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1 - Introduction 

1.1 - Overview on the digitalization phases  
Nowadays, industrial automation, particularly Manufacturing 4.0 field, is eagerly heading toward 

the digitalization of the Product Life Cycle through the design of Digital Twins (DT). 

The main benefit deriving from this transition is the possibility of analyzing different aspects of the 

production process such as: 

• Potential system breakdowns due to harmful maneuvers or risks for operators health; 

• Prediction of flaws both in the final product and in the processing stages; 

• Quality study through virtual processing with the opportunity to optimize the procedures 

before performing them on the real system. 

The applications are potentially endless and for this reason the definition of Digital Twin is easily 

subject to misconceptions. 

However, in this paragraph we will try to delineate the concepts of Digital Model (DM), Digital 

Shadow (DS) and Digital Twin (DT) based on the available documentation1 about the topic in order 

to better contextualize this thesis objective.  

First of all, the three definitions refer to the stages marking the digitalization of a physical system. 

The DM is a 3D virtual representation and it cannot send or receive data from the physical object. 

Therefore, we can see it as a static model that can be modified manually, a CAD. 

On the other hand, the DS can communicate with the real system receiving and elaborating 

information both in real-time and previously acquired, while the data flow in the way back to the 

physical object is not available. 

Finally, a DT is the ultimate connection between the virtual and the real world enabling the data 

exchange in both directions. 

 

Figure 1. 1 - Digitalization steps 

 
1 ‘A virtual commissioning based methodology to integrate digital twins into manufacturing systems’ -  G.Barbieri, 
A.Bertuzzi, A.Capriotti, L.Ragazzini, D.Gutierrez, E.Negri, L.Fumagalli . 
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While the DT of a physical object can be only one, multiple DS can exist depending on the detail 

level and the specific application. Indeed, different applications mean processing different set of 

data, from which it follows a different acquisition method and depending on it the required level of 

detail of the DS changes. 

Therefore, if a DT is required to have the level of detail that is mandatory to be a complete two-way 

real-time communication between real and virtual worlds, the DS is expected to include just the 

features related to its specific application allowing a real-time data thread from the physical object.  

Before proceeding, it might be important to make some considerations about the real-time feature 

that in most of the literature is described as a mandatory requirement. 

To contextualize our choice of focusing more on data exchanged not in real-time during the analysis 

developed in this thesis, we can take as support an important clarification about this feature in 

“Digital Twin: Generalization, characterization and implementation”2. 

In the mentioned paper it is stated that even if in most of the literature the real-time data exchange 

between real and virtual worlds is perceived as a key-feature for both ideal DT and DS, having the 

physical object and the virtual representation working in synchronous is not practical or even 

required in some real case scenarios. 

Since we will study an application regarding the industrial production field, to achieve the 

advantages of the digitalization, working with previously collected data or simulating scenarios in 

advance results more efficient than having both the physical and virtual object moving at the same 

time. 

1.2 - Objective of this thesis 
Now that the definitions of DT, DS and DM have been explained, we can proceed in describing the 

goal of this project. 

In the laboratory in which this thesis has been developed, Mid4Lab of Politecnico di Torino, a Mobile 

Manipulator (MoMa) has been prototyped assembling a mobile robot MiR100 and a robotic 

manipulator UR3 CB3 series. 

In a MoMa, the workspace is not fixed since the UR3 base is constantly moving along with the mobile 

robot. 

This feature has the advantages of making the mobile robot fully autonomous being able to pick and 

delivering components across the production site without the need for the operators to place and 

collect objects on it. 

On the other hand, allowing the manipulator to move in the space makes it able to execute tasks in 

different locations enhancing both the autonomous and collaborative sides. 

 
2 "Digital Twin: Generalization, characterization and implementation", Eric VanDerHorn, Sankaran Mahadevan, 
Decision Support Systems (2021). 



Unfortunately, while the manipulator has a high precision when executing its missions, the mobile 

robot is not so reliable when reaching the requested positions. 

The UR3 is usually mounted on fixed structures since to execute its tasks it needs highly precise 

reference systems for its own position and for the objects to be manipulated in the working space 

and this requirement is rarely delivered by the mobile robot. 

Therefore, the Mobile Manipulators are scarcely used in the companies since a possible pose error 

of the mobile robot might put the manipulator in the wrong working position.  

In some cases, this can simply result in a failed execution, but in a worst case scenario, a manipulator 

moving in the wrong location might cause damages to surrounding structures and itself or even hurt 

nearby operators. 

From these premises, a powerful tool is needed to: 

• Study different tasks minimizing the risks; 

• Optimize those tasks without having to constantly move the robot during the testing 

process in order to foresee and eliminate potentially dangerous motions when possible. 

For our purposes, designing a virtual robot that behaves as the real one would be an efficient asset 

for the future colleagues that will need to perform mission evaluations spacing from statistical 

studies to entire processes optimization in complete safety. Indeed, the workflow that we will follow 

to generate our model, can be applied not only to this specific system, but to all the laboratory 

robots and working cells.  

Throughout this work, the first goal was to generate a Digital Twin able to execute different tasks in 

the simulation environment or to replicate the movements of the real-world robot. 

If the latter feature is useful to calibrate the model and to execute troubleshooting analysis, the 

former one is functional in the perspective of optimizing various tasks predicting and analyzing the 

possible outcomes of the robot actions in terms of production quality and even avoiding the risks of 

damage, to both humans and robot, whenever a potentially harmful mission is designed. 

To achieve this result, different control algorithms have been designed to generate the motion of 

the robot in response to different type of inputs. 

Given a set of data for both the mobile robot and the manipulator, our system is able to move like 

the physical object and automatically execute different tasks. 

The controlling algorithm design has been essential in the first part of the project in which a running-

in phase of the system had to be performed and various tasks had to be studied directly in the virtual 

reality. 

Therefore, this model has been designed both to receive signals directly from the physical object 

and to run on previously acquired or designed data. 

It is important to underline a relevant obstacle encountered in the development of this thesis:  



in case of the digitalization of commercial robots, those features have to be taken in consideration 

keeping in mind the limitations of the model deriving from the fact that it is not possible to 

acknowledge neither the real algorithms used to control the robots nor its specific mechanical 

details3.  

Moreover, the followed design method results proficient if we want to generate a DT of a 

customized robot of which we know with extreme precision all its mechanical parameters and, being 

open-systems, can be programmed with our own codes. 

Considering that we developed our objective to be exploited in the industrial field, commercial 

robots like the available MoMa had to be used. 

For this kind of robots, the producer does not provide the full specifications about the 3D design 

and the exact algorithms of the systems for copyright reasons. Thus, everything that could not be 

granted by the datasheets has been calibrated at its best through multiple analysis in order to 

deliver a level of detail that could be as precise as possible. 

Furthermore, like all the industrial robots, our MoMa is not an open-system, so a data flow from 

our virtual model to the real object cannot be performed. In any case, the model we created can be 

easily modified in case of the application on a robot that allows this communication type. 

Finally, for these reasons, we designed work-flow able to produce a model with the potentiality of 

working as Digital Twin, but for the physical object of this thesis it can be used as a Digital Shadow 

and in the following pages we will address it as such. 

  

 
3 The robot shown in Figure 1.2, has not been created by us, but is composed of two original robots from different 
companies. 



1.3 – Brief description of the robot 
The mobile manipulator is the assembly of two different robots: 

- A mobile robot, model MiR100 by Mobile Industrial Robots, with two motor wheels and four 

caster wheels; 

- A robotic arm, model UR3 by Universal Robots, with 6 degrees of freedom with a gripper 

RG2 by OnRobot mounted on. 

  

Figure 1. 2 – Mobile Manipulator and Digital Twin 

1.3.1 – MiR100 
The mobile robot allows the manipulator to execute its tasks in different parts of the laboratory or 

directly onto its own chassis. The motion is generated by only two motor wheels (in blue in both 

pictures of figure 1.2 ) while the others are caster wheels for support and dexterity. 

The main features of interest for our study on this robot are: 

• Collaborative mode: the robot is able to move in dynamic environments ; 

• The robot plans its motion from the starting point to the destination finding the most 

efficient path. Whenever it encounters an obstacle not present in the map it is able to adjust 

its trajectory. Since we are going to analyse only static environment cases, this last feature 

has not been implemented; 

• Automated transportation of loads up to 100 𝑘𝑔 ; 

• Internal map: this robot can base its navigation on a given CAD of the surrounding or can 

generate its own map manually navigating around its workspace.  



 

Figure 1. 3 - MiR100 live map 

The whole mission can be designed on its software alternating MiR100 runs to UR3 sequences. 

 

Figure 1. 4 - Example of scheduled mission with UR3 actions 

As we can see, the task execution is sequential and the two robots cannot move simultaneously. 

1.3.2 – UR3 
The manipulator is mounted on the mobile robot and features a gripper RG2 by OnRobot. 

Main features that worth mentioning: 

• 500 𝑚𝑚 reach; 



• Maximum payload 3 𝑘𝑔 ; 

• 6 degrees of freedom; 

• All joints can rotate in a ±360° range; 

• Force and power limiting : reduced clamping forces for collaborative mode; 

• Momentum limiting: joint speed reduction or immediate stop in case of collision between 

robot and operator. Once again, since we are simulating just the robot, this feature will be 

noticeable just in the torque saturation inside the control part of the model; 

The UR3 uses PolyScope graphical user interface to design its task. Once saved, those file are 

compatible with MiR100 software to combine the actions. 

 

Figure 1. 5 - Example of UR3 task schedule 

1.4 – Software and development tools 
To develop the simulation system, the following software have been used: 

- Matlab & Simulink; 

- Simscape Multibody; 

- SolidWorks; 

- OptiTrack – Motive; 

- Node-red. 

In the continuation of this document, we will explain more in detail how those are used. 



1.5 – Workflow 

 

Figure 1. 6 -Workflow to build a Simulink-Simscape model 

The realization of the DS has been carried out as the implementation of two separate prototypes, 

one for MiR100 and one for UR3 with an RG2 gripper mounted on. Finally, those two models have 

been assembled as a single one. 

The project workflow started from the realization of a Simulink model to control a simple dot 

sketched robot moving from a point to another on an imported map of the laboratory. 

For this step, we took inspiration from MathWorks case study ‘Execute Tasks for a Warehouse 

Robot4’. 

Once the Simulink control logic has been completed, we designed a 3D model of the whole mobile 

manipulator removing all the unnecessary parts for the simulation and imported it as a Simscape 

Multibody model. 

 
4 Page link: https://it.mathworks.com/help/robotics/ug/execute-tasks-for-a-warehouse-robot.html 
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Thereafter, Simulink and Simscape models have been modified to communicate with each other 

through inputs and outputs. 

After the MiR100 has been completed, with the same method we implemented the UR3 one. For 

this step, the MathWorks documentation exploited is the case study ‘Model and Control a 

Manipulator Arm with Robotics and Simscape5’. 

For MiR100, UR3 and RG2, the function blocks written to meet the behavior requirements are not 

the official algorithm contained in the real robots but have been developed through a reverse-

engineering process observing the real robots motion during the execution of various tasks. 

  

 
5 Page link: https://it.mathworks.com/help/robotics/ug/model-and-control-a-manipulator-arm-with-simscape.html 



2 – Data acquisition 

As previously described in the introduction chapter, there are two ways of using the Digital Shadow 

and depending on which one we choose, we have two types of data that will be used as input for 

our model: 

1) Troubleshooting: data collected from the robot control-box; 

2) Design of a new task: data written from scratch that will be given as reference at first to the 

simulation and then to the real robot. 

The inputs needed to run the model are the poses of both MiR100 and UR3. 

In the following paragraphs, it will be explained how those information are transformed into 

physical inputs able to move the DS in the virtual environment.  

2.1 – Environment mapping 
Before entering in the detail of the data collection, it is important to generate a map of the 

laboratory as a reference system to read the various poses. 

MiR100, thanks to its sensors is able to depict a map of its surrounding specifying the areas in which 

it cannot enter. 

Acquiring the .png image file generated by the robot and processing it inside a Matlab script6 named 

‘binaryoccupancygrid.m’ we obtain an approximation of the map in which it is possible to mark the 

various positions of interest depending on the task. 

 

With command im2gray we simply convert the RGB map in grayscale and with imresize we scale it 

to process it with binaryOccupancyMap. 

This last command processes the image translating it into a grid in which each cell contains the value 

0 in case the related coordinate is a free space or 1 if it is occupied by something. 

 
6 All the codes that will be mentioned in this document are contained inside the project directory. 

image = imread('new_lab_4.png'); 

 

grayimage = im2gray(image); 

bwimage = grayimage < 9; 

scaledimage = imresize(bwimage, 0.06);  

grid = binaryOccupancyMap(scaledimage);  

 

mapMatrix = grid.occupancyMatrix > 0.5; 

 

fig = figure("Name","scaledMap"); 

set(fig, "Visible", "on"); 

ax = axes(fig); 

scaledmap=binaryOccupancyMap(mapMatrix); 

show(scaledmap,"Parent",ax); 

hold on; 
 



In our analysis, since the path is the one of the real robot this feature will not be important, but in 

case of other simulated tasks, knowing if a cell is occupied or not will be important to trace obstacle-

free paths. 

 

Figure 2. 1 - Scaled map of the Laboratory 

Once the simulation has terminated, the simulated itinerary is traced on the map to compare it with 

the ones obtained through the control-box and the cameras data. 

2.2 – Data from real to virtual robot 
To obtain these data we have to implement a task for the mobile robot and run it. 

As the MoMa executes it, we acquire information on both robots in two ways: 

1) Poses from control-boxes through Node-Red development tool; 

2) Poses from OptiTrack cameras. 

2.2.1 – Control-box data 
To extrapolate robots positioning and orientations, the following Node-Red flows have been 

implemented. 

The one shown in Figure 2.2 registers the pose of MiR100 as [𝑥; 𝑦; 𝜙] with a polling rate of 100ms.  



 

Figure 2. 2 - Node-Red scheme for MiR100 pose 

For UR3 we implemented similar schemes to register the angles of the arm joints. Moreover, in 

order to compare the results with the OptiTrack data (described later), we designed a scheme to 

measure the [𝑥; 𝑦; 𝑧] position of the TCP. 

The polling rate is always 100ms. 

 

 

Figure 2. 3- UR3 Node-Red schemes for: 
1) Robot pose; 
2) TCP position.  

Finally, all the information are gathered inside separate excel files that will be read by a suitably 

written Matlab code. 

The outputs generated by this code will be the inputs for our model. Basic conversions from meters 

to millimetres, from degrees to radians, or offsets in the coordinates to place all the data with 

respect to the same reference frame will be necessary. 

2.2.2 – OptiTrack data 
While the robot is executing its task, the OptiTrack cameras keep track of all its actions and save 

everything inside a Matlab table. 

1) 

2) 



In particular, what we save are [𝑥; 𝑦; 𝜙] for MiR100 and [𝑥; 𝑦; 𝑧] for the TCP. 

 

 

Figure 2. 4 - OptiTrack view of MiR100, UR3 TCP and a Yaskawa manipulator in the Laboratory 

Since these 3D cameras have a higher precision with respect to the control-boxes of the robots, we 

use their data as an external check on the real robot behavior. 



  

 

Figure 1. 7 - MiR100 structure and TCP recreated by the markers 

In Figure 1.7, we can see how, based on the markers placed on the physical object, Motive is able 

to recreate a rigid body structure and detect a pivot point with respect to which all the poses will 

be measured. 

The scripts used for this data collection are named ‘manufacturingEnv.m’ and 

‘NatNetPollingSample.m’. 



 

 

With this first code, we generate a Matlab table in which every 100ms a pose is registered.  

To do so, a function ‘NatNetPollingSampleCustom’ has to be designed in order to connect Matlab 

to Motive, the software that exploits the OptiTrack cameras. 

This function will be called at every sample time step. 

In the following code section, we can see how the function works. 

 

First, it initializes two empty arrays to contain the pose acquisitions. 

For each acquisition, a timestamp has to be saved for future plotting on the time axis. 

% manufacturingEnv.m 

 

clear  

clc  

 

freq = 100; %ms  

durata_task=400; %tempo di acquisizione=durata_task*100ms 

 

%Create table to save data: 

rb_names = ["mir", "UR3"]; 

empty_table = table; 

name_row = []; 

coord_row = []; 

for i=1:length(rb_names) 

    name_row = cat(2, name_row, [rb_names(i),'','','','','','']); 

    coord_row = cat(2,coord_row,["X","Y","Z","PHI", "TIME"]); 

end 

intestazione = cat(1, name_row, coord_row); 

intestazione = array2table(intestazione); 

empty_table = [empty_table; intestazione]; 

 

[rigid1,rigid2,data_Optitrack]=NatNetPollingSampleCustom(length(rb_names), 

freq, empty_table,durata_task); 

 

 

 

% NatNetPollingSampleCustom.m 

 

function [final_table] = NatNetPollingSampleCustom(nbodies, sample_time, 

data_table,task_time) 
 

% [... system configuration code section ...] 

  rb_pose = [];         

        pose_row = []; 

 

        %Timestamp: 

        timestamp = datestr(clock, "HH:MM:SS.FFF"); 

        split_time = split(timestamp, ':'); 

        h_in_sec = str2double(split_time(1)).*60^2; 

        m_in_sec = str2double(split_time(2)).*60; 

        sec=str2double(split_time(3)); 

        poll_time = h_in_sec+m_in_sec+sec; 

 

 



 

At every sample time a pose is taken and to analyse multiple bodies in the system we need a for 

cycle that for every active asset on Motive saves its pose [𝑥, 𝑦, 𝑧, 𝜙]. 

The number of iterations at each sampling time depends on how many active assets are being 

registered by Motive.  

 

Figure 1. 8 - Example of assets list in Motive interface 

        for k=1:nbodies 

            %Orientation: 

            q_x = data.RigidBodies( k ).qx; 

            q_y = data.RigidBodies( k ).qy; 

            q_z = data.RigidBodies( k ).qz; 

            q_w = data.RigidBodies( k ).qw; 

            q = quaternion(q_x, q_y, q_z, q_w); 

         

            angles = EulerAngles(q,'xyz')*360/(2*pi); 

            %The first element is the phi: 

            phi = angles(1); 

 

            %Pose: 

            pose = [data.RigidBodies(k).x*1000, data.RigidBodies(k).y*1000,  

            data.RigidBodies(k).z*1000, phi]; 

            pose_row = cat(2, pose_row, pose, poll_time); 

             

        end 

 



 

After all the active assets poses have been wrote down, everything is put together in the same 

Matlab table. 

2.2.3 – Data comparison 
Briefly, in this paragraph we will explain how the aforementioned data will be compared with 

respect to each other.  

For MiR100, [𝑥; 𝑦; 𝜙] acquired through Node-red is fed to the simulation system to replicate the 

motion. 

Once the simulation has terminated, the obtained output is another set of [𝑥; 𝑦; 𝜙]. In the end, 

three sets of data are plotted on the map of the laboratory to obtain a visual comparison.  

About the UR3, the comparison is:  

• On the positioning of the TCP in the workspace, [𝑥; 𝑦; 𝑧]𝑇𝐶𝑃 from Node-red, OptiTrack and 

Simulation system. The latter set is obtained sending to the virtual model the joints 

configuration sequence registered in the UR3 software; 

• Between the poses reached by the joints of the digital manipulator and the reference poses 

from the UR3 HMI. For this comparison, Node-red and Simulation data are not compared 

with respect to OptiTrack since due to the dimensions of the UR3 it is not possible to 

efficiently place the markers on each joint to acquire the rotation angles during the task.  

In the following chapters, a case study will be discussed with its data comparison. 

 

  

    rb_pose = cat(1, rb_pose, pose_row);     

 

  end 

        data_row = array2table(rb_pose); 

        allVars=1:width(data_row); 

        newNames=append("intestazione",string(allVars)); 

        data_row=renamevars(data_row,allVars,newNames); 

        final_table = [data_table; data_row]; 

 

    disp('NatNet Polling Sample End' ) 

end 
 



3 – Simulation system  

3.1- Model generation 
The generation of the Simscape multibody model starts from the 3D design of the system, in our 

project this step has been carried out on SolidWorks. 

 

Figure 3. 1 - 3D design of the mobile manipulator on SolidWorks 

In some cases, the .STEP files are provided by the manufacturer, whenever they are not, a design 

approximation has to be performed. 

Designing the model, it is important to properly set the various constraints and set as ‘mobile’ the 

moving parts of the robot in order to generate a Simscape model with the same degrees of freedom 

of the real robot. 

Moreover, it is very important to set the 3D model in its zero-pose before importing it in Simscape 

multibody to avoid rotation offsets of random value in case the import is executed in a generic pose. 

This aspect is of vital importance especially in case of multiple DOFs manipulators. 

Once the 3D design is complete, the Simscape Multibody extension on SolidWorks allows us to 

import the whole model generating the virtual robot. 



 

Figure 3. 2 - Example of raw Simscape model 

What we obtain after these first steps is a raw Simscape Multibody model that still needs 

modifications to obtain a useful prototype. We will see them more in depths when discussing the 

models of this project. 

Afterwards, as we already mentioned in Chapter 1.5, a control system has to be implemented. The 

algorithm behind this model may be the original one of the robot if available or can be designed to 

satisfy the behavior that we think the digital robot should have. 

 

 



3.2 – Overview of the complete Simscape model 
Before entering the detail of each model, we can show the whole MoMa Digital Shadow and give a 

schematic explanation on how it works.

 

Figure 3. 3 - Complete MoMa Simscape model 



 

Figure 3. 4 - Block scheme 

The figures above show a screenshot of the overall Simulink-Simscape model of the mobile 

manipulator and a block scheme to explain the basic working principle of the system. 

From the second one, it is understandable that each Simscape model, laboratory aside, has its own 

controller. All of them communicate with each other to allow the different parts composing the 

digital MoMa to work in harmony. This communication happens through flags and constant values. 

Specifically, flags are used to trigger or stop the motion of the Simscape model connected to the 

controller, while the constant values are passed from a controller to another to communicate what 

the actual pose of the MoMa is and based on that value how to behave. 

Each controller receives feedback signals about the pose of the model connected to it and based on 

these values combined with the flags and constants mentioned, the control function sends signals 

to the model. 
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Finally, environment and coupling constraints have the function of avoiding bodies compenetration 

and allow them to move together or with respect to each other. 

For each block we dedicated a specific paragraph to enter more in depth the working principle 

description. 

  



3.3 – Environment Simscape model 

 

Figure 3. 5 - Laboratory Simscape model 

This Simscape model of the laboratory is modeled with solid blocks and works as a visual reference 

while the Mobile Manipulator is moving. 

Walls, working stations and columns are placed on a floor based on the real measures of the 

laboratory scaled to respect the binary occupancy grid map scaling factor. 

 

Figure 3. 6 - Laboratory 

  

Station 1 Station 2 



 

Figure 3. 7 – Laboratory Simscape model 

As we can see from figure 3.7, all the mobile obstacles have not been recreated, but just the fixed 

reference points that are present on the map. The reason behind this choice is because for this 

thesis we will analyze cases related to an obstacle-free working area of the MoMa since we are still 

in the first digitalization phases and we have to study the robot trajectories in standard scenarios 

and not random trajectories due to moving obstacles.  

In different situations, it is possible to deepen the obstacle-avoidance feature adding multiple 

impediments on the path. 

  



3.4 – MiR100 Simscape model 

 

Figure 3. 8 – Simscape model of MiR100 

MiR100 model has been designed with SolidWorks and then imported into Simscape. We remark 

that the original and detailed 3D-model was not available in a movable configuration, thus an 

approximation has been designed. 

Before describing the Simscape model, to explain the meaning of the input/output blocks we report 

a zoom of figure 3.3 to explain the essential blocks that are present in each model: 

 

Figure 3. 9 - Detail of figure 3.3 

The blocks shown are: 

• The ‘World’ reference frame block: the whole system moves with respect to this reference 

frame. With respect to this frame, both MoMa and laboratory models are placed to be 

consistent with the Map generated by binaryoccupancygrid.m; 

• The rigid transform block is frequently used inside the model to rotate/translate parts with 

respect to a base reference frame. In this case, the block places MiR100 in a given starting pose 

that we decide and can change depending on where we want it to start its task; 



• The 6DoF block allows the robot to move freely in all 6 degrees of motion and the environment 

constraints described before avoiding the MoMa to pass through the modelled floor falling into 

the void; 

Now, we can describe the model of figure 3.8: 

• Wheels joints: highlighted in figure 3.8 are joints corresponding to the motor wheels from which 

the motion of the MiR100 model starts. Those joints receive the input to rotate and move the 

whole system in the simulated laboratory. Joint blocks can be modified to choose between 

motion or torque input. In this case we chose a motion input with automatically computed 

torque; 

• The caster wheels joints are contained in another subsystem, namely ‘Caster_wheels’. Those do 

not impose any motion but work as support for the body and motion dexterity.  

The rest of the system is composed of subsystems containing the other physical parts of the 3D 

model. 

3.4.1 – Control system 

 

Figure 3. 10 - Simulink control system 

Figure 3.10 shows the control system implemented on Simulink. Each part of it will be described 

leaving at last the Controller macro-block. 

• Input Conversion: 

The linear and angular velocities generated by the controller refer to the center of mass of the 

MiR100, so we have to convert them into right and left wheel rotations to obtain coherent inputs 

for our Simscape model. 

 

 

 

 

 



 Figure 3. 11 - Differential 
drive robot scheme 

The conversion can be done through the Differential Drive Mobile Robot Equations: 

𝜔𝑅 =
2𝑣 + 𝜔𝐿

2𝑅
 

𝜔𝐿 =
2𝑣 − 𝜔𝐿

2𝑅
 

 

 

The Differential Drive Mobile Robot Equations implementation is obtained through Simulink 

elementary blocks. 

• The ‘Trajectory measurement system’ acts as a feedback path and contains the blocks needed 

to measure the pose of the Simscape model with respect to the World reference frame. 

 

Figure 3. 12 - Pose measurement 

Since the laboratory is placed in the Simscape world to respect the coordinates of the map, 

all the data gathered by this block are already consistent with the map reference frame. 

The position and the orientation are then sent back to the function block as feedback and 

saved in Matlab workspace for later comparison. 

 

 

 

 

 

 

 

 

 



• Controller, in which is contained the actual controller, figure 3.13: 

 

Figure 3. 13 - Controller 

Before entering the details of the control function, we can examine the PurePursuit7 block whose 

inputs are the current position of the robot and the sequence of positions [𝑥; 𝑦] acquired through 

Node-red during a real robot motion used as reference path. 

Given the waypoints, the corresponding linear velocity and angular velocity needed to follow the 

traced path will be generated.  

The settings we used are such that the DS maximum speeds can be 0.5
𝑚

𝑠
 and 1

𝑟𝑎𝑑

𝑠
 , this restriction 

differs from the actual values of the real robot that are 1.5
𝑚

𝑠
 and 3

𝑟𝑎𝑑

𝑠
 . But, in an actual 

collaborative mode in a small workspace, we could see that the MiR100 never reached those speeds 

and moved at values closer to the ones we set. 

 
7 For additional documentation: https://it.mathworks.com/help/robotics/ref/purepursuit.html 



 

Figure 3. 14 - Pure Pursuit settings 

Another important value is the Lookahead distance. This parameter is used by the controller to 

understand how far on the path it has to track the next waypoint to reach.  

 

Figure 3. 15 - Different values of Look Ahead distance8 

From figure 3.15 , we can observe how changing this parameter can affect the resulting motion: 

- Small Look Ahead : everytime the DS moves outside the path it will try to get back on it. But 

considering that the pose of the robot is acquired from a single point and that rarely it will 

execute a linear motion, the PurePursuit controller will often detect the MoMa outside of 

the path and will send velocity values to regain the desired position. This will result in 

multiple oscillations from left to right with the mobile robot continuously overshooting the 

trajectory. Moreover, the resulting behavior will not resemble the real one; 

- Large Look Ahead: a bigger value will solve the oscillations problem, but it will results in wide 

turns when approaching a corner in the path resulting in missing possible important points 

that have to be reached to execute the task. In conclusion, an intermediate value has to be 

chosen. 

 
8 Figure taken from ‘https://it.mathworks.com/help/robotics/ug/pure-pursuit-controller.html’ . 



The effect of this parameter will be relevant when discussing the DS positioning precision in Chapter 

4. 

It is important to remark that the Pure Pursuit algorithm generates 𝑣 and 𝜔 in order to follow the 

path but does not follow the various orientations of the real MiR100, neither it stops it in the 

interesting points to allow the UR3 to operate. 

To make the model able to replicate the attitude of the real one, we implemented a Matlab Function 

that overwrites the velocities values each time a working station is reached. 

The inputs of this function block are: 

- v_in and w_in: these are the linear and angular velocities sent by the PurePursuit algorithm 

in order to follow the reference path. Their values update depending on the model current 

pose; 

- position : this input is generated selecting just the x and y coordinate from the pose vector 

acquired by the Trajectory measurement system described earlier; 

- phi : from the same system, we can measure the actual orientation of the robot and send it 

to the controller; 

- checkpoints : everytime we run the model we have to upload a task. To allow the model to 

execute it, we have to specify the location of the points of interest to be reached such as 

stations or generic stops and the orientation that needs to be assumed to let the manipulator 

work; 

- MiR_flag : this flag is sent by the UR3 controller and allows the mobile robot to perform its 

actions if and only if the UR3 is not moving. Specifically, MiR_flag is always set to 0 and 

becomes 1 if and only if the manipulator ended its task. Thus, MiR_flag = 1 when the 

approaching orientation phase and UR3 task are completed, allowing MiR100 to start the 

leaving orientation phase; 

- Orient0 : this is just an initialization values to be updated during the simulation run. Its value 

will trigger or stop different actions inside the code; 

- Mission_complete0 : as the previous value, this input initializes a value at 0. Once all the 

tasks of the mission have been executed, the value corresponding to it is updated at 1 

stopping the simulation instantly or in this case when the robot has got back to the starting 

point with the desired orientation. 

Once the function block has read the inputs, the following outputs are sent to the Simscape model 

depending on the part of code that is activated9: 

- v and w : at every step of the simulation, the function block compares the digital robot actual 

position with the data contained in the input checkpoints matrix. When the CoM of the robot 

reaches a point of interest within a predefined tolerance that, at start, we set at ±0.15 𝑚 , 

the velocity commands v_in and w_in are overwritten and set to 0 before proceeding in the 

orientation phase.   

 
9 To avoid adding the complete code, just interesting parts and singular cases are used as explanation support. 



  

In this first part of code it is shown the aforementioned action. Moreover, the ‘sit’ output is 

set depending on the station we are in and the difference between the actual orientation 

and the desired orientation, approaching or leaving the station, is computed.  

It is appropriate to clarify that this code section refers to the case in which the robot is in its 

charging station, but the same structure is used for all the stations and more in general it 

applies to different environments or missions with other points of interests. It all depends 

on the checkpoint matrix that we compute everytime we design a mission. 

 

Next, whenever the robot is moving from a point to another, velocity signals are not 

overwritten and the motion control is given back to the PurePursuit block. 

Once the robot has been stopped, the orientation phase starts. In the following section of 

code it is showed the imposed motion on a general station approaching: 

% CHECK POSITION: 

if norm(position-checkpoints(1,1:2)',2) <= pos_thr && mission_complete <= 0  

    situation = 1; %Charging station 

    sit = situation; 

    phi_arr = phi-checkpoints(1,3); 

    phi_res = phi-checkpoints(1,4); 

 

    delta_arr1 = abs(phi-checkpoints(1,3)); 

    delta_arr2 = abs(abs(phi)-abs(checkpoints(1,3))); 

 

    delta_res1 = abs(phi-checkpoints(1,4)); 

    delta_res2 = abs(abs(phi)-abs(checkpoints(1,4))); 

 

    v = 0; 

    w = 0; 

[…] 

else 

    situation = 8; 

    sit = situation; 

    v = v_in; 

    w = w_in; 
[…] 

 



 

These lines of code are written with the purpose of computing the verse of the angular speed 

to reach the desired attitude in the fastest way. 

The maximum speed at which the model is able to orient itself is ±0.2
𝑟𝑎𝑑

𝑠
 . Over this value, 

it is not able to reach the goal at the first try. 

Once the oncoming attitude is reached, the function block sets UR3_flag = 1 and enables the 

manipulator action whose first command is to set MiR_flag = 0 to avoid irregular movements 

of the mobile part during its actions. 

Once the UR3 has finished its task, it sets MiR_flag = 1 resulting in the MiR moving again to 

re-orient itself, with a similar code, before leaving the station. This last action is essential to 

avoid the PurePursuit algorithm to lead the MoMa back to the traced path with unplanned 

maneuvers.  

- UR3_flag : as discussed in the previous point, this flag is set to 0 when the mobile robot is 

moving and to 1 when the setup for the manipulator task is ready;  

- sit : this value corresponds to an integer number related to a checkpoint or to the in between 

movement case and is used not only inside the function block to trigger different sections of 

code but it is also sent to the other controllers that will use it for the same purpose; 

- orient : a constant used to avoid unexpected activations of lines of code each time the CoM 

is close to a station. Indeed, it may happen that during the leaving phase the robot is still 

inside the positioning tolerance and its motion toggles between the command of the 

PurePursuit block and the orientation part of the function block; 

[…] 

    case 2 

        if phi*checkpoints(2,3) > 0 

            if phi_arr < 0 && abs(phi_arr) > phi_thr 

                w = 0.2; 

                UR3_flag = 0; 

            elseif phi_arr > 0 && abs(phi_arr) > phi_thr 

                w = -0.2; 

                UR3_flag = 0; 

            elseif abs(phi_arr) < phi_thr  

                w = 0; 

                UR3_flag = 1; 

            end 

             

        else    

            if delta_arr1 < delta_arr2 

                w = 0.2; 

                UR3_flag = 0; 

            elseif delta_arr2 < delta_arr1 

                w = -0.2; 

                UR3_flag = 0; 

            elseif delta_arr1 < phi_thr || delta_arr2 < phi_thr  

                w = 0; 

                UR3_flag = 1; 

            end 

        end 
 

[…] 

 



- mission_complete : it is a variable initialized at 0 that becomes 1 after the leaving phase on 

the last station has terminated, meaning that even the last task of the UR3 has been done; 

- stop_sim : this value is initialized at 0, but when mission_complete is set to 1 and the robot 

has reached the desired pose in the conclusive station, that could be back to the starting 

point or another one that we choose, stop_sim is set to 1 triggering the Stop Simulation 

block outside the function block. 

3.4.2 - Limitations 
As mentioned in the introduction chapter, the biggest limitations of this model are basically: 

• The fact that the real control algorithm of the mobile robot is not available for our use, thus we 

had to implement an approximation of it on Simulink using basic blocks and block functions 

resulting in a similar but not exact control algorithm; 

• The fact that the robot design parameters are not totally available. Thus, from a dynamical point 

of view the Simscape model lacks of precision. Indeed, the simulation model cannot replicate all 

the velocities reached by the real robot, but has a maximum linear speed of 0.5
𝑚

𝑠
  and maximum 

angular velocity of 1
𝑟𝑎𝑑

𝑠
 . If those values were not saturated at those levels, the virtual robot 

would reach an unstable behavior; 

• Finally, the rear-driving mode used by the real robot to execute some maneuvers is not 

implemented in our model. 

In the following chapter 4 those points will be discussed more in depth through the analysis of the 

obtained results. 

3.5 – UR3 Simscape model 

 

Figure 3. 16 - UR3 Simscape model 

The same working principle applied to design the MiR100 model has been used to design the UR3 

model. 

In this case, each joint is set to receive a torque as input and sense their own rotation angle and 

speed. These last two data are sent back to the controller that will regulate the torque depending 

on the pose to be reached. 



3.5.1 – Control system 

 

Figure 3. 17 - UR3 control system 

Let us explain all the different parts composing the controlling system: 

• Control Function Block : this is the block containing the function that based on the combination 

of different inputs, decides the pose to be reached next. 

Aside from the already explained sit and UR3_flag, the inputs are: 

- inputTime : through a clock block the current simulation time is sent to the control function 

to mark the time whenever a pose of the sequence has been performed; 

- UR3_task1 and UR3_task2 : the control function receives as input the pose sequences to be 

performed. In this specific case two different sequences are requested, but in a general 

mission a single sequence or more could be sent; 

- gripper_status : this value can be [0;1] and is sent by a subsystem that checks if the gripper 

joints are rotated in open or closed position. 

 

Figure 3. 18 - Subsystem to check the gripper status 

- robotConfig : an array composed by the position sensed by each joint; 

- i and k : simple variables used as indexes to perform for loops inside the function. 

At each simulation step the controller elaborates the entering signals to send the following outputs: 



- MiR_flag : this flag is set to 0 for the whole time the UR3 is moving, but once the task is 

completed it set to 1 to allow the MiR100 to resume its motion; 

- t and wpts : the first one is the time that the Trapezoidal Velocity Profile needs to compute 

the joint rotation speed to go from a pose to the following one. 

 

Figure 3. 19 - Trapezoidal Velocity Profile block 

wpts are instead the waypoints of the trajectory, specifically, is an array composed of 

two columns. The first one contains the current pose of the robot and the second one 

contains the next desired pose. 

 

At the very beginning of the task, the function verifies at which checkpoint is the MoMa and 

if the UR3 is enabled. Based on that information it builds the wpts array with the robot 

current configuration and the first pose of the task. This preset is used to avoid the Digital 

Shadow to start from unexpected poses due to possible hard oscillations generated by 

MiR100 abrupt maneuvers. 

If we are instead in the middle of the MiR100 motion, the k index is reset and also MiR_flag 

is set to 0 to avoid it from reaching a station and skipping the approaching orientation state. 

% Initialize outputs to starting state 

wpts = cat(2,robotConfig,UR3_task1(1:end-1,1)); 

 

if (sit == 2 && UR3_flag == 1)  

    motionState = 1; 

    wpts = cat(2,robotConfig,UR3_task1(1:end-1,1)); 

    MiR_flag = 0; 

elseif (sit == 3 && UR3_flag == 1) 

    motionState = 2; 

    wpts = cat(2,robotConfig,UR3_task2(1:end-1,1)); 

    MiR_flag = 0; 

elseif (sit == 8 || sit == 1) 

    %Reset counter and flag 

    MiR_flag = 0; 

    k = 0; 

    motionState = 8; 

end 
 



 

In the code section below it is shown how the configurations are read in the case of a 

particular task. If the index is still 0, the preset motion from actual configuration to the 

starting pose is performed. Otherwise the normal sequence is carried on until we reach the 

final configuration and MiR_flag is set 1 to start the leaving phase of the mobile robot. 

- k : this index is sent back inside the function to proceed in the pose sequence execution and 

also to RG2 controller let it know at which pose the UR3 is and eventually if it has to open or 

close. 

 

Whenever a desired pose is set, a function ‘trajEndConfigReached’ checks if the joints have all 

reached it within the set tolerance of ± 0.004 𝑟𝑎𝑑 and the gripper is correctly open or closed. 

Once those two aspects have been verified, the index is increased to continue the task. 

• Trapezoidal Velocity Profile and Torque Controller : the first one is showed in figure 3.13 and it 

sends q, dq and qdd. Namely, the desired configuration, the joints velocity and accelerations 

needed to reach it. 

The Torque Controller gets those inputs and computes the torques that will be sent to the joints 

to perform the requested motion. 

switch motionState 

    case 1 

        MiR_flag = 0; 

        if i < length(UR3_task1(1,:)) && i >= 1         

        %Pick task: 

            MiR_flag = 0; 

            wpts(:,1)=UR3_task1(1:end-1,i); 

            wpts(:,2)=UR3_task1(1:end-1,i+1); 

            [trajEndConfigReached] = endStateReached(robotConfig, 

gripper_status, UR3_task1(1:end-1,i+1), UR3_task1(end,i), posTgtThreshold); 

        elseif i < 1 %Preliminary adjustment    

            MiR_flag = 0; 

            wpts(:,1)=robotConfig; 

            wpts(:,2)=UR3_task1(1:end-1,1); 

            [trajEndConfigReached] = endStateReached(robotConfig, 

gripper_status, UR3_task1(1:end-1,i+1), UR3_task1(end,1), posTgtThreshold0); 

        elseif i >= length(UR3_task1(1,:)) 

            MiR_flag = 1; 

        end 
 

if trajEndConfigReached 

  resetTimeValue = inputTime; 

  k = i+1; 

end 

 



 

Figure 3. 20 - Torque Controller 

The torque controller blocks send as output the applied torque depending on the type of 

robot. Indeed, unlike MiR100 case, Matlab has more information about the UR3. 

3.5.2 – Limitations 
For this model, the internal mechanics parameter of the joints were not given by the UR3 datasheet. 

However, we supposed them after running multiple tests in order to find a good compromise 

between a rigid structure able to maintain its pose while moving but flexible enough to replicate a 

smooth motion. 

Moreover, the Simscape model has been generated by importing the official .step file of the UR3-

CB3 series from the Universal Robots site. However, we found out a discrepancy between the 3D 

model measures and the real robot. 

From the measures of figure 3.9, we can see how the error in the 3D space is about 2.853 𝑚𝑚. This 

misalignment with respect to the real robot will have relevant effects on the analysis of the TCP 

trajectory, but will not affect the joint rotations that are the controlled parameter of this model. 



  

Figure 3. 21 - UR3 step file discrepancies 

Those limitations and their impact on the results will be further discussed in chapter 4. 

  



3.6 – RG2 Simscape model 

 

Figure 3. 22 - RG2 Simscape model 

3.6.1 – Control system 

 

Figure 3. 23 - RG2 control system 

To simulate the gripping action during the task, a basic controller that communicates with the UR3 

and MIR100 controllers has been implemented. 

As we can see in figure 3.23 and in the following lines of code contained in the function block, the 

input signals are: 

- UR3_flag : with this flag we make sure that the RG2 operates only when the UR3 is enabled; 

- sit : since different tasks may be executed during the same mission, the gripper might open 

or close depending on it. Thus, it is required for its controller to know in which task it is being 

activated; 

- k : the index value passed from UR3 controller. Thanks to the communication of this value, 

RG2 controller will know when the UR3 has reached the required pose and based on that it 

will send to the Simscape model the rotation value of the joints; 

- Tasks : the gripper reads the same sequence  of poses of the UR3. Doing so, it will know if it 

is required to open or close depending on the UR3 actual pose; 



- grip_val : this value is defined as the angle that the highlighted joints in figure 3.11 must 

rotate in order to open/close the gripper; 

- q0_grip1 and q0_grip2 : those are the standard positions of the RG2 that will be sent by 

controller or overwritten when motion is required. 

 

In these lines of code it is possible to better understand how the controlling signals are elaborated 

and sent. 

  

function [q_grip1, q_grip2] = grip_ctrl(UR3_flag, sit, k, grip_val, UR3_task1, 

UR3_task2, q0_grip1, q0_grip2) 

 

q_grip1 = q0_grip1 - grip_val; 

q_grip2 = q0_grip2 + grip_val; 

 

if (sit == 2 && UR3_flag == 1) 

    if k < length(UR3_task1(1,:)) && k >= 1 

        if UR3_task1(end,k) == 0 

            q_grip1 = q0_grip1; 

            q_grip2 = q0_grip2; 

        end 

    elseif k < 1 

        if UR3_task1(end,1) == 0 

            q_grip1 = q0_grip1; 

            q_grip2 = q0_grip2; 

        end 

    elseif k >= length(UR3_task1(1,:)) 

        if UR3_task1(end,end) == 0 

            q_grip1 = q0_grip1; 

            q_grip2 = q0_grip2; 

        end 

    end 

 

elseif (sit == 3 && UR3_flag == 1) 

    if k < length(UR3_task2(1,:)) && k >= 1 

        if UR3_task2(end,k) == 0 

            q_grip1 = q0_grip1; 

            q_grip2 = q0_grip2; 

        end 

    elseif k < 1 

        if UR3_task2(end,1) == 0 

            q_grip1 = q0_grip1; 

            q_grip2 = q0_grip2; 

        end 

    elseif k >= length(UR3_task2(1,:)) 

        if UR3_task2(end,end) == 0 

            q_grip1 = q0_grip1; 

            q_grip2 = q0_grip2; 

        end 

    end 

end 
 



4 – Case study results 

To provide a practical use of this simulation system, a Pick and Place task has been designed. 

Specifically, the MiR100 will have to move from its charging station to a hypothetic ‘assembly 

station’. Once position and orientation are the desired one, the UR3 will pick an object from that 

station. 

At this point, MiR100 will start moving again toward the ‘unloading station’, where UR3 will place 

the object previously picked. 

Finally, MiR100 will go back to its charging station. 

 
Figure 4. 1 – MiR100’s positions registered from OptiTrack and Node-red on and XY plane 

In figure 4.1 the expected itinerary to be followed by the DS is shown. 

The upper one has been registered through OptiTrack, while the other plot has been taken directly 

from the robot control-box through Node-red. 

In these paragraphs we will discuss the output data obtained from the simulation of the task 

comparing them with respect to the input acquired from the real robots as we already explained in 

Chapter 2. 

All the results are analyzed from three different systems point of view (Node-red, OptiTrack and 

Simulation) with respect to the ideal reference positions and orientations. 

Before entering the result discussion, it is important to specify that the real utility of OptiTrack would 

be to compute accuracy, precision and repeatability studies on the robot that are not the objective 

of this thesis. Thus, what we are about to examine, in particular the plots, intend to give a tangible 

explanation of the ability of the Digital Shadow of behaving as the real robot. While, the analysis on 

the numerical results are to confirm the model perks and limitations previously mentioned.  



4.1 – MiR100 results 

 

Figure 4. 2 - MiR100 path plotted on the map 

In figure 4.2 the trajectories registered with Node-red and OptiTrack are plotted and compared with 

the one generated by the simulation system. 

We can notice that since the simulation system took its data from Node-red, it is more similar to its 

trajectory. 

On the other hand, OptiTrack measurement is the most precise between the three, but it is not 

composed of data coming directly from the robot control box such as the Node-red ones. In other 

words, it can be used as an external check. 



 

Figure 4. 3 – Coordinate X plot in time 

 

Figure 4. 4 - Coordinate Y plot in time 

Referring to the figures above, we can see how the simulation system tries to repeat the positions 

covered by the Node-red data. It does, but not with the same speed. In other words, as we 

previously specified, we realized a simulation able to follow the poses of the real robots, but since 

some critical data and the exact control algorithm is not given, we could not guarantee the same 

timing. 

Anyway, the time shifting is not so big since rarely the real robot goes at full speed during a task. 

The important result is that, aside from the timing, the virtual robot is able to reach all the positions 

within an error tolerance specified in the algorithm generated to control it. 



 

Figure 4. 5 - Orientation plot in time 

The real orientation of the MiR100 is not duplicated by the simulation for the whole time, but just 

in the working stations. Specifically, the poses at the different stations have been passed to the 

control system with the correct position and orientation, not from Node-red. 

The reason of the difference between the waypoints from Node-red and the stations poses imposed 

as exact coordinates is that the Digital Shadow will have to trace the same itinerary of the real one, 

but there would be no point in setting the error inside the stations coordinates since those errors 

are caused by the inaccuracy of the robot and the model already has its own positioning and 

orientation tolerance based on the inaccuracy of the physical object. Setting errors in the arrival 

stations would result in summing up all those imprecisions generating an even worst motion. 

4.1.1 – Discussion about the resulting motion 
In the following part, we will discuss the motion of the MiR100 model in the following way: 

• Comparison of the dataset from Node-red with respect to the reference data registered from 

the software of the MiR100; 

• Comparison of the dataset from the DS as result of trying to follow the same path of the real 

robot; 

• A more exact comparison between the poses acquired with the OptiTrack system and the 

ideal reference data. As previously mentioned, OptiTrack poses are the real poses of the 

robot. 

We specify that the real MiR100 has a positioning tolerance of ±10.00 𝑐𝑚  stated in its software 

interface and a not specified orientation tolerance, while the DS has been set to ±15.00 𝑐𝑚 and 

±0.02 𝑟𝑎𝑑. However, in the following results, it is shown that the positioning is always under this 

threshold. 



  X [m] Y [m] φ [deg] 

Charging station 28.950 21.000 0.000 

Assembly station 29.200 22.000 90.000 

Unloading station 31.427 18.852 -90.000 
 

Node-red errors X [m] Y [m] φ [deg] ΔX [m] ΔY [m] Δφ [deg] 

Assembly Station 29.138 22.115 90.943 0.062 0.115 0.943 

Unloading Station 31.389 18.815 -92.003 0.038 0.037 2.003 

Charging Station 28.889 20.966 -1.239 0.061 0.034 1.239 
 

Simulation errors X [m] Y [m] φ [deg] ΔX [m] ΔY [m] Δφ [deg] 

Assembly Station 29.152 22.033 91.000 0.048 0.033 1.000 

Unloading Station 31.404 18.828 -89.000 0.023 0.024 1.000 

Charging Station 28.931 21.088 -3.000 0.019 0.088 3.000 
 

Optitrack errors X [m] Y [m] φ [deg] ΔX [m] ΔY [m] Δφ [deg] 

Assembly Station 29.240 21.975 88.790 0.040 0.025 1.210 

Unloading Station 31.451 18.756 -92.930 0.024 0.096 2.930 

Charging Station 28.997 20.898 0.600 0.047 0.102 0.600 
Table 4. 1 - Position and orientation errors 

In these tables, the charging station values refer to the pose of the MiR100 when it gets back to the 

starting point after executing its mission. 

All the shown values are with respect to the MiR100 map origin on its own software. 

To resume the pose error measured for this specific case: 

Node-red errors Δ(X,Y) [m] Δφ [deg] 

Assembly Station 0.131 0.943 

Unloading Station 0.053 2.003 

Charging Station 0.070 1.239 

 

 

 

 

From these tables, it results that from Node-red point of view, MiR100 was not always inside the 

positioning tolerance of ±10.00 𝑐𝑚. In particular, it misses the assembly station. But for OptiTrack 

data, the real position acquired reaches values outside the tolerance for the return in the charging 

station and it is almost outside the tolerance when reaching the unloading one. 

Optitrack errors Δ(X,Y) [m] Δφ [deg] 

Assembly Station 0.047 1.210 

Unloading Station 0.099 2.930 

Charging Station 0.112 0.600 

DS errors Δ(X,Y) [m] Δφ [deg] 

Assembly Station 0.058 1.000 

Unloading Station 0.033 1.000 

Charging Station 0.091 3.000 

Table 4. 2 - Pose errors resume 



For what concerns the simulation, the positioning errors are abundantly under the estimated 

tolerance of ±15.00 𝑐𝑚 . 

The errors computed with OptiTrack show that even if the robot control box senses the MiR100 in 

a certain position, the real error might differ, resulting in a worst positioning than the one reached 

by the simulation system. 

Thus, as previously mentioned, the OptiTrack system, helped us to analyze the effective pose of the 

robot. 

Different tasks executed on the simulation might give other results when computing the relative 

positioning error between the real and virtual system, but for sure, the simulation will always stay 

inside its predefined tolerance as long as the task is executable. 

It is important to remark that this analysis on the real robot concerns just this task execution since 

different runs on the same task showed a very big positioning error variance, not always inside the 

tolerance stated in the robot datasheet. 

To calculate a precise tolerance to be set as the DS parameter a statistic analysis might be 

convenient, but since it is not an object of this thesis we will set the worst case error from the data 

acquisitions of both Node-red and OptiTrack to run further simulations in a coherent way. 

4.1.2 – Path optimization 
Before discussing UR3 results, we have to explain to what those Simulation inaccuracies of MiR100 

DS are due. 

Since we are running a path realized by the real robot, the pose errors inside it will increase the 

flaws implicitly contained in our model generating an even bigger positioning error. 

Indeed, as we can see in this zoom-in of figure 4.2, the simulated robot follows the Node-red path 

to reach the stations, but since the real robot might overshoot the desired location or stop before, 

the DS will follow that path until entering the positioning threshold and then start the orientation 

phase in wrong position. 

This happens since the virtual robot follows the real path from Node-red but knows where the exact 

position of the station is. If instead of setting the exact location as goal, we put the wrong pose 

achieved by the real robot the DS would perfectly copy the real robot, but it would be useless in the 

task execution. 



 

Figure 4. 6 - Zoom in of figure 4.2 

Indeed, in this case, we see that the Simulation (light-blue) follows the Node-red path (purple) trying 

to get to the arrival point, or the perceived station from Node-red point of view, but as soon as the 

DS enters the positioning tolerance of the assembly station its control algorithm starts the 

orientation phase, stopping it in the wrong position. 

From the collected data in Table 4.2, we can see that the error is still inside the tolerance, but we 

can decrease it even more if instead of running past data collected from Node-red, we design a path 

free from the errors of the real robot. 

The design will be executed on this case study, but in a general approach in which we do not have 

to perform a run-in of the DS to check its behavior, we can directly design everything in the virtual 

environment and then perform it on the physical object. 

 

Figure 4. 7 - Optimized path 



In figure 4.7 it is shown a simple path, in which the checkpoints are the same. The main difference 

with respect to the previously followed one, is that the robot is required to stop at the stations and 

there is no more the overshoot performed by the real MiR100. 

Moreover, since we are designing the path ourselves, the 𝜙𝑙𝑒𝑎𝑣𝑖𝑛𝑔 can be set at the optimal values 

to allow the robot to depart from each station without leaving the designed path. This way, we avoid 

the time wasting due to the fact that the real robot, even in absence of obstacles on the path, 

performs curved maneuvers between the stations.  

Once the task has been tested in the simulation environment, we proceeded in running it on the 

real MiR100. 

To do so, we wrote the same optimized task on the physical object interface constraining its motion 

to be equal to the desired route. 

 

Figure 4. 8 - Modified MiR100 task 



 

Figure 4. 9 – Run on an ideal path 

Node-red errors Δ(X,Y) [m] Δφ [deg] 

Assembly Station 0.030 0.047 

Unloading Station 0.017 1.518 

Charging Station 0.070 2.184 

 

 

 

 

Table 4. 3 - Positioning errors 

From these tables we can see that on an optimized path in which the DS points toward the right 

station location and not toward the point in which the physical object stopped, the overall errors 

are smaller, not only in positioning, but also in orientation. This happens because now the DS is 

following its own path and not a registered one in which past issues are considered. 

Furthermore, it is observable that a constrained straight motion in which we ask the real robot to 

avoid its useless curvatures when no obstacles are present, implied an improvement on the results 

in the real world. 

Optitrack errors Δ(X,Y) [m] Δφ [deg] 

Assembly Station 0.041 0.304 

Unloading Station 0.058 0.818 

Charging Station 0.053 1.745 

Simulation errors Δ(X,Y) [m] Δφ [deg] 

Assembly Station 0.028 0.000 

Unloading Station 0.024 1.000 

Charging Station 0.018 1.000 



Indeed, we can notice how the positioning errors are decreased. Yet, some orientation issues are 

present but still inside the tolerances. 

For what concerns the positioning, the resulting values are more similar in all three acquisition 

systems than those in the previous run, with an average relative error around 0.024 𝑚 . 

The relative error of the orientation even if we increased the tolerance of the DS is around 0.534°, 

showing how unpredictable this error can be. 

Now that we know the error of the MiR100, given an optimized path, it is possible to run multiple 

simulations in different scenarios increasing the virtual robot tolerance to match the precision 

revealed by OptiTrack to simulate not an ideal behavior, but a realistic one that keeps into account 

the robot flaws. In this way, we are able to make concrete analysis on simulated tasks. 

It is important to specify that even if this modification of the task does not take in consideration the 

presence of moving obstacles along the path, we can still consider it a general approach since what 

we are trying to optimize is the arrival and leaving in different stations. 

Indeed, we can demonstrate that even if the ideal path is left due to the presence of an object and 

subsequently reacquired, the DS is able to get to the desired station within the pre-defined 

tolerance. 

To do so, we start from the ideal optimized path and we add some waypoints between the stations 

to alter the route as if there was some obstacles who required the virtual robot to leave the 

predefined path and to re-enter it once the obstacle has been passed.  



 

Figure 4. 10 - Simulation result on disturbed path 

Simulation errors Δ(X,Y) [m] Δφ [deg] 

Assembly Station 0.009 0.000 

Unloading Station 0.032 1.000 

Charging Station 0.018 0.000 
Table 4. 4 - Positioning errors 

As a result, the Digital Shadow arrived at the desired stations with the correct pose even after 

performing a perturbed route. 

In conclusion, we verified that the designed Digital Shadow, once calibrated to have the same flaws 

of the real robot, can be exploited to run different missions, optimize those and once we are sure 

of the results, run the real robot in the same condition, showing how powerful this model can be.  



4.2 – UR3 results  
In the following chapter, we will analyze the TCP trajectory with respect to the UR3 base of the 

Digital Shadow and the joints rotations during the tasks of the case study. 

The analysis will start from the 3D positioning of the TCP in the workspace comparing each dataset 

with respect to the reference values of each pose acquired from the UR3 software. Then, we will 

conclude with the main analysis on the joints rotations that are the controlled parameter of the 

model.  

4.2.1 – Discussion about the resulting motion in task 1 
In the figures below, it is shown the TCP trajectory during the execution of the task 1 from each 

system point of view. 

 

Figure 4. 11 – 3D plot of the TCP positions 

From figure 4.11, we can see how the 3 trajectories almost overlap and, in particular, the Node-red 

one seems the most precise in reaching all the TCP reference positions. 

Already from this first image, we can notice that the OptiTrack measurement shows a little error in 

the trajectory with respect to the checkpoints. 

This is due to the fact that to measure the TCP trajectory during the task, a tool with a marker on its 

tip has been mounted on the UR3 (figure 1.7). But since the TCP is a virtual point, the marker results 

shifted with respect to it and even an error of a fraction of a millimeter can generate a wrong line 

missing the checkpoints of the task. 

For this reason, OptiTrack measurements have been included just to verify the motion of the TCP 

and to underline this limit in the application for the UR3. 

Anyhow, this is not a problem since we exploited OptiTrack to analyze the error of MiR100 that is 

less reliable than the UR3 that we know has been designed to be very precise. 

For a better understanding of the outcome, we report the plots in each standard 2D plane: 



 

Figure 4. 12 - TCP position on plane XY 

 

Figure 4. 13 - TCP position on plane XZ 



 

Figure 4. 14 - TCP position on plane YZ 

Once again, we specify that this is not a statistic analysis, but the discussion about the results of a 

restricted number of runs, mainly focused on the behavior seen from three different systems. 

In the UR3 datasheet, the only data about the positioning error is related to the repeatability 

(±0.1𝑚𝑚), but since we are now performing a simulated analysis, in which the outcome with same 

conditions will always be the same, we will limit our study the TCP positioning error and joints 

angles. 

In particular, we remark that the controller of the digital UR3 has been designed in order to follow 

the same configurations of the real robot keeping the error within an interval of ±0.004 𝑟𝑎𝑑. 

However, the TCP error will be analyzed to understand how good the digital UR3 precision is with a 

controller designed to replicate the motion of the real robot.  

 

 

 

 

 

 

 

 

 



In the following tables, we resume the data concerning the TCP position: 

Task1 X [mm] Y [mm] Z [mm] 

1 42.900 351.360 250.850 

2 340.780 -95.610 250.840 

3 -41.660 -351.460 250.870 

4 -34.130 -484.660 376.190 

5 -59.580 -470.810 161.460 

6 -39.860 -466.170 85.410 

7 -23.000 -281.470 276.530 

8 280.450 -6.110 277.700 

9 -4.490 293.620 269.360 

10 42.850 351.360 250.850 
 

Node-red X [mm] Y [mm] Z [mm] ΔX [mm] ΔY [mm] ΔZ [mm] 

1 42.800 351.400 250.800 0.100 -0.040 0.050 

2 340.800 -95.700 250.800 -0.020 0.090 0.040 

3 -41.500 -351.400 250.900 -0.160 -0.060 -0.030 

4 -33.900 -484.500 376.200 -0.230 -0.160 -0.010 

5 -59.500 -470.700 161.400 -0.080 -0.110 0.060 

6 -39.900 -466.100 85.400 0.040 -0.070 0.010 

7 -22.400 -281.900 276.500 -0.600 0.430 0.030 

8 280.500 -6.100 277.700 -0.050 -0.010 0.000 

9 -4.500 293.600 269.400 0.010 0.020 -0.040 

10 42.900 351.400 250.800 -0.050 -0.040 0.050 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Digital Shadow X [mm] Y [mm] Z [mm] ΔX [mm] ΔY [mm] ΔZ [mm] 

1 41.700 348.900 250.500 1.200 2.460 0.350 

2 338.500 -94.000 250.500 2.280 -1.610 0.340 

3 -40.400 -349.000 250.600 -1.260 -2.460 0.270 

4 -32.900 -482.800 374.400 -1.230 -1.860 1.790 

5 -58.000 -468.500 161.100 -1.580 -2.310 0.360 

6 -38.500 -463.700 85.000 -1.360 -2.470 0.410 

7 -21.900 -279.200 275.800 -1.100 -2.270 0.730 

8 277.800 -5.200 276.900 2.650 -0.910 0.800 

9 -5.000 290.800 268.700 0.510 2.820 0.660 

10 41.600 348.800 250.500 1.250 2.560 0.350 
Table 4. 5 – TCP positions on task 1 



 

In the following image, we plot the joints angles value during the task execution. 

  

Figure 4. 15 - Joints angles plot 

Task 1 
Base 
[rad] 

Shoulder 
[rad] 

Elbow 
[rad] 

Wrist1 
[rad] 

Wrist2 
[rad] 

Wrist3 
[rad] 

1 1.794 -2.101 -0.162 -2.492 -1.542 1.747 

2 0.071 -2.101 -0.162 -2.492 -1.542 1.747 

3 -1.344 -2.101 -0.162 -2.492 -1.542 1.747 

4 -1.390 -1.800 -0.684 -1.489 -1.538 0.274 

5 -1.474 -2.321 -0.353 -1.961 -1.596 0.169 

7 -1.432 -2.168 -0.989 -1.479 -1.599 0.131 

8 -1.279 -1.553 -0.848 -2.219 -1.603 0.347 

9 0.346 -1.535 -0.867 -2.207 -1.612 0.327 

10 2.036 -1.565 -0.868 -2.211 -1.512 0.430 
 

Simulation 
Base 
[rad] 

Shoulder 
[rad] 

Elbow 
[rad] 

Wrist1 
[rad] 

Wrist2 
[rad] 

Wrist3 
[rad] 

ΔJ1 
[rad] 

ΔJ2 
[rad] 

ΔJ3 
[rad] 

ΔJ4 
[rad] 

ΔJ5 
[rad] 

ΔJ6 
[rad] 

1 1.794 -2.101 -0.162 -2.492 -1.542 1.747 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.076 -2.102 -0.161 -2.496 -1.542 1.747 -0.004 0.001 -0.001 0.004 0.000 0.000 

3 -1.340 -2.102 -0.161 -2.496 -1.542 1.747 -0.004 0.001 -0.001 0.004 0.000 0.000 

4 -1.390 -1.800 -0.686 -1.491 -1.538 0.278 0.000 0.000 0.002 0.003 0.000 -0.004 

5 -1.473 -2.318 -0.357 -1.958 -1.595 0.173 0.000 -0.004 0.004 -0.003 -0.001 -0.004 

7 -1.432 -2.169 -0.987 -1.483 -1.599 0.132 0.000 0.001 -0.001 0.004 0.000 -0.001 

8 -1.280 -1.555 -0.852 -2.215 -1.603 0.343 0.001 0.003 0.003 -0.004 0.000 0.004 

9 0.341 -1.534 -0.870 -2.209 -1.611 0.327 0.004 -0.001 0.003 0.001 0.000 0.000 

10 2.032 -1.564 -0.871 -2.212 -1.513 0.429 0.004 -0.001 0.003 0.001 0.001 0.001 

11 1.794 -2.102 -0.162 -2.496 -1.542 1.743 0.000 0.001 0.000 0.004 0.000 0.004 
Table 4. 6 - Joints angles values 



From these tables, we can notice how the simulation is able to follow all the main poses of the 

motion with a precision of ±0.004 𝑟𝑎𝑑 .  

However, from the plots, we can see that the timing with which these poses are reached is slightly 

different. Aside from this aspect that has already been discussed in paragraph 3.5.2 , we can state 

that the model is able to replicate the poses sequence of the real robot with good precision.   

For what concerns the TCP positioning with respect to the base from the data contained in the tables 

above: 

• Node-red average position error: Δ𝑥𝑦𝑧 = 0.105 𝑚𝑚 ; 

• Simulation average position error: Δ𝑥𝑦𝑧 = 2.677 𝑚𝑚 ; 

As previously mentioned, the OptiTrack results, aside from the motion study, cannot be used from 

a numerical point of view. 

From these values we can notice how the limitations abundantly discussed result in a big imprecision 

of the TCP virtual model, being about 2.677 𝑚𝑚 .  

This relevant error can be justified with the following reasons: 

1) The parameters of the internal mechanics of the joints have been supposed and are not the 

exact ones of the real robot.  

We underline that the parameters have been calibrated with multiple tests until finding a 

compromise between a smooth motion and a stable one, but even the slightest difference 

with respect to the real values, multiplied for 6 the joints of the kinematic chain, can affect 

the outcome, both in position and in execution speed; 

2) As we showed in chapter 3.5.2, there is a discrepancy between the real robot measures and 

the official .step file available on the Universal Robots site. For this reason, while the joints 

rotations are really accurate, the TCP position in the 3D space is not. The different measures 

of the joints of the 3D model are of the order of the millimeters, but while these differences 

do not affect the angles, they have a big impact on the TCP position. 

In conclusion, we can state that the controller designed to simulate the robot is accurate and is able 

to make the DS execute the various poses as the real robot, but cannot be used to analyze the TCP 

position for this specific UR3 model. 

However, if in a future development we wanted to design our own robot and use this controller 

knowing all the needed data and the exact measurements, this model would be even more precise. 

 

 

 

 

  



4.2.2 – Discussion about the resulting motion in task 2  

 

Figure 4. 16 - 3D plot of the TCP positions 

 

Figure 4. 17 - TCP position on plane XY 



 

Figure 4. 18 - TCP position on plane XZ 

 

Figure 4. 19 - TCP position on plane YZ  



Task2 X [mm] Y [mm] Z [mm] 

1 42.900 351.370 250.830 

2 319.340 -152.550 250.680 

3 -121.840 -332.270 250.650 

4 -123.550 -630.780 380.690 

5 -123.860 -670.060 121.090 

6 -123.860 -670.060 121.070 

7 -123.090 -489.620 363.150 

8 111.720 425.970 385.520 

9 42.900 351.380 250.830 
 

Node-red X [mm] Y [mm] Z [mm] ΔX [mm] ΔY [mm] ΔZ [mm] 

1 42.900 351.400 250.800 0.000 -0.030 0.030 

2 319.330 -152.520 250.700 0.010 -0.030 -0.020 

3 -121.800 -332.500 250.700 -0.040 0.230 -0.050 

4 -123.500 -630.500 380.300 -0.050 -0.280 0.390 

5 -123.800 -669.900 120.800 -0.060 -0.160 0.290 

6 -123.800 -669.900 120.800 -0.060 -0.160 0.270 

7 -122.100 -487.600 365.900 -0.990 -2.020 -2.750 

8 111.900 424.000 388.300 -0.180 1.970 -2.780 

9 42.900 351.300 250.800 0.000 0.080 0.030 
 

 

Digital shadow X [mm] Y [mm] Z [mm] ΔX [mm] ΔY [mm] ΔZ [mm] 

1 41.700 348.900 250.500 1.200 2.470 0.330 

2 317.400 -150.600 250.400 1.940 -1.950 0.280 

3 -120.000 -330.100 250.300 -1.840 -2.170 0.350 

4 -121.600 -629.800 378.900 -1.950 -0.980 1.790 

5 -121.700 -668.500 119.900 -2.160 -1.560 1.190 

6 -121.700 -668.500 119.800 -2.160 -1.560 1.270 

7 -121.300 -488.100 361.600 -1.790 -1.520 1.550 

8 110.100 424.200 384.100 1.620 1.770 1.420 

9 41.700 348.900 250.500 1.200 2.480 0.330 
 

Table 4. 7 – TCP positions on task 2 



 

 

Figure 4. 20 - Joints angles plot 

Task 2 
Base 
[rad] 

Shoulder 
[rad] 

Elbow 
[rad] 

Wrist1 
[rad] 

Wrist2 
[rad] 

Wrist3 
[rad] 

1 1.794 -2.101 -0.162 -2.492 -1.542 1.747 

2 -0.101 -2.101 -0.162 -2.492 -1.542 1.747 

3 -1.577 -2.101 -0.162 -2.492 -1.542 1.747 

4 -1.577 -2.535 0.169 -1.288 -1.542 1.747 

5 -1.577 -2.928 0.168 -1.289 -1.542 1.747 

6 -1.577 -2.928 0.168 -1.289 -1.542 2.305 

7 -1.578 -2.207 0.075 -1.933 -1.542 1.747 

8 1.621 -2.051 0.070 -2.140 -1.493 1.747 

9 1.794 -2.101 -0.162 -2.492 -1.542 1.747 
 

Simulation 
Base 
[rad] 

Shoulder 
[rad] 

Elbow 
[rad] 

Wrist1 
[rad] 

Wrist2 
[rad] 

Wrist3 
[rad] 

ΔJ1 
[rad] 

ΔJ2 
[rad] 

ΔJ3 
[rad] 

ΔJ4 
[rad] 

ΔJ5 
[rad] 

ΔJ6 
[rad] 

1 1.794 -2.101 -0.162 -2.492 -1.542 1.747 0.000 0.000 0.000 0.000 0.000 0.000 

2 -0.097 -2.102 -0.162 -2.495 -1.542 1.747 -0.004 0.001 -0.001 0.003 0.000 0.000 

3 -1.573 -2.102 -0.162 -2.495 -1.542 1.747 -0.005 0.001 -0.001 0.003 0.000 0.000 

4 -1.577 -2.537 0.171 -1.293 -1.542 1.747 0.000 0.001 -0.002 0.004 0.000 0.000 

5 -1.577 -2.927 0.170 -1.292 -1.542 1.747 0.000 -0.001 -0.002 0.004 0.000 0.000 

6 -1.577 -2.930 0.170 -1.292 -1.542 2.301 0.000 0.002 -0.003 0.004 0.000 0.004 

7 -1.578 -2.210 0.078 -1.935 -1.542 1.751 0.000 0.003 -0.002 0.002 0.000 -0.004 

8 1.617 -2.053 0.072 -2.144 -1.494 1.747 0.004 0.001 -0.002 0.004 0.000 -0.001 

9 1.792 -2.102 -0.159 -2.492 -1.542 1.747 0.002 0.001 -0.003 0.000 0.000 0.000 
Table 4. 8 - Joints angles values 



In these last plots, we can see that the digital UR3 is able to achieve all the poses of the task, but it 

does not reach them with the same timing of the real UR3. 

The TCP error is of the same order of Task1 for the same reasons already explained.  

4.3 – MiR100 positioning effect UR3 motion 
The TCP results described in the previous sections are all referred to the base joint in order to 

evaluate the fidelity of the DS for the UR3 alone. This analysis is useful in case we might want to 

apply the UR3 model on other platforms aside from the MiR100. 

On the other hand, since we are currently speaking about a MoMa, we must discuss how the mobile 

robot precision might affect the manipulator actions. 

What we could witness when moving the real MoMa is that not so rarely, the MiR100 arrived at the 

station so imprecisely that it resulted in the failure of the UR3 task. This issue was more evident 

when, in a picking task, the manipulator could not grasp the object. 

This problem can be solved by applying a camera on the UR3 wrist and implementing a behavior 

able to compensate the MiR100 pose. 

But since we focused on realizing a DS with what we had and based on the available MoMa, the 

previous analysis we made are more than enough to evaluate the fidelity of a DS that as a matter of 

fact is the assembly of two separate Digital Shadows.  

We can state this because in a future development, the addition of a camera would make the 

MiR100 effect on UR3 less relevant. But since at the time it is not available, this topic could not be 

part of our study and we focused more on the DS fidelity for all the important features of the real 

MoMa. 

Anyway, if we still want a graphic vision of how MiR100 uncompensated error affects the UR3 

motion we can report the case study results showing the TCP locations with respect to the map 

origin reference frame instead of the base. 

 



 

Figure 4. 21 - Task1 failure 

 

Figure 4. 22 – Task2 failure 

In these two figures, to give a better idea about the effect of a MiR100 uncompensated error we 

report the case of a failed run of the case study we described earlier. 

Here we can see how the MiR100 position error, that is of the order of the centimetres, might lead 

to a total failure in gripping and releasing the object in the desired position if the component to be 

manipulated has restricted dimensions, not to mention the possible damages to the surrounding 

areas in case the UR3 starts to work in a crowded environment in the wrong position.  

Of course the plots are not overlapping because the Digital Shadow and the real robot are running 

with same position threshold but behave both in a random way as they are expected to. 

Indeed, since in the previous chapters we demonstrated the DS fidelity, this model can now be used 

to study all the scenarios analysing only the virtual robot results, confident that its range of error 

will always be the same of the real one, avoiding possible catastrophic consequences in case of 

failure. Then, after the task to be run has been confirmed to be safe, we can run the real robot and 

analyse the outcome. 



5 – Conclusions 

From the results obtained we can confirm that the Digital Shadow has been calibrated to behave as 

the real robot at the best of the possibilities keeping in mind all the limitations and issues stated in 

the previous chapters. Further optimizations of the model can certainly be achieved in future 

developments of the project. 

Consequently, the model is good enough to firstly simulate MiR100 trajectories and UR3 tasks in the 

virtual environment and, only after those have been optimized, execute them on the real MoMa. 

This way, it is possible to exploit the digital MiR100 as a powerful tool in case of a point-to-point 

trajectory optimization in absence of a real robot or in an attempt of avoid using it when not 

necessary. 

The same potential use, focused on the optimization of a sequence of poses to execute various tasks 

can be thought for the UR3, especially when it comes to possible self-harming motions. 

In conclusion, we can state that the realization process for a Digital Twin shown in this Thesis can 

be used for different systems, especially in case of open-system ones in which we can develop more 

than a Digital Shadow as seen. 

Future works on the realized DS could be, for example: 

• Refinement of the error threshold and analysis of the events and maneuvers that lead the 

MiR100 to reach the goal positions with a certain error through an accurate statistical 

analysis; 

• Improve the path generation and following code in order to better approximate the mobile 

robot, especially in how it chooses a maneuver instead of another; 

• The study of a case in which mobile obstacles, not present on the map when the mobile 

robot designed its path, appear in the trajectory. This study would require the 

implementation of all the proximity sensors for the Simscape multibody model and the 

related algorithms; 

• As we already wrote, the addition of a camera to the arm and so to the DS with an algorithm 

needed to recalibrate the UR3 motion to compensate the MiR100 position error; 

• The addition of other Digital Shadows in the virtual laboratory to generate more complex 

tasks virtualizing a whole production process in which more robots are involved; 

• Apply this design process to a open-system robot to generate a DT. 

These could be some ideas, but the use of a Digital Shadow and even more of a Digital Twin have 

infinite possibilities. 
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