
POLITECNICO DI TORINO

Master’s Degree in Computer engineering

Master’s Degree Thesis

Experimental setup for
collision avoidance algorithms

for mobile robots

Supervisors

Prof. Stefano MAURO

Eng. Matteo MELCHIORRE

Candidate

Micaela Mara POSSETTO

December 2022

Abstract

Collision avoidance is a topic of utmost relevance in mobile robot navigation,
where robots should be able to reach a goal and to avoid obstacles on their
way autonomously, to operate consistently in a real-life environment. For
this purpose, several algorithms have been developed over the last years.

This work aims at providing a real-time collision-free path for mobile robots,
implementing in real world a pre-existent collision avoidance algorithm, which
has been tested so far in a simulation setting only. Specifically, the chosen
technique improves the classical artificial potential fields by considering local
attractors in addition to repulsors, in order to drive the robot towards a goal,
while avoiding obstacles along preferred directions.

The first phase consisted in reproducing the conditions of the simulated
environment in a laboratory setup made of a single obstacle and a mobile
robot controlled by the algorithm, that has been implemented in ROS (Robot
Operating System). In this first step, the pose of the obstacle was known
and fixed and the robot pose was estimated by odometry sensors in terms
of position and orientation. At the end of this process, it was possible to
identify potential improvements with the purpose of perfectioning position
measurements and obtaining an online obstacle detection. This was achieved
by using a color camera and ArUco markers, opportunely placed in order to
track the pose of the relevant elements: robot, obstacle and final pose.

With the results achieved in the first phase, the effort focused in study-
ing a significant application for mobile robots, where obstacles can either be
objects or humans. Thus, the final step of this work consisted of different
tests to prove the effectiveness of the proposed technique. Each test is charac-
terized by the same initial and final pose of the robot, but different obstacle
poses, so that the robot approaches to the object from different directions.
Results show that the robot is able to pass on the desired side with respect
to the obstacle, i.e. the side where the local attractor is placed. Future
works will involve the study of some aspects that are still to be developed to
obtain a reliable result and bring this technique in real life, such as dynamic
obstacle and multiple obstacles.

ii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Industry 4.0 . 1
1.2 AGVs and mobile robots . 3

1.2.1 Automated Guided Vehicles 3
1.2.2 Mobile robots . 4

1.3 Mobile robot navigation . 7
1.3.1 Global navigation techniques 7
1.3.2 Local navigation techniques 8

1.4 Aim of the thesis . 9
1.5 Thesis outline . 10

2 Path planning using potential fields with local attractors 11
2.1 State of the art in collision avoidance based on APF 11

2.1.1 Design of the attractor 13
2.1.2 Design of the repulsor 14
2.1.3 Resulting APF . 15
2.1.4 Analysis of the APF method 17

2.2 APF with local attractors 17
2.2.1 Design of the local attractor 18
2.2.2 Resulting APF . 19
2.2.3 Analysis of the APF method with local attractors . . 21

3 Software and Hardware tools 23
3.1 Robot Operating System . 23

3.1.1 Programming ROS 26
3.2 TurtleBot . 28

iv

3.2.1 TurtleBot3 . 29
3.2.2 Communication between TurtleBot3 and ROS 31

3.3 Realsense d435 . 33
3.4 ArUCo markers . 35

3.4.1 OpenCV . 36
3.4.2 ArUco markers . 36

4 Experimental tests 46
4.1 Laboratory setup . 46
4.2 Odometry feedback . 50

4.2.1 Structure of the code 51
4.2.2 Results . 54
4.2.3 Remarks on the results 56

4.3 ArUco feedback . 58
4.3.1 Structure of the code 59
4.3.2 Results . 63
4.3.3 Remarks on the results 69

4.4 Discussion . 70

5 Conclusion and future works 72

A Odometry feedback - main methods 75

B ArUco feedback - main methods 78

Bibliography 84

v

List of Figures

1.1 Technologies related to industry 4.0 2
1.2 AGVs following tracks on the floor 3
1.3 Wheeled mobile robots in different sectors 5
1.4 Legged mobile robots in different sectors 5
1.5 Types of wheel in wheeled mobile robots 6
1.6 Types of vehicles . 6

2.1 Example of attractive target potential field 13
2.2 Example of obstacle potential field 15
2.3 Example of the resulting APF 16
2.4 Gradient lines of the APF generated 16
2.5 Example of local attractive potential field 19
2.6 Gradient lines of the APF generated 20
2.7 Gradient lines of the APF generated 20

3.1 Communication in ROS . 25
3.2 TurtleBot3 Burger [25] . 30
3.3 Communication TurtleBot3 - ROS 31
3.4 TurtleBot3 Topics [25] . 32
3.5 TurtleBot3 Topics [27] . 33
3.6 Illustration of camera lens’s FOV [28] 34
3.7 Connection between camera stream and markers 35
3.8 Examples of ArUco markers [31] 37
3.9 Process of ArUco detection [21] 38
3.10 Camera matrix . 39
3.11 Example of calibration . 40
3.12 Calibration parameters of the example 3.11 40
3.13 Test on the ArUco detection at different distances 43
3.14 Position error . 45

vi

3.15 Orientation error . 45

4.1 Tools exploited in the implementation 46
4.2 Result of a test simulated in Gazebo 48
4.3 Laboratory setup . 49
4.4 Laboratory setup from camera point of view 50
4.5 Structure of MAP implementation in Odometry feedback im-

plementation . 51
4.6 Gradient tracking [16] . 53
4.7 RQT graph in Odometry feedback implementation 53
4.8 Result of odometry feedback with preferred region below the

obstacle . 55
4.9 Result of odometry feedback with preferred region above the

obstacle . 56
4.10 Comparison between odometry and ArUco pose estimation in

the test shown in 4.8 . 57
4.11 Comparison between odometry and ArUco pose estimation

when the robot got stuck . 58
4.12 Structure of MAP implementation in Test 2 59
4.13 ArUco’s frame . 60
4.14 RQT graph in Test 2 . 61
4.15 Two scenarios in MAP . 62
4.16 Result of ArUco feedback with preferred region below the

obstacle and αa = 0.9 æαa. APF parameters: σ = 0.5, βo = 1,
γo = 80.3475, αa = 0.2559 and γa = 22.1587 64

4.17 Result of ArUco feedback with preferred region above the
obstacle and αa = 0.9 æαa. APF parameters: σ = 0.5, βo = 1,
γo = 80.3475, αa = 0.2760 and γa = 17.7249 65

4.18 Result of ArUco feedback with preferred region above the
obstacle and αa = 0.8 æαa. APF parameters: σ = 0.5, βo = 1,
γo = 80.3475, αa = 0.2498 and γa = 18.4824 66

4.19 Result of ArUco feedback with preferred region below the
obstacle and αa = 0.8 æαa. APF parameters: σ = 0.5, βo = 1,
γo = 80.3475, αa = 0.27069 and γa = 6.9058 67

4.20 Result of ArUco feedback with preferred region above the
obstacle, αa = 0.9 æαa and linear velocity v = 2

3vmax 68
4.21 Result of ArUco feedback with preferred region above the

obstacle, αa = 0.9 æαa and linear velocity v = vmax 68

vii

Chapter 1

Introduction

1.1 Industry 4.0
The importance of automation in the industrial environment has remarkably
increased in recent years. The main goal was to reduce human intervention in
processes, in order to reduce costs, increase production and improve quality
standards. This was made possible involving robots.

Robots have been introduced in industrial sector after the 3rd indus-
trial revolution. They are defined by the American Robot institute as
re-programmable multi-functional manipulator designed to move materials,
parts, tools, or specialized devices through variable programmed motions for
the performance of a variety of tasks [1]. Their capacity to emulate humans’
ability is the reason why robotics widespread in industrial automation, espe-
cially in the manufacturing sector. However, mostly on account of their rigid
structure, robots can be a source of hazard for operators. Because of that,
the industrial application has been limited to dedicated areas, surrounded
by physical fences, not allowing direct contact with workers.

Over the last decade, with the 4th industrial revolution, commonly known
as Industry 4.0, one more step has been made. The concept of Industry 4.0
puts the focus on both automation and computer science.

Concerning automation, it aims at employing autonomous, flexible and
cooperative robots, to build smart factories where physical fences, dividing
robots and operators, are eliminated, resulting in a shared workspace [2]. As
a result, it arises the idea of collaborative robotics which expect that robots
and humans cooperate to accomplish one task together and simultaneously.
This is what can be called human-robot collaboration and it is mainly

1

Introduction

related to manipulators, applied in industrial sector. Concurrently to this
concept, innovation was brought in mobile robotics too. Mobile robots can
be considered as service robots that perform useful tasks for humans or
equipment [3]. In this field although, cooperation is not required most of
the time. Robots work closely to humans, doing repetitive and monotonous
tasks on their behalf and reducing their physical effort. Sometimes they
are applied together with cooperative robots to benefit of the capability of
co-bots to cooperate with humans, on one side, and, on the other side, of
the possibility to move. Most of the times instead, mobile robots are applied
alone. An example in a non-industrial field, can be domestic where, for
example, vacuum cleaners are quite popular applications.

Furthermore, computer science can be considered as well the earth of this
fourth revolution. Actually, the common thread led by Industry 4.0, lies
in the capacity of robots to complete tasks in an intelligent way, thanks to
the new technologies applied, reported in Figure 1.1. Therefore, the main
difference from what we were used to see before is represented by the intensive
employment of informatics. This is partly due to the necessity to accomplish
the requested independence, meaning that a great amount of information
must be handled. This has been made possible thanks to the central role
played by IT in Industry 4.0, which enables to bring both automation and
digitization at a much higher level. For example, in both collaborative
and service robotics, robots move side by side to humans. Therefore, it is
important to mitigate safety hazards considering real-time responses that
are obtained exploiting the capabilities of IoT (Internet of Things).

Figure 1.1: Technologies related to industry 4.0 [4]

2

Introduction

1.2 AGVs and mobile robots

1.2.1 Automated Guided Vehicles
Despite manipulators represent the majority of robots applied in industry,
another type of robot is gaining popularity in the last years due to increasing
transportation demand. They are called Automated Guided Vehicles (AGVs)
and are mainly implemented in logistics, manufacturing and medicine, to
move parts and tools from point A to B [5]. The main task demanded to
AGVs is path planning, consisting in searching for a sequence of segments to
reach the final pose. To do so, the vehicle shall be able to locate itself, and
this is made possible through different types of sensors, eventually combined
to obtain a more consistent feedback. For example, it is quite common to
find in factories AGVs locating through the detection of guidelines on the
floor, as it is shown in 1.2. In this case, they are not able to know their exact
position, they just stay on the track. More advanced AGVs instead, are
able to know their absolute position, combining the previous method with a
knowledge of the distance covered that can be obtained from encoders on the
wheels or lasers mounted on the vehicle. Generally, these types of vehicles are
designed to be used in a structured environment where everything is known
and a basic collision-free path has to be computed. However, AGVs can be
considered as precursors of mobile robots, where autonomy is requested, and
the goal is to move to an unstructured setting. This means from a static to
a dynamical planning.

Figure 1.2: AGVs following tracks on the floor [6]

3

Introduction

1.2.2 Mobile robots

Mobile robots have been introduced with collaborative robotics, but they
are not mainly intended for cooperating with humans, as co-bots instead
are designed to be. As previously stated, they are related to the concept
of service robotics and are becoming consistently important, in view of
autonomous navigation, which is required in different sectors, from the
industrial environment to the human’s assistance in daily life.

A robot can be considered autonomous when it does not require the
supervision of humans. Using mobile robots, an efficient transportation of
goods can be perceived, meeting the Industry 4.0’s paradigm. However, it is
necessary to implement a way of making decisions dynamically and gathering
information, in order to adapt to circumstances. Actually, in real world,
while a robot is following the computed path it may face obstacles that can
be unforeseen objects, a person or eventually other mobile robots acting at
the same time. Therefore, the new task is to provide a real-time collision-free
path, exploiting information of the surrounding environment that can derive,
for example, from sensors, or cameras.

Mobile robots differ from fixed ones, because of their locomotion system,
consisting in a mobile base which allows the robot to move freely. Two types
can be distinguished: wheeled and legged. The former consists of a rigid
body and a system of wheels, the latter is made up of multiple rigid bodies
interconnected by joints.

Mobile robotics is emerging in different sectors, such as domestic, agri-
culture, military and, of course, manufacturing. It is mainly represented
by wheeled robots, thanks to the simpler use of wheels than legs or treads,
and less balance issues. Even if is a field that still has to be studied a
lot, wheeled mobile robots are no more just prototypes. Today, we can
find them in ordinary houses: cleaning mobile robots are already on the
market, produced by several companies, such as Dyson and iRobot [7]. In the
industrial environment, they are starting to substitute AGVs which were not
able to face unforeseen obstacles: the company Mobile Industrial Robotics
already manufactures different models of autonomous robots, like MiR100 or
MiR250 [8]. In other sectors they have emerged just in the last years, such
as in agriculture. There, they are exploited, for example, for the analysis of
the culture, as the model Terra Sentia from EarthSense does, or, combined
with robotic arms to replace humans in the harvesting process [9]. Some
models of the previous examples are shown in figures 1.3.

4

Introduction

(a) Domestic: iRobot j7 [7] (b) Industrial: MiR100 [8]

(c) Agriculture: TerraSentia [9]

Figure 1.3: Wheeled mobile robots in different sectors

Humanoid robots, entertainment pets, and so forth instead, belong to the
category of legged robots. They are inspired to living organism provided of
legs. This feature enables them to move on irregular terrains on one hand, but
on the other side, increase their complexity. Boston dynamics produces Spot
which is an agile mobile robot, designed for factories that navigates irregular
terrains, performing inspection tasks and data capture autonomously [10].
Other examples of legged robots are humanoid, designed to duplicate the
complexity of humans [11]. In 1.4 some examples are illustrated.

(a) Boston dynamics Spot [10] (b) Honda ASIMO [11]

Figure 1.4: Legged mobile robots in different sectors

5

Introduction

Focusing on the most prevalent mobile robots, different types of wheels
can be distinguished: fixed, steerable and castor, eventually combined. In
1.5 all the basic types are illustrated [1].

Figure 1.5: Types of wheel in wheeled mobile robots [1]

The vehicles deriving from the combination of these three types of wheels
can all be classified in: differential-drive (1.6a), synchro-drive (1.6b), tricycle
(1.6c), car-like (1.6d) and omnidirectional vehicles (1.6e).

(a) Differential-drive (b) Synchro-drive (c) Trycle

(d) Car-like (e) Omnidirectional

Figure 1.6: Types of vehicles [1]

Despite all the positive aspects, mobile robots are subjected to constraints,

6

Introduction

called nonholonomic. These restrictions are related to the admissible motions
and derive from the features of the implied wheels that prevent the possibility
of attaining any position or orientation. This means that the number of
degrees of freedoms is lower, and consequently, these constraints must always
be considered when planning a movement.

1.3 Mobile robot navigation
1.3.1 Global navigation techniques
As previously stated, AGVs can be considered as precursor of mobile robots,
since the latter represent an evolution of the former, in the way they nav-
igate. Traditional AGVs are limited to predetermined path in structured
environments, in a sort of separation not necessarily physical, from humans
and eventual obstacles. The considered background is static: variations on
time are not accounted and there is a prior knowledge that enables an offline
planning. In this approach, the trajectory from the starting to the final goal
is computed before the task has started, and it will not be modified during
the execution, reason why it is also regarded as a global method.

Path planning in these conditions is based on classical approaches, such
as cell decomposition and roadmaps [12]. Cell decomposition consists in
dividing the region in cells recursively, classifying them in cells without and
containing obstacles. Then, it computes the optimal path relying on the
free ones and exploiting the graph theory. Roadmaps techniques generate a
map summarizing the free space and compute the path following a decided
criterion that can be, for example, Voronoi diagrams.

Global methods are usually treated as optimization problems, resulting in
infinite solutions found. To select the optimal path, it should be decided a
criterion that can be, for example, minimum time, or lowest energy consump-
tion. This choice only depends on the particular case analyzed. For instance,
for AGVs in factories, choosing the less energy consuming option, could be a
great idea, in order to both minimize recharging and improve transportation.
However, even if an optimal solution is computed, cell decomposition and
roadmaps techniques have to do with a great amount of data that make this
approach computationally heavy. This is the main disadvantage of AGVs,
together with the inability to react to unpredictable obstacles. Indeed, in
real life, the main problem is represented by humans, whose future moving
directions are difficult to predict, but necessary to obtain a relevant result in

7

Introduction

navigation [13].

1.3.2 Local navigation techniques
Mobile robots instead, are more compatible with real world, where requiring
prior knowledge would restrict the domain of the possible applications. They
must be able to navigate autonomously with enough intelligence to react
and make decisions based on the perception received from the surrounding
environment [14]. There are different ways of obtaining the required informa-
tion: they can derive from sensors or cameras. Sensors are directly applied
on the mobile robot and can be encoders, infrared, gyroscopes, and so on.
Cameras can be 2D or 3D and integrated on the robot or not. Once data
is received, it is important to analyze it properly and extract information
about the environment which is subjected to changes over the time. In order
to accomplish the desired behavior, mobile robots must be able to adapt
on the go. Online strategies, also accounted as local methods, consist of
observing the proximity of the robot and acting reactively. The main task
which focuses on this aspect is called collision avoidance.

Generally, a mobile robot can have a prior knowledge of the environment
on which it computes a first path. However it should always be aware of the
presence of unpredictable dynamical obstacles that must be detected and
avoided. This type of approach tries to combine offline and online methods’
advantages. As mentioned in the previous section, mobile robots are already
used in real world. They exploit these types of techniques to fulfill collision
avoidance. They can be used singularly or in fleets. In the first case, they
can have a partial knowledge of the environment, such as domestic robots
that perform a preliminary mapping of the areas that need to be clean, in
order to not go blind. In this case, robots are prepared to avoid humans
or objects performing an online approach, with an additional awareness
that enhances performances. A great example of fleets of mobile robots
are Amazon fully automated warehouses where a hybrid solution between
online and offline strategies is perceived. There, the autonomous mobile
robots move pallets around autonomously. Though, having control on all the
vehicles, trajectories are previously programmed to prevent possible collisions.
Nevertheless variation are always considered and eventual operators or other
occasional robots are detected and avoided [15].

Online approaches require a significant effort in terms of programming to
react to uncertainties in an intelligent way. In fact, a first approach to pursue

8

Introduction

this aim, could be to slow down the robot when an obstacle is detected by
the applied sensors, eventually stopping. Even if this approach does not
require difficult implementations, applying this strategy would result in a
performance leakage. The process would result stuck, even permanently on a
deadlock, and those strategies would be worthless. Consequently, this would
reflect on task time, having performances comparable, or even worse, to
sequential processes. Aiming at obtaining a better result, other approaches
have been investigated. Some worth mentioning examples are probabilistic
roadmaps and APF-based (Artificial Potential Fields) methods. The first
method tries to simplify the corresponding offline approach, to reduce the
computation cost. In APF-based methods, target is treated as an attractor
and obstacles as repulsors, to move the robot towards the goal, following the
negative gradient. Probabilistic roadmaps, as well as other similar methods,
need to build a map to navigate and this makes them not so efficient in an
environment that is potentially always changing. APF instead, represents
one of the best solutions, because it does not require onerous operations.
Reason why, this work will focus on this approach.

1.4 Aim of the thesis
As stated in the previous sections, mobile robots emerged with Industry 4.0,
as an evolution of AGVs, and the most challenging topic related to them is:
real-time collision avoidance.

This thesis focuses on a customized existent collision avoidance technique,
based on APF method [16]. This technique can be applied at any type of
obstacle, meaning that both random objects or humans are considered. For
this reason, it meets the main requirement of Industry 4.0’s paradigm: the
safe coexistence of humans and robots in the same area.

More specifically, this technique implements a way to influence robot’s
trajectory on preferred regions to avoid an obstacle. This is related to the
fact that, in real-world there are some path which are preferable to others.
Especially when humans are considered in the working environment, this
feature would be of great benefit. Some studies proved that humans would
feel more comfortable if they knew where the robot should pass. Conversely,
applying basic APF methods, a robot preventing an obstacle would run
on arbitrary directions, depending on minimal deflections of motion. Even
if these researches related to humans perceptions are mainly related to

9

Introduction

anthropomorphic co-bots, it can be supposed that this assumption is valid
for mobile robots too. In conclusion, the aim of this novel technique is to
make robot’s behaviour predictable.

In [17] and [16] this approach was tested on a simulation setting, respec-
tively considering an anthropomorphic co-bot and a mobile robot. This
thesis will focus on the implementation in real-world of the trial with a
mobile robot. There, a basic setup where obstacle position was priory known
was considered. After implementing the basic behaviour, the next step of
this dissertation will be to move in direction of a more relevant result where
obstacle position is detected on the go.

1.5 Thesis outline
Intending to give a brief overview on how this thesis is organized, chapters
can be summarized in this way:

• Chapter 1 is a general introduction on mobile robots.

• Chapter 2 is devoted to a detailed explanation of the approach on which
this dissertation is based.

• Chapter 3 presents the experimental setup. An introduction to the tools
used is done, along with an explanation of how they were exploited. In
addition to that, eventual suggestions of different strategies that could
have been applied is given.

• Chapter 4 is the heart of this work. It reports the development of
different tests and analyzes the obtained results.

• Chapter 5 aims at drawing the conclusions of this dissertation, summa-
rizing the advantages and disadvantages remarked. Moreover, possible
applications and future work are also presented.

10

Chapter 2

Path planning using
potential fields with local
attractors

2.1 State of the art: collision avoidance based
on APF

Artificial potential fields based method belongs to the classical approaches
used in mobile robot path planning. This technique is based on the concept of
potential field in physics, which regards the movement of an object influenced
by two types of forces: attractive and repulsive.

According to [18], it stands out of the other classical approaches, thanks to
some positive aspects. First among all, its simplicity. Indeed, it requires little
information, low computational effort and it is easy to implement. Actually,
unlike others classical approaches, such as cell decomposition and roadmaps,
it does not require an explicit representation of the environment [14]. This
feature makes this approach faster and valid in dynamical environments for
real-time navigation too. Furthermore, deciding motion instant by instant,
not doing a division of the map, it performs smoother trajectories compared
to the others.

This technique was firstly introduced by O. Khatib [19] and consists of
considering the mobile robot as a particle influenced by a potential field
in which it is submerged. This potential field is created by obstacles and

11

Path planning using potential fields with local attractors

target position, imaginary acting as charged surfaces that respectively depict
repulsive and attractive potentials. In this way, the repulsive force accounted
to the obstacle, results in pushing the robot away from it. Simultaneously,
the attractive force assigned to the goal, pulls the robot towards it.

Thanks to the potential of this approach, after this first formulation,
significant attention has been payed on improving different aspects of the
APF technique. One aspect that has been accounted is the control law. In
[19] the robot moved in its working environment thanks to the virtual forces
resulting from the total potential field. Thus, the command law used to be
the force to impress to the robot, computed as the negative gradient. Later,
new techniques were experienced. These works focused on exploiting the
gradient in a different way. For example, in [20] and [21] the command is
considered in terms of velocity vector. In the first example, the command
vector is directly obtained in function of the distance from the obstacle.
Whereas in the second, the gradient is chosen according to the direction of
the negative gradient, pointing at the target. For this dissertation, this last
technique is chosen, according to the one presented in [16]. This approach is
named gradient tracking since it performs a perfect tracking of the gradient
lines. The commands are given in terms of linear velocity v and angular
velocity ω. The first is chosen proportional to the angular error φ between
the desired and the current direction. In 2.1 the relation for w is given.

ω = Kφ (2.1)
where K is the proportional gain.

Assuming that speed at starting and final point are 0, the magnitude of
the linear velocity is computed according to the relation 2.2.

v = min(a0t, v0, (2a0dr(t))
1
2) (2.2)

where a0 is the maximum acceleration, v0 the maximum velocity and dr the
position error. This last according to dr(t) = ||xd − xr(t)||, where xr is the
position at time t and xd is the target position, hereafter also intended as
the the global attractor.

Summarizing, in the classic version, the artificial potential field that affects
the motion of the robot is given by the sum of two fields, as reported in 2.3:

Uart(x) = Uxd
(x) + Uo(x) (2.3)

where Uxd
(x) represents the global attractive potential field in x and Uo(t) is

the repulsive potential field in x. In the following sections it is analyzed how
the attractive and repulsive potential fields are modelled.

12

Path planning using potential fields with local attractors

2.1.1 Design of the attractor
As previously stated, the desired position can be seen as an attractive
potential field. The goal is to attract the mobile robot towards target
position. Aiming at doing that, in [19], the attractive field is modelled as a
quadratic function. Thus, the field results:

Uxd
(x) = 1

2σ||x − xd||2 (2.4)

where σ is a positive fixed parameter, used to specify the intensity of the field,
xd is the target position and x is the only variable of Uxd

(x), representing
the generic position of the robot.

Figure 2.1 shows an example of an attractive potential field, modelled as
described above, considering σ = 0.5 and the target destination positioned
in xd = [2,0,0].

Figure 2.1: Example of attractive target potential field

13

Path planning using potential fields with local attractors

Since the robot is programmed to follow the negative gradient, its motion
derives from the computation of it:

∂

∂x
Uxd

(x) = x − xd (2.5)

From 2.5, it can be understood that the quadratic potential attracts the
robot in the direction of xd [22].

2.1.2 Design of the repulsor
As mentioned before, an obstacle can be seen as a repulsive potential field.
However, compared to the attractive one modelled above, it is subjected to
some additional requirements.

Firstly, it should be defined a region enveloping the obstacle, outside of
which the gradient results 0, to not disturb robot’s trajectory. Concurrently
in this region, as the robot approaches the obstacle, the value of the potential
field should increase. In this way, the robot would be repelled [19].

Moreover, differently from the target point, it is necessary to consider
the geometry of the obstacle. Since objects can be difficult to model, a
simplification can be done, considering simple shapes such as spheres or
cylinders. In the case presented, the obstacle is supposed enveloped into a
disc of radius Ro, centred in xo.

In order to meet all the requirements, the repulsive field can be modelled
as an exponential function [19] [22]:

Uo(x) = βoe
− γo

2 ||x−xo||2 (2.6)

where xo is the obstacle position and βo and γo are positive parameters,
used to specify the strength of the repulsor. In particular, the final two
respectively represent the peak value and the exponential decay. Similarly to
the attractive field, x is the only variable of Uxo(x), accounting the position
of the robot.

The gradient of 2.6 repelling the robot, results:

∂

∂x
Uxo(x) = −βoγo(x − xo)e− γo

2 ||x−xo||2 (2.7)

Figure 2.2 shows an example of a repulsive potential field considering
γo = 80.3475, βo = 1 and the obstacle centred in xd = [1,0,0].

14

Path planning using potential fields with local attractors

Figure 2.2: Example of obstacle potential field

2.1.3 Resulting APF
Resuming equation 2.3 and combining the equations outlined above in 2.4
and 2.6, the resulting artificial potential field is:

Uart(x) = 1
2σ||x − xd||2 + βoe

− γo
2 ||x−xo||2 (2.8)

Figure 2.3 shows the resulting artificial potential field 2.8, derived from
the sum of the attractor and the repulsor depicted in 2.1 and 2.2.

Figure 2.4 shows the gradient lines related to the APF in 2.3. In addition,
the obstacle center and the target point, as well as two circles around the
obstacle. The inner circle represents the obstacle contour, while the outer
circle identifies the limit where the potential field related to the obstacle
goes to zero. Notice that, if the gradient tracking method is chosen as the
control law, i.e. if the robot moves following the direction of the gradient,
the gradient lines in Figure 2.4 can be used to figure out the robot path.

15

Path planning using potential fields with local attractors

Figure 2.3: Example of the resulting APF

Figure 2.4: Gradient lines of the APF generated

16

Path planning using potential fields with local attractors

2.1.4 Analysis of the APF method
One first issue related to the APF method, regards the control law and the
possibility for the mobile robot to be stuck in a saddle point. This occurs
especially when the control law is chosen according to the gradient tracking
error and starting point, obstacle centre and target point are aligned, as in
the example in Figure 2.3. However, in real world, the robot always strays a
bit from the correct direction to take. Consequently, this condition does not
occur and this is just a limit case.

A second aspect, is related to some basic capabilities that, according
to [23], are required to mobile robots. First of all, reliability, safety and
easiness are requested, but already satisfied by the chosen APF method.
This was introduced as an offline approach, but converted in an online
method, to perform in a real-time context that aims at fulfilling these
goals. Moreover, the other requirements are related to the way the robot
should behave preventing collisions. Obstacles’ motion are unpredictable,
especially if humans are considered in the environment, since they change
speed and direction arbitrarily [13]. From humans point of view, robots are
unpredictable too. Actually, mobile robot’s movements, subjected to APF,
depend on local conditions and directions of velocity, instant by instant. So,
in similar conditions, minimal deflections of mobile robot’s motion reflects in
running different paths. This means that, obstacle will be overcame on right
or left side arbitrarily. Aiming at improving this aspect, in the following
section a customized APF method is described.

2.2 APF with local attractors
Following the suggestions pointed out in Section 2.1.4, a novel collision
avoidance technique was presented in [16] [17]. It is named Multiple Attrac-
tors Potential (MAP) and its main goal is to affect mobile robot’s motion,
increasing security perception of human workers. For instance, the human
can know a priori that, no matter of the robot approaching direction, it
will avoid him on a certain side. This approach was designed for humans,
but could be generalized to any type of obstacle. For example, an obstacle
can be an object which has a preferential direction for collision avoidance.
Consequently, applying this approach would be a great idea. So, the robot
has the same behaviour with respect of the obstacle, imposing preferred
collision avoidance directions.

17

Path planning using potential fields with local attractors

The aim of this approach is perceived in MAP introducing local attractors,
conditioning the robot to pass on preferred areas. Since the resultant move-
ments of the robot depend on the local conditions, adding a local attractor
would bend the path towards the attractor side.

Consequently, 2.3 must be updated adding a local attractor:

Uart(x) = Uxd
(x) + Uo(x) + Ua(x) (2.9)

where Ua(x) represents the local attractive potential field in x. The following
section reports details about the design of the local attractor.

2.2.1 Design of the local attractor

The local attractor is arbitrarily positioned near the obstacle, on a side
depending on where the mobile robot shall pass. To obtain the desired
behaviour, the action performed by the local attractor should be similar to
the one carried out by the repulsor, but opposite. Analogously, the attractive
action should be intense, but limited to a region, outside of which it does not
influence. Therefore, this local attractive field can be modelled as a negative
exponential function:

Ua(x) = −αae− γa
2 ||x−xa||2 (2.10)

where xa is the center of the local attractive source and αa and γa are positive
parameters, used to specify the strength of the attractor. In particular, the
final two respectively represent the intensity and the exponential decay.
Similarly to the repulsive and the global attractive field, x is the only
variable of Uxa(x), accounting the position of the robot.

The gradient of 2.10, attracting the robot in its direction, can be computed
as follows:

∂

∂x
Uxa(x) = −αaγa(x − xa)e− γa

2 ||x−xa||2 (2.11)

Figure 2.5 shows an example of a local attractive potential field obtained
considering αa = 0.2770 and γa = 17.5406. The local attractive source is
placed 215° from the center of the obstacle in a counterclockwise direction,
so in xa = [0.3856, −0.4302, 0].

18

Path planning using potential fields with local attractors

Figure 2.5: Example of local attractive potential field

2.2.2 Resulting APF
From the result achieved in the previous section, the resulting artificial
potential field 2.9 is equal to:

Uart(x) = 1
2σ||x − xd||2 + βoe

− γo
2 ||x−xo||2 − αae− γa

2 ||x−xa||2 (2.12)

Figure 2.6 shows the resulting artificial potential field 2.12, derived from
the combination of the artificial potential field depicted in 2.3 and the local
attractor in 2.5, introduced in this section.

Figure 2.7 shows the gradient lines related to the APF in 2.6, indicating
the starting point, the obstacle and the local attractor’s center and the target
point. The red circles are related to the obstacle. The green ones to the
attractive region. In both, the outer one, represents the active region outside
which its influence is null.

19

Path planning using potential fields with local attractors

Figure 2.6: Gradient lines of the APF generated

Figure 2.7: Gradient lines of the APF generated

20

Path planning using potential fields with local attractors

2.2.3 Analysis of the APF method with local attractors

In this approach, the position and the size of the local attractor are subjected
to some constraints. First of all, in order to obtain a simplification of the
local minimum problem that will be pointed later, the local attractor must
be positioned sufficiently far from the active region of the obstacle. In [16]
this constraint is underlined with the relation 2.13:

||xa − xo|| > R∗
o + åϵ (2.13)

where R∗
o is the radius of the active region of the obstacle and åϵ is a positive

quantity that depends on the line segment xaxd. If this segment does not
intersect the active region of the obstacle, åϵ = 0. Otherwise åϵ = ϵ, where
ϵ = xa − åx and åx would be the the point were the saddle would occur [16].

Secondly, the attractor must not incorporate the target in its attractive
region. Otherwise, the global minimum would be perturbed. In [16] this
constraint is expressed with the relation 2.14:

||xa − xd|| ⩾ R∗
a (2.14)

where R∗
a is the radius of the active region of the attractive source.

Furthermore, it is necessary to pay attention to another possible short-
coming. In APF methods the robot is attracted to the target, exploiting the
global minimum of the attractive potential field. Inserting a local attractor,
a potential local minimum is added to system too. This would reflect in the
possibility to be stuck in an equilibrium point. Therefore, αa and γa must
be appropriately tuned, in order to not generate a local minimum.

As pointed out before, 2.13 simplifies the problem of the local minimum.
Thanks to this constraint, the eventual local minimum would appear in
a region where the influence of the obstacle is null. Thus, only the two
attractors must be accounted in the analysis of the global minimum. In [16]
the influence of αa is studied with respect to the local minimum problem.
From this analysis, derives that no local stationary point occurs if αa < åαa.
Therefore, åαa represents the upper bound of αa. Consequently, choosing αa

just below åαa, the maximum attraction is obtained.
In 2.16 is reported the equation computing the value of åαa, obtained

21

Path planning using potential fields with local attractors

substituting the values of 2.15.

åx′(x′
a, γa) = 2

3x′
a[cos(θ + 4π

3) + 1]

θ(x′
a, γa) = cos−1(27

2γax′2
a

− 1)
(2.15)

åαa(σ, x′
a, γa) = −σ åx′

γa(åx′ − x′
a)e− γa

2 (åx′−x′
a)2) (2.16)

where x′
a, σ, γa are fixed parameters. σ and γa are respectively the same of

2.4 and 2.10. x′
a instead, represents the position of thee local attractor in

the frame centred in xd and whose x′ axis is aligned with xa. In addition
to this, åx′ represents the point where the inflection arises, expressed in the
same frame of x′

a, i.e. where the saddle point should be.
Undergoing the limit imposed by 2.16, only a soft deflection is generated.

Thus, no problems related to local minimum are faced, as indicated by the
equipotential contours in Figure 2.6.

22

Chapter 3

Software and Hardware
tools

This chapter intends to give a detailed description of the software and
hardware tools exploited during the thesis. In the next chapter that focuses
on implementation, tools will be only cited and for any further description
this chapter will be the reference.

Firstly a general overview of the chosen programming environment is
given. Together with this description, the reasons that led to this choice are
explained, analyzing pros and cons. Then, all the tools used are presented,
giving a general idea of where they were exploited. This aspect is deeply
explored in the next chapter.

3.1 Robot Operating System
ROS (Robot Operating System) is a project started by a team of researchers
at Stanford University in 2007. It was took over from the company Willow
Garage and it has developed a lot over the last years, releasing different
distributions of it.

ROS is defined as an open source software development kit for robotics
applications. ROS offers a standard software platform to developers across
industries that will carry them from research and prototyping all the way
through to deployment and production [24]. Actually, the peculiarity of
ROS is that is an open-source platform and this feature reflects in many
aspects. First of all, it means that it is accessible either to experienced

23

Software and Hardware tools

user or newcomers. Anyone interested can explore this world, learning with
official tutorials and developing its own project. This, without the necessity
to purchase anything. Secondly, it provides many libraries and tools for
programming a robot. Everything under the same environment, not like the
software property of manufacturing companies. Lastly, a large amount of
code is shared by the research community, promoting reusability. This last
assumption means that time spent developing basic operation can be saved.

For all this reasons, many robots have already integrated ROS. An example
in the research field are Turtlebots [25], mobile robots equipped of sensors
based on ROS. However, it is not only used in this sector, but it is emerging
in industry too. Many commercially available industrial robot are partially
implemented using ROS, others can be integrated using it. Thus, ROS
represents the standard of robot programming today.

In order to integrate developed functions, ROS offers packages. Packages
represent the way ROS is organized. They enclose in a folder all what is
needed to run tasks available in it: code, executables, libraries and config-
uration files. They are responsible of small tasks, according to a modular
structure endorsed by ROS. Actually, ROS implements the "divide and con-
quer" paradigm: small parts of code are tested and combined to pursue more
advanced aims.

Concerning the way it works, ROS is organized in nodes and topics. This
structure can be easily represented by means of a graph where nodes are
vertices and edges, topics.

Nodes are pieces of software performing a specific task. In order to start
a process, a ROS master node must run. This node keeps running until the
end of the process and plays a supervisory role, monitoring the information
exchanging between the others. This communication can occur through
topics or services. However, for the aim of the thesis, only topics are used.

Topics can execute two kind of actions: publishing or subscribing. Pub-
lishers nodes, after creating a channel of communication registering to the
ROS master, start publishing messages on it. Subscribers nodes interested in
listening to one topic, register to it through the ROS master, and then receive
messages. A third type of node exists and it integrates the two actions.

The way topics exchange messages is asynchronous. Concerning the
messages swapped, they are characterized by specific types. Consequently,
nodes’ subscription/publication should be consistent in terms of type.

The fundamental concepts related to how a ROS process works are all
shown in Figure 3.1.

24

Software and Hardware tools

Figure 3.1: Communication in ROS

Regarding the way a developer interacts with ROS, it is almost through
command line on UNIX systems. Commonly ROS is installed on Linux
Ubuntu, paying attention to the fact that each distribution is supported
on a specific release of the OS. The choice of the distribution, meaning the
working setup, mainly relies on the target application which requires specific
versions too.

Basically, a process in ROS starts with the launch of the ROS master,
obtained executing the command roscore, with prior appropriate network
configuration in terms of IP address and port number. Then, nodes are
launched with the command rosrun or roslaunch. The former is used to run
a single node in the package. The latter executes multiple nodes. The code
executed can be expressed in one of the programming languages supported
by ROS. Python and C++ are the most used. In the next section Python
will be deeply presented in the context of ROS, along with the considerations
that led to this choice.

25

Software and Hardware tools

3.1.1 Programming ROS
In 1.1 the essential role of computer science in autonomous applications has
been explained. Therefore, a critical analysis of pros and cons of different
programming languages used in this application is worth-mentioning.

This section starts analyzing the way the application of MAP was done in
[16]. On the basis of this remarks, section 3.1.1 explains the choice of using
Python as programming language for this work.

Remarks on MAP

In [16] an application of the MAP technique is outlined. In this test, the
gradient procedure was computed in Matlab. Afterwards, this setup was
tested on the simulation setting Gazebo, available in ROS. There an accessible
emulation of the mobile robot Turtlebot was exploited.

To pursue the aim of this thesis, the usage of ROS (Robot Operating
Systems) is imperative. This because ROS offers powerful tools for both
simulations and real robots. For instance, MAP in [16] is simulated using a
Turtlebot and this model will be used also in the real implementation, goal
of this dissertation. Thus, using the same model will give the possibility
to exploit results obtained in simulation. Anyway, ROS supports different
languages to perform the desired task. Python, Matlab and C++ are
examples. Deciding which language to use, ROS can be considered as a
compulsory background. Therefore, the analysis should not only be focus
on the advantages of each programming language, but also on the way they
interact with ROS.

Actually, in [16] the heart of the algorithm was run on Matlab. ROS
was only exploited for the simulation tool, using the ROS communication
bridge available in Matlab ROS toolbox. Matlab is a powerful tool arising for
two main features: interactive command line and aesthetically pleasing and
simple graphical representation of data. Regarding the possibility to have
interactive sessions, it is something that can be useful to test small parts of
code. And this is somehow linked to the second assumption. As a matter
of fact, implementing an algorithm, it is useful to enhance performances
analyzing data through plots in a trial and error procedure. As an example,
in [16] a tuning of parameters was performed to obtain a good setup for
the simulation. Thus, these features make Matlab a good choice for the
experimental phase.

26

Software and Hardware tools

However, Matlab is not free and open, while ROS it is. Even if it has the
advantage of running on all OS, Matlab needs licenses. In addition to the
limited availability, this reflects in a lack of open source code too.

In conclusion, Matlab is a good choice for the experimental phase where
the focus is studying a new approach. There, a tuning of parameters and
analysis of plot is essential to obtain good results, as it was done in [16].
However, aiming at real-world implementations, subject of this dissertation,
a good idea can be to move to a free and object-oriented programming
language, such as C++ or Python. Actually, in this next step the setup can
be based on the results obtained in simulation. Moreover this assumption is
supported by another aspect. In [16] is stated that the simulation run with
a control frequency of 30 Hz. Using a different programming language this
could be easily increased to 60 Hz and this aspect is something to consider
to obtain a good control on a real scenario.

Programming languages comparison

ROS supports different types of programming languages. The most used are
C++, Python and Matlab. Others are just partially implemented, such as
Octave and Lisp. In this section the main ones are compared, in order to
explain why Python was chosen to pursue the aim of the thesis.

First of all, Python and C++ are based on the open source paradigm.
This means that there is a larger sharing of code. Thus, more advanced
applications can be achieved in a faster way, reusing code. This ideology fits
well with the one promoted by ROS. On the contrary, Matlab is not free
and open, but despite the others, it offers a more friendly interface that can
be something preferable for some users. However, as stated in 3.1.1, using
Matlab could be a good idea for the experimental phase when data analysis
and plotting are needed. In the implementation step C++ and Python are
better choices.

One thing to know about ROS is that it can be defined as an agnostic
language. It does not matter if one node is written in C++ and one in
Python, they rely on a lower layer. This means that communication is always
allowed, not depending on a specific language. Therefore, if some tasks would
benefit of a Python implementation and others of C++, there will not be
any problem.

One first thing that makes the difference between Python and C++ is
related to the tools needed. Actually, even if most libraries are available on

27

Software and Hardware tools

both, some can be fully developed only on one of them. However, in the case
considered here all the implementations required were available on both.

Both Python and C++ are object-oriented programming languages. The
first represents an extension of C, while the second started from scratch.
What really makes the difference among the two depends on the purpose
of the project. C++ is a compiled and intermediate-level programming
language. This means that it performs faster. Python instead is an high-level
programming language and it is considered easier than C++, by means
of writing code, since it takes more things for granted. However, it is an
interpreted language and that stands for lower performances. If the goal is
something that has to be applied in industry, times matters and C++ could
be a better choice. Indeed, for research purposes Python is perfect. Actually,
it is faster to build a prototype, allowing testing many new solutions. In a
few words, more flexible. This is the reason that led to choosing Python in
this thesis.

3.2 TurtleBot
TurtleBot is a ROS standard platform robot [25]. Its name derives from the
strict relation with ROS, whose logo is a turtle. Indeed, it was created in 2010
by the same company that took over ROS at the beginning, Willow Garage.
Their goal was to create a small, affordable, programmable, ROS-based
mobile robot kit, that would increase the market of ROS. Today Turtlebots
are commonly used in research and educational field. Moreover, thanks to
the low prices, they are often used just as a hobby.

Thanks to their strict relation with ROS, this software offers many packages
with tools useful when dealing with TurtleBots. First and foremost, these
robots are modelled and can be exploited in simulation environment provided
by the software, such as Gazebo.

Until today four versions of TurtleBot have been released. The first two,
TurtleBot1 and TurtleBot2, were developed on the basis of research robots.
The first was based on iRobot Roomba, the second on iClebo Kobuki. Then,
TurtleBot3 took a big step forward, collaborating with ROBOTIS and Open
Source Robotics Foundation. Finally, TurtleBot4 has just been released,
promising better computing power and better sensors, compared to the
previous. These last two versions are the only ones still on the market.

For this thesis, a model of the family of TurtleBot3 is used. The reason is

28

Software and Hardware tools

mainly related to the fact that the aim is to test the approach on a simple
platform, and in the future apply it to a industrial application or with any
other mobile robots on the market. In 3.2.1 a general overview of this version
is given, as well as a description of the way it communicates with ROS.

3.2.1 TurtleBot3
The real innovation in TurtleBot was brought by TurtleBot3, developed in
2017. The aim of this version was to correct the defects of its predecessors
and meet the demands of users.

In Turtlebot3 the main change is accounted to the adoption of ROBOTIS
modular smart actuator Dynamixel. In addition to this, this robot is provided
of a Single Board Computer (SBC), Rasberry Pi, and an embedded controller
developed for ROS, OpenCR. Regarding sensors, it is provided of a 360° Laser
Sensor, LiDAR. Furthermore, Turtlebot3 gives the possibility to customize the
robot in various ways, depending on what is needed for the implementation
wanted.

This robot can be applied for different purposes. Actually, its core-
technology are:

• Navigation: it regards the ability to perform localization together with
path planning. Localization consists in knowing its own position and
orientation, while path planning concerns the schedule of a path to reach
a destination.

• SLAM (Simultaneous Localization and Mapping): it is related to the
ability of the mobile robot to locate in a unknown area. This is made
possible through a mapping of an unknown area, thanks to the sensors
it is provided of.

• Manipulation: it regards the possibility to manipulate objects, integrat-
ing the mobile robot with a manipulator.

However, being customizable, programmable and open-source, it offers the
possibility to pursue different aims. It can be combined with technologies
not naively-implemented on it, such as machine learning or computer vision.

TurtleBot3 represents a family of robots. Three models are available in it:
Burger, Waffle and Waffle Pi. For this thesis work, a burger type is used,
thanks to its similarity with commercial mobile robots. This feature fits well
with the aim of this work: testing an algorithm to develop on mobile robots

29

Software and Hardware tools

Figure 3.2: TurtleBot3 Burger [25]

in the future. Actually, this is the main reason that makes this model popular
The other two models instead are often applied together with manipulators,
since they are already set up for this.

TurtleBot3 burger is classified as a differential-drive wheeled mobile robot,
provided of two wheels. Figure 3.2 shows this model, indicating the main
components.

One additional specification that can be of interest, is that it can reach a
maximum translational speed of 0.22 m/s and a maximum rotational velocity
of 2.84 rad/s.

In order to use this mobile robot, a channel of communication should
be created. In this work, TurtleBot burger communicates with ROS using

30

Software and Hardware tools

some API available in Python, which interface with ROS topics. This
communication is shown in Figure 3.1. In 3.2.2 it will be deepened in the
context of Python.

Figure 3.3: Communication TurtleBot3 - ROS

3.2.2 Communication between TurtleBot3 and ROS
TurtleBot communicates with ROS in the standard way, via topics. This
communication is enabled by an interface in Python, rospy.

TurtleBot offers different types of topics that can be divided between
subscribing and publishing ones [26]. Concerning the subscribing topics,
the user sends the messages to the robot that receives and process. On the
contrary, publishing topics give information received from sensors, such as
the motor status or the position of the robot.

Concerning the implementation of the communication in Python, in rospy
is created using two classes: rospy.Publisher and rospy.Subscribers. The one
relative to the publisher, once initialized, publishes the command using the
method pub. While the subscriber, once initialized, autonomously delivers
the result recalling a callback.

In Figure 3.4 a graph reporting some of the possible messages exchanged
when TurtleBot is applied.

Among the subscribing topics, "/cmd_vel" deserves attention. This topic

31

Software and Hardware tools

Figure 3.4: TurtleBot3 Topics [25]

allows the control of the robot. In this way, the user can control the
translational and rotational speed of the robot in terms of m/s. This
command belongs to the "geometry_msgs/Twist" type, defined by two vectors.
One for linear and one for angular speed. However, due to nonholonomic
constraints, some commands are forbidden. Consequently, only linear x and
angular z are used.

"/Odom" topic instead belongs to the publishing ones. It is used to obtain
odometry information that, in TurtleBot3, rely on the gyroscope and the
encoder. These values are based on the recording of the driving information
and are required to perceive navigation purposes, since they return the pose
of the TurtleBot. This estimation is given by means of a message of type
"geometry_msgs/Pose" that is divided in position and orientation, through a
vector and a quaternion.

The two messages briefly described above are the one used in the designed
application. In the first phase both are utilized, while in the second "/Odom"
is substituted by a different approach. This relies on an OpenCV tool
illustrated in 3.4.2.

32

Software and Hardware tools

3.3 Realsense d435
In the second part of the thesis, a camera is added to the system, mainly to
consider a dynamical obstacle in the implementation. The reasons that led
to this decision will be explained in the next chapter.

The chosen camera is a Intel® RealSense D435. It is a stereo camera that
belongs to the D400 family. It can stream both RGB color data and depth
information, thanks to the depth sensor. It is a low-cost, lightweight and
powerful compact model that enables the development of applications that
can deal with their surroundings. For all these reasons, it is widely used in
robotic field for robotic navigation and object detection.

Figure 3.5 shows the main modules.

Figure 3.5: TurtleBot3 Topics [27]

For this dissertation, depth information is not required. It is used as
a normal 2D camera provided of a RGB module. Thus, among all the
specifications, the FOV (Field of View) of the RGB is of interest for this
application.

FOV relies on camera lens, focal length and sensor size. It represents the
maximum observable area that can be captured by the camera. The RGB
sensor of RealSense D435 offers a FOV of 69° × 42° (h x v). This information
will be used later when the laboratory setup will be described.

In order to understand better how FOV works, in Figure 3.6 is reported
an illustration where all the parameters affecting this measure are reported.
In this case α = 69° and β = 42°.

33

Software and Hardware tools

Figure 3.6: Illustration of camera lens’s FOV [28]

For what concerns the communication, it is supported by a Python library
that provides useful API. The library of interest is pyrealsense2. In this work,
it is applied following the approach in [29], where the streaming is performed
through a pipeline, properly initialized. In the code in 3.1 is reported the
initialization which is done according to a loaded json file that reports the
preset configuration of the camera. In this way, the configuration can be
customized depending on what is needed.

Listing 3.1: Initialization of the pipeline for realsense
1

2 de f i n i t _ r e a l s e n s e (s e l f , name) :
3 jsonObj = j son . load (open (name))
4 p i p e l i n e = r s . p i p e l i n e ()
5 c o n f i g = r s . c o n f i g ()
6 c o n f i g . enable_stream (r s . stream . co lo r , i n t (jsonObj [’ v iewer ’] [

’ stream−width ’]) , i n t (jsonObj [’ v iewer ’] [’ stream−he ight ’]) ,
r s . format . bgr8 , i n t (jsonObj [’ v iewer ’] [’ stream−f p s ’]))

7

8 c f g = p i p e l i n e . s t a r t (c o n f i g)
9

10 re turn p i p e l i n e
11 }

34

Software and Hardware tools

Regarding the way it is used, a basic streaming is done according to the
code in 3.2. Here, the recalled pipeline is the one initialized above. Then a
visualization of the frame received from the pipeline is done. In addition to
this, transformations or computations can be added to this code, before the
image is shown. For instance, these can be done in order to get information
about the surroundings or to process the image. OpenCV’s libraries are
usually exploited for this aim.

Listing 3.2: Basic code for streaming with realsense
1 [. . .]
2 whi le (True) :
3 frames = p i p e l i n e . wait_for_frames ()
4 color_frame = frames . get_color_frame ()
5 color_image = np . asanyarray (color_frame . get_data ())
6 [. . .]
7 # here t rans f o rmat i ons o f the frame can be made
8 cv2 . imshow (" Image " , color_image)
9 [. . .]

10 p i p e l i n e . stop ()

3.4 ArUCo markers

Figure 3.7: Connection between camera stream and markers

35

Software and Hardware tools

ArUco markers are computer vision tools available in the library OpenCV.
They are used in the second phase of this work to substitute the odometry
feedback. In order to exploit them, a camera is needed. Thus, a Python code
should manage the stream of frames coming from the camera to elaborate
them. This connection can be visualized better in Figure 3.7.

In this section OpenCv is presented, as well as ArUco markers.

3.4.1 OpenCV
OpenCV (Open Source Computer Vision Library) is an open-source library
that provides useful tools for both computer vision and machine learning
[30]. OpenCv is referred as a cross-platform since it interfaces with different
programming languages and supports different OS. Python and Linux are one
of them. It provides more than 2500 algorithms, which are highly optimized,
since it focuses on real-time applications. It contains a wide collection of
image processing methods that perform a manipulation of images, doing
several types of transformations. Those include classical and state-of-the-art
computer vision and machine learning algorithms, as well as more innovative.
Examples of applications that can be developed with OpenCV are object
identification, faces detection, and so on. Innovation is mainly intended in
the way these solutions are provided. An example is deeply described in the
3.4.2.

In this work is exploited for two reasons, both related to the second phase
of the implementation. In this phase, vision is added to the system and
OpenCv represents the heart of the solution. The main support is related to
the use of ArUco Markers, deeply presented in 3.4.2 and described in the
context of the implementation in 4.3. In addition to this purpose, it also
plays a supportive role for what concerns the streaming of the camera.

3.4.2 ArUco markers
ArUco library

ArUco is an open-source library of OpenCv, popular in computer vision. It
is used both for detecting and pose-estimating squared planar markers. An
AruCo marker is defined by OpenCV as a synthetic square marker composed
by a wide black border and an inner binary matrix which determines its
identifier (id) [31]. An example is shown in Figure 3.8.

36

Software and Hardware tools

Figure 3.8: Examples of ArUco markers [31]

The inner region is the one that identifies the marker. It permits to
determine unequivocally the pose of it in the environment in which is inserted.
This is also done thanks to the black border that facilitates the detection.

There are different types of markers, belonging to specific dictionaries.
These are characterized by the dimension of the dictionary and the marker
size. The former defines the number of markers included in it, the latter the
size of the internal matrix. This last is also accounted as the number of bits
of the markers and markers can have more or fewer bits. The more are the
bits, the smaller is the chance of confusion. However, more bits means that
more resolution is required too. Consequently, it should be find the correct
trade off, depending on the application to develop.

ArUco markers detection

A general frame containing ArUco markers can be elaborated in order to
detect them. The returned result of this elaboration includes two information:
the id of the marker and the position of the corners in the image.

The marker detection process of ArUco is done in two steps. In Figure
3.9 are shown the main elaboration done to get the result. Firstly, the image
(or the frame if it is a video) is analyzed looking for possible markers. This
elaboration of the imagine is done applying an adaptive thresholding to

37

Software and Hardware tools

obtain the borders of it. In this step, along with real markers, undesired
contours are detected too. Thus, different filters are applied to discard
unwanted borders.

(a) Apply of an
adaptive thresholding to
obtain borders

(b) Contours detection
and unwanted borders
filtered

(c) Apply of polygonal
approximation to
discard images with
a wrong number of
corners

(d) Detection of the
external border defining
each marker

(e) Detection of the marker
identifying the matrix of inner
region

Figure 3.9: Process of ArUco detection [21]

The second step consists in the markers identification. This is done
starting by extracting the marker bits of each marker (the result of the first
step 3.9e). To do so, a perspective transformation is firstly applied to obtain
a frontal view. Then, this image is thresholded to underline the difference
between white and black bits. Since the chosen dictionary is given, the image
is divided in different cells according to the marker size and the border size.
Finally, the bits are analyzed to determine if the marker belongs to the
specific dictionary or not.

Concerning the implementation in Python, all this steps are done calling
the method detectMarkers(). This requires in input the image to analyze
and the dictionary used, and returns corners and respective ids detected.

38

Software and Hardware tools

However, in the case considered, detection is not enough. ArUco markers
are exploited to obtain a estimation of the pose of an object. Therefore, it
is necessary to perform camera pose estimation. This can be done only if a
correct camera calibration is done. After the explanation of this next phase,
a code gathering all this steps will be reported.

Camera Calibration

In order to estimate the pose of a marker, calibration parameters of the camera
must be known. These are required to perform a geometric transformation
from the projected image plane to the 3D environment.

In particular, these parameters are the camera matrix and distortion
coefficients. The first is related to intrinsics parameters, while the second to
extrinsics. Intrinsics are specific of the camera applied. They concern the
focal length of the camera lens (fx, fy) and the optical center of the sensor
(cx, cy). The camera matrix is of the form:

K =

fx 0 cx

0 fy cy

0 0 1

Figure 3.10: Camera matrix

Whereas, the distortion coefficients are related to 3D rotations and transla-
tions that transform the camera reference system to an arbitrary one. These
coefficients model the lens distortion produced by the camera and use them
to compensate it. Distortion coefficients are expressed through a vector of
five elements.

To obtain these parameters, OpenCv offers the method calibrateCamera()
that requires several images of a board, captured with the camera used. In
addition to this, information about the size of the board and of board’s
squares is needed too. With this, it performs a calibration detecting board
corners. In order to obtain a good result, at least 25 images should be
provided. However, calibration is not part of the entire application. It should
be done just once and then it is sufficient to save the parameters needed.

In Figure 3.11 an example of calibration is shown. Some of the images
captured with the Realsense for a process of calibration are represented. In
the figure these images are shown elaborated, after the call of the method
calibrateCamera(). In order to have a correct calibration, these images must

39

Software and Hardware tools

not be redundant. These must show the board in different positions/orienta-
tions and must cover all the area of the camera to have information about
all the field of view. In this way, correct parameters can be computed.

Figure 3.11: Example of calibration

The calibration parameters referred to the images are reported below:

K =

612.7908848 0 437.45801011

0 613.83484813 237.90178247
0 0 1

dist_coef =

è
0.1439838 −0.3959496 −0.0003509 0.0010755 0.2730598

é
Figure 3.12: Calibration parameters of the example 3.11

40

Software and Hardware tools

ArUco markers pose estimation

Once camera calibration parameters are available, a correct pose estimation
can be performed. In this process, the relative pose of the camera with
respect to the center of the marker is estimated.

In Python it is performed calling the function estimatePoseSingleMarkers.
This requires in input the corners detected in the previous step, together
with the size of the marker to be estimated and the calibration parameters.
It returns two vectors: rvecs and tvecs. Each element of these correspond to
the a specific marker. Rvecs are rotation vectors and define the orientation of
each marker. Tvecs are translation vectors. Together, these vectors represent
the camera pose with respect to a marker, i.e. the 3D transformation from
the marker coordinate system to the camera coordinate system. Therefore,
a change of reference frame can be done with these vectors, exploiting the
homogeneous transformations.

At this point, all the elements required for the pose estimation have been
explained. Therefore, a code gathering all the steps is reported in 3.3. In
this application a realsense camera is supposed to be used.

Listing 3.3: Detection of ArUco markers
1

2 de f r e a l s e n s e d e t e c t (p i p e l i n e , cameraMatrix , d i s t C o e f f s ,
aruco_dict ionary , parameters , aruco_dim) :

3

4 whi le (True) :
5 frames = p i p e l i n e . wait_for_frames ()
6 color_frame = frames . get_color_frame ()
7 color_image = np . asanyarray (color_frame . get_data ())
8 gray_frame = cvtColor (color_image , cv2 .COLOR_BGR2GRAY)
9

10 # Function ’ cv2 . aruco . detectMarkers () c a l l e d ’
11 corners , ids , r e j e c ted ImgPo int s = detectMarkers (

gray_frame , aruco_dict ionary , parameters=parameters)
12

13 # Draw detec ted markers on the image :
14 color_image = drawDetectedMarkers (image=color_image ,

co rne r s=corners , i d s=ids , borderColor =(0 , 255 , 0))
15

16 # Draw r e j e c t e d markers :
17 color_image = drawDetectedMarkers (image=color_image ,

co rne r s=re jectedImgPoints , borderColor =(0 , 0 , 255))
18

41

Software and Hardware tools

19 # rvec s and tvec s are the r o t a t i o n and t r a n s l a t i o n
vec to r s o f each marker

20 rvecs , tvecs , _ = est imatePoseS ing leMarkers (corners ,
s e l f . aruco_dim , cameraMatrix , d i s t C o e f f s)

21

22 f o r rvec , tvec in z ip (rvecs , tve c s) :
23 drawAxis (color_image , cameraMatrix , d i s t C o e f f s , rvec

, tvec , s e l f . aruco_dim)
24

25 drawAxis (color_image , s e l f . cameraMatrix , s e l f . d i s t C o e f f s
, s e l f . rvecW , s e l f . tvecW , s e l f . aruco_dim)

26 imshow (" Image " , color_image)
27

28 re turn color_image

At this point, a general overview of the tools used during the implemen-
tation has been done. However, in order to exploit ArUco, some tests have
been made. Just to be sure that they could have led to a good result.

Test 1 on ArUco: Detection at different distances

One first test consisted in verifying if an ArUco would have been detected at
a certain distance. To do so, an ArUco was attached to the wall and kept
fixed. Concurrently, the camera was incrementally moved away from it. The
size of the ArUco and the distance to consider was supposed on the basis
of the target application. Details regarding how they were chosen, will be
better explained in 4.1.

In Figure 3.13 are shown captures of the results relative to the size of the
ArUco used in the implementation. As can be seen in the figure, the test was
done on a environment sufficiently complex, in order to test the algorithm
on the worst case.

From the pictures can be evaluated that an ArUco of the dimension of
0.067 m performs in a good way until it is kept at a distance of maximum 2.40
m. In 3.13f where the ArUco is 2.60 m far, can be observed that borders are
detected, but resolution is not sufficient to identify the marker. Observing
the video in real-time can be seen that sometimes it is identified. Whereas,
incrementing the distance, the ArUco is no more detected. This means that
2.60 m approximately represents the upper limit to observe with this ArUco.
However performances can not be considered consistent already at 2.60 m
where detection results irregular. If this distance, or even more, is required,
the size of the ArUco must be incremented.

42

Software and Hardware tools

(a) 1.40 m far (b) 1.80 m far

(c) 2 m far (d) 2.20 m far

(e) 2.40 m far (f) 2.60 m far

Figure 3.13: Test on the ArUco detection at different distances

In conclusion, this test permitted to apply ArUco of the size of 0.067 m
that turned out to be consistent in the detection of a marker at a distance
of about 2.40 m.

Test 2 on ArUco: Analysis of the error in pose estimation

The second test consisted in obtaining a measure of the error in the pose
estimation, both in terms of orientation and position. This was realized
considering a setup consistent with the one tested previously (ArUco of size
0.067 m and camera 2 m far away).

This test was carried out comparing the error of two ways of obtaining an

43

Software and Hardware tools

estimation of the pose. However, one first issue was related to the measure
to consider correct in the comparison. Since there was no way to obtain a
precise measurement, the following analysis regards only the deviation from
the mean value, to give an idea of data oscillation. Moreover, measurements
have been referred to the world frame, which is built from the pose of one
marker, that is considered to be fixed. Once the frame was available, the
marker defining the origin was kept fixed and its measure was transformed
in the relative designed frame through homogenenous transformations. In
this way, the two measurements compared in each method were the ones
relative to the origin that, in an ideal world, should have been the same.

The first method used to build the frame was the classical one presented
in 3.4.2. Here, one ArUco is inserted in the environment, a picture is taken
and the estimation is made using the calibration parameters along with the
size of the ArUco. In this test, the frame to exploit is simply the one relative
to the ArUco detected and estimated.

The second method followed an approach that would have increased
performances. This was done because of the ambiguity problem stated in
[21]. The problem is related to a strange behaviour of the z-axis that presents
a change flip between two poses. This is due to the fact that there is an
ambiguity in the projection. In order to overcome this problem, the measure
was done relatively to a frame designed with three ArUco. These three were
printed in such a way to build a right-handed triad. In this way, the flipping
was no more a problem, because the frame must had been consistent.

Results were obtained taking detection data over a reasonable period of
time and modelling a normal distribution. Data was given in terms of tvec
and rvec, i.e. 3x1 array, and the distribution was computed on the norm
derived from the sum of the three elements of each array. In Figure 3.14 and
3.15 results are shown. Here, the first method is named "1Aruco", while the
second "3Aruco".

In Figure 3.14 the position error expressed in meters is shown. It can
be observed that there is not a great difference between the two methods.
Whereas, in Figure 3.15, reporting the orientation error in radiants, a more
significant difference is visible.

However, this test evaluated that there is not a huge difference between
the two approaches. Since for the target implementation, applying three
ArUco would have been difficult, the classical method was exploited.

44

Software and Hardware tools

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

[m]

0

20

40

60

80

100

120
POSITION

1Aruco

3Aruco

Figure 3.14: Position error

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[rad]

0

1

2

3

4

5

6

7

8

9
ORIENTATION

1Aruco

3Aruco

Figure 3.15: Orientation error

45

Chapter 4

Experimental tests

4.1 Laboratory setup
This first section intends to give an overview of how the laboratory setup
was structured on the base of tools presented in the previous chapter. The
connection between these tools is shown in Figure 4.1.

Figure 4.1: Tools exploited in the implementation

46

Experimental tests

First of all, as stated in 3.1.1, the usage of ROS in this thesis was com-
pulsory. Since it was used a TurtleBot3 burger, a compatible release of
ROS was necessary, and consequently of Linux Ubuntu. In this case, the
choice was ROS Noetic together with Ubuntu 20.04. This was not installed
on a virtual machine, to enhance performances right from the beginning,
avoiding potential delays. Whereas, the used computer was partitioned and
Ubuntu was installed on it. Then, the required version of ROS along with
the packages needed were installed. Concerning the connection between
ROS and TurtleBot, they needed to be connected to the same network to
exchange topics.

For this aim, it was used a mobile router. In the second phase, when a
camera was integrated in the original setup, the Realsense was connected
via a USB 3.0 cable to the computer. From this starting point, Python
was chosen with respect to others programming languages, thanks to its
versatility. Remarks that brought to this decision are deeply explained in
3.1.1.

In this work, Python played the central role of the interface between
all the others components. The written code required to correctly manage
topics’s exchange between ROS and TurtleBot, deriving from the MAP
computation. In addition to that, on the second phase, ArUco were integrated.
Consequently, a parallel elaboration of images was needed. This included a
managing of the communication with the camera. To do so, a concurrent
scheduling scheme was applied, in order to have two streams working at
the same time. In 4.2.1 and 4.3.1 the general structure of the code will
be analyzed, underlying the differences between the first and the second
phase of the implementation. These did not only regard the camera and the
elaboration of frames, but the dynamical recognition of the obstacle and the
target too. This means that a real-time sculpting of the potential field was
programmed.

Concerning the setup, in a first phase, the intention was to reply a test
simulated in Gazebo. This was done according to the values of the example
of Chapter 2 and the instructions given in [16]. The result of this test is
reported in Figure 4.2. In this test, the target was positioned 2 m far on the
x-axis of the TurtleBot, which represented the origin. While the obstacle at
about 1 m. Therefore, following the results, a area of at least 2 m x 1 m was
required. Testing was carried-out marking on the ground these coordinates
associated to the setup. The object used as a obstacle was a box whose
dimensions could have been enveloped in the radius of a disc. Thus, this

47

Experimental tests

setup followed the simplification made on [16].

Figure 4.2: Result of a test simulated in Gazebo

In the second phase of the implementation, a different way of obtaining
the positions of the obstacle and the TurtleBot was desired with respect
to [16]. This because of bad performances registered with the odometry
feedback that will be deepened in 4.2. Machine learning could have been a
choice. However, it was a choice computationally heavy and the aim was
to obtain a result as much "light" as could have been done. Thus, ArUco
were added to the system, along with a camera. The idea was to test the
MAP approach in a setup not so supportive to obtain a consistent result.
Different upgrades can be done on this setup, starting from the inclusion
of deep learning or working in a more friendly environment. However, this
aspect will be extended in the last chapter.

Therefore, the second phase of this implementation involved the integration
of a camera. From the requirement on the area needed, the choice of the

48

Experimental tests

distance between floor and camera derived. The camera was positioned at
about the centre of an area sufficiently large, looking at the floor. A picture
of the experimental setup is reported in Figure 4.3.

Figure 4.3: Laboratory setup

Following the specification of the applied camera, the required distance
from the floor was computed. According to 3.3, Realsense d435 offers a FOV
of 69°x 42°(hxv). Supposing to place the TurtleBot in the way shown in
Figure 4.3, 69° was approximately relative to the x-axis of the TurtleBot,
while 42° to the y-axis. Since 2 m were required on the x-axis, it resulted
that the camera should have been placed at, at least, 1.5 m far. In order to
consider a robust setup, a bigger area was considered. In this way, eventually
unexpected behaviour of the TurtleBot would have been detected. Thus, the
camera was placed 2 m far from the floor. This, consistently with the results
of the two tests in 3.4.2.

The way ArUco were applied is already shown in Figure 4.3. One on the

49

Experimental tests

target, one on the obstacle and the last one on the TurtleBot. Regarding the
choice of the ArUco, in terms of dictionary and size, several tests were taken.
ArUcos coming from the dictionary DICT_6x6_100 of the size of 0.067 m
resulted to perform in a good way in the setup considered. In addition to
the tests shown in 3.4.2, they were tested in motion too. This because one
of them was applied on the TurtleBot and the pose estimation should have
been done while moving.

In Figure 4.4 the setup is shown from the camera point of view. In this
picture the setup is relative to the second phase. In the first phase, the
setup was the same, just not considering markers and tracing on the floor
the obstacle and the target position. It can also be recognized the obstacle.
It was applied a sort of arrow on it to indicate the preferred region on which
the TurtleBot is expected to pass.

Figure 4.4: Laboratory setup from camera point of view

4.2 Odometry feedback
The starting point of the implementation in a real scenario was a simulated
test. In particular, the setup followed the one shown as an example in
Chapter 2. The aim was to reproduce a setup that was supposed to work

50

Experimental tests

well. Consequently, obstacle and target positions in this first phase were
assumed known and fixed. Thus, this can be considered a static approach.

Firstly, in 4.2.1 an overview of the structure of the code in this phase will
be given. Then, results and limitations of this first solution will be analyzed,
explaining the reasons that led to the second phase.

4.2.1 Structure of the code

Figure 4.5: Structure of MAP implementation in Odometry feedback
implementation

In Figure 4.5 the skeleton of the code written to implement MAP in a
real scenario is shown. The structure of the code is divided in two parts.

51

Experimental tests

One related to the TurtleBot, the other to the MAP. The former regards the
communication with the robot, while the latter represents the heart of the
whole algorithm. So, in order to understand it, it should start looking at
this last one.

The first step, named sculptor, is all devoted to the computation of the
potential field. This receives in input obstacle and target position and
returns back the attractive field position, as well as σ, βo, γo, αa, γa which
characterize the potential field. As previously stated, starting, obstacle, and
target position are supposed fixed and known. Concerning the attractor
position, it is defined by a fixed angle that place it with respect to the
obstacle, at a fixed distance that in this tests in considered equal to 3ro,
where ro is chosen as 0.25 m to surround the cube. Thus, this step results
purely "static". Unless the angle or the positions are changed manually,
these parameters will always be the same. This because little oscillations of
obstacle and target position, which would be considered consistent to the
reality, are not accounted.

The second part is the one on which was dedicated more attention in
this phase. It is nothing but the application of the MAP approach with
the gradient tracking control law. It consists in a while loop, based on the
distance between target and actual position of the robot. It loops until this
distance is lower than a certain threshold. Inside the loop, the pose of the
robot is updated, thanks to a topic received from the TurtleBot. Then, the
negative gradient is calculated, using the updated pose of the robot.

The body of the loop ends calculating the value of the velocity to transmit
to the TurtleBot to move towards the target. This value is computed in terms
of linear and angular velocity and it is based on the control law described
in 2.1. Thus, angular velocity is calculated according to the formula 2.1
and is limited to the maximum velocity reachable, which is 2.84 rad/s. In
addition to that, attention is paid to the sign of this speed, checking the
vector product between actual and desired velocity. Then, three terms are
computed for the magnitude of the linear velocity, as in the relation 2.2.
However, concerning this last, it is limited to half of the maximum value,
0.1 m/s. This is to prevent possible slippage. The direction of it instead is
chosen according to the negative gradient calculated previously, following the
gradient tracking method. Once the robot reaches a position whose distance
from the target is under the threshold of 0.1 m, the while loop ends and the
robot is stopped, sending a null velocity as command.

On the basis of the control law used, Figure 4.6 shows the gradient tracking

52

Experimental tests

approach. Referring to the labels in the figure and the formulas in Chapter
2, assume that φ = ∠vdvr and vd = − ▽ Uart, i.e. the negative gradient.

Figure 4.6: Gradient tracking [16]

Regarding the communication with TurtleBot, as anticipated, the two
topics exploited are: odom, to receive odometry feedback, and cmd_vel,
to send velocity commands. In a few words, odom is a publishing topic
transmitting orientation and position of the robot, while cmd_vel is a
subscribing topic receiving the command velocity to apply to the robot.

The graph related to this connection is shown in 4.7. In the figure,
the circular communication can be visualized. Odometry comes from the
TurtleBot and goes to the node relative to the implementation of MAP.
Whereas, from this last comes the command velocity that is transmitted to
the robot.

Figure 4.7: RQT graph in Odometry feedback implementation

Even if not reported in the scheme, at the beginning a general initialization
is done. The relevant part in this is related to the connection with TurtleBot
and significant steps are shown in the extrapolation of code 4.1. Here, after

53

Experimental tests

the initialization of the node ’turtlebot_MAP’, the publisher pub and the
subscriber sub are created. Regarding the first, in the initialization is passed
the type of message that want to be published. Instead, in the subscriber,
together with the information relative to the type of message to subscribe, a
callback is passed. This refers to a method that is called when a message of
type odometry is received. This method, along with the main implementation
of MAP, is reported in Appendix A.

Listing 4.1: ROS topic inizialization
1 [. . .]
2

3 rospy . in it_node (’ turtlebot_MAP ’ , anonymous=False)
4

5 s e l f . pub=rospy . Pub l i sher (’ /cmd_vel ’ , Twist , queue_size =10)
6 s e l f . sub=rospy . Subsc r ibe r (’ /odom ’ , Odometry , s e l f . c a l l b a c k)
7

8 [. . .]

4.2.2 Results
The results shown in this part presented a similar setup to the the ones
proposed in [16].

This test was made considering the same positions of the example in Chap-
ter 2 and setting up the laboratory in the way described in 4.3. Summarizing,
it was considered the following setup:

• starting position in x0 = [0,0,0]

• a global attractor placed in the target position in xd = [2, 0, 0] with
σ = 0.5

• a repulsor placed in the obstacle position in xo = [1, 0, 0], in the middle
between the starting and the destination position, with βo = 1 and
γo = 80.3475; the obstacle was enveloped in a radius Rc = 0.135 m but,
as suggested in [16], the radius of the active region of the obstacle was
extended for a wider range, including TurtleBot, from which derived
Ro = 0.25 m

• a local attractor placed considering as preferred region of the obstacle
the one below it; thus, it was positioned in xa = [0.3856, −0.4302, 0], at

54

Experimental tests

215° counterclockwise from the obstacle position, with αa = 0.2770 and
γa = 17.5406

The test was run using a control frequency of 60 Hz, a threshold of 0.1
and a gain (K) equal to 1 m.

The result relative to this test is shown in 4.8. Following the same
representation of Chapter 2, the obstacle’s region is represented in red, while
the attractor’s in green. In both, the inner circle represents the effective
radius of the obstacle, while the outer, the active region outside of which the
influence of the attractor/repulsor is null.

Figure 4.8: Result of odometry feedback with preferred region below the
obstacle

Secondly, a symmetrically opposite setup was tested. The aim of this
second test was to consider as preferred region the one above the obstacle,
demonstrating that the algorithm worked properly and concording to the
MAP. That is, that changing the definition of the attractor position, the

55

Experimental tests

mobile robot would have followed an opposite trajectory. Thus, the attractor
was placed 145° counterclockwise from the center of the obstacle. The only
value that changed from the previous setup was the local attractor position,
which resulted: xa = [0.3856, −0.4302, 0].

The result relative to this second test is shown in 4.9. The representation
agrees with the previous one.

Figure 4.9: Result of odometry feedback with preferred region above the
obstacle

4.2.3 Remarks on the results
Even if from Figure 4.8 and 4.9 a perfect behaviour can be evaluated, in the
reality this was not true. This was mainly due to the irregular floor on which
the robot moved. If the robot got stuck or slipped on the floor, odometry
would have kept going on and no defect were detected. In order to prove

56

Experimental tests

this behaviour that is not visible in the plot of the odometry, it was made
a comparison with a measure that reflected reality. This was done using
ArUco for pose estimation. The comparison relative to Figure 4.8 is shown
in Figure 4.10. Here, in blue is represented the ArUco estimation, while in
magenta the odometry.

0 0.5 1 1.5 2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
0

x
f

x
o

x
a

Figure 4.10: Comparison between odometry and ArUco pose estimation in
the test shown in 4.8

However, more striking cases occurred, such as the one reported in Figure
4.11 where the robot got stuck and the behaviour completely deviated from
the one registered by odometry.

One idea could have been to move to a more "friendly" floor. However the
aim was to obtain a consistent result, with as less limitations as could have
been done. From this assumption, the decision was to drop odometry and
move to a different type of feedback. The idea was to integrate a camera in
order to have a bird’s eye view that would have given a knowledge about

57

Experimental tests

0 0.5 1 1.5 2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
0

x
f

x
o

x
a

Figure 4.11: Comparison between odometry and ArUco pose estimation
when the robot got stuck

the whole environment in which the robot moved. Implementing a camera,
machine learning could have been a choice, but required great computational
effort. Thus, ArUco seemed to be the best trade off to both enter dynamical
components in this implementation and obtaining a different feedback of the
pose of robot.

4.3 ArUco feedback
For the reasons explained in 4.1 and 4.2.3, ArUco markers were employed as
the new feedback. In this way, together with obtaining a consistent feedback,
it was possible to consider a more dynamical setup. In this phase, target and
obstacle were still assumed stationary, but their position was estimated at the
beginning of every test. Thus, different tests estimated slight displacements

58

Experimental tests

in the positions. So, the improvement regarded both the removal of the
assumption of the prior knowledge, as well as a new way of getting the pose
of the robot that would have been more realistic. In order to do this, one
ArUco was applied on the obstacle, one on the target point and the last one
on the TurleBot. This last was used to substitute the odometry feedback.

Firstly, an idea of the structure of the code will be given in this section,
underlying the differences and the improvements from the previous scheme.
Then, some testing results will be analyzed and compared too.

4.3.1 Structure of the code
The starting point of this improved implementation was the structure de-
scribed in the previous section. The upgraded version of the second phase is
shown Figure 4.12.

Figure 4.12: Structure of MAP implementation in Test 2

Concording to the previous structure, the heart of the algorithm is rep-
resented by MAP. The effort in this second phase mainly focused on the
improvement of the first part of the code in it. Namely, on the one before
the while loop that was previously defined "static". So, in order to have a

59

Experimental tests

more dynamical layout, the first thing to do is the detection of the three
pose of interest: obstacle, target and TurtleBot. This is done following the
pose estimation described in 3.4.2. After detecting these three, the sculpting
already employed in the previous phase is done. This step always leads to
different results, since the positions always vary a bit. This assumption is
something that makes this approach more consistent to what happens in a
real scenario.

However, in sculptor there is another difference from the previous imple-
mentation. There, the position of the attractor used to be defined by a fixed
angle, that was changed manually, This, used to define the preferred region
with respect to the obstacle position. Aiming again at a more dynamical
approach, ArUco should be positioned in such a way that it defines the
region where the attractor should be placed. In order to do so, ArUco is
fixed to an object, assuming that the marker’s y-axis defines the direction
on which the attractor should be placed. In this way, before the attractor’s
parameters are computed, the attractor is positioned with respect to the
obstacle’s frame in the direction pointed by y-axis, at a fixed distance (in
the examples it is equal to 3ro). After this, the attractive source position is
transformed to the reference frame and sculptor follows the same structure
of the first implementation.

Figure 4.13: ArUco’s frame

In Figure 4.13 is reported an example of ArUco with the frame drawn.

60

Experimental tests

Because of the way the approach was implemented, it should be payed
attention to how it is positioned on the object. Its orientation defines the
attractor and consequently where the robot will pass.

The second part follows a structure that seems to be similar to the original.
Actually, it is, except for the the substitution of the odometry with the pose
of the ArUco. Therefore, the graph representing the communication between
TurtleBot and MAP, results as the one depicted in 4.14.

Figure 4.14: RQT graph in Test 2

However, even if the skeleton is the same, this part presents a deep
programming difference. Once sculptor is finished, main starts a new thread,
relative to the camera, in order to have a continuous flow of data about
the pose of the robot. The method associated to it is the one reported in
3.3. Thus, this second thread, named "camera" in the figure, implements
pose estimation and works independently from the main one. Following this
approach, together with a more consistent measure of the pose, which keeps
updating, it also makes a better detection of the ArUco, because no delays
relative to the interruption of the stream are accounted. However, concurrent
programming requires attention, especially if data have to be shared. In this
case, the updated pose of TurtleBot is written on a file that, when needed, is
read from the main. In order to guarantee consistent data on the file relative
to the pose estimation, a lock is employed. This lock is shared between the
two threads and ensures an atomic access to the file. The camera thread
consists in a loop that continues until the main thread is stopped. At every
iteration, after performing a new estimation, it waits for the ownership of
the lock. When the writing ends, it releases it. The main thread analogously
asks for the ownership every time it iterates, needing an update of the pose
and then releases it. In this way, the two thread work simultaneously as
shown in the Figure 3.3 where in black is represented the flow of the main
thread, in red the one relative to the camera thread, and in blue the atomic
operation performed by the lock.

The structure of the code for this second phase has been described. How-
ever, there is one more aspect that was implemented in this upgrade. It
regards a case already outlined in [16] and anticipated in Chapter 2. This is

61

Experimental tests

relative to a possible scenario that can be faced and should be distinguished.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y
 (

m
)

x
0

x
f

x
o

x
a

(a) Scenario 1: xaxd ∪ Uo /= 0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x (m)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y
 (

m
)

x
0

x
f

x
o

x
a

(b) Scenario 2: xaxd ∪ Uo = 0

Figure 4.15: Two scenarios in MAP

Two scenarios can be faced when a local attractor is modelled through the
orientation of the obstacle and are displayed for a better comprehension in
an example in 4.15. In the first one (4.15a) that is the one on which the first
implementation was designed, the line segment xaxd intersects the active
region of the obstacle. Thus, the potential saddle point would overlap with
the obstacle if the restriction 2.13 is not respected. And this would reflect
in a loss of control on the local attraction, that leads to pushing the robot
towards the obstacle. In the second case instead, this limit is relaxed and
the attention focuses on the restriction 2.14.

62

Experimental tests

The two restrictions to whom the first case is subjected, were already
implemented in the first phase. Whereas, the second case represents a
simplification and, in this case, the local attractor can be designed with a
higher radius eventually enveloping the obstacle. It just has to pay attention
to not incorporate the final point.

In conclusion, this upgraded version of the previous implementation ac-
counts new elements, both from a programming point of view and from the
approach to the implementation of MAP. The upgraded implementation of
MAP is reported in Appendix B.

4.3.2 Results
Concerning this upgraded implementation, the setup was no more static.
The three elements were positioned in a such a way that reproduced the
setup of the first test, but necessarily they were not the same. TurtleBot,
obstacle and target were not positioned randomically from the beginning, in
order to be sure that the setup, at least theoretically, would have worked.
Actually, this is a good point in view of a purely dynamic approach, because
it accounts non predictable positions.

All the tests that will be shown in this section were run using a control
frequency of 60 Hz and a gain (K) equal to 1. Concerning the threshold, two
different values were applied during the tests. Generally, it was decreased
compared with the one used in the previous phase (0.1 m). In the first phase
with lower values of threshold, the robot kept turning around, not stopping,
because odometry was more subjected to error. Instead, in this phase it
was set at 0.02 m in all tests, except for the last one where velocity was
increased and it was fixed to 0.05 m. Probably this augmentation increased
the error in the ArUco estimation, especially when velocity was taken to the
maximum. In each example the values relative to the potential field will be
reported, in order to understand how the behaviour changes. The labels of
these values will replicate the ones used in Chapter 2.

In addition to that, all the tests were done using a fixed frame as reference.
Along with the plot of the trajectory with respect to the gradient, some
shoots of what was captured from the camera are shown. In this way, the
reference frame of all the detected ArUco will be represented, as well as the
one relative to the "World". In order to emphasize the direction on which
the robot is expected to pass, it was attached a red arrow respectively to the
y-axis identifying the preferred region.

63

Experimental tests

Scenario 1: xaxd ∪ Uo /= 0

The first results are referred to a setup remarking the scenario 1 (4.15a) that
roughly replicate the examples in 4.2.

(a) Trajectory of the TurtleBot on the APF

(b) ArUco detection from camera point of view

Figure 4.16: Result of ArUco feedback with preferred region below the
obstacle and αa = 0.9 æαa. APF parameters: σ = 0.5, βo = 1, γo = 80.3475,
αa = 0.2559 and γa = 22.1587

64

Experimental tests

(a) Trajectory of the TurtleBot on the APF

(b) ArUco detection from camera point of view

Figure 4.17: Result of ArUco feedback with preferred region above the
obstacle and αa = 0.9 æαa. APF parameters: σ = 0.5, βo = 1, γo = 80.3475,
αa = 0.2760 and γa = 17.7249

65

Experimental tests

(a) Trajectory of the TurtleBot on the APF

(b) ArUco detection from camera point of view

Figure 4.18: Result of ArUco feedback with preferred region above the
obstacle and αa = 0.8 æαa. APF parameters: σ = 0.5, βo = 1, γo = 80.3475,
αa = 0.2498 and γa = 18.4824

66

Experimental tests

Scenario 2: xaxd ∪ Uo = 0

This result is referred to a setup remarking scenario 2.

(a) Trajectory of the TurtleBot on the APF

(b) ArUco detection from camera point of view

Figure 4.19: Result of ArUco feedback with preferred region below the
obstacle and αa = 0.8 æαa. APF parameters: σ = 0.5, βo = 1, γo = 80.3475,
αa = 0.27069 and γa = 6.9058

67

Experimental tests

Linear velocity increasing in scenario 1

These results are referred to a setup similar to scenario 1 4.15a, but the
velocity was incremented until the limit of TurtleBot. Notice that, in order
to stop the robot, the threshold was increased to 0.05 m.

Figure 4.20: Result of ArUco feedback with preferred region above the
obstacle, αa = 0.9 æαa and linear velocity v = 2

3vmax

Figure 4.21: Result of ArUco feedback with preferred region above the
obstacle, αa = 0.9 æαa and linear velocity v = vmax

68

Experimental tests

4.3.3 Remarks on the results

In order to stress the implementation designed, different tests were made.
The main goal was to test the behaviour of the implementation in different
situations to ensure that the robot would always be directed in the correct
preferred region. In this implementation, this is defined accordingly to the
direction of the y-axis of the marker on the obstacle. Thus, this aspect
mainly relies on the accuracy of the estimation of the orientation of the
obstacle at the beginning of the test.

Comparing Figure 4.16 and Figure 4.17 can be seen how the behaviour
changed in a correct way, rotating the object of about 90°. In the first case,
it passed above, while in the second, below.

One effect that was tested, was the change of intensity in the local attractor.
Keeping all the parameters equal, just decreasing αa, as in 4.17a and 4.18a,
the robot performed well. However, since αa represents the intensity of the
local attractor, it can be seen how in 4.17 the robot was more attracted out
of the obstacle’s active region, than in 4.18.

The test was made also on scenario 2, added with this implementation.
In this scenario the radius is subjected to less restring boundaries and
consequently it can encapsulate the obstacle. In Figure 4.19 can be seen that
the test succeeded.

Another test that was made is depicted in Figure 4.20 and 4.21. Here are
not reported the frames relative to the camera, since they were similar to the
ones in 4.17. Linear velocity used to be bounded to v = 1

2vmax in order to
avoid slipping and the test were done gradually incrementing this value until
the maximum vmax. In both tests the implementation succeeded, but the
threshold used in the main while was increased to 0.05 m, otherwise the robot
would not have stopped. However, it can be observed that the behaviour
of the first test, where v = 1

3vmax, was quite similar to one obtained in
4.17. Whereas, in the second example, it can be noticed that the trajectory
consistently deviated from the gradient lines. This is mainly related to
slippage.

In general, the results obtained showed a good behaviour of this implemen-
tation approach. It can be said that gradient tracking is largely perceived out
of the obstacle region. Whereas, in this region sometimes it deflects from the
gradient lines. This is probably due to delays in transmitting the command
law, in an area where the gradient repels. Another aspect that can noticed is
that positions are not so precise, respect to the first implementation. It can

69

Experimental tests

be said that there is a discontinuous behaviour of the detected position. This
is due to the inaccuracy of the ArUco pose estimation, but it is not visible
on the motion of the TurtleBot that runs in a continuous way. This thanks
to the fact that both the camera and the communication with TurtleBot
run at a frequency of 60 Hz. In this way, continuous update are made and
small errors do not invalidate the results. Even in cases like 4.16, where
the pose is not estimated for a piece of path, the behaviour seems to be
consistent. Obviously, this must not happen for a large period, otherwise
the application would fail. So, this little oscillations on the position does not
affect the success of the application and can be overlooked. Therefore, what
can be said is that the results reported behave in a way that is consistent to
what it was expected.

4.4 Discussion
The very first setup did not represent an implementation that could have
been applied in a real scenario. This because it required a static situation,
where there was a complete knowledge of the background. However, this
proved that the approach would have worked. In addition to that, it has
given the suggestion to not rely on odometry for what concerns mobile
robots. Thus, it represented the starting point for a more relevant result.
The implementation which followed, took a big step in the direction of
dynamism. However, as things stand, this implementation is not ready for
the real world too. Nevertheless, some developments can be made to obtain
a reliable result and bring this technique to real life.

One first thing that can be made is considering a different environment.
The floor on which the mobile robot moves affects the success of the imple-
mentation. This because ArUco would be detected more easily on a floor
in contrast, or at least smooth. In this way, tiles would not be confused
with markers’ boarder, eliminating some source of noise. In addition to
that, odometry would benefit of a smooth path too. However, the main
assumption was to obtain a context as much general as could have been
done. This was the reason that led to the choice to not move in a different
environment.

Anyway, the way MAP is implemented represents the basis for an upgraded
development. First of all, from the tests outlined in 4.3 can be assumed
that ArUco are reliable tools, but need to be improved. One first simple

70

Experimental tests

enhancement can come from the application of a filter on the position, in
order to remove the noisy effect shown. Another idea that requires a little
bit more effort, is related to the use of odometry. Odometry in 4.2 resulted
unreliable, since it was tested on a context of mobile robots with an unfriendly
floor. However, if combined with ArUco it can brings to a more consistent
result than the other two. It would perform a sort of sensor fusion. Another
approach can be to use more sophisticated ArUco or more sophisticated way
of obtaining the estimations. Some are outlined in [21].

Another aspect is related to the fact that employing the camera, the
working area is limited to its field of view. In order to overcome this
limitation, an idea can be to integrate more cameras. Once synchronized,
they would expand the workspace. In this way, it will be more easy to test
MAP also with more than one obstacle. Considering a small area, as the one
used in this phase, makes difficult to consider this situation.

These are some of the ideas that can implemented to upgrade the proposed
method. However, in the next chapter, others idea of different tools to
implement on a possible future development will be given.

71

Chapter 5

Conclusion and future
works

This work focused on the implementation in a real scenario of a novel collision
avoidance technique based on the APF method. This approach aimed at
obtaining a safe and predictable robot behaviour, where safety is intended
as the ability to avoid the obstacle and predictability as the possibility to
know a priori the side where the robot would pass.

In this work the attention focused on implementing this approach on a
mobile robot. The aim was firstly perceived in a static way, then employing
ArUco to get in the way of a more dynamical setup. The obtained results
through the experimental tests, showed a behaviour consistent to expectations
in both phases. However, in order to apply it on a real scenario, upgrades
still have to be made.

During the dissertation some areas of enhancement have been outlined.
The main ones regarded the use of ArUco markers. Even if their performances
run well and can be improved in different ways, as suggested in Chapter 4,
their use alone represents a great limitation. However, they can be exploited
together with other tools to improve the application. Future works may
start from this last assumption. For example, an idea can be to used LiDar,
already provided by TurtleBot. SLAM is already implemented on it and can
be somehow combined with ArUco, in a sort of sensor fusion.

Another possible improvement can be made on the camera. A Realsense
was already integrated in this work, but it was used as a normal 2D camera.
Future works may use the point cloud that Realsense provides to model a
3D environment.

72

Conclusion and future works

Moreover, one way can be to move directly to a different approach, inte-
grating a new vision-based solution. This could be perceived exploiting deep
learning. However, despite the of the potentiality of this tool, as already
stated during the thesis, it is a computationally expansive solution that
requires a huge dataset. Thus, in this case, improvement should be made on
the equipment too.

Anyway, there are different ways of improving this work in order to exploit
this interesting approach in a proper way. Consistent results will be achieved
with one of these enhancements when the implementation will behave in a
good way with dynamical or multiple obstacles that in a real scenario are
taken for granted. This will definitely meet the Industry 4.0’s paradigm.

Once results will be achieved, it will be possible to integrate this technology
on mobile robots. Actually, the results of this work have been drawn testing
the implementation on a simple robotic platform, such as TurtleBot3 burger.
Whereas, this model was exploited because of its similarity to mobile robots
on the market. Future applications will be based on a implementation
designed on it and may involve industrial robot. In this new scenario they
must be ready to face any type of obstacle during their navigation.

73

Appendix A

Odometry feedback - main
methods

1

2 de f c a l l b a c k (s e l f , msg) :
3 # c a l l b a c k func t i on c a l l e d when a new message o f type

Odometry i s r e c e i v e d by the s u b s c r i v e r
4 rospy . l o g i n f o (rospy . ge t_ca l l e r_ id () + ’The odometric

p o s i t i o n i s : \ n %s ’ , msg . pose . pose)
5

6 s e l f . p = msg . pose
7

8 s e l f . v_turt le_feedback [s e l f . i t e r a t i o n] = msg . tw i s t . tw i s t .
l i n e a r . x

9 s e l f . w_turtle_feedback [s e l f . i t e r a t i o n] = msg . tw i s t . tw i s t .
angular . z

10 matom = quaternion_matrix ([s e l f . p . pose . o r i e n t a t i o n . x , s e l f . p
. pose . o r i e n t a t i o n . y , s e l f . p . pose . o r i e n t a t i o n . z , s e l f . p . pose .
o r i e n t a t i o n .w])

11 s e l f . mat = matom [: 3 , : 3]
12 s e l f . pos i t ion_matr ix [s e l f . i t e r a t i o n] [0] = s e l f . p . pose .

p o s i t i o n . x
13 s e l f . pos i t ion_matr ix [s e l f . i t e r a t i o n] [1] = s e l f . p . pose .

p o s i t i o n . y
14

15 de f main (s e l f) :
16 Vlinear_max = 0 .2 # [m/ s]
17 Vangular_max = 2.84 # [rad/ s]

75

Odometry feedback - main methods

18

19 f i n a l _ e r r o r = norm(np . subt rac t (np . array ([[s e l f . p . p o s i t i o n . x ,
s e l f . p . p o s i t i o n . y , s e l f . p . p o s i t i o n . z]]) , np . array ([[s e l f . p_f

. p o s i t i o n . x , s e l f . p_f . p o s i t i o n . y , s e l f . p_f . p o s i t i o n . z]])))
20 i = 0
21

22 t_tota l e = np . z e r o s ((1 , 5000))
23 velMsg = Twist ()
24

25 whi le f i n a l _ e r r o r >= 0 . 1 :
26

27 t i c = time . time ()
28 i f i == 0 :
29 t_tota l e [0] [0] = 0
30 s e l f . addit iona l_t ime_vector [0] = 0
31 e l s e :
32 t_tota l e [0] [i] = t_tota l e [0] [i −1] + addit iona l_t ime
33 s e l f . addit iona l_t ime_vector [i] = addit iona l_t ime
34

35 rospy . wait_for_message (’ /odom ’ , Odometry , t imeout = 5)
36

37 r o l l = math . atan2 (s e l f . mat [1] [0] , s e l f . mat [0] [0])
38 s e l f . r o l l _ v e c t o r [i]= r o l l
39 the ta_tur t l e = r o l l
40 ac tua l_pos i t i on = s e l f . g e tActua lPos i t i on ()
41 f i n a l _ e r r o r = s e l f . normToGoal ()
42

43 V_apf = −(s e l f . g l oba lAt t rac to rGrad i ent (sigma ,
actua l_pos i t i on , np . array ([[s e l f . p_f . p o s i t i o n . x] , [s e l f . p_f .
p o s i t i o n . y] , [s e l f . p_f . p o s i t i o n . z]])) + s e l f . obs tac l eGrad i ent
(beta_o , gamma_o, actua l_pos i t i on , d i s c_centre) + s e l f .
l o ca lAt t r a c to rGrad i en t (alpha_a , gamma_a, actua l_pos i t i on ,
a t t r a c t i v e_sour c e))

44

45 i f (np . l i n a l g . norm(V_apf) == 0) :
46 V_apf_direction = np . array ([[0] , [0] , [0]])
47 e l s e :
48 V_apf_direction = V_apf / np . l i n a l g . norm(V_apf)
49

50 # SLIDING MODE CONTROL algor i thm
51 a0_s l id ing = 0.15
52 v0_s l id ing = Vlinear_max/2
53 d_s l id ing = f i n a l _ e r r o r
54 v_s l id ing1 = a0_s l id ing ∗ t_tota l e [0] [i]
55 v_s l id ing2 = v0_s l id ing

76

Odometry feedback - main methods

56 v_s l id ing3 = sq r t (2∗ a0_s l id ing ∗ d_s l id ing)
57 v_s l id ing = np . array ([v_sl id ing1 , v_sl id ing2 , v_s l id ing3

])
58 V_apf_intensity = np . min (v_s l id ing)
59 V_apf_vector = V_apf_intensity ∗ V_apf_direction
60 v_apf_turtle = V_apf_vector [0 : 2]
61

62 # Motion planning t u r t l e b o t
63 v_turt le = np . l i n a l g . norm(v_apf_turtle)
64 v_turt le_vect = np . array ([[cos (the ta_tur t l e)] , [s i n (

the ta_tur t l e)]])
65 e_tur t l e = acos (s e l f . dotProduct (v_apf_turtle ,

v_turt le_vect) /(np . l i n a l g . norm(v_apf_turtle) ∗np . l i n a l g . norm(
v_turt le_vect)))

66 w_turtle = e_tur t l e ∗1
67

68 i f w_turtle > Vangular_max : # primo c i c l o non entra , ma
ok

69 w_turtle = Vangular_max
70

71 ang l e_coe f f = v_turt le_vect [0] ∗ v_apf_turtle [1] −
v_turt le_vect [1] ∗ v_apf_turtle [0]

72 i f ang l e_coe f f < 0 :
73 w_turtle = −w_turtle
74

75 # command vecto r
76 v_turtle_com = np . array ([[v_turt l e] , [w_turtle]])
77

78 # send to t u r t l e b o t
79 velMsg . l i n e a r . x = v_turt le
80 velMsg . angular . z = w_turtle
81 s e l f . pub . pub l i sh (velMsg)
82

83 s e l f . r a t e . s l e e p ()
84 addi t iona l_t ime = time . time () − t i c
85 i += 1
86

87 # stop t u r t l e b o t
88 velMsg . l i n e a r . x = 0
89 velMsg . angular . z = 0
90 s e l f . pub . pub l i sh (velMsg)

77

Appendix B

ArUco feedback - main
methods

1 de f s c u l p t o r (s e l f , i n t e r s e c t i on_ index = True) :
2

3 sigma = 0 .5
4 d i sc_centre = s e l f . p_o . p o s i t i o n
5 disc_centre_OF_oriented , mat = s e l f . generate_message (s e l f .

rvecOC , np . array ([[0] , [0] , [0]]))
6 disc_centre_OF = disc_centre_OF_oriented . p o s i t i o n
7 d i sc_rad ius = 0.27/2 + 0.105 + 0.01
8 lambda_o=0.3
9 r_o = disc_rad ius

10 gamma_o = (−1/r_o ∗∗2) ∗ lambertw(−(lambda_o) ∗∗2/ exp (1) ,−1) .
r e a l

11 beta_o = 1
12 s_eps i l on = 10∗∗(−2)
13 ro_star = sq r t ((−1/gamma_o∗ lambertw(− s_eps i l on ∗∗2/(gamma_o∗

beta_o ∗∗2) ,−1)) . r e a l)
14 angle_as = rad ians (90) #phi
15 d i r e c t i on_as = np . array ([[cos (angle_as)] , [s i n (angle_as)] ,

[0]])
16 distance_as_magn = 3∗r_o #das
17 distance_as = distance_as_magn ∗ d i r e c t i on_as
18 attractive_source_CF = np . array ([[disc_centre_OF . x +

distance_as [0] [0]] , [disc_centre_OF . y + distance_as [1] [0]] , [
disc_centre_OF . z + distance_as [2] [0]]])

78

ArUco feedback - main methods

19 a t t r a c t i v e_sour c e = transformTvecA (s e l f . tvecW , s e l f . tvecOC ,
s e l f . rvecW , s e l f . rvecOC , attractive_source_CF)

20 a t t r a c t i v e_sour c e [0] [2] = 0
21 mu_epsilon = 10∗∗(−2)
22 mu_a = 0.1
23

24 i f (i n t e r s e c t i on_ index i s True) :
25 eps i lon_l im = norm(at t rac t ive_source −d i sc_centre)−

ro_star
26 t e ta_eps i l on= acos (−27/(2∗ lambertw(−mu_epsilon ∗∗2/ exp (1)

,−1)) . r ea l −1)
27 gammaa_lim = 1/9∗(−1/ eps i lon_l im ∗∗2∗ lambertw(−mu_epsilon

∗∗2/ exp (1) ,−1)) ∗(1−2∗ cos ((t e ta_eps i l on+4∗np . p i) . r e a l /3)) ∗∗2
28 r_alim = sq r t ((−1/gammaa_lim∗ lambertw(−mu_a∗∗2/ exp (1)

,−1)) . r e a l)
29 r_a = 0.99∗ r_alim
30 gamma_a = (−1/r_a∗∗2∗ lambertw(−mu_a∗∗2/ exp (1) ,−1)) . r e a l
31 ra_star = sq r t ((−1/gamma_a∗ lambertw(−mu_epsilon ∗∗2/ exp

(1) ,−1)) . r e a l)
32 e l s e :
33 r_a = distance_as_magn+ro_star +0.05
34 gamma_a = (−1/r_a∗∗2∗ lambertw(−mu_a∗∗2/ exp (1) ,−1)) . r e a l
35 ra_star = sq r t ((−1/gamma_a∗ lambertw(−mu_epsilon ∗∗2/ exp

(1) ,−1)) . r e a l)
36

37 x_a_primo_limite = sq r t ((27/(4∗gamma_a)) . r e a l)
38 x_a_primo_limite1 = ra_star
39 x_a_primo = norm ((a t t rac t ive_source −s e l f . p_f . p o s i t i o n
40 teta_cubica = acos ((27/(2∗gamma_a∗x_a_primo∗∗2) −1) . r e a l)
41 x3_primo = 2/3∗x_a_primo∗(cos ((teta_cubica+4∗np . p i) . r e a l /3)

+1)
42 alfa_a_lim = (−sigma∗x3_primo) /(gamma_a∗(x3_primo−x_a_primo)

∗exp((−gamma_a/2∗(x3_primo−x_a_primo) ∗∗2) . r e a l)) . r e a l
43 al fa_a = alfa_a_lim ∗0 .9
44 t e ta_eps i l on= acos ((−27/(2∗ lambertw(−mu_epsilon ∗∗2/ exp (1)

,−1)) −1) . r e a l)
45 e p s i l o n = 1/3∗ s q r t ((−1/gamma_a∗ lambertw(−mu_epsilon ∗∗2/ exp

(1) ,−1)) . r e a l) ∗(1−2∗ cos ((t e ta_eps i l on+4∗np . p i) . r e a l /3))
46 ra_star_ic inco = sq r t ((−1/gamma_a∗ lambertw(− s_eps i l on ∗∗2/(

al fa_a ∗∗2∗gamma_a) ,−1)) . r e a l)
47

48 re turn sigma , s e l f . p_o , beta_o , gamma_o, a t t rac t ive_source ,
alfa_a , gamma_a

49

50 de f main (s e l f) :

79

ArUco feedback - main methods

51

52 Vlinear_max = 0 .2 # [m/ s]
53 Vangular_max = 2.84 # [rad/ s]
54

55 f i n a l _ e r r o r = np . l i n a l g . norm(np . subt rac t (np . array ([[s e l f . p .
p o s i t i o n]]) , np . array ([[s e l f . p_f . p o s i t i o n]])))

56 i = 0
57

58 velMsg = Twist ()
59 t1 = thread ing . Thread (t a r g e t = s e l f . r e a l s e n s e d e t e c t , a rgs =

[s e l f . cameraMatrix , s e l f . d i s t C o e f f s , s e l f . aruco_dict ionary ,
s e l f . parameters , s e l f . aruco_dim])

60 t1 . s t a r t ()
61 time . s l e e p (1)
62

63

64 whi le f i n a l _ e r r o r >= 0.02 and s e l f . s top . i s_se t () i s Fa l se :
65 t i c = time . time ()
66

67 i f i == 0 :
68 s e l f . t_tota l e [0] [0] = 0
69 s e l f . addit iona l_t ime_vector [0] = 0
70

71 e l s e :
72 s e l f . t_tota l e [0] [i] = s e l f . t_tota l e [0] [i −1] +

addit iona l_t ime
73 s e l f . addit iona l_t ime_vector [i] = addit iona l_t ime
74

75 s e l f . updateAruco ()
76 r o l l = math . atan2 (s e l f . mat [1] [0] , s e l f . mat [0] [0])
77 s e l f . r o l l _ v e c t o r [i]= r o l l
78 the ta_tur t l e = r o l l
79

80 i f (i == 0) :
81 the ta_tur t l e = 0
82 ac tua l_pos i t i on = s e l f . g e tActua lPos i t i on ()
83 f i n a l _ e r r o r = s e l f . normToGoal ()
84

85 V_apf = −(s e l f . g l oba lAt t rac to rGrad i ent (s e l f . sigma ,
actua l_pos i t i on , s e l f . p_f . p o s i t i o n + s e l f . obs tac l eGrad i ent (
s e l f . beta_o , s e l f . gamma_o, actua l_pos i t i on , s e l f . d i s c_centre)
+ s e l f . l o ca lAt t r a c t o rGrad i en t (s e l f . alpha_a , s e l f . gamma_a,

actua l_pos i t i on , s e l f . a t t r a c t i v e_sour c e))
86

87 i f (np . l i n a l g . norm(V_apf) == 0) :

80

ArUco feedback - main methods

88 V_apf_direction = np . array ([[0] , [0] , [0]])
89 e l s e :
90 V_apf_direction = V_apf / np . l i n a l g . norm(V_apf)
91

92 # SLIDING MODE CONTROL algor i thm
93 a0_s l id ing = 0.15 # maximum a c c e l e r a t i o n
94 v0_s l id ing = Vlinear_max/2
95 d_s l id ing = f i n a l _ e r r o r
96

97 v_s l id ing1 = a0_s l id ing ∗ s e l f . t_tota l e [0] [i] # va bene
tempo ???

98 v_s l id ing2 = v0_s l id ing
99 v_s l id ing3 = sq r t (2∗ a0_s l id ing ∗ d_s l id ing)

100 v_s l id ing = np . array ([v_sl id ing1 , v_sl id ing2 , v_s l id ing3
])

101 V_apf_intensity = np . min (v_s l id ing)
102

103 V_apf_vector = V_apf_intensity ∗ V_apf_direction # array
3x1

104

105 v_apf_turtle = V_apf_vector [0 : 2]
106

107 # Motion planning t u r t l e b o t
108 v_turt le = np . l i n a l g . norm(v_apf_turtle)
109

110 v_turt le_vect = np . array ([[cos (the ta_tur t l e)] , [s i n (
the ta_tur t l e)]])

111 e_tur t l e = acos (s e l f . dotProduct (v_apf_turtle ,
v_turt le_vect) /(np . l i n a l g . norm(v_apf_turtle) ∗np . l i n a l g . norm(
v_turt le_vect)))

112 w_turtle = 1∗ e_tur t l e # omega d e f i n i t a come e r r o r e ∗
guadagno

113

114 i f w_turtle > Vangular_max :
115 w_turtle = Vangular_max
116

117 ang l e_coe f f = v_turt le_vect [0] ∗ v_apf_turtle [1] −
v_turt le_vect [1] ∗ v_apf_turtle [0]

118 i f ang l e_coe f f < 0 :
119 w_turtle = −w_turtle
120

121 # command vecto r
122 v_turtle_com = np . array ([[v_turt l e] , [w_turtle]])
123

124 velMsg . l i n e a r . x = v_turt le

81

ArUco feedback - main methods

125 velMsg . angular . z = w_turtle
126

127 s e l f . pub . pub l i sh (velMsg)
128

129 # plo t
130 s e l f . v_turt le_set [s e l f . i t e r a t i o n] = v_turt le
131 s e l f . w_turtle_set [s e l f . i t e r a t i o n] = w_turtle
132

133 s e l f . r a t e . s l e e p ()
134 addi t iona l_t ime = time . time () − t i c
135 i += 1
136

137 # stop t u r t l e b o t
138 velMsg . l i n e a r . x = 0
139 velMsg . angular . z = 0
140 s e l f . pub . pub l i sh (velMsg)
141 s e l f . s top . s e t ()
142 t1 . j o i n ()
143 s e l f . p i p e l i n e . stop ()

82

Bibliography

[1] B. Siciliano, L. Sciavicco, L. Villani, and Oriolo G. Robotics: modelling,
planning and control. Springer Science and Business Media, 2010 (cit. on
pp. 1, 6).

[2] K. Bahrin, M. Aiman, Othman, M. Fauzi, N. Azli, N. Hayati, Talib,
and M. Farihin. «Industry 4.0: a review on industrial automation and
robotic». In: Jurnal Teknologi 78 (June 2016). url: https://journals.
utm.my/jurnalteknologi/article/view/9285 (cit. on p. 1).

[3] International Organization for Standardization. Provisional definition
of Service Robots English. Sept. 2018. url: https://ifr.org/service-
robots/ (cit. on p. 2).

[4] Industry 4.0 Technologies. url: https://industry40marketresearch.
com/blog/industry_4-0_technologies/ (cit. on p. 2).

[5] De Ryck M., Versteyhe M., and Debrouwere F. «Automated Guided
Vehicle Systems, State-Of-The-Art Control Algorithms and Techniques».
In: Journal Of Manufacturing Systems 54 (2019), pp. 152–173 (cit. on
p. 3).

[6] AGV following guidance on the floor. url: https://www.crossco.
com/resources/articles/the- difference- between- agvs- and-
mobile-robots/ (cit. on p. 3).

[7] iRobot. Roomba. url: https://www.irobot.it/roomba (cit. on pp. 4,
5).

[8] Mobile Industrial Robots. url: https://www.mobile-industrial-
robots.com/it/ (cit. on pp. 4, 5).

[9] EarthSense. Terra Sienta. url: https://www.earthsense.co (cit. on
pp. 4, 5).

84

https://journals.utm.my/jurnalteknologi/article/view/9285
https://journals.utm.my/jurnalteknologi/article/view/9285
https://ifr.org/service-robots/
https://ifr.org/service-robots/
https://industry40marketresearch.com/blog/industry_4-0_technologies/
https://industry40marketresearch.com/blog/industry_4-0_technologies/
https://www.crossco.com/resources/articles/the-difference-between-agvs-and-mobile-robots/
https://www.crossco.com/resources/articles/the-difference-between-agvs-and-mobile-robots/
https://www.crossco.com/resources/articles/the-difference-between-agvs-and-mobile-robots/
https://www.irobot.it/roomba
https://www.mobile-industrial-robots.com/it/
https://www.mobile-industrial-robots.com/it/
https://www.earthsense.co

BIBLIOGRAPHY

[10] Boston Dynamics. Spot. url: https://www.bostondynamics.com/
products/spot (cit. on p. 5).

[11] Honda. ASIMO. url: https://asimo.honda.com (cit. on p. 5).
[12] B.K. Patle, Ganesh Babu L, Anish Pandey, D.R.K. Parhi, and A.

Jagadeesh. «A review: On path planning strategies for navigation of
mobile robot». In: Defence Technology 15 (2019) (cit. on p. 7).

[13] Lingqi Zeng and Gary M. Bone. «Mobile Robot Collision Avoidance in
Human Environments». In: International Journal of Advanced Robotic
Systems (2012) (cit. on pp. 8, 17).

[14] Rubio F, Valero F, and Llopis-Albert C. «A review of mobile robots:
Concepts, methods, theoretical framework, and applications». In: Inter-
national Journal of Advanced Robotic Systems 16 (2019) (cit. on pp. 8,
11).

[15] Amazon. Meet Amazon’s First Fully Autonomous Mobile Robot | Ama-
zon News. url: https://www.youtube.com/watch?v=AmmEbYkYfHY
(cit. on p. 8).

[16] M. Melchiorre, L. Scimmi, L. Salamina, S. Mauro, and S. Pastorelli.
«Robot collision avoidance based on artificial potential field with local
attractors». In: Department of Mechanical and Aerospace Engineering,
Politecnico di Torino () (cit. on pp. 9, 10, 12, 17, 21, 26, 27, 47, 48, 53,
54, 61).

[17] M. Melchiorre, S. Mauro, and S. Pastorelli. Real-Time Trajectory Plan-
ning for Human-Friendly Collaborative Robotics. 2021 (cit. on pp. 10,
17).

[18] Han-ye Zhang, Wei-ming Lin, and Ai-xia Chen. «Path Planning for the
Mobile Robot: a review». In: Symmetry 10 (2018) (cit. on p. 11).

[19] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. 1985. url: https://ifr.org/service-robots/ (cit. on pp. 11–
14).

[20] S. Mauro, S. Pastorelli, and L. S. Scimmi. «Collision avoidance algorithm
for collaborative robotics». In: International Journal of Automation
Technology 11.3 (2017), pp. 481–489 (cit. on p. 12).

[21] Rafael Munoz Salinas. «ArUco: an efficient library for detection of
planar markers and camera pose estimation». In: () (cit. on pp. 12, 38,
44, 71).

85

https://www.bostondynamics.com/products/spot
https://www.bostondynamics.com/products/spot
https://asimo.honda.com
https://www.youtube.com/watch?v=AmmEbYkYfHY
https://ifr.org/service-robots/

BIBLIOGRAPHY

[22] Beard, Randal W., McLain, and Timothy W. Motion Planning using
Potential Fields. 2003 (cit. on p. 14).

[23] O. Khatib, K. Yokoi, K. Chang, and A. Casal. «Robots in Human
Environments: Basic Autonomous Capabilities». In: The International
Journal of Robotics Research (1999) (cit. on p. 17).

[24] url: https://www.ros.org/blog/why-ros/ (cit. on p. 23).
[25] url: https://www.turtlebot.com (cit. on pp. 24, 28, 30, 32).
[26] Leon Jung Darby Lim Yoonseok Pyo and Hancheol Cho. ROS Robot

Programming (English). ROBOTIS, 2017 (cit. on p. 31).
[27] url: https://www.intelrealsense.com/depth-camera-d435/ (cit.

on p. 33).
[28] url: https://www.researchgate.net/figure/Illustration-of-

camera-lenss-field-of-view-FOV_fig4_335011596 (cit. on p. 34).
[29] url: https://intelrealsense.github.io/librealsense/python_

docs/_generated/pyrealsense2.pipeline.html (cit. on p. 34).
[30] url: https://opencv.org/about/ (cit. on p. 36).
[31] url: https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_

detection.html (cit. on pp. 36, 37).

86

https://www.ros.org/blog/why-ros/
https://www.turtlebot.com
https://www.intelrealsense.com/depth-camera-d435/
https://www.researchgate.net/figure/Illustration-of-camera-lenss-field-of-view-FOV_fig4_335011596
https://www.researchgate.net/figure/Illustration-of-camera-lenss-field-of-view-FOV_fig4_335011596
https://intelrealsense.github.io/librealsense/python_docs/_generated/pyrealsense2.pipeline.html
https://intelrealsense.github.io/librealsense/python_docs/_generated/pyrealsense2.pipeline.html
https://opencv.org/about/
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

	List of Figures
	Introduction
	Industry 4.0
	AGVs and mobile robots
	Automated Guided Vehicles
	Mobile robots

	Mobile robot navigation
	Global navigation techniques
	Local navigation techniques

	Aim of the thesis
	Thesis outline

	Path planning using potential fields with local attractors
	State of the art in collision avoidance based on APF
	Design of the attractor
	Design of the repulsor
	Resulting APF
	Analysis of the APF method

	APF with local attractors
	Design of the local attractor
	Resulting APF
	Analysis of the APF method with local attractors

	Software and Hardware tools
	Robot Operating System
	Programming ROS

	TurtleBot
	TurtleBot3
	Communication between TurtleBot3 and ROS

	Realsense d435
	ArUCo markers
	OpenCV
	ArUco markers

	Experimental tests
	Laboratory setup
	Odometry feedback
	Structure of the code
	Results
	Remarks on the results

	ArUco feedback
	Structure of the code
	Results
	Remarks on the results

	Discussion

	Conclusion and future works
	Odometry feedback - main methods
	ArUco feedback - main methods
	Bibliography

