POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

a O A . .
Yy AA__NA‘;; Politecnico
iz di Torino

\{ \'"'"ﬁ%iisg |
-\ #,f’

Master’s Degree Thesis

AMR system for autonomous indoor
navigation in unknown environments

Supervisors Candidate
Prof. Marina INDRI

Alessandro REA

Ing. Orlando TOVAR ORDONEZ

December 2022

Abstract

With the introduction and advancement of technologies now essential to in-
dustrial processes, technological evolution has significantly advanced the field of
automation. The evolution of autonomous systems has made it possible to improve
human work, facilitating collaboration with it while providing a substitute for
handling the most demanding tasks. To achieve the goals of Industry 4.0, CIM4.0
has developed the FIXIT project, which aims to provide interactive support to the
human operator in an industrial or logistics setting.

The objective of this thesis is to develop an Autonomous Mobile Robot (AMR)
system capable of autonomous indoor navigation through an unexplored and
unknown environment. In order to fulfill the predefined task, a sensoristics system
suitable for the environment is deployed. Exploiting the information coming from
the sensors, an Active SLAM algorithm is implemented to extend the functionalities
of the classic SLAM method to plan paths toward unkown spaces while mapping
the environment.

In order to carry on an analisys between different SLAM algortihms, a comparison
of state of the art of Passive and Active SLAM solutions is performed. The
resulting methodology is the adoption of an Active SLAM, in particular, the Google
Cartographer method, which is used as the primary SLAM module to create
submaps and efficiently conducting frontier detection in the geometrically aligned
submaps generated by graph optimization.

The overall system is developed using ROS (Robot Operating System) and has
been validated in simulation using tools as Rviz and Gazebo. The functionalities
of the developed Active SLAM algorithm have been tested in different simulation
scenarios to prove the robustness and the efficiency of the solution. At the end,
during the experimental phase, the performances of the real robot are evaluated in
the CIMA4.0 laboratory. The rover shows a great ability in actively exploring the
environment, passing through narrow spaces and avoiding obstacles, while locating
and mapping the discovered area.

Acknowledgements

I would like to thank Professor Marina Indri for her support and advice received
during my thesis journey. In addition, I would like to thank David and Fiorella
for the feedback I always received quickly and accurately. Regarding CIM4.0, I
especially wanted to thank Orlando for giving me the opportunity to do the thesis
in this company and guiding me during this project.

Thanks should be given to all my big family who, starting from the beginning
of my academic journey have always supported me. In difficult times they stood
by me and never doubted me. Especially Mom, Dad and Stefano, I hope it has
made you all proud of me. I wanted to warmly thank Giulia, who always believed
in me, even when I did not. Without you, I would not have reached this milestone;
half the credit for this milestone belongs to you.

An especially heartfelt thank you goes to my fellow CIM members. Roberto,
Bessim, Christian and Wang, we have shared a lot and helped each other, if this
journey has been enjoyable, it is thanks to you. Last but not least, I wanted to
thank the guys of the fifth floor and especially David, the relationship we built still
binds us years later.

v

Table of Contents

List of Tables

List of Figures

Acronyms

1 Introduction

1.1

Structure of the Thesis

2 State of the Art

2.1

2.2

SLAM algorithms o
2.1.1 Online and Full SLAM
2.1.2 Three main SLAM paradigms
2.1.3 Difficulties and challenges of SLAM
Passive and Active SLAM
2.2.1 Passive SLAM solutions L.
2.2.2 Active SLAM solutions

3 ROS Architecture for AMR

3.1

3.2

3.3

Introduction to ROS o
3.1.1 The basic principlesof ROS
3.1.2 Key featuresof ROS
3.1.3 ROS Workspace,
3.1.4 RViz
3.1.5 Gazebo
URDF model
3.2.1 URDF in Gazebo,
3.2.2 Gazebopluginso
Transform System
3.3.1 Transformsin ROS

XI

XV

4 Development of an Active SLAM Algorithm
4.1 Active SLAM Algorithm
4.2 Google Cartographer oL
4.2.1 Local SLAM
4.2.2 Loop Closure Optimization
4.3 Frontier Detection L
4.3.1 Reachability of Frontiers
4.3.2 Breadth First Search
4.3.3 Clustering frontiers into navigation points
4.4 Global Path Planning
4.4.1 A*algorithm
4.4.2 D*algorithm
4.5 Local Path Planning
4.5.1 Dynamic Window Approach
4.5.2 Artificial Potential Field
Autonomous Navigation in Simulation
5.1 SLAM algorithms in ROS
5.1.1 ROS packages for SLAM
5.2 Cartographer in ROS
52.1 Local SLAM
5.2.2 Global SLAM
5.2.3 Input Sensor Data
5.3 Navigation Stack
5.3.1 Odometry information
5.3.2 Sensor information L.
5.3.3 Basecontroller
534 Costmap
5.3.5 MoveBase
54 Simulation
5.4.1 Active SLAM performance comparison
5.4.2 Simulation Results
Hardware Architecture
6.1 Mecanum Wheeled mobile robot
6.2 SensorS
6.2.1 RP-LIDAR A1
6.2.2 Intel RealSense Depth Camera D4351
6.3 On-board computers
6.3.1 Nvidia Jetson Xavier NX
6.3.2 Nvidia Jetson Nano

29
29
31
32
33
34
34
35
35
37
37
38
39
39
40

42
42
43
44
44
45
47
47
48
49
49
50
52
54
54
56

6.3.3 FIXIT-M Board
6.4 Agilex Scout Minio
6.5 Distributed Hardware System
6.6 Abstraction Layers of the System

Active SLAM Experiments

7.1 Network Setup

7.2 Active SLAM Experiment 1,
7.2.1 Restricted map of the environment
7.2.2 Complete map of the environment
7.2.3 FErrors during the exploration

7.3 Active SLAM Experiment 2 L
7.3.1 Reachability of Frontiers
7.3.2 Experimental resultso

7.4 Active SLAM Experiment 3

Conclusions
8.1 Limits and Future works

Bibliography

VIII

Listings

3.1
3.2
3.3
5.1
5.2

Example of an XML file describing an URDF model 24
Example of a ModelPlugin, 26
Example of a SensorPlugin 26
The nav_msgs/Odometry message 48
The sensor_msgs/LaserScan message 49

IX

List of Tables

6.1
6.2
6.3
6.4

RP-LIDAR Al Datasheet 61
Intel Realsense Camera d435i Datasheet 63
Jetson Xavier NX Datasheet 65
Jetson Nano Datasheet 66

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4

4.5

FIXIT system 2
An example of how a SLAM algorithm works [2] 6
A scheme of an online SLAM [1] 7
A scheme of Full SLAM algorithm [1] 7
Software architecture of a Passive SLAM algorithm [11] 10
Schematic of a Q-Learning algorithm 10
Outline of an Active SLAM algorithm [15] 12
Outline of an RRT algorithm [17] 13
Frontier detection [18] oL 14
ARAS framework [20] 15
ROS interaction with different platforms 16
Nodes interaction through topics 18
Differences between the publish/subscribe approach and the re-

quest/reply interaction 19
An example of a catkin workspace 20
RViz basic interfaceo 21
Plant of CIM4.0 laboratory in Gazebo 22
Schematic description of link-joint interaction 22
URDF model of the AMR 23
URDF model of the AMR displayed in Gazebo 25
Tree structure indicating frames relationship 27
Frames composing the model of the AMR 28
Example of a map with frontiers [23] 30
Block diagram of the developed Active SLAM solution 31
Grid points and associated pixels [24]o 32
A scan and pixels associated with hits (shaded and crossed out) and

misses (shaded only) [24]o 33
Reachability of the frontiers [25] 35

XI

4.6 Breadth First Search algorithm [25] 36

4.7 An example of a cluster operation [26] 36
4.8 An example of a Global Path planning algorithm [27] 37
4.9 Global path planning algorithms [27] 38
4.10 Dynamic Window Approach algorithm [31] 40
4.11 Artificial Potential Field [33] 41
5.1 Examples of 2D and 3D maps generated during the SLAM process . 42
5.2 Google Cartographer overview [25] 44
5.3 Interaction between Local and Global SLAM [24] 45
5.4 Cartographer map of the Deutsches museum [25] 46
5.5 Relationship between the base [link and base laser frames using tf 47
5.6 Navigation Stack setup [37] 48
5.7 Inflation parameters 50
5.8 Layered costmap [38] Lo 51
5.9 Global Costmap in RViz 53
5.10 Local Costmap in RViz 53
5.11 Global Planner colored in green shown in RViz 54
5.12 Local Planner colored in yellow shown in RViz 54
5.13 Comparison between the two Active SLAM solutions 55
5.14 The process of Autonomous Exploration 56
6.1 FIXIT structure 58
6.2 LiDAR limitations 58
6.3 Mecanum Wheels 0oL 59
6.4 AMR movements allowed by mecanum wheels 60
6.5 RP-LIDAR A1 [40] 61
6.6 Intel RealSense D4351 [41] 62
6.7 Intel RealSense D435i components [41] 63
6.8 Nvidia Jetson Xavier NX [42] 64
6.9 Nvidia Jetson Nano [43] 65
6.10 FIXIT-M board 66
6.11 Agilex Scout Mini [44] 67
6.12 Aviation Male Plug for CAN cable connection [44] 68
6.13 System architecture [45]o 69
6.14 Hierarchical model of the system 70
7.1 Hardware configuration of the system 72
7.2 The AMR equipped with one LiDAR and the Jetson Xavier 74
7.3 Map created exploring an hallway in the CIM4.0 laboratory 74
7.4 Complete map of the CIM4.0 laboratory 75

XII

7.5
7.6
7.7
7.8
7.9
7.10

7.11

In green is shown the path calculated in order to try to reach the
unapproachable frontier point 00
The AMR is equipped with all the available hardware placed on a
wood platform
Perception of the frontiers before and after the inflation process
The process of autonomous exploration of the CIM4.0 laboratory
The map created at the end of the exploration process
Sequence of steps taken by the AMR during autonomous exploration
of the environment L
Map obtained by the AMR at the end of the autonomous exploration
PrOCESS © . v v v it e e

XIII

Acronyms

AGV

Autonomous Guided Vehicles

AMR
Autonomous Mobile Robot

APF
Artificial Potential Field

ASLAM

Active Simultaneous Localization and Mapping

BFS
Breadth First Searches

DOF
Degree Of Freedom

DWA
Dynamic Window Approach

EKF
Extended Kalman Filter

IMU

Inertia Measurement Unit

PF
Particle Filter

XV

ROS
Robot Operating System

RRT
Rapidly-exploring Random Tree

SLAM

Simultaneous Localization and Mapping

UAV

Unmanned Aerial Vehicle

URDF
Unified Robot Description Format

WFD

Wavefront Frontier Detection

XML
Extensible Markup Language

XVI

Chapter 1
Introduction

The use of autonomous systems has considerably risen over the past few years inside
industrial environments. They are characterized by systems that make it easier to
convey supplies, goods, and tools required by human workers. Moreover, the use of
autonomous systems enhance people’s job by helping them with particular tasks or
even taking over for them, preventing dangerous situations. There are numerous
types of autonomous systems, which are primarily classified as Autonomous Guided
Vehicles (AGV) or Autonomous Mobile Robots (AMR).

Even if the AGVs have been around for a while, they have restrictions due
to the fact that they can only carry out simple and routine tasks and require
extensive alterations to the area where they are moved, rendering it not a portable
and scalable solution. They are driven by sensors and magnetic strips outside the
vehicle or by wires that are put in the environment in which they move.

Instead, an AMR is a device that can move around in an unknown and dynamic
environment. It performs these tasks by using sensors installed on its chassis to
detect its surroundings and determine where it is. In an Industry 4.0 environment,
where production lines may frequently change or be updated, the flexibility of the
AMRs is a basic necessity. As a result, it may be required to rapidly reconfigure
the devices utilized in these contexts.

Industry 4.0 is a combination of interconnected cutting-edge technologies that
have the potential to transform manufacturing in all of its forms. They reflect the
automated and connected industrial systems that make up the industrial evolution.
In this context is placed the Competence Industry Manufacturing 4.0. Therefore,
to embrace the requirements of Industry 4.0 and with the purpose of introducing
an interactive support for a human operator in an industrial environment, CIM4.0
propose the FIXIT project.

Introduction

The FIXIT project, shown in Figure 1.1, is composed by an Autonomous Mobile
Robot (AMR) and an Unmanned Aerial Vehicle (UAV). The AMR platform is
a mobile robot equipped with omni-directional wheels and on-board sensors, as
LiDARs and cameras, in order to fully support autonomous navigation in an
industrial environment. Also the UAV subsystem is capable of flying autonomously.
The final objective of the FIXIT project is the collaboration and the communication
of the two subsystems during their navigation tasks.

Figure 1.1: FIXIT system

Introduction

The objective of this thesis is to develop and implement an Simultaneous
Localization and Mapping (SLAM) solution for the autonomous exploration of an
unknown environment.

The autonomous exploration of an unknown environment is a difficult task and
an open field in mobile robotics research. To perform exploration, an extension
of the SLAM algorithm is required, called Active SLAM, to autonomously plan
paths while mapping and localize inside an environment. After an extensive study
of the state of the art, I started to develop an Active SLAM solution composed by
three different modules, the interaction of which guarantee to safely explore the
environment. The SLAM module is in charge of mapping the environment and in
the meanwhile localize the robot inside it, creating a partial map. The points in
the map included between known and unknown spaces are select, transformed into
navigation points, and given to the path planning module in order to be reached
by the mobile robot. The Active SLAM algorithm was developed using Robot
Operating System (ROS), a meta operating system widely used in robotics, and was
firstly tested in a simulation environment, exploiting different software as Gazebo
and RViz, and in the end it was experimentally tested on the AMR.

1.1 Structure of the Thesis

The thesis is structured as follows:

o The second chapter describes the differences between a Classical SLAM solution
and an Active SLAM one, focusing on the state of the art of the latter.

e The third chapter introduces the ROS framework, analyzing the modules that
compose it and explaining how was it used for developing the Active SLAM
algorithm.

e In the fourth chapter, an in-depth analysis is conducted on the development
of the Active SLAM solution.

o In the fifth chapter are shown the results of the algorithm in a simulation
environment, exploiting tools as RViz and Gazebo.

e In the sixth chapter the hardware architecture of the rover is described in
detail, starting from the sensors used and arriving to the boards adopted.

3

Introduction

e The seventh chapter describes the experimental results of the developed Active
SLAM solution obtained by the AMR.

o In the eighth chapter, the results obtained are analyzed and some suggestions
for future developments are given.

Chapter 2

State of the Art

2.1 SLAM algorithms

Simultaneous Localization and Mapping (SLAM) algorithms are widely used in
Autonomous Mobile Robot applications because they allow the robot to localize
itself while mapping the environment [1]. SLAM solving techniques have been
developed to use various sensors including wheel encoders, laser scanners and RGB
cameras in order to estimate the robot’s pose while building the map (2D or 3D) of
the environment. A SLAM architecture is composed by two modules: Localization
and Mapping. These two parts are internally dependent on each other because
the map is required for localization and, at the same time, the localization is
essential for mapping. The Figure 2.1 shows how a simultaneous estimate of both
robot and landmark location is required. The true locations are never known of
measured directly, for that reason, observation are made between true robot and
landmark locations. SLAM algorithms can be considered as the core of autonomous
navigation for a mobile robot.

State of the Art

m;

Landmark

Estimated - >— - *
True % a}

Figure 2.1: An example of how a SLAM algorithm works [2]

2.1.1 Omnline and Full SLAM

The literature distinguishes two main forms of the SLAM problem, and both of
them can be solved using probability methods based on Bayesian estimation. In
an Online method (e.g. Kalman Filter, Particle Filter), filters extract the current
features of the map and thereby, estimate only the most recent pose of the robot.
An Online SLAM approach can be described as in (2.1):

bel(x,m) = p(xr, m|z1.4, urt) X p(zt|xt,m)/ p(xi|mi—1, up)bel(xi—1, m)dr—y (2.1)

where x; represents the latest pose of the robot, m is the set of all landmarks, z;.;
is the group of landmarks observations and uy.; is the control unit. The above
equation describes the problem of estimating the robot state x, the map m based
on a series of controls uy.; and sensor information z;.;. The scheme of an Online
SLAM system is depicted in Figure 2.2.

In Full method (e.g. GraphSLAM) the current state and all the previous state of
the robot and the map features are estimated and, as a result, the entire path is
constructed. The Full SLAM problem is defined in (2.2), as follows:

bel(zo.r,m) = p(xo.1, m|zo.1, wor) = p(Mm|xo.r, 20.7) - P(T0.7| 2075 Vo) (2.2)

where xo.pr = {xo,z1,...,x7} is the trajectory obtained by collecting every pose
of the robot, mor = {mo, m1,...,mr} represents the set of all the landmarks,
207 = {20, 21, -.., 27} are the information coming from the observations and wg.; =
{ug, uy, ..., ur} contains the control input commands. The scheme of a Full SLAM
algorithm is shown in Figure 2.3.

State of the Art

Figure 2.2: A scheme of an online SLAM [1

Figure 2.3: A scheme of Full SLAM algorithm [1]

2.1.2 Three main SLAM paradigms

There are three different SLAM paradigms, from which most others are derived.

« Kalman Filter based approaches: This family of SLAM algorithms use a
single state vector to estimate the locations of the robot and a set of features
in the environment, with an associated error covariance matrix representing
the uncertainty in these estimates, including the correlations between the
vehicle and feature state estimates [3].

o Particle Filters: The Particle Filters based approaches are different with
7

State of the Art

respect to Kalman Filter because they are able to efficiently solve the localiza-
tion problem without handling the system non-linearity and also non-Gaussian
models [4].

Graph-Based Optimization techniques: The Graph-Based optimization
techniques (GraphSLAM is the most popular one) solve the Full SLAM
problem [5].

2.1.3 Difficulties and challenges of SLAM

SLAM is by definition a complicated problem and to achieve a reliable performance
different problems need to be coped. The main problems are:

Data Association: The correspondence problem is the difficulty of the SLAM
system to associate currently observed landmark with previously observed
ones. These errors occur when a robot has a wrong perception of the same
landmark as the one perceived in another position [1]. Loop closure methods
can be used to overcome this problem.

Uncertainty: There are two types of uncertainty in SLAM which could
restrict the performance of the robot, Location and Hardware uncertainty
[6]. Hardware uncertainty is caused by hardware errors and noises in the
robot’s components that could lead to acquire inaccurate information about
the robot’s pose and landmarks positions.

Sensor’s noise: The sum of small errors in the sensors perception gradually
grow in long term navigation, which could lead the system to fail [7].

Time complexity: The time complexity is a factor that should be considered,
especially when the landmarks grow in number [8]. The complexity of a SLAM
algorithm is inversely proportional to system performance. As the time
complexity of the SLAM algorithm increases, the time required by the system
to perform the actions increases.

2.2 Passive and Active SLAM

In passive SLAM algorithms, another entity is in charge of robot’s control, and the
SLAM algorithm become merely an observation process [9]. The great majority of
algorithms fall into this category, allowing the creator of the robot to install any
number of motion controllers and pursue any number of motion goals. In active
SLAM, the robot actively explores its environment in the pursuit of an accurate
map. Active SLAM methods tend to yield more accurate maps in less time, but

8

State of the Art

they restrict robot movements. There exist hybrid techniques in which the SLAM
algorithm controls only the pointing direction of the robot’s sensors, but not the
motion direction.

2.2.1 Passive SLAM solutions

The majority of available applications adopt this type of SLAM technique. The
autonomous navigation performance is divided into two stages. At the begin, an
off-line stage is performed, where the rover is totally controlled by an user when
performing SLAM in the environment. During this stage, the robot is capable of
building a preliminary map of the environment and localize himself in it. During
the second stage, given the pre-built map of the environment, the rover can safely
navigate autonomously in the room and reach a target point [10]. Currently there
are a lot of different solutions and also different approaches to solve this types of
problems.

One possible approach describes a rover equipped with a 3D-LiDAR scanner,
an IMU sensor and a NVIDIA JETSON TX2 board [11]. The presented system
is formed by three modules: mapping, localization and planning. Each of this
module is implemented using ROS packages. The mapping module is implemented
in ROS using the gmapping package, which is used to perform laser-based SLAM
algorithms. The localization module can be easily implemented using the amcl
ROS package. The amcl package requires as input six different data in order to
estimate the pose: raw laser range data, odometer data, IMU data, frame transform
data, pre-built map data, and initial pose data of the mobile robot. The planning
module is implemented using the move_base ROS package. This package requires
five data as input: raw laser range data, frame transform data, pre-built map
data, estimated current pose data of the mobile robot, and goal pose data. The
cooperation of these packages guarantee the autonomous navigation of the rover.

Another solution presents a mobile robot which uses a two wheel differential
drive [12]. The sensors deployed in this application are an RGB-D camera and a
1D-LiDAR sensor with the addition of an IMU module. IMU is used to detect
the angular velocity and acceleration of the mobile robot in three-dimensional
space, and the data is used to correct the error of the odometer of the mobile
robot. The ROS based SLAM algorithm uses a particle filter approach to solve the
simultaneous localization and mapping. The experiments conducted were divided
in two parts: in the first part a map of the environment was built using SLAM, and
in the second part, given a target placed in the constructed map, the autonomous
navigation was performed.

State of the Art

Point cloud Goal pose

Mapping Map
(gmapping)

et I
Transformation Planning
(move_base) Control
Localization ¢
(amcl)

IMU Odometry
[LiDAR] [IMU] [Encoder] Control Board
Mobile Robot

Figure 2.4: Software architecture of a Passive SLAM algorithm [11]

In [13] and [14] the solutions designed are characterized by the construction
of the 2D map of the environment applying classical SLAM algorithms, but the
novelty lies on the local motion planning adopted. These two papers present a
reinforcement learning solution capable to proper detect dynamic obstacles and
avoid them, re-planning his trajectory to successfully reach the target. A Q-learning
algorithm is therefore implemented. Given the agent’s present state, Q-learning is
a model-free, off-policy Reinforcement Learning technique that will determine the
appropriate course of action. The location of the agent in the environment will
determine what will happen next. The model’s goal is to determine the optimum
course of action given the current state of the system.

Agent
state reward action

S, R, A,
. Rl+1 (
_S.. | Environment]4—

Figure 2.5: Schematic of a Q-Learning algorithm

v Y

2.2.2 Active SLAM solutions

The barriers and restrictions that the SLAM method has already overcome are
taken into account by the Active SLAM approach. The Active SLAM, which
resolves the autonomous search of space, can be seen of as an extension of classic
SLAM approaches [9]. Active SLAM performance will be good if the robot motions

10

State of the Art

are appropriate as in the robot should move in a path where the localization and
map uncertainties are very small. So Active SLAM is a decision making problem. A
decision needs to be made on how the robot should explore the environment before
going to the planning task. Differently from passive SLAM solutions, an active
SLAM approach doesn’t need a pre-built map of the environment. The robot is
therefore able to autonomous explore the environment and perform path planning.
Active SLAM can be considered an open problem in robotics and research in this
area constantly produces new approaches and solutions that try to solve major
problems and improve performances of active SLAM.

11

State of the Art

A novel method for new target selection during the exploration phase is described,
the SLAM algorithm is not specified and the path planning algorithm (A*) is not
described in details [15]. Starting from a grid map where each cell contains a
number that classifies the space (0, free beech; 1, occupied; and -1, unknown), a
state matrix is created and some checks are done. Depending on the map several
interesting points can be obtained. For a suitable selection of one specific point, it
is necessary to create a weight function that evaluates each point separately. When
creating the weight function two main factors need to be considered: the distance
of the point from the current position and the number of points in the area. To
obtain the multiplicity of points in the area, it is necessary to perform clustering,
and in this paper K-means++ algorithm is used. After clustering, weights are
assigned to each point and are inserted into a matrix. During the last step, the
row with the largest weight is selected and its x and y coordinates serve as the
destination point of the navigation algorithm.

Active Perception

Path Planning Localisation

Exploration

Mapping

Figure 2.6: Outline of an Active SLAM algorithm [15]

12

State of the Art

In [16] a differential drive mobile robot designed for smart wheelchair applications
is presented. The system is equipped with a 2D-LiDAR sensor, an RGB-D camera
and uses wheel odometry to build a 3D map of the uneven environment. In this
application, the construction of a 3D map of the environment is necessary for
the presence of the staircases and slope, and the smart wheelchair needs to take
in to account the height differences for a safe autonomous navigation. The 3-
dimension map build is next collapsed in a 2D occupancy map, in order to generate
a traversable map based on layer differences. Starting from the traversable map
an efficient variable step size Rapidly-exploring Random Tree (RRT) planner is
used as global planner. The global planner generates a list of way-points for the
overall optimal path from the starting position to the goal position through the
map. Then the local planner takes into account the robot kinematic and dynamic
constraints, and generates a series of feasible local trajectories that can be executed
from the current position, while avoiding obstacles and staying close to the global
plan.

RRT

35 1

254

20 A

15 1

10 4

0 10 20 30 40 50

Figure 2.7: Outline of an RRT algorithm [17]

13

State of the Art

In [18], an exploration and a path planning algorithm to be attached to a
classic SLAM paradigm to perform an overall Active SLAM is introduced. The
technique used to perform exploration is called Frontier Detection. Given an
occupancy-grid map, cells can be classified as: Unknown Region, Known Region,
Open-Space, Occupied-Space. A Frontier is defined as the segment that separates
known (explored) regions from unknown regions. The algorithm to perform Frontier
Detection is called Fast Frontier Detector. In this paper Dijkstra’s algorithm is
used for global planner. Dijkstra is an algorithm for finding the shortest paths
between nodes in a graph. The complexity of the algorithm in the worst case is
O(|E| 4 |V|log|V|), where V and E are respectively the number of the vertexes and
the edges of the graph structure.

B

§o o

(a) (b) (c)

Figure 2.8: Frontier detection: (a) Evidence grid, (b) Frontier edge segments, (c)
Frontier regions [18]

In [19] a system composed by a 3D LiDAR and a Kinect camera is introduced to
perform Active SLAM. The system is supposed to autonomously explore unknown
environments and build 3D maps simultaneously. To allow that, efficient exploration
paths need to be planned online, without prior information of the environment.
For this purpose an Optimized View Planning algorithm is used, which iteratively
generate globally optimized view sequences while updating the map. Regarding the
planned exploration sequence, valid motion plans connecting the viewpoints are
generated using a sampling-based motion planning library BIT*-H. The algorithm
builds on the Batch Informed Trees (BIT*) which employs ordered search and
informed sampling of a heuristic (hyper)ellipsoidal subspace limiting the planning
space to accelerate the convergence to optimal solutions.

14

State of the Art

In [20] an ambiguity-aware robust active SLAM (ARAS) framework that makes
use of multi-hypothesis state and map estimations to achieve better robustness
is introduced. The system is composed of different modules. First of all, a multi-
hypothesis SLAM (MH-SLAM) is performed, ambiguous measurements and these
probable estimations are taken into account explicitly for decision making and
planning. After that, the ARAS framework adopts local contours for efficient multi-
hypothesis exploration, incorporates an active loop closing module that revisits
mapped areas to acquire information for hypotheses pruning to maintain the overall
computational efficiency and demonstrates how to use the output target pose for
path planning under the multi-hypothesis estimations.

contours
Poses t t n - t
raw data | MH-SLAM | = [Exploration arget view poin
submaps .
- ; trigger (_‘J —I Path Planning
Actuators

hypotheses branching i
| Active Loop Closin, |7
multi-mode factors (MMF) ! P £ [target pose

motion command

Control | Online Obstacle Detection E

command accepted command rejected

Figure 2.9: Block diagram of the ARAS framework, which consists of four main
modules: MH-SLAM, exploration, active loop closing, and path planning. [20]

15

Chapter 3

ROS Architecture for AMR

3.1 Introduction to ROS

ROS is an open-source, meta-operating system used to interact with robots. Hard-
ware abstraction, low-level device control, common functionality implementation,
message-passing between processes, and package management are just a few of the
functions it provides. An operating system should contain all of these features. It
also provides tools and frameworks for locating, developing, writing, and running
code on a variety of platforms, as shown in Figure 3.1. The main component of
ROS is how the software operates and communicates, which enables the developer
to create complicated projects without having a thorough understanding of specific
hardware. A network of processes can be connected to a central hub using ROS.
These operations can be carried out across many platforms and connect to the hub

in a number of different ways.

©.0)

ARDUINO

Figure 3.1: ROS interaction with different platforms

16

ROS Architecture for AMR

3.1.1 The basic principles of ROS
The philosophical goals on which ROS is based, are listed hereafter [21]:

» Peer to peer: A system created with ROS is made up of numerous processes
that may run on various hosts and are connected in real-time via a peer-to-peer
topology. The advantages of the multi-process and multi-host design can also
be realized by frameworks based on a single server, however a central data
server is troublesome if the computers are interconnected in a heterogeneous
network.

» Tools-based: Instead of creating a monolithic development environment, a
microkernel is created as a way to handle the complexity of ROS by allowing
a large number of small tools to be used to build and execute the many
ROS components and the runtime setting. These tools carry out a variety
of functions, such as navigating the source code tree, finding and configuring
parameters, and visualizing measure bandwidth using the peer-to-peer con-
nection topology, graphical message data plotting, automatic documentation
generation, and so forth.

o Multi-language: ROS is designed to be language-neutral, so it currently
supports the utilization of four very different languages: C++4-, Python, Octave,
and LISP, with other language ports in various states of completion.

o Thin: ROS utilizes code from a wide range of different open-source projects
and executes modular builds inside the source code tree. The ROS build
system can automatically update source code from different repositories, apply
patches, and other things in order to take advantage of the ongoing community
advancements.

e Free an Open-source: The complete source code for ROS is available to
a wide community. The BSD license, which permits the creation of both
commercial and non-commercial projects, is the one that controls how ROS is
distributed.

3.1.2 Key features of ROS

ROS is made up of several parts, the majority of which are exploited for application
development, information exchange and communication. The main components
that define the architecture of ROS are listed below:

e Node: Nodes are computation-based processes. A robot control system often
consists of numerous nodes. One node might, for instance, manage a laser
range-finder, manage the wheel motors, or perform localization. A ROS client
library, such as roscpp or rospy, is used while writing a ROS node.

17

ROS Architecture for AMR

—_—— Master T ==
- ~
e ~
Advertising Subscription
N

Ve

/ N\
/ \
/ \
Node — Topic
Publication Callback

Figure 3.2: Nodes interaction through topics

Topic:Transport systems with publish/subscribe semantics are used to route
messages. A node publishes a message to a specific topic in order to send it
out. The topic is the term given to identify the message’s content. A node
will subscribe to the relevant topic if it is interested in a specific type of data.

Master: The other nodes in the ROS system receive naming and registration
services from the ROS Master. It keeps tabs on both publishers and subscribers
to topics as well as services.

Message: Nodes communicate with each other by exchanging messages. A
message is a simple data structure whose fields are composed by primitive
types (integer, floating point, boolean, etc.) or arrays of primitive types.

Service: Despite being a fairly flexible communication paradigm, the pub-
lish /subscribe approach is inappropriate for request/reply interactions, which
are frequently needed in distributed systems. Services are used for request
and reply, and each service has two message structures, one for request and
one for reply.

Parameter Server: The Parameter Server is a part of the Master and its
function is to allow data to be stored in a central location.

Package: In ROS, the primary unit for organizing software is the package. A
package may include datasets, configuration files, nodes, a ROS-dependent
library, and other items that are logically grouped together.

18

ROS Architecture for AMR

(a) A node publish a message on a specific topic

Service
Request

Response

(b) All the nodes subscribed to the topic receive the
message

Figure 3.3: Differences between the publish/subscribe approach and the re-
quest /reply interaction

3.1.3 ROS Workspace

The workspace, in general, can be thought of as a folder that contains packages.
These packages include our source files, and the environment or workspace gives
us a mechanism to compile them. It is practical to compile multiple packages at
once, and it is a good approach to centralize the development of the code. In ROS,
the workspaces are called catkin workspaces and they are the unit that contains
developed projects. A typical catkin workspace is shown in Figure 3.4.

19

ROS Architecture for AMR

workspace_folder/ - - WORKSPACE
src/ -- SOURCE SPACE
CMakelists.txt -- The 'toplevel®' CMake file
package_1/
CMakeLists.txt
package . xml
package_n/
CATKIN_IGNORE -- Optional empty file to exclude package n from being processed
CMakelists.txt
package . xml
build/ -- BUILD SPACE
CATKIN_IGNORE -- Keeps catkin from walking this directory
devel/ -- DEVELOPMENT SPACE (set by CATKIN_DEVEL_PREFIX)
bin/
ete/
include/
lib/
share/
.catkin
env.bash
setup.bash
setup.sh
install/ -- INSTALL SPACE (set by CMAKE INSTALL PREFIX)
bin/
ete/
include/
lib/
share/
.catkin
env.bash
setup.bash
setup.sh

Figure 3.4: An example of a catkin workspace

Each folder has an important role in the structure of the workspace:

» Source space: Packages and projects are placed under the src folder, which is
the source space. One of the most important files in this space is CMakeLists.tzt.
The src folder has this file because it is invoked by cmake when the packages
in the workspace are configured.

o Build space: Cmake and catkin store the configuration data, cache infor-
mation, and other intermediate files for projects and packages in the build
folder.

e Development space: The compiled programs are kept in the devel folder.

3.1.4 RViz

One of ROS’s key features is the 3D visualization tool known as RViz. RViz is
capable of showing data about the robot model, map, coordinate transformation,
laser scan, point cloud, path, and more. Even if RViz is a useful display tool, it does
not have its own simulation function. For this purpose it can be used both with
Gazebo for simulation but also to do tests in real-life, displaying ROS messages
and topics giving the possibility to visually control the system. It allows the user
to send a command to the robot, set its position, see how it plans its route to reach
a final goal, and visualize how a map is built in real-time while the robot moves.

20

ROS Architecture for AMR

Figure 3.5: RViz basic interface

3.1.5 Gazebo

In both indoor and outdoor three-dimensional environments, Gazebo enables the
modeling of robotic and sensor applications. It has a topic-based Publish/Subscribe
inter-process communication mechanism with a Client/Server architecture. Each
simulation object in Gazebo can have one or more controllers attached to it, which
handle commands for managing the object and produce its state. Using Gazebo
interfaces, the data generated by the controllers is published into shared memory
(Ifaces). Independent of the programming language or the computer hardware
platform, the Ifaces of other processes can read the data from the shared memory,
enabling inter-process communication between the robot controlling software and
Gazebo. Gazebo has access to high-performance rigid body physics simulation
engines including Open Dynamics Engine (ODE), Bullet, Simbody, and Dynamic
Animation and Robotics Toolkit (DART) during the dynamic simulation process.
The 3D graphics rendering of the Gazebo environments is done by the Object-
Oriented Graphics Rendering Engine (OGRE) [22].

3.2 URDF model

Robots, indoor scenes, and other objects can all be described using URDF files,
which are in the XML format. According to the URDF, a robot is represented
as a tree of links connected by joints. The links represent the actual parts of the
robot while the joints define where the links are in space by expressing how one

21

ROS Architecture for AMR

Figure 3.6: Plant of CIM4.0 laboratory in Gazebo

link moves in relation to another link, as shown in Figure 3.7.

y

X

Figure 3.7: Schematic description of link-joint interaction

Due to URDF’s XML foundation, everything is represented as a collection of
tags that can be nested. Although there are many other tags that can be employed,
it’s only important to be aware of link and joint tags.

o Link tags: In addition to the name of the link, a link tag also allows to
describe the link’s visual, collision, and inertial attributes:
— Visual tag is able to display in RViz and Gazebo the robot model.
— Collision attribute is used for physical collision calculations.

22

ROS Architecture for AMR

— Inertial tag is also used for physical calculations but it determines how
the link responds to forces.

Vo,
“

(a) Collision element of th AMR (b) Visual element of th AMR
displayed in RViz displayed in RViz

Figure 3.8: URDF model of the AMR

23

ROS Architecture for AMR

o Joint tags: Although it is commonly thought that a robot is composed of
links, the joints actually determine link placements and how they move in
relation to one another, therefore the joints are where all the information
resides in terms of the robot’s structure. Each joint needs to have these tags
specified:

— Name of the joint.
— Type of the joint (fixed, continuous).
— Parent and Child defines the relation between links.

— Origin describes the relationship between links before any movement is
applied.

Listing 3.1: Example of an XML file describing an URDF model

1 <robot name="test robot">

2 <link name="linkl" />

3 <link name="link2" />

4 <link name="link3" />

5 <link name="link4" />

6

7 <joint name="jointl" type="continuous">
8 <parent link="linkl"/>

9 <child link="link2"/>

10 </joint>

11

12 <joint name="joint2" type="continuous"'>
13 <parent link="linkl"/>

14 <child link="link3"/>

15 </joint>

16

17 <joint name="joint3" type="continuous'>
18 <parent link="link3"/>

19 <child link="link4"/>

20 </joint>

21 </robot>

3.2.1 URDF in Gazebo

For a URDF file to work properly in Gazebo, some simulation-specific tags must
be added. Even though URDFs are a helpful and standardized format in ROS,
they are inadequate in many areas and have not been upgraded to meet the
changing requirements of robotics. Using URDF, only the kinematic and dynamic
characteristics of a single robot can be specified. The pose of the robot within
the world cannot be specified using URDF. Moreover, since it does not express

24

ROS Architecture for AMR

joint loops and lacks friction and other features, it is not a universal description
format. Additionally, it is unable to describe things like lights, heightmaps, and
other non-robot objects. To address this problem, a new format known as the
Simulation Description Format (SDF) was developed for usage in Gazebo in order
to address URDF’s drawbacks. From the world level all the way down to the robot
level, SDF is a comprehensive account of everything. Because the SDF format is
itself documented in XML, it is straightforward to upgrade to newer versions and,
additionally, it describes itself.

In order to get an URDF model properly working in Gazebo different tags needs
to be added:

e An <inertia> tag is required within each <link> element.
o Add a <gazebo> element for every <link>.
o Add a <gazebo> element for every <joint>.

o Add a <gazebo> tag for the <robot> element.

Figure 3.9: URDF model of the AMR displayed in Gazebo

25

ROS Architecture for AMR

3.2.2 Gazebo plugins

Gazebo plugins can integrate ROS messages and service calls for sensor output and
motor input, giving to URDF models further capability. Multiple plugin types are
supported by Gazebo, and they can all be connected to ROS:

o ModelPlugins provide access to the physics::Model API.
» SensorPlugins provide access to the sensors::Sensor API.

» VisualPlugins provide access to the rendering::Visual API.

Listing 3.2: Example of a ModelPlugin

1 <robot>

2 ... robot description

3 <gazebo>

4 <plugin name="differential drive controller" filename="

libdiffdrive_plugin.so">
plugin parameters
</plugin>
</gazebo>
robot description
</robot>

© 0 9 O«

Listing 3.3: Example of a SensorPlugin

1 <robot>
2 robot description

3 <link name="sensor_ link">

4 link description

5 </link>

6

7 <gazebo reference="sensor link">
8

9

<sensor type='camera" name='"cameral ">
sensor parameters

10 <plugin name="camera_controller" filename="
libgazebo_ros_ camera.so ">

11 ... plugin parameters

12 </plugin>

13 </sensor>

14 </gazebo>
15

16 </robot>

26

ROS Architecture for AMR

3.3 Transform System

In the mathematics of robotics, coordinate transformations (or transforms) play a
significant role. They are a mathematical tool for taking measurements or points
that are represented from one point of view and represent them from another, more
practical, point of view.

Without transformations, it’s necessary to use trigonometry to complete the
computations, which soon gets quite difficult with bigger problems, particularly
in 3D. Assigning coordinate systems, or frames, to the proper system components
is the initial step in solving coordinate transformations problems. The definition
of transforms between the frames is the next step. A transform can be readily
reversed to go the opposite way and provides the translations and rotations needed
to change one frame into another.

It will be able possible to convert a known point in one frame to any other frame
in the tree if there is a system where each frame is defined by its relationship to
one (and only one) other frame.

Frame-——‘::-"—* }

~ /l
Transform
< Conmera

Figure 3.10: Tree structure indicating frames relationship

3.3.1 Transforms in ROS

To manage the transformations, ROS has a mechanism known as ¢f2 (TransForm
version 2). The #f2 libraries can be used by any node to broadcast a transform from
one frame to the next. These transforms must be organized into a tree structure
where each frame is defined by one (and only one) transform from a previous frame,
but may also be reliant on any number of subsequent frames. As long as they are
connected in the tree, nodes can utilize the ¢f2 libraries to listen for transforms and

27

ROS Architecture for AMR

then use those transforms to convert points from any frame to any other frame.
The Figure 3.11 shows frame relationship of the AMR.

Figure 3.11: Frames composing the model of the AMR

28

Chapter 4

Development of an Active
SLAM Algorithm

4.1 Active SLAM Algorithm

The process of actively planning robot paths while creating a map and locating
within it is known as Active SLAM, also referred to as ASLAM [23]. ASLAM takes
the SLAM problem one step further by attempting to make the robot move on its
own during the entire mapping process. In many situations, ASLAM could make
it easier to set up a navigation system because the robot could create the map
without any human interaction.

Pose identification, target selection and navigation are the three iterative steps
of which an ASLAM algorithm is composed, according to the literature. Pose
identification identifies potential destinations, whereas optimal goal selection chooses
the best one. Once selected the destination, a path planning algorithm is chosen to
calculate the best route to the target position. Considering the pose identification
step, a concept that is extensively used in the context of exploration is the frontier.

29

Development of an Active SLAM Algorithm

Frontiers are areas on the border between open space and unknown territory,
points on a map between free known space and unknown territory [23]. These
points are important because it is very likely that the robot can reach them since
they are in the mapped space. They also provide coverage of nearby undiscovered
areas. Therefore, frontiers are the best possible groups of places to reach to increase
the known environment, as shown in Figure 4.1. After the frontiers points have
been selected, generally a clustering operation is performed, to group together all
nearest frontiers into one point, which can be chosen during the target selection
phase as a target point for exploration.

; @ Robot

O Mapped Area
O unknown Area

B Frontier

Figure 4.1: Example of a map with frontiers [23]

All the steps previously described can be practically represented by the succession
of different modules, as depicted in Figure 4.2. Data coming from sensors (laser
scans, point clouds and odometry information) is collected and is given to the
SLAM module (Google Cartographer) which elaborate these information to map
the environment and localize inside it. Starting from the partial map constructed
by Google Cartographer, different Frontier points are identified between unknown
spaces and known cells. Once selected the Frontier, it becomes the navigation
target, and a path planning algorithm is exploited to reach the final position. All
these three modules are iterated until the map is fully discovered, and the mission
of autonomous exploration is completed.

30

Development of an Active SLAM Algorithm

Sensor

A~
. 4

Google
Cartographer

3

Frontier
L Detection

A 4

Global and
Local Path
___Planning

Figure 4.2: Block diagram of the developed Active SLAM solution

4.2 Google Cartographer

A real-time indoor mapping option is provided by Google’s Cartographer, which
creates 2D grid maps with a resolution of 5 cm. At the best predicted position,
which is thought to be accurate enough for brief periods of time, laser scans are
inserted into a submap. Scan matching only uses recent scans since it compares
them to a recent submap, and as a result, pose estimation error in the world frame
accumulates. The Google Cartographer SLAM technique does not use a particle
filter to obtain good performance. A pose optimization step is regularly performed
to address the error accumulation. Submaps take part in scan matching for loop
closure after they have reached their completion, which means no further scans
will be added to them. The loop closure is automatically applied to all completed
submaps and scans. A scan matcher attempts to locate the scan in the submap if
they are close enough based on current pose estimates. A loop closing constraint is
introduced to the optimization problem if a sufficiently good match is discovered in
a search window surrounding the current estimated pose [24]. The SLAM solution
provided by Google Cartographer is composed by two distinct SLAM modules:
Local and Global SLAM.

31

Development of an Active SLAM Algorithm

4.2.1 Local SLAM

Both Local and Global approaches seek to optimize the pose & = (&, &y, &) of lidar
observations, also called scans. Using a non-linear optimization to align the scan
with the submap, each successive scan in the local approach is matched against a
small portion of the world, known as a submap M this procedure is also known as
scan matching.

The process of continuously aligning scan and submap coordinate frames, also
known as frames, is defined as submap construction. The transformation T,
described in (4.1), which firmly translates scan points from the scan frame into
the submap frame, is what is used to represent the pose £ of the scan frame in the

submap frame [24].
_ [cos& —sing &
Ter = (singg cos§90>p+ <§y> ' (4.1)

——
Re 123

The submaps are constructed by collecting only a few consecutive scans, they take
the shape of probability grids M : rZ X rZ — [Pmin, Pmaz] Which map from discrete
grid points to values, which represent the probability that a cell is occupied. The
closest points on the grid are used to define the equivalent pizel for each grid point.
Every time that a scan needs to be added to the probability grid, a separate set of

A

X X X X

X
X
X

IV 2z I3
r A ﬁ L Al)

. . .
.

Figure 4.3: Grid points and associated pixels [24]

grid points for misses and a set of grid points for hits are computed, as shown in
Figure 4.4. The nearest grid point to the hit set is added for each hit. The grid
point connected to each pixel that crosses a ray between the scan origin and each
scan point is added for every miss, omitting grid points that are already included

32

Development of an Active SLAM Algorithm

in the hit set. If an unobserved grid point appears in one of these sets, it is given
the probability p,.iss or ppi. Before the insertion of a scan into a submap, an

Figure 4.4: A scan and pixels associated with hits (shaded and crossed out) and
misses (shaded only) [24]

optimization process is performed on the scan pose with respect to the current
local submap, using the Ceres Scan Matcher. This optimization task, shown in
(4.2), is a nonlinear least squares problem

K
arg méin Z(l — Msmooth(Tghk»Q (42)
k=1

where hy, represent the information acquired during the £ scan and T is the matrix
used to transform hy from the scan frame to the submap frame in accordance to
the scan pose. Instead the function Mo : R?2 — R is a regular version of the
probability values in the local submap.

4.2.2 Loop Closure Optimization

The Local SLAM module progressively increases error since scans are only compared
to a submap that contains a few recent scans. In this case, the total inaccuracy
is minimal because there are only a few dozen successive scans. However, when
the dimension of the map grows the accumulated error increase too. For this
purpose, Google Cartographer provides a Global SLAM module which is in charge
of performing an additional optimization step to cope with the errors. To handle
these problems, the poses of all scans and submaps are optimized, exploiting Sparse
Pose Adjustment. In loop closing optimization, the relative postures where scans
are placed are maintained in memory. All other pairs composed of a scan and a

33

Development of an Active SLAM Algorithm

submap are also taken into consideration for loop closing after the submap is no
longer evolving, in addition to these relative poses. In background a scan matcher
is run, and if a good match is found, the relative pose is added to the optimization
problem.

4.3 Frontier Detection

The kind of SLAM algorithm chosen affects how effective frontier detection is.
Generally speaking, mapping in an active exploration framework can be accom-
plished using either a filtering-based or a graph-based SLAM method. Using a
filtering-based approach, for example gmapping, the pose of the latest frame can
be optimized without changing the previous ones. Doing that, the frontiers to be
detected only belong to the latest frame. Instead, when using a graph-based SLAM
solution, like Google Cartographer, each step of optimization changes all the frames
of the constructed graph. The result is that the frontiers need to be re-detected
not only in the current frame, but also in the frames of each pose (called node)
of the graph. Even if frontier detection is generally faster in cooperation with
filtering-based SLAM algorithms, it is more accurate with a graph-based SLAM
solution. This means that, exploiting a SLAM algorithm as Google Cartographer
in active exploration helps to build more accurate maps [25].

4.3.1 Reachability of Frontiers

During the discovery of frontier points, not all the information acquired can be
used during the navigation, due to the fact that some of the frontier points are not
accessible for the robot. For this purpose an extensive analysis on the reachability of
the frontiers is performed with the aim of discarding points not physically accessible
by the robot. To this end, an inflation operation on the submaps is performed, as
shown if Figure 4.5, to make sure that the robot platform can reach the detected
frontiers.

34

Development of an Active SLAM Algorithm

(a) Submap before inflation (b) Submap after inflation

Figure 4.5: Reachability of the frontiers [25]

4.3.2 Breadth First Search

To search for frontiers in submaps, the Wavefront Frontier Detection (WFD)
algorithm is used. The WFD perform two Breadth First Searches (BFS) on the
submaps, one starting from the robot’s location to the firs unknown space, and the
second one from this unknown space to the first continuous frontiers encountered.
Beginning with the most recent submap, N, the BFS searches all submaps that
overlap with N. These chosen submaps are added to the BFS and stabbing-query
queues if their pose changes go beyond a specified threshold, as shown in Figure 4.6.
The submaps, S;, whose pose change is higher than the threshold and those that
intersect .S;, are then exposed to stabbing query. Instead, the previously discovered
frontiers are utilized as replacement of submaps for which the value does not exceed
the threshold.

4.3.3 Clustering frontiers into navigation points

The detected frontiers are often continuous, dense, and redundant for navigational
or path-planning needs. Therefore, a clustering technique is used to sparsify the
observed dense frontiers. The selected clustering algorithm is the Mean Shift. In
essence, the mean-shift algorithm assigns data points to clusters iteratively by
moving points toward the location with the highest density of data points, or
cluster centroid [26]. An example result of this operation is shown in Figure 4.7.
Ended the clusterization step, the difficulty of sorting the frontiers according to
their priority can be reduced. The sorting criteria selected take into account the
distance of the robot from the target point and the percentage of unknown space
around the point. From now on, the mobile robot has the ability to select a few
exemplary clustered sites and designate them as exploration goals.

35

Development of an Active SLAM Algorithm

Input:
submaps_current_pose: CP
submaps_previous_pose: PP
submaps_previous_frontier: PF
global_submap_bounding_boxes
BFS_queue + latest submap
stabbing_query_queue + latest submap
Output:

submaps_current_frontier CF

1 while BFS_queue is not empty do

2 N + POP(BFS_queue)

3 foreach §; €

global_submap_bounding _boxes.Intersect(N) do

4 if DeviationExceedsThreshold(CFP,,PP,€) is

True then

5 stabbing_query_queue + §;

6 BFS_queue + §;

7 end

& end

9 end

1w foreach 5§; € stabbing_query_queue do

1 stabbing_query_queue «

global_submap_bounding_boxes.Intersect(S;)

12 CF +StabbingQuery(5;)

13 end

14 foreach S; ¢ stabbing_guery_queue do

15 | CF+ PF,

16 end

Figure 4.6: Breadth First Search algorithm [25]

5 .
. = L A - - .
10 PR 1« X7 EE AR
I S+ TR R
. 2 s
ar d o Ea® Lt
.
8
* & *
5
8 Dag apimefeoa
LR et L Y
P 5 e :
L] B ¥k .‘:3 W
4 R Y. S WL P ‘ ‘
* i Voo, 2
* T AT, ZAS-RLREL
. . e e TS
LaE Tl e
2 ™ A
5

Figure 4.7: An example of a cluster operation [26]

36

Development of an Active SLAM Algorithm

4.4 Global Path Planning

Global path planning algorithms are used in mobile robotics to find a consistent
path from the starting point to the target one, taking into consideration the possible
presence of obstacles in the navigation environment.

There are different global path planning algorithms that can be exploited for
indoor and outdoor navigation. Two of the most used are undeniably A* and D*
algorithms. Figure 4.8 shows an example of global path planning algorithm.

Figure 4.8: An example of a Global Path planning algorithm [27]

4.4.1 A* algorithm

A*is a widely used algorithm for path finding and graph traversal. It was introduced
by Peter Hart, Nils Nilsson and Bertram Raphael in 1968 as an extension of Dijkstra
algorithm [28].

A* maintains a prioritized list of possible path segments as it moves across the
graph, choosing the path with the lowest known cost. Any time a path segment
has a greater cost than a different path segment that has been encountered, the
higher-cost path segment is abandoned and the lower-cost path segment is traversed.
Until the objective is achieved, this process is continued. A* discovers the cheapest
route from a given initial node to a single goal node using a best-first search.

It chooses which nodes in the tree to visit first, using a distance-plus-cost heuristic
function, typically written as f(x). The distance-plus-cost heuristic function is

37

Development of an Active SLAM Algorithm

denoted as:
f(z) = h(z) + g(z) (4.3)

where h(z) is a heuristic estimate of the distance to the target position and g(x)
represents the cost from the starting node to the current one.

The h(z) component of the f(x) function needs to be an acceptable heuristic,
meaning it can’t overestimate how far away the objective is. The heuristic h(z) is
referred to as monotone or consistent if it meets the extra requirement

hz) <= d(z,y) + h(y) (4.4)

for each edge z, y of the graph (where d specifies the length of the edge). Since
no node needs to be processed more than once, A* can be implemented more
effectively in this situation. In this case, A* results to be identical to running
Dijkstra’s algorithm at a lower cost [29]. Figure 4.9 shows two different paths using
both A* and Dijkstra algorithms.

The heuristic determines the time complexity of A*. The number of nodes
visited is exponential in the worst scenario, but when the search space is a tree, it
is polynomial.

(a) Example of the result of Dijkstra’s (b) Example of the result of A*’s algorithm
algorithm

Figure 4.9: Global path planning algorithms [27]

4.4.2 D* algorithm

There exist three different version of the D* algorithm: D*, Focused D* and
D* Lite. The same path planning issues, such as planning under the free space
assumption, where a robot must navigate to specified destination coordinates in
unknown territory, are resolved by all three search methods. In order to identify
the shortest route from its present coordinates to the objective coordinates, it

38

Development of an Active SLAM Algorithm

makes assumptions about the unknown section of the terrain (for example, that it
is empty of obstacles) and then the robot proceeds down the path. It updates its
map as it notices new information (such as previously undiscovered barriers) and,
if necessary, replans the shortest route from its present coordinates to the specified
objective coordinates. The operation is repeated until the desired coordinates are
reached or it is determined that they cannot be attained.

Anthony Stentz first presented the D* in 1994. Since the method behaves like A*
with the exception that the arc costs can change while the algorithm runs, the name
D* is derived from the term "Dynamic A*". Differently from A* algorithm, which
traverse the graph from the beginning to the end, D* starts by looking backwards
from the goal node. The exact cost to the goal is known by each expanded node,
and each node has a backpointer that points to the next node heading to the target.
The procedure is finished when the start node becomes the subsequent node to
expand, at which point it is easy to determine the goal’s location by simply tracing
the backpointers.

4.5 Local Path Planning

The information about the actual world is updated over time as the robot advances
along the global path in a dynamic or unknown environment. Local Path Planning
is required to respond to the impediments and changes in the environment in
accordance with the data supplied by the perception system in real-time. In a
local path planner, a robot is often driven by a global path created using a global
path planner strategy that connects a starting point and a target point. This
path is the shortest path, and the robot follows it until it detects obstacles. The
robot then performs an obstacle avoidance algorithm by veering off the path while
simultaneously updating some crucial data, like the updated distance between the
present position and the goal point. In this type of path planning, the robot must
continually be aware of the distance between the goal point and its current location
in order to exactly reach the objective.

4.5.1 Dynamic Window Approach

The Dynamic Window Approach (DWA), a velocity-based local planner, determines
the ideal collision-free robot velocity needed to complete a task [30]. For a moving
robot, a Cartesian target (x, y) is transformed into a velocity command (v, w).
The fact that this approach considers the kinematic and dynamic restrictions of
a mobile robot during planning is an advantage with respect to other local path
planning algorithms. The two main goals of DWA are to identify a valid velocity
search space and select the ideal velocity. The search space is the set of speeds
that, given the set of speeds the robot can reach in the subsequent time slice, given

39

Development of an Active SLAM Algorithm

its dynamics, allow it to follow a safe route or stop before collision. Figure 4.10
depicts the DWA approach.

Figure 4.10: Dynamic Window Approach algorithm [31]

The strategy of the Dynamic Window Approach algorithm is the following;:
1. Sample in the robot’s control space (dx, dy, df)

2. Perform a forward simulation from the robot’s current state for each sampled
velocity to see what would happen if it were used for a brief time period.

3. Using a metric that takes into account factors like distance to obstacles,
proximity to the destination, proximity to the global path, and speed, evaluate
each trajectory that emerges from the forward simulation. Throw away
inaccurate trajectory (those that collide with obstacles).

4. Choose the trajectory with the best score, then send the corresponding velocity
to the mobile base.

5. Rinse and repeat

4.5.2 Artificial Potential Field

The Artificial Potential Field (APF) method was introduced by Khabit and Krogh
in 1995 [32]. The gradient descent search strategy, which seeks to minimize the
potential function, is the basis of the APF methodology. An attractive potential field
surrounds the goal point, while a repulsive potential field surrounds the obstacles
that must be avoided. The attractive potential is often a bowl-shaped energy
well that attracts an object toward its center if the environment is unobstructed.
However, in a situation where there are impediments, attractive potential fields

40

Development of an Active SLAM Algorithm

are supplemented with repulsive potential energy hills at the locations of the
obstructions in order to repel the objects. The item is subjected to a force equal to
the negative gradient of the potential. The object is pushed downward by this force
until it reaches the spot where it uses the least amount of energy. The method is
widely applied to path planning and real-time obstacle avoidance. The working
principle of the Artificial Potential Field algorithm is shown in Figure 4.11

\ 1/

\\\ | ///

goal

T \

Figure 4.11: Artificial Potential Field [33]

41

Chapter 5

Autonomous Navigation in
Simulation

5.1 SLAM algorithms in ROS

Knowing where a robot is moving is essential for robotic applications. Simultaneous
localization and mapping (SLAM) is a method that allows a robot to map its
surroundings and simultaneously determine its location using information provided
by on-board sensors. This method is advantageous because it allows the robot to
move freely without having to know specific information about its surroundings in
advance [34].

The SLAM challenge is addressed by a wide variety of algorithms. Based on the
size of the map they produce, these algorithms can be divided into two classes: 2D
and 3D. The 3D version uses more memory than the 2D version, and, in addition,
the 3D version needs to estimate a full 6 DOF pose in contrast to the 2D version
that simply needs to estimate a 3 DOF pose. Therefore, if the robot can be
expected to move on a planar surface, the 2D SLAM form usually is enough.

(a) 2D map of an environment (b) 3D map of an environment

Figure 5.1: Examples of 2D and 3D maps generated during the SLAM process

42

Autonomous Navigation in Simulation

5.1.1 ROS packages for SLAM

Among the various 2D and 3D SLAM algorithms, some of them have been developed
in ROS and they are publicly accessible if form of package for developers. Each
of them has peculiar characteristics, starting from the mathematical model that
describes its behaviour and arriving to the performances of the algorithms, which
can be more or less appropriate related to the task assigned. Some of these packages
are listed hereafter:

o gmapping: The gmapping algorithm, which is based on a particle filter, is
one of the solutions to the SLAM challenge [35]. When utilizing a particle
filter for SLAM, a set of particles is used to approximate the robot’s pose
and its level of uncertainty. However, particle filters need a lot of particles to
produce a reasonable output, which increases the computational complexity.
The gmapping package requires as input odometry data and laser scans from

a LiDAR sensor.

o Google Cartographer: Google Cartographer SLAM uses a graph-based
approach rather than a particle filter as its foundation [24]. Another charac-
teristic of this algorithm is the division of the map into a number of submaps,
each of which contains a number of laser scans. All submaps are simply
rasterized to create the final map. Google Cartographer is implemented in
ROS using two packages:

— cartographer is in charge of performing SLAM

— cartographer_ros integrates the functionalities of the algorithm in ROS

o Karto SLAM: slam_ karto is a graph-based SLAM algorithm. In this case,
each node represents a pose of the robot along its trajectory and a set of
sensor measurements. These are connected by arcs which represent the motion
between successive poses. In the slam__karto version available for ROS, the
Sparse Pose Adjustment (SPA) is responsible for both scan matching and
loop-closure procedures [36].

o Hector SLAM: hector _mapping is a SLAM algorithm which integrates laser
scan matching feature with the 3D navigation method by the help of the
inertial system which employs the EKF. It is a SLAM algorithm which does
not use the odometry data. Thus, the Hector SLAM has an advantage when
used in environments which exhibit the pitch and roll characteristics. On the
other hand, it might have problems when only low rate scans are available
and it does not leverage when odometry estimates are fairly accurate [35].

43

Autonomous Navigation in Simulation

5.2 Cartographer in ROS

Cartographer is a system that provides real-time simultaneous localization and
mapping (SLAM) in 2D and 3D across multiple platforms and sensor configurations
[24]. Figure 5.2 depicts the modules that compose Google Cartographer.

Input Sensor Data Local SLAM
Range Data

(Laser scan/ Voxel Filter _,| Adaptive
Laser range/ (fixed size) Voxel Filter
Scan Matching

Point cloud) ()
ceres

: PoseObservation

ocometry [Posesapiaer |
Motion Filter Still
(linear/angular ~ ——+| Dropped
motion or time)

Pose
l Movement or Old

PoseEstimate

i

IMU Data
(Linear
acceleration,
Angular
velocity)

ImuTracker
(gravity alignment)

Submaps

Voxel Grid

— Update
(active)
Fixed Frame Global SLAM (background thread)

Pose Compute Constraints
{INTRA: node + 2
————————————— insertion submaps
INTER: loop closure)

Sparse Pose InsertionResult
Adjustment (time, pose,
range data,
l submaps)

Extrapolate all
poses that were
added later

Figure 5.2: Google Cartographer overview [25]

5.2.1 Local SLAM

Cartographer can be seen as two separate, but related subsystems. Local SLAM is
the first and its task is to create a series of submaps. The local SLAM algorithm
can begin processing a scan after it has been put together and filtered from multiple
range data. By using scan matching and an initial guess from the pose extrapolator,
local SLAM adds an additional scan to the construction of its current submap.
To forecast where the next scan should be included into the submap, the pose
extrapolator uses sensor data from sensors besides the range finder. There exist
two different scan matching strategies:

e The best location where the scan match fits the submap is found by the
CeresScanMatcher using the previous guess as a starting point. This is

44

Autonomous Navigation in Simulation

accomplished by subpixel aligning the scan and interpolating the submap.
Although quick, this can’t correct problems that are much bigger than the
resolution of the submaps. The ideal option is typically to use only the
CeresScanMatcher if your sensor setup and timing are suitable. The ideal
option is typically to use only the CeresScanMatcher if your sensor setup
and timing are suitable.

o If there aren’t any additional sensors, RealTimeCorrelativeScanMatcher
can be enabled. It adopts a strategy analogous to how scans are matched
to submaps in loop closure, but matches against the current submap. The
CeresScanMatcher then uses the best match as a reference. This scan matcher
is quite expensive and effectively cancels out all other sensor signals except
for the range finder’s, but it is reliable in situations with lots of features.

The majority of the local SLAM settings can be found in the install isolated
directory inside the trajectory builder 2d.lua configuration file for 2D and in-

stall_isolated directory inside the trajectory builder 3d.lua configuration file for
3D.

POSE UPDATE

FRONT-END/LOCAL

CONSTRAINTS
SENSOR SLAM

DATAINFUT (POSE GENERATION) MAP

BACK-END/GLOBAL SLAM
(OPTIMIZATION)

Figure 5.3: Interaction between Local and Global SLAM [24]

5.2.2 Global SLAM

The global optimization task runs in the background as the local SLAM creates
its series of submaps. Rearranging submaps so they produce a coherent global
map is part of its functionality. This optimization, for instance, is responsible for
modifying the trajectory that is now being generated to properly align submaps
with regard to loop closures. The global SLAM is an example of a GraphSLAM,
which essentially optimizes the pose graph by creating constraints between nodes
and submaps and then optimizing the resulting constraints graph. Intuitively,
constraints can be compared to little ropes connecting each node. Those ropes

45

Autonomous Navigation in Simulation

are completely fastened by the sparse pose adjustment. The position graph is the
name given to the generated net. Figure 5.4 describes a map generated using
Cartographer as SLAM algorithm.

» Automatically generated non-global constraints are formed between nodes
that are closely following each other along a trajectory. These "non-global
ropes’ maintain the trajectory’s local structure’s coherence.

o Global constraints are continuously checked between a new submap and
prior nodes that are considered to be "near enough" in space. Those "global
ropes" securely connect two strands together while also introducing knots into
the structure.

The majority of the global SLAM settings can be found in the install isolated
directory inside the pose graph.lua configuration file.

m

4

- i ATE . A
e 5 -8 ==
r§ E - :HE

y 5 s34
{ { “?;—-\

(SN D4
L ﬂ IVT N _,._tﬁ.___':" - P
| = = JEREES €1

=/ v 2\ LES0 O\ oo ¥ ’
e) -;f?“*‘"':i‘r—:*f ik
sy (9
e
f f IJ]-_:_:,
¥]] £
[[“?'/ %—"[~
F -:.‘: g B2
| ?N =9
= PG Tt 1 =TT 1

- L L]

MY TRl

Figure 5.4: Cartographer map of the Deutsches museum [25]

46

Autonomous Navigation in Simulation

5.2.3 Input Sensor Data

Sensors that use range finding offer depth data in many different directions. Some
of the measurements, however, are not important for SLAM. Some of the measured
distance can be interpreted as noise for SLAM if the sensor is partially covered
in dust or if it is pointed at a portion of the robot. On the other hand, some of
the most distant readings might also originate from undesirable sources (reflection,
sensor noise), and they are equally unimportant for SLAM. Cartographer begins
by applying a bandpass filter and only keeps range values between a specific min
and max range to address those issues. These minimum and maximum values need
to be selected in accordance with the robot’s and the sensors’ specifications.

5.3 Navigation Stack

Autonomous navigation is accomplished using the Navigation stack. It is a set of
ROS packages that, using data from sensors and odometry sources , provides safe
velocity instructions to the robot in order to reach the determined final position.
ROS Navigation stack requires the transform tree (provided by ¢f package) of
the robot (holonomic or differential drive). A robot can be described as a system
made up of numerous components, each of which can be simply represented by a
coordinate frame that is connected to the another component and is identifiable by
a location and orientation in space. Therefore, finding a shared reference system
where the transformations between the frames and their relationships will exist, is
crucial, as shown in Figure 5.5.
The most important ¢f components used in the Navigation stack are:

e odom represents the odometry reference frame

base__link represents the base of the robot

base_laser represents the base of the sensor

base__footprint represents the base link projection onto the ground

map represents the environment where the robot is inserted.

i | base_link
parent ‘tf (0.4, 0.0, 0.2)

.m‘ l(x: 0.1m, y: 0.0m, z:0.2m)
base_laser @9 child

Figure 5.5: Relationship between the base link and base_laser frames using tf

47

Autonomous Navigation in Simulation

For 2D autonomous navigation in indoor environments, the Navigation stack is
frequently utilized. The main package that compose the navstack is the move_base
and is in charge of computing velocity commands to reach the final goal. It contains
the global _planner, local _planner, global _costmap and local costmap, as well as
amcl, which carries out the robot’s localization, and map_server, which provides
the reference map. Figure 5.6 describes the overall Navigation stack system.

e Pt traped Navigation Stack Setup

move_base l

"/map" |
+ nav_msgs/GetMap |

map_server

. global_planner ~<—— global_costmap

internal / { sensor topics Sensor sources
nav_msgs/Path recovery_behaviors sensor_msgs/LaserScan
- . sensor_msgs/PointCloud

local_planner -<—— local_costmap

amcl

sensor transforms

{

tf/tfMessage

"odom"
nav_msgs/Odometry

odometry source

"cmd_vel"|geometry_msgs/Twist

provided node
optional provided node
platform specific node

base controller

Figure 5.6: Navigation Stack setup [37]

5.3.1 Odometry information

The navigation stack employs the tf function to locate the robot in space and
correlate sensor data to a static map. tf, however, has no details regarding the
robot’s velocity. As a result, the navigation stack necessitates that each source of
odometry that publishes a transform and an nav_msgs/Odometry message (5.1)
over ROS include velocity information.

Listing 5.1: The nav_msgs/Odometry message

1 # This represents an estimate of a position and velocity in free
space.

2 # The pose in this message should be specified in the coordinate
frame given by header.frame_ id.

The twist in this message should be specified in the coordinate
frame given by the child_ frame_ id

4+ Header header

5 string child_frame_id

6 geometry msgs/PoseWithCovariance pose

7 geometry msgs/TwistWithCovariance twist

w

48

Autonomous Navigation in Simulation

The estimated pose of the robot in the odometric frame is represented by the pose
in this message, which may also include an optional covariance to increase the
accuracy of the pose estimation. The twist in this message corresponds to the
robot’s velocity in the child frame, which is often the mobile base’s coordinate
frame, as well as an optional covariance for the precision of that velocity estimate.

5.3.2 Sensor information

The navigation stack needs to publish sensor data correctly through ROS in order
to work safely. Robots that have no data from their sensors will be driving blind
and will be more inclined to crash into objects. The navigation stack may receive
data from a variety of sensors, including lasers, cameras, sonar, infrared, bump
sensors, and more. The data coming from the sensors must be published using either
the sensor_msgs/LaserScan message (5.2) type or the sensor_msgs/PointCloud
message type in order to be accepted by the navigation stack.

For robots equipped with laser scanners, ROS offers a unique message type
called LaserScan in the sensor msgs package to store data regarding a specific
scan. Any laser can be used with LaserScan messages as long as the data returned
by the scanner can be formatted to fit within the message.

Listing 5.2: The sensor_msgs/LaserScan message

forward

1 #
2 # Laser scans angles are measured counter clockwise, with 0 facing
(along the x—axis) of the device frame
#

float32 angle min # start angle of the scan [rad]

3
4
5
6 Header header
7
s float32 angle max # end angle of the scan [rad]
9

float32 angle_increment # angular distance between measurements |
rad]
10 float32 time increment # time between measurements [seconds]
1 float32 scan_ time # time between scans [seconds]
12 float 32 range_min # minimum range value [m]
13 float 32 range_max # maximum range value [m]
14 float 32[] ranges # range data [m] (Note: values < range_
min or > range_max should be discarded)
float 32[] intensities # intensity data [device—specific units]

5.3.3 Base controller

The navigation stack expects that it can command the robot to move forward by
sending velocity commands over the emd__vel topic using a geometry msgs/ Twist

49

Autonomous Navigation in Simulation

message. This means that the (vx, vy, vtheta) ==> (cmd vellinear.x, cmd
vel.linear.y, cmd vel.angular.z) velocities must be converted into motor commands
and sent to a mobile base by a node that subscribes to the emd_vel topic. For this
purpose platforms for base control are used. The packages and the drivers used in
this area are specific to the robot, and a special purpose controller is programmed.

5.3.4 Costmap

The costmap__2d package offers a flexible structure that maintains an occupancy grid
containing information on the robot’s navigation path. The costmap stores and up-
dates information about obstacles in the world using the costmap_ 2d::Costmap2DR
08§ object while using sensor data and information from the static map. Through
ROS, the costmap automatically subscribes to sensor topics and updates itself as
needed. Each sensor can then either mark an obstacle (add information about it
to the costmap) or clear an obstacle (remove it from the costmap), or both.

The underlying structure that the costmap utilizes can only represent three cost
values, even if each cell can assume one of 255 different cost values. Each cell in
this structure has three possible states: free, occupied, and unknown. Upon
projection into the costmap, a unique cost value is assigned to each status. A cost of
costmap_2d::LETHAL OBSTACLE is given to columns with a specific number of
occupied cells, a cost of costmap 2d::NO_INFORMATION is given to columns with
a specific number of undetermined cells, and a cost of costmap_2d::FREE _SPACE
is given to other columns.

cell cost
lint]

"lethal" or "W-space" obstacle
e.g. cost_lethal=254 I range of costs meaning
y in collision

"inscribed" or "C-space" obstacle
e.0. cost_inscribed=253 #a 35 range of casts meaning
possibly in collision

“circumscribed" obstacle {depends on orientation)

e.0. cost_possibly_circumscribed=128

range of costs meaning
definitely not in collision

also the range where (most) user
lowest non-freespace preferences should be expressed

cost=1
1

freespace —— |
cost=0

1 3~
inscribed circumscribed inflation ; distance from
radius radius radius | closest W-space

obstacle cell
—_————— [double]

buffer zone created by costmap_2d around

obstacles, in order to make the robot prefer

paths that keep some minimum clearance
(this Is a sort of default user preference)

Ircumscribed ragior

Figure 5.7: Inflation parameters

50

Autonomous Navigation in Simulation

Inflation is the process of spreading the cost values of occupied cells outward
as a function of distance, as shown in Figure 5.7. For this purpose, five different
symbols for cost values can be related to a robot.

Lethal cost indicate that certainly there is an obstacle in a predefined cell. In
this case, the robot would plainly be in collision if its center were in that cell.

A cell has a Inscribed cost if it is closer to an actual obstacle than the robot’s
inscribed radius. Therefore, if the robot center is in a cell that is at or over
the inscribed cost, the robot is undoubtedly colliding with some obstacle.

Similar to inscribed, possibly circumscribed cost uses the robot’s circum-
scribed radius as the lower limit. It thus depends on the orientation of the
robot whether it collides with an obstacle or not, if the robot center is located
in a cell at or above this value.

Since the cost of Freespace is believed to be zero, the robot shouldn’t be
prevented from travelling there.

A cell with Unknown cost indicates that there is no information available.
This can be interpreted however the costmap user sees fit. In the Active
SLAM application, cells with unknown cost are fundamental because,going
in that direction, they allow the robot to discover new information from the
environment.

Master

NN

Inflation

~~~~~~

Obstacles

[ Static ]

Figure 5.8: Layered costmap (38|

51



Autonomous Navigation in Simulation

A costmap is used to hold the environmental data that the path planners utilize.
In a classic costmap, also called monolithic costmap, all the data is kept in a single
grid of values. Due to its simplicity-there is only one area to read from and write
values to-the monolithic costmap has become the dominant technique. In order
to add context and semantical information to the costmap, layered costmaps are
used. The most important layers used include Static Map Layer, which is the
bottom layer of the global costmap and directly transfers its value into the master
costmap to know where walls and obstacles are. This layer is often created only
using information coming from the SLAM algorithm. Sensor data was gathered by
the Obstacles Layer, which organized the data in a 2D grid. Instead, the Inflation
Layer is in charge of adding a buffer zone around each lethal obstacle in order to
prevent the robot from colliding into it [38].

5.3.5 Move Base

The Move Base module can be considered the core element of the Navigation Stack,
and it’s composed of four elements: Global costmap, Local costmap, Global planner
and Local planner.

During the navigation, the interaction between these modules allow the robot
to safely move inside an environment:

e The Global Costmap is represented by an occupancy grid map. Different
parameters that characterize the costmap like the resolution and the dimension
can be easily changed by acting on the global costmap.yaml file. The Global
costmap is used by the global planner to generate a long-term navigation plan,
as shown in Figure 5.9.

e The Local Costmap takes information from the Global costmap and the pa-
rameters that describes its function can be found inside the local _costmap.yaml
file. The Local costmap is used by the local planner to generate a short-term
navigation plan. The Figure 5.10 shows an example of Local costmap.

o The global path is calculated by the Global Planner from a starting location
to an ending position while avoiding a collision with any obstacles that may
be encountered. On the basis of the given global costmap, the Global planner
selects the lower-cost itinerary. The parameters that describe the Global
planner can be set inside the global planner.yaml file. There are different
algorithms that can be exploited for global path planning and, according to
their features, selected for the navigation as shown in Figure 5.11. Among the
most widely used algorithms there are A* and Dijkstra.

e The Local Planner gives velocity commands to the mobile platform traveling
along the global path. The Local planner is used also to avoid obstacles found

52



Autonomous Navigation in Simulation

in the local costmap. The behavior of the Local planner can be modulated
through the local planner.yaml file. Among the most widely used algorithms
for local path planning there is dwa_ local planner which is the one used as
default by the Navigation Stack and is an implementation of the Dynamic
Window Approach (DWA) algorithm. Figure 5.12 depict a Local planner in
RViz.

Figure 5.9: Global Costmap in RViz

1{'
»

,'/;

Figure 5.10: Local Costmap in RViz

53



Autonomous Navigation in Simulation

118
{EYRAN

Figure 5.12: Local Planner colored in yellow shown in RViz

5.4 Simulation

5.4.1 Active SLAM performance comparison

The Active SLAM algorithm developed was tested extensively in a simulation
environment using both RViz and Gazebo, and its performances were compared to
a different Active SLAM method, proving the effectiveness and the novelty of the
programmed solution.

54



Autonomous Navigation in Simulation

< b n Y

I ]
u &
" o
3 STID0
e

(b) Gmapping used as SLAM module

Figure 5.13: Comparison between the two Active SLAM solutions

The developed method use Google Cartographer as SLAM module, and it’s
followed by a Frontier Detection step to detect navigation points and a Path
Planning algorithm to reach unexplored areas. It is compared with another Active
SLAM algorithm, which differently from the previous method employs Gmapping

55



Autonomous Navigation in Simulation

as the main SLAM module [39]. The selected metrics of comparison have considered
the time required to discover the same environment and the quality of the map
created at the end of the process. The results, as shown in Figure 5.13, demonstrate
the better result obtained with the developed Active SLAM algorithm in both time
required and quality of the map. The map results, depicted in the picture, were
both taken after approximately three minutes of simulation, the time required by
the first method to complete its mission, which was not sufficient for the success of
the second method.

5.4.2 Simulation Results

The steps of the simulation are shown in Figure 5.14.

(a) The robot start sensing the environment (b) After selecting the frontier points the
and the frontiers (red points) are identified exploration starts

(¢) The autonomous exploration continues, (d) The exploration is finished and the map
and the map is taking shape is complete

Figure 5.14: The process of Autonomous Exploration

56



Chapter 6

Hardware Architecture

The development of the autonomous mobile robot begins with selecting the right
sensors based on the type of application. The robot is made out of four Mecanum
wheels to start. These wheels may move in any direction, allowing for both
rotation and translation. Encoders are frequently employed in self-driving robots to
determine location and, consequently, odometry. However, the number of rotations
required to move laterally and longitudinally are different and vary depending
on the kind of ground, therefore using encoders alone is insufficient to obtain
accurate information. For this purpose, position data coming from encoders is
merged with an Inertial Measurement Unit (IMU) using Unscented Kalman Filter
(UKF). Moreover, the platform is equipped with two 2D LiDAR sensors used for
mapping and navigation purposes. Due to the physical structure of the FIXIT
case, as shown in figure 6.1, two LiDAR are necessary to make sure the rover has a
360°view of the environment. A partial view could be dangerous in highly dynamic
spaces, especially during obstacle avoidance tasks. LiDAR usage is essential for a
variety of applications. In addition, a laser scan is frequently used to collect a map
since, thanks to its extended range, it can cover a large area without passing by
that location again and prevent accumulating errors. Even if they are essential for
navigation, 2D LiDAR sensors present some limitations caused by the fact that
they only provide an horizontal view of a scene. Laser scans, even supplying a
360°field of view on the (z,y) plane, they lack in giving information about the
z axis. The result is that obstacles with a lower height than the height of the
sensor are not detected, as shown in Figure 6.2. To overcome this problem, two
depth cameras are placed on the front and on the back of the case in order to add
a vertical field of view to the system. Doing that, the rover is capable of safely
navigate and avoid obstacles of different heights.

57



Hardware Architecture

Figure 6.1: FIXIT structure

\ \ lidar
lidar view

obstacle

Figure 6.2: LiDAR limitations

58



Hardware Architecture

6.1 Mecanum Wheeled mobile robot

Introducing wheeled mobile robots it is important to classify the different types
of wheels with respect to their properties. A first distinction can be made talking
about Conventional Wheeled mobile Robots and Mecanum Wheeled mobile Robots.
Conventional types of wheels encapsulate three wheel models: fixed wheels, stereable
wheels and caster wheels. These types of wheels have different characteristics based
on the combination of different rotation axes. Each one of this models has a peculiar
property, which can be useful to give a particular behaviour to the considered
mobile robot. The Mecanum Wheels instead are composed by several rollers placed
around the wheel with an angle of 45 °, as shown in Figure 6.3.

Figure 6.3: Mecanum Wheels

This particular configuration of the wheels guarantee movement even in directions
parallel to their axes, and this feature is fundamental to allow the rover to move in
narrow environments and to permit a better obstacle avoidance performance. For
this reason a omni-wheel based robot is the optimal choice for dynamic environments,
as, for example, a working environment. Figure 6.4 shows the movements possibility
given by the wheels to the rover.

59



Hardware Architecture

a) p)

1Y
=

Figure 6.4: AMR movements allowed by mecanum wheels

6.2 Sensors

As described before, the mobile platform is equipped with different sensors, which
cooperate to guarantee an efficient SLAM and a safe autonomous exploration.
The sensors deployed, apart from the encoders and IMU which are used mainly
for localization purposes, are two RP-LIDAR A1 and two Intel RealSense Depth
Camera D435i, employed to active perceive the environment.

6.2.1 RP-LIDAR A1l

The RP-LIDAR A1l laser scanner is utilized in the system in question (Figure 6.5).
Due to its low cost and small size, it is frequently used in robotics and in particular
for autonomous exploration, localization, and mapping. It is also capable of sensing
a 360-degree rotating environment. It is a 2D laser scanner made by SLAMTEC,
consisting of a range scanner that revolves around a motor with a belt attached
in the opposite direction. Furthermore, it makes advantage of high-speed vision
acquisition and is based on the laser triangulation ranging principle. In particular,
the RPLIDAR generates an infrared laser signal, and the vision acquisition module
subsequently detects and samples the returning signal. It scans a distance of 12
meters at a rate that can be configured, from 2Hz to 10Hz. The Table 6.1 describes
in detail the characteristics of the sensor.

60



Hardware Architecture

Ei TR
RELIDAR

L i

Figure 6.5: RP-LIDAR A1 [40]
Parameters Description

. Width x Length x Height: 96.8 x 70.3 x 55 mm
Physical Weight: 170 g
Indoor/Outdoor
Use: 0.15m - 12m
Measuring Range: < 1% of the range <12m
Range Resolution: 8K
Sampling Frequency: 5.5Hz
Rotational Speed: oV
Features System Voltage: 100mA
System Current: 0° C-40° C
Temperature Range: 360°
Angular Range: <1°
Angular Resolution: 1% of the range < 3 m
Accuracy: 2% of the range 3-5 m
2.5% of the range 5-25 m

Table 6.1: RP-LIDAR

A1 Datasheet

6.2.2 Intel RealSense Depth Camera D435i

Due of its excellent performance and low cost, this type of sensor is frequently
employed in robotics. A depth camera and an Inertial Measurement Unit (IMU)
are both present in this device (Figure 6.6). The accelerometer, which measures the
overall force exerted on the device, and the gyroscope, which measures the angular

61




Hardware Architecture

velocity, are the IMU components utilized for this kind of application. Together,
they provide the 3D space orientation. Due to its wide field of view (FOV) and low
sensitivity to light, it also enables navigation in space when there is no light [41].
Additionally, navigation is possible both indoors and outdoors without interruption
thanks to a system with a multi-camera configuration that operates at low power
and has good precision within a few meters. The Intel RealSense d435i is composed

Figure 6.6: Intel RealSense D4351 [41]

of various parts, as shown in Figure 6.7. Additionally, the gathered data generate
RGB and depth images at the same time. It is made up of an RGB module with a
1920x1080 frame resolution, two infrared modules that can capture infrared images,
and an IR projector that boosts the depth camera’s performance using an active
stereo technique. With a depth resolution of 1280x720 at 90 frames per second, the
depth field of view is 87°x58°. It has an inbuilt Intel RealSense Vision Processor
D4 that allows for a thorough environment reconstruction while processing the
captured photos. The greatest visual range is 10 meters, although accuracy varies
depending on different setting parameters as calibration, and lighting. The official
characteristics listed by the vendor are shown in the Table 6.2.

62



Hardware Architecture

USB3 Cap

AUX Cap

Glass Lens Mask Aluminum D430 RGB Heat Sink PCBand Aluminum
Front Module Components Back

Figure 6.7: Intel RealSense D435i components [41]

Parameters Description
. Length x Depth x Height: 90mm x 25mm x 25mm
Physical Connectors: USB-C 3.1
Components Camera module: Module D430 + RGB Camera
Vision processor: Vision Processor D4
Features Use: Indoor/Outdoor
Ideal range: 0.3 m to 3m
RGB frame resolution: 1920 x 1080
RGB RGB sensor FOV (H x V): 69° x 42°
RGB sensor technology: Rolling Shutter
RGB frame rate: 30 fps
Depth technology: Stereoscopic
Depth output resolution: 1280 x 720
Depth Depth Field of View (FOV): 87° x 58°
Depth frame rate: 90 fps
Depth Accuracy: <2% at 2m

Table 6.2: Intel Realsense Camera d435i Datasheet

6.3 On-board computers

The rover is equipped with two boards on which is stored and run the developed
Active SLAM solution. The on-boards computer are a Nvidia Jetson Xavier NX
and a Nvidia Jetson Nano and they are connected with the deployed sensors, in

63



Hardware Architecture

order to acquire information about the environment during the exploration phase.

6.3.1 Nvidia Jetson Xavier NX

This board is a part of the NVIDIA Jetson, a high-performance, low-power em-
bedded platform (Figure 6.8). In particular, the Jetson Xavier NX integrates a
CPU and GPU into a single, compact chip measuring about 70 mm by 45 mm.
Due to its integrated software libraries, such as CUDA, it is adapted for real-time
execution problems. It is developed for robot applications and autonomous tasks.
Additionally, it has four 3.1 USB ports, needs a MicroSD card to function, and
supports several power modes. The Table 6.3 shows in detail the features of the

board.

Figure 6.8: Nvidia Jetson Xavier NX [42]

6.3.2 Nvidia Jetson Nano

Due to its great performance, low cost, and smallest size in the Jetson family,
this type of board is frequently employed in robotic applications (Figure 6.9).
Furthermore, if set to high performance, it only consumes 10 W of power. Due to
its trade-off between processing power and low power consumption, it is frequently
used for image processing. It has an ARM Cortex CPU and a 128 core Maxwell
GPU. The absence of a wifi module on this board constitutes its lone drawback. In
order to solve this issue, Jetson Nano has been equipped with an Intel dual-mode
wireless module. Table 6.4 describes in detail the functionalities of the board.

64



Hardware Architecture

Parameters Description
Width x Length x Height: 103 mm x 90,5 mm x 34 mm
Nvidia Volta architecture with
GPU: 384 Nvidia Cuda cores
and 48 Tensor cores
CPU-: 6—Cgre Nvidia Carmel ARM v8.2
64-bit CPU 6 MB L2 + 4 MB L3
Memory: 8 GB 128-bit LPDDR4x
o Gigabit Ethernet
Connectivity: Wi module
Display: HDMI and display port
USB: 4x USB 3.1, USB 2.0Micro-B

Table 6.3: Jetson Xavier NX Datasheet

Figure 6.9: Nvidia Jetson Nano [43]

6.3.3 FIXIT-M Board

The FIXIT-M is a main board designed to have a battery based system that allows
FIXIT to supply all its peripherals (Figure 6.10). In particular, the board was
designed to provide a charger system to the drone when landing on the case and to
give power supply to the boards needed by the AMR. The board provide a 12V
and a 5V connectors to feed respectively the Jetson Xavier NX and the Jetson
Nano. The final idea is to give power supply to the peripherals used by the AMR
through an external battery instead the rover is supplied by its internal battery
system. In this way, the overall system guarantee a much longer performance in

65




Hardware Architecture

Parameters Description
Width x Length: 69 mm x 45 mm
GPU: 128-core Maxwell
CPU: Quad-core ARM A57
Memory: 4 GB 64-bit LPDDRA4
Connectivity: Gigabit Ethernet
Display: HDMI and display port
USB: 4x USB 3.0, USB 2.0 Micro-B

Table 6.4: Jetson Nano Datasheet

terms of battery life.

Figure 6.10: FIXIT-M board

6.4 Agilex Scout Mini

The robot in use is the Scout Mini mobile base from AgileX Robotics, shown in
Figure 6.11, which is a smaller version of the Scout 2.0. Due to its speed, agility,
compactness, and compatibility, it ranks among the top autonomous mobile robots
on the market. It can be used to perform a variety of tasks, including surveillance,
exploration, incarceration, as well as different educational and logistical services
because it is ROS-compatible. This type of robot typically has a maximum load
capacity of 10 kg, however the robot utilized in this system has four Mecanum

66



Hardware Architecture

Wheels, which ensure a payload of up to 20 kg. These unique wheels enable
translation and rotation in any direction. Additionally, it manages to create a
high-speed, precise, stable, and adjustable power control system of 10.8km /h while
having a very tiny size of 625x585x222 (L. W H (mm)) and a weight of 23 kg. It is

Figure 6.11: Aviation Agilex Scout Mini [44]

easy to install and interact with all the components required to operate this robot
through its CAN interface, which is utilized as a communication interface. The
SCOUT MINI comes with two aviation male plugs to serve this purpose, as swown
in Figure 6.12. The robot, in instance, uses conventional CAN2.0B communication
at a bitrate of 500K. The robot will provide real-time feedback on the motor current,
encoder, and temperature as well as its current movement status information and
chassis status information via an external CAN bus interface. The robot’s moving
linear speed and rotational angular speed can also be regulated. The open-source
software package (SDK) provides a C ++ interface to communicate with the mobile
platform supplied by AgileX Robotics to transmit commands to the robot and

67



Hardware Architecture

obtain the most recent robot status. Specifically, a CAN-USB adapter is utilized
to link the robot to the Nvidia Xavier Nx.

Figure 6.12: Aviation Male Plug for CAN cable connection [44]

6.5 Distributed Hardware System

On Ubuntu 18.04, a Linux kernel-based release, the system is built using Ros
Melodic. On each board that is part of the AMR, it is downloaded and installed.
It was particularly advantageous to have a distributed design because it spread
the work over multiple boards and reduced the computational cost, given the large
number of sensors. In order to build the distributed system, the Nvidia Xavier Nx
board, which offers excellent results because to its high performance, is coupled
to two LiDARs and the rover platform. Moreover, that board runs the primary
software that enables autonomous exploration of the environment in addition to
data collecting from the attached sensors. It was determined to transmit camera
data using a Jetson Nano due to the limited number of USB connections, high
computational cost, and power expense. It was possible to spread the computational
load using the architecture shown in Figure 6.13.

6.6 Abstraction Layers of the System

The constructed system is made of different components and different abstraction
levels, starting from the developed software and arriving to the actuation of the
given commands. The Figure 6.14 shows all the subsystems that interacts during

68



Hardware Architecture

Nvidia Xavier: ROS — Master
RPLIDARA1 Scout mini 2.0
— -— é_IFE
RPLIDAR A1

MNvidia Jetson Nano Depth camera d435i |

@ Depth camera d435i |

Figure 6.13: System architecture [45]

the exploration task of the rover. The higher level is represented by the tools
used to monitor the navigation of the mobile robot, as RViz and Gazebo (in a
simulation environment). The navigation modules include the components used for
different applications, as SLAM or path planning. These modules represent the
software part of the solution and the outcome velocities instructions coming from
the navigation module are handled by the base controller which transforms these
velocities into commands, and through the CAN bus the commands are given to
the actuation part. Following this hierarchy, the software part and the hardware
part cooperate to make the robot do the predefined actions.

69



Hardware Architecture

ROS-based Environment

NAVIGATION TOOLS
RViz Gazebo
(e )
, NAVIGATION MODULES '
! ]
. SLAM Navigation Path planning Obstacle avoidance !
1
N e e e e e e e e e e e )
e i T il T T T T il Y
: BASE CONTROLLER !
iy SRR y
SENSORS COMMUNICATION SYSTEMS
Lidar Wheel Encoder Depth Wi-Fi CAN Bus
Camera
POWER SUPPLY ACTUATION
Lipo
Battery Wheel Motors

Figure 6.14: Hierarchical model of the system

70




Chapter 7

Active SLAM Experiments

The Active SLAM algorithm was tested in different scenarios with several con-
figurations of both sensors and boards used. In particular three configurations
have been tested, starting from a simple one and arriving to the final system. The
hardware setup tested are the following:

o Experiment 1: One LiDAR and only the Jetson Xavier NX placed on the rover

o Experiment 2: All the sensors and boards located on a wood platform placed
on the rover

o Experiment 3: All sensors and boards located in the FIXIT case

These three steps were necessary in order to address the problems in a modular
and incremental fashion. Starting from a simpler system helped in solving software
problems not encountered in the simulation phase, using a straightforward system
which was easier to debug and to shut down in cases in which something went
wrong. The second step was necessary in order to connect all the sensors and the
boards available and test the final system performance. Two LiDARs and two
cameras were used in collaboration with the two on-board computers to explore
and map the environment. In this phase was also possible to easily manage the
rover if errors and failures had shown up. The final system consists of the same
hardware deployed in the second phase, but with the sensors placed in a slightly
different height and with the FIXIT case that not easily allows to to be stopped
in case of system errors. For this reason, the settings chosen in this configuration
were tested to be reliable and structured in order to safely allow the exploration of
the environment.

71



Active SLAM Experiments

7.1 Network Setup

The on-board computers and the sensors used in this application communicates
between them in the same network through the ROS principles. The system is
composed of the Nvidia Xavier NX, which connects two LiDARs and is in charge
of communicating with the Scout rover and runs the primary software, a remote
laptop where RViz is running in order to monitor the behavior of the rover during
the exploration phase, two cameras connected to the Jetson Nano that collects
data and send point clouds to the Xavier NX through the use of topics. These
information are then read by Xavier Nx, which process them and use these data
to perform navigation. In Figure 7.1 is shown how the elements of the system are
interconnected.

Figure 7.1: Hardware configuration of the system

A ROS-based system consists of several nodes running on different machines
that communicate with each other by exploiting the distributed architecture char-
acteristic of ROS. The communication between different boards is permitted only
if the components belong to the same internet network. For this purpose, for each
board or laptop that wants to receive or send to the overall system, is necessary to
declare the IP address of the Master (unique in the system) and the IP address
of itself. To do so, each board of the system needs to write the file /.bashrc as
follows:

o export ROS_MASTER_URI = http : // < remote_PC_IP >: 11311
72



Active SLAM Experiments

e export ROS HOSTNAME =< current_PC _IP >

More in detail, the ROS _MASTER__URI parameter indicates the IP address of
the Master computer, which in this system is represented by the Jetson Xavier NX,
while the ROS__HOSTNAME parameter represent the IP address of the considered
board. So, once connected the hardware of the system, the sensors used need to be
properly configured to get them ready for the exploration task. To start the two
LiDARs is necessary to assign a serial port to both of them, and this can be done
through the terminal of the Xavier (connected via SSH with the laptop) executing
the following commands:

o sudo chmod 777 /dev/ttyUSBO for the front LiDAR
e sudo chmod 777 /dev/ttyUSB1 for the back LiDAR

Instead, to launch the two cameras is necessary to run on the terminal of the Jetson
Nano (connected via SSH with the laptop) the following launch file:

e roslaunch realsense?__camera rs__camera.launch

Once activated all the sensors of the platform, through the terminal of the Xavier
the code for the autonomous exploration of the environment can be launched.

7.2 Active SLAM Experiment 1

The first phase in testing the Active SLAM solution for the AMR, after the
simulation step, was to try a naive setup using only one LiDAR as sensor and
only the Jetson Xavier NX for the computations, as shown in Figure 7.2. The
reasons behind this choice lies on the fact that with a simpler configuration was
easier to debug both software and hardware problems, and, in case of faults during
the autonomous exploration was simpler to recover the mobile robot. Testing the
effectiveness of the SLAM algorithm firstly in a less complex system helped in
changing some configuration parameters, essentials in order to properly suit the
SLAM solution around the considered AMR.

7.2.1 Restricted map of the environment

The experiments were taken inside the CIM4.0 laboratory, a dynamic environment
with obstacles at different heights, which was particularly challenging for the AMR
equipped with only one LiDAR. For this reason, at the beginning of this phase of
tests, an hallway was created in the CIM4.0 environment using boxes, in order to
constrain the rover to move safely. The map created, shown in Figure 7.3, depict
the obtained result.

73



Active SLAM Experiments

Figure 7.2: The AMR equipped with one LiDAR and the Jetson Xavier

Figure 7.3: Map created exploring an hallway in the CIM4.0 laboratory

74



Active SLAM Experiments

The rover, starting from the opposite part of the laboratory, crosses the con-
structed hallway and arrives to the final position exploring the space. The AMR
finds frontier points (red points in Figure 7.3), transform them into navigation
points, and navigate to them, until the environment is fully explored. The environ-
ment completely explored, in this case, is the hallway.

7.2.2 Complete map of the environment

In the second part of the tests, the rover is no longer constrained to move in an
hallway, but it can explore the entire environment, even if the more challenging
obstacles are covered by boxes. The result of this test, is shown in the Figure 7.4.
The AMR is capable of moving and the exploring the area creating the map of the
laboratory. The undiscovered frontier points are still present in the map, but they
are not accessible by the mobile platform because of its dimensions.

Figure 7.4: Complete map of the CIM4.0 laboratory

7.2.3 Errors during the exploration

During these tests a couple of errors have shown up related to the reachability of
the frontiers. Indeed, the Active SLAM algorithm detected even the frontiers that
were not reachable by the AMR. This error led the rover to consider these points

75



Active SLAM Experiments

as feasible navigation targets and, as a consequence, calculate paths to them. The
rover, equipped with obstacle avoidance algorithms, did not collide with obstacles
but instead recalculated a new path to the destination, entering in a loop condition
with no escape. The Figure 7.5 shows the rover which is trying to reach a frontier
point even if is not reachable. These drawbacks were solved in the intermediate
configuration of the system.

Figure 7.5: In green is shown the path calculated in order to try to reach the
unapproachable frontier point

7.3 Active SLAM Experiment 2

During the second phase of tests, the Active SLAM algorithm was tested connecting
all the sensors and the boards available, in order to emulate the configuration of
the final system (Figure 7.6). This phase was necessary because has allowed to
easily manage each component and to readily recover it if errors occurred.

7.3.1 Reachability of Frontiers

During the first phase of tests a couple of errors have shown up relating to the
reachability of the frontiers. Indeed, in order to solve this problem an inflation
operation is performed on the submaps. This means that the obstacles detected

76



Active SLAM Experiments

Figure 7.6: The AMR is equipped with all the available hardware placed on a
wood platform

by the AMR are dilated and therefore prevent the rover to see frontier points
located in positions beyond these obstacles, which are not reachable because of the
dimension of the mobile robot and shapes of the environment. After this process,
the AMR detects only reachable frontier points, and plan only valid paths directed
to these points, as shown in Figure 7.7. In this way, the loop problems encountered
in the first phase of tests are overcome.

7.3.2 Experimental results

After solving the problem related to the reachability of the frontiers, the autonomous
exploration is tested. The AMR starts exploring the environment identifying the
frontier points and heading to them (Figure 7.8). In this way, the map is created
and the locations not accessible to the rover are not discovered. The complete map
is shown in Figure 7.9.

7.4 Active SLAM Experiment 3

The third phase of testing consisted of the deployment of the same hardware
configuration used during the second phase of experimentation, but this time
inserted inside the FIXIT case. The only difference in the system was the position
of the sensors with respect to the z axis, which was slightly higher both for the
LiDARs and the cameras. The process of autonomous exploration is shown in

7



Active SLAM Experiments

(a) The rover also perceive frontiers that are not reachable

(b) The rover perceive less frontiers, only those that it can
reach

Figure 7.7: Perception of the frontiers before and after the inflation process

Figure 7.10, where the AMR moves inside the CIM4.0 laboratory and create at
the same time the map of the environment. The map created during this process
is shown in Figure 7.11. The result obtained was very similar compared with the
one of the second phase of experimentation. The generated map of the CIM4.0
laboratory was accurate, considering the dynamic nature of the environment. The
parts that were not completely uncovered were actually not accessible to the rover,
given the presence of obstacles and considering the size of the structure.

78



Active SLAM Experiments

(a) The robot start sensing the (b) After selecting the frontier points
environment and the frontiers (red the exploration starts
points) are identified

(c) The exploration continues (d) The exploration is finished and
the map is complete

Figure 7.8: The process of autonomous exploration of the CIM4.0 laboratory

79



Active SLAM Experiments

Figure 7.9: The map created at the end of the exploration process

80



Active SLAM Experiments

(a) The robot start exploring (b) The exploration
the environment continues

(c) Arrived at the end of the (d) Once completed the map,

hallway, the AMR decides to the rover terminate the
move towards the centre of exploration. At this point,
the laboratory, to acquire by pointing to a spot on the
more information about the map, the AMR is capable of
environment navigate the uncovered area

Figure 7.10: Sequence of steps taken by the AMR during autonomous exploration
of the environment

81



Active SLAM Experiments

Figure 7.11: Map obtained by the AMR at the end of the autonomous exploration
process

82



Chapter 8
Conclusions

The main objective of this thesis was to develop and test an Active SLAM algorithm
to allow the AMR of the FIXIT project to autonomously explore and navigate
in unknown environments. After an extensive analysis of the state of the art of
SLAM algorithms in exploration tasks, an Active SLAM solution was implemented
and tested firstly in a simulation environment, and then experimentally.

The designed system proves to be extremely reliable and effective. With sensors
deployed on the mobile platform, the system can autonomously and safely explore
a dynamic environment filled with obstacles and objects of different shapes and
sizes at each level.

In particular, thanks to the Active SLAM algorithm developed, the AMR is
proven to be:

o Autonomous: the mobile robot is able to autonomously explore and navigate
in unknown spaces, without the human intervention.

o Safe: the rover is provided of obstacle avoidance algorithms, then, during the
exploration is able to recognize obstacles, avoid them and in the end reach
the target point.

o Adaptable: the system developed is flexible and scalable to different scenarios.
Apart from environments in which the rover is physically constrained to move,
the AMR can change workspace without changing settings.

It can be employed to explore a dangerous environment because it has the ability
to move independently by gathering information from its surroundings through

83



Conclusions

sensors. Moreover, the cameras allow the remote operator to view the area that he
is unable to reach, for instance, because of the spread of dangerous gases.

8.1 Limits and Future works

The designed autonomous exploration system achieves the expected objectives with
good results, although there are several areas that might be improved.

Even if the available sensors placed on the AMR can guarantee a safely navigation,
not all the obstacles can be seen. Moreover, lower obstacles in proximity of the
mobile robot may not be detected.

Another limitation of the system is given by the type of the sensor used. The
deployed sensors, even if they perform well in indoor scenarios, are not suitable
for outdoor spaces, due to the presence of sunlight reflection which can alter the
LiDARs performances.

These limitations can be overcome by introducing 3D LiDARs adaptable for both
indoor and outdoor scenarios. With this type of sensor the system becomes more
stable and flexible for all type of situations. Although currently AMR and UAV
systems do not communicate with each other, in the near future an implementation
which permits the two systems to cooperate during the navigation objectives could
be efficient for different purposes, as maintenance and collaboration tasks in an
industrial environment.

84



Bibliography

Hamid Taheri and Zhao Chun Xia. « SLAM; definition and evolutiony. In:
Engineering Applications of Artificial Intelligence 97 (2021), p. 104032 (cit. on
pp. 5, 7, 8).

Xu Lei, Bin Feng, Guiping Wang, Weiyu Liu, and Yalin Yang. «A novel

fastslam framework based on 2d lidar for autonomous mobile roboty». In:
FElectronics 9.4 (2020), p. 695 (cit. on p. 6).

Shoudong Huang and Gamini Dissanayake. «Convergence and consistency
analysis for extended Kalman filter based SLAM». In: IEEE Transactions on
robotics 23.5 (2007), pp. 1036-1049 (cit. on p. 7).

Giorgio Grisetti, Gian Diego Tipaldi, Cyrill Stachniss, Wolfram Burgard, and
Daniele Nardi. «Fast and accurate SLAM with Rao—Blackwellized particle
filters». In: Robotics and Autonomous Systems 55.1 (2007), pp. 30-38 (cit. on

p. 8).

Giorgio Grisetti, Rainer Kiimmerle, Cyrill Stachniss, and Wolfram Burgard.
«A tutorial on graph-based SLAM». In: IEEFE Intelligent Transportation
Systems Magazine 2.4 (2010), pp. 31-43 (cit. on p. 8).

Maria L Rodriguez-Arévalo, José Neira, and José A Castellanos. «On the
importance of uncertainty representation in active SLAM». In: IEEE Trans-
actions on Robotics 34.3 (2018), pp. 829-834 (cit. on p. 8).

Like Cao, Jie Ling, and Xiaohui Xiao. «Study on the influence of image noise
on monocular feature-based visual SLAM based on FFDNet». In: Sensors
20.17 (2020), p. 4922 (cit. on p. 8).

Zhilin Xu, Jincheng Yu, Chao Yu, Hao Shen, Yu Wang, and Huazhong
Yang. « CNN-based Feature-point Extraction for Real-time Visual SLAM on
Embedded FPGA». In: 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE. 2020,
pp. 33-37 (cit. on p. 8).

85



BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Iker Lluvia, Elena Lazkano, and Ander Ansuategi. «Active mapping and
robot exploration: A survey». In: Sensors 21.7 (2021), p. 2445 (cit. on pp. 8,
10).

Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladé. «The SLAM

problem: a survey». In: Artificial Intelligence Research and Development
(2008), pp. 363-371 (cit. on p. 9).

Samyeul Noh, Jiyoung Park, and Junhee Park. « Autonomous Mobile Robot
Navigation in Indoor Environments: Mapping, Localization, and Planning». In:
2020 International Conference on Information and Communication Technology
Convergence (ICTC). IEEE. 2020, pp. 908-913 (cit. on pp. 9, 10).

Yong Li and Changxing Shi. «Localization and navigation for indoor mobile
robot based on ROS». In: 2018 Chinese automation congress (CAC). IEEE.
2018, pp. 1135-1139 (cit. on p. 9).

CCE Chewu and V Manoj Kumar. « Autonomous navigation of a mobile robot
in dynamic indoor environments using SLAM and reinforcement learning.
In: IOP Conference Series: Materials Science and Engineering. Vol. 402. 1.
IOP Publishing. 2018, p. 012022 (cit. on p. 10).

Hartmut Surmann, Christian Jestel, Robin Marchel, Franziska Musberg,
Houssem Elhadj, and Mahbube Ardani. «Deep reinforcement learning for
real autonomous mobile robot navigation in indoor environments». In: arXiv
preprint arXiv:2005.13857 (2020) (cit. on p. 10).

Michal Mihalik, Branislav Malobicky, Peter Peniak, and Peter Vestenicky.
«The New Method of Active SLAM for Mapping Using LiDAR». In: Flectronics
11.7 (2022), p. 1082 (cit. on p. 12).

Chaoqun Wang, Lili Meng, Sizhen She, Ian M Mitchell, Teng Li, Frederick
Tung, Weiwei Wan, Max Q-H Meng, and Clarence W de Silva. « Autonomous
mobile robot navigation in uneven and unstructured indoor environments». In:
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2017, pp. 109-116 (cit. on p. 13).

ChengYi Zhang, ShuWen Dang, Yong Chen, and ChenFei Ling. «A Survey
of Motion Planning Algorithms Based on Fast Searching Random Tree».
In: 2021 the 7th International Conference on Communication and Informa-
tion Processing (ICCIP). ICCIP 2021. Beijing, China, 2021, pp. 4-8. ISBN:
9781450385190 (cit. on p. 13).

Xudong Sun, Fuchun Sun, Bin Wang, Jianqgin Yin, Xiaolin Sheng, and Qinghua
Xiao. «Robotic autonomous exploration SLAM using combination of Kinect
and laser scannery. In: 2017 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI). IEEE. 2017, pp. 632—
637 (cit. on p. 14).

86



BIBLIOGRAPHY

[19]

22]

23]

[24]

[25]

Zehui Meng, Hao Sun, Hailong Qin, Ziyue Chen, Cihang Zhou, and Marcelo H
Ang. «Intelligent robotic system for autonomous exploration and active SLAM
in unknown environmentsy». In: 2017 IEEE/SICE International Symposium
on System Integration (SII). IEEE. 2017, pp. 651-656 (cit. on p. 14).

Ming Hsiao, Joshua G Mangelson, Sudharshan Suresh, Christian Debrunner,
and Michael Kaess. «Aras: Ambiguity-aware robust active slam based on multi-
hypothesis state and map estimations». In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 5037
5044 (cit. on p. 15).

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, Andrew Y Ng, et al. «kROS: an open-source Robot
Operating System». In: ICRA workshop on open source software. Vol. 3. 3.2.
Kobe, Japan. 2009, p. 5 (cit. on p. 17).

Kenta Takaya, Toshinori Asai, Valeri Kroumov, and Florentin Smarandache.
«Simulation environment for mobile robots testing using ROS and Gazebo». In:
2016 20th International Conference on System Theory, Control and Computing
(ICSTCC). IEEE. 2016, pp. 96-101 (cit. on p. 21).

Beipeng Mu, Matthew Giamou, Liam Paull, Ali-akbar Agha-mohammadi,
John Leonard, and Jonathan How. «Information-based active SLAM via
topological feature graphs». In: 2016 IEEE 55th Conference on decision and
control (Cdc). TEEE. 2016, pp. 5583-5590 (cit. on pp. 29, 30).

Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. «Real-time
loop closure in 2D LIDAR SLAMy». In: 2016 IEEFE International Conference
on Robotics and Automation (ICRA). 2016, pp. 1271-1278. por: 10.1109/
ICRA.2016.7487258 (cit. on pp. 31-33, 43-45).

Zezhou Sun, Banghe Wu, Cheng-Zhong Xu, Sanjay E. Sarma, Jian Yang, and
Hui Kong. «Frontier Detection and Reachability Analysis for Efficient 2D
Graph-SLAM Based Active Explorationy. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2020, pp. 2051-2058.
DOI: 10.1109/IR0S45743.2020.9341735 (cit. on pp. 34-36, 44, 46).

Clustering Algorithms - Mean Shift Algorithm. https://wuw.tutorialspoi
nt.com/machine learning with python/clustering algorithms mean_
shift_algorithm.htm. Accessed: 2010-09-30 (cit. on pp. 35, 36).

Global Path planning. http://wiki.ros.org/global_planner?distro=
noetic. Accessed: 2010-09-30 (cit. on pp. 37, 38).

Peter E Hart, Nils J Nilsson, and Bertram Raphael. «A formal basis for the
heuristic determination of minimum cost pathsy». In: IEEFE transactions on
Systems Science and Cybernetics 4.2 (1968), pp. 100-107 (cit. on p. 37).

87


https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/IROS45743.2020.9341735
https://www.tutorialspoint.com/machine_learning_with_python/clustering_algorithms_mean_shift_algorithm.htm
https://www.tutorialspoint.com/machine_learning_with_python/clustering_algorithms_mean_shift_algorithm.htm
https://www.tutorialspoint.com/machine_learning_with_python/clustering_algorithms_mean_shift_algorithm.htm
http://wiki.ros.org/global_planner?distro=noetic
http://wiki.ros.org/global_planner?distro=noetic

BIBLIOGRAPHY

[39]

Masoud Nosrati, Ronak Karimi, and Hojat Allah Hasanvand. «Investigation
of the*(star) search algorithms: Characteristics, methods and approachesy.
In: World Applied Programming 2.4 (2012), pp. 251-256 (cit. on p. 38).

Dieter Fox, Wolfram Burgard, and Sebastian Thrun. «The dynamic window
approach to collision avoidancey. In: IEEE Robotics € Automation Magazine
4.1 (1997), pp. 23-33 (cit. on p. 39).

Local Path planning. http://wiki.ros.org/base_local planner?distro=
noetic (cit. on p. 40).

Kristin Glass, Richard Colbaugh, David Lim, and Homayoun Seraji. «Real-
time collision avoidance for redundant manipulators». In: IEFE transactions
on robotics and automation 11.3 (1995), pp. 448-457 (cit. on p. 40).

Agnieszka Lazarowska. « A discrete artificial potential field for ship trajectory
planningy. In: The Journal of Navigation 73.1 (2020), pp. 233-251 (cit. on
p. 41).

Hugh Durrant-Whyte and Tim Bailey. «Simultaneous localization and map-

ping: part I». In: IEEFE robotics & automation magazine 13.2 (2006), pp. 99—
110 (cit. on p. 42).

BAYU KANUGRAHAN LUKNANTO. «A review of 2D SLAM algorithms
on ROS». In: (2020) (cit. on p. 43).

Zhang Xuexi, Lu Guokun, Fu Genping, Xu Dongliang, and Liang Shiliu.
«SLAM algorithm analysis of mobile robot based on lidary. In: 2019 Chinese
Control Conference (CCC). IEEE. 2019, pp. 4739-4745 (cit. on p. 43).

Navigation Stack. http://wiki.ros.org/navigation/Tutorials/RobotSe
tup. Accessed: 2010-09-30 (cit. on p. 48).

David V. Lu, Dave Hershberger, and William D. Smart. «Layered costmaps for
context-sensitive navigationy». In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2014, pp. 709-715. DO1: 10.1109/IR0S.
2014.6942636 (cit. on pp. 51, 52).

Darko Trivun, Edin Salaka, Dinko Osmankovié, Jasmin Velagi¢, and Nedim
Osmié. «Active SLAM-based algorithm for autonomous exploration with mo-
bile robot». In: 2015 IEEE International Conference on Industrial Technology
(ICIT). 2015, pp. 74-79. DOI: 10.1109/ICIT.2015.7125079 (cit. on p. 56).

RPLIDAR Al. https://wuw.slamtec.com/en/Lidar/A1 (cit. on p. 61).

Intel Realsense Camera. https://www.intelrealsense.com/depth-camer
a-d435i/ (cit. on pp. 62, 63).

Jetson Xavier NX. https://www.nvidia.com/it-it/autonomous-machine
s/embedded-systems/jetson-xavier-nx/ (cit. on p. 64).

88


http://wiki.ros.org/base_local_planner?distro=noetic
http://wiki.ros.org/base_local_planner?distro=noetic
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/navigation/Tutorials/RobotSetup
https://doi.org/10.1109/IROS.2014.6942636
https://doi.org/10.1109/IROS.2014.6942636
https://doi.org/10.1109/ICIT.2015.7125079
https://www.slamtec.com/en/Lidar/A1
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/jetson-xavier-nx/

BIBLIOGRAPHY

[43] Jetson Nano. https://developer.nvidia.com/embedded/jetson-nano-
developer-kit (cit. on p. 65).

[44] Scout Mini. https://indrorobotics.ca/wp-content/uploads/2021/04/
SCOUT-MINI-User-Manual-3.0-.pdf (cit. on pp. 67, 68).

[45] Orlando TOVAR ORDONEZ and Stefano SANTORO. «Design and implemen-
tation of a Sensory System for an Autonomous Mobile Robot in a Connected
Industrial Environment». In: (2021) (cit. on p. 69).

89


https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://indrorobotics.ca/wp-content/uploads/2021/04/SCOUT-MINI-User-Manual-3.0-.pdf
https://indrorobotics.ca/wp-content/uploads/2021/04/SCOUT-MINI-User-Manual-3.0-.pdf

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Structure of the Thesis

	State of the Art
	SLAM algorithms
	Online and Full SLAM
	Three main SLAM paradigms
	Difficulties and challenges of SLAM

	Passive and Active SLAM
	Passive SLAM solutions
	Active SLAM solutions


	ROS Architecture for AMR
	Introduction to ROS
	The basic principles of ROS
	Key features of ROS
	ROS Workspace
	RViz
	Gazebo

	URDF model
	URDF in Gazebo
	Gazebo plugins

	Transform System
	Transforms in ROS


	Development of an Active SLAM Algorithm
	Active SLAM Algorithm
	Google Cartographer
	Local SLAM
	Loop Closure Optimization

	Frontier Detection
	Reachability of Frontiers
	Breadth First Search
	Clustering frontiers into navigation points

	Global Path Planning
	A* algorithm
	D* algorithm

	Local Path Planning
	Dynamic Window Approach
	Artificial Potential Field


	Autonomous Navigation in Simulation
	SLAM algorithms in ROS
	ROS packages for SLAM

	Cartographer in ROS
	Local SLAM
	Global SLAM
	Input Sensor Data

	Navigation Stack
	Odometry information
	Sensor information
	Base controller
	Costmap
	Move Base

	Simulation
	Active SLAM performance comparison
	Simulation Results


	Hardware Architecture
	Mecanum Wheeled mobile robot
	Sensors
	RP-LIDAR A1
	Intel RealSense Depth Camera D435i

	On-board computers
	Nvidia Jetson Xavier NX
	Nvidia Jetson Nano
	FIXIT-M Board

	Agilex Scout Mini
	Distributed Hardware System
	Abstraction Layers of the System

	Active SLAM Experiments
	Network Setup
	Active SLAM Experiment 1
	Restricted map of the environment
	Complete map of the environment
	Errors during the exploration

	Active SLAM Experiment 2
	Reachability of Frontiers
	Experimental results

	Active SLAM Experiment 3

	Conclusions
	Limits and Future works

	Bibliography

