is a significant gap between the experience
of cloud and local gaming in eSports games, where players are typically looking for input
latency and frame rates, and players with lower latency usually have an advantage.

Cloud gaming services typically have more latency than local gaming (PC or console).
From Figure 2.1 and Figure 2.2, we can see that user input is not processed directly on
the client device, but is all sent over the network to the server, which then transmits the
rendered graphics and generated sounds to the client, an action that is cycled through
the entire service. This design inevitably introduces latency, in this case to the player’s
internet connection. Bandwidth and latency, as well as the physical distance to connect
to the cloud gaming server, are the main keys. In addition, the encoding bitrate of cloud
games is typically much higher than that of mass streaming due to the need to maintain
minute detail in the picture, which also means that the bandwidth requirements for
cloud gaming games are also much higher than for mass streaming, which is a significant
challenge for the overall network.

2.5 Distribution system

As the saying goes, "many people are more powerful". Distributed computing mainly faces
parallel computing. There are a group of networked component servers in a distributed

12



2.6 – Edge computing

system [11]. They can all run in parallel, and can also exchange information and coordinate
their Actions, components interact with each other to achieve goals. Users generally do
not perceive the logic behind this architecture, just like accessing a single server, the
advantage is that more machines can be fully utilized, and more data can be processed in
parallel, for component servers Faults are highly tolerant, and the amount of resources in
the system can be flexibly increased or decreased.

2.6 Edge computing

Edge computing is not a specific technology, but an architecture, which is a way of
distributed computing that brings computing and data storage closer to the data source [12].
This is expected to improve response time and save bandwidth. Since the server used by
edge computing is very close to the user, the delay between the server and the user can be
minimized. Edge computing is very meaningful for delay-sensitive cloud gaming services.
Edge computing and cloud computing work together to significantly improve user QoE
indicators.

The advantages of edge computing and distributed systems working together are as
follows:

• Powerful scalability. Because edge computing runs on a distributed system, com-
pared to servers in the data centre, edge computing servers can be different perfor-
mance, different types of devices and are also very easy to replace.

• Robust reliability. Edge servers ensure high reliability. If a single node fails and
becomes inaccessible, the user can switch to another edge server and the component
servers in the distributed system ensure that the user’s data is not lost.

• Fast: The responsiveness and throughput of cloud gaming services can be greatly
improved by having edge servers very close to users. There are many games that
must have low latency in order to have a good experience. For these games, edge
computing has an advantage over cloud computing.

• Higher efficiency. As the edge servers are close to the users, many gaming processes
can be run directly on the edge servers, which increases the efficiency of the service,
saves cloud server resources and saves significantly on bandwidth, which can maintain
high efficiency and improve QoE for users.

2.7 Related work

Based on the QoE evaluation of cloud gaming [13] by Asif Ali Laghari et al. the main
factors known to affect QoE in cloud gaming are: bit rate, data rate, frame rate, throughput
and network latency. , it is known that the main QoS factors affecting cloud gaming QoE
are: bit rate, data rate, frame rate, throughput, packet loss and network latency. These
parameters have an impact on the QoE of cloud gaming users. This thesis focuses on the
network transmission component. The frame rate is related to the performance of the
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Background and literature review

virtual machine assigned to the cloud service. The higher the performance of the virtual
machine, the higher the frame rate will be. Bit rate is the number of bits transferred
end-to-end per unit of time and can be used as a metric for engine design. Throughput is
the number of bits transmitted by the network in a given time and is a parameter observed
in actual tests. For gamers, a high frame rate represents smoother graphics, a high bit rate
and throughput means sharper, more detailed and higher resolution graphics , the higher
these parameters are, the better the gaming experience, which means that a tighter engine
allocation and network quality is required to maintain a high QoE. Packet loss represents
unrecoverable data loss, as in streaming media, the UDP protocol is often used in order to
maintain connection speeds, and data loss in the UPD protocol is unrecoverable. Packet
delay is the late arrival of data between the server and the user. Both packet loss and
delay can lead to a dramatic drop in QoE. According to a study by Suznjevic et al [14] in
2013, QoE in the face of players in large-scale role-playing. simulated various loss and
delay conditions and found that jitter and packet loss significantly reduced QoE, while
delay also affected QoE, but no datagram was severely lost. In a 2003 study by Beigbeder
et al [15], they analysed the impact of latency and packet loss on QoE in multiplayer
games.

Figure 2.3: Impact of network packet loss on QoE [15]

As shown in the figure 2.3, as the packet loss rate increases, the number of player
deaths increases and the number of kills decreases, as shown in the figure 2.4, as the
latency increases, the number of player deaths increases significantly and the number of
kills decreases significantly.

According to Lai, Phu and He, end-to-end latency is a key determinant of the QoE
of the user experience, especially for latency-sensitive online or cloud games, and edge
computing has emerged as a promising solution to the high latency problem [16].

Based on [17], CODEG was proposed by L. De Giovanni and Prof. Giaccone et al. It
aims to provide a network-wide abstraction for each game engine.CODEG divides each
GE into a decomposed set of modules, the Game Engine Modules (GEMs).The GEMs
represent the basic elements that give the GEs and are activated when their function is
activated when it is needed. The individual GEMs must be connected together to function
properly. For a given game, the GEMs and their interconnections together constitute
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2.8 – Summary

Figure 2.4: Impact of network delay on QoE [15]

the complete GE generated by CODEG. during execution, information is continuously
exchanged between the GEMs to enable the GE processing workflow.

Figure 2.5: Game session workflow in CODEG [17]

Figure 2.5 shows an example of a CODEG instance, the set of GEMs needed to run a
single game. Such instances may be associated with one or more game sessions or players.
Each game session is assigned a unique pair of entry and exit GEMs. The ingress GEM is
responsible for managing information for each session and allowing different sessions to be
differentiated. Whenever player input is received at the ingress GEM, the information
contained in the request is passed through the entire GE, while session-specific outputs
are generated at the egress GEM. [17]

2.8 Summary
In this thesis, the focus is on simulating a distributed cloud gaming service where multiple
gaming services can run simultaneously, each using the CODEG architecture, by combining
multiple modules (GEMs) and placing them separately in available gaming network
facilities, combining cloud and edge computing approaches to utilise network resources
to achieve a complete architecture. The goal of the allocation algorithms is to meet the
maximum response latency to reduce costs and ensure high QoE parameters per player.
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Chapter 3

Design and implementation

3.1 Overview

In this chapter, we present an architecture where multiple gaming services can run
concurrently, each using the CODEG architecture, by combining multiple modules (GEMs)
with cloud computing and placing them individually into available network facilities, edge
computing, and using network resources to achieve a complete architecture with allocation
algorithms aimed at meeting maximum response latency to reduce costs and ensure high
QoS. this chapter first discusses the overall architecture and then analyses some possible
scenarios to be met. determine some of the parameters required for the next step of the
simulation and finally illustrates the role of combining cloud and edge computing and its
impact on the architecture.

3.2 Introduction

The level of QoE and QoS parameters can be used as an indicator of how well the system
is performing. The most important QoS metric in traditional games is FPS, as FPS
affects the regularity of the game [18] and is very easy to measure. In cloud gaming,
FPS is guaranteed as long as the performance of each VM container is sufficient, so
our proposed architecture does not consider the FPS per VM. we assume that FPS is
guaranteed as long as each user is served, so only latency, bandwidth, number of users
and resource consumption need to be considered. In this architecture, resource allocation
is implemented in an adaptive form. If the user requests a compute node that does not
have enough resources, the adaptive algorithms will try to adapt to the current situation.

Based on research areas such as cloud and edge computing, as well as QoS guarantees
such as user latency guarantees, and load balancing guarantees for the entire architecture.
This architecture will ensure a high QoS for users playing different types of games.
architecture Combines different configurations to maintain a good QoS: high quality cloud
server connections (cloud computing), high quality low latency edge server connections
(edge computing), and when no network resources are available (adaptive). The cloud in
the architecture diagram is represented by a server. The server can perform processing
for the user and transmit the results to the client. Edge computing is represented by
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a computing node close to the user, which can also provide services to the user. Edge
computing is a similar approach to cloud computing. The difference lies in the distance
between the user and the computing resources. Adaptive algorithms are included in the
system itself that regulate which server in the cloud service each user accesses and will
strive to maintain a good QoS. If all network resources are exhausted throughout the
system, the system will reject new users and add them to a waiting list. If new resources
are available, users on the waiting list will be allowed to access the compute nodes on a
first in first out (FIFO) basis. This process applies to all user scenarios.

The three main elements of the architecture are as follows.
1. the client (user). This includes information about the device the user is running on

and the game being run, each game has different resource requirements.
2. The network. This includes everything between the client and the server, some of

the less important devices will be omitted (e.g. routers, switches etc.).
3. Server side (cloud servers and edge servers). Servers that provide services, different

devices have different amounts of resources, and the amount of available resources changes
as users join.

This architecture needs to monitor changes in information to effectively improve QoS
and QoE for users. game data, device data and network data are all values that need to
be measured, such as the amount of resources required for a game run by the client, the
resource usage of the server and the game latency of the user, all of which are stored in a
database (DB) on each node. What is used in the data schema lock is discussed further in
the DB. Based on this stored data, the allocation algorithms will adaptively assign users
to the cloud gaming system and ensure QoS and QoE for the users.

The remainder of this chapter will go on to explain the architecture and then explain
the adaptive algorithms and the possible scenarios and solutions, before the chapter moves
on to explain the database and network and focus on the impact of each element on the
architecture.

3.3 Architecture description

Figure 3.1 shows the proposed architecture. The aim of the architecture is to provide
high QoS to all users through a distributed engine, independent of network and user
conditions. The distributed resources are represented by CNs and ENs. These nodes
can serve multiple TEs to provide high QoS. three elements (user, network and server)
work together in the DB, each with its own attributes, and each server (cloud and edge)
nodes will maintain the state of the users connected to itself and in the server’s local DB
Storing data related to its own state and network state. The adaptive system calls on
each server’s local DB to maintain the QoS of the entire system.

In this architecture, server resources are hierarchical and the logic is based on the
level of distance between the server and the user. Layer 0 represents the edge nodes
closest to the users. Their role is to provide the lowest delay, but each edge node has
system resources and the lowest network bandwidth resources of all nodes connected to
the user. Layer 1 represents the logically medium distance distributed cloud server Node.
the server resources on layer 1 have more capacity than the edge nodes and can serve
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more edge nodes having more users with slightly higher network bandwidth resources
between users, but also slightly higher latency. The Cloud Node on Layer 2 represents the
core data centre for cloud gaming, which has the largest amount of resources and network
bandwidth, but also has the highest latency of all servers.

Figure 3.1: Proposed architecture of distributed engine

The network covers all devices between the client and the server, each with different
functions and different connection types and speeds. The network devices feed their
connection data and resource status to a DB and serve the adaptive algorithms to allocate
available network resources, and if a server does not have the resources available to serve
the client, the adaptive algorithms can transfer the user to other nodes on the network
that have the required resources and reliable connectivity. The DB and the adaptive
allocation algorithms are described in detail in the next section.

3.4 How to access server node
Figure 3.2 illustrate the logic about TE access server.

The GEM is a Docker-like container that can be thought of as a virtual machine that
runs the game and renders the graphics. When an end device is allowed to access the
service node, the service node will allocate the resources required for the TE to run the
game to a new GEM and allow the end device to access the GEM, which will render the
images and sound streamed by the GEM to the user in real time.

3.5 Database
In this section we will discuss the role of the database and the contents of the database in
the different nodes. The role of the database is to store information about the device itself,
as well as the games and networks that run in it. The adaptive allocation algorithms
mentioned later will be all about the database. Integration is managed and allocation
decisions are made.
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Figure 3.2: Terminal Equipment access Server

The database stores a lot of information related to the schema. The table below
summarises the data required and where it is stored.

Uer(Te) Edge Node Cloud Node Network
1.Resource Requirement
of Game.(eg. CPU,
RAM, Storage)
2.Network Resource
Requirement
3.Delay Requirement (
will decide weight
with Users)
4.Bandwidth Requirement

1.Process Delay
2.CPU Usage
3.RAM Usage
4.Accept User List
5.Bandwidth
Requirement

1.Process Delay
2.CPU Usage
3.RAM Usage
4.Accept User List
5.Bandwidth
Requirement

1.RTT delay
2.Bandwidth

Table 3.1: The databases and information for this Architecture

In the user section:

1. The resource requirements of the game. Different games have different resource
requirements. If the resources to run the game are not available, the game will be moved
to run elsewhere. For example, a game A may require the use of 3Ghz CPU resources and
4GB of running memory.

2. Network resource requirements. Each user sends commands to the cloud game
engine and the game engine’s feedback screen requires network bandwidth.

3. Maximum delay requirements. Games need to stay below the maximum delay delay
requirements for a good gaming experience, each game has a different maximum delay
requirement and the delay affects the weighting of the game distribution.
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4. Bandwidth requirements. Users send requests and actions to the Node, which
require network bandwidth.

In Edge Node and Cloud Node: Since Edge Node and Cloud Node are only different in
distance from the user, they have almost the same database.

1. Process Delay. The unavoidable delays caused by the processing time to deliver
services to users.

2. CPU usage. The percentage of CPU being used, if this value increases too much it
will affect the performance of the server and if this value reaches 100 percent the node
will not be able to accept new users.

3. Memory usage. The percentage of running memory being used. If this value
increases too much, it will also affect the performance of the server. If this value reaches
100 percent, the node will not be able to accept new users.

4. Accepted Users List. Displays a list of users that have joined the Node, used to
display and count user data for the service.

5. Bandwidth requirements. Network bandwidth is required to stream images to users.

In the network section:

1. Link delay: The delay caused between nodes or between users and nodes.
2. Bandwidth: Sending data between users and nodes requires network bandwidth.
With this architecture, the first action is typically the user. The user first issues a

command to the entire cloud gaming architecture, and the adaptive resource allocation
algorithms works at this point, looking at the node’s database and making a determination
to assign the user to the appropriate node. The details of this are described in the next
section.

3.6 Maximum delay limits
In the QoS measurement study for cloud gaming, network quality is an important metric
that affects user QoE, with delay and packet loss being the most important. As packet
loss is not considered in our ideal architecture, delay is the most important parameter in
determining user QoE. [19]. Therefore, it is essential to set a maximum delay limit as a
TE parameter to ensure that users entering the service node can maintain a high QoS.

3.7 Summary
This chapter discusses architectures that aim to improve QoE for users by providing
overall QoS. The technologies currently in use (described in Chapter 2), including cloud
and edge computing, are analysed to create an architecture that provides overall high
performance and high QoS and QoE for users by combining their approaches and using
resource adaptive allocation algorithms.
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Chapter 4

Experimental method and setup

4.1 Overview
This chapter describes the methodology and system setup used to test the architecture
presented in Chapter 3. The focus is on the decision making capabilities of the architecture
(resource adaptive allocation algorithms). The decision within the architecture is to provide
services to the TE based on metrics such as network conditions within the architecture
and the occupancy of device resources, and to specify which Service Node helps which TE.

4.2 introduction
In Chapter 3, an architecture is presented that aims to provide high QoS for all running
users in the engine. High QoS can be provided through the use of distributed resources,
combined with cloud and edge computing. with technical improvements in hardware and
software, it is also possible to increase the number of devices in the engine, especially edge
computing devices, and the resources available. This distributed architecture can access
the database of each node and aggregate it so that available resources in the nodes can be
found and users can access these resources through adaptive allocation algorithms. The
focus of this chapter is to develop the architecture and the adaptive algorithm into an
experimental scenario and to explain the results of the study. First, Section 5.3 describes
the behavioural logic of the service nodes. From the description in the previous chapter,
it is clear that TEs can learn from other nodes when resources are insufficient. receiving
help. Section 5.4 describes two resource adaptive allocation algorithms (Bottom-Up
and Top-down) and Section 5.5 discusses how the overall QoS can be improved in this
architecture.

4.3 Behavior of service node
In this architecture, edge nodes and cloud nodes are essentially service nodes; they are
both processing-capable nodes, so their behaviour is similar. When the TE accesses the
service node, the node checks its own resource state and network state and reads data
(resource requirements and latency constraints) from the TE. If the resource requirements
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and latency constraints are satisfied, the service node will immediately serve the TE and
perform the game flow. If the resource requirements or latency constraints are not met,
the request is forwarded to an upper or lower tier server (which server depends on the
resource allocation of the algorithm being used at the time).

4.4 Resource adaptive allocation algorithms
In this section, the resource adaptive allocation algorithms is described in detail.

Figure 4.1 below illustrates two different algorithms strategies, Bottom-Up and Top-
Down, and their entire logic is very different.

And there are also different advanced algorithms for these two algorithms, which
we generally call online algorithms. The high QoS requirements of all users are met by
migrating the running GEMs and meeting the dynamic cloud game engine system where
users can enter/exit dynamically. Parts of this new architecture will be presented in a
paper by my supervisor Prof. Paolo Giaccone and colleagues Iman Lotfimahyari and
others, which will be covered in future work.

Figure 4.1: Adaptive algorithms and architecture of distributed engine
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4.4.1 Bottom - Up

Figure 4.2 below shows the logic of the Bottom-Up offline algorithms.

Figure 4.2: Bottom-up algorithms

In the bottom-up offline algorithm, the user first initiates a service request to the
nearest edge node. If the edge node has sufficient resources, delay less than the maximum
delay limit and sufficient downlink bandwidth, the edge node can allow the TE to join
and serve the TE, and the edge node will provide the TE with a stream of graphics
signals and sound signals. If the edge node does not have sufficient resources or insufficient
downlink bandwidth, the TE’s request will be forwarded to the upper layer cloud node
(L1). Similarly, if the cloud node (L1) has sufficient resources, latency less than the
maximum latency limit and sufficient downlink bandwidth, the cloud node (L1) can allow
TEs to join and serve TEs and the cloud node (L1) will serve the TE stream. It can
transmit graphics signals and sound signals. If the cloud node (L1) does not have enough
resources or insufficient downlink bandwidth, the TE request will be forwarded to the
upper cloud node (L2). If the root node (cloud node L2) has sufficient resources and
the latency is less than the maximum delay limit, the root node will provide streaming
services to the TE, otherwise access to the user will be blocked. The loop runs until all
users are in the loop.

algorithms 1 illustates the logic of Bottom-Up offline.
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Algorithm 1 Bottom-UP offline
EdgeNode = EN, CloudNode(L1) = CN1, CloudNode(L2) = CN2
User = TE, ProcessDelay = ProcDelay, LinkDelay*2 = RTTDelay
totDelay = ProcDelay + RTTDelay
TE send Request to EdgeNode
if totDelay<=TE.DelayLimit and EN.Resource>=TE.Resource
and EN.bw>=TE.bw then ▷ Check resource, delay and bandwidth

EN.Resource = EN.Resource-TE.Resource ▷ update resource
EN.bw = EN.bw-TE.bw ▷ update bandwidth
CurrentNode = EN ▷ now EN is server
EN.games.append(TE.gameName,TE.totDelay) ▷ update game total delay to DB

else
▷ if resource or bandwidth are not efficient

CurrentNode = CN1 ▷ Send TE’s Request To CN1
if totDelay<=TE.DelayLimit and CN1.Resource>=TE.Resource

and CN1.bw>=TE.bw then ▷ Check resource, delay and bandwidth
CN1.Resource = CN1.Resource-TE.Resource ▷ update resource
CN1.bw = CN1.bw-TE.bw ▷ update bandwidth
CN1.games.append(TE.gameName,TE.totDelay) ▷ update game total delay to

DB
else

▷ if resource or bandwidth are not efficient
CurrentNode = CN2 ▷ Send TE’s Request To CN2
if totDelay<=TE.DelayLimit and CN2.Resource>=TE.Resource

and CN2.bw>=TE.bw then ▷ Check resource, delay and bandwidth
CN2.Resource = CN2.Resource-TE.Resource ▷ update resource
CN2.bw = CN2.bw-TE.bw ▷ update bandwidth
CN2.games.append(TE.gameName,TE.totDelay)

▷ update game total delay to DB
else

return Fail ▷ Mark This User Cannot join in engine
end if

end if
end if
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4.4.2 Top - Down

Figure 4.3 below shows the logic of the Top-Down offline algorithms.

Figure 4.3: Top-Down algorithms

In the top-down offline algorithm, the user first initiates a service request to the root
server cloud node (L2). If the cloud node (L2) has sufficient resources with delay less
than the maximum delay limit and sufficient downlink bandwidth, the cloud node (L2)
may allow the TE to join and provide the TE with a stream of graphics and audio signals.
If the latency of the TE connection to the cloud node (L2) is calculated or if the cloud
node (L2) does not have sufficient resources or insufficient downlink bandwidth, the TE
request is forwarded to the next level cloud node (L1). Similarly, if the cloud node (L1)
has sufficient resources, delay less than the maximum delay limit and sufficient downlink
bandwidth, the cloud node (L1) can allow TEs to join and serve TEs and the cloud node
(L1) will serve the TE stream. It can transmit graphics signals and sound signals. If
the delay of the TE connected to the cloud node (L1) is still above the maximum delay
limit, or if there are insufficient resources or insufficient downlink bandwidth, the TE’s
request will be forwarded to the next level of the edge node. If the edge node has sufficient
resources and the latency is less than the maximum delay limit, the edge node will provide
streaming services to the TE, otherwise the user will be blocked from accessing. The loop
runs until all users are in the loop.

algorithms 2 illustates the logic of Top-Down offline.
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Algorithm 2 Top-Down offline
EdgeNode = EN, CloudNode(L1) = CN1, CloudNode(L2) = CN2
User = TE, ProcessDelay = ProcDelay, LinkDelay*2 = RTTDelay
totDelay = ProcDelay + RTTDelay
TE send Request to CN2
if totDelay<=TE.DelayLimit and CN2.Resource>=TE.Resource
and CN2.bw>=TE.bw then ▷ Check resource, delay and bandwidth

CN2.Resource = CN2.Resource-TE.Resource ▷ update resource
CN2.bw = EN.bw-CN2.bw ▷ update bandwidth
CurrentNode = CN2 ▷ now EN is server
CN2.games.append(TE.gameName,TE.totDelay) ▷ update game total delay to DB

else
▷ if delayLimit or resource or bandwidth are not efficient

CurrentNode = CN1 ▷ Send TE’s Request To CN1
if totDelay<=TE.DelayLimit and CN1.Resource>=TE.Resource

and CN1.bw>=TE.bw then ▷ Check resource, delay and bandwidth
CN1.Resource = CN1.Resource-TE.Resource ▷ update resource
CN1.bw = CN1.bw-TE.bw ▷ update bandwidth
CN1.games.append(TE.gameName,TE.totDelay) ▷ update game total delay to

DB
else

▷ if delayLimit or resource or bandwidth are not efficient
CurrentNode = EN ▷ Send TE’s Request To EN
if totDelay<=TE.DelayLimit and EN.Resource>=TE.Resource

and EN.bw>=TE.bw then ▷ Check resource, delay and bandwidth
EN.Resource = EN.Resource-TE.Resource ▷ update resource
EN.bw = EN.bw-TE.bw ▷ update bandwidth
EN.games.append(TE.gameName,TE.totDelay)

▷ update game total delay to DB
else

return Fail ▷ Mark This User Cannot join in engine
end if

end if
end if
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4.5 Simulation data-set
Due to the needs of the comparative experiment, my colleague Iman Lotfimahyar and I use
the same three sets of user data, namely high-rate, Mid-rate and Low-rate, each user in
each set of data has a different size of game type , and different game types have different
resource requirements and maximum delay limits. The link delay between all service nodes
is fixed at 5ms, and the processing delay between edge nodes and cloud nodes is fixed at
10ms. And in the simulation we will use CPU resources as the main representative. We
will change the server resources at each level in multiple experiments, and there are five
different allocation strategies in the Bottom-Up and Top-Down algorithms:

1. Random distribution
2. High-CPU first
3. Low-CPU first
4. High-delay first
5. Low-delay first

4.6 Implementation of the model
This section is dedicated to explaining the core components of the architecture and
simulations mentioned in the paper. Each component in the scheme is explained in the
following subsections.

4.6.1 Design logic of the model

Figure 4.4 illustrates the design logic of the model.

Figure 4.4: Design logic of the model
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In the architecture simulation, python is used as the development language, and
the python extension package Networkx is used when generating the network. At the
beginning of the simulation, first set the parameters and the number of tests, use python to
traverse each service node and the network between the nodes, then initialize the database
data of the service node, then import the TE data group generated by the computer,
and then use the TE data group to initialize Go to the TE database, and then run the
adaptive allocation algorithms from the first TE until the end of the simulation. Finally,
analyze the simulation results.

4.6.2 Network implementation

In the network architecture generation part, using the networkx package (based on python),
it is implemented by traversing each node and connecting them. The traversal process
requires the use of the numpy package.

import networkx as nx
import numpy as np

def BuildNetwork():
G = nx.Graph() # networkx initialize
nodes.append(CN(6, node_kind[2], 2*(depth)*link_dly)) # initialize root
nodes[0].layer=2 # set node into root
top_node.append(nodes[0]) # top node is the root
G.add_node(nodes[0].ID) # add root to the graph
up_lim = 0
for level in range(depth): # loop over each node level

n_level = n**level # number of nodes on a given level
low_lim = up_lim + 1 # index of first node on a given level
up_lim = up_lim + n_level # index of last node on a given level
for i in range(n_level): # loop over nodes (parents) on a given level

parentID = 6 - (low_lim + i - 1) #CloudNode(low_lim+i,
node_kind[level+1], 2*(depth-level-1)*link_dly)

offset = up_lim + i*n + 1 # index pointing to node just before first
child

for k in range(n): # loop over children for a given node (parent)
j = n - k
child = CN(5 - offset + j, node_kind[depth - level - 1], 2*(depth -

level -1)*link_dly) # initialize child
child.parentID = parentID # set parent ID
child.layer = depth-level-1 # set layer
nodes.append(child) # add child to the list of nodes
nodes[low_lim+i-1].childIDs.append(5-offset+j) # add child ID to the

list of children of the parent
if level==depth-1:

edge_layer.append(child)
edges.append((parentID,child.ID))
G.add_node(child.ID)
G.add_edge(nodes[low_lim+i-1].ID, child.ID)
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4.6.3 Database implementation

The database part is divided into two directions, service nodes and user nodes. The
method of assigning attributes is to use python’s class-oriented programming. When
initializing the network, assign values to the class of each node, and the algorithms will
call the value of each node. The corresponding code is as follows:

class CN:
def __init__(self, ID, info, delay):

self.ID = ID
self.layer = info[0]
self.parentID = 0.5 # Means that is root(Cloud L2)
self.childIDs = [] # initialize child
self.ProcDly = info[1]
self.cpu = info[2] # CPU resources
self.RTTdlyForUE = delay
self.games = [] # store accessed games

In the user part, the method of assigning attributes is similar to that of the service
node. First, the user list in text format is converted into a list, and then they are assigned
one-to-one correspondence with the generated users.

games = [list(map(float, line.strip(’\n’).split(’,’))) for line in
open(’9_P0.txt’)] # Convert text to list

class Player:
def __init__(self, info):

self.migrated = 0
self.name = info[0]
self.ID = info[0]
self.GEM = info[1]
self.TotDly = info[2]# Delay constraint
self.cpu = info[3]
self.expDly = 0

4.7 algorithms implentation

According to the logic of the custom allocation algorithms in the previous section, the
algorithms can be easily implemented. The custom allocation will first read the data of
the TE that is about to access the service, and determine whether to join the service node
or which service node to join.

So here is a function written in python, which is triggered when the user who enters
the node meets the conditions, the service node will record the user who enters the node
and update the resource balance in the database.

# In the example, cpu is used to refer to the node’s resources.
def acceptPlayer(self, player, test): # test = [game, max delay, Cpu]
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a = self.ProcDly+self.RTTdlyForUE # a = ProcDly + RTTdlyForUE
if ((a <= player.TotDly) and (self.cpu >= player.cpu)):

if test==0:
self.cpu = self.cpu-player.cpu
self.games.append([player.name,player.TotDly])

return 1
else:

return 0

At the beginning of the whole simulation, since the algorithms needs to be repeated
many times in one experiment, a variable next_experiment is defined at the beginning of
the experiment, and TE will access the engine according to the order of the list. If the
TE is allocated to the service node by the custom allocation algorithms, the acceptPlayer
function is called and the user is marked as having accessed the service, and the next user
in the list is called. If the user does not meet the conditions for accessing the service node,
follow the resource allocation algorithms to enter the upper/lower node. The operation
loops until all users are called. At this point, next_experiment will be changed to true,
and while next_experiment = true is satisfied, the network and service node properties
will be reinitialized and the algorithms will be restarted and the loop will start. When
the loop reaches the preset number of experiments, the flag next_experiment is false and
the process is terminated.
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Chapter 5

Experimental evaluation

The last chapter is dedicated to the analysis of the results of the different experiments.
Since the structure of the experiments has already been discussed. Therefore, this chapter
is only concerned with the experimental results. All experimental results are evaluated
using tables and matrices. After the experiment, the results will be compared with those
of my colleague iman, and the data from the traditional cloud game engine will be added
for comparison.

5.1 Methodology

In this experiment, three sets of user data (high rate, medium rate and low rate) are used to
represent the operation of the game engine under different load conditions for comparison
with the results of later experiments. To simplify the description, all ServeNodes are
numbered. edgeNodes for L0 are Node0 to Node4 respectively, CloudNodes for L1 are
Node4 and Node5, and CloudNodes for L2 are Node6. The same constants for all
experiments are: processing delay for all nodes is set to 10ms, connection between nodes
The delay is set to 5ms, the upstream and downstream bandwidth between both TE
and EdgeNode is 25 Mbps, and the upstream and downstream bandwidth between all
EdgeNodes and CloudNode is 100 Mbps. the bandwidth between CLoudNode (L1) and
the highest level CloudeNode (L2), which is theoretically unlimited, is actually set to 1,
000,000 Mbps. 50 Mbps of downlink bandwidth is used by the service node to provide
streaming services to each user, while 0.1 Mbps of uplink bandwidth is required for
each user requesting to join the service node. Each user is placed sequentially in each
ServiceNode in the engine in the order in which they are listed. When all users have been
tried, they are re-initialised for the next experiment. This process will be repeated 100
times in a single experiment to reduce errors and to eliminate eventualities.

Here we introduce the concept of Delay-slack, which is expressed as AvgDelayslack=AvgMaxDelay−AvgDelay,
where AvgMaxDelay represents the maximum average delay that users can tolerate and
AvgDelay represents the average actual delay of users.
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5.2 Experiments with first setting

The following Figure 5.1 shows the first set of data, it is set to 250GHz total CPU resources
per EdgeNode for L0 and 1000GHZ total resources per Node for L1. L2 has theoretically
unlimited resources, so it is set to 10000000GHz.

Figure 5.1: First Simulation Structure

In the first experiment, there are two sections, Bottom-Up and Top-Down, depending
on the algorithms, and each section is divided into Random, High-CPU first, Low-CPU
first, High-Delay first, and Low-Delay first, depending on the allocation strategy of the
species.

5.2.1 Simulation result with high-rate user

In the same experimental environment, the AvgDelay for users in the traditional cloud
game engine is 30ms and AvgDelaySlack is 8.53ms, which can serve all users under ideal
conditions, but requires much higher hardware resources than the distributed cloud game
engine, and users who need low delay to have a good QoE game will have a very poor
gaming experience.

BU-Random with high-rate and first set

The following figure 5.2 represents the results of the simulation performed by the high-rate
player in the BU-Random strategy. The BU-Random policy means that users access the
cloud game engine in random order.

After 100 iterations, an average of 955 users were allowed to access the service node
each time, the average delay of users was 14.96ms, the average delay of Slack was 28.94ms,
and an average of 202.35 users were unable to access the service, with a failure rate of
approximately 17 percent.These are summarised in a table later.
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Figure 5.2: BU-Random with high-rate and first set

BU-CPU-HighFirst with high-rate and first set

The following figure 5.3 represents the results of the simulation performed by the high-rate
player in the BU-CPU-HighFirst strategy.The BU-CPU-HighFirst policy means that users
access the cloud game engine in order of largest to smallest CPU usage.

Figure 5.3: BU-CPU-HighFirst with high-rate and first set

After 100 iterations, an average of 855 users were allowed to access the service node each
time, the average delay of users was 17.97ms, the average delay of Slack was 29.06ms, and
an average of 306 users were unable to access the service, a failure rate of approximately
26 percent. These are summarised in a table later.

BU-CPU-LowFirst with high-rate and first set

The following figure 5.4 represents the results of the simulation performed by the high-rate
player in the BU-CPU-LowFirst strategy. The BU-CPU-LowFirst policy policy means
that users access the cloud game engine in order of smallest to largest CPU usage.

After 100 iterations of the experiment, an average of 1064 users were allowed to access
the service node each time, the average delay of the users was 29.08ms, the average delay
Slack was 29.77ms, and an average of 96 users were unable to access the service, with a
failure rate of approximately 8 percent. These are summarised in a table later.
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Figure 5.4: BU-CPU-LowFirst with high-rate and first set

BU-Delay-HighFirst with high-rate and first set

The following figure 5.5 represents the results of the simulation performed by the high-rate
player in the BU-Delay-HighFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of highest to lowest user tolerable delay.

Figure 5.5: BU-Delay-HighFirst with high-rate and first set

After 100 iterations of the experiment, an average of 791 users were allowed to access
the service node each time, with an average delay of 13.21ms, an average delay Slack of
36.42ms, and an average of 396 users unable to access the service, for a failure rate of
roughly 32 percent. These are summarised in a table later.

BU-Delay-LowFirst with high-rate and first set

The following Figure 5.6 represents the results of the simulation performed by the high-rate
player in the BU-Delay-LowFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of lowest to highest user tolerable delay.

After 100 iterations, an average of 1160 users were allowed to access the service node
each time, with an average delay of 15.85ms and an average delay Slack of 22.68ms. There
were no users unable to access the service, so the failure rate was ZERO. These are
summarised in a table later.
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Figure 5.6: BU-Delay-LowFirst with high-rate and first set

TD-Random with high-rate and first set

The following Figure 5.7 below shows the results of a simulation performed by a high-rate
player under the TD-Random strategy, which means that the cloud game engine is accessed
in a random order.

Figure 5.7: TD-Random with high-rate and first set

After 100 iterations, an average of 1160 users were allowed to access the service node
each time, with an average delay of 21.38ms and an average delay Slack of 17.15ms. There
were no users unable to access the service, so the failure rate was ZERO. These are
summarised in a table later.

TD-CPU-HighFirst with high-rate and first set

The following Figure 5.8 below shows the simulation results for high-rate players under
the TD-CPU-HighFirst policy, which means that the Cloud Game Engine is accessed from
the highest to the lowest user CPU usage.

Very similar to TD-Random, after 100 iterations of the experiment, an average of 1160
users were allowed to access the service node each time, with an average delay of 21.38ms
and an average delay Slack of 17.15ms. There were no users who could not access the
service, so the failure rate was ZERO. This is summarised in a table later.
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Figure 5.8: TD-CPU-HighFirst with high-rate and first set

TD-CPU-LowFirst with high-rate and first set

The following Figure 5.9 shows the simulation results for high-rate players under the
TD-CPU-LowFirst policy. tTD-CPU-LowFirst policy means that the Cloud Game Engine
is accessed from the lowest to the highest user CPU usage.

Figure 5.9: TD-CPU-LowFirst with high-rate and first set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 21.38ms, the average
delay Slack is 17.15ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.

TD-Delay-HighFirst with high-rate and first set

The following Figure 5.10 represents the simulation results for high-rate players under
the TD-Delay-HighFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the maximum delay tolerated by the user.

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 21.38ms, the average
delay Slack is 17.15ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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Figure 5.10: TD-Delay-HighFirst with high-rate and first set

TD-Delay-LowFirst with high-rate and first set

The following Figure 5.11 shows the simulation results for high-rate players under the
TD-Delay-LowFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the highest delay tolerated by the user.

Figure 5.11: TD-Delay-LowFirst with high-rate and first set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 21.38ms, the average
delay Slack is 17.15ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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5.2.2 Simulation result with mid-rate user

In the same experimental environment, the AvgDelay for users in the traditional cloud
game engine is 30ms and AvgDelaySlack is 7.38ms, which can serve all users under ideal
conditions, but requires much higher hardware resources than the distributed cloud game
engine, and users who need low delay to have a good QoE game will have a very poor
gaming experience.

BU-Random with Mid-rate and first set

The following figure 5.12 represents the results of the simulation performed by the mid-rate
player in the BU-Random strategy. The BU-Random policy means that users access the
cloud game engine in random order.

Figure 5.12: BU-Random with Mid-rate and first set

After 100 iterations, an average of 504 users were allowed to access the service node
each time, the average delay of users was 10.45ms, the average delay of Slack was 27.49ms,
and an average of 10.54 users were unable to access the service, with a failure rate of
approximately 2 percent.These are summarised in a table later.

BU-CPU-HighFirst with Mid-rate and first set

The following figure 5.13 represents the results of the simulation performed by the mid-rate
player in the BU-CPU-HighFirst strategy.The BU-CPU-HighFirst policy means that users
access the cloud game engine in order of largest to smallest CPU usage.

After 100 iterations, an average of 474 users were allowed to access the service node
each time, the average delay of users was 12.49ms, the average delay of Slack was 27.2ms,
and an average of 48 users were unable to access the service, a failure rate of approximately
9 percent. These are summarised in a table later.

BU-CPU-LowFirst with Mid-rate and first set

The following figure 5.14 represents the results of the simulation performed by the mid-rate
player in the BU-CPU-LowFirst strategy. The BU-CPU-LowFirst policy policy means
that users access the cloud game engine in order of smallest to largest CPU usage.
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Figure 5.13: BU-CPU-HighFirst with Mid-rate and first set

Figure 5.14: BU-CPU-LowFirst with Mid-rate and first set

After 100 iterations of the experiment, an average of 517 users were allowed to access
the service node each time, the average delay of the users was 10.19ms, the average delay
Slack was 27.41ms, and an average of 5 users were unable to access the service, with a
failure rate of approximately 1 percent. These are summarised in a table later.

BU-Delay-HighFirst with Mid-rate and first set

The following figure 5.15 represents the results of the simulation performed by the mid-rate
player in the BU-Delay-HighFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of highest to lowest user tolerable delay.

After 100 iterations of the experiment, an average of 478 users were allowed to access
the service node each time, with an average delay of 10ms, an average delay Slack of
29.69ms, and an average of 44 users unable to access the service, for a failure rate of
roughly 8 percent. These are summarised in a table later.

BU-Delay-LowFirst with Mid-rate and first set

The following figure 5.16 represents the results of the simulation performed by the mid-rate
player in the BU-Delay-LowFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of lowest to highest user tolerable delay.

After 100 iterations, an average of 522 users were allowed to access the service node
each time, with an average delay of 10.82ms and an average delay Slack of 26.56ms. There
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Figure 5.15: BU-Delay-HighFirst with Mid-rate and first set

Figure 5.16: BU-Delay-LowFirst with Mid-rate and first set

were no users unable to access the service, so the failure rate was ZERO. These are
summarised in a table later.

TD-Random with Mid-rate and first set

The following Figure 5.17 below shows the results of a simulation performed by a mid-rate
player under the TD-Random strategy, which means that the cloud game engine is accessed
in a random order.

After 100 iterations, an average of 522 users were allowed to access the service node
each time, with an average delay of 21.95ms and an average delay Slack of 15.43ms. There
were no users unable to access the service, so the failure rate was ZERO. These are
summarised in a table later.

TD-CPU-HighFirst with Mid-rate and first set

The following Figure 5.18 below shows the simulation results for mid-rate players under
the TD-CPU-HighFirst policy, which means that the Cloud Game Engine is accessed from
the highest to the lowest user CPU usage.

Very similar to TD-Random, after 100 iterations of the experiment, an average of 522
users were allowed to access the service node each time, with an average delay of 21.95ms
and an average delay Slack of 15.43ms. There were no users who could not access the
service, so the failure rate was ZERO. This is summarised in a table later.
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Figure 5.17: TD-Random with Mid-rate and first set

Figure 5.18: TD-CPU-HighFirst with Mid-rate and first set

TD-CPU-LowFirst with Mid-rate and first set

The following Figure 5.19 shows the simulation results for mid-rate players under the
TD-CPU-LowFirst policy. tTD-CPU-LowFirst policy means that the Cloud Game Engine
is accessed from the lowest to the highest user CPU usage.

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 21.95ms, the average
delay Slack is 15.43ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.

TD-Delay-HighFirst with Mid-rate and first set

The following Figure 5.20 represents the simulation results for mid-rate players under
the TD-Delay-HighFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the maximum delay tolerated by the user.

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 21.95ms, the average
delay Slack is 15.43ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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Figure 5.19: TD-CPU-LowFirst with Mid-rate and first set

Figure 5.20: TD-Delay-HighFirst with Mid-rate and first set

TD-Delay-LowFirst with Mid-rate and first set

The following Figure 5.21 shows the simulation results for mid-rate players under the
TD-Delay-LowFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the highest delay tolerated by the user.

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 21.95ms, the average
delay Slack is 15.43ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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Figure 5.21: TD-Delay-LowFirst with Mid-rate and first set

5.2.3 Simulation result with low-rate user

In the same experimental environment, the AvgDelay for users in the traditional cloud
game engine is 30ms and AvgDelaySlack is 12.968ms, which can serve all users under ideal
conditions, but requires much higher hardware resources than the distributed cloud game
engine, and users who need low delay to have a good QoE game will have a very poor
gaming experience.

BU-Random with Low-rate and first set

The following figure 5.22 represents the results of the simulation performed by the Low-rate
player in the BU-Random strategy. The BU-Random policy means that users access the
cloud game engine in random order.

Figure 5.22: BU-Random with Low-rate and first set

After 100 iterations, an average of 240 users were allowed to access the service node
each time, the average delay of users was 10ms, the average delay of Slack was 32.95ms,
and have no users were unable to access the service, with failure rate is zero.These are
summarised in a table later.

BU-CPU-HighFirst with Low-rate and first set

The following figure 5.23 represents the results of the simulation performed by the Low-rate
player in the BU-CPU-HighFirst strategy.The BU-CPU-HighFirst policy means that users
access the cloud game engine in order of largest to smallest CPU usage.
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Figure 5.23: BU-CPU-HighFirst with Low-rate and first set

After 100 iterations, with all users allowed to access the service node, the average
delay of users is 10ms, the average delay Slack is 32.95ms, and there are no users unable
to access the service, so the failure rate is zero. These are summarised in a table later.

BU-CPU-LowFirst with Low-rate and first set

The following figure 5.24 represents the results of the simulation performed by the Low-rate
player in the BU-CPU-LowFirst strategy. The BU-CPU-LowFirst policy policy means
that users access the cloud game engine in order of smallest to largest CPU usage.

Figure 5.24: BU-CPU-LowFirst with Low-rate and first set

After 100 iterations of the experiment, with all users allowed to access the service
node, the average delay of users is 10ms, the average delay Slack is 32.95ms, and there are
no users unable to access the service, so the failure rate is zero. These are summarised in
a table later.

BU-Delay-HighFirst with Low-rate and first set

The following figure 5.25 represents the results of the simulation performed by the Low-rate
player in the BU-Delay-HighFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of highest to lowest user tolerable delay.

After 100 iterations of the experiment, with all users allowed to access the service
node, the average delay of users is 10ms, the average delay Slack is 32.95ms, and there are
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Figure 5.25: BU-Delay-HighFirst with Low-rate and first set

no users unable to access the service, so the failure rate is zero. These are summarised in
a table later.

BU-Delay-LowFirst with Low-rate and first set

The following figure 5.26 represents the results of the simulation performed by the Low-rate
player in the BU-Delay-LowFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of lowest to highest user tolerable delay.

Figure 5.26: BU-Delay-LowFirst with Low-rate and first set

After 100 iterations, with all users allowed to access the service node, the average
delay of users is 10ms, the average delay Slack is 32.95ms, and there are no users unable
to access the service, so the failure rate is zero. These are summarised in a table later.

TD-Random with Low-rate and first set

The following Figure 5.27 below shows the results of a simulation performed by a Low-rate
player under the TD-Random strategy, which means that the cloud game engine is accessed
in a random order.

After 100 iterations, an average of 240 users were allowed to access the service node
each time, with an average delay of 22.99ms and an average delay Slack of 19.99ms. There
were no users unable to access the service, so the failure rate was ZERO. These are
summarised in a table later.
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Figure 5.27: TD-Random with Low-rate and first set

TD-CPU-HighFirst with Low-rate and first set

The following Figure 5.28 below shows the simulation results for Low-rate players under
the TD-CPU-HighFirst policy, which means that the Cloud Game Engine is accessed from
the highest to the lowest user CPU usage.

Figure 5.28: TD-CPU-HighFirst with Low-rate and first set

Very similar to TD-Random, after 100 iterations of the experiment, an average of 240
users were allowed to access the service node each time, with an average delay of 22.99ms
and an average delay Slack of 19.99ms. There were no users who could not access the
service, so the failure rate was ZERO. This is summarised in a table later.

TD-CPU-LowFirst with Low-rate and first set

The following Figure 5.29 shows the simulation results for Low-rate players under the
TD-CPU-LowFirst policy. TD-CPU-LowFirst policy means that the Cloud Game Engine
is accessed from the lowest to the highest user CPU usage.

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 22.99ms, the average
delay Slack is 19.99ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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Figure 5.29: TD-CPU-LowFirst with Low-rate and first set

TD-Delay-HighFirst with Low-rate and first set

The following Figure 5.30 represents the simulation results for Low-rate players under
the TD-Delay-HighFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the maximum delay tolerated by the user.

Figure 5.30: TD-Delay-HighFirst with Low-rate and first set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 22.99ms, the average
delay Slack is 19.99ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.

TD-Delay-LowFirst with Low-rate and first set

The following Figure 5.31 shows the simulation results for Low-rate players under the
TD-Delay-LowFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the highest delay tolerated by the user.

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 22.99ms, the average
delay Slack is 19.99ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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Figure 5.31: TD-Delay-LowFirst with Low-rate and first set

5.3 Experiments with second setting

The following Figure 5.32 shows the second set of data, it decrease to 200GHz total CPU
resources per EdgeNode for L0 and 290GHZ total resources per Node for L1. L2 has
theoretically unlimited resources, so it is set to 10000000GHz.

Figure 5.32: Second Simulation Structure

In the first experiment, there are two sections, Bottom-Up and Top-Down, depending
on the algorithms, and each section is divided into Random, High-CPU first, Low-CPU
first, High-Delay first, and Low-Delay first, depending on the allocation strategy of the
species.

5.3.1 Simulation result with high-rate user

In the same experimental environment, the AvgDelay for users in the traditional cloud
game engine is 30ms and AvgDelaySlack is 10.13ms, which can serve all users under ideal
conditions, but requires much higher hardware resources than the distributed cloud game
engine, and users who need low delay to have a good QoE game will have a very poor
gaming experience.
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BU-Random with High-rate and second set

The following figure 5.33 represents the results of the simulation performed by the high-rate
player in the BU-Random strategy. The BU-Random policy means that users access the
cloud game engine in random order.

Figure 5.33: BU-Random with High-rate and second set

After 100 iterations, an average of 848 users were allowed to access the service node
each time, the average delay of users was 17.68ms, the average delay of Slack was 30.9ms,
and an average of 314 users were unable to access the service, with a failure rate of
approximately 27 percent.These are summarised in a table later.

BU-CPU-HighFirst with High-rate and second set

The following figure 5.34 represents the results of the simulation performed by the high-rate
player in the BU-CPU-HighFirst strategy.The BU-CPU-HighFirst policy means that users
access the cloud game engine in order of largest to smallest CPU usage.

Figure 5.34: BU-CPU-HighFirst with High-rate and second set

After 100 iterations, an average of 725 users were allowed to access the service node each
time, the average delay of users was 24.33ms, the average delay of Slack was 29.56ms, and
an average of 446 users were unable to access the service, a failure rate of approximately
38 percent. These are summarised in a table later.
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BU-CPU-LowFirst with High-rate and second set

The following figure 5.35 represents the results of the simulation performed by the high-rate
player in the BU-CPU-LowFirst strategy. The BU-CPU-LowFirst policy policy means
that users access the cloud game engine in order of smallest to largest CPU usage.

Figure 5.35: BU-CPU-LowFirst with High-rate and second set

After 100 iterations of the experiment, an average of 1032 users were allowed to access
the service node each time, the average delay of the users was 13.05ms, the average delay
Slack was 30.26ms, and an average of 139 users were unable to access the service, with a
failure rate of approximately 12 percent. These are summarised in a table later.

BU-Delay-HighFirst with High-rate and second set

The following figure 5.36 represents the results of the simulation performed by the high-rate
player in the BU-Delay-HighFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of highest to lowest user tolerable delay.

Figure 5.36: BU-Delay-HighFirst with High-rate and second set

After 100 iterations of the experiment, an average of 678 users were allowed to access
the service node each time, with an average delay of 14.17ms, an average delay Slack of
42.65ms, and an average of 493 users unable to access the service, for a failure rate of
roughly 42 percent. These are summarised in a table later.
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BU-Delay-LowFirst with High-rate and second set

The following Figure 5.37 represents the results of the simulation performed by the high-
rate player in the BU-Delay-LowFirst strategy. The BU-Delay-HighFirst policy means
that the cloud game engine is accessed in order of lowest to highest user tolerable delay.

Figure 5.37: BU-Delay-LowFirst with High-rate and second set

After 100 iterations, an average of 1165 users were allowed to access the service node
each time, with an average delay of 21.05ms and an average delay Slack of 19.18ms. There
were 6 unable to access the service, so the failure rate was lower than 1 percent. These
are summarised in a table later.

TD-Random with High-rate and second set

The following Figure 5.38 below shows the results of a simulation performed by a high-rate
player under the TD-Random strategy, which means that the cloud game engine is accessed
in a random order.

Figure 5.38: TD-Random with High-rate and second set

After 100 iterations, an average of 1150 users were allowed to access the service node
each time, with an average delay of 22.16ms and an average delay Slack of 18.23ms.
There were 12 unable to access the service, so the failure rate was 1 percent. These are
summarised in a table later.
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TD-CPU-HighFirst with High-rate and second set

The following Figure 5.39 below shows the simulation results for high-rate players under
the TD-CPU-HighFirst policy, which means that the Cloud Game Engine is accessed from
the highest to the lowest user CPU usage.

Figure 5.39: TD-CPU-HighFirst with High-rate and second set

Very similar to TD-Random, after 100 iterations of the experiment, an average of 1171
users were allowed to access the service node each time, with an average delay of 22.03ms
and an average delay Slack of 18.10ms. There were no users who could not access the
service, so the failure rate was ZERO. This is summarised in a table later.

TD-CPU-LowFirst with High-rate and second set

The following Figure 5.40 shows the simulation results for high-rate players under the
TD-CPU-LowFirst policy. tTD-CPU-LowFirst policy means that the Cloud Game Engine
is accessed from the lowest to the highest user CPU usage.

Figure 5.40: TD-CPU-LowFirst with High-rate and second set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 22.03ms, the average
delay Slack is 18.10ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.

54



5.3 – Experiments with second setting

TD-Delay-HighFirst with High-rate and second set

The following Figure 5.41 represents the simulation results for high-rate players under
the TD-Delay-HighFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the maximum delay tolerated by the user.

Figure 5.41: TD-Delay-HighFirst with High-rate and second set

The simulation results for this policy are still very similar to other TDs, with all users
allowed to access the service node, the average delay of users is 22.03ms, the average delay
Slack is 18.10ms, and there are no users unable to access the service, so the failure rate is
zero. These are summarised in a table later.

TD-Delay-LowFirst with High-rate and second set

The following Figure 5.42 shows the simulation results for high-rate players under the
TD-Delay-LowFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the highest delay tolerated by the user.

Figure 5.42: TD-Delay-LowFirst with High-rate and second set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 22.03ms, the average
delay Slack is 18.10ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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5.3.2 Simulation result with mid-rate user

In the same experimental environment, the AvgDelay for users in the traditional cloud
game engine is 30ms and AvgDelaySlack is 7.38ms, which can serve all users under ideal
conditions, but requires much higher hardware resources than the distributed cloud game
engine, and users who need low delay to have a good QoE game will have a very poor
gaming experience.

BU-Random with Mid-rate and second set

The following figure 5.43 represents the results of the simulation performed by the mid-rate
player in the BU-Random strategy. The BU-Random policy means that users access the
cloud game engine in random order.

Figure 5.43: BU-Random with Mid-rate and second set

After 100 iterations, an average of 481 users were allowed to access the service node
each time, the average delay of users was 11.71ms, the average delay of Slack was 27.38ms,
and an average of 34 users were unable to access the service, with a failure rate of
approximately 7 percent.These are summarised in a table later.

BU-CPU-HighFirst with Mid-rate and second set

The following figure 5.44 represents the results of the simulation performed by the mid-rate
player in the BU-CPU-HighFirst strategy.The BU-CPU-HighFirst policy means that users
access the cloud game engine in order of largest to smallest CPU usage.

Figure 5.44: BU-CPU-HighFirst with Mid-rate and second set
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After 100 iterations, an average of 437 users were allowed to access the service node
each time, the average delay of users was 14.58ms, the average delay of Slack was 27.2ms,
and an average of 85 users were unable to access the service, a failure rate of approximately
16 percent. These are summarised in a table later.

BU-CPU-LowFirst with Mid-rate and second set

The following figure 5.45 represents the results of the simulation performed by the mid-rate
player in the BU-CPU-LowFirst strategy. The BU-CPU-LowFirst policy policy means
that users access the cloud game engine in order of smallest to largest CPU usage.

Figure 5.45: BU-CPU-LowFirst with Mid-rate and second set

After 100 iterations of the experiment, an average of 503 users were allowed to access
the service node each time, the average delay of the users was 10.5ms, the average delay
Slack was 27.75ms, and an average of 19 users were unable to access the service, with a
failure rate of approximately 4 percent. These are summarised in a table later.

BU-Delay-HighFirst with Mid-rate and second set

The following figure 5.46 represents the results of the simulation performed by the mid-rate
player in the BU-Delay-HighFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of highest to lowest user tolerable delay.

Figure 5.46: BU-Delay-HighFirst with Mid-rate and second set

After 100 iterations of the experiment, an average of 431 users were allowed to access
the service node each time, with an average delay of 10.14ms, an average delay Slack
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of 32.2ms, and an average of 91 users unable to access the service, for a failure rate of
roughly 17 percent. These are summarised in a table later.

BU-Delay-LowFirst with Mid-rate and second set

The following figure 5.47 represents the results of the simulation performed by the mid-rate
player in the BU-Delay-LowFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of lowest to highest user tolerable delay.

Figure 5.47: BU-Delay-LowFirst with Mid-rate and second set

After 100 iterations, an average of 522 users were allowed to access the service node
each time, with an average delay of 12.24ms and an average delay Slack of 25.14ms. There
were no users unable to access the service, so the failure rate was ZERO. These are
summarised in a table later.

TD-Random with Mid-rate and second set

The following Figure 5.48 below shows the results of a simulation performed by a mid-rate
player under the TD-Random strategy, which means that the cloud game engine is accessed
in a random order.

Figure 5.48: TD-Random with Mid-rate and second set

After 100 iterations, an average of 522 users were allowed to access the service node
each time, with an average delay of 21.95ms and an average delay Slack of 15.43ms. There
were no users unable to access the service, so the failure rate was ZERO. These are
summarised in a table later.
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TD-CPU-HighFirst with Mid-rate and second set

The following Figure 5.49 below shows the simulation results for mid-rate players under
the TD-CPU-HighFirst policy, which means that the Cloud Game Engine is accessed from
the highest to the lowest user CPU usage.

Figure 5.49: TD-CPU-HighFirst with Mid-rate and second set

Very similar to TD-Random, after 100 iterations of the experiment, an average of 522
users were allowed to access the service node each time, with an average delay of 21.95ms
and an average delay Slack of 15.43ms. There were no users who could not access the
service, so the failure rate was ZERO. This is summarised in a table later.

TD-CPU-LowFirst with Mid-rate and second set

The following Figure 5.50 shows the simulation results for mid-rate players under the
TD-CPU-LowFirst policy. tTD-CPU-LowFirst policy means that the Cloud Game Engine
is accessed from the lowest to the highest user CPU usage.

Figure 5.50: TD-CPU-LowFirst with Mid-rate and second set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 21.95ms, the average
delay Slack is 15.43ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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TD-Delay-HighFirst with Mid-rate and second set

The following Figure 5.51 represents the simulation results for mid-rate players under
the TD-Delay-HighFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the maximum delay tolerated by the user.

Figure 5.51: TD-Delay-HighFirst with Mid-rate and second set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 21.95ms, the average
delay Slack is 15.43ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.

TD-Delay-LowFirst with Mid-rate and second set

The following Figure 5.52 shows the simulation results for mid-rate players under the
TD-Delay-LowFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the highest delay tolerated by the user.

Figure 5.52: TD-Delay-LowFirst with Mid-rate and second set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 21.95ms, the average
delay Slack is 15.43ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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5.3.3 Simulation result with low-rate user

In the same experimental environment, the AvgDelay for users in the traditional cloud
game engine is 30ms and AvgDelaySlack is 9.48ms, which can serve all users under ideal
conditions, but requires much higher hardware resources than the distributed cloud game
engine, and users who need low delay to have a good QoE game will have a very poor
gaming experience.

BU-Random with Low-rate and second set

The following figure 5.53 represents the results of the simulation performed by the Low-rate
player in the BU-Random strategy. The BU-Random policy means that users access the
cloud game engine in random order.

Figure 5.53: BU-Random with Low-rate and second set

After 100 iterations, an average of 254 users were allowed to access the service node
each time, the average delay of users was 10ms, the average delay of Slack was 29.48ms,
and have no users were unable to access the service, with failure rate is zero.These are
summarised in a table later.

BU-CPU-HighFirst with Low-rate and second set

The following figure 5.54 represents the results of the simulation performed by the Low-rate
player in the BU-CPU-HighFirst strategy.The BU-CPU-HighFirst policy means that users
access the cloud game engine in order of largest to smallest CPU usage.

Figure 5.54: BU-CPU-HighFirst with Low-rate and second set
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After 100 iterations, with all users allowed to access the service node, the average
delay of users is 10ms, the average delay Slack is 29.48ms, and there are no users unable
to access the service, so the failure rate is zero. These are summarised in a table later.

BU-CPU-LowFirst with Low-rate and second set

The following figure 5.55 represents the results of the simulation performed by the Low-rate
player in the BU-CPU-LowFirst strategy. The BU-CPU-LowFirst policy policy means
that users access the cloud game engine in order of smallest to largest CPU usage.

Figure 5.55: BU-CPU-LowFirst with Low-rate and second set

After 100 iterations of the experiment, with all users allowed to access the service
node, the average delay of users is 10ms, the average delay Slack is 29.48ms, and there are
no users unable to access the service, so the failure rate is zero. These are summarised in
a table later.

BU-Delay-HighFirst with Low-rate and second set

The following figure 5.56 represents the results of the simulation performed by the Low-rate
player in the BU-Delay-HighFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of highest to lowest user tolerable delay.

Figure 5.56: BU-Delay-HighFirst with Low-rate and second set

After 100 iterations of the experiment, with all users allowed to access the service
node, the average delay of users is 10ms, the average delay Slack is 29.48ms, and there are
no users unable to access the service, so the failure rate is zero. These are summarised in
a table later.
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BU-Delay-LowFirst with Low-rate and second set

The following figure 5.57 represents the results of the simulation performed by the Low-rate
player in the BU-Delay-LowFirst strategy. The BU-Delay-HighFirst policy means that
the cloud game engine is accessed in order of lowest to highest user tolerable delay.

Figure 5.57: BU-Delay-LowFirst with Low-rate and second set

After 100 iterations, with all users allowed to access the service node, the average
delay of users is 10ms, the average delay Slack is 29.48ms, and there are no users unable
to access the service, so the failure rate is zero. These are summarised in a table later.

TD-Random with Low-rate and second set

The following Figure 5.58 below shows the results of a simulation performed by a Low-rate
player under the TD-Random strategy, which means that the cloud game engine is accessed
in a random order.

Figure 5.58: TD-Random with Low-rate and second set

After 100 iterations, an average of 254 users were allowed to access the service node
each time, with an average delay of 22.01ms and an average delay Slack of 17.47ms. There
were no users unable to access the service, so the failure rate was ZERO. These are
summarised in a table later.

TD-CPU-HighFirst with Low-rate and second set

The following Figure 5.59 below shows the simulation results for Low-rate players under
the TD-CPU-HighFirst policy, which means that the Cloud Game Engine is accessed from
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the highest to the lowest user CPU usage.

Figure 5.59: TD-CPU-HighFirst with Low-rate and second set

Very similar to TD-Random, after 100 iterations of the experiment, an average of 254
users were allowed to access the service node each time, with an average delay of 22.01ms
and an average delay Slack of 17.47ms. There were no users who could not access the
service, so the failure rate was ZERO. This is summarised in a table later.

TD-CPU-LowFirst with Low-rate and second set

The following Figure 5.60 shows the simulation results for Low-rate players under the
TD-CPU-LowFirst policy. TD-CPU-LowFirst policy means that the Cloud Game Engine
is accessed from the lowest to the highest user CPU usage.

Figure 5.60: TD-CPU-LowFirst with Low-rate and second set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 22.01ms, the average
delay Slack is 17.47ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.

TD-Delay-HighFirst with Low-rate and second set

The following Figure 5.61 represents the simulation results for Low-rate players under
the TD-Delay-HighFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the maximum delay tolerated by the user.
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Figure 5.61: TD-Delay-HighFirst with Low-rate and second set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 22.01ms, the average
delay Slack is 17.47ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.

TD-Delay-LowFirst with Low-rate and second set

The following Figure 5.62 shows the simulation results for Low-rate players under the
TD-Delay-LowFirst policy, which means that the Cloud Game Engine is accessed in
descending order of the highest delay tolerated by the user.

Figure 5.62: TD-Delay-LowFirst with Low-rate and second set

The simulation results for this policy are still very similar to TD-Random, with all
users allowed to access the service node, the average delay of users is 22.01ms, the average
delay Slack is 17.47ms, and there are no users unable to access the service, so the failure
rate is zero. These are summarised in a table later.
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5.4 Analyse result of simulation

The results shown in the previous section were obtained from the first and second set
of experimental setup simulations, this section groups all the results and analyses them
in terms of system load size. The first experiment is to simulate the operation of the
distributed engine with sufficient service resources. The second experiment drastically
reduced the amount of resources available to the edge and medium distance service nodes,
in order to simulate the operation of the service at a lower capital consumption.

5.4.1 Analyse high-rate user profile

The following Figure 5.63 shows the simulation results for the first set of high-rate user
profiles. The high-rate user profile represents a relatively high-load scenario with different
allocation policies, and I have added my colleague Iman’s best simulation results and data
from an ideal traditional game engine for comparison purposes. It can be seen that in the
Bottom-Up allocation policy, users are placed in EdgeNodes and low-level CloudNodes
as much as possible. However, in order to guarantee high QoE and QoS for each user,
the users who enter first have a higher priority, which results in some users who do not
need low delay to guarantee QoE taking over the low-delay service nodes, and some users
who really need low delay will be crowded out by them, and thus cannot be served by the
game engine. This can lead to significant resource wastage and performance degradation.
One of the better performing BU policies can be seen in the BU-DelayLow-First method,
which preempts users who need low delay to guarantee QoE and thus has the most users
in service. All other BU strategies have too many users to serve, so the average QoE
is relatively low, but all have a performance advantage over traditional cloud gaming
engines.

With the Top-Down strategy, all algorithms have very similar performance and are
nearly identical to Iman’s TD strategy. It can be seen that the entire adaptive allocation
algorithms is very stable under the TD allocation policy, and the adaptive algorithms can
consistently serve users regardless of how they enter the system. However, compared to
the BU-Delay-Low-First policy, the average user delay is higher and the average delay
Slack is lower, which means that the TD policy is less powerful than the former, but still
much better than the performance of traditional cloud gaming engines.

The following Figure shows the simulation results for a second set of high-rate user
profiles. In the second set of experiments, the resources of the EdgeNode and Layer1
CloudNodes are drastically reduced to simulate the case where the resources of the service
nodes are reduced and the cloud server nodes take on more services. It can be seen that
as the resources are reduced, the performance of the BU policy decreases significantly,
as does the number of users in the services that can be accommodated. The overall
performance of the TD policy does not degrade, but TD-Random has some errors due to
the random entry method. The best performing BU policy is still the BU-Delay-Low-First
policy, which has a very low probability of user failure. However, there is no significant
performance advantage compared to the TD strategy. Compared to traditional cloud
game engines, the performance advantage is huge.

The following Figure shows the simulation results for a second set of high-rate user
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Algorithm Name Allowed 
Players

Average 
Delay 
(MS)

Average 
Delay 
Slack(M
S)

L0 User Num and 
CPU (GHz)

L1 User Num 
and CPU (GHz)

L2 User Num 
and CPU (GHz)

Failed 
Users)

Failed 
probabil
ity

BU-Random(avg) 955 14.69 28.94 507(999.950) 448(941.518) 0 202.35 0.17

BU-CPU-High-First 855 17.97 29.06 173(999.979) 681(957.656) 0 306 0.26

BU-CPU-Low-First 1064 29.08 29.77 891(993.278) 173(887.278) 0 96 0.08

BU-Delay-High-First 791 13.21 36.42 537(999.942) 254(596.784) 0 369 0.32

BU-Delay-Low-First 1160 15.85 22.68 481(999.965) 679(1359.650) 0 0 0.0

TD-Random(avg) 1160 21.38 17.15 369.91(762.669) 260(558.125) 530(1038.583) 0 0

TD-CPU-High-First 1160 21.38 17.15 370(762.907) 260(558.125) 530(1038.583) 0 0

TD-CPU-Low-First 1160 21.38 17.15 370(762.907) 260(558.125) 530(1038.583) 0 0

TD-Delay-High-First 1160 21.38 17.15 370(762.907) 260(558.125) 530(1038.583) 0 0

TD-Delay-Low-First 1160 21.38 17.15 370(762.907) 260(558.125) 530(1038.583) 0 0

Iman’s TD_PS 1160 21.379 17.152 370(762.91) 260(558.13) 530(1038.58) 0 0

Traditional CGE 1160 30 8.53 0 0

Figure 5.63: Comparison with strategy for high-rate users in Simulation 1.

Algorithm Name Allowed 
Players

Average 
Delay 
(MS)

Average 
Delay 
Slack(MS)

L0 User Num and 
CPU (GHz)

L1 User Num and 
CPU (GHz)

L2 User Num and 
CPU (GHz)

Failed 
Users)

Failed 
proba
bility

BU-Random 848 17.68 30.9 396.84(799.963) 251.76(579.977) 200.03(409.505) 314.48 0.27

BU-CPU-High-First 725 24.33 29.56 125(799.981) 161(579.994) 439(504.081) 446 0.38

BU-CPU-Low-First 1032 13.05 30.26 786(793.786) 177(576.472) 69(442.992) 139 0.12

BU-Delay-High-First 678 14.17 42.65 395(799.945) 283(579.979) 0 493 0.42

BU-Delay-Low-First 1165 21.05 19.18 392(799.981) 259(579.973) 514(1123.562) 6 0.01

TD-Random 1150 22.16 18.23 346.05(751.329) 212.47(500.510) 594.49(1216.553) 12.39 0.01

TD-CPU-High-First 1171 22.03 18.10 359(790.842) 215(510.885) 597(1222.427) 0 0.00

TD-CPU-Low-First 1171 22.03 18.10 359(790.842) 215(510.885) 597(1222.427) 0 0.00

TD-Delay-High-First 1171 22.03 18.10 359(790.842) 215(510.885) 597(1222.427) 0 0.00

TD-Delay-Low-First 1171 22.03 18.10 359(790.842) 215(510.885) 597(1222.427) 0 0.00

Iman’s TD_PS 22.032 18.093 359(779.33) 215(528.40) 597(1222.427) 0 0.00

Traditional CGE 30 10.13

Figure 5.64: Comparison with strategy for high-rate users in Simulation 2.

profiles. In the second set of experiments, the resources of the EdgeNode and Layer1
CloudNodes are drastically reduced to simulate the case where the resources of the service
nodes are reduced and the cloud server nodes take on more services. It can be seen that
as the resources are reduced, the performance of the BU policy decreases significantly,
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as does the number of users in the services that can be accommodated. The overall
performance of the TD policy does not degrade, but TD-Random has some errors due to
the random entry method. The best performing BU policy is still the BU-Delay-Low-First
policy, which has a very low probability of user failure. However, there is no significant
performance advantage compared to the TD strategy. The idealised average delay of 30ms
for the traditional cloud game engine under the same experimental conditions is higher
than that of the TD and BU strategies, and the average QoS for users is also very low, so
the performance advantage of the BU and TD strategies using a combination of edge and
cloud computing is very significant compared to the traditional cloud game engine.

5.4.2 Analyse mid-rate user profile

The following Figure 5.65 and Figure 5.66 show the mid-rate user profile, which represents
the distributed engine for a medium load scenario.

Algorithm Name Allowed 
Players

Average 
Delay 
(MS)

Average 
Delay 
Slack(MS)

L0 User Num and 
CPU (GHz)

L1 User Num and 
CPU (GHz)

L2 User Num 
and CPU (GHz)

Failed 
Users)

Failed 
probabi
lity

BU-Random(avg) 504 10.45 27.49 481.81(976.787) 6(18.547) 22.93(45.659) 10.54 0.02

BU-CPU-High-First 474 12.49 27.2 356(959.896) 118(73.445) 0(0.000) 48 0.09

BU-CPU-Low-First 517 10.19 27.41 507(947.962) 10(75.764) 0(0.000) 5 0.01

BU-Delay-High-First 478 10.0 29.69 478(959.545) 0(0.000) 0(0.000) 44 0.08

BU-Delay-Low-First 522 10.82 26.56 479(958.968) 43(108.395) 0(0.000) 0 0.0

TD-Random 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

TD-CPU-High-First 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

TD-CPU-Low-First 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

TD-Delay-High-First 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

TD-Delay-Low-First 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

Iman’s TD_PS 522 21.954 15.423 153(342.91) 114(259.05) 255(465.40) 0 0

Traditional CGE 522 30 7.38

Figure 5.65: Comparison with strategy for mid-rate users in Simulation 1.

BU has a higher probability of failure than the TD policy in both the fully resourced
and under-resourced cases, but the average delay of the users being served is lower than
that of TD, and BU has chosen BU-Delay-Low-First as a proxy because it can serve
all users, and its performance in this respect is no better than that of TD. From the
Figure 5.65 and the Figure 5.66, we can see that the performance of the TD policies is
very similar, with higher average delay than BU-Delay-Low-First and lower average delay
slack than BU, indicating that the performance of BU-Delay-Low-First is lower than that
of BU-Delay-Low-First. performance is worse than BU-Delay-Low-First. However, they
both outperform traditional cloud gaming engines.
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Algorithm Name Allowed 
Players

Average 
Delay 
(MS)

Average 
Delay 
Slack(MS)

L0 User Num and 
CPU (GHz)

L1 User Num and 
CPU (GHz)

L2 User Num 
and CPU (GHz)

Failed 
Users)

Failed 
probabili
ty

BU-Random 481 11.71 27.38 399.44(799.249) 82.39(170.248) 0(0.000) 34.25 0.07

BU-CPU-High-First 437 14.58 27.2 237(799.981) 200(181.312) 0(0.000) 85 0.16

BU-CPU-Low-First 503 10.5 27.75 478(780.732) 25(163.903) 0(0.000) 19 0.04

BU-Delay-High-First 431 10.14 32.2 425(795.550) 6(24.432) 0(0.000) 91 0.17

BU-Delay-Low-First 522 12.24 25.14 405(799.634) 117(267.729) 0(0.000) 0 0.0

TD-Random 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

TD-CPU-High-First 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

TD-CPU-Low-First 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

TD-Delay-High-First 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

TD-Delay-Low-First 522 21.95 15.43 153(342.913) 114(259.049) 255(465.400) 0 0

Iman’s TD_PS 522 21.954 15.423 153(342.91) 114(259.04) 255(465.000) 0 0

Traditional CGE 30 7.38

Figure 5.66: Comparison with strategy for mid-rate users in Simulation 2.

5.4.3 Analyse low-rate user profile

The following Figure 5.67 and the Figure 5.68 show the low-rate user profile, and the
low-rate profile represents the distributed engine in the low-load case. It can be seen that
both BU and TD policies can perform well in both the fully resourced and under-resourced
cases under low load, but the average delay of the users being served is lower compared to
TD, and the average delay of Slack is higher. The Figure 5.67 and the Figure 5.68 show
that the TD strategies have very similar performance and are much worse than the BU
strategies at low loads. However, they both outperform traditional cloud gaming engines.

The Figure and the Figure show that the TD strategies have very similar performance
and are much worse than the BU strategies at low loads. However, they both outperform
traditional cloud gaming engines.
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Algorithm Name Allowed 
Players

Average 
Delay 
(MS)

Average 
Delay 
Slack(MS)

L0 User Num 
and CPU (GHz)

L1 User Num 
and CPU (GHz)

L2 User Num 
and CPU (GHz)

Failed 
Users)

Failed 
probability

BU-Random 240 10.000 32.95 240(493.345) 0(0.000) 0(0.000) 0 0

BU-CPU-High-First 240 10.000 32.95 240(493.345) 0(0.000) 0(0.000) 0 0

BU-CPU-Low-First 240 10.000 32.95 240(493.345) 0(0.000) 0(0.000) 0 0

BU-Delay-High-First 240 10.000 32.95 240(493.345) 0(0.000) 0(0.000) 0 0

BU-Delay-Low-First 240 10.000 32.95 240(493.345) 0(0.000) 0(0.000) 0 0

TD-Random 240 22.99 19.99 56(132.571) 57(134.315) 127(226.458) 0 0

TD-CPU-High-First 240 22.99 19.99 56(132.571) 57(134.315) 127(226.458) 0 0

TD-CPU-Low-First 240 22.99 19.99 56(132.571) 57(134.315) 127(226.458) 0 0

TD-Delay-High-First 240 22.99 19.99 56(132.571) 57(134.315) 127(226.458) 0 0

TD-Delay-Low-First 240 22.99 19.99 56(132.571) 57(134.315) 127(226.458) 0 0

Iman’s TD_PS 240 22.958 19.989 56(132.57) 57(134.32) 127(226.46)

Traditional CGE 240 30 12.968

Figure 5.67: Comparison with strategy for Low-rate users in Simulation 1.

Algorithm Name Allowed 
Players

Average 
Delay 
(MS)

Average 
Delay 
Slack(MS)

L0 User Num and 
CPU (GHz)

L1 User Num and 
CPU (GHz)

L2 User Num 
and CPU (GHz)

Failed 
Users)

Failed 
probability

BU-Random 254 10.000 29.48 254(482.043) 0(0.000) 0(0.000) 0 0

BU-CPU-High-First 254 10.000 29.48 254(482.043) 0(0.000) 0(0.000) 0 0

BU-CPU-Low-First 254 10.000 29.48 254(482.043) 0(0.000) 0(0.000) 0 0

BU-Delay-High-First 254 10.000 29.48 254(482.043) 0(0.000) 0(0.000) 0 0

BU-Delay-Low-First 254 10.000 29.48 254(482.043) 0(0.000) 0(0.000) 0 0

TD-Random 254 22.01 17.47 70(151.558) 63(144.806) 121(185.678) 0 0

TD-CPU-High-First 254 22.01 17.47 70(151.558) 63(144.806) 121(185.678) 0 0

TD-CPU-Low-First 254 22.01 17.47 70(151.558) 63(144.806) 121(185.678) 0 0

TD-Delay-High-First 254 22.01 17.47 70(151.558) 63(144.806) 121(185.678) 0 0

TD-Delay-Low-First 254 22.01 17.47 70(151.558) 63(144.806) 121(185.678) 0 0

Iman’s TD_PS 254 22.007 15.331 70(151.558) 63(144.806) 121(185.678) 0 0

Traditional CGE 30 9.48

Figure 5.68: Comparison with strategy for Low-rate users in Simulation 2.

The above analysis shows that the new distributed cloud game engine combining
edge computing and cloud computing has a significant performance advantage over the
traditional cloud game engine, with the Bottom-Up-delay-first and Top-Down strategies
both having a much higher performance than the traditional cloud game engine when
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serving the same number of users. The other BU strategies have low average user latency,
but some users are unable to access them successfully, which severely reduces the average
user QoE. The performance advantage of the Bottom-Up strategy is further reduced
in high-load environments, and as the resources of the edge and intermediate nodes
decrease, the performance converges to that of Top-Down, and as the load decreases,
the performance of the Top-Down strategy decreases. The advantage of the Top-Down
strategy is that it is very stable, serving all users regardless of resource changes in the
service nodes and load changes in the entire system, and achieving a stable QoE that is
much better than that of traditional cloud gaming engines. There is also the advantage of
increasing the edge resources will also significantly improve the performance and average
user QoE of the distributed cloud gaming engine. There is also the advantage of increasing
the edge The Top-Down strategy also has the advantage that it is easier to achieve load
balancing and does not cause congestion on any of the Layer service nodes.
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Chapter 6

Conclusion

Due to the growing popularity of cloud gaming, the number of supported game genres
is increasing. With the development of cloud gaming engines and the varying services
currently offered by cloud gaming providers, it is difficult for users to have a good
experience, especially in eSports games such as First Person Shooters (FPS), which
require a higher Quality of Experience (QoE). In order to achieve better QoE, this thesis
investigates various metrics related to player QoE, and concludes that the user’s screen
latency is the most important experience metric under the premise of ensuring network
quality, and proposes the idea of improving user QoE by combining cloud computing
technology and edge computing technology with distributed cloud gaming engine and
different allocation allocation algorithms. Based on the proposed approach, a distributed
cloud game engine is programmatically built, and multiple sets of user data are used
to simulate different load types, and two sets of engine resource data are introduced
to simulate resources under different budgets. The simulation results are analyzed in
detail. The test results show that the proposed new distributed cloud gaming engine has
higher user QoS and QoE than the traditional cloud gaming engine. The Bottoms-Up
policy has a significant performance advantage in the light load case, and the user QoE
is also higher. In other cases the Top-Down allocation algorithms is more stable, does
not lag too far behind in performance, and is easier to load balance and serve more users
with fewer resources available, which means it can significantly reduce the equipment
budget of the cloud gaming platform and guarantee a decent user QoE. One question that
cannot be answered in this thesis is that this allocation method is performed in a static
environment, whereas a realistic cloud gaming engine needs to allocate users to manage
access in a dynamic environment. This question will remain open until further research
on the dynamic allocation algorithms is conducted.
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