
1

Master’s Degree in Computer Engineering
December 2022

Fairytool
Learn and socialize by making games

Supervisors: Candidate:
Bottino Andrea
Strada Francesco

Aurigemma Daniele

2

3

I would like to dedicate this thesis to my brother Matteo, for teaching me that no
matter how difficult life may be, you can always find a way to be happy

4

Contents

Table of Figures ... 7

Acronyms ... 9

1. Introduction .. 11

1.1 The Goal .. 11

1.2 The Target ... 11

1.3 The System .. 12

1.4 The Game Engine .. 12

1.5 The Laboratory .. 13

1.6 The Boys .. 13

1.7 The Name .. 15

2. State of The Art ... 16

2.1 Determine similar tools ... 16

2.2 Platforms ... 17

2.3 Technologies ... 18

2.4 Assets Management .. 18

2.5 Programming System .. 19

3. Evaluating Existing Tool Effectiveness... 23

3.1 Before Starting .. 23

3.2 Method .. 24

3.3 Results ... 26

4. Design Principles ... 28

4.1 Platforms ... 28

4.2 Technologies ... 28

4.3 Assets Management .. 29

4.4 Programming System .. 30

4.5 Space Handling .. 31

5. Graphical User Interface .. 32

5

5.1 Login .. 32

5.2 User Games ... 33

5.3 Game Editor Header .. 34

5.4 Game Editor .. 35

5.4.1 Game Settings ... 36

5.4.2 Game Programming .. 38

5.4.3 Scene Management .. 39

5.5 Running Game ... 43

6. Visual Programming Language .. 45

6.1 The language basics... 45

6.2 The Toolbox ... 47

6.2.1 Objects Category Blocks .. 47

6.2.2 Movement Category Blocks .. 50

6.2.3 Actions Category Blocks .. 52

6.2.4 Situations Category Blocks .. 54

6.2.5 Level Category Blocks .. 56

6.2.6 Values Category Blocks ... 57

6.2.7 Programming Category Blocks .. 58

6.2.8 Variables Category Blocks ... 59

6.2.9 Attributes Category Blocks .. 60

6.2.10 Custom Blocks Category Blocks... 61

7. Software Architecture ... 62

7.1 Libraries and frameworks ... 62

7.2 Project Structure ... 63

7.3 Game Engine Architecture .. 65

7.4 Games and Compiler Architecture .. 67

8. Experimentations .. 70

8.1 Method .. 70

8.2 Results ... 71

9. Conclusions .. 74

6

9.1 Future Developments .. 75

9.2 From Polistudio Amoruso ... 76

9.3 Thanks ... 77

10. Sources ... 78

3D game tools: .. 78

2D game tools: .. 78

Technologies involved: ... 79

Books and articles: ... 79

7

Table of Figures

Figure 1: Fairytool Logo .. 15
Figure 2: Scratch, example of block-based VPL .. 20
Figure 3: Kodu, example of icon-based VPL .. 20
Figure 4: Cyberx3D, example of form-based VPL .. 21
Figure 5: Game Builer Garage, example of diagram-based VPL 22
Figure 6: Original Chrome Dino Game .. 25
Figure 7: Chrome Dino Clone made using Scratch .. 25
Figure 8: Scratch vs Fairytool code for the Chrome Dino Game main character 30
Figure 9: Struckd vs Fairytool Simplified Gizmo .. 31
Figure 10: Fairytool login page ... 32
Figure 11: Fairytool User Games page .. 33
Figure 12: Template Chooser ... 33
Figure 13: Delete confirmation dialog .. 34
Figure 14: Fairytool Game Editor Header ... 34
Figure 15: Quick Start Guide... 35
Figure 16: Fairytool game editor tabs ... 35
Figure 17: Game Settingds Tab ... 37
Figure 18: Virtual Gamepad used in a game ... 37
Figure 19: Fairytool Code Tab ... 39
Figure 20: Fairytool Scene editor .. 42
Figure 21: Background Music Chooser ... 42
Figure 22: Game Title Screen ... 43
Figure 23: Example of Game made using Fairytool ... 44
Figure 24: Fairytool Code Editor ... 46
Figure 25: Objects Category ... 47
Figure 26: 3D Model Chooser ... 49
Figure 27: Movement Category .. 50
Figure 28: Actions Category ... 52
Figure 29: Sound FX Chooser .. 53
Figure 30: Situations Category ... 54
Figure 31: Level Category ... 56
Figure 32: Values Category ... 57
Figure 33: Programming Category .. 58
Figure 34: Variables Category ... 59

8

Figure 35: Attributes Category ... 60
Figure 36: Custom Blocks Category .. 61
Figure 37: Main Project Structure .. 64
Figure 38: Game Engine Architecture ... 67
Figure 39: Running a Game .. 68
Figure 40: Compiling Architecture .. 68
Figure 41: Result of Fairytool VPL compilation ... 69

9

Acronyms

VPL

 Visual Programming Language

VR

 Virtual Reality

AR

 Augmented Reality

XR

 Extended Reality

OS

 Operating System

SDK

 Software Development Kit

API

 Application Programming Interface

10

UI

 User Interface

GUI

 Graphical User Interface

HUD

 Head Up Display

DOM

 Document Object Model

SVG

 Scalable Vector Graphics

11

1. Introduction

1.1 The Goal
Videogames are one of the most successful media today, they quickly spread all
over the world and in all age groups, especially among the young people,
videogames are so attractive, but they also are a complex piece of technology.
Graphics, physics, computer science, math and collaboration are just few of the
skills involved in game development, and these make approaching this activity from
scratch quite hard and frustrating. Our goal is to create a System to allows users to
create games in a fast and fun way, a way that’s make the game creation the game
itself, a way that should intrigue the user and show him the rudiments of all the
skills mentioned above, and that allows people to experiment with technologies such
as 3D, VR and AR. Finally, the experience should stimulate users to interact with
other people, collaborating or showing their work to others.

Or at least this is just the beginning, as the project has gained another incredible
goal: evaluating the effectiveness of this tool in bringing benefits to autistic people
and with other similar diagnostic pictures and being able to provide support to
refine the diagnosis, but we will talk about this in more detail later.

1.2 The Target
Who needs something like this? Of course, the first answer is teenagers and
children, young people who are fascinated by videogames, but who still must
acquire the skills necessary for their realization. But why should they create one?

On the one hand we certainly have those who are simply intrigued by trying, on the
other hand there are kids who might have to do with school projects or more
generally with their education. Starting from this, we can extend our target to
everyone who wants to move the first step into the computer science world in a
fun way and having immediate outputs.

Other people that could be interested in this system are the participants in contests
(e.g., Hackathon, Game jams) or anyone needing to quickly create a game
prototype, who do not usually have too much time to spend in learning

12

technologies and writing code. Is common that applicants to this kind of
competition are not insiders, so they usually deliver documents instead of working
prototypes.

And finally, as I mentioned before, another group of people who can benefit from
the use of this project are autistic people or people with similar diagnostic pictures,
although in this case, in addition to the mere use of the software, there would be a
need for a real path to be addressed.

1.3 The System
How could this be possible? The first idea was to write some sort of plugin/addon to
simplify an existing game creating system (e.g., Unity, Unreal), but questions
immediately arose: are these solutions too storage consuming? Do they installation
require too much time for our target? Is exporting games, especially on mobile or VR
systems too complex? Are these systems too complex to learn? All these questions
lead to the adopted solution: web application. With a web-based solution, user do
not need to install anything and sharing games and projects across different devices
is easy as sharing a web link.

We figured out how to the system technology should looks like, but what about the
user experience? The first thing that came to our mind was to completely avoid
coding. Learning how to code requires time and learning how to code a game
requires more time. Another problem is that game assets such as 3D models and
sounds are really time consuming to create and implement. So, the final idea was to
create a block-based programming system with readymade assets, everything
surrounded by the most minimal user-friendly interface possible.

We will deeply discuss all these aspects later this reading.

1.4 The Game Engine
Is there already a solution to this problem? Someone could say “what about game
engines?”. Game Engines are software that provides everything needed to create
real-time interactive applications. They are usually commercial products made to
allow user to create commercial games and applications, so they do not care too
much about installation requirements or ease of use. Of course, some exceptions
exist, and there are also products that aim to a similar goal, but we will look at them
in the next chapter.

13

1.5 The Laboratory
Where this software should be developed? Of course, regarding technical and
organizational aspects I surely had to mention the CGVG department of the
Politecnico di Torino, but making something like that is not only a technical
challenge, but also a complex design task, so to make it possible I need to study and
understand my target, and here comes the studio of Doctor Claudia Amoruso, the
Polistudio Amoruso (in Italy), that in addition to give professional psychologists
support, it also allowed me to follow and study an heterogeneous group of young
people (from 10 to 28 years) with different psychological diagnostic pictures,
including Autism and High Intellectual Potential, who are constantly followed by
specialists in the psychological field, but united by a passion for video games! I had
the opportunity to hold meetings with this group on a bi-weekly basis.

We will get into details about this later in that reading, but I had to thank her and
the boys in advance.

1.6 The Boys
But who are the guys who will accompany me along this tortuous path? To answer
this question, I will use the information provided by Dr. Claudia Amoruso, who
personally follows all the participants.

Common features found in participants:

 High cognitive potential.
 Great emotional sensitivity (psychological pain and anger).
 Difficulties reported in psychotherapy related to peer attendance.
 Expression of the pleasure felt in gaming.

Characteristics of the subjects:

 All subjects involved have conducted psychotherapy with a Transactional
Analytical address.

 All subjects have a cognitive assessment.
 All the subjects reported in the interviews, in addition to the pleasure of

playing, that of experimenting together in programming.

14

Common contents:
 Experiences of solitude in childhood
 Personal beliefs:

o "I will never fall in line"
o "I usually prioritize things in an original way"
o "I don't want to become what society (family, peers) thinks of me",

"bad"
 explicit pleasure in being of help to others.
 Rigid value systems.
 Anime/manga mirroring.

For the good resurrection of the experience:

 Based on the needs expressed: fun.
 Based on needs reported in psychotherapies: socialization.

The hypothesis formulated by Dr. Claudia Amoruso is that:

 the pleasure of playing,
 the reflection provided by the group itself to its participants,
 sharing programming tasks,
 the sharing of a ‘coldly’ language that warms up ‘as needed’ in the interaction

between participants,

Together with other variables to be identified during the research, the synergy and
collaboration of professionals as an effective response to taking charge of subjects
with high-potential autism as a complex and adjustable response to complexity.

15

1.7 The Name
Why is it called ‘Fairytool’? I would like to end this introductive chapter with the
explanation of the name choice for this software. While experimenting with the
boys one day I asked them how should I name the project, they did not give me a
precise name, but they all agree one thing, they want to express themselves through
this tool, they want to tell stories, and what was the first way to tell stories? Fairy
tales! So, the name is simply the union of these two concepts.

This is enough, let us start with our analysis.

Figure 1: Fairytool Logo

16

2. State of The Art

At what stage is the research and development on this topic? There are (and were) a
lot of projects with similar goals, but luckily just a bunch of them out there are
interesting for our purpose, let us see why.

*a full list of the examined tools can be found in the Sources chapter of this work

2.1 Determine similar tools
Hundreds of games making tools exist out there, are all of them meet our
requirements? Of course, they are not. We will analyze our project features to
determine which are the ones that should be considered.

 The first factor is graphics engine, the majority of the similar tools are actually
developed thinking about 2D graphics, which is completely fine, but most of the
games that people play are actually 3D, so a three-dimensional approach would be
more attractive, and it also put the basics for a more scalable and portable
environment, where different camera settings and perspectives can be chosen, and
different devices and technologies can be targeted.

The second factor is the learning purpose. Many game making tools are meant to
allow people to create games, not learn how to do it. So, they are not designed to
be used from scratch, some of them have complex user interface, some others have
a hard to learn programming environment, other ones are difficult to setup and
install.

Finally, the way they approach modern technologies. Some of the beginner-friendly
game engines do not target technologies such immersive Virtual Reality or
immersive Augmented Reality, some do not even care about mobile platforms.

Let us finally talk about what exists while I am writing. I will analyze these materials
ordered by action done to use the tool itself.

17

2.2 Platforms
What should be the target platform for a project like that? There are similar tools
available for almost every existing platform so let us examine them closely:

 Desktop: Of course, almost everyone has at least one PC in their home, so it is
not surprising that different developers have targeted this platform with their
products. Here, high technical performance can be reached if the software is
well designed, but as a downside, we are requiring our users to perform an
installation, in addition, software design becomes much more complicated
and less scalable and portable.

 Mobile: Speaking of things that anyone has, the smartphone could not be
missing. Several developers have chosen to create or port their environment
to make it available on mobile platforms. Here the user interfaces tend to be
very simplified due to the small screen and scarcity of available input systems.
So, the overall experience tends to be very limiting, but some clever ideas
came out from those limits, especially regarding 3D space object positioning,
which is often too complex even on desktop platforms.

 Game consoles: Players (especially the youngest ones) are surely an incredibly
good target for this kind of project, and which is the best place to find
players? Game consoles. It seems perfect, but in fact there are only two valid
products available on these platforms, Dreams for Sony PlayStation, and
Game Builder Garage for Nintendo Switch. Game consoles are a great
commercial opportunity, but if we want to make something that should be
cheap and accessible, they are not the best choice.

 VR Headset: Many big companies are investing in these technologies
nowadays, so it is natural that some steps are also taken in their applications
development. Since these technologies are quite new, there are not many
available and stable options. One of the biggest is Meta’s Horizon Worlds, but
It is still under development. Also, VR headsets are still quite expensive and
very few people have access to them. But despite this, it is an incredibly
attractive technology for people.

 Web Application: If I had to think at the most portable technology, I must cite
web applications. Web-development is one of the most studied and
developed technologies of the last years, so it is not surprising that we can
easily found several
inherent products developed for this platform. Unfortunately, it has some
limitations, and it is less performing compared to other platforms, but a rich

18

assortment of libraries and frameworks, its spread and a no-download
approach make it a suitable target for these purposes.

2.3 Technologies
Most of the existing tools are intended for 2D graphics. It is easier to implement,
easier to be managed by the end user, and it does not affect the possible
educational purposes. However, kids and more generally people who play
videogames are used to seeing 3D graphics, so this kind of approach is more
familiar to them. Of course, make 3D games easy to create is a bigger challenge and
it needs many compromises, but it surely is an attractive approach, and it is not
surprising that some of the most popular tools have chosen to try to follow this
path, especially when they are designed for gamers (e.g., Game Builder Garage,
Dreams, Roblox and more). But they still require the users to learn many things
before they can be confident with the tool, and this could be seen as an obstacle
from people who want something to get a result as fast as possible. Speaking about
other technological aspects, no relevant tool offers a built-in ‘technological
playground’, so they are usually focused on some specific platform or technology.
Some of the most attractive technological aspects that may or may not be
supported by existing tools includes gamepads, mobile platforms, XR (extended
reality), multiplayer games. These elements are not essential to teach game
development or coding, but people are intrigued by them. Game console tools
usually includes support for technological peculiarities of their devices (e.g.,
Nintendo Switch, Sony PlayStation), Some are mobile oriented (e.g., Struck), and
very few aim to work with XR (e.g., Horizon Worlds, CoSpaces Edu).

2.4 Assets Management
How do existing tools handle assets such as 3D models, sounds, and so on?

Most of these tools use a ready-made assets library. This is an understandable
choice since many issues must be handled, for example:

 How can the user have a custom asset added to their game?
 How to protect users from sensitive content? this brings a new problem
 How can the platform handle copyright issues? (This only applies to online

shared content)

19

The first issue can be solved in three ways:

 Creating a functionality that allows users to create assets within the platform.
This could give more chances to the platform to prevent sensitive content
creation, and it also avoids the possibility of copyright infringement. However,
this leads to the problem of how the tool can simplify the assets creation,
because for resource such as 3D Models the process is anything but trivial.

 Letting the user import their own assets. Doing this on an online platform could
raise copyright related problems. Furthermore, the user should be conscious of
the existence of limitations such as file formats or file size.

 Allowing the user only using models from a ready-made asset library.

The other issues are of a legal nature; therefore, they will not be dealt with in this
thesis.

Some offline tools, especially the 2D ones, offer a full control on assets
management, but many of them are limited to pre-constructed libraries, or they let
the user create certain type of resource, for example Game Builder Garage
(Nintendo) only allows the user to create 2D images, or Dreams (Sony) gives the user
a tool for sculpting 3D models but not a way to import them from an external
application or device.

2.5 Programming System
Traditional text-based programming languages are surely extremely powerful, but
they need to be studied, practiced and they are sensitive to syntax errors, situations
that could represent obstacles for newbies.

VPL (Visual Programming Language) can solve and/or mitigate most of these issues.

We can classify VPL using the following taxonomy:

 Block-based:
These languages are characterized from allowing the user to drag and drop
blocks from a toolbox containing a predefined set of commands into a
workspace area. Here blocks can be nested together in a jigsaw puzzle style.

20

Figure 2: Scratch, example of block-based VPL

 Icon-based:
Icon-based VPLs, as the name suggests, heavily rely on the use of Icons to
describe objects and actions. These icons can be elementary, if they represent
objects (e.g., file) or actions (e.g., add, remove), or complex, composite icons
obtained by assembling elementary ones to create “visual sentences”.

Figure 3: Kodu, example of icon-based VPL

21

 Form-based:
The end-user is required to compile forms related to specific features or
functions, using various kinds of controls, such as drop-down menus, text
field, and more. The inserted values can be used to customize the behavior of
the current form functionality or to reference others.

Figure 4: Cyberx3D, example of form-based VPL

 Diagram-based:
They are similar to block-based VPLs, users still drag and drop blocks into a
workspace, however here the outputs of a block have to be connected, using
a line or an arrow, to inputs of other blocks, creating diagrams or flow-chart.
Usually blocks can also be rearranged in the workspace without changing the
semantics of the created program.

22

Figure 5: Game Builder Garage, example of diagram-based VPL

Speaking about game engines and game development, the most common VPL style
is the diagram-based one, also used by major products like Unity or Unreal, however
the huge disadvantage of this approach is the spatial complexity of the created
programs quickly increase while inserting and connecting new blocks, due to the
arbitrary block positioning and the presence of lines that connect inputs and
outputs, making programs confusing and hard to read.

Form-based and icon-based VPLs are the simplest ones to use, but they limit a lot
the expressivities of the language, they are also the least common to find. However,
they have some interesting aspects, icons increase the readability of the programs
and help to immediately identifying pieces, and form-style controls further decrease
the possibility of user errors, and they are good to describe higher level
functionalities.

But keeping apart commercial game development tools, the most common VPL style
surely is the block-based one, it is intuitive, it reminds the traditional text-based
programming, and using some shrewdness (that we will discuss later in the Visual
Programming Language chapter) readability and spatial complexity can be
extremely improved.

23

3. Evaluating Existing Tool
Effectiveness

Surprisingly, for the creation of the existing tools, no formal (or at least non-public)
experiments have been conducted and their development and maintenance are
based on an empirical method involving a cycle of feedback collection from their
users both in terms of aspects and regarding the User Experience, and their possible
implementation.

After the preliminary analysis I had to find a way to evaluate the effectiveness of
existing tools. As written in the Introduction chapter, to do this I collaborated with
Polistudio Amoruso, which gives me a sample of target audience and the support of
professionals in the field of psychology. The group of testers was small, about ten
elements, but interesting thing was that they were constantly followed during the
whole period of the experiment from 23rd April 2022 to 26th November 2022 which
includes both the existing tools effectiveness evaluation, and the Fairytool testing
phase.

3.1 Before Starting
Before starting a preliminary survey made on Google Forms was shown to the kids.
This Survey aimed to collect information about people interest in the video games
world, including favorite games, playing time, interest in game development, VR and
AR experience and prior technical knowledge. The survey was compiled by people
while talking, chatting, and discussing about the topics included in the survey. This
created a good and comfortable environment and initialized a communication
channel between the group members, who, as I wrote in the Introduction Chapter,
have different social relationship problems. The role of this survey was to make
people introduces themselves, so no standard references were taken to write it, it
was created based on our goal and revised both by the thesis supervisors and
Polistudio Amoruso.

24

3.2 Method
The idea was to see how kids react and response to known existing similar tools.
And since the time for the experimentation was not so much, I have decided to
examine the most used one, Scratch by MIT. Scratch is already used in schools as a
didactic tool, it has a block-based VPL similar to one I was thinking of based on the
previous chapter analysis, and it is free with a huge community behind it, so people
can easily get it, on the other hand, it is a 2D oriented tool, but its functionalities are
enough to reach our goal. The other tools were statically examined, and the results
of these analysis can be found on the previous chapter.

 At first, a brief introduction on game development was made. I told them
they were going to create a game prototype, so they should not care so much
about the result. I also explained that a game work thanks to a mechanism
called game loop. A Game is an infinite loop (that usually iterate at least 60
times per seconds) that continuously processes user inputs (e.g., gamepads,
keyboard, mouse), updates objects status (e.g., physics, attributes, etc..) and
draws them to the user screen (rendering)

 // Game Loop Example
 while (true) {
 processInput();
 update();
 render();
 }

 Then people were asked to individually recreate a custom version of the well
know Google Chrome Dino game using Scratch, trying as much as possible to
do everything by themselves or collaborating with others, I would intervene
only when necessary.

 Finally, an end of experience questionnaire survey was compiled by the
group. The goal of this phase was to collect information about system
usability, tool effectiveness and overall user experience, including fun and
relationships. This survey was created including the standard S.U.S. (System
Usability Scale), a set of questions adapted from The Game Experience
Questionnaire [46], and a custom set of questions revised both by thesis
supervisors and the psychologists.

25

Figure 6: Original Chrome Dino Game

Figure 7: Chrome Dino Clone made using Scratch

26

3.3 Results
Here are the key points that emerged, based both on first-person observation of
the group and on the result of the end-of-experience questionnaire.

Technical aspects related feedbacks:

+ The group found the color breakdown of the various categories of blocks
extremely helpful, even though the same color was shared by too many
blocks making it more difficult to distinguish between them.

+ A much-appreciated feature was the library of predefined assets (sounds and
images), as it allowed to speed up the game creation process, without
necessarily having to import your own files, an operation that was not found
easy due to its confusing graphical interface.

+ The most appreciated part was the block programming system, which
allowed the students not to have to memorize instructions and to completely
avoid syntax errors.

+ Some kids have found the possibility of being able to import custom images
and sounds amusing.

- Using Scratch was complex for most of the kids, as they found it difficult to
navigate the interface and find the needed blocks among the many made
available by the program.

- The flow of instructions in Scratch was not particularly clear to the kids, the
event system did not allow to understand in which order the instructions
were executed. For example, it was not clear which functions were blocking
for the program and which ones allowed it to continue with other instructions
while they were still executing.

- The multiple workspaces of Scratch caused confusion; all the boys have
made a mistake at least once due to the incorrect placement of a block.

- One of the biggest challenges has been spatial reference systems, which use
the pixel (called ‘step’ in Scratch) as a unit of measurement. This created a lot
of confusion for the boys.

- Numerous blocks have required learning a lot of information before they can
be used consciously, for example the ones for managing variables, a simple

27

concept for insiders, but it can represent a first obstacle for those starting
from nothing.

- The guys complained about the lack of high-level blocks, i.e., blocks with
more elaborate functionality that aim to avoid having to add too many blocks
to the program, for example there is no prefabricated way to be able to make
a character easily jump, which must instead be programmed using a large
number of blocks.

- The semantics of some blocks has been made ambiguous by the choice of
words used to compose the text present on them (the language used for the
experiment was Italian, but the original version also has similar defects), for
example the blocks related to the concept of ‘messages’ made all the kids
think they were texts to be printed on the screen rather than event handling.

- The boys made frequent and constant requests for assistance to know how
to use the software and the semantics of almost all the blocks they use.

- Scratch allows you to connect the created script to a single object present in
the scene, if you want to create more objects with the same behavior you
must duplicate the script code or use the ‘clones’ mechanism provided by the
software, which however was not very intuitive.

- Code tends to get long and complex quickly due to using many blocks, even
when programming quite simple behaviors.

Experience related feedbacks:

 All group members found it curious and fun to put yourself in the shoes of a
game developer.

 Most of the boys, even the most introverted ones, have found in the group
experience a way to express themselves by confronting people with common
interests.

 The group experience has made it possible to create bonds and relationships
between the boys, some only within the group meetings, while others have
also been exported outside of it.

28

4. Design Principles

So, what is the best set of choices that can be made to design a tool that can reach
our initial goal?

We need to reach people who are approaching coding and game development for
the first time, people who have no experience about machine technical
specifications or operating systems, so they can own different technical
environment setups.

4.1 Platforms
A web-based application here is probably the best choice. It does not require any
installation, so it is suitable for several contexts such as teaching, challenges, or
exploring the technology, situations in which the user want the tool available in the
shortest amount of time. Another advantage of this approach is that in this way the
tool will be platform independent, allowing it to run on almost every operating
system and device. However, a web-based tool is less performant than a native one,
but this should not be a big issue since we still want users to create easy games
compared to the big industry AAA games they are used to. Another limitation of this
approach is that that user must have an internet connection to use the tool, but
nowadays this is not a big problem anymore, however a solution could be making
available an offline version of the software, which is a quite simple task starting
from a web code base.

4.2 Technologies
Games also represent a way to explore new technologies, so the idea is to create a
playground for our user to explore different environments and possibilities.

Most of the games our target is used to make use of 3D graphics, and the whole
sample chosen for the experimentation state that they prefer this kind of graphics
approach over the 2D one. Also, 3D graphics is less present in the examined existing

29

tools, which usually prefer to support 2D only. Having said that, we can easily
choose 3D as our main target graphics technology.

Another technology our target (and most of the people) is used to is mobile
platforms. So, the created game, and the editor, should also be available on these
devices. One of the biggest problems of this kind of platforms is that making an
application available for them is a non-trivial task due to several SDKs that differs for
OS and version and to the slow compilation process to have the user generated
game installed. However, choosing a web-based approach allow us to make this
process much simpler, the users can have their games running on several mobile
devices with the same simplicity they can share a web URL, but we will discuss
about this later when talking about the software architecture.

If we have gamers included in our target, then they are surely familiar with
gamepads. Very few examined tools support them natively, so it can be a nice add
to make people explore unusual ways to send input to their game.

A modern technology that we are seen more often these years is VR and AR. These
technologies are intriguing people and making them available on our platform can
add an enormous power to the playground effect we want to create. To be effective
they should be available both on mobile devices and headsets because the latter are
not yet widespread.

4.3 Assets Management
This is one of the most complex parts to speak about, so complex that I have chosen
to make it as simple as possible: Allowing the user to only choose assets from pre-
constructed libraries. We have already spoken about issues related to the assets
importing process and evaluating the sample of target audience it turned out that
the simply does not care about them so much if the pre-constructed libraries are
filled with enough variety. In future developments sounds and maybe images
editor/importer can be implemented, but speaking about 3D models, the problem is
that the audience must be able to understand them, so we must teach people about
3D file formats, 3D animations and polygon and vertex count, because many of
them do not know anything about this technology, so creating and maintaining an
importer for several file formats it is not worth it at this stage.

30

4.4 Programming System
As we have said before, we want to avoid the use of traditional text-based
programming languages, instead we want to make use of VPL, because they are
easier to learn and manage for the users and they are completely syntax error free.

The most diffused approach is the block-based one. It is simple, clean, and similar to
traditional programming languages. So, I have chosen to adopt it for the project.

One of the biggest issues with VPLs is that the programming environment get
messed up soon compared to traditional programming languages. The solution I
found to this was to make unused blocks automatically collapsing and rearranging in
a clean way. This turned out to be effective during the experimentations, and the
code workspace management was never a problem.

Figure 8: Scratch vs Fairytool code for the Chrome Dino Game main character

31

4.5 Space Handling
As we have seen before, one of the most important difficulties of our target
audience is represented by the reference systems, people find it hard to understand
even using a 2D space. The main causes of this are the pixel as unit of measurement
and the axes orientation that may not be clear from the beginning. To mitigate this, I
have decided to adopt a grid-based solution both for the scene editing system and
the space handling by the VPL. It is clear and it makes easier the placement of the
object into the scene, furthermore the axes orientation should be visible into the
environment both for the scene and the objects the user is working on.

Finally, the gizmo design should be extremely simplified compared to professional
software. The gizmo is a GUI control system for scene’s object transformations,
including translation, rotation, and scaling. The gizmo appears on the selected
object and shows the user arrows and other graphical icons to control the object’s
geometric transformations along each axis. Usually, its appearance changes
depending on the transformation selected by the user, so it looks different when the
user selects for example to change the rotation instead of the translation of the
object. Gizmos are usually complete, but the process of changing transformation can
be cumbersome, so I decided to be inspired by the one used in Struckd, a popular
mobile tool that allows users to create and share simple games. The idea here is to
not change the Gizmo appearance and make available only Z axis translation,
proportional scaling (no scaling available for each axis), and rotation around two
axes instead of three. This works because you can move the object on the XY plane
just by dragging it, so there is no need to having this translation on the gizmo, and
the rotation along the third axis can be created composing the rotation along the
other two axes, which are usually the most common ones, so this operation is often
not needed.

Figure 9: Struckd vs Fairytool Simplified Gizmo

32

5. Graphical User Interface

This is most critical component of our software, we need to make it complete and
intuitive, keeping in mind that our users could be really young. The images related
to the GUI will be shown in Italian, the language in which the experiment was
conducted.

5.1 Login
The login page is the first page you see when you log into the software, it has a
single button that allows the user to access Fairytool using any valid Google account.
Once you click on the button a popup will open with a login wizard, which once
done will be temporarily stored, avoiding having to log in every time you open the
software.

Figure 10: Fairytool login page

33

5.2 User Games
After logging in (or if a valid recent login is found) you are redirected to the user's
personal page. Here you can manage your games, especially you can play a game,
delete it, duplicate it, edit it or create a new one. When you delete a game, a
confirmation pop-up appears on the screen to prevent accidental deletions.

When you click on the button to create a new game, a popup is shown with the
purpose of letting the user choose whether he wants to start from an empty project
or from a template. The latter are pre-built projects that allow the user to explore
and analyze simple video games that vary by genre and technology

Figure 11: Fairytool User Games page

Figure 12: Template Chooser

34

Figure 13: Delete confirmation dialog

5.3 Game Editor Header
The page header allows the user to perform various actions.

First, you can go back to your personal page, the one that contains the list of your
projects, or even to the login screen.

At the top right you can view the account with which you are currently logged in
and, by clicking on the drop-down menu next to the email used by the account, you
can log out of the system.

When a game is being edited, the header also shows a button to be able to play the
game and run it in another browser tab, for each other change made to the game it
you can just reload this tab to see the changes applied or press again the button to
start the game.

One last feature of the header is to have a help button to launch a quick guide that
will explain the basics of using the software. This quick start guide was created using
the Tango online tool.

Figure 14: Fairytool Game Editor Header

35

Figure 15: Quick Start Guide

5.4 Game Editor
Clicking a game's edit button or creating a new one takes you to the game editor,
the hub of the user experience. Here every change you make to the games will be
automatically saved on the server so it will therefore be accessible from any device
you log into with the same account.

This section is split into three different tabs Settings, Code and World.

Figure 16: Fairytool game editor tabs

36

5.4.1 Game Settings
Clicking on ‘Settings’ tab of the game editor the user can change the following
general game settings:

 The name of the game

 The graphics engine, choosing between classic 3D graphics, Virtual Reality or
Augmented Reality, the latter will allow the execution of the game only if the
device currently in use is compatible with these technologies.

 The on-screen display of a virtual Gamepad, useful when creating a game with
many controls for touchscreen devices such as smartphones or tablets.

 The font that will be used when running the game.

 A simple color scheme made by two colors that will be used for some default
elements of the game, such as the game main menu or some elements of the
eventual HUD.

 A description of the game being made.

37

Figure 17: Game Settings Tab

Figure 18: Virtual Gamepad used in a game

38

5.4.2 Game Programming
The ‘Code’ tab of the game editor allows the user to program the behavior of
objects in the game. It consists of a single code workspace and an object outliner on
the right where any programmed object will automatically appear. By clicking on the
outliner object icon, you will be redirected to the corresponding piece of code in the
code workspace.

Within the code workspace there can be only two types of blocks, objects, and
functions.

 Objects allow you to create templates that you can use multiple times within
your game, a mechanism similar to what happens in real programming. this
contrasts with what happens in most of the existing tools as almost all of
them allow you to program a single object in the scene and not a class of
objects present in the scene. This is done to avoid having to teach kids the
concept of scope, but on the other hand it makes it extremely difficult to
create even quite simple scenes where there are frequently repeated objects
(just think of the obstacles of a platform game).

 Functions are programming blocks for creating logic that can be reused
multiple times within the program without having to copy and paste the code.
They are quite an advanced concept for those who want to try their hand at
improving the organization of their work, but they are not a vital feature for
the software.

To reduce the spatial complexity generated by block placement, blocks you are not
working on will automatically collapse leaving only the essential information to
identify the block visible (icon and name), moreover blocks are automatically
rearranged to further optimize the space from them busy. However, each block can
be collapsed manually by right-clicking it to open the context menu and selecting
the corresponding option.

We will take a deeper look at the block programming system in the Visual
Programming language chapter.

39

Figure 19: Fairytool Code Tab

5.4.3 Scene Management
By clicking on the ‘World’ tab of the game editor, you will be taken to the game
scene edit screen.

The screen is made up of four macro-sections:

 The scene properties are settings relating to the single scene being edited.
These settings include:
o The camera view, i.e. a drop-down menu that allows you to choose how

the scene will be displayed, whether with a view orthogonal to one of the
axes, or if in first or third person, the latter automatically also include
control of the camera system via input, so you won't need to program it in
code. This option is only available when the game's graphics engine is set
to ‘3D’, otherwise it will only be viewed from the user's point of view in the
real world.

o The distance of the camera from the point or subject framed, this is not
available when the view is in first person, or the graphics engine is set to a
value other than ’3D’ because in that case the distance from the subject is
always 0 being the framing based precisely on his point of view.

40

o Gravity, which will affect the physics of that level, in future developments,
this feature could be implemented as a programming block, to allow for
dynamic gravity changes.

o The lighting, which will modify both the global illumination of the scene,
adding both an ambient and a directional light, and the skybox, or the
background designed to simulate the presence of a sky in the scene,
adapting it to the selected lighting, for example if we choose the 'Sunset'
option, the light in the scene would tend to turn orange, it would become
slightly less inclined with respect to the ground, and the skybox would
adapt, now representing a sunset sky.

o The landscape represents the background visible in the distance, it serves
to make the scene more coherent with what you want to represent, for
example you can add a city seen in the distance, mountains, a forest, etc.

o The terrain allows you to choose the texture of the base plane of the
currently edited scene, to further customize the scene, for example we can
make it look like an expanse of grass, earth, sand, etc. scroll the mouse
wheel

o The background color allows you to change the color of the texture
applied to the predefined support plane.

o Music is the background music to the scene, when you press the button to
choose music, it opens a popup where you can navigate to choose the song
you want.

o Music volume, this feature together with the previous one could be
integrated into the programming blocks during future developments to
allow dynamic music programming.

 The scene editor allows the user to change the composition of objects within
a single scene. Here the inserted objects can be moved along all axes, resized,
rotated, or deleted.
In the scene, the global axes are visible as follows: X-axis colored red, Y-axis
colored green, and Z-axis colored blue. These axes serve as a reference to
check the rotation and position of the various objects in the scene
immediately.
There is also a grid in the scene that indicates the height level you are working
at. By dragging the objects on this grid, it will be possible to translate them on
the plane parallel to the ground (keeping them hooked to the grid) while
maintaining their position with respect to it.

41

Clicking with the left mouse button on an object will select it, moving the grid
to the height of the base of that object, and causing a simplified gizmo to
appear on it. This gizmo will allow you to rotate the object over two axes (the
rotation on the third axis can be obtained by combining the rotations with
respect to the other two), to resize it keeping its proportions unchanged, and
to translate it over the Z axis. This last operation will also move the grid that
represents the work plane together with the object, to allow you to easily
insert other elements at the same height. The last function of the gizmo is to
show the relative axes of the object and the direction of the face of the same
(drawn in yellow), to be able to immediately identify its orientation with
respect to the scene or with respect to other objects.
By holding down the CTRL key it will be possible to make a multiple selection.
It is possible to delete an object by dragging it to the trash icon or by clicking
on it when the objects we want to delete are selected. However, all the
traditional keyboard shortcuts are available for copying, pasting, and deleting
items from the scene.
To navigate within the scene, I tried to minimize the commands to be used,
which in any case always remain visible in the lower part of the screen. The
rotation of the camera is done by pressing the right mouse button followed
by a mouse drag action, as happens in many other 3D editors, but as during
the experiments it was discovered that most of the kids were not used to
clicking with the right mouse button mouse button mouse, the same
operation can be performed with the left button if we are not pointing an
object with the mouse, otherwise the object will be selected and dragged. To
translate the camera in the scene you have just to press the middle mouse
button (the one under the wheel) and drag, while scrolling the mouse wheel
will zoom it.
At the top left there are three buttons that will allow the camera to position
itself orthogonally to the axes automatically, without having to manually
position the camera.
Finally, in the highest part of the scene editor, we find some useful
information, such as the name of the selected object, and the coordinates of
the last clicked grid cell, these coordinates will be colored in the same way as
the respective axes to improve the ability to orientate the user and be able to
immediately identify the axes. The cell in question will also be colored red
within the scene.

42

 The scene outliner allows you to select up to ten scenes to work on. Scenes
with objects in them are considered not empty and will display differently
from others. The outliner will also highlight the scene on which you are
currently working.

 The object outliner, here you can see the icons and names of all the objects
defined within the ‘Code’ tab. Dragging objects from this outline to the scene,
you will be able to add them to it at the position you release the mouse.

Figure 20: Fairytool Scene editor

Figure 21: Background Music Chooser

43

5.5 Running Game
Once the user has pressed the ‘Play’ button, a new browser tab will be opened and
here the game will be displayed in full screen mode. By reloading this page, you can
update the game view with the latest changes made by the creator.

If the game was created by setting the graphics to ‘Virtual Reality’, the VR viewer
used will take the user into the virtual game environment, after clicking on the
appropriate button shown on the screen. If, on the other hand, the game was
created using the 'Augmented Reality' graphics option, the camera of the
compatible device will open, and it will be necessary to touch the surface of the real
world on which we want to place our virtual world.

The start menu will be standard for all games, displaying the game name with a
simple animation and the option to start the game, all using the color scheme
chosen in the game editor's ‘Settings’ tab.

At any point in the game, pressing the ESC key will take you back to the main menu.

It is possible to simply share the URL of the playing game page to make it available
on any other device connected to the internet. The game will run even if the user is
not logged in Fairytool, this I the fastest way to share the created games with
friends.

Figure 22: Game Title Screen

44

Figure 23: Example of Game made using Fairytool

45

6. Visual Programming Language

As mentioned above, one of the major problems to be solved is knowing how to
manage the quantity of blocks made available to the user, which should not be too
high to confuse him, nor too small to make the language less expressive. Also, it
should be easy to identify the blocks and figure out how to fit them into each other.

6.1 The language basics
This VPL, as mentioned above, uses draggable blocks as a major part of the
development process. These blocks are organized into various visible categories on
the left side of the code workspace in a component called toolbox, each category
has an icon, name, and color. Clicking on the desired category will open a drop-
down menu which will allow you to choose a set of blocks. Each block is
characterized by a color, an icon (optional), the content of the block (consisting of
text and any options), but above all by its shape. The shape of the blocks says where
they can be inserted, and it is only possible to insert blocks that are compatible with
the hook, this avoids any syntax or type errors.

Variables and attributes can be defined and used as parameters for almost all the
blocks present in the programming environment to add more dynamism to the
game.

Unlike traditional programming languages, user-defined identifiers within the code
are case insensitive, and spaces are allowed within identifiers, for example "Box
Count" is a valid name.

Blocks can be moved using a drag-and-drop mechanism, moving a block will also
move all blocks that will be stacked below it, to move a single block just hold down
the CTRL key.

Furthermore, when blocks are right clicked, they show a context menu that allows
you to perform various operations on the block itself, such as collapsing it,
duplicating it, adding a comment, show documentation, or deleting it. A block can
also be deleted by dragging it onto the trash icon, which, if consulted, can return all
the elements present within it to be able to restore them.

46

At the highest level only two types of blocks, objects and functions are considered
valid, all other blocks will be nested in them, otherwise the software will make them
semi-transparent and not calculate them when running the game.

Also, higher level blocks will automatically collapse when not in use, and
automatically rearrange within the space to optimize it and make it less chaotic.

Figure 24: Fairytool Code Editor

47

6.2 The Toolbox
Let us now analyze in detail all the categories of blocks present in the toolbox and
how they are organized inside it.

6.2.1 Objects Category Blocks

This category of blocks contains instructions for editing everything related to the
definition of objects.

Figure 25: Objects Category

48

1. It defines an object with the name set in the appropriate field, this name must
be unique, and if it is not, the software will make it so. All objects instantiated
with this definition will bear the same name. But they will still be distinct if
present within the same scene.
This is the most important block of all, in fact, the definition of this object will
appear instantly in the objects outliner, making it available for insertion within
the various scenes. It has two statements, or two slots where you can insert
other blocks, one to insert instructions that will be executed only once when
the object enters the scene, and the other to insert instructions to be
executed at each update cycle of the game (about sixty times per second).
The block is displayed within the toolbox with already commonly used blocks
in it.

2. This block allows you to set elementary physical properties for an object, that
is, you can set the bounce, the mass, or the damping (a sort of friction that
allows you to slow down the movements of the object).

3. Resizes the object by scaling it by the specified factor. The ‘relative’ field
refers to the original size of the object. For example, if enabled, an object
whose size has been halved, scaling 0.5 will halve it further, rather than
leaving it unchanged.

4. This block shows a preview of the 3D model to be assigned to the object and if
clicked will open a popup that will allow you to choose a 3D model from a
library by selecting one of the various categories, or by performing a keyword
search.

5. Allows you to change the display color of the object.
6. Changes the material of the object to the selected one, that is, changes the

way it reflects or emits light. If it emits it, then it will emit it in the color of the
object.

7. Allows you to change the basic properties of the object. If an object is solid,
then it cannot pass through other solid objects, if an object is static, then it
will not be affected by forces (e.g. collisions response or gravity) but it can still
be moved using static velocities or be solid and thus provide a point of
contact for other objects, If the object is visible, then it will also be displayed
within the scene.

49

Figure 26: 3D Model Chooser

50

6.2.2 Movement Category Blocks

This category contains all the blocks for repositioning, moving, or rotating objects.

Figure 27: Movement Category

1. Allows you to set the speed or force with which an object should move in the
specified direction. The ‘Relative’ option allows you to specify whether this
direction refers to the scene, or to the current rotation of the object, for

51

example if it is active, the object is rotated to the right, the ‘forward’ direction
will point to the right.

2. Same as the previous block, but the direction is defined by the position of
another object in the scene.

3. It allows you to set the speed of the object using the individual axes, designed
for users who need more control over movements.

4. It allows you to lock the movement on a certain axis, for example if I lock the
movement on the Z axis and tell the object to follow another, this will only
move on the XY plane.

5. Allows you to place the object at the same position as another.
6. Allows you to manually set the position of an object, using the grid cells as the

unit of measurement.
7. Returns the value along a certain axis of the position, velocity, or rotation of

the object
8. Causes the object to look in the specified direction.
9. It causes the object to look towards the position of another object.
10. Rotates the objects towards a certain direction by the specified angle.
11. Allows you to create a direction consisting of two directions.
12. It allows you to get a direction, if the direction has ‘input’ in the name, then it

refers to the corresponding directional input read by any device capable of
modifying it (arrow keys, WASD keys, analog gamepad stick or directional
pad).

13. It allows you to get the reference of an object by constructing a simple query
and it can be used to specify the direction to that object.

52

6.2.3 Actions Category Blocks

These blocks allow you to perform several types of actions. Like animating the 3d
models, playing sounds, showing particles and more.

Figure 28: Actions Category

1. The object that calls this block makes another object appear by constructing it
from one of the definitions provided, you can also set the speed and
direction, as well as the type of alignment with respect to the calling object.
The 'Relative' option allows you to specify whether this direction refers to the
scene, or to the current rotation of the calling object, for example if it is
active, the object is rotated to the right, the ’forward’ direction will point to
the right.

2. Same as the previous block, but uses the position of another object in the
scene to determine the direction in which the object appears

3. It allows the calling object to be able to ‘pick’ an object present in the scene.
The object picked will be positioned in front of the caller and will follow all its

53

movements. An object can only take one object at a time. The most common
application of this block is to make objects to hold in your hand in first-person
games.

4. Releases the object previously picked from the caller if it exists.
5. It allows you to run one of the preset animations to the 3D model of the

calling object, also setting its playback speed. These animations are not based
on ‘bones’ but on a set of transformations, so it will be possible to apply them
to any 3D model in the appropriate library.

6. Stops the animation that is currently in progress.
7. Allows you to add different particle effects to the position of the calling

object.
8. It allows you to select a sound and play it at the desired volume. To select the

sound, a popup like those already seen above will appear.
9. It allows you to show a text on the screen by specifying its position, color, and

the possible duration of the event. If a variable or attribute is placed here,
both the name of the element and its value will appear on the screen. If you
want to show only the content of the variable, you can use the block to create
a text in the ‘Values’ category.

10. Hides the text currently shown at a specific location on the screen.
11. It destroys the calling object, removing both his 3D model and all his

behaviors from the scene. The effect of this block is not immediate but will be
accomplished after performing all the behaviors of all objects, including the
caller of this block.

Figure 29: Sound FX Chooser

54

6.2.4 Situations Category Blocks

The blocks within this section allow you to manage the different events that may
occur during the execution of the game.

Figure 30: Situations Category

1. Allows you to send a signal by specifying its identifier (in the form of a string)
to all other objects currently in the scene. When an object generates a signal,
it does so to communicate to other objects that they will have to do
something when they receive it. The term ‘signal’ was chosen instead of the
more commonly used ‘message’ because in the experimentation phase this

55

confused the boys a lot making them think that it was a message to be shown
on the screen.

2. Returns true if the object has received a certain signal. This allows you to build
custom logic to manage the signal in the way you prefer.

3. Returns true if the object has collided in the specified way (touching, just
touched, finished touching) with an object named by the given name.

4. As above, but more stringent because it also specifies the direction in which
the impact must occur to be considered valid (for example, if I have to
program the press of a button, I can check that this is touching an object
upwards).

5. Returns true if the distance between the calling object and the one specified
as a parameter respect the selected comparison.

6. Returns true if the count of objects with the specified name respects the
selected comparison.

7. Returns true if an animation is currently running on the calling object.
8. Returns true if the object is no longer within the scene.
9. Return true if the selected item (the calling object, or the entire screen) is

clicked, also including any touchscreen events.
10. Returns true if the specified keyboard input event has occurred.
11. Returns true if the specified mouse input event occurred.
12. Returns true if the specified gamepad input event occurred.
13. Returns true if the directional input value (arrow keys, WASD keys, analog

stick, or directional pad) chosen respects the selected comparison. Inputs
along a certain direction have a value between -1 and 1, while if the direction
is not specified, then the value will be between 0 and 1.

14. This is a conditional block, it was also put here because it has many
applications within this category, but we will talk about it in more detail in the
‘Programming’ category.

56

6.2.5 Level Category Blocks

Here you will find all the blocks that can alter or control the status of the various
scenes.

Figure 31: Level Category

1. This block allows you to follow (or stop following) the calling object by the
scene camera.

2. Allows you to restart the current level, restoring the initial state of the scene.
3. Allows you to switch to another scene. It can be a specific scene, or the next

one, in the latter case, the first non-empty scene is considered next and is
found following the numerical order. If there are no more valid scenes, then
the game will return to the main menu.

4. Returns the number that identifies the current scene, from 1 to 10.
5. Returns the contents of scene variables related to the pointer, such as

position or movement (position change from the previous frame).
6. Immediately end the game by taking it to the main menu.

57

6.2.6 Values Category Blocks

This category deals with all the value types that can be set within the code.

Figure 32: Values Category

1. A numeric value.
2. Integer value chosen randomly between two extremes (inclusive).
3. Returns true if the number passed as a parameter respects the chosen

mathematical property (even, odd, prime, integer, positive, negative, divisible
by).

4. Returns the result of the mathematical function to which the specified
numeric parameter is passed (square root, absolute value, unary minus,
natural logarithm, base 10 logarithm, power base e, power base 10).

5. Returns the result of the trigonometric function (sin, cos, tan, asin, acos, atan)
to which the specified numeric parameter is passed.

6. Returns the numeric parameter rounded with the selected method.
7. Boolean value (true/false).
8. Textual value (string).
9. Constructs a string by concatenating several variables together. By clicking on

the blue wheel on this block you can change the size of the list.

58

6.2.7 Programming Category Blocks

In this category we find all the blocks that help to define the logical flow of the
program.

Figure 33: Programming Category

1. This is a comment, you can specify a text to be able to better organize your
code, but it will not affect in any way the execution of the final program.
Another way to write a comment is to use the context menu of blocks
activated with the right mouse button, but the display of the comment in this
case will be a speech bubble (which can also be hidden) that points to the
block. This block has the function of leaving more conspicuous comments that
cannot be hidden.

59

2. This block allows you to perform a sequence after a certain amount of time.
The block can be set either to execute instructions only once, or to execute
with a regular time interval. If a variable is used as a parameter to specify the
time interval of a repetition, this period will depend on the current value of
that variable at each iteration, and not just on its initial state.

3. This block allows you to execute a statement only if the condition passed as a
parameter is verified. Using the blue wheel, you can change the number of
conditional statements that the block can support (‘else’, ‘else if’ statements).

4. It returns true if the comparison is verified.
5. Returns to true if the logical operation is verified.
6. Defines a cycle to be repeated a finite number of times.
7. Defines a cycle to repeat until a certain condition is verified.
8. Returns input of the specified type that the user wanted. To ask for input, a

pop-up is shown on the screen containing the text passed as a parameter.

6.2.8 Variables Category Blocks

In this category we could manage the global variables of our program. A global
variable will be shared among all objects in the system, so if one object changes its
value, for example, all other objects will see that change.

This is a dynamic category, i.e., the number of blocks depends on how many
variables have been defined.

Figure 34: Variables Category

60

1. Sets the value of the variable to the one passed as a parameter, whatever its
type.

2. Allows you to change the current value of the variable by incrementing it by
the value specified as a parameter. Useful with numeric values.

3. Returns the current value of the variable.

6.2.9 Attributes Category Blocks

This category is very similar to the variables one, but this time the values refer to the
single object that declares them, so each object has its own copy of this value and
only that object can modify it; in fact, this category has the same color as the
‘Objects’ category, but has been separated since it concerns a rather optional
concept that is not essential to make simple games.

Figure 35: Attributes Category

1. Sets the attribute value to the one passed as a parameter, which can be of
any type. Also, if the attribute has never been set within that object instance,
it is also declared.

2. Allows you to change the current value of the attribute by incrementing it by
the value specified as a parameter. Useful with numeric values.

3. Returns the value of the attribute.

61

6.2.10 Custom Blocks Category Blocks

Here the user can define his own custom blocks, which at the computer level are
equivalent to function definitions. This is also a dynamic category, so the exact
number of blocks depends on how many functions have been defined.

Figure 36: Custom Blocks Category

1. Creates a block with the specified name that executes statements without
returning any values. Using the blue wheel, you can set optional parameters
that can be passed to the block when called.

2. Creates a block with the specified name that executes statements to return a
value of any type. Using the blue wheel, you can set optional parameters that
can be passed to the block when called.

3. This statement should be used within the definition of a custom block. If the
specified condition is verified, the function immediately returns the value set
as a parameter.

4. Call a custom block.

62

7. Software Architecture

We now need to choose the main programming language for the project. We want
to build. The huge quantity of libraries and frameworks available for this language is
enough to make it also the choice for this project. Let us see how we can build this
software.

7.1 Libraries and frameworks
 Main UI: If the idea is to create a web application, then we firstly need to pick

up a front-end library, in this case React.js is right for us. It is well supported
and easily extensible, a feature that we really need to create this tool.

 Game Graphics and Assets: here the final choice was to rely on p5.js, a library
that supports image and models loading, 3D graphics, sounds, and has an
extension for VR and AR. This library has also the advantage of being
beginner-friendly designed, which leaves the door open for future user-
writable extensions using this library. However, some little adjustments had
to be made at the time I am speaking, p5.js support textures but not when the
3D model is loaded from an URL, so I added this feature. Furthermore, p5.xr,
the extension that make AR and VR rendering possible on p5.js, had some
problems on axis orientation and input handling while using immersive AR on
a mobile device (which is actually caused by WebXR, the native web library for
extended reality), so I had to find workarounds to fix this issues.

 VPL: this is the core of the user experience, and luckily a framework by Google
called Blockly exists. This framework allows us to create a block-based
programming environment, and it is fully customizable. It provides primitives
to design blocks and coding workspace, and it also offers methods to create a
custom compiler for the code “written” by users. It is simply perfect for us.

 Game-Engine: having seen the nature of this project, I have chosen to
implement a custom one myself, keeping it as simple as possible, I already
have worked on game engines before, so it is not a new field for me. We will
discuss the architecture of this Engine later in this chapter.

63

 Back-end: creating a web application implies that data must be processed and
stored somewhere. In order to simplify the server-side application building I
have chosen to rely on Firebase by Google, which allows you to access back-
end functions such as user authentication, data storage and real time
messages (that is exactly what we want to do for our project) without having
to write server-side code. All we need to do is create and setup the project on
the Firebase website and import the Firebase API in the client-side project to
starting using it.

7.2 Project Structure
How are all these pieces linked together?

The main GUI of the software was created using React.js, but within it I had to insert
custom containers both to be able to render the workspace created using Blockly,

and to be able to render the 3D scene editor created with p5.js, since the first uses a
rendering based on a ‘Virtual DOM’, the second based on the SVG format, while the
third on WebGL.

The software defines an API to be able to communicate with Firebase, which is used
to allow users to authenticate and to save projects in the database.

Every time the user modifies a game or scene, the change made to the project
enters a queue, and every 3 seconds, if there are changes in the queue these are
saved on the server.

Projects are serialized in a JSON format and stored in the database. This format
includes all the metadata for the project (e.g., user, date), the settings the game will
be run with, the serialization of the scenes (always in JSON format) and the
serialization of the code workspace (in XML format).

Each user can edit a project only if he is authenticated and only if they own the
project, if the user tries to edit a project created by another user, this is
automatically copied into their account.

When a game is created, a URL is generated to identify it, and all users with that
URL (even those who are not authenticated) will be able to play it.

Asset previews are uploaded from public files located at the same URL at which the
project is hosted. And to optimize the number of calls made to the server, a
caching mechanism was implemented for the most frequent and heavy asset types
(3D models and sounds).

64

As for 3D models, previews are dynamic, so they are rendered when you load the
model into memory. Also, the 3D models loading method provided by p5.js did not
support textures. I therefore rewrote the loading logic from its parent project
Processing, which supports them.

To populate the 3D Models library, I downloaded most of assets from PolyPizza,
while others were created using Asset Forge.

Sounds and music mostly came from the amazing Kenney work (who is also the
creator of Asset Forge), while others were synthetized.

Figure 37: Main Project Structure

65

7.3 Game Engine Architecture
Many of the 3D physics engines currently available for the JavaScript programming
are not consistently supported and have a number of incompatibilities with the
architecture chosen for VPL. In addition, they have features that are far too
advanced for the purpose of this project that only risk weighing down performance
and unnecessarily complicating even the simplest actions.

I evaluated the cost to pay to adapt these engines to the project compared to the
benefits they would bring, and in the end, I decided to write a simple 3D physics
engine for this project with the aim of being as light and synthetic as possible.

Outside of this thesis, I have been working on game engines for years, so the
complexity of this choice is lowered even further.

The engine consists of only five classes:

1. Vector: defines a three-dimensional vector and all the mathematical functions
that involve it.

2. AABB: this is the object collider, which is an object used to calculate collisions
with other colliders, implements a continuous collision detection algorithm,
based on axis-aligned bounding box (AABB).

3. Body: represents a physical body within the engine, also implements the
physical properties of the object and functions to calculate integrals to get the
position of the body in space.

4. World: represents the place where objects live, in fact, manages their life
cycle and implements an algorithm to compute collisions, which uses a broad
phase (algorithm that is used to determine which collisions could occur, and
which not) to reduce the number of iterations to be carried out, after which it
calculates the position and the normal of the impact for colliders that have
passed the broad phase, and for the collisions that have actually occurred, it
calculates the response and communicates it to the objects.

5. Contact: contains contact information between two objects, such as the
objects involved in the collision, the contact normal and the velocity of the
collision.

66

To bridge physics and graphics, two main classes are used:

1. GameObject: which collects the outputs of the physics engine from a
single Body and defines both methods to be able to display it on the
screen, and high-level logic.

2. Scenes: embed a World and abstracts its logic to a higher level as well
as providing functions to be able to draw it on the screen.

To make the engine communicate with the various graphics engines (p5.js for 3D
and WebXR for XR) I created a collection of classes that represent the various
cameras for all different situations, including the different possible settings for the
3D graphics engine. Which are hooked to a scene and use interfaces written
specifically to set and obtain the desired information from the reference graphics
engine. In addition to all this, classes have also been defined to manage lighting and
shadow casting.

An input management system has also been created, to allow the game engine to
interface in the same way to the different supported input devices (mouse,
keyboard, touchscreen, and several types of gamepads).

The sound API was written as an abstraction of the p5.sound.js one.

Finally, an interface called EngineAPI has been defined, which will allow the VPL
compiler to interface more easily with the key features offered by the game engine,
abstracting them at a higher level.

67

Figure 38: Game Engine Architecture

7.4 Games and Compiler Architecture
To make the game you create playable, the following steps are performed:

1. The user presses the ‘Play’ button from Fairytool or accesses the URL of
a game.

2. The client requests from the server the project file saved in the
database, and if everything is valid, it receives it.

3. The project file is passed to a compiler, which will use scene
serialization and user-created code (present within the project file), and
the EngineAPI to build a JavaScript file.

4. The built JavaScript file is not stand-alone, and is therefore passed to a
component called GamePlayer, which will take care of preparing the
rendering environment and will execute the JavaScript code once it is
ready.

I do this way to make sure that any changes in the EngineAPI or system architecture
allow games to remain more resilient and always runnable.

68

Figure 39: Running a Game

Figure 40: Compiling Architecture

69

Figure 41: Result of Fairytool VPL compilation

70

8. Experimentations

To evaluate Fairytool effectiveness, I had organized a new cycle of experimentations
meeting, always collaborating with Polistudio Amoruso. Most of the group members
were the same as the Scratch evaluation meetings, but new members were added,
allowing me to follow both, people who had this little experience with Scratch and
who have not.

8.1 Method
 At first, I collected suggestions from the group members to create some

simple games based on their interest and wishes. In this phase I was the one
that created those games using Fairytool, this was done to check the software
completeness and stability, furthermore this was a first step to identify
patterns and common game design goals whose implementation process
should be facilitated inside the game engine.

 After a couple of weeks of software improvements based on the previous step
result, I made a 10-minute introduction to Fairytool to the group, but nothing
too specific was told to the kids to see how much information they can figure
out by themselves. After being divided into small groups, they were left free
to explore the game engine without having to perform a specific task,
collaborating with each other to share information and start creating their
first experiments independently. In this phase, I limit myself to observing the
groups and intervene only upon explicit request from them. This allowed me
to start evaluating the usability and intuitiveness of the system, as well as to
note any technical problems of the software.

 After this first phase of exploration of the tool, the members of the various
groups were reshuffled, this to allow everyone to be able to interact and bond
with each other. The task of the groups has changed at this point, the aim is
to think of a game that you would like to make and consequently try to build
it with the aim of letting the other groups play it. No constraints or guidelines

71

were imposed, but it was recommended to start from a simple idea, and then
enrich it over time. Once again, the work was conducted independently by the
various groups.

 The previous step was repeated several times during several meetings,
where improvements were made to the software based on feedback from
group members. The games the groups worked on have always remained the
same and they have improved them from time to time, also trying to
experiment with various technologies such as porting their games to
smartphones or integrating different input devices such as gamepads

 At the end of the experience, students were given a questionnaire created
with Google Forms to be able to summarize everything that emerged during
the experience. Like the one used for the Scratch evaluation, this
questionnaire was also created by combining the SUS (System Usability Scale)
standard with a series of questions customized for Fairytool and another one
adapted from The Game Experience Questionnaire [46]. The novelty
compared to the previous one, however, is the introduction of a new set of
questions of a psychological nature elaborated by the professionals of
Polistudio Amoruso, with the aim of having a clearer picture of the lived
experience both individually and in a group.

8.2 Results
Technical aspects related feedbacks:

 Requests for assistance from all group members were significantly lower.
Furthermore, the requests focused only on the more advanced technical
aspects such as for example some more complicated physics concepts or the
relativity of reference systems, and the explanation necessary to be able to
describe the functioning of these blocks was more concise than the one that
was necessary to explain blocks causing problems in Scratch.

 The time to make a game in Fairytool was much less than that achieved with
Scratch. The students were able to create more complicated programming
logics in less time, also thanks to the reduction of the time spent asking for
clarifications or documenting themselves. Some members of the group have

72

used Unity in the past, these guys reported that according to them creating
games in Fairytool is much easier and faster than this game engine.

 The presence of templates to explore integrated into the game engine was
appreciated as it allowed you to immediately see the software in action.

 The presence of custom icons on each single block has allowed them to be
immediately identified, as well as in some cases being able to receive further
clarifications on its behavior.

 The single workspace page and the automatic collapsing and rearranging
blocks has highly decreased the confusion caused by the interface. No
member of the group ever expressed doubts about the placement of the
blocks or made a mistake by editing the wrong block

 The part of the software that required the most changes and improvements
across iterations was the level designer. Orienting yourself within a 3D
environment is decidedly complex compared to a 2D one, above all because
professional 3D editing software normally uses many commands and
shortcuts to manage the scene, while in our case everything needs to be as
simple and intuitive as possible. The 3D scene editing system had worked
quite well since day one, but some shortcomings emerged as the levels
created by the groups became more complex, such as the lack of controls that
bring the view of the scene to predefined angles, or the possibility to create
multiple selections, or the need for a simplification of the commands related
to the use of the mouse buttons, which have been heavily decreased in favor
of a more GUI-oriented approach (much more intuitive). In the last few
iterations all groups were able to easily do what they wanted.

Experience related feedbacks:

 The kids found the idea of developing a 3D game much more attractive,
which made them more motivated and in a good mood.

 Being able to experiment with different technologies on the created games
intrigued the kids and kept their attention high, for example they were happy
to be able to bring their own gamepads and use them, or to be able to easily

73

bring their game to their smartphone, or even for having discovered the
functions related to the XR world. Some young people have also expressed a
willingness to experiment with other technologies such as online multiplayer
for example.

 We observed that after the experience and the reshuffling of the groups,
most of the people who had extreme relationship difficulties took the
initiative and opened up to the other kids, becoming in some cases really
chatty. However, in other cases the improvement of the relational skills was
less evident. However, all the people were able to communicate at least a
little with the others, both in moments of work and in moments of chat, and
given the starting conditions of the boys, this result is by no means obvious.

 Every member of the group has improved their critical thinking skills, at the
beginning of the path, during the Scratch effectiveness evaluation, people had
a tough time understanding coding concepts, but when we moved to Fairytool
they have become more independent, and after several tries and errors, they
all were able to think original solutions to different kind problems. Of course,
the result depends on the initial condition of each single person.

Finally, all the guys who took part in the experiment expressed their preference for
Fairytool over Scratch. They justified this preference both in terms of graphic and
stylistic results of their works, and in terms of freedom of action within the software
due to the greater clarity of what they were doing.

74

9. Conclusions

Can the creation of videogames be considered a tool to learn something new both
in the technical and relational fields? The answer to all of this is: Yes, but you must
pay attention to several aspects.

The complexity of the game creation tool plays a big part in this, if the tool is too
complex, less motivated people lose interest or develop severe frustration at not
being able to build what they wanted. During the first evaluation of Scratch this
happened, all the kids were not able to finish the work independently, and in most
cases, they were not able to really understand the concepts needed to build the
game as they were presented in the software.

When we switched to Fairytool the situation drastically changed, most of the kids
managed to obtain satisfactory results in complete autonomy by requesting
assistance only for more complex concepts and they were able to also learn the
reasons through brief explanations and apply them later independently without
requiring a call of assistance yet.

The attraction towards technologies such as 3D graphics or the XR world played a
fundamental role in the enthusiasm of the boys which, as confirmed by Dr. Claudia
Amoruso, who constantly followed the boys from a psychological point of view, was
high when they have even heard of it.

Remaining on the subject of a psychological profile, the transformation of the boys,
who we remember had enormous relationship difficulties, was nothing short of
satisfactory, both for the enthusiasm shown during the process of making the video
game and for the teamwork. The boys' psychotherapy sessions showed how they
finally felt part of a whole that mirrored them. Furthermore, all the boys were able
to establish relationships with other members of the group, and some of them
were even exported outside of it, creating real friendships.

75

9.1 Future Developments
This project turned out to be incredible, and when we started, these were exactly
the results we wanted to achieve. However, the project is only at the beginning and
there is still a lot of work to be done to complete it. And both the supervisors of this
thesis and the Polistudio Amoruso have expressed the desire to carry it forward.

These are the main points that should be explored in the future.

 Localization. The software was written in Italian because a group of Italian
guys would have used it, but everything should be translated into as many
languages as possible in order to be effective, since one of the advantages of
VPLs is precisely that they can be displayed in the user's language.

 Make the project Open-Source: ensuring that a community is created around
the project is fundamental for its development given its enormous
complexity.

 Add support for creating multiplayer games. This possibility had already been
explored at the beginning of this study, but there was simply no time to build
the infrastructure. As we had already assumed, and as it also came out of the
experiments, the world of online multiplayer is very appreciated by kids and
would also be another possibility of relationship obtainable through Fairytool.

 Development of a social aspect. It would be nice if young Fairytool users
could inspire each other by showing everyone their work and being able to
play and study those made by others.

 Continue the experiments and regarding the benefits on subjects with
autism and other similar psychological diagnostic pictures with the
collaboration of Polistudio Amoruso. This point is fundamental and has been
one of the pillars of this work, as well as one of the greatest satisfactions.

 Another of the developments that had been thought at the beginning of this
work was to extend the experimentation to schools, this was also not
possible within this thesis due to lack of time. But given the results obtained,
we all really believe in the educational potential of this project.

76

9.2 From Polistudio Amoruso
I would like to close this thesis with the words taken from the conclusions of Dr.
Claudia Amoruso herself. I leave the text she wrote in the original format and
language:

77

9.3 Thanks
We are at the end, and this is the moment where I allow myself to abandon the
formalities and say that this was a crazy experience, which since it started, has
changed many faces until we get to all this. This experience has combined
everything I have always worked on inside, but especially outside the Polytechnic of
Turin, and I find it to be the simply perfect conclusion of this path.

Therefore, I feel I must thank the supervisors of this thesis Bottino Andrea and
Strada Francesco for the support provided during the thesis and professor De Russis
Luigi for the interest shown in the project.

A ‘thank you’ never big enough to the staff of Polistudio Amoruso and especially to
Dr. Amoruso Claudia for reasons that there is no need to even mention.

I thank my sweetheart Nuovo Caterina for supporting me during the realization of
this project.

But above all I sincerely thank all the boys who took part in this
experience!

78

10. Sources

3D game tools:
[1] AppOnboard Inc. Buildbox. https://signup.buildbox.com/
[2] Carnegie Mellon University. Alice. https://www.alice.org/
[3] Cyberix3D. Cyberix3D. https://www.gamemaker3d.com/
[4] Delightex. CoSpaces. https://cospaces.io/
[5] Epic Games Inc. Unreal Engine. https://www.unrealengine.com
[6] Google Llc. Google Game Builder.

https://github.com/googlearchive/gamebuilder
[7] HypeHype Inc. HypeHype. https://hypehype.com/
[8] Kodu Game Lab. https://www.kodugamelab.com/
[9] Meta Platforms. Horizon Worlds. https://www.oculus.com/horizon-worlds/
[10] Nintendo. Game Builder Garage.

https://www.nintendo.com/store/products/game-builder-garage-switch/
[11] Roblox Corporation. Roblox. https://www.roblox.com/
[12] Sony Interactive Entertainment Europe, Media Molecule. Indreams.

https://indreams.me/
[13] Struckd AG. Struckd. https://struckd.com/
[14] Unity Technologies. Unity. https://unity.com/

2D game tools:
[15] Code.org. Code.org. https://code.org/
[16] Cosmo Myzrail Gorynych. ct.js. https://ctjs.rocks/
[17] Flowlab. https://flowlab.io/
[18] Gamefroot. https://make.gamefroot.com/
[19] GameSalad Inc. GameSalad. https://gamesalad.com/
[20] Google Llc. (2014). Dinosaur Game [Video game].
[21] Hopscotch Technologies. Hopscotch. https://www.gethopscotch.com/
[22] Microsoft Corporation. MakeCode. https://www.microsoft.com/makecode
[23] Neuron Fuel. Tynker. https://www.tynker.com
[24] Scirra Ltd. Construct. https://www.construct.net
[25] Scratch Foundation, DevTech Research Group. ScratchJr.

https://www.scratchjr.org/
[26] Scratch Foundation. Scratch. https://scratch.mit.edu/
[27] YoYo Games Ltd. GameMaker. https://gamemaker.io

79

Technologies involved:
[28] Google Llc. Blockly. https://developers.google.com/blockly
[29] Google Llc. Firebase. https://firebase.google.com/
[30] Kenney. Asset Forge. https://assetforge.io/
[31] Kenney. Kenney. https://www.kenney.nl/
[32] Meta Platforms. React. https://reactjs.org/
[33] Mozilla Foundation. MDN. https://developer.mozilla.org/
[34] p5.xr. https://p5xr.org/
[35] PolyPizza. https://poly.pizza/
[36] Processing Foundation. p5.js. https://p5js.org/
[37] Processing Foundation. Processing. https://processing.org/
[38] Tango Technology Inc. Tango. https://www.tango.us/
[39] W3C Immersive Web Working Group. WebXR. https://immersiveweb.dev/

Books and articles:
[40] Bischoff, R., Kazi, A., & Seyfarth, M. (2002). The MORPHA style guide for icon-

based programming. 11th IEEE International Workshop on Robot and Human
Interactive Communication, pp. 482-487,
https://doi.org/10.1109/ROMAN.2002.1045668

[41] Brendan, L.K. (2013). Swept AABB Collision Detection and Response.
GameDev.net. https://www.gamedev.net/tutorials/programming/general-
and-gameplay-programming/swept-aabb-collision-detection-and-response-
r3084/

[42] Desurvire, H., Wiberg, C. (2009). Game Usability Heuristics (PLAY) for
Evaluating and Designing Better Games: The Next Iteration. In: Ozok, A.A.,
Zaphiris, P. (eds) Online Communities and Social Computing. OCSC 2009.
Lecture Notes in Computer Science, vol 5621. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-02774-1_60

[43] Google Llc. Custom Blocks: Best Practices.
https://developers.google.com/blockly/guides/app-integration/best-practices

[44] Handley, L. D., Foster, S. R. (2020). Don't Teach Coding: Until You Read This
Book. John Wiley & Sons Inc.

[45] Hu, Y., Chen, C.H., & Su, C.Y. (2021). Exploring the Effectiveness and
Moderators of Block-Based Visual Programming on Student Learning: A Meta-

80

Analysis. Journal of Educational Computing Research, 58(8), 1467–1493.
https://doi.org/10.1177/0735633120945935

[46] IJsselsteijn, W. A., de Kort, Y. A. W., & Poels, K. (2013). The Game Experience
Questionnaire. Technische Universiteit Eindhoven.
https://research.tue.nl/en/publications/the-game-experience-questionnaire

[47] Kuhail, M. A., Farooq, S., Hammad, R., & Bahja, M. (2021). Characterizing
Visual Programming Approaches for End-User Developers: A Systematic
Review. IEEE Access, vol. 9, pp. 14181-14202.
https://doi.org/10.1109/ACCESS.2021.3051043

[48] Luxton-Reilly, A., Simon, Albluwi, I., Becker, B.A., Giannakos, M.N., Kumar,
A.N., Ott, L.M., Paterson, J.H., Scott, M.'., Sheard, J., & Szabo, C. (2018).
Introductory programming: a systematic literature review. Proceedings
Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education.
https://doi.org/10.1145/3293881.3295779

[49] Noone, M., Mooney, A. (2018) Visual and textual programming languages: a
systematic review of the literature. J. Comput. Educ. 5, 149–174.
https://doi.org/10.1007/s40692-018-0101-5

[50] Shiffman, D. (2012). The Nature of Code: Simulating Natural Systems with
Processing.

[51] Vahldick, A., Farah, P.R., Marcelino, M.J., & Mendes, A.J. (2020). A blocks-
based serious game to support introductory computer programming in
undergraduate education. https://doi.org/10.1016/j.chbr.2020.100037

[52] Whitley, K. N., Blackwell, A.F. (1997). Visual programming: the outlook from
academia and industry. In Papers presented at the seventh workshop on
Empirical studies of programmers. Association for Computing Machinery, New
York, NY, USA, 180–208. https://doi.org/10.1145/266399.266415

