
POLITECNICO DI TORINO

MASTER’s Degree in COMPUTER ENGINEERING

MASTER’s Degree Thesis

LOW-CODE APPROACH FOR
WEB-BASED

ACCESS MANAGEMENT

Supervisor

Prof. Fulvio VALENZA

Candidate

MATTEO CARBONE

Company Advisor

Ing. Pietro SANTORO

Academic Year 2021/2022

Summary

For years, Identity and Access Management has been considered a monster to
tame: every little change to the security policy turned into a huge impact to Front
End of all integrated applications. Traditional software development is the result
of a long, painstaking and detailed effort. Developers write individual lines of
code representing instructions and data. They organise that code into functional
routines and modules that provide the features and functionality of the software.
This approach requires detailed knowledge of aspects across the application devel-
opment spectrum: development languages, integrated development environments
and compilers, testing and distribution tools, and the various policies and practices
used to approach coding, testing and distribution

The goal of the thesis is to develop new access management experiences using this
brand low-code new approach and to study its effectiveness. This was done by
using orchestration software, PingOne DaVinci, which allows IAM experts to use
a drag-and-drop interface in order to design smooth user experiences and secure
business logic without needing developer resources. Low code development is a
new approach to programming, which allows applications (even enterprise-level
applications) to be created in a relatively short time. It is a method that limits
the need to write code to a minimum, eliminating it altogether in some cases
Low-code development employs specific platforms (there are now several on the
market), which allow programmers to create applications with a visual and logical
approach, via the interface of these platforms. This means that the developers’
task is no longer to write proprietary code, but their focus becomes describing the
basic principles and functions of the application, leaving it to the platform itself to
translate this into code.

ii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Thesis Description . 3

2 Key Concepts 5
2.1 Http Protocol . 5

2.1.1 Http Request . 6
2.1.2 Http Response . 8

2.2 API . 9
2.2.1 Access Manager . 13

3 Access Management Processes 20
3.1 Authentication . 20

3.1.1 Basic Authentication . 21
3.1.2 Username and Password Authentication 22
3.1.3 Identity Federation . 24

3.2 Authorization . 37
3.2.1 RBAC and ABAC . 37
3.2.2 Session Cookie . 39
3.2.3 Oauth 2.0 . 39

4 Thesis Objectives 48

5 Low-Code Approach 51
5.1 PingOne DaVinci . 53

5.1.1 PingOne DaVinci Components 54

6 Access Management flows with orchestrator 58
6.1 Registration Process . 58
6.2 Authentication Process . 62

iv

6.3 Authorization Process . 67

7 Use Cases 69
7.1 Integration in a Single Page Application 69
7.2 Integration with Redirect Method 74

8 Conclusions 79

Bibliography 82

v

List of Figures

2.1 A simple representation of message exchanged between client and
server in HTTP . 5

2.2 Example of an Http request . 8
2.3 Example of an Http request . 9
2.4 How several entities interact with an API 10
2.5 Classification of Channel APIs . 11
2.6 Channel User APIs . 12
2.7 Example of a simple API . 13
2.8 Possible Architecture for an access manager software 15
2.9 How access manager works when a web resource is requested 16
2.10 Example of B2C model interaction 17
2.11 Example of B2B model interaction 18
2.12 Example of B2E model interaction 18

3.1 How client interact when using Password authN 23
3.2 SAML Architecture . 25
3.3 Assertion with Authentication Statement 27
3.4 SP-Initiated SSO: Redirect/POST Bindings 29
3.5 Fig 18-SP-Initiated SSO: POST/Artifact Bindings 31
3.6 Example of JWT . 33
3.7 OIDC-Authorization Code Flow . 35
3.8 OIDC-Implicit Flow . 36
3.9 RBAC and ABAC policies . 38
3.10 Session Cookies . 39
3.11 Client Credential flow . 41
3.12 ROPC flow . 42
3.13 Authorization Code Flow . 44
3.14 Implicit Grant Flow . 45
3.15 Authorization Code Grant Flow with PKCE 46
3.16 How to choose an Oauth flow . 46

vi

5.1 PingOne Cloud Platform . 53
5.2 Example of a DaVinci flow. 55
5.3 Output of successful example flow 55
5.4 Example flow error output . 56
5.5 Multiple Paths in a flow . 56
5.6 Http connector configuration . 57
5.7 Functions Connector Configuration 57

6.1 First part of registration flow . 59
6.2 Custom Http form for credentials 59
6.3 Google connector configuration . 61
6.4 Second part of the registration flow 61
6.5 Example of screen connector output 62
6.6 First part of login flow . 63
6.7 Second Part of login flow . 63
6.8 Login Form . 64
6.9 Duo security example . 65
6.10 Example of Recovery code form . 66
6.11 Authorization flow with PingOne Authorize 68

7.1 Screen of Single Page Application on Glitch 70
7.2 How to create an App on DaVinci 71
7.3 Attaching a flow in an application 71
7.4 Script for integrate a flow in an SPA 72
7.5 Input schema for a DaVinci flow . 73
7.6 How to perform A/B testing . 74
7.7 Configuration of an external Idp in PingOne SSO 75
7.8 AuthN Policy . 75
7.9 PingOne SSo SP and DaVinci as Idp 76
7.10 Oidc call to SP in HTTP message 76
7.11 Oidc- Call to Sp with AuthZ code 77

vii

Chapter 1

Introduction

Over the past few years, the advancement and increasing spread of cloud, IoT and
mobile technology have made corporate strategies insecure in an attempt to resist
increasingly sophisticated and targeted cyber attacks. In today’s hyper-connected
society, the fundamental security principle of a company is no longer where data
and resources are located, but how a given user accesses these resources. Businesses
leaders and IT departments are under increased regulatory and organizational pres-
sure to protect access to corporate resources. As a result, they can no longer rely
on manual and error-prone processes to assign and track user privileges. For these
reasons, comprehensive attention to digital identity management is required: that
is why a proper Identity and Access Management (IAM) policy is appropriate.[1]

Identity and access management is a digital identity and access management
system that allows those entitled to it to access certain resources of an organization.
By simplifying access to these resources, the overall level of security is increased
and the cost of managing all users is reduced. Thanks to this system, each person
who is identified within an organization is assigned a digital identity characterized
by a number of appropriately valued attributes. Organization is able to have better
control over the authentication, authorization and auditing processes, and thus
privacy rules can be enforced, security can be monitored and reports can be made.
Thus, the IAM not only effectively enables a logical perimeter that allows for a real
and profound digital transformation, but also guarantees the protection of corporate
resources and data. It must also be considered that the spread of increasingly
powerful computers allows hackers to break even the most complex passwords,
rendering them completely inadequate. This is why biometrics and behavioral
authentication techniques are gradually supplanting passwords in certain areas
such as high-risk transactions. The IAM frameworks thus attempt to answer two
fundamental questions: "who has access to what resource?" and "how to strengthen
access policies?".

1

Introduction

These systems prevent an attacker from gaining access to policies and resources
even if he were able to break the password of a particular user. Furthermore,
an IAM system also allows for a good separation of roles within the corporation
by giving access privileges to resources according to the position held by a given
user within the corporation and by having that person access only what he or she
actually has privileges to do. An IAM system also provides valuable information
on how employees and customers interacted with applications and thus how they
accessed them. Such information is not only useful from a security point of view, but
also to compile interaction patterns, analysing both employee work and customer
behaviour.[2]

Identity and access management is a broad topic. It is divided into macro-categories
that are the 3 technologies at the core of IAM:

• User Lifecycle Management(ULM) Access Governance(AG):

– User Lifecycle Management means handling of a user from the moment in
which he accepts the job and until he leaves the company. It is referred
to which resources he can access during job.

– Access governance (AG) is an aspect of information technology (IT) se-
curity management that seeks to reduce the risks associated with end
users who have unnecessary access privileges. The need for access gov-
ernance has grown in significance as organizations seek to comply with
regulatory compliance mandates and manage risk in a more a strategic
manner. An important goal of access governance is to reduce the cost
and effort that’s involved in overseeing and enforcing access policies and
management procedures, including recertification.

• Access Management and Federation: An access management federation (or
federation, for short) provides a trust framework in which identity providers
(such as library organizations) and service providers (such as publishers) agree
to policies for the sharing of encrypted user information to provide easy access
to online content. When a user attempts to access a resource, it is the user’s
home organization that authenticates him or her by vouching for their identity.
All personal information and credentials remain by default with their home
organization, preserving user privacy. Using one username and password to
access resources across different platforms, applications and locations is called
single sign-on (SSO). It has significantly reduced the administrative burden
on institutions and removed barriers to access. Members of a federation
share metadata files, establishing trusted connections between libraries and

2

Introduction

publishers. This shared, trusted network of metadata means configuring single
sign-on to a resource is more efficient and doesn’t require ongoing IT assistance.

• Privileged Access Management(PAM): Organizations implement privileged
access management (PAM) strategies to protect against threats such as cre-
dential theft or illegitimate use of privileges. The acronym PAM refers to a
comprehensive information security strategy that includes people, processes,
and technologies and involves the control, monitoring, protection, and verifi-
cation of all privileged identities, human or non-human, that collectively exist
in an enterprise IT environment. PAM programs are based on the principle
of least privilege, whereby each user is assigned the minimum level of access
required to perform his or her duties.

Being very broad as a topic the significant part of identity and access management
that is addressed in this thesis work is that of access management Federation.
Here a brief description of the following chapters. In the first chapters (chapter 2
through 5), topics that underlie access management are presented. In the sixth
and seventh, the various AM flows are analyzed first in a standard way and then
with the use of the orchestrator. In the eight I go on to analyze a real-life case of
application.

1.1 Thesis Description
• Chapter 2: Presents some key concepts that are necessary to understand

access management and how interactions between the entities involved occur.

• Chapter 3: Goes on to explain what are the two main processes of an access
management software.First I talk about Authentication process,including
different techniques and protocols underlying this mechanism. Then we move
on to the concept of authorization and how to implement it.

• Chapter 4: In this chapter, after a background on the access management
world, are explained the objectives of the thesis.

• Chapter 5:This chapter introduces the low-code approach and its main advan-
tages. After that, the PingOne DaVinci platform, its basic components and
features are introduced.

• Chapter 6: In this chapter the access management flows that were created
on the DaVinci platform and how they were constructed are explained. In
particular, the registration, authentication, and authorization flows will be
analyzed.

3

Introduction

• Chapter 7:Two use cases of flow integration will be seen in this chapter. In
a first case, how to integrate a flow developed on PingOne DaVinci within a
Single Page Application will be analyzed. In a second case it will be seen how
to integrate a flow within an existing application that provides access to the
PingOne testing environment.

• Chapter 8:

4

Chapter 2

Key Concepts

This chapter will expose key concepts such as the http protocol to understand how
various entities interact in a web access management context and also the concept
of Api security to understand how access to resources occurs.

2.1 Http Protocol
The Hypertext Transfer Protocol (HTTP) is a protocol of the last layer of the
ISO-OSI stack and was designed to be implemented above the lower layer protocols.
It describes the Web interactions that occur between a client and a server. The
client is the one who initiates the communication and then sends a request to the
server, which, later sends a response message. Because it is a request-response

Figure 2.1: A simple representation of message exchanged between client and
server in HTTP

protocol, HTTP is a way for a client to access resources (such as can be HTML
files) via the Web that are precisely hosted on a server. Clients usually use at the

5

Key Concepts

transport layer a TCP connection to communicate with the server.

Each communication between client and server begins with a request, a text
message created by the client in a specific format, that of HTTP.

2.1.1 Http request
A request is composed by following parts:

• Uniform Resource Identifiers (URIs) are created to access physical or abstract
resources on the Internet, which can be of various types depending on the
situation: websites, email senders or recipients. A uri can be composed at
most of five parts, but only two are mandatory.These parts are:

– Scheme :give informations on which protocol is used
– Authority: identifies the domain
– Path: shows the path of the resource
– Query: represent the request
– Fragment: specify a partial aspect of a certain resource

Only schema and path must be mandatory in an identifier. In the URI syntax,
all components are listed one after the other and separated by specific, defined
characters.
Here there is an example:

https://example.org/test/test1?search=test-questionpart2

In this case:

– Scheme: https
– Authority: example.org
– Path: test/test1
– Query: search=test-question
– Fragment: part2

So this means that the part in question (part2) is accessible via HTTP, is
located on a device with the identifier example.org, and, wanting to do a
search, can be found under the specified path.

• Http Method:An HTTP method, sometimes referred to as an HTTP verb,
indicates the action that the HTTP request expects from the queried server.The
main methods are:

6

Key Concepts

– GET : The GET method is used to retrieve information from the given
server using a given URI. Requests using GET should only retrieve data
and should have no other effect on the data.

– POST: A POST request is used to send data to the server, for example,
customer information, file upload, etc. using HTML forms. The POST
method is most often utilized to create new resources.

– HEAD: Same as GET, but transfers the status line and header section
only.

– PUT: Replaces all current representations of the target resource with the
uploaded content.

– DELETE: Removes all current representations of the target resource given
by a URI.

The most commonly used methods are GET and POST.

• An HTTP request contains other information called request headers.The
headers provide much additional information such as the host where the
resource is located (Host), the response formats accepted by the client (Accept),
and the application used by the client to make the request (User-Agent). Some
important headers parameters are:

– Accept:Format file that are accepted by the client.
– Authorization: Identifies the permission level for the browser.
– Content-Length: Length of the body request.
– Date and time when the message was generated.
– Host: Specifies the server where the requested resource is hosted.
– Referer: Address of the previous web page from which a link to the

currently requested page was followed.
– User-Agent: Specifies which application (browser) is making the request.

• The request body part is optional for an HTTP message but if it is available
then it is used to carry the entity-body.
Here there is an example of HTTP request:

7

Key Concepts

Figure 2.2: Example of an Http request

2.1.2 Http Response
A response message is similar to the request but not totally equal and it’s sent by
the server. The aim of the response is to provide the client with the resource it
requested, or inform the client that the action it requested has been carried out;
or else to inform the client that an error occurred in processing its request. An
HTTP response is composed by following parts:

• Status code: The most important parameter of the response. Specifies which
is the status of the response, and how the server had reacted to the previous
corresponding request. Possible codes for this field are:

– 1xx Informational
– 2xx Success
– 3xx Redirection
– 4xx Client Error
– 5xx Server Error

The “xx” refers to different numbers between 00 and 99.Status codes starting
with the number ‘2’ indicate a success. For example, after a client requests a
web page, the most commonly seen responses have a status code of ‘200 OK’,
indicating that the request was properly completed.
If the response starts with a ‘4’ or a ‘5’ that means there was an error and the
webpage will not be displayed. A status code that begins with a ‘4’ indicates a
client-side error (It’s very common to encounter a ‘404 NOT FOUND’ status
code when making a typo in a URL). A status code beginning in ‘5’ means
something went wrong on the server side. Status codes can also begin with a ‘1’
or a ‘3’, which indicate an informational response and a redirect, respectively.

• Also here we can find headers that are helpful information for the client. Some
possible headers for a response are:

8

Key Concepts

– Date: The date and time that the message was sent.
– Expires: Gives the date/time after which the response is considered stale.
– Set-cookie: A cookie is set in this field when the server wants to send to

the client, either by setting or updating it.
– Location: Used in redirection(status code 3xx), or when a new resource

has been created. The Location response header indicates the URL to
redirect a page to.

• o The response body contains, if there is no error, the requested resource by
the client. Here there is an example of http response.

Figure 2.3: Example of an Http request

To have a full knowledge of request and response message it’s possible to see this
article. [3]

2.2 API
API is the acronym for Application Programming Interface, which is a software
intermediary that allows two applications to talk to each other. APIs allow products
and services to communicate in a particular way with each other, without the need
for them to know how the other party is implemented internally. This goes a long
way toward simplifying the work for both time and money savings. When creating
new tools and products or managing existing ones, APIs offer flexibility, simplify
design, administration and use, and provide opportunities for innovation. Some-
times APIs can be thought of as a form of contract in that before communication
between 2 parties occurs these describe how the 2 parties should communicate

9

Key Concepts

with each other and thus represent a form of agreement between 2 parties: if
Party A sends a remote request structured in a certain way, Party B’s software
will respond in another determined way. By simplifying the integration of new
application components into an existing architecture, APIs promote collaboration
between business and IT teams. Cloud-native application development, based on
linking a microservices application architecture through APIs, enables accelerated
development speed [4]. So thanks to the API a company is able to connect the
infrastructure thanks to cloud-based apps, and also share data with partners or
other external users. The following figure shows how APIs can be used by an
end-user and also what is their lifecycle.

Figure 2.4: How several entities interact with an API

As you can see an API goes to make available to an end-user(or even a partner of
a given company) to access a resource.The resource can be about a given product
or service, this depends on the core buisness of the company in question. The
developer creates an API that allows access to a resource, places this API within
an application that will then be used by a user. In this way the end user does not
have direct access to the resource in question but does so through an intermediary
mechanism, namely an API.There exist many kinds of APIs and so it’s possible to
do a categorization of them. First, however, a distinction should be made between
client and user in the Web context.

The client or Consumer represents the technical actor, which can be a client

10

Key Concepts

application(broswer, a mobile app) or a server application. This is usually au-
thenticated with a client-id (in technical jargon also api-key) and possibly a
client-secret(in technical jargon also api-secret). This must always be recognized.

The user, on the other hand, is precisely the human actor requesting a certain
resource at a certain instant. Typically it is authenticated with a username and
password. Authentication by the user is not always required since the API does not
necessarily carry sensitive information. Now we can categorize APIs from a channel
point of view and from a user point of view.With channel APIs you want to make a
differentiation from the point of view of the consumer or client accessing a certain
resource, a certain api. That is, to what kind of application a certain buisness
company is exposing one of its APIs and what kind of association there is between
the one exposing the api and the one who wants to exploit it. Channel APIs are
divided into Open API, Partner API and Internal API. Open APIs are available to
everyone; they are those that can be accessed simply by browsing Interner. The
second ones are those that are exposed to a particular partner of the company as a
result of an agreement between the 2 entities. Internal APIs refer to APIs that can
be accessed if you are an internal employee of the company. Below is a schematic
showing the characteristics for each individual group of API channel.

Figure 2.5: Classification of Channel APIs

While when we talk about User APIs we refer to what kind of resources can be
accessed. User APIs are differentiated into Public, Private and technical APIs.
The former are those that are available to anyone and therefore do not carry any
sensitive information or information about any particular user. Private APIs, in
contrast, have access to private resources and for that as can also be seen in the
diagram below also require user authentication. Finally, there are technical APIs,
which do not expose public domain information but at the same time do not require

11

Key Concepts

user authentication. To give an example of a technical API one can think of a
company, which makes quotes, and which applies a certain discount on a certain
quote only to a single partner. Since it does not want to let other partners know
about this discount it does not want this information to be public. Below is an
outline, not stringent as then each company and each developer can decide who and
what can access one of its resources, that allows for an overview between Channel
APIs and user APIs.

Figure 2.6: Channel User APIs

Another type of APIs that we use whenever we want to access a resource on the
Internet are web APIs. Web APIs, as the name suggests, can be accessed using the
HTTP protocol. It is a framework that helps you to create and develop HTTP
based RESTFUL services. Web API is used in either a web server or a web browser.
Basically Web API is a web development concept. It is limited to Web Application’s
client-side and also it does not include a web server or web browser details. If
an application is to be used on a distributed system and to provide services on
different devices like laptops, mobiles, etc then web API services are used. Web
API is the enhanced form of the web application.

A very important concept that needs to be discussed is how to protect APIs
and their security. Through APIs, companies transfer data and offer services.
Damaged, exposed or cyber-attacked APIs are the cause of serious data breaches
that put sensitive data such as medical, financial and personal information in the
public domain. However, it must also be remembered that not all data that is
transferred over the Internet is of equal value and therefore does not all require the

12

Key Concepts

same level of protection [5]. API security is implemented through 3 protocols that
will be addressed in later chapters: Oauth, SAML, OpenId Connect. Generally
speaking, it can be said that we need to be careful about some fundamental points
when it comes to API security:

• Token Implementation: you need to define trusted identities and allow them
access to the API through the use of tokens(this concept will also be explained
more fully in later chapters)

• Cryptography adoption: You need to implement digitally sign and possibly
encrypt messages. This can be done through the use of the TLS protocol.

• Identifies vulnerabilities: Keep your operating system, your network, your
drivers, and your APIs constantly monitored. Check the operation of all
components and identify any vulnerabilities that could be exploited to access
your APIs.

• It’s preferred to use a gateway API. They are the main coordination point for
APIs. Allows control and analysis of requests and how APIs are used.

Here is possible to see an example of API. Let’s imagine we have an application
where at some point the client wants to retrieve the list of exams from the server.
This can be an API that is called to obtain the list of exams.

Figure 2.7: Example of a simple API

2.2.1 Access Manager
The access manager is a solution in access management that provides secure access
to web-based applications, SaaS services, and buisiness-to-business federation

13

Key Concepts

interactions. The access manager, also provides, authorized,context-aware, and
secure access to Internet applications from anywhere, anytime.Access Manager uses
industry standards, such as SAML, OAuth, OpenID Connect, and Federation to
deliver federated single sign-on and supports multi-factor authentication, role-based
access control, and data encryption. Then are listed possible use cases of Access
Manager:

• Secure Web Access Management: Allows organizations to regulate their users’
access based on authentication context,role-based policies, multifactor access,
and more granular access control.

• Effective Partner Collaboration: Provides secure access to companies that are
in partnership. This allows access not to all corporate resources but only to
those applications for which it has been determined that they can be accessed.

• Simple and Secure Consumer Access Management: Delivers robust access
management including self-service on-boarding and SSO for your customers.
It enables your customers to sign-up and set up their own accounts using
social identities, such as Facebook, Google, Twitter, and LinkedIn.

To better understand these possible scenarios, it is good to understand what some
terms regarding access management mean. This chapter then also illustrates
possible solutions from both an architectural and a functional appoint of view.

• Single Sign On (SSO): It is a technical solution, which can be implemented in
a variety of ways, which allows a user to authenticate to several applications
without the need to remember and/or enter multiple credentials for each
application they want to access. One application is accessed and then through
the implementation of a protocol the others can be accessed as well. This has
the advantage not only from a time perspective but also the fact that one
does not have to remember as many credentials as there are applications to
which one wants to log in. You could store the credentials somewhere but this
would then carry the risk that someone could steal them.

• Identity Federation: In times where increasingly everything is interconnected,
companies need to share data about resources and users. This can be done
through the concept of identity federation, which allows a user to authenticate
on one system and pass the authentication context to another system, from
another corporate. We are not only talking about authentication, but as will
be seen in the next chapters, delegated authorization can also be implemented
through this concept. In this way both partners in the agreement can share
common information regarding a user.

14

Key Concepts

Although similar, the 2 concepts listed above are not quite the same . In that one
does not imply the other and vice versa. When SSO implies Identity Federation
it is just the case that maybe the 2 applications involved in the SSO procedure
belong to different web domains. Even in the opposite case we should not think
that identity federation implies mandatory SSO, as we can also use it to delegate
authentication or accounts to a third party system, thus without doing SSO.

Here it’s possible to see an example of architecture of access management to
better understand what are the main components. These concepts were taken from
the following article.[6]

Figure 2.8: Possible Architecture for an access manager software

It’s possible to see several components:

• Administration console: provides a unified console for configuring and man-
aging all components of Access Manager. Some of its tasks can be Resource
Management(such as policies and certificates), Health and Statistics monitor-
ing, Persistent configuration store.

• Access Gateway: It can be seen as the point of contact between the Internet
and access management software. It provides security services (authorization,
single sign-on, and data encryption) integrated with the identity and policy
services of Access Manager. Some of its key features are: SSO to protected
web services (it assumes the role of Identity Provider in a Federation with
an external company); Authorization to authenticated users; Multi-homing
that enables to use a single public IP address to protect multiple types of web

15

Key Concepts

resources; Caching functions in order to avoid that user must always be sent
to the web server.

• Analytics server: Analytics Server analyses usage, performance, and events
of Access Manager. It captures, filters, and analyzes the events that are
generated by Access Gateway and Identity Server.

• LDAP: It is the database containing the users that are registered by the access
gateway. It is very important and must be kept secure. Accesses to it must
be controlled.

This can be seen as a general access management architecture. Then in practice
each access manager implements its own model from an architectural point of
view. The example shown below is based on the architecture used by Netiq access
manager in which it can be seen that the access gateway and the identity server
are perceived as 2 separate entities . This is a possible flow of protecting a web
resource to understand how access management works:

Figure 2.9: How access manager works when a web resource is requested

1. A user wants to access to some resource so sends a request to the access
gateway.

2. Access gateway redirects the user to the identity server, which asks to the user
for its credentials.

3. After the user inserts its credentials, the identity server verify them by asking
to the LDAP directory.

4. Identity Server returns an authentication artifact(a pointer in which is specified
where to take the information on the Identity Server) to the access gateway
through the browser in a query string.

16

Key Concepts

5. Access Gateway retrieves the user’s credentials from Identity Server through a
direct channel between them.

6. Access Gateway injects the basic authentication information into the HTTP
header.

7. The web server validates the authentication information and returns the
requested web page.

In addition to the use cases for which u access manager can be used, it is also
good to make a distinction about the possible interaction patterns that an access
manager must handle in relation to the type of user who wants to access a company’s
resources. Distinctions can be made between B2B, B2C and B2E.

• B2C: When we talk about B2C (Business to customer) we mean an interaction
between customer and business i.e., when a customer of a company wants to
access its resources.

Figure 2.10: Example of B2C model interaction

What can be seen from this image is that a user(who wants to log in to a
particular company to obtain a particular resource) can either log in by going
and giving his credentials (which will then be verified by the access manager
on the LDAP) or he can do so through social login. The latter option involves
going in with a Facebook or Google account or some other type of Identity
Provider. Obviously to achieve this requires that the access manager of the
business unit be in federation with Facebook or Google and then that some
form of "agreement" between these companies has already been pre-established.
In such a context what must be put a foreground is yes security so that the
user has access securely, but user-experience must also prevail as the user may
decide if not to become a customer of another company.

17

Key Concepts

• When we talk about B2B(Business to Business), we mean communication
between a company and its business partners.

Figure 2.11: Example of B2B model interaction

A first thing that stands out here is the fact that the number of federations
that the access manager has to establish is greater than in the previous case.
Also, in this context, user-experience is no longer so crucial since one does not
have to attract a specific user customer in this case. Note also that the core
business part is more or less the same in that what changes is the way the
access manager has to interact with outside the company.

• B2E(Business to employee) refers to the way in which an employee of the
company has to access a resource within the company.

Figure 2.12: Example of B2E model interaction

Here, therefore, the concept of federation is lacking since within a company
a certain employee accesses it through credentials issued by the company
itself. Here security is very important in that a certain employee(obviously
depending on the position they hold within the company) might want to access
sensitive information. So a main point in this context is strong-AuthN(maybe

18

Key Concepts

going to use Multi-factor AuthN). The concept of SSO here is important but
within the company in that you can think of a given user wanting to access
multiple services without always going to re-enter credentials. So the internal
services have to be federated with each other.

19

Chapter 3

Access Management
Processes

In this chapter, the main processes underlying access management software, namely
those of authentication and authorisation, will be explained. It is indeed necessary
to distinguish the 2 processes in a clearly defined manner. If the former indicates
who has access, the latter refers to what is authorised to after access has been
granted. To give a concrete example, let us suppose that a person wants to take
his car from the condominium garage (therefore shared by several people). Access
to the garage is granted by the authentication process. Only persons who can do
this should have access to the garage, so for simplicity of reasoning, only those who
live in the building. But after gaining access, a person living in the building is only
allowed to take his own car, not those of others. So this is where the authorisation
process comes in, i.e. the consent for a particular person to only be able to take
his or her own car.

3.1 Authentication
There are different definitions of Authentication:

• RFC-4949 (Internet security glossary)
“the process of verifying a claim that a system entity or system resource has a
certain attribute value”

• NIST IR 7298 (Glossary of Key Information Security Terms):
“verifying the identity of a user, process, or device, often as a prerequisite to
allowing access to resources in an information system”.

An important common point of these two definitions is that when we talk about
the authentication process e define authentication of an actor meaning that it could

20

Access Management Processes

be not only a human being (interacting via software running on hardware), but
also a software component or a hardware element (interacting via software).
While authenticating an actor, there are three categories of factors that can be
used:

• Knowledge: authentication relies on something that the user knows, e.g. static
passphrase,code, personal identification number. The associated risk is in the
storage, in the way it is possible to demonstrate that knowledge and in the
way it is transmitted.

• Ownership: authentication relies something only the user possesses (often
called an "authenticator"), e.g. token, smart card, smartphone. The associated
risks can be in the authenticator itself: it can be infected with a malware, or
it can be manufactured in a country that imposes some government control
on it, or it can be stolen, cloned, or used without the owner’s authorization.

• Inherence: something the user is, e.g. a biometric characteristic (such as
a fingerprint). The associated risks can be in counterfeiting and privacy:
it is much worse than the previous cases, because for example a biometric
characteristic cannot be replaced when "compromised".

3.1.1 Basic Authentication
HTTP basic authentication is a simple challenge and response mechanism with
which a server can request authentication information (a user ID and a password)
from a client. Basic authentication is considered the simplest method of access
control access to web resources as this does not require the use of cookies, session
ids and login pages. In addition, this authentication methodology does not require
prior to credential exchange the handshake of a connection. The client will have to
authenticate itself for each realm. A realm means the scope, that is, it identifies a
set of resources for which access can be gained with certain credentials. Going to
analyze in more detail what happens:

• The client wants to make access to a resource on a server, and so you type in
the url for that resource without any kind of credentials.

• • The server, which wants that resource to be protected, then lets the client
know this by going and sending an HTTP 401 response. That response
contains an HTTP header called WWW-Authenticate. The header for such a
ripsposta is made this way:
WWW-Authenticate: Basic Realm ="realmexample"

• The client in turn then enters its credentials. The user will enter them within
a modal that opens on the page on which he is browsing. The credentials are

21

Access Management Processes

b-64 encoded and then inserted within an HTTP request in the Authorization
header in this manner:
Authorization: b64("username:password")

Web clients can store the authentication information for each realm so that users
do not need to retype the information for every request. When the web client
has obtained a user ID and password, it resends the original request with an
Authorization header. Alternatively, the client can send the Authorization header
when it makes its original request, and this header might be accepted by the server,
avoiding the challenge and response process.

From a security point of view this schema is not considered to be a secure method
because the user ID and password are passed only b64-encoded over untrusted
network .So this schema can be considered secure only in the case the connection
between client and server is secure, for example if TLS protocol is used. For more
information about this topic is possible to see the document.[7]

3.1.2 Username and Password Authentication
Passwords throughout history have been used to prove whether the user was really
who they claimed to be. They have always played a key role within security as
they are the key to access sensitive data and resources. When a user intends
to register for a site, he or she is required to choose a password that he or she
must then re-enter when he or she wants to log in. There may be policies on
password choice, i.e., going to use a minimum number of alphabetic characters
(upper and lower case), having to enter numbers and/or special characters or not.
These considerations are obviously made by the one managing the system to which
you want to log in, and you decide this based on the sensitivity of the data to be
protected. Obviously there has to be a balance between the security requirements
demanded for the choice of password and the user experience. Now let’s see from a
more technical point of view how password is sent to the server and how it’s stored
on the server side.
We have to imagine that on the server side there is a table containing username
and password in clear or with a function H computed over the password. So there
is first an authentication request from the server, the client answer with its UID
and then the server challenge the client with a password request and the client
response with its secret. Analyzing this configuration from a security point of view
there are 2 question that we need to ask ourselves:

1. “How the password is transmitted ?”

2. “How the password is stored on the server side ?”

22

Access Management Processes

Figure 3.1: How client interact when using Password authN

To answer to the first question the password can be sent in clear but then everybody
can read it and it is very dangerous. To avoid this kind of situation we have to
use a secure channel between client and server, so for example using TLS protocol.
In order to increase the security on the server side, it must be made sure that
the password is not stored in clear on the database. Of course if it were so then
the comparison with the secret coming from the client and the one stored on the
database would be easier and immediate but not at all secure. So what one has
to do is to store a digest of the password, using a hash function. To understand
what a digest and a hash function is I refer to this article where it is explained in a
simple way.[8]
In this case even if the database with all the passwords is stolen then anyway the
attacker is not able immediately to read all the passwords.
Password-based authentication is usually convenient for the user, but only as long
as he has to remember just one password, so a reusable one. The current situation
is unfortunate, because in some applications there is the need of several passwords,
that cannot be kept in mind by a person, so they would need to be stored user-side,
and there insecurity starts. Some disadvantages of password-based authentication
are:

• The user-side password storage: it could be written on a post-it or on a client-
side password manager (also called password wallet), that stores it encrypted
typically using only one passphrase;

• Guessable passwords;

• Server-side password storage: the server must know the password in cleartext
or in an unprotected digest of it (an important attack for this problem is the
“dictionary attack”.[9]);

• Password can be sniffed while it is sent across the network;

So the best practice to use when is used this kind of authentication should be:

23

Access Management Processes

• You should use a mixture of alphabetic characters (uppercase and lowercase),
including digits and special characters.

• Use a long password, at least 8 characters.

• Never use dictionary words ,because the attacker uses dictionary from all
languages.

• Frequently change the password. If the same password is kept for a long time
then the attacker has more time to do the computation of it.

3.1.3 Identity Federation
The concept of identity federation was already introduced in the second chapter.
Here we will expand on that concept, first descriptively and then going on to talk
about 2 standards on which this concept relies with regard to authentication, such
as SAML and OpenId Connect. We also talk about federation when we talk about
authorization but this will be addressed later in this chapter. To better understand
this concept, it is good to first understand the roles that are played.

When we talk about the Relying Party or Service Provider (SP) we are talk-
ing about the actor to whom a given user makes access request for a given resource.
Whereas when we talk about Authentication Server or Identity Provider (IdP) we
are talking about the actor who grants the user permission to be able to access
the requested resource. To be more precise we usually talk about Relying Party
and Authentication Server when these belong to the same Web domain and this
relates more to the case of a delegated Authentication. While we talk about SP
and IdP when these do not belong to the same domain (same web environment),
and in this case we talk about federated authentication. So underlying the concept
of federated authentication there has to be an awareness of an agreement between
a service provider(maybe one business company) and an IDP (for example another
business company). Today an enterprise has a huge number of employers, partners
and customers so has to find a way to handle all these access in a simplified way.
Federated identity gives the possibility to some individual to access to various Web
sites with just one sign in. Companies nowdays have to share between them a
lot of informations and so have to estabilish between them business-agreement
and policies for securely sharing information; they must also comply with federal
laws regarding the exchange of personal data. Since September 2001, the Liberty
Alliance (www.projectliberty.org),a global consortium of more than 150 companies
and nonprofit organizations, has been developing open standards for federated
identity and identity-based Web Services. Here the complete article.[10].
Now we can see how federated authentication is implemented and which standards
are used.

24

Access Management Processes

SAML

The Security Assertion Markup Language (SAML) standard The Saml standard
defines an XML-based framework for the secure exchange of information across
enterprise boundaries between business partnerships. This is done by issuing as-
sertions that one application sends to another across the enterprise boundary. In
addition, the SAML standard also defines the rules and syntax for creating and
communicating with these assertions.
To understand this complex protocol is a good way to start from its architecture:

Figure 3.2: SAML Architecture

The core of SAML protocol is the assertion or also the response that is emit-
ted from an Identity Provider (the request from a Relying Party is not mandatory).
SAML assertions carry statements about a principal that an asserting party claims
to be true. The valid structure and contents of an assertion are defined by the
SAML assertion XML schema. At the heart of the framework defined by the SAML
standard are assertions i.e., the response issued by an Identity Provider (the request
from the Relying Party, as will be seen in a stream later , is not necessary). Then
there are the SAML protocols that are used to cause an appropriate response tied
to a given request to be returned. Then we find the bindings that define which
protocol (HTTP or SOAP) is used to transpose these SAML messages. And finally,
at the highest level we find the profiles, which by putting together assertions,
messages, and bindings, define which business case is being analyzed and thus for
which situation it is intended to use the SAML standard. On the right side of the

25

Access Management Processes

figure are two other important concepts namely:

• Metadata: It is an xml file that is exchanged between the 2 partners before
communication begins. This specifies who the Idp is within a federation, who
the SP is, and the keys that are used for signing and encrypting messages.

• Authentication context: This concept is used when an SP wants to know
how a user is authenticated on an Idp. It is good to remember that the
authentication scheme used between the user and the Idp is not something
defined within the SAML standard but free and independent of it. To provide
such information an authentication context can be used in the authentication
statement of an assertion (or referenced). It may also happen that it is the
SP that requires a certain authentication context, and this can be done by
going to declare within a SAML request that the user is to be authenticated
with a certain mechanism, such as with multi-factor authentication.

•

Now that we have seen what the SAML architecture is in general now we can see
what the various components of that architecture refer to by going to see in more
detail what values they can take on:

• Assertion: SAML allows for one party to assert security information in the
form of statements about a subject. SAML defines three kinds of statements
that can be carried within an assertion:

– Authentication statement: This assertion is related to the authentication
performed by an identity provider. An issuer declares that: A certain
subject S, at time T, was authenticated with the mechanism M. With this
definition is important to specify that SAML doesn’t perform any kind of
authentication (it’s not part of this protocol).

– Attribute statement: This assertion is made when an Idp wants declare
that: the subject S is associated with one or more attributes that currently
have specific values. For example a certain user “Matteo” in a specific
security domain “polito.it” is associated with “Department” and the value
is “DAUIN”.

– Authorization statement: This assertion is sent from an Idp when it wants
declare that when it wants to declare that a certain decision has been
made regarding access to the request made by a subject S for a certain
resource R of a type T based on evidence E

To better understand what an assertion really is here there is an example of
Authentication statement and what are the meaning of different lines.[Fig 3.3]

26

Access Management Processes

Figure 3.3: Assertion with Authentication Statement

The first line begins the assertion and contains the SAML assertion namespace.
From the second line to the sixth one are represented informations about
the assertion, such as protocol’s version, when the assertion was created and
who is the issuer. From the seventh to twelfth line there are informations
about the subject of the assertion. Then it’ s possible to see conditions of the
assertion. In this case these include the period of validity of the assertion. And
finally there is the authentication statement.In this case this indicates that
the subject was already authenticated on the Idp using a password-protected
transport mechanism at given date and time.

• • Protocols: SAML, as described earlier, describes a set of generalized re-
quest/response protocols. Here by way of example only 2 will be mentioned:

– Authentication Request Protocol: defines a way in which a sender can
request an authentication request about a user and also, optionally, an
attribute request. This protocol is used by the SSO Web Broswer when
einderizing a user from an SP to an IdP when it needs to obtain an
assertion to establish a security context for the user at the SP.

– Single Logout Protocol: It serves when the user has multiple active
sessions on different applications. This protocol causes the user to log
out simultaneously from all applications. This process can be initiated
directly by the user in a manual mdo or also caused by the SP or Idp due
to a session timeout or administrator command.

27

Access Management Processes

• Bindings: A binding defines how a message is carried through the underlying
protocols. Here we see 3 main types of bindings:

– HTTP Redirect Binding: It is used when a message is transported using
HTTP redirect messages (302 status code).

– HTTP Post Binding: Defines how SAML messages are transported within
a b64-encoded content of an HTML form control.

– HTTP Artifact Binding: Used in the Artifact Resolution Protocol. In this
case, the assertion is not sent directly with the response to the authen-
tication request, but an artifact(a small fixed-length value representing
only a reference) is passed first. The artifact reciever uses the Artifact
protocol to request the message creator to dereference the artifact and
return the actual protocol message. The artifact is usually sent via an
HTTP redirect, while the request and resolution response occur via a
synchronous binding, such as SOAP.

• Profiles: SAML profiles define how assertions, protocols, and bindings combine
to provide a greater form of interoperability. Here we will look at 2 in
particular:

– Web Broswer SSO profile : defines how 2 entities exchange an authentica-
tion context to achieve the single-sign-on concept with a Web broswer.
An example of this profile will then be presented.

– Name Identifier Mapping Profile: Defines how Name Identifier Mapping
Protocol is used. This protocol allows to map a name identifier into
another one. It permits, for example, one SP to request from an IdP an
identifier for a user that the SP can use at another SP in an application
integration scenario.

Now to have a full vision of the protocol is proposed an example of a type of profiles,
the Web Single Sign On Profile.

This profile provides a wide variety of options, primarily having to do with two
dimensions of choice: first whether the message flows are IdP-initiated or SP-
initiated, and second, which bindings are used to deliver messages between the
IdP and the SP. When it comes to SP-initiated, it is easy to guess that first there
will be a SAML request from the SP with subsequent response/assertion from the
Identity Provider. Whereas when we talk about IdP-initiated we are talking about
a flow that does not involve any request from the Service Provider but directly the
issuance of an assertion by the IdP.

A second type of choice that can be implemented depending on the context is the

28

Access Management Processes

type of bindings i.e., as described earlier, how the SAML messages are transposed,
i.e., both the request (if any) and the assertion. It should first be noted that the
transport of the two messages does not necessarily have to be the same e.g. you
may have the request being made through an HTTP Redirect while the assertion
(or response) is sent through an HTTP Post. Two cases will now be analyzed
regarding the Web-SSo Profile. A first in which the request is made via HTTP
Redirect and the response via HTTP Post. A second in which the request is via
HTTP Post and the response via HTTP Artifact. Both will be SP-initiated.

Figure 3.4: SP-Initiated SSO: Redirect/POST Bindings

1. The flow begins with the user attempting to visit sp.example.com. Since he
has no logon context on this site, he must authenticate himself.

29

Access Management Processes

2. At this point the SP sends a Redirect(code 3xx) message to the broswer,
there where the message header contains the URI destination of the Idp along
with an Authentication Request encoded as a URL query variable named
SAMLRequest.

3. The Single-Sign-On service determines whether the user has an authentication
context that is to comply with the default or what is requested within the
AuthNRquest, i.e., the authentication requirements. If it does not have it then
the user is challenged for it to perform the correct log-in on the IdP.

4. The user provide valid credentials for authentication process.

5. The Single-Sign-On service constructs a SAML assertion, which represents
the user’s authentication context. Since an HTTP POST is used, then the
assertion is digitally signed and placed inside a SAML <Response>. The
<Response> message is then placed in an HTTP form as a hidden form.

6. The browser sends an HTTP Post to the SP’s Assertion Consumer Service.

7. An access check is made to estabilish if the user has the authorization to access
to the desired resource.

Now I’m going to analyze the case where the request is made through HTTP POST
and the response is transported through HTTP Artifact. It is useful to send the
authentication Request via post and not redirect when there may be space issues
as the URL has length limits.

1. As before the user wants to access to some resource on the SP’s site but
doesn’t have a valid logon session.

2. The SP sends an HTTP response (code 200 ok) to the broswer. The HTTP
form contains a SAML <AuthNRequest> encoded as the value of a hidden
form.

3. As before the SSO determines if the user has already a valid logon session on
the Idp. If not the user challenge the user to provide valid credentials.

4. The user provides a valid username and password.

5. The Identity Provier creates an arifact, containing the id of www.example.org
and a reference to the <Response> message. You can see how the Artifact
binding then allows this message to be given to the Sp either with HTTP
Redirect or with HTTP Post. Note also how since the response is not invaded

30

Access Management Processes

Figure 3.5: Fig 18-SP-Initiated SSO: POST/Artifact Bindings

at this time it is not necessary to go in and digitally sign that message.
However, if this is not done then , if the SP in the future needed to prove the
assertion, this would not be possible since it is not signed.

6. The SP’s Assertion Consumer Service now sends a SAML <ArtifactResolve>
message containing the artifact to the IdP’s Artifact Resolution Service end-
point.

7. The IdP’s artifact resolution service excises the message from the artifact and
locates the corresponding response message associated with it. This is placed
within a SAML <Artifact Response>, which is returned to the SP. The SP,
at that point, extracts and processes the Request, and based on it , creates or
does not create an authentication context for the user in question.

8. An access check is made to estabilish if the user has the authorization to access
to the desired resource.

31

Access Management Processes

This case is simpler (keys or certificates are not needed) but it takes a bit more
time because it is needed to open a separate network channel

This was just a small description of a fairly complex protocol used for multi-
ple purposes. Here only a general level description was given to understand how
the concept of Identity Federation can be implemented and specifically regarding
the Single Sign On Web Broswer case. To go deeper into the protocol and to
understand its practical aspects I report here the reading of this document.[11]

SAML is XML-based. XML is simple but quite heavy, so SAML is typically
used in PC or server-based envoirements. This means that is difficult to support
in light/mobile envoirements. Some people use SAML, while others use OpenID-
connect, which makes things very similar to SAML but uses JSON instead of XML.
So then there is the description of OpenId-Connect but first to better understand
this protocol there is a short introduction on what is a JSON Web Token.

Json Web Token

The Json Web Token(JWT), pronounced “jot”, is an open standard, which defines
a way to securely and contentually transmit information over an insecure network,
in the form of JSON objects. Due to its small length, this can be transmitted in
various ways: in a URL, in an HTTP POST, in an HTTP header. It is also faster
in transmission, and less verbose than xml. The result is that when encoded this
information is smaller than in a SAML assertion. A Json Web Token can be used
in several ways:

• Authentication: After a user has successfully authenticated to an application
this can receive a token ID, within which is information about the user.

• Authorization: When a user gives permission to an application to access a
resource on his behalf, that application through a mechanism that we will see
later in this chapter(Oauth) receives an access token. This access token is
precisely what will allow access to the application and this can be a JWT.

• Information Exchange: The JWT is also useful for exchanging information
between two partners. This is because being digitally signed then one of the
two partners can understand that this token, and therefore this information, is
from the correct partners and that it is not someone else who has modified it.

A JWT consists of three concatenated Base64url-encoded strings, separated by
dots(.):

• JOSE Header: contains metadata and algorithms to digitally sign the token.

32

Access Management Processes

• JWS Payload: contains what contains the real content of the token, that is,
what you want to transport. For example, it can transpose a user’s identity
and the permissions he or she has.

• used to validate that the token is trustworthy and has not been tampered
with. When you use a JWT, you must check its signature before storing and
using it.

An example of JWT is given in [Fig 3.6].

Figure 3.6: Example of JWT

On the right part of the image is possible to see how it results when it is de-
coded an what are the several fields of the three parts.

33

Access Management Processes

OpenID-Connect

OpenID-Connect is a simple identity layer built on top of the Oauth 2.0 protocol.
Oauth protocol will be discussed later in this chapter. It enables clients to verify
the identity of End-User based on the authentication performed by an Authoriza-
tion Server. OpenID Connect allows clients of all types, including Web-based,
mobile, and JavaScript clients, to request and receive information about authen-
ticated sessions and end-users. OpenID Connect implements authentication as
an extension of the OAuth 2.0 authorization process. Use of this extension is
requested by Clients by including the openid scope value in the Authorization
Request. Information about the authentication performed is returned in a JWT
called an ID Token.Different terms are used in this protocol to refer to the various
entities involved. The client in this case is the relying party (RP) that wishes to
use OpenId-Connect for authentication. The server, which is the OpenId-Provider
(OP), is conceptually similar to the IdP, has various endpoints:

• Authorization endpoint: it is called authorization, but it performs authentica-
tion.

• Token Endpoint: something that verifies if a certain token generated during
the protocol is valid or not.

• UserInfo endpoint: if the user has given the consent, then the client can
retrieve information about the user.

There are 3 possible flows that characterize the protocol and they are:

• Authentication code flow

• Implicit flow

• Hybrid flow

The flow used is determined by the response-type value contained in the Autho-
rization Request.

Let us first analyze the case of Authorization Code Flow.[Fig 3.7]

• As you can see, the flow starts from a user agent who wants to access a resource
on the Relying Party.

• The latter not having an authentication context for that particular user
redirects the user on the OIDC Provider.

• The IdP challenges the user to authenticate and then there may be a request
to the user to authorize the client to act on the user’s behalf.

34

Access Management Processes

Figure 3.7: OIDC-Authorization Code Flow

• Once the user has given consent, the provider grants an authorization code.
This code is given to a user agent for a specific client. After that this code
will be precisely used by the RP to show that it is the client in question.

• Then the client using this code requests a response to the Token Endpoint.
Then it receives a response with the ID Token and an access Token in the
response body.

• Client validates the ID token and retrieves the End-User’s Subject Identifier.

In this flow it can be seen that a token is not directly issued by the OIDC Provider
but an authorization code is first granted. This is useful in situations where you
do not want a token to be passed to a user agent and possibly other malicious
applications with access to the User Agent. In this flow The OIDC Provider can
also authenticate the client before exchanging the Authorization Code for an Access
token. This flow is useful for clients who can keep a client secret between themselves
and the Authorization Server.

35

Access Management Processes

Now let’s analyze the implicit flow,[Fig 3.8].

Figure 3.8: OIDC-Implicit Flow

• The client prepares an authentication request and sends it to the Authorization
Server

• Authorization Server authenticates the end-user and obtains his authoriza-
tion/consent

• Authorization Server sends the End-User back to the Client with an ID Token
and, if requested, an Access Token. Then, the client validates the ID token
and retrieves the End-User’s Subject Identifier.

The Implicit Flow is mainly used by Clients implemented in a browser using a
scripting language. The Access Token and ID Token are returned directly to the
Client, which may expose them to the End-User and applications that have access
to the End-User’s User Agent. The Authorization Server does not perform Client
Authentication. This flow eliminates a direct communication between Service
Provider and Identity Provider just as was done in SAML by making use of HTTP
GET and HTTP POST. A good document about OpenId connect and his features
can be found here.[12]

36

Access Management Processes

3.2 Authorization
So far I have talked about what the authentication process is, that is, going to verify
who is the actor who wants to access a given system. In this section I will go over
the authorization process and the standards that can be adopted to implement it.
This process is such that a decision (positive or negative) is able to be given on the
request by a user for a given resource present within the system. Authorization is
thus the process by which access to a given resource is granted or denied. Assuming
that someone has logged in to a computer operating system or application, the
system or application may want to identify what resources the user can be given
during this session. Authorization is seen both as the preliminary process for values
to be set for access to a given resource (by the administrator) and the verification
of those values when a request(by the user) arrives to gain access to that resource.
Logically the authorization process is preceded by authentication.

To give an example, we can suppose that Bob wants to gain access to a garage
inside which there will also be his car that he wants to open. Bob is able to gain
access to the garage as he has credentials to do so. And that is the authentication
process. But it is not pretended here in that he not having permission to be able to
open any machine in the garage has to be regulated by some mechanisms (policy) to
make sure that he can only access (and therefore can open) the resources for which
he is authorized to do so (and therefore only the machines that he is authorized
to open). And this second process is the authorization process.
Typically, authorization to a resource is determined by security policies through
evaluation of which it is possible to understand whether or not a user is allowed
to gain access to it. There are different types of security policies that also allow
different granularity of authorization.
The first example of user policies are ACLs(Access Control List). They were based
on lists for each user where it said what resources each user could access. However,
this created maintenance problems due to the increasing number of resources.
Other types of policies have since replaced them.

3.2.1 RBAC and ABAC
Authorization policies are thus a way to be able to set authorization values so that
a request can be either fulfilled or denied.

A first example of policies are those that go by the name of Role-Based Ac-
cess Control (RBAC). These are the simplest and are based on granting or denying
authorization based on the role that the requesting user plays.So in such a scenario
you have that one user can also have several roles and can access various resources.

37

Access Management Processes

While attached to the resources there will be policies that specify which people in
a particular role can access them.These are easy to adopt but they only provide
coarse-grained control access in that they only differentiate access based on the
role of a given user and thus make the accesses also quite static. In addition,
there is also a scalability problem here in that as resources increase (which require
the creation of new roles to access them) one would always have to go and make
updates. Maintaining roles becomes challenging as more resources are added to
networks, causing role explosion. Another problem that might be there is when a
worker need to make access to a resource for a given period of time but the scope
of access to that resource is outside the permissions for this user’s role. With the
RBAC policy this could not be achieved since it has a static view of accesses.

Another type of policies are those called Attribute Base Access Control(ABAC).
These security policies consider not only the role a user plays but are based on
different attributes of the user, attributes of the resource and context attributes.
These allow a more granular level of access as they are based on several factors.
For example, you may have that a user in a certain role can access a certain
resource but only for a period of the day and not 24/7. Examples of user attributes
are ID, name, organization, role, security clearance, nationality, etc. Resource
attributes include name, owner, data creation date, etc. Examples of environmental
attributes are access location, access time, and threat levels. These policies are more
secure in that they restrict access but are more complicated to manage than RBACs.

Both types of policies have advantages and disadvantages.[13].They can also be
used in a complementary way by going to use RBACs for a first access control and
ABACs for a second as shown in the figure.[Fig 3.9] As you can see in the figure

Figure 3.9: RBAC and ABAC policies

you have the implementation of both types of policies. On the reverse proxy where

38

Access Management Processes

requests must be forwarded for all applications protected by it the control can be
more coarse-grained and fast. While then there must be another control on the
servers hosting the applications so that this control is more targeted and secure i.e.
respecting what are the ABAC policies.

3.2.2 Session Cookie
With policies then you can give access to a resource for a user. The mechanism
of first authenticating and then authorizing is not something that has to happen
all the time. In fact, if a user had to, for each request, first authenticate and then
have each request authorized this would affect the speed and performance of a
software and also of client-server communication. For this reason, a first mechanism
that arose to make sure that the server hosting the resource can remember the
information received from the client are the so-called session cookies. Session
cookies contain a Session-id that the server sends to the client once the client
has made a request for a resource. From there, the client whenever it needs to
access that resource can present the session cookie to the server and retrieve a
resource again. So, as you can see in Fig 3.10, the server once it receives a request

Figure 3.10: Session Cookies

from the client, either for authentication or authorization for a resource, goes and
creates a session for the user by going and saving the parameters (that the user
has decided to send it) in a database. Once this is done it sends a session id in the
cookie (to the client) thanks to which at the next request it can go and retrieve the
session information within the database. Cookies, however, are not free of security
problems. In fact, there are several attacks that can occur against cookies. For
more in-depth reading on these types of attacks I recommend this article.[14]

3.2.3 Oauth 2.0
After talking about how security policies can be applied to a user and seeing a
first way to manage a session, we are now going to look at the Oauth2.0 protocol.

39

Access Management Processes

This protocol, as already mentioned in the last chapter talking about Oidc-connect,
was born to implement delegated authorization. Oauth2.0 is a delagation protocol
that allows a resource owner to authorize software to access the resource on his or
her behalf without impersonating that person. It is good to give an example to
better understand what we are talking about. Suppose there is a user, Bob, who is
playing Candy Crash and has his own Facebook account. At some point in the
game Bob wants to post his achievement (obtained on Candy Crash) on Facebook.
So, what he wants to do is to allow a software (in this case Candy Crash) to be able
to access a resource (his Facebook account) without, however, being impersonated
by Candy Crash, or rather without such software going to possess John’s login
credentials, for security reasons that will be analyzed shortly.
In order to implement this process even in the past there were mechanisms that
however presented problems such as credential sharing. This is because perhaps
in the past if a software wanted to access the resource on behalf of the user then
they could ask the user to enter their credentials and then present these to the
protected resource. Here 2 problems arise. The first is that such a mechanism
required the user to have the same login credentials to access the software and the
protected resource. The second is that the resource owner must trust the software
that wants to access the resource since it is sharing its credentials.Moreover in the
domain of the protected resource there can be no distinction in access between the
resource owner and the software (the client) since both use the same credentials in
the same way.
Another possibility would be to give a univresal key that allows the software(client)
to be able to access the resource domain by being able to impersonate any user it
wants. This would solve the credential sharing problem but would create an even
bigger one in that now the client can access all its resources.For these reasons, the
Oauth2.0 protocol was born, an evolution of Oauth1.0 (abandoned due to security
concerns) that aims precisely at delegating access from a resource owner to a client
but in a secure way.Before we delve into what the Oauth2.0 flows are, we need to
understand what entities are involved.

• Resource Owner: As the name implies it is the owner of what you want to
access. And he is the one who wants to delegate a client(called sofware first)
to access on his behalf.

• Oauth Client: The client is the one who will make access to the protected
resource having obtained an authorization.

• Authorization server: The authorization server is the component that authenti-
cates, if necessary, the user in that perhaps he is yes registered on that domain
but does not have an active session at the moment, after which it grants the
client an access token that is the key to the whole Oauth2.0 protocol.

40

Access Management Processes

• Resource Server: The server where the desired resource is hosted.

Now it is time to move on to analyze the various Oauth flows. There are 5 of them,
but actually today Implicit Grant Flow is not used much anymore.

A first flow that is going to be analyzed is that of the Client Credential Flow
(Fig 3.11). If only this flow existed Oauth would not make sense since here the
resource owner coincides with the client and so as you will see it is exactly the same
process as when the server grants the client cookies. In this case, the client begins

Figure 3.11: Client Credential flow

communication by presenting the client id and client secret. After validating the
client’s credentials, the authorization server grants an access token to the client,
which in turn will use it when it needs to make a request for a resource. At that
point the resource server will validate the access token by going to check whether or
not it is valid and if so will give access to the resource to the client. The validation
of the access token, as the Oauth standard should be done by the Authorization
server, but since Oauth2.0 is a flexible standard there are several implementations

41

Access Management Processes

of it. This is an advantage of Oauth2.0 and consequently of OpenId Connect over
SAML which is a more rigid standard.

Now we see another stream called Resource Owner Password Credential (ROPC)(Fig
3.12). In that flow actually goes to implement the concept of credential sharing in
that the resource Owner, this time a separate entity from the client goes to enter
its credentials on the client . For this reason such a flow is used when there is
complete trust in the client being used. First thing different from the previous flow

Figure 3.12: ROPC flow

is that here you have the actual presence of a resource owner. Also noticeable is
the presence of a user repository where user credentials are checked.

42

Access Management Processes

What happens is that the resource owner gives its credentials to the client. The
client for verification sends its credentials and those of the resource owner to the
Authorization Server, which verifies them, and if they are correct returns an access
token and a refresh token to the client. The access token as in the previous flow is
used to gain access to the resource. The refresh token will be used to obtain a new
access token when the previous one has expired.

As it is possible to notice both in the previous stream and in the ROPC, there is
no user-agent present. This is because these 2 streams are used for back-channel
communication. Instead, we will speak of front-channel communication when the
communication also involves a user agent. Back-channel communication is more
secure. Think of communication between 2 servers communicating with each other
through the backend. Front-channel communication is used to interact with the user.

Now we are going to talk about the flow that represents the real essence of the
Oauth2.0 protocol as it is the most comprehensive.The flow is called Authorization
Code Grant Flow(Fig 3.13). In this flow the user begins communication. From the
client he wants to access a resource that is on the server and then is redirected
to the Authorization Server where he presents the client id. The first thing the
authorization server does is to see if that user is authenticated.If not, it challenges
the user to authenticate himself. Important thing to note is that Oauth2.0 does
not define an authentication protocol but that is outside the scope of the standard.
If authentication is successful then the client is granted the Authorization Code, a
base-64 encoded string, which will then be used by the client to show the Autho-
rization Server that it is indeed the client in question for whom the authorization
code was given to the resource owner.

The client then, when it wants to apply for an access token, will send its own
credentials to the AuthZ server in addition to that code. If the validation is correct
then an access token will be released to the client which will then be used to access
the resource. Also here you can see the release of the refresh token as well, which
will then be used to be able to renew the access token. So this Authorization Code
appeared in this flow is a demonstration of the delegation of the resource owner to
the client to be able to access a given resource. Note then how while the Authoriza-
tion Code is exchanged on the front-channel, the access and refresh tokens are given
by the server directly to the client in the back-channel, this is because it is not nec-
essary, and may be even dangerous, for the access tokens to go through a user-agent.

Not present in this schema but another important concept in the standard is
that the access token has a parameter which is the scope. This is to indicate the
access scope of a given token and therefore what resources can be accessed with

43

Access Management Processes

Figure 3.13: Authorization Code Flow

that token.

Now we are going to discuss a flow, the Implicit Grant flow(Fig 3.14), thought of
when the client’s confidentiality cannot be guaranteed. In previous flows the client
could guarantee its confidentiality to the server by going to give its client-secret.
As can be seen here, after the initial phase (up to the possible authentication of the
user on the authorization server), the issuing of an access token is done directly.
This is because, as already mentioned, the flow is designed for public and therefore
non-confidential clients. Examples of public clients can be Mobile App or single-
page application. A single-page Application does not have a backend server and
when then cannot perform back-channel communications. In the AuthZ code grant
flow it is true that the authorization code is exchanged on the front-channel but
the secret key then to decrypt it was exchanged on the back-channel and stored
on the back-end of the client. Here since there is no back-end there is no place to

44

Access Management Processes

Figure 3.14: Implicit Grant Flow

secretly store the client-secret or even the key to decrypt the code. So for this the
issuing of an access token is done directly. For the same reason a refresh token is
not given either, since the client is unable to store it. Return access token in the
front channel is bad because the front channel is not a secure environment, user
can be tricked to install a malicious browser extension, which can listen to user’s
network or access to browser history or physically just simple as stand behind
user’s back and snooping for the token. In addition, the lack of a refresh token
causes the access token to have a long lifetime, and this as we will see later in this
chapter is not a good practice in terms of security.

To make up for this lack of implicit flow in recent years, the Authorization Code
flow with PKCE (Proof Key for Code Exchange) was born. This flow is like the
regular Authorization Code flow, except PKCE replaces the client secret used in
the standard Authorization Code flow with a one-time code challenge. This means
the client app doesn’t have to store a client secret (Fig 3.15). So in this case as you
can see to make up for the lack of a client-secret a code-verifier is also generated ,
at the initial moment of the flow(in the redirect), by the client. This code verifier
is then applied to it by the hash algortim and is sent as to the server. At the
time the client then makes a request for an access token the client will present the
code-verifier (string in plaintext) to the server to verify its "confidentiality". The
rest of the flow is the same as what was the Authorization Code Grant flow.
A recommended text for an in-depth look at oauth and the implementation of
various flows ,even from a more technical point of view, is the following. [15]

45

Access Management Processes

Figure 3.15: Authorization Code Grant Flow with PKCE

Below(Fig 3.16) is a general outline of when to use one stream or another de-
pending on the context. We have thus seen that both Oauth and OpenId connect

Figure 3.16: How to choose an Oauth flow

46

Access Management Processes

make extensive use of tokens. Tokens can be of 2 types:

• Opaque(a.k.a session tokens – a long random meaningless string which is a
reference to some information stored in a database).

• Non-opaque (contains some meaningful information like a userID, encoded in
base64), like JWT.

The advantages and disadvantages of a JWT over an opaque token are now analyzed.
For example, JWTs have the advantage of not performing any database checks
that might affect the latency of a communication since they are self-signed. In
addition, thanks to this they do not take up any additional space on the database.
Whereas with regard to opaque tokens these do not carry information but must be
thought of as a string that acts as an index within a database from which session
information is then retrieved, which can vary in size.On the other hand, however,
these have the disadvantage of being difficult to revoke before their expiration
compared to opaque tokens. This is because since the jwt is self-signed there is
no information trail on a database. One way to revoke them would be to revoke
the key with which they are issued. But doing so would create another problem,
namely, that all tokens issued with that key are revoked. Whereas, to invalidate an
opaque token, you simply go and delete the information corresponding to it within
the database.

These reasonings are also reflected in what an access token and a refresh to-
ken should look like. As previously analyzed an access token is the means by which
one is able to gain access to a resource while the refresh token is the token by which
one gets a new access token when the old one expires is invalidated. What would
be preferable to have is a short duration access token and a long duration refresh
token. That way even if the access token were to be stolen and an attacker tried
to use it to obtain a resource this would only be valid for a short period of time.
Whereas in the case of a refresh token this has a long lifetime, as it must be used
to obtain new access tokens . Thus it is preferable to have an access token that
does not need every time a request is made for a resource to be checked against a
database, and so with that it is preferable to have an access token that is a JWT.
While as for the refresh token if it is stolen then the attacker could have as many
access tokens detached as he wants (until the refresh expires) . So it is preferable
to have a refresh token that is easily revocable and thus is an opaque token. An
interesting article on how access tokens and refresh tokens can be managed is
here.[16]

47

Chapter 4

Thesis Objectives

We have seen, therefore, in the previous chapters, the main methods used in the
world of access management and its mechanisms. However, this also leads one
to think of all the problems that may arise, especially within large companies,
which must interact with other business companies, must manage a large number
of internal users, and must also give customers who want to access the resources
for which they are authorized the right to do so frictionlessly.

So, if one thinks of medium to large companies, the problems that can arise
are many. First of all, one must take into account the fact that there are always
more services, and therefore applications, in a company. These applications will be
linked to those that already exist, especially now that the concept of microservice
development is becoming increasingly widespread. These applications will, like the
others, have to guarantee access to resources for the various users and thus, as
seen in the previous chapter, will have to share data and have a mechanism for
access. This does not only apply to multiple nascent applications, but also to the
integration of legacy applications. Given the ever-increasing amount of demand for
new services on the market, companies are finding it increasingly difficult to find
suitable and competent people to develop applications, both on the front-end side
and in terms of the security logic behind them. This, therefore, requires both an
economic effort and internal company resources.

The goals of this thesis are about going to study the benefits that low-code
philosophy can bring within the world of access management. This was done by
going to study and understand how the (cloud-based) PingOne DaVinci software
works. Such software provides a drag-and-drop interface through which one can
implement the flows that characterize the user experience regarding access manage-
ment, such as a registration, authentication and authorization process.
Here, working in a training environment, we wish to analyse the benefits of low-code

48

Thesis Objectives

development compared to a traditional approach. This is to be seen for the three
main mechanisms underlying identity and access management software, namely
registration, authentication, and authorisation.We must therefore first see in the
construction phase of the flows how much this new technique can make significant
differences with respect to what is commonly done, based on programming in some
language.

• For the registration phase, how quickly the fundamental blocks of any process
leading to the creation of a new account on a site can be set up. Such funda-
mental blocks are, for instance, the forms for entering credentials, verification
of e-mail.

• Then we will move on to the authentication process, the most substantial
part of the work, where the multiple ways of authenticating oneself in an
application will be analysed. If you think about any application today, be it
web app or native, you will see that there are many methods of authentication.
From the simple use of username and password, to social login, to the concept
of SSO, through the use of federations, and Multi Factor Authentication. All
this shows the difficulty of constructing and integrating such methods and
managing all the information about users that an application must support.

• We then want to see how the method of access to a single resource is managed.
Remembering what was said in the chapter authentication and authorisation
are 2 very separate concepts. The resources that an application must protect
are many. For each of them, it must be determined if and when a user may
access them. Writing and modifying the resulting code involves a great deal
of time as well as resources. It must be considered that resources always
increase, especially when new users are added to the system. This must not
only be analysed statically, but also from a dynamic point of view. that is
why we do not only want to analyse an authorisation process that allows a
user to access a resource either at any time or not at all. In the security
sphere, context-access, or access based on the instantaneous attributes of a
user, such as the network from which he is trying to gain access, his current
IP address, or the geographical position in which he is at that moment, is
becoming increasingly popular. These are all aspects that need to be analysed
to allow secure yet frictionless authorization.

Before moving on to existing applications, while still remaining in the development
environment (low-code of course), it must also be ascertained how much the testing
phase can be accelerated in comparison with a traditional approach, and how much
the security of the entire mechanism is not compromised.
You will also want to consider and simulate all those situations in which a customer,
who makes use of this development, changes his or her mind about the desired

49

Thesis Objectives

implementation and thus how much this may affect the adjustment time.

Following the implementation of these flows, it is also important to show how
access to these flows by an application is facilitated. Access by an application to
these flows is achieved by making use of the standards characterizing the world of
access management without having to have developer knowledge.
The aim is to analyse how short the integration time of a logic within an application
is.Furthermore, after doing so, it is necessary to verify how reusable a flow can be
within different applications so that it does not have to be modified when inserted
in different contexts.
You will want to see how the logic behind the applications can change and thus its
complexity by checking the integration within them.
It will also have to be checked whether it is possible, thanks to the platform, to
cerecar to set up federations between 2 applications. We will also want to check to
what extent it is possible to set up different types of federations, e.g. SAML and
OIDC. How the end user is affected by such a change or whether it is completely
indifferent to the user-experience.
The development and security of applications, through this study, can be modified,
saving a lot of time and crucial resources.
The integration part is therefore the one that will really give an assessment of the
work done and the objectives assumed, as it is here that it will be seen whether
this approach can make substantial changes or not.

50

Chapter 5

Low-Code Approach

Low-code development is a new method of programming, which replaces the
complexity of writing thousands and thousands of lines of code in favor of less
development complexity based on "visual programming." Through this concept,
application software can be created through graphical and configuration interfaces.
These then allow applications to be created in a simpler way and with significantly
reduced time. This is made possible precisely because of such interfaces that
offer a "drag-and-drop" mode of development, and then they themselves translate
what has been done by the user into source code so that it can be compiled and
sent to execution. Thus, the ability to develop applications, even simple ones,
becomes within the reach of everyone without the requirement of having a technical
background and advanced programming skills.[17]

In today’s growing digital marketplace, the low-code approach fits perfectly in
three respects:

• Speed. Today, the release of software requires increasingly tight deadlines.
Low-code allows this without going to the detriment of efficiency and reliability.

• Enterprise Reliability. Low-code allows minimizing the risk of data loss during
software upgrades or possible crashes. This is very important especially for
those companies that do constant auditing.

• Complex business logic. Custom logic can be managed while reducing com-
plexity, this is also due to the visibility of the logic itself.

Therefore, low-code is very important in the business environment because it allows
you to create applications that are tailored to your business. It also leads to greater
ability to talk to one’s customers, and greater ability to attract more of them, as it
allows one to meet their specific requirements without having to go and change

51

Low-Code Approach

what is overall software development.
The adoption of the low-code approach will be even greater in the years to come,
and this is according to a number of aspects:

• Distribution of software. According to a recent report of CIOs, almost all of
them believe that software and software updates will need to be released at
an increasing speed in the future. Reason being, low-code development may
become increasingly central within a company as it allows for standardization
of the development approach and reduction of maintenance complexity. Not
only that, it also allows you to reduce the possibility of error due to writing
lots of lines of code. Thanks to this simplified development, one can also
assign tasks to less qualified people and see them accomplished quickly.

• Visual software development. Because of its visual approach, the logic behind
an application can be understood quickly and easily by any user, from "citizen
developer" to senior developer. Through this a variety of user groups can
build applications of their choice. Such applications can then be downloaded
and started to use within hours. Given the fact that there are not enough
developers for the growing demand in the digital market, companies can take
advantage of this approach and outsource tasks to less qualified people in
order to deliver their projects on time. In addition, thanks to the low-code
approach, software can also be tested immediately, which allows them to
receive immediate feedback on its operation and any problems.

• Lifecycle management.Screenshots that are created with low code development
can be started and deployed with a single click.The application is then executed
in a few seconds in the broswer.

However, there are some common mistakes that people make when thinking about
low code. First of all, one should not think that there is no need for a development
team. That might be fine for simple applications that are developed through
this approach. But not for complex ones that impact business value. Complex
applications that have enterprise-wide visibility still need to be integrated with the
information systems currently in place, and this requires the presence of a highly
skilled team.

Low-code platforms are designed not only for the development of simple applica-
tions, but also for major ones They are indeed able to scale and support thousands
of users and datasets.
Also, one should not think that low-code development in a platform is limited only
to the basic functionality that that specific platform offers. But these also give the
opportunity to create new connectors that allow external services to be integrated
and thus allow the application to talk to them.[18]

52

Low-Code Approach

5.1 PingOne DaVinci
PingOne DaVinci is an orchestration platform that enables the creation of user
experiences through development-low code approach. Created by the company
PingIdentity, the intelligent Identity solution for enterprise, it allows, through a
drag-and-drop interface, to model a series of tasks that make up the basic steps for
various access management flows.

At the core of PingIdentity’s cloud platform, the orchestrator simplifies the integra-
tion and deployment of identity services by going to facilitate the construction of
digital paths that allow a user to interact with multiple applications.

PingOne DaVinci, allows dynamic user paths to be designed for any use case
within a unified identity fabric. From a single interface, from a single canvas,
an entire access management user experience can be identified. It is then possi-
ble to model registration, authentication, authorization, verification, risk, fraud,
and privileged access flows. It is then possible to immediately test what you have
done and integrate those flows, those compositions, within an application in no time.

Andrey Durand, CEO and founder of Ping Identity says that although security in
digital services is the first point to respect, nowadays, in order to be competitive in
the market you have to put of equal merit also being at the forefront on delivering
better digital experiences to customers. He also says that offering frictionless
end-user experiences has become the new goal to achieve if you want to beat the
competition.[19] Through the orchestrator it is then possible to integrate, in a

Figure 5.1: PingOne Cloud Platform

simple way, the various services that PingIdentity offers to perform a series of
actions that eventually lead the user to authenticate and have access to the APIs
that an application offers. Not only does this allow for the integration of internal
services within the company, but because of its interconnections, and its multiple

53

Low-Code Approach

partnerships, this also allows for the integration of external services, as will be seen
below. In fact, Ping DaVinci offers a library of 100+ out-of-the-box connectors for
a range of identity, IT, and automation services.

5.1.1 PingOne DaVinci Components
At the core of these operations are flows. A flow is a series of interconnected
blocks that allows you to create a custom user experience as needed. There are
different blocks that have different functionalities. Each block or node can either
have purely graphical functionality, visual user interaction, or even communicate
something to the backend to say what logic needs to be implemented. Nodes can
also refer to external services, thus going to retrieve information from third-party
services, change the value of variables, or other parameters. Integration with
external services is, however, done , to be secure, through the security standards
discussed in previous chapters, such as SAML, OidC, and OAUTH. These nodes
are connected to each other through logical operators, which interconnect these
nodes based on what the outcome of the action performed on the previous node is,
and this determines what path to follow within a flow.

Thus, there are 3 basic foundational components for building a user experience in
DaVinci:

• Flow. It represents a user journey that can be registration, authentication or
authorization. The flow is composed of nodes and logical operators. The flow
starts at the leftmost node and progresses to the right until an error is found
or the end of the path is reached.

• Node. It represents the action of a given blocker .This action can result in
true, false, or it can return an unexpected error. In case of an unexpected
error, the flow stops.

• Logical Operator. This determines the path to follow after a node’s action
is completed, and the decision is made based on the result returned by the
previous node.

In Fig 5.2 there is an example to try to better understand what we are talking
about. This simple flow is intended to perform one action or another based on the
age of the interacting user. As previously written, a flow starts from the leftmost
block. As for nodes we have 3 nodes that have the functionality of interacting with
the user and one that has a logical functionality, which therefore has no visual
interaction.The 3 nodes, the blue, the,green and the red, are part of the HTTP
Form category (one of the standard nodes present in PingOne DaVinci). In the
blue one I set the "HTML form" feature, which makes available, without adding

54

Low-Code Approach

Figure 5.2: Example of a DaVinci flow.

any line of code, an html form that allows you to enter your age. In the other
2 a message appears that I set within the block configuration. In that case the
configuration is the "Custom HTML Message" configuration.
Then you have the middle block(the Function block, also one of the standard
DaVinci blocks) that allows you to do in practice an if statement. In that case I
compare the age entered with the number "18". Then you have the logical operators
that precisely connect the nodes together. As you can see if the function block
returns true then one path will be followed if not another path.The possible outputs
of the flow are in Fig 5.3. Or if you enter an age of less than eighteen years (Fig 5.4).

Figure 5.3: Output of successful example flow

However, in this simplified flow we do not see the full potential of DaVinci. It could
also happen that a flow performs multiple paths in parallel. As in this example
(Fig 5.5). As you can see following Google authentication triggers 2 actions, again
if Google authentication is successful. On the one hand a token is generated for the
user and on the other hand an email is sent to the user.Altar feature of DaVinci
concerns logical operators. These don’t necessarily have to be preceded by a single
node and then have to establish the path(s) to follow based on the outcome of a
single node. Rather, there can also be several nodes that flow into a logical operator.

55

Low-Code Approach

Figure 5.4: Example flow error output

Figure 5.5: Multiple Paths in a flow

As could be seen, no lines of code had to be written to achieve this. To keep track
of the values entered you can take advantage, again, of the DaVinci interface. In
fact within the configuration of an HTTP block there is the possibility to enter
values in a variable and then DaVinci will keep track of them. To retrieve such a
variable in a later node you will simply have to select the one you want, as shown in
Fig 5.6. To gain more knowledge about the basic use of the DaVinci environment
I attach this documentation.[20]

56

Low-Code Approach

Figure 5.6: Http connector configuration

Figure 5.7: Functions Connector Configuration

57

Chapter 6

Access Management flows
with orchestrator

Now we are going to analyze how access management flows can be achieved using
the PingOne DaVinci environment. In the particular we are going to analyze the
registration, authentication and authorization flows. It will analyze the possibilities
that DaVinci offers in building these user experiences in simple and linear way.

6.1 Registration Process
Normally when we attempt to sign up on a site we are asked to enter our credentials
(such as username and password), or even to enter additional information such as
First name, Last Name, Date of Birth, etc..

This can be accomplished quickly and easily with the PingOne DaVinci envi-
ronment by first going to create a credential entry form(username and password)
and then going to perform various operations based on what you want to do. With
the low-code approach offered by the platform, custom user experiences can be
created to suit the company and the customers it intends to attract. And all this
can be done in a simple and straightforward way.

The 2 figures(Fig 6.1 and Fig 6.4) show a custom registration flow where the
various nodes representing the main steps of a registration flow are present. The
flow is divided into the 2 figures for the sake of visibility and clarity for the reader.
The first one shows the first part of the registration flow where, proceeding from
left to right you have several nodes:

• The first is called Variables. This gives the opportunity to set variables that

58

Access Management flows with orchestrator

Figure 6.1: First part of registration flow

can be environment and therefore common to all flows in the environment. Or
they can be relative to the individual stream and that is how it is used here.
The variable that will be set is that of Population Id, since as will be seen
shortly it will be used to make it clear to which Population the user created
should belong.

• Http form. More precisely in this case we speak of Custom Http Template
as the node configuration, slightly different from the one seen in the previous
chapter. In this case you have the option of adding html within the node to
customize the page where you enter the credentials, as shown in the Fig 6.2.

Figure 6.2: Custom Http form for credentials

• The function block. Already seen in the previous chapter. In this case it is
used to check which button the user clicked in the previous step. If he chose

59

Access Management flows with orchestrator

to continue without verification email or even by having an email arrive on
the entered email address. Note how if there is no match with the possible
values of the button variable (which has as its value what was chosen by the
user) then there is an error and the stream must stop.

• The PingOne block. This is where the core of this flow and the potential of
DaVinci lies. What has been chosen to implement here is to have PingOne
Identity as the IdP and then go and leverage the company’s own service
integration. Basically PingOne DaVinci passes information to PingOne which
stores within its own database the user’s information. Then, as will be seen in
the login flow this information will be retrieved through the same node, but
with different configuration. Here the configuration chosen is "Create User."
Within the node there is then a need to go and enter username, password
and population Id (which are easily retrieved, with a simple click, as variables
saved by DaVinci and set in previous nodes). Another advantage, is that each
block, even the non-standard ones, offer a multitude of possible configurations,
and you do not have to write and/or rewrite any lines of code to choose
them. Another thing you may notice is the fact that when you enter a
password that does not meet the necessary security requirements, this is
directly communicated to us through the output of this block. And even these
security policies are not set in DaVinci but rather dependent on the IdP being
used, and therefore retrievable in an immediate way by the orchestrator, that
is, through the addition of an "Error Customize" node that has as its message
precisely the output of the previous node, in this case that of PingOne.

Sometimes proposing a registration flow where a lot of information is asked of the
user causes the user to abandon the process on a given website. Not only that,
but having to enter credentials may also result in the user not finding a positive
response and preferring to veer elsewhere where registration is not required, as
it is explained in this article.[21] If, however, you want the user to log in to a
site wanting to keep track of it but without it entering credentials, you can have
the user log in with a certain provider and retrieve the information from there.
The potential of DaVinci, even compared to other competitors offering low-code
platforms, is that it has interconnections with a great many partners. This allows,
referring to the stream in question, to be able to switch the IdP from PingOne to
any other, which may be Google, Facebook, Slack and many others. To achieve
this you just need to have an application on the Providers just mentioned and go
and enter the credentials of that application into the configuration of the chosen
node as can be noted in the following figure. Note how also the redirect uri is
established by DaVinci and you then have to copy it within the application you
are talking to on Google. Now let’s move on to the second part of this canvas
representing registration flow (Fig 6.4). As can be seen if the user previously chose

60

Access Management flows with orchestrator

Figure 6.3: Google connector configuration

Figure 6.4: Second part of the registration flow

to continue without the verification email this will be registered on the PingOne
site and then they will have to do the robot test directly. Whereas if the user had
chosen the email verification option, this will receive the code on the email, enter
it within a form made available in the figure 32. Then there are other blocks.

• Validate Verification Code. Another option made available by the PingOne
node. Inside you will need to enter the username of the user in question and
the code entered in the previous HTTP node. The verification is internal to
the IdP and the response then will be available to subsequent nodes. If there
is an error then it will be reported appropriately if not then it will proceed
forward.

Now there are 2 blocks that perform a custom robot test in which a card is shown
and the user has to prove that they can recognize that card.

• Make a rest API call. This type of HTTP block configuration allows a call to
API. You then performa a call to a public API. The url is "https://www.deckofcardsapi.com/api/deck/new/draw/".The
api was taken from the following site.[22]
Here for example I chose to use the api which allows you to draw one card
from the deck, but you can also draw multiple cards. This node receives an

61

Access Management flows with orchestrator

output in JSON format, from that then it is possible to retrieve the values for
the url of the image, the value of the card and the corresponding suit, which
will be used for the next block.

• Screen Connector. Display forms and customized UI to retrieve information
from a user or show flow progress. In this case it is used to show the card
drawn from the deck and perform the robot test as seen in Fig 6.5.

Figure 6.5: Example of screen connector output

If the test is successful then you are finally registered on the application within
which you are going to integrate this stream. If not, if the test fails as can be seen
in the figure, there is a loop between the blocks from which you exit only when the
test is performed correctly.

6.2 Authentication Process
In the area of access management, after registration we talk about access to an
application, and then authentication. This section will look precisely at the sign-in
process. This will be done through a flow, created on the orchestrator, that allows a
user to authenticate to a Provider through the use of credentials. Then in the next
chapter we will see how to use this flow in a practical setting by going to consider
DaVinci as an Identity Provider and using the OidC protocol. Also for this flow
we’ll see two pictures, two parts, for convenience in reading the flow(Fig 6.6 and
Fig 6.7). The flow starts with the custom template, one of the configurations of
the http form, connector already seen earlier for the registration flow. This time
the custom template allows you to enter your credentials for authentication and

62

Access Management flows with orchestrator

Figure 6.6: First part of login flow

Figure 6.7: Second Part of login flow

then choose whether you want to authenticate with PingOne or Google. Or if
you want to recover your password as you forgot it for PingOne. This is shown in
Fig 6.8 . Obviously it is assumed that on both providers, whether it is Google or
PingOne you already have a registered account. After the connector that allows
you to enter credentials there is the function connector, also seen earlier, in which
you go evaluate the value you entered inside the button variable. Here again you
can see an advantage of DaVinci. As soon as the Http Form connector is created,
with the custom Template configuration, automatically the platform has created a
variable, called "button," to which the value is associated according to the option
chosen by the user for authentication. And then the function node goes to evaluate
which path to follow based on the value of the variable.

So there can be 3 possible paths to follow, that of authentication on PingOne, that
of authentication via Google, and that of password recovery.

Starting to analyze the first available path, we notice some connectors:

• The first is PingOne, previously seen for the recording flow, but this time with

63

Access Management flows with orchestrator

Figure 6.8: Login Form

a different configuration. In fact, here we are going to look for the user, if it
exists, so if there is actually in the PingOne database, a user related to the
email entered, which will then act as the primary key within the DB. If it is
present then you will continue on the "true" path, if not you will continue on
the "false" path going to show an error on the screen thanks to the "Error
Customize" connector, as you can see in Fig 6.7.

• If the user has been found then a password check will take place. Other
configuration always of the PingOne connector. It does a password check on
the password loaded in the HTTP form and the one stored on the PingOne DB.
This connector returns true if the check is valid, otherwise an error message
will appear.

• If you continue on the true path, you will encounter a new connector. It is
the Duo Security one that enables multi-factor authentication. To do this all
you have to do is add an appropriate connector, precisely the "Duo connector
" and configure it by going to enter in the settings of the connector the Client
Id, Client Secret and Api hostname of an application present on Duo. To do
this I followed the following documentation.[23]
What implements this block is visible in Fig 6.9. Basically once the user
is registered on the Duo Security application this, he chooses the method
by which he wants to perform the MFA. Here it was chosen to receive a
notification on a mobile app on their smartphone, but there was also the
option of sending a code to a previously registered phone number. So you can
see how to have MFA all you have to do is add a simple connector. This is
because DaVinci supports a lot of partners, to which one can connect quickly

64

Access Management flows with orchestrator

Figure 6.9: Duo security example

using the connectors provided by the platform. Here we have chosen to use
Duo Security, but it is just one of many partners that allows MFA to be done
in a DaVinci flow. MFA can also be done using a connector from PingOne,
called the PingOne MFA connector for short. In practice in that case you
are going to integrate an in-house service. The PingOne MFA connector
supports all of PingOne MFA’s authentication methods including more secure
methods like Mobile SDK, FIDO bound biometrics, and security keys, generic
TOTP Apps (e.g. Google authenticator), as well as traditional sending of
OTP (one-time passcode) by SMS, voice, and email. Even to set up an MFA
connector is not a time-consuming task. It is possible to set it up by following
this documentation.[24]

Once the MFA is done then this path ends here’ as the authentication is successful.
As seen also to build a successful authentication flow is a quick process that does
not require developer skills. Now we move on to the second path available within
the flow, which is the Social Login path.

• After the function block, as seen in Fig 6.6 you have the Google login connector,
which precisely allows you to authenticate through Google. Here again we
take advantage of the partnership that PingOne has with Google, so that you
then have to take a few steps to set up the connector properly. You have
to create a Google Api app, take the secret client and ID client of that app
and put them into the block setting. Not only that, in order for Google to
then know where to go back to in the service provider, in this case PingOne
DaVinci, you have to go into the Google app and set up the redirect URI.
For more information on exactly how to go about this step, I consulted that
documentation.[25]
So through this simple mechanism, when you use this connector you set up

65

Access Management flows with orchestrator

the OpenId Connect protocol between DaVinci and Google where the former
plays the role of Client and the latter plays the role of OpenId Provider. Not
only Google, but also here’ you can take advantage of the many partnerships
PingIdentity has with other companies so that you can do social login with
other connectors. For example, one could use Facebook, Slack, Amazon, and
many others. The process is similar, and to achieve this you can always consult
the respective section in the documentation.

• If the Google Login Connector is unsuccessful then an error is shown on the
screen, otherwise this comes back with an Id token and is authenticated. In
the flow then follows an HTTP message block showing the authentication
message.

Now we move on to analyze the third possible path within the flow. That of
password recovery. First there is an http form block, where you can enter your
username. After that you find another connector, already seen earlier, which goes
to verify on the PingOne DB if indeed such a username exists. If the verification
is successful, a connector, again of the PingOne type, is used, this time set as
"Send Recovery password." A code is sent to the entered email address. It then
finds then a connector again of type HTTP, of type Custom HTML Template, into
which it enters the code received by email and the new password, as it can be
seen in Fig 43. Finally there is a last PingOne connector, configured as "Validate
Password recovery Code," which verifies the code entered (if it is the same as the
one emailed), and if correct then it will store the new password for the user. All

Figure 6.10: Example of Recovery code form

of these PingOne-type connectors, that we have seen both in registration and in

66

Access Management flows with orchestrator

login process, allow operations with the PingOne SSo service, where the utilities
used in these flows are present. They thus give the ability to make access to the
PingOne API. To do this, it was necessary to create a worker application [26] on
PingOne and assign roles to it. A worker application is an application that allows
administration roles to be performed without direct human intervention. The roles
that are assigned to the application determine what kind of actions that application,
on behalf of the user using it, can perform. In this case it was needed to add
“Identity Data Admin Role” and “Environment role” to enable the application to
do requested tasks.
After that, configure the PingOne connector with Client Id and Client secret of
this application.

Another advantage of DaVinci is that once the Client Id and Client secret are
set within a PingOne connector, automatically all other PingOne connectors are
also automatically set with the same credentials as the Client in question, without
having to go and configure all such nodes one by one.

6.3 Authorization Process
To implement an authorization process, it was decided to leverage the integration of
a PingIdentity service, called PingOne Authorize. This service allows authorization
decisions to be made to access services and/or data. This allows decisions to be
made centrally by going to set policies that evaluate identity attributes, entitle-
ments, and other context information. All of this allows for going to simplify the
decsision processes within a company, as it will no longer rely on "hard-baked"
access control by teams. PingOne Authorize provides a trust framework to which
those leveraging this service can pass attributes on which policies will be based.
Going to use this service, one can then integrate it within a PingOne DaVinci
flow through the appropriate block provided by the platform. To do this, it is first
necessary to go set up within the training environment the PingOne Authorize
service as well. To get a complete overview of the service offered by PingOne
Authorize I recommend reading this document.[27]

What is then done is to go and create an attribute in PingOne Authorize. Based
on the value of that attribute a real-time decision will be made within the DaVinci
flow. The attribute in question is the ID of the user once it has authenticated
within PingOne, and that is assigned to it by PingOne itself.
First you have to have a worker application on the PingOne environment. The one
that you have already used for the registration and authentication flows is leveraged.
After that you have to create the PingID attribute on PingOne Authorize.

67

Access Management flows with orchestrator

Finally still on the PingOne Authorize environment you have to go and create a
policy associated with that attribute. The service provides various operations that
allow you to check whether the attribute in question reflects the requirements for
which the policy is met or not. Finally, one has to figure out what to do when the
requirement or requirements of the policy are matched, whether to allow the next
action or deny it.
Once the policy has been created to make it available and usable we need to make
it public on one of the existing endpoints for the PingOne Authorize service.
We now turn to analyze the DaVinci flow in question(Fig 6.11). As it is possible to

Figure 6.11: Authorization flow with PingOne Authorize

see from Fig 6.11 first we repeat the blocks that allow the authentication of a user
on PingOne. This is due to the fact that authorization succeeds the authentication
process and it would not even make sense to talk about it if not in this logical
order.
Then the new block that is found is just the PingOne Authorize block, which was
configured with Client id and Client Secret of the worker application and also
the url of the endpoint on which the policy was published to PingOne Authorize.
Within that block you go right to set the value you want to give to the attribute
on PingOne Authorize protected by the policy in question. This blocker will give
either "PERMIT" or "DENY" as the response.
Then we find a funtion block that based on the result of the policy, goes to show on
the screen, just by way of example the result. Obviously in a practical application
you go to exploit the "PERMIT" output of the function block to go and perform
the desired action that you are authorized to perform.

68

Chapter 7

Use Cases

This chapter will show use cases of integrating flows within an application. First,
it will be shown how to integrate flows developed on the DaVinci environment
within a single-page application. Then in a second use case it will be shown how
to easily integrate a DaVinci authentication flow within an application that allows
access to the PingIdentity environment administration console. DaVinci supports 2
main methods of integrating a flow: the Widget Method, and the Redirect Method.
These methods will be used in the first and second use cases, respectively.

7.1 Integration in a Single Page Application
Let us see how a flow can be integrated within a Single-Page-Application. First of
all, you need to have an application. To do this, the application was developed on
a server application, called "Glitch".[28]
Many applications can be developed within this environment, from a pure frontend
application to an application that has also a backend part. For simplicity for such
a use case, a client-side single-page-application was preferred since the goal is to
show how to start a flow outside the DaVinci testing environment. To do this,
a series of steps had to be taken. Specify that through the widget method used
for embedding the flow in this use case you are going to embed the flow within a
modal that opens when you click the button present in the application.

• Create the flow that you want to integrate within the single-page-application.
This was seen in the previous chapter. One must always first test the flow
in the testing environment. Testing a flow in the DaVinci environment is
extremely easy in that you just save, deploy, and with a simple click go test
the flow. This is another great advantage that the platform offers in that even
if you want to make a change, in a few seconds you can go and test the effect
of the change on the flow.

69

Use Cases

• You obviously need to have a single-page-application. To do this, an application
was used, which takes the poker game theme, where there are 2 buttons, one for
login and one for registration as is visible in Fig 7.1. To make this single page

Figure 7.1: Screen of Single Page Application on Glitch

application, CSS found within the Glitch application was used. Here we must
make a point and go to note something that may represent a disadvantage
for DaVinci. In the previous chapter, when streams were developed and
tested, a linked CSS file was always used in the stream settings within the
DaVinci environment. When going to integrate a flow within an application,
the delegation of the look and style must be in charge of the calling application.
This allows the design team , in case of changes, to not have to go and change
something in the testing environment, but within their app. This is because,
flows developed in the testing environment, can be used and embedded within
multiple applications, so it is good practice that the styling and management
of this is relative to the calling app rather than the flow, which let’s say should
represent more of the logical part.
For this reason, so when integrating a flow within an APP, you must not
have any CSS linked, neither within the flow settings, nor even within display
blocks , such as the HTTP and SCREEN blocks can be.

• After creating a single-page-application you must create an application on
the DaVinci environment that acts as a gateway for the flow you choose to
integrate. To do this simply go to the PingOne DaVinci environment and
press the "Create Application" button as can be seen in Figure 45. Then going
into the configuration settings you can see several fields, which are necessary
for the integration to work and also the endpoints that are used to access the
flow in question.

• After creating the app on DaVinci we need to set the desired flow as the flow
policy as in the respective section (Fig 7.3).Once this is done we need to go to

70

Use Cases

Figure 7.2: How to create an App on DaVinci

Figure 7.3: Attaching a flow in an application

the single page application and enter some parameters inside a Javascript file
that can be found inside the following documentation.[28]
In particular, we need to go pass the parameters of Environment Id, API Key
, Policy Id, which can be retrieved on the DaVinci environment, as visible
from Figures 45 and 46. Not only that but within the single page application
then it was necessary to create an html element contain the widget so that
when the button is clicked the flow is invoked. You can see, in the figure below
what is the parameterized script that allows you to go and call the DaVinci
flow. From a logical point of view, what happens is first a call to the sdkToken
endpoint of DaVinci . In fact, thanks to the retrieval of the API key, from the
test environment, the application makes the following call:

“GET https://api.singularkey.com/v1/
company/039c7a35-8a3e-4173-b90e-d601bbccd635/sdkToken”

71

Use Cases

Figure 7.4: Script for integrate a flow in an SPA

In response to this request DaVinci issues an access token to the application,
which will later use it to make a request to access the stream. Here the request
via the Post method, that includes the access token:

“POST https://auth.pingone.com/039c7a35-8a3e-4173-b90e-d601bbccd635/davinci/
policy/98cc48b79b9dc07b92df57d010c5a1d4/start”

In fact When you use the widget method to integrate DaVinci flow poli-
cies into your application, the /start request uses the resource server endpoint
“auth.pingone.com”.

After that, you go test the application and you see that when you click the record
button it opens the initial screen of the chosen stream. Then going forward in the
flow you execute the logic exactly as you do within the testing environment.

Through such a method not only can the flow be started, but a flow can also
retrieve values from a present file within the application, so DaVinci can accelerate
development when integrating with backend services and APIs, enriching the overall
user experience. To do this one has to make use of 2 important nodes, already
seen earlier which are the Variables one, where inside one can set the URL of the
file from which one wants to retrieve information . The second block that then
allows you to send data to the application and the HTTP block, in "Send Success
Response" configuration that allows you to send some JSON to the application.
The latter must have a method to call the stream, and link that method to the
webpage Onload event.

72

Use Cases

Another advantage of DaVinci is that a given flow can also receive input pa-
rameters, even before it starts, from the application that integrates it. To do this,
a series of steps had to be followed:

• First in the settings of the flow you have to go to the "Input Schema" section
(Fig 7.5), where you have to set the desired parameter as "required." That way
if the flow is called without the input of that parameter then an error will be
shown.

Figure 7.5: Input schema for a DaVinci flow

• • In the application, you must also pass the parameter in question to the
loadwidget function, seen earlier (Fig 7.4). Within that function it is then
necessary, in the "fetch" to add as a property also that parameter.

As noted then also passing parameters, to a DaVinci flow, becomes something very
simple to accomplish.

Moreover, DaVinci offers the advantage of being able to perform A/B testing
quickly.[29]
This way you can test the new features and changes on a subset of users and see if
it increases or decreases user abandonment. DaVinci allows us to granularly define
flow policies to serve up different flows or flow versions based on a distribution
percentage or IP whitelisting. This is achieved very easily. Just perform 2 simple
steps:

• Do the export of the stream in question. Create a new one by doing the
import of the source stream. Then you go in and change what you want to
change, and this, as seen so far requires very little effort, after you get a little
familiar with the orchestrator.

73

Use Cases

• You then need to go to the DaVinci environment and select the application
that you had previously chosen. Go to the flow policy section. Click on the
policy that you had previously and in addition to the flow that was already
there also attach the new one, as shown in Fig 7.6.

Figure 7.6: How to perform A/B testing

You can see how you can perform in a short time, going to save important resources
and time for a company during software development, going both to test a flow
and perform A/B testing.

7.2 Integration with Redirect Method
In this second use case, I used the "Redirect" method to integrate a DaVinci flow
within an application. Through this method the flow is no longer shown within
a modal that opens on the page but new application page. For this example, I
integrated the authentication flow, explained in Chapter 6, within an existing
application in the PingIdentity training environment, which is also the one that
allows access to the environment’s administration console. Basically what has been
accomplished is to have an application in PingOne SSO acting as a Service Provider
and an application in DaVinci acting as an Identity Provider.
These communicate using the OpenId Connect protocol. To do this , the following
steps were performed:

• Have a flow in the DaVinci environment. This time as an example flow we will
use, the one named "my-flow-login," explained in Chapter 6(Fig 6.6 and 6.7).

• Have an application in PingOne DaVinci, which as in the previous case,has as
flow policy a flow, in this case the one "my-flow-login".

• Connect that application as an external Idp in PingIdentity and set the correct
endpoints. This is shown in Fig 7.7. Information for correctly setting these

74

Use Cases

Figure 7.7: Configuration of an external Idp in PingOne SSO

fields was taken from the application present in PingOne DaVinci. Information
was taken regarding the client Id, client secret, and the various endpoints of
PingOne DaVinci.

• After creating an external IdP in PingOne you need to go and add it as
an authentication policy. This is done within a section of the PingOne
environment. Specifically, I added that external Identity Provider in the
authentication policy called "Single-Factor," which is also the default policy
for applications in the environment. It can be seen in Fig 7.8.

• You need to have an application that hides resources behind it and allows
you to do authentication to access those resources. To do this, as mentioned
earlier , I leveraged an existing application in PingOne SSO that allows you
to do console access.

Figure 7.8: AuthN Policy

75

Use Cases

After integrating PingOne DaVinci as an Idp, we can see from Fig 7.9, how indeed
it is possible to make access through both credentials and PingOne DaVinci. Since

Figure 7.9: PingOne SSo SP and DaVinci as Idp

the second case is more interesting, let us analyze it from a logical point of view,
following what are the HTTP messages that the applications exchange (Fig 7.10
and Fig 7.11) . They refer to the OpenId Connect protocol , specifically the
Authorization Code Flow, explained in Chapter 3. A user who wants to connect

Figure 7.10: Oidc call to SP in HTTP message

to the adminitsration console on PingOne SSo, decides to do so through PingOne
DaVinci, then this is redirected to the chosen identity provider.
This can be seen through a call (Fig 7.10) to the very application on DaVinci.
Indeed, we note that the client Id is that of the app on DaVinci and the policy

76

Use Cases

Id is that of the flow that was set as the flow policy in the app. In order to
do this, however, it was necessary to set in PingOne SSo, in the "External Idp"
section, the authorize endpoint, to which to go and send this request. To set it
correctly, it was necessary just to enter the values of client id and policy id (Fig 7.7).

Then downstream of this request, if all goes well, there will be an authoriza-
tion code in the response.

That authorization code will be used(Fig 7.11) when you are redirected back
to the service provider, thanks to the redirect uri.
Note also the "state" parameter that keeps track of the OpenId connect execution
flow. It is a kind of "nonce," used to prevent some cyber attacks, such as the "reply
attack." Then, as per the protocol, this authorization code will be used, by PingOne

Figure 7.11: Oidc- Call to Sp with AuthZ code

SSO, to retrieve information about the user, and then exchange it and get a Json
Web Token detached from DaVinci, inside which is user information, which allows
Single Sign On authentication to the user.
To exchange the authorization code for a token, the call is made to the token
endpoint. The various endpoints were set manually on the Service Provider (Fig
7.7).

Returning to the DaVinci flow in question (Fig 3.7), to implement the openid
connect protocol, fundamental importance acquires the final connector of that flow,
namely the Token Managment one. This gives us the possibility, once the user is
authenticated, to create a token with his information. Like almost all connectors,
this one offers multiple possible configurations. In this case, the "Custom Claims
with Redirect" configuration was chosen. Thanks to this it is not only possible to
create custom tokens, without adding any line of code, in fact it is only necessary

77

Use Cases

to enter the desired variables inside the space provided, and then this will be
translated into code. But an important advantage that this configuration offers
is that it performs the redirect to the caller without setting any redirect uri, as
was the case, for example, when Google Login and Duo Security blocks were used.
In fact in such cases, they were the ones taking the role of Identity Provider, and
needed within their applications, to set the redirect uri to go back to the Service
Provider.

78

Chapter 8

Conclusions

The work of this thesis focused on the possibility of developing typical access man-
agement flows through the approach called "low-code "and studying its advantages.

First then, it looked at how access management works and what are the strengths
in having an access control system. In that part then, we looked at what are
the main features of a software access manager such as access policies, cookie
management for a given user session, main authentication methods for a service,
multi-factor authentication, and role management for users accessing a given service.
Then going deeper, the concepts of Identity federation, delegated Authorization,
Single-Sign-On (including the concept of social login), the concept of API and API
security were studied. To implement the federations, the protocols that underlie
this such as SAML, OpenId-Connect and Oauth were studied and used.

After seeing these concepts by going to use a "standard" method, the concept
of the low-code approach was seen and the benefits it can bring were studied.
The flows that characterize accesses to services and resources were then imple-
mented on a platform that exploits the concept of the low-code approach, made
available by PingIdentity, namely PingOne DaVinci. It was seen what the main
features of this software are and how to implement customized flows that meet the
security requirements of the protocols used.

The objectives to be achieved in this part concerned the benefits that could
be found, especially in terms of saving time and resources, in the construction
and testing phase of the various flows. From what also emerged in the previous
chapters, the results were excellent.

For the registration flow, it was noted that setting up both the front-end part and
the logic behind it is much simpler than a traditional approach. One can make use

79

Conclusions

of multiple identity providers by simply learning how to set up a blockchain that
allows one to connect to it. All this is handled directly by the Low-Code platform.
This also applies to the verification validation of an e-mail. Also for the front-end
part, there is the possibility of re-setting templates of already existing code. This
is not a great advantage compared to a traditional approach there, where there is
a great reuse of already existing code anyway.

For the authentication flow, it was noted that it is possible to go and choose
several identity providers to choose the desired authentication method by setting
up federations, where the different applications are able to exchange information
with each other. All this is done without writing lines of code and with relative
speed. Integration between the various methods is not a problem, since this plat-
form has connections to more than a hundred different external services. It has
also been discussed in the previous chapters, how one can set up several and more
Multi-Factor-Authentication methods in a simple way and without the end user
being aware of it during his user-journey. It was also noted how the management
of variables is no longer a concern of the developer, but everything is managed by
the LCAP platform (in this case PingOne DaVinci).

In the authorisation process, it was seen how it is possible to set policies, and above
all to be able to make decisions even on several attributes.

Remaining in the training environment, it was seen how the testing of such flows
is much reduced compared to a traditional approach. There, one has to compile
and execute code. Not only that, most of the time, there is also the need to use
third-party libraries. In that case, it is enough to launch the stream on the browser
with a simple click.

It was also noted that, thanks to the services offered by PingIdentity, these can
be integrated quite easily within a DaVinci flow. Thanks to this fact, the user
does not need to create complicated customised logic to achieve his purpose. He
simply takes advantage of the services offered. Even when another person wants to
read the logic of the constructed flow, not only is the visual approach more visible,
but thanks to the integration of these services with simple blocks, greater clarity
also follows. This also allows for a distinct division of roles. For example, there
are those who can take care of writing and setting policies, and then those who
develop the flow can use them without having to go into the details of them.

To validate the study of this approach and implementations of these flows, the
latter were integrated within 2 applications.

80

Conclusions

The first integration was done within a simple Single-Page-Application. The
second within a pre-existing application that allows access to a PingOne training
environment and thus access the services made available.Here, too, the results are
considered positive. In the integration of a first application, a single-page, we went
to see how the use of a flow leads to the addition of a longer or shorter script. This
also depends on the parameters one wishes to pass to the stream when calling it.
This integration causes the stream to be displayed via a widget that opens in the
window. What was relevant is the fact that an application can simply integrate
these developed streams without worrying about the logic of them, which is handled
instead by the LCAP platform.

For the second integration, it could be seen that integrating a flow within a
pre-existing application was not complicated, nor did the application itself have to
be modified. Instead, the pre-existing application and the application gateway to
the flow were merged into an OIdc and SAML federation. Here too, the difference
on the user side did not cause any friction.

For possible future developments there is the possibility of implementing even
more advanced concepts such as risk-based registration and authentication and
even dynamic authorization by going more and more to integrate the services that
are offered by PingIdentity or external services to which the company is connected.
The low-code approach will be increasingly used in the future and in application
development. In fact, research by "Gartner" determined that the number of appli-
cations that will be developed using the low-code approach will be more than 65
percent.[30] It also highlights which are the main platforms that allow the low-code
approach to be exploited nowadays, and what are their strengths. This will enable
companies to be more and more in step with the growing market demand for inno-
vation and continuous creation of different services.This will be possible because
of the main feature of the low-code approach, which is that they do not have to
have people with extensive technical backgrounds to develop applications. This
will allow experts to concentrate on something else, and the speed of production
will be greater.

81

Bibliography

[1] Froehlic. Why Identity and Access Management? Guide to IAM. url: https:
//www.techtarget.com/searchsecurity/definition/identity-access-
management-IAM-system.html (cit. on p. 1).

[2] Paolo Tarsistano. IAM, perchè passa da qui la nuova sicurezza dei dati
aziendali. url: https://www.cybersecurity360.it/soluzioni-azienda
li/identity-and-access-management-iam-perche-passa-da-qui-la-
nuova-sicurezza-dei-dati-aziendali.html (cit. on p. 2).

[3] Flavio Biscaldi. HTTP: cos’è e come funziona. url: https://www.flaviobi
scaldi.it/blog/protocollo-http-cosa-e-come-funziona (cit. on p. 9).

[4] Redhat.com. What is an API? url: https://www.redhat.com/en/topics/
api/what-are-application-programming-interfaces (cit. on p. 10).

[5] Redhat.com. API security. url: https://www.redhat.com/en/topics/
security/api-security#why-is-api-security-important (cit. on p. 13).

[6] Netiq.com. Access Manager Overview. url: https : / / www . netiq . com /
documentation/access-manager-45/product-overview/data/product-
overview.html (cit. on p. 15).

[7] RFC-261. url: https://datatracker.ietf.org/doc/html/rfc2617 (cit.
on p. 22).

[8] Geeksforgeeks.org. Message digest in Information security. url: https://
www.geeksforgeeks.org/message-digest-in-information-security/
(cit. on p. 23).

[9] BeyondIdentity.com. What is Dictionary Attack ? url: https://www.beyon
didentity.com/glossary/dictionary-attack (cit. on p. 23).

[10] Pendyala Shim Bhalla. Federated Identity Management. url: https : / /
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1556498 (cit. on
p. 24).

[11] Philpott Ragouzis Hughes. Security Assertion Markup Language (SAML)
V2.0 Technical Overview. url: http://docs.oasis-open.org/security/
saml/Post2.0/sstc-saml-tech-overview-2.0.html (cit. on p. 32).

82

https://www.techtarget.com/searchsecurity/definition/identity-access-management-IAM-system.html
https://www.techtarget.com/searchsecurity/definition/identity-access-management-IAM-system.html
https://www.techtarget.com/searchsecurity/definition/identity-access-management-IAM-system.html
https://www.cybersecurity360.it/soluzioni-aziendali/identity-and-access-management-iam-perche-passa-da-qui-la-nuova-sicurezza-dei-dati-aziendali.html
https://www.cybersecurity360.it/soluzioni-aziendali/identity-and-access-management-iam-perche-passa-da-qui-la-nuova-sicurezza-dei-dati-aziendali.html
https://www.cybersecurity360.it/soluzioni-aziendali/identity-and-access-management-iam-perche-passa-da-qui-la-nuova-sicurezza-dei-dati-aziendali.html
https://www.flaviobiscaldi.it/blog/protocollo-http-cosa-e-come-funziona
https://www.flaviobiscaldi.it/blog/protocollo-http-cosa-e-come-funziona
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/security/api-security#why-is-api-security-important
https://www.redhat.com/en/topics/security/api-security#why-is-api-security-important
https://www.netiq.com/documentation/access-manager-45/product-overview/data/product-overview.html
https://www.netiq.com/documentation/access-manager-45/product-overview/data/product-overview.html
https://www.netiq.com/documentation/access-manager-45/product-overview/data/product-overview.html
https://datatracker.ietf.org/doc/html/rfc2617
https://www.geeksforgeeks.org/message-digest-in-information-security/
https://www.geeksforgeeks.org/message-digest-in-information-security/
https://www.beyondidentity.com/glossary/dictionary-attack
https://www.beyondidentity.com/glossary/dictionary-attack
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1556498
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1556498
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html

BIBLIOGRAPHY

[12] Bradley Sakimura. OpenIdConnect Core 1.0. url: https://openid.net/
specs/openid-connect-core-1_0-final.html (cit. on p. 36).

[13] Styra.com. What You Need to Know About Fine-Grained vs. Coarse-Grained
Authorization. url: https://www.styra.com/blog/fine-grained-vs-
coarse-grained-authorization/ (cit. on p. 38).

[14] Infosecinstitute.com. Risk associated with cookies. url: URL:https://resou
rces.infosecinstitute.com/topic/risk-associated-cookies/ (cit. on
p. 39).

[15] Antonio Sanso Justin Richer. Oauth2.0 in action. International series of
monographs on physics. Manning Publications Co., 2017. isbn: 9781617293276
(cit. on p. 45).

[16] Supertokens.com. The best way to securely manage a user session. url:
https://supertokens.com/blog/the-best-way-to-securely-manage-
user-sessions (cit. on p. 47).

[17] Webmarketingpro.it. Guida allo sviluppo di app aziendali low code/no code.
url: https://www.webmarketingpro.it/sviluppo-app-mobili/guida-
allo-sviluppo-di-app-aziendali-low-code-no-code/ (cit. on p. 51).

[18] LowCodeItalia. Le piattaforme Low-Code e No-Code rappresentano la prossima
grande novità nel settore IT? url: :https://www.lowcodeitalia.it/
articoli/le-piattaforme-low-code-e-no-code-rappresentano-la-
prossima-grande-novit224-nel-settore-it (cit. on p. 52).

[19] Prnewswire. Ping Identity Launches PingOne DaVinci. url: :https://www.
prnewswire.com/news- releases/ping- identity- launches- pingone-
davinci-a-no-code-identity-orchestration-service-for-deliveri
ng-seamless-digital-identity-experiences-301472576.html (cit. on
p. 53).

[20] Ping Identity. Getting started with DaVinci. url: https://docs.pingident
ity.com/bundle/davinci/page/tre1635461489038.html (cit. on p. 56).

[21] Knowband.com. 8 modi per creare un processo di registrazione/registrazione
intuitivo. url: https://www.knowband.com/blog/it/ecommerce-it/8-
modi- per- creare- un- processo- di- registrazione- registrazione-
intuitivo/ (cit. on p. 60).

[22] DeckofCards. deckofcardsapi. url: https://www.deckofcardsapi.com/ (cit.
on p. 61).

[23] Ping Identity. PingOne documentation for Duo security. url: URL:https:
/ / docs . pingidentity . com / bundle / davinci - duo - connector / page /
djf1646155630645.html (cit. on p. 64).

83

https://openid.net/specs/openid-connect-core-1_0-final.html
https://openid.net/specs/openid-connect-core-1_0-final.html
https://www.styra.com/blog/fine-grained-vs-coarse-grained-authorization/
https://www.styra.com/blog/fine-grained-vs-coarse-grained-authorization/
URL:https://resources.infosecinstitute.com/topic/risk-associated-cookies/
URL:https://resources.infosecinstitute.com/topic/risk-associated-cookies/
https://supertokens.com/blog/the-best-way-to-securely-manage-user-sessions
https://supertokens.com/blog/the-best-way-to-securely-manage-user-sessions
https://www.webmarketingpro.it/sviluppo-app-mobili/guida-allo-sviluppo-di-app-aziendali-low-code-no-code/
https://www.webmarketingpro.it/sviluppo-app-mobili/guida-allo-sviluppo-di-app-aziendali-low-code-no-code/
:https://www.lowcodeitalia.it/articoli/le-piattaforme-low-code-e-no-code-rappresentano-la-prossima-grande-novit224-nel-settore-it
:https://www.lowcodeitalia.it/articoli/le-piattaforme-low-code-e-no-code-rappresentano-la-prossima-grande-novit224-nel-settore-it
:https://www.lowcodeitalia.it/articoli/le-piattaforme-low-code-e-no-code-rappresentano-la-prossima-grande-novit224-nel-settore-it
:https://www.prnewswire.com/news-releases/ping-identity-launches-pingone-davinci-a-no-code-identity-orchestration-service-for-delivering-seamless-digital-identity-experiences-301472576.html
:https://www.prnewswire.com/news-releases/ping-identity-launches-pingone-davinci-a-no-code-identity-orchestration-service-for-delivering-seamless-digital-identity-experiences-301472576.html
:https://www.prnewswire.com/news-releases/ping-identity-launches-pingone-davinci-a-no-code-identity-orchestration-service-for-delivering-seamless-digital-identity-experiences-301472576.html
:https://www.prnewswire.com/news-releases/ping-identity-launches-pingone-davinci-a-no-code-identity-orchestration-service-for-delivering-seamless-digital-identity-experiences-301472576.html
https://docs.pingidentity.com/bundle/davinci/page/tre1635461489038.html
https://docs.pingidentity.com/bundle/davinci/page/tre1635461489038.html
https://www.knowband.com/blog/it/ecommerce-it/8-modi-per-creare-un-processo-di-registrazione-registrazione-intuitivo/
https://www.knowband.com/blog/it/ecommerce-it/8-modi-per-creare-un-processo-di-registrazione-registrazione-intuitivo/
https://www.knowband.com/blog/it/ecommerce-it/8-modi-per-creare-un-processo-di-registrazione-registrazione-intuitivo/
https://www.deckofcardsapi.com/
URL:https://docs.pingidentity.com/bundle/davinci-duo-connector/page/djf1646155630645.html
URL:https://docs.pingidentity.com/bundle/davinci-duo-connector/page/djf1646155630645.html
URL:https://docs.pingidentity.com/bundle/davinci-duo-connector/page/djf1646155630645.html

BIBLIOGRAPHY

[24] Ping Identity. PingOne MFA Connector Documentation. url: https://docs.
pingidentity . com / bundle / davinci - pingone - mfa - connector / page /
atm1642800835174.html (cit. on p. 65).

[25] Ping Identity. Google Identity Provider. url: https://docs.pingidentity.
com/bundle/pingone/page/wdf1567784211161.html (cit. on p. 65).

[26] Ping Identity. Worker Application definition. url: https://docs.pingiden
tity.com/bundle/pingone/page/mst1564020489720.html (cit. on p. 67).

[27] Ping Identity. PingOne Authorize Service. url: https://hub.pingidentity.
com/datasheets/3608-pingone-authorize (cit. on p. 67).

[28] Ping Identity. Integration of a DaVinci Flow using Widget-Method. url:
https://apidocs.pingidentity.com/pingone/main/v1/api/#widget-
method (cit. on pp. 69, 71).

[29] Qualtrics.com. A/B Testing. url: https://www.qualtrics.com/it/experi
ence-management/ricerca/ab-testing/ (cit. on p. 73).

[30] M.Driver P.Vincent K.Lijima. «Magic Quadrant for Enterprise Low-Code
Application Platforms». In: (2019) (cit. on p. 81).

84

https://docs.pingidentity.com/bundle/davinci-pingone-mfa-connector/page/atm1642800835174.html
https://docs.pingidentity.com/bundle/davinci-pingone-mfa-connector/page/atm1642800835174.html
https://docs.pingidentity.com/bundle/davinci-pingone-mfa-connector/page/atm1642800835174.html
https://docs.pingidentity.com/bundle/pingone/page/wdf1567784211161.html
https://docs.pingidentity.com/bundle/pingone/page/wdf1567784211161.html
https://docs.pingidentity.com/bundle/pingone/page/mst1564020489720.html
https://docs.pingidentity.com/bundle/pingone/page/mst1564020489720.html
https://hub.pingidentity.com/datasheets/3608-pingone-authorize
https://hub.pingidentity.com/datasheets/3608-pingone-authorize
https://apidocs.pingidentity.com/pingone/main/v1/api/#widget-method
https://apidocs.pingidentity.com/pingone/main/v1/api/#widget-method
https://www.qualtrics.com/it/experience-management/ricerca/ab-testing/
https://www.qualtrics.com/it/experience-management/ricerca/ab-testing/

	List of Figures
	Introduction
	Thesis Description

	Key Concepts
	Http Protocol
	Http Request
	Http Response

	API
	Access Manager

	Access Management Processes
	Authentication
	Basic Authentication
	Username and Password Authentication
	Identity Federation

	Authorization
	RBAC and ABAC
	Session Cookie
	Oauth 2.0

	Thesis Objectives
	Low-Code Approach
	PingOne DaVinci
	PingOne DaVinci Components

	Access Management flows with orchestrator
	Registration Process
	Authentication Process
	Authorization Process

	Use Cases
	Integration in a Single Page Application
	Integration with Redirect Method

	Conclusions
	Bibliography

