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Abstract

Through fission cells are known to increase their numbers following a well-
known cycle of growth. When this process is recreated in the laboratory
several factors and initial conditions are in control of the culturer, among
which the initial density of the population: the inoculum size. Inoculum
dependent traits have been observed in bacterial [6, 9] ,insect [10] and plant
cells [12, 14] and in many cases such dependencies should be expected :
when population size is limited by the environment , its growth potential
can be drastically reduced if the starting density is close the maximum one.
Several studies have also shown that growth rates of mammalian cell pop-
ulations can exhibit positive correlations with the inoculum size while in
some cases growth is completely absent for initial densities under a certain
threshold[6, 19]. In [2] a comprehensive assay of how inoculum size affects
growth profiles of cancer cells is provided: by following the growth of hun-
dreds of populations of cancer cells, the authors found that the time they need
to adapt to the environment decreases as the initial cell density increases.
Moreover, the population growth rate showed a maximum at intermediate
initial densities. Traditional models of growth are not able to explain the
observed non-monotonic dependence of maximum growth rate with starting
cell count.

The aim of this thesis is to develop a minimal model that contains known
features of mammalian cell population growth and is able to provide testable
predictions of inoculum dependent growth-rates. Since growth hormones
stimulation is essential to mammalian cell proliferation, and its presence has
been involved in observations of cell density dependent growth rates [35],
one of the main processes we attempt to include in our new description is
a form of cooperation through chemical signaling. With stochastic simu-
lations, growth trajectories are obtained for different initial densities and
qualitatively similar growth rate modulations are measured.
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Chapter 1

Introduction

1.1 Physics and the Cell

Physics and biology have for a long time entertained a fruitful relationship
culminating in the synthesis of prolific new fields of research such as bio-
physics and bioengineering.In addition to the fundamental technologies that
advanced the study of life in the laboratory, physics, with its approach based
on fundamental quantitative principles, has in the last half-century signifi-
cantly contributed to the understanding of living matter.

Cells are the fundamental units of life and their basic functions are to grow,
replicate, and multiply.On one side these biological processes are of physical
interest because some of their parts include inherently physical problems.
Molecular motors and mechanical sensing are some examples of areas in
the study of a cell where energy conversion into work, diffusion of chemical
species, and action of physical forces are the characterizing phenomena.

On the other hand, even in its constitutive elements, biological complexity
is often unsormountable. With new high-throughput methods, we are now
able to measure protein levels and concentrations of DNA transcripts, cor-
relating their possible values to different physiological states of the cell (its
phenotypes). The metabolic activity can thus be in principle measured and
converted in massive amounts of data, but if we wanted to understand a
single cellular function, ( for instance, the ability of a eukaryotic cell to move
along a substrate ) we would have to deal with a very intricate and often in-
comprehensible biochemical reaction network. In this regard, the demand to
reduce complexity is high, and a coarse-grained modeling approach that ab-



stracts from the underlying biological details is poised to provide the needed
simplified functional picture of biological pathways.

In addition to the deterministic laws that might govern the inner workings
of a cell, one has to take into account the fact that virtually all cellular pro-
cesses are affected by noise. In this regard, cellular growth involves stochastic
phenomena on scales ranging from the molecular to the macroscopic. The
growth dynamics of a population can be naturally described by a master
equation and understood in a framework akin to the statistical physics one.
If indeed there is a possibility to derive complex macroscopic behaviors from
a simple set of microscopic rules, one would spontaneously be oriented to use
the tools and techniques developed in statistical mechanics. In this thesis
project, we set out to explore such possibility in the context of cancer cell
growth, trying to understand in which way the long-term evolution of a sys-
tem comprised of self-replicating agents might be affected by the interaction
among its constitutive elements and their initial densities.
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1.2 Cell Cultures

In biology, cell culture is one of the fundamental techniques employed in
the laboratory.It is generally intended as the practice of fostering the pro-
liferation of biological material in an artificial environment. Typically, the
successful culturing of cells is subject to conducive environmental conditions
such as a suitable temperature, the presence of a substrate ( a surface cells
need to be anchored to for survival ), and an appropriate growth medium.
The growth medium is a liquid or a gel generally composed of nutrients and
other chemical compounds (e.g. ammino acids, vitamins, glucose) that sup-
port and regulate the growth cycle, and can maintain an optimal level of pH.
Specifically for the in vitro cultivation of mammalian cells, there is a serum
requirement: the medium must contain a source of growth factors (specialized
and diffusable signaling proteins that stimulate growth). Artificial media, the
chemical composition of which is precisely known, are preferred in place of
natural media: naturally occurring biological fluids that do not allow for re-
producibility. For example, among serum-containing artificial media, one the
most commonly used is medium with the addition of Fetal Bovine Serum.
Essentially , experimental work aimed at growing cells in culture is punc-
tuated by a few main steps. An initial amount of cells, the inoculum, is
sampled from a culture in a known pre-growth phase, then seeded on new
culture plates where it begins to grow after some time. The total popula-
tion number is then assayed and monitored, with the technique of choice,
at regular intervals. By plotting the logarithm of this number as a function
of time one obtains a typical sigmoid curve, known as a growth curve. It is
possible, by looking at a growth curve, to subdivide the growth cycle into
four different phases.

1.2.1 Fitting the Growth Curve

Given growth data one can in principle measure the specific growth rate of
the population:

BiomassProduced  log(N/Ny)
A= : = (1.1)
Time t

The value of A (measured in h™!) is expected to grow from zero to a max-
imal value \,.. in a given period of time, commonly referred to as Lag
Time.Eventually the specific growth rate will reach again a value of zero , so
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Figure 1.1: A growth curve

that the logarithm of the population will reach the asymptotic value:

N(o0)

A = log( N,

) (1.2)

Under the assumption that the population is growing exponentially at the
time when the growth rate is maximum, A,,., is usually defined as the value
of the slope of the tangent line at the inflection point of the growth curve.
The intersect of the tangent with the time axis is commonly identified as the
value of the Lag Time t;,,. The maximum growth rate is also used often to
obtain the cell doubling time (or generation time, GT'): the time required
for a cell population to double its size GT' = gmlzjgt%).

To fit properly the data to a model, sigmoid curves are reparametrized in
order to include variables that represent meaningful biological quantities as
they are defined in the chosen model. An example is the sigmoid:

N A

In— =
N() 1+ exp [—4/\2“ (tlag — t) + 2]

(1.3)

Equation 1.3 is a sigmoid modified for a logistic model, with fitting pa-
rameters tjag, A and A\ A = log(k/Ny) , where k is the carrying capacity
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in the logistic model and \,,,, would corresponds to formula 1.7 for b = 0
defined in the next section.

Given the equation 1.3 one can for example apply a non linear least-squares
method to infer growth parameters that encapsulate the relevant information
describing the different phases of growth.

Some of the models focus exclusively on the log phase or log and stationary
phase while others take also take into account the lag phase. In fact it is
possible to include in a model variables that encode the physiological state
of the cell, and express the ratio of the lag time to the generation time as a
function of these variables [1].To describe the influence of the environment
on growth, ( through temperature, nutrient concentration, pH) secondary
models are developed. Again, some of these models treat the lag time and
the maximum growth rate as independent quantities while others are based
on the general assumption that the lag time is proportional to the generation
time [3].

In the following we review the most commonly adopted models of growth,
detailing , as it will be relevant in the next sections, which of these includes
a prediction of the influence of the initial size of the population on the max-
imum specific growth rate.

1.2.2 Models of growth

The log (or exponential) phase of cellular growth has been extensively and
successfully modeled under different conditions, including cases in which the
population is not only multiplying but also possibly cooperating or compet-
ing for resources.

Some of these models are able to predict how the growth rate of a popula-
tion growing exponentially will change while varying the size of the initial
population Nj.

Exponential - Malthus Simple exponential growth is governed by the
differential equation

dN(t)

— - =TN() (1.4)
with solution Nt

log(N—(O>) = rt (1.5)
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In this case the growth rate remains constant and the population grows
exponentially indefinitely, unaffected by a change in Nj.

Logistic and Allee Models The logistic model adds a carrying capacity
k , effectively slowing growth and reproducing the effects of limited space and
resources. The Allee model introduces a ”cooperative” effect by inserting a
positive dependence on population size.Both models can be described by:

where 7 is the intrinsic maximal population growth rate (the same of
Malthusian growth) and b > 0 is a numerical exponent (returning the logistic
model for b = 0 and the weakly cooperative Allee model for b > 0 The right
hand side of equation (1.6) is a function of N, which we will define as A(N(¢)).
Thus for a value N* A\(N) reaches a maximum A, (N*). This value can be
found by setting diN)\(N ) evaluated at N* equal to 0, and corresponds to
the population density at the inflection point of the growth curve, namely
N* = % For initial conditions Ny < N*, the inflection point occurs at
some t > 0 and A4, is simply obtained by evaluating \(N) at N = N*.
If Ny is larger than N* | however, the inflection point occurs at a negative
time, implying that the growth rate is maximum at ¢ = 0.In summary,

bt b
. {TW for N() S mk (17)

)\max

- r( _&) (ﬂ)b otherwise

k k

for general b > 0, while \,,4, = r(1 — Ny/k) for the purely logistic model (
b =0). From a qualitative viewpoint the two models are however very similar
since, in both cases, A4, is largest at small Ny and decreases (monotonically
for b = 0 , following a plateau for b > 0 ) as Ny increases.
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Figure 1.2: (a)Comparison between the behavior of A, (maximum value
of the growth rate) vs Ny (the size of the inoculum) for the Logistic and the
weakly cooperative Allee models. b is the exponent that defines how strong
the Allee effect is (a) Ny axis is logarithmic (b) Same comparison but the Ny
axis is in linear scale

1.2.3 Inoculum density effects

In addition to the expected dependencies described in the previous section,
several studies have shown that growth rates of mammalian populations ex-
hibit also a positive correlation with the size of their initial density. In some
cases it is found that below a critical threshold of initial seeding growth is
not observed ([5],[17]). Rein and Rubin pioneered the field when they grew
chick embryo fibroblasts (a type of cell that contributes to the formation of
connective tissue) for varying initial densities in different media.

In a serum-treated medium, the growth rate of the population decreased as
the inoculum density was reduced while in a conditioned medium (containing
secretions of cells that were previously grown on it) there was no observed
effect dependent on the inoculum size.

Tumor growth curves usually assumed to be the result of exponential growth,
exhibited inoculum-dependent patterns in studies where low cell densities re-
sulted in increased cancer cell generation times and decreased specific growth
rates [15]. In the same study, breast cancer primary and metastatic tumor
take rates (the percentage of tumor samples that survives) were found to be
higher when the number of implanted cells was smaller. Likewise, tumor on-
set times and doubling times turned out to be negatively correlated with N,
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so smaller inocula implied longer latency periods and slower growth rates.
Both cancer and non-cancer cells are known to self-produce and share growth
factors that, as we will discuss further in the following, are believed to be
the biological basis for the aforementioned effects.

Individual Cells and Noise Because of the technical limitations in ob-
serving the growth of individual cells, conventional cell growth studies rely on
large population numbers for their measurements and fail to consider the pos-
sible effects of single-cell heterogeneities on population growth. With modern
experimental setups developed and perfected in the last twenty years, it is
now possible to measure these behavioral differences and inspect whether
they have any influence on the dynamics of the total population.

The processes that underlie the reproduction of the cell are fundamentally
regulated by cell metabolism, gene expression, and regulation: a complex
system of chemical reactions that are stochastic in nature.How this intrin-
sic source of noise and variability propagates through the microorganism
and consequently in a population has been an intense subject of research
in recent years. For example, it has been observed that for small numbers
of seeding phenotypic heterogeneity inside a genetically uniform population
can lead to significant differences in population growth behaviors [9]. It has
also been shown that fluctuations in the expression of enzymes central to
the cell metabolism can cause growth fluctuations that propagate back into
the single cells, generating additional stochasticity in gene expression [37].
Phenotypic variability can be also directly incorporated in expressions for
population growth parameters [24] and identified as a fundamental tool of
fitness maximization [25].

The origins and evolutionary advantages of these population distributions
have recently been elucidated by applying statistical principles such as en-
tropy maximization to very general models of cellular growth [32].Because
large numbers are expected to average out single-cell heterogeneities, it is
not surprising that in the context of stochastic variability, significant fluc-
tuations around these averages and a considerable change of their value are
observed when dealing with population sizes that fall below a particular
threshold.Stochastic models trained on empirical distributions of single cell
growth parameters are able to circumvent experimental limits and can pre-
dict how phenotypic variability can significantly increase for small inocula
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[18], [8] and completely disappear for larger ones [9].
Theoretical frameworks of stochastic character have been developed in order

to understand whether such inoculum-dependent behaviors are due to fluc-
tuations in the population or to deterministic cooperative mechanisms [21].
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1.3 Inmitial Cell Density Encodes Proliferative
Potential in Cancer Cell Populations

In [2] the authors provide a study that characterizes the growth of a cell pop-
ulation with quantitative accuracy across a broad range of initial densities.
They performed a set of batch culture experiments, recording the growth
dynamics of 217 populations (Jurkat and K562, two commonly used cancer
cell lines) starting from initial densities ranging over 5 orders of magnitude
(from Ny ~ 102cells/ml to Ny ~ 7106cells/ml). Growth curve parameters,
representing respectively the lag time ;,4, the maximum growth rate A,q.
and the carrying capacity k through the quantity A = log(k/Ny), are then
inferred from the growth curves using the same fitting function described in
section 1.2.1.

We present in the following the results obtained for the lag time and the
maximum growth rate.

lag time

e mean behavior: the mean (t,,) (averaged over experiments) was
found to have a marked decreasing linear dependence on log(Ny).

e fluctuations: the fluctuations of the parameter were then quantified
by the empirical coefficient of variation (CV):
Std(tiag)

oV = R (1.8)

that remained approximately constant across 4 orders of magnitude in
Np.

maximum growth rate

e mean beahavior: In a regime of low initial densities(i.e. Ny <<
k ) the mean growth rate, measured as the maximum slope of the
growth curve, was found to be roughly constant, in agreement with the
predictions of the Logistic and Allee models. What was surprisingly
observed instead, is the presence of a maximum of \,,,, at intermediate
initial population size. Finally, as Ny approaches the carrying capacity,
Amaz decreases approximately linearly with Vg , in agreement with the
logistic and Allee models.
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e fluctuations: the distribution of values of lambda max presented
significant variability (up to about 50%). For small enough inocula
sample-to-sample is generically small, i.e. different populations grow
at similar rates. As Ny increased, it was observed a significant enhance-
ment of fluctuations, which noticeably only occur above the reference
level given by the asymptotic growth rate.

(g
(a ) ( b ) Doubling time [h] S I
69 35 23 17 14 = ean value [
A ! 0.3 % - Logistic |
;5 //’ :;, o 5 . e |
s A 5 E Foos . S
g ‘ o g o
- = g 002 |
0 1 i o il N ;;x L
[] t] 0.01 0.02 0.03 0.04 0.05
. time [h]og Maximum growth rate, Apa [h™'] 10° 10° 10* 10° 10° 107

Inoculum density, Ny [cell/ml]

Figure 1.3: (a) Representative growth curve. The fitting parameters are ¢;ag,
A and A\p,4z. The maximum growth rate A, corresponds to the slope of the
tangent to the inflection point (orange line) of the fitting curve (gray curve).
The intersection of such a tangent with the time-axis gives the lag time ¢4,
while its intersection with the line In(N/Ny) = A yields the time of exit
from the exponential phase,t;,,. (b) Empirical distribution of the maximum
growth rate. (¢) Maximum growth rate as a function of the inoculum density
Ny. Orange dots represent parameter estimates from individual experiments
with their standard errors, while red dots represent the mean values of \,,q4.
The dashed vertical line marks the value of the mean carrying capacity. The
blue line denotes the behavior of A, vs Ny expected on the basis of a purely
logistic model with k = 8.6 x 10° and intrinsic maximal growth rater = 0.029
defined in section 1.2.2

Amaz Profile The peculiar non-monotonic modulation of A,,,, cannot be
captured by conventional deterministic models like the logistic or Allee model.
The positive feedback between Ny and \,,.. suggests that cooperative effects
are involved. After excluding mechanical interaction as the mechanism at the
heart of cooperation the authors point to the fact that intracellular chemical
signaling seems to be the best next candidate, specifically via growth factors.
This hypothesis is reinforced by the presence of a significant lag time (that
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suggests some degree of conditioning in the medium of the mother popula-
tion).

It is then argued by the authors that two mechanisms are at play in shap-
ing the profile of \,,..: weakly cooperative interaction mediated by growth
factors and the limitation on growth imposed by the carrying capacity on
higher densities. It is speculated that if the carrying capacity is augmented
the maximum growth rate versus Ny will achieve a plateau before decreasing.

Relationship between parameters Through a minimal model of delayed
exponential growth for a bipartite population and cues from the fitting func-
tion, the authors obtain a relation linking the two main growth parameters.

(63

Amaxtlag =~ In [(£> -1 +p] —1Inp (1.9)
where o = (1 +62)_1 ~ 0.12 and p is the value of the fraction of “fast
adapters”, the portion of individuals that are assumed to begin growth right
after inoculation. Empirical results are captured remarkably well for p ~
0.4 but not their variability. Nonetheless, it is remarkable how differences
in single-cell adaptation times are crucial in explaining the interrelations
between the two parameters describing the population.

Population Ensamble Trade-Off An additional result that was also
reproduced by the model described above is a peculiar relationship between
the mean lag time and the standard deviation of the maximal growth rate
estimated across multiple populations.

It suggests the presence of a trade-off between the relaxation times and the
magnitude of fluctuations of A,,.,. The former generally encodes the ability
of a cell to adapt to a new environment while the latter is believed to be a
useful tool in the use of its resources.
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1.4 Aim of the Thesis

As it has been explained so far, traditional deterministic models of exponen-
tial growth are unable to predict the inoculum dependence observed by Bena
and colleagues. While parts of the trend can be thought to be the result of
more thoroughly understood causes ( limitation of resources for Ny close to
the carrying capacity), the increase of lambda max with initial cell density
Is more difficult to explain. The biological basis of known positive feedbacks
between Ny and A,q, has been in several studies ([5],[17],[35] )identified in
the production of autocrine ( i.e. secreted by the cells themselves) growth
factors.

Because both Jurkat and K562 are known to produce such growth factors, a
positive correlation between \,,.. and Ny can in this case be expected.

In this work we are thus interested in developing a minimal stochastic model,
based on a birth-death process, that takes into account the finiteness of the
environment, through a carrying capacity, and can give quantifiable fluctua-
tions.

More importantly: we also aim at including the microscopic signaling mech-
anism we mentioned in section 1.3, by linking the amount of growth factor
present in the environment to the size of the population, we formulate a
model that incorporates the essential biological aspects of the problem.

We run simulations of the model using the Gillespie algorithm, exploring the
possible relationships among model parameters.

We then compare qualitatively the results with the behaviors observed in [2],
in an attempt to gain useful insights into the dynamics of a population of
cancer cells.

In the next section we discuss the tools and the methods employed in this
project.
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Chapter 2

Methods

We’ll develop the model starting from the most basic BD process.

These processes involve the generation (birth) and destruction (death) of a
certain quantity ( the number of cells in our case) in a totally analogous
way to chemical species of reactants. We will then first develop a chemical
reaction formalism in order to describe these processes.

2.1 Stochastic Chemical Reactions Formalism

We can assume a generic chemical reaction to be characterized by a reaction
probability per unit time. Frxample : Given a reaction

R1 : Sl + S2 — 251 (21)

we say it exists a constant c; , and ¢; X dt is the average probability that
any particular pair of species S; and Sy will react like R; in the infinitesimal
interval (t, t+dt).

Then, the probability that the reaction R; happens in the volume V contain-
ing an amount of species V1 and N, for species S; and S5 respectively, in the
infinitesimal interval (t,t+dt) will be

NlNgcldt (22)

In general, in a volume V ( assumed to be spatially homogeneous ), there
are N; ( numbers of molecules of species S; where i=1,..L. ) that can interact
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according to M specific reactions R,(u =1,2..., M).
For each of these reactions, we have a constant

¢, dt (2.3)

And in the volume
n,cdt = a,dt (2.4)

where n,, is the product of all the numbers of molecules N; involved in the
reaction R, and a, is the full volumic reaction rate.

2.2 Master Equation for the process

If we were to write a Master Equation for the process it would be:

iP([\_f t)zﬁP(ﬁ' t)c n’—icnP(]\_f t) (2.5)
i , — ' U) Culy — o )

Where N’ = (N/,...N}) is the configuration that can reach N = (Ny,... Ny)
through a reaction 17, and M is the number of reactions allowed in the sys-
tem.

n;, n,, are the products of all the amounts N and N; involved in a reaction
R,,.

Solving the master equation would amount to obtain the full probability dis-
tribution of the process. With it, it’s possible to compute the dynamics of
any moment of the distribution and of functions depending on them, thus
obtaining a full description of the quantities involved in the processes.It is
not however always the case that the master equation can be solved analyt-
ically, and several approximation methods are often employed.

Another equally valid alternative is using stochastic simulation methods
based on the extraction of the random sequence of events that make up
the process.

In this way, the algorithm can give us distinct realizations of the process,
effectively sampling the distribution. We can use these samples to obtain the
empirical moments and their dynamics. The method we will employ in our
discussion is the Gillespie algorithm.
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2.3 The Gillespie algorithm

We define a reaction probability density function P(7,u)dr as the probability
that given the state N = (Ny,...Nyp) the next reaction will occur in the
infinitesimal time interval (¢ + 7,¢ 4+ 7 + d7) and the reaction will be an R,
reaction. An analytic expression for P(7, u)dr is the following:

P(r,p)dr = Py(7)a,dr (2.6)

where Py(7) is the probability that given the state N = (Ny,... Ny) at time
t no reaction will occurr in the time interval (¢,t + 7) and a,dT = Ny CpudT
is the probability that an R, reaction will occur in the volume V' in the time
interval (t + 7, + 7 + d7). It’s possible to show that Py(7) takes the form

Po(7) = exp [— Z a,,T] (2.7)

v=1

With the aid of a random number generator it is now possible to reproduce
the subsequent extraction of the two pieces of information we need to simulate
the system:

e 7: the time of the next reaction
e 4. the specific reaction that will occur in the volume.

If r; and r are the random nubers we extracted from a unifomr distribution
U on the interval [0,1) then for ay = nyzl a, = Zi\il h,c, we have :

7= (1/ag)In(1/ry) (2.8)

and p is the integer for which

p—1 W
Za,, < reay < Za,, (2.9)
v=1 v=1

Subsequently, we update the values of the configuration N = (N1,...Np)
according to reaction I2, and update the current value of t as ¢t =t + 7.
We repeat the process until the moment t.,,;, we want to simulate the system.
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2.4 Linear Birth Death process

We begin by describing a linear Birth-Death stochastic process, for the
growth of a population N. When formulated as chemical reactions the pro-
cesses of Birth (creation) and Death ( destruction) read as follows:

Rl : Sl — 251 c1 = B (210)
Ry : Sl —0 co =D (211)
We write the Master equation for the process
—P (N, t) ZP N’ t)n,c, — Znucu (2.12)
pn=1

In this case M = 2 and we have

d
P (N.1) = BN =1)P(N —1,1)+ D(N + 1)P(N +1,t) = NP(N, 1) (B+ D)
(2.13)
Over time the mean of the population will evolve like
d(N(t)) d &
NP(N, — 2.14
- dt Z t) T dt Z (2.14)
=0 N=1
and by using the master equation we would obtain
d(N) & - B S _
= =Y (BN (N - 1) Lt)+ > (DN (N +1)P(N +1,t))
: N=1 N=1
— > ((B+D)N*P(N,1))
N=1
(2.15)
using
> BN(N-1)P(N-1)=> B(N+1)NP(N) (2.16)
N=1 N=0
and

iDN(NH)P(NH) = iD(N—l) NP (N) (2.17)
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Jadk WA f:p(N) (BN(N+1)+ DN (N —1)—N*B+D)) (2.18)

And finally

d{N(t
< dt( ) = (B — D)(N(t)) (2.19)
that for (B — D) = r corresponds to the equation describing Malthusian
growth. Given an initial condition P(N = N;,0) = 1 we can solve the

differential equation for the average and obtain
(N) =ngexp (B — D)t (2.20)
Using the same approach we find the evolution in time of the average of N2

d(N?)
dt

= 2(B — D)(N*(t)) + (B + D)(N(t)) (2.21)

This is an ODE that for (N?) = n? at ¢t = 0 has solution

B+ D
(N?) = ny s expl(B = D)t](exp((B — D)) — 1) + nd exp[2(B — D)
(2.22)
We can now compute the variance:
B+ D
Var(N1) = (N?) — (N)? = no i D exp[(B — D)t|(exp[(B — D)t] — 1).
(2.23)
For B > D and sufficiently long times the variance increases as Var(N) ~
exp[2(B — D)t]
so that the Standard Deviation
Std(N) = \/Var(N) ~ exp[(B — D)t] (2.24)

increases in time in the same order of (V).
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2.4.1 Testing the SSA

A simple pseudocode that implements the Gillespie algorithm simulating a
linear Birth-Death process would read:

tzt(),N(t) O N(],?’L e N()
while t < bend

extract time of the next event ¢ + ot according to:

ot = (1/(BN + DN))In(1/r) (2.25)
update growth curve: N(t,t+ 6t) =n
extract random number 7o from U|0, 1)

if ro >Dn/(Bn+Dn):n=n+1
else: n=n-—1

update time: t =t + 0t

end while

In figures 2.1 and 2.2 we show results matching the dynamical evolution of
the average number of cells predicted by the master equation: the average in
the following refers to averages over the samples generated by the algorithm.
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Figure 2.1: Average population number
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Chapter 3

Model Formulation and
Analysis

3.1 Limited Environment and Multiple Pop-
ulations

Limited Environment The starting point of our model is a linear birth-
death process that we modify with the intent to incorporate the effects of a
limited environment.

In an way analogous to how a Malthusian growth model is modified to contain
a carrying capacity, we suggest the following new birth rates and death rates
for the single cell.

N,
ke £t

Rl : Sl — 231 Cc1 = Bl(l — ) (31)

Ny
ke”) (3.2)

We cannot solve the master equation for this new process like we did in
section 2.4, because the carrying capacity term introduces a non-linearity.
Nonetheless, since, as detailed in section 2.4, the evolution in time of the
average of the total population for a linear BD process reads:

R2551—>0 C2:D1(1+

d(N (1))
dt

— (B—D)(N(1)) (3.3)
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we expect that by modifying birth and death rates as in equations (3.1)
and 3.2 we would observe a dynamical evolution for (N(t)) that reproduces
approximately that one entailed by the following deterministic differential
equation:
dN,
dt

N, N

Key s Key s
By setting to 0 equation (3.4), one finds that the effective carrying capacity
/i’e ff is

= (Bi(1 - ) — Di(1+ )) N1 (3.4)

R+1
kegr = (ﬁ)k (3.5)

Where k = Niotmar 15 the maximum value the total population can reach,
and R = %.

1
Equation (3.4) can be conveniently reduced to a logistic equation:

dN N
dtl =r(1— %)N1 (3.6)
where 1y = By — D; and
k=k (E) (3.7)
LAY - 3| '

We then know the system has a well understood steady state at Ny = k. We
also know the maximum growth rate can be defined as in section 1.2.2 , and
assume (we will verify it in the following) the same dependence A,,,, on Nj.
Because we are mainly interested in the behavior of (/NV7) and not in the full
probability distribution of the process we will limit ourselves to comparing
results between stochastic simulations generated by the Gillespie algorithm
and numerical solutions of the corresponding differential equations. The
intrinsic differences between the two approaches will be addressed in the
next section.
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Multiple Populations The natural extension of our model to a situation
where two sub-populations are competing for resources reads:

N; + N.
Rl i Sl — 251 C1 = Bl<1 — M) (38)
Kery
N; + N
RQ : SQ — 252 Cy = Bz(l — M) (39)
Kegy
N; + N-
Rg . Sg — 253 C3 = Bg(l — M) (310)
Kery
N; + N.
Ry : Sl — 0 C4=D1<1+M) (311)
kegs
It can be described by the system of ODE:
N Ny + N N; + N.
N g NNy g Mt ey
dt Kegy Kegy (3.12)
dN: Ny + N N; + N '
o2 (Bs(1 — g) — Dy(1+ g))NQ
dt ke Keys

Again, k.;; can be found by setting to zero the time evolution of the total
population. In this case we have:

)k (3.13)

where now R(N) is equal to:

BNy + By Ny

Ry=—21""22
N7 DiNy + D;N,

(3.14)
k and 0 are the values of the total population at the two steady states of the
system. The system has no analytic solution.

For later use we define:

N, N,,

A= Bi(1— M) —Di(1+ (Niot) (3.15)
keyy Keyy
N, N,

Ao = By(1 — M)—DQ(HM (3.16)
keyy keyy
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Extinction When a second population is introduced in a model with
a limited environment, population and sub-population dynamics are greatly
affected by the presence or absence of death events. It is possible to show
that regardless of the initial conditions the sub-population with larger fitness
(r) will eventually dominate growth, while the other will go extinct.
A much different situation is described by the system:

AN N, + N.
=T

(3.17)
ng B (1 N1+1V2>N
a2 ki !

Since for initial conditions Ny < k and Nyo < k both rates of change cannot
be negative it is easy to see how both populations will at most, stop growing
once Ny + Ny = k, but neither of them will reduce its size or go extinct.
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Analysis

Measuring the Growth Rate Which type of total population dynamics
can we expect to be described by the model so far?

We know that for Ny + Ny = k the system will stop growing, and we wonder
until then what will be the observed growth rate. The sub-population with
higher fitness (r;), even far from the carrying capacity will grow faster then
the other two. We can expect then that A will increase in time from a starting
initial value of A, (o) = W, to possibly a maximal value of A, ;0e =
A1. We want to know if this maximal value is reached before the total popu-
lation starts feeling the effects of the carrying capacity (i.e. Ny << k), and
how this might depend on the initial conditions , the value of k and the prod-

uct trirs.

In the limit & — oo the evolution in time of the total population described
by the system of ode 3.12 is

N(t) = Nl (t) + Ng(t> S N01 eXp(rlt) + 17\[02 eXp(TQt) (318)

where Ny1, Ngo are the initial values of the two sub-populations.
If we were to measure the growth rate A of the total population, as we have
seen in section 1.2.1, we would have
log(N/N, 1 N N,
A= log(N/No) = —[log(i) + it +log(1 + 2 exp((ro —r)t)]  (3.19)
t t No N()l

For r1 > ry we can predict that the sub-population N; will grow faster then
N, , and equation (3.19) tells us that for a given combination of values of
No1, Ngo, 71,19, we would observe a growth rate equal to ry.
We can find approximately these values by observing that for

_N) _1-f (3.20)

Ny(t) f
(f(t) = Ni(t)/Nior) then equation (3.27) reduces to

log(N/N, 1 N,
A= 709( /No) R~ —[log(ﬂ) +rit) = (3.21)
t t No

Noz
- Pe — t
N, exp|(ro — 71)t]

By using lower bounds for the values of f, N;,, we can estimate the minimum
value of the carrying capacity that allows us to observe during growth a value
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A = rq, for different values of initial conditions Ny; and Ngs.
Thus, imposing the lower bound for f(t) = Na(t)/Niot:

1—f -3
— =10 3.22
7 (3.22)
we find that the time t* at which such condition is satisfied is equal to
1 Noa(f)
t' = lo 3.23
LS TR (3:23)

We also impose that our ”"pure exponential growth” approximation is still
valid for

Nio
U (3.24)
Keys
Altogether we have that:
NtOt(t*>103 = keff,min <325)

If kepr > Keppmin We can expect to observe a growth rate approximately
equal to 7, before the effect of the carrying capacity kicks in. Substituting
for keff,min:

R]V - ].
RN +1

In figure we 3.1 we show k as a function of r; and ry, for different values of
Ny.As we can see even for relatively low values of Ny , the minimum carrying
capacity required is quite large.

We conclude we will not always be able to explore such conditions, which
forces us to reconsider how to measure the growth rate.Another way to ap-
proach the problem of measuring the growth rate would be to measure the
istantaneous growth rate

kmin = Ntot (t*) 103(

) (3.26)

_ dlog(N/No) _ d Nou

2
dt Cdt [log(

)4t 4 log(1+ 2 exp((ry — r)t)] (3.27)

A
! Ny Noy

which corresponds to the population average growth rate A,. Of course the
two measurements in the limit described above correspond to A. In the case
instead in which the carrying capacity is not infinite and the combination
of parameters rq,79,t and initial conditions Ny, Ngo do not lead to an ob-
servable constant growth for values of N, < k it is still possible to observe
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a "pure” exponential phase of the population (expressed as an observed ap-
proximately constant value of A). Growth in fact will accelerate as the faster
growing population conquers a larger fraction of the total population, un-
til the "deceleration” imposed by the carrying capacity counterbalances its
effect, yelding for a short period of time an approximately constant growth
rate. In this regimeA; and A differ greatly.In the following section we show
qualitatively the difference between the two measurements.

lUMQ L

Kimin

10?.5

;8]
w

— Np=10!

. Ng=10°

 Ny=10°

S  Ng=10"
5 & 7

rfra

Figure 3.1: Minimum Carrying Capacities We show as a function of the
ratio 11 /ry the quantity k,,; as defined in equation (3.26) , for different values

Of N() (NOI = N02 = 1/2]\[0)
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3.1.1 Results

Numerical solutions were obtained with the ODE solver package Differen-
tialEquations, in Julia v 1.8.2.

The stochastic process trajectories were generated using an implemented di-
rect Gillespie method. Because the number of operations grows exponentially
with the size of the population, we kept for every simulation a carrying ca-
pacity k < 106.

In order to speed up the end of the process still, we modified our code so that
the computation would stop once the value N;,; = k was reached.Another
necessary modification was to automatically set a lower bound of zero for the
rate of birth of each species

(N7 + N»)

Kery

) (3.28)

Indeed for initial conditions Ny >> k , such birth rate turns negative, and
a negative reaction probability rate has no meaning. Furthermore and when
it dominates the total sum of the volumic rates, the 0t of the next event
becomes negative(see pseudocode in section 2.4).

An important difference between the two approaches is the existence of ab-
sorbing states in the stochastic process. While the logistic equation for
B; > D; will deterministically lead to a steady state Ni(oco) = k, there
is always a non-zero probability that the stochastic ”logistic” B-D process
will lead to the extinction of the population. The smaller N, is the higher
the chance that a fluctuation ( an improbable sequence of death events) crys-
tallizes the total population ( or the sub-population) to an extinct state. In
figure 3.2 we can see minor differences in growth trajectories obtained with
the two different methods : these tend to disappear as we increase the value
of N().
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Figure 3.2: Comparison Due to execution times that scale like tepe. ~
exp(Ny) the carrying capacity is set to k = 10%. Growth trajectories are
obtained for two different values of initial conditions Ng; = Ny = 10 and
No1 = Noz = 500. a) (N (t)) is an average over 1 sample trajectory b) average
is over 10 samples trajectories generated by the algorithm, it is possible to
see a closer similarity between the results of the two methods for larger Ny

¢) 100 sample trajectories
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Growth Rates

Performing a stochastic simulation of birth death processes for multiple pop-
ulations is possible to record at all times the values of the distinct sub-
population sizes.We can therefore define and measure the quantity:

COANL(E) + A Na(t)
B Niot (t)

A, (3.29)

Where each )\; is the growth rate expressed by each sub-population. Using
instead data from the trajectory in time of Ny, we measure

A= log(Ntot/No)

r (3.30)
and dlog(Nyot/ N,
A= w (3.31)

To compute A; we first fit log(Nyot/No) with a spline and then compute its
derivative numerically.For all these measurements, the maximum value of
the growth rate A,,., is obtained through the standard function findmaz()
in Julia v1.8.2.

In figure 3.3 one can see how the maximum occurs in a phase of growth that
appears exponential, and how different the values given by A and A; are.
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Figure 3.3: Exponential Phase Comparison:numerical solutions for the
system (3.12) for No;, Noo = 10,100,500 with parameters k = 10° ry =
0.1,7; = 1.5ry in (a-b) ,and k = 10° ro = 0.1,7; = 5rg, in (d-e). In (c) is
shown difference between the two measurements for Ny; = 10 and Ny = 10
g = 0.1,7‘1 = 1.57‘2 (f) k= 105 ,To = 0.1,7“1 = 5’)“2
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Aoz VS Ny

We attempt to recreate batch culture experiments similar to the ones pre-
sented in section 1.3. Given a set of values of model parameters (ry,rs, k)
we obtain growth trajectories in silico changing initial conditions in the fol-
lowing manner: 5 sample growth curves are obtained for each of 10 selected
values of Ny distributed logarithmically in the interval [10',10°]. Each of
the 5 samples per Ny value , has a different value of fo = Ny1/Ny. fo is drawn
cach time from a uniform distribution on the interval [0, 1), and Ny is set
according to Ngg = Ny — N1 , as the two initial conditions are constrained
by the sum Ny = Ny + Nog(examples in figure 3.4). For each growth curve
so generated , its istantaneous growth rate A; is computed, and its maximum
value A, is obtained through a standard search-of-max function in Julia.
One finally obtains 5 different A,,..(Ng) curves, that are averaged together
resulting in the trend we plot in the following figures. The errorbars are the
standard deviations of A,,,, for each Ny value.

In general we can observe that for r; > ry A,,.. decreases as N, increases,
understandably because for the same value of f it takes longer for the faster
growing sub-population to dominate growth. Importantly for vy = ry our
system behaves like one with a single population, and in fact we can see in
fig 3.5 (a) the typical logistic dependence of A, with Ny
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Figure 3.4: Initial Conditions: Colored curves represent the set of points
for which Ny + Nygo = Ny. The markers are the actual samplings performed
on these curves to obtain the initial conditions of our simulations.
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Figure 3.5: A,..vsNy:results of simulations obtained for different values of
r1 — 1o, the intrinsic maximal growth rates of the two sub-populations with.
Error bars represent standard deviations of the average values

43



a k=1.0e6 b k=100000.0

1.00

075

< < 050
—— Numerical —— Numerical
o2s H — Gillespie 025 H — Gillespie
@ n=11 @ n=11
Q@ r=01 Q@ r=01
0.00 0.00
10° 10° 10° 10°
No No

Figure 3.6: Varying k: we show results for same parameters values r; =
ro = 0.1 but different carrying capacity k. a) k = 10%. b) k = 10°

3.2 Chemical Signaling

We now want to introduce in our model a growth-signaling mechanism.

In its definition we will make use of the clear picture outlined in [35], where
growth factor producers are not consumers of the substance.Our interest is
to find out whether such extreme limit case of a more general approach to
single-cell cooperation via growth factors, is able to reproduce the results we
discussed in section 1.3. The authors of the study present first a common
feature of cancer cell cultures: cooperation in a heterogeneous population
through the sharing of a resource.

They record the growth of two genotypically different S-tumor cell lines de-
rived from insulinomas of (Rip1Tag2) mice. A non -mutated strain ( ”pro-
ducer” cells, (+/+)), and a mutated one carrying a homozygous deletion of
the IGF-II gene [“non-producer” cells (—/—)]. The non-mutated gene en-
tails the production of the growth hormone IGF-II (commonly up-regulated
in many tumors) that sustains growth.

Individually the two populations grow at different rates with the IGF-II pro-
ducing population exhibiting the highest.

But when growing the non-productive genotype on a medium previously
conditioned by the presence of the +/+ genotype, the former showed an in-
creased growth rate, higher than the latter.

When the two genotypes were grown together, the growth rate of the total
population was found to be a Hill function of the concentration of the en-
dogenously produced growth rate.
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Assuming that the concentration of growth rate available is proportional to
the size of the population that produces it (species: Sp), and that the popu-
lation ”consuming” it (species Ss) can boost its fitness (encoded in the value
of the intrinsic Malthusian growth rate) without a production cost, we can
postulate the following reaction to occur in the volume:

R : Sl + SQ — Sl + 53 (332)

The reaction entails the creation of a new species S3 with intrinsic maxi-
mal growth rate r3 > r9 > rq. An intuition of the mechanism behind this
"contagion” process is the following: when the growth factor binds to the
free receptor of a cell of the non-producer species Ss, that same cell is now
"signaled” to reproduce faster, implying r3 > 5. A classic contagion model
would see the infected species gain the ability to infect other individuals. In
our model, this possibility is excluded because we constraint the signaling to
stimulate growth and not turn the cell into a new producer: in other words,
the ”infected” cell is exclusively consuming a resource that is produced by
another species. The reaction rate ¢ for the reaction (3.32) is a free parame-
ter of the model.

Summarizing, the complete set of reactions happening in the volume is:

Ny + Ny + N3)
kery

Rl : Sl — 251 Cc1 = Bl(l — ( ) (333)

(N1 + Ny + N3)

RQ : SQ — 252 Co = Bg(l — ) (334)
keyy
N; + Ny + N.
Ry : S5 — 255 c3::£g(1-( i 3)) (3.35)
kery
N, + Ny + N.
Ry: S —0 @:Dﬁ+01+2+ 3)) (3.36)
keyy
N, + Ny + N.
RS =0 o5— Dy + it N2t No)y (3.37)
keyy
N, + Ny + N.
Re: S5 — 0 %:muﬂ“+2+35 (3.38)
Keyy
R7 : Sl + SQ — Sl + S3 C7 (339)
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The deterministic version of the model reads:

dN;
—_— = >\ 17\7
dt 14V1
N.
< % = )\2]\72 — C7]V] N2 (340)
dN.
3 — A3 N3 + ¢ N1 Ny
dt
where N N
M:BM—(WB—QQ+(W) (3.41)
kers kegs
Nio Nio
M:&u—(“B—ma+%“% (3.42)
eff ef f
Ny, Nio
&:&@Jtapr+%“% (3.43)
eff eff

Niot = N1 + Ny + N3 and the effective carrying capacity keyy is

R+1
keff = (ﬁ)k (344)

where k£ = Niot maz 15 the maximum value the total population can reach,

_ B1N1+BaNa+B3sN3
and R = §5Hp N b Ny

3.2.1 Analysis

The time evolution of the total population is:

dNtot
dt

= MN1 + ANy + 3N, (3.45)

and it reaches a steady state for NV;,; = k. As we have seen in the analysis of
the model without contagion, measurements of the growth rate A; coincide
with measurements of A, that now reads:

- )\1N1 + )\QNQ + )\3N3
B Niot

A, (3.46)

We can thus expect that the presence, during exponential growth, of a new
population with a new phenotype A3 , would affect the aforementioned mea-
surements. How much of an increase in the maximum growth rate is observed
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depends on if and when the ”contagion” process begins during growth. If
the birth of the first S3 individual happens outside of the growth time win-
dow , we would not see its effect on the growth rate. We will explore this
idea further by looking at the deterministic version of the model.

Ny dependency of Contagion Rate

Assuming that at the beginning of growth there are no ”infected” individuals
(No3 = 0), for each growth trajectory we can then expect that for a certain
period of time starting from ¢t = ¢, , ( the beginning of our simulations)
N3 =~ 0.

In this time interval case the time evolution of out system reads:

( dN,

—— =\ N

dt 14V1

dN:

d]\rg 2
\W = C7N1N2 = 07(1 - f(t))(f(t))]vtot(t)

Where f(t) = \],\;t(z)

If we assume f(t) = f, constant in time, we can see how for low enough
values of ¢; , we will observe that N3(t) ~ 1 the sooner Ny, reaches a certain
threshold. If that threshold value of N, is close enough to the carrying
capacity of the model we would not measure a significant increase in growth
rate, since by that time the value of \3(NV;(t)) expressed by N3 would be
lower than the maximum growth rate observed by then. Additionally, f(t)
does not remain constant in time , but increases until species S3 begins its
growth, so that two different inocula , characterized by the same initial value
of fo = f(t = 0) but a different value of Ny, would reach the same value of
Ny with very different values of f(t): the inoculum with lower Ny will grow
up to Ny (t) exhibiting at that time a much higher value of f(t).

In some cases f(t) reaches its maximum value f,., = 1 ( thus reducing
the last equation of system (3.47) to zero), before Nj is significantly present
in the population. The rate at which f increases depends in turn, on the
difference between ro = By — Dy and 1 = By — D;. The larger the difference
the faster f(t) will grow up to 1, extinguishing the sub-population N,.

In the following subsections we test these predictions.
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3.2.2 Results

As we did before we first look at some growth curves obtained as explained
in section 3.1.1, making sure we are measuring a maximum growth rate A4,
during an exponential phase.

1.00x10° 1.00x10°
— No=20 / — No=20
— No=1000 [ —— No=1000
. |
750x10° =300 750x10 | — No=3000
= s = s
S 5.00x10 S s00x10 /”
f
250x10° 250x10° /
50 60 50 60
No=20 No=20
No = 1000 No= 1000
= No = 3000 = No= 3000
g °” = o=
s Anax=0.63 s Anax =0.58
) Amax=0.62 2 Anax =0.61
= Anac=0.6 = Anax =0.61
50 60 50 60
06 a a
o A= Ziog (NIN,) 0s — Ao=Zog(N/N,)
A= Hog(N/No) 04 A= Hog(NNo)
04

time time
Figure 3.7: Growth RatesNumerical solutions,growth curves,and compar-
ison between A and A; for Nyi, Noo = 10, 100, 500 with parameters k = 10°
ry =0.3,72 =0.1,73 = 0.7 in (a-b-c) ,and k = 10° r; = 0.5,75 = 0.1,r3 = 0.7
in (d-e-f). In (c-f) is shown difference between the two measurements for
N01 = 10 and NOQ =10
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Results: A, (Vo)

We attempt to recreate the experiments presented in section 1.3.Given a set
of values of model parameters (r1, 79,73, k, c7) we obtain growth trajectories
in silico changing initial conditions in the following manner:10 sample growth
curves are obtained for each of the 15 selected values of Ny distributed logrith-
mically in the interval (10'.5,10%). Each of the 10 samples per Ny value ,
has a different value of fo = Ny1/Ny. No3 is always set to zero. fo is drawn
cach time from a uniform distribution on the interval [0, 1), and Ny, is set
according to Ngg = Ny — Ng1 , as the two initial conditions are constrained
by Ny = Ng1 + Noa.

For each growth curve so generated , its istantaneous growth rate A; is com-
puted, and its maximum value A,,az is obtained through a standard search-
of-max function in Julia. One finally obtains 10 different A,,..(Ng) curves,
that are averaged together resulting in the trend we plot in the figures. The
errorbars are the standard deviations of A,,., for each Ny value.

Parameters Sweep We obtain results for a wide range of key parameters
values. We do it solving numerically the system of ODE describing our model,
because a rough estimation of the time required to run as many Gillespie
simulations returns a value tsmuiation = 600Hrs. Specifically, r; ranges in
the set {0.3,0.4,0.5,0.6,0.7} , r3 in the set 0.3,0.4,0.5,0.7,0.8,0.9,1.0 , ¢ €
{0.001,0.0001, 7e — 5,3e —5,1e — 5,5e — 6, 1le — 6,6e — 7,1e — 7,0.0} and k €
{10°,1055,10°}. Parameter r, was kept constant at value 0.1. In figure 3.8
we show selected results for parameters values that seemed most to capture
qualitatively the experimental behavior.

varying ¢; and K As we speculated in the previous section increasing the
value of the contagion rate c¢; appears to lower the threshold for the onset of
observable ”contagion”. Eventually for large enough contagion rate we can
see its effect for the smallest values of Ny. Increasing the carrying capacity
brings about instead,an overall shift of the ”cutoff” value of Ny,towards, in
similar fashion to what would be observed in a logistic model. In our case
this permits large inocula to manifest their higher contagion potential with
respect to smaller ones for the same value of ¢7.In figure 3.9 one can observe
these effects.
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Figure 3.8: Selected Resultswe plot for the fixed combination of parameters
values 11 = 0.6,75 = 0.1,73 = 0.9,k = 10° measurements of A,,..(Ny) for
a closely spaced range of values of the "contagion” rate, ¢;. (a)e; = 1 X
1074(b)e; =7 x 107%(c)e; =3 x 1075(d)e; = 1 x 1077
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51



Varying intrinsic growth rates (phenotypes) Increasing r, the intrin-
sic maximal growh rate of the "producer” sub-population N; has a double
effect: the larger it is than ro , "consumer” species phenotype,the sooner
sub-population N, will go extinct, preventing any observable form of conta-
gion. On the other hand if r; is too close to r3 we won’t observe any actual
increase in the maximum growth rate. In figures 3.10 and 3.11 we explore
these effects.

a: c7=0.0001 b: cg=7.0e-5
=009 =09
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n=01 n=0.1
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Ng Ny
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=01 =01
10° 10° ' ' 10° 10°
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Figure 3.10: Varying riIn each sub-figure fora fixed values of contagion
rate, carrying capacity, and r3 we vary the values of the ”phenotype” of
sub-population Ni: its intrinsic maximal growth rates ;. Each different
curve correspond to a different value of m; € {0.2,0.3,0.4,0.5,0.6}.(a) c; =
1x1074(b) ¢z =7 % 107%(c) ¢ =3 x 1075(d) ¢z =1 x 107°
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Figure 3.11: Varying r3ln each sub-figure fora fixed values of contagion

rate, carrying capacity, and r; we vary the values of the "phenotype” of

sub-population Nj: its intrinsic maximal growth rates r3. Each different

curve correspond to a different value of 3 € {0.2,0.3,0.4,0.5,0.6}.(a) ¢; =

1x1074(b) ¢ =7 x 107%(c) ¢z =3 x 107°(d)c; = 1 x 1075
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Chapter 4

Conclusions

The goal of this thesis project was to develop a minimal toy-model of cancer
cell chemical cooperation in exponential growth, with the aim of comparing
qualitatively its predictions with observed experimental behaviors.

In the first chapter a brief description of the mechanisms we wanted to em-
bed in our model was given. We first introduce the reader to the basics of
cell culturing, then overview traditional approaches to capture their growth
quantitatively. Subsequently a review of the relevant literature is , to better
understand the experimental work that is at the basis of this project. Sum-
marizing: inoculum-dependent maximum growth rate is observed , and its
dependence on Nj is not explained by classical models. In the second chap-
ter the tools and the formalism adopted in the development of the model
are introduced, together with the techniques employed in its analysis. Fi-
nally, in the third chapter we begin the modeling work. First we show how
the limitations imposed by a finite environment can be included in a clas-
sic birth-death process, and we discuss how the possibility of multiple sub-
popoulations might be approached. Secondly we try to encode a complex
biochemical interaction in a fairly simple set of microscopic events. After
combining all the elements together in a single growth model for multiple
and interacting cell populations, we set out to explore qualitatively its pre-
dictions. A short analysis of the “contagion” term is conducted, outlining the
expected effects of model parameters on the dynamics. Using stochastic sim-
ulations and numerical solvers, we explore the model predictions, mimicking
the experimental procedures that were employed in 1.3.
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4.1 Comparison with Experimental Data

For an accurate qualitative comparison with the experiments we fix to con-
stant values the following param eters of the model: k is set equal to 107,
which is the the average value of carrying capacity measured over the popu-
lations in the experimental work. The general picture outlined in chapter 3
tells us that the for low Ny we can observe an approximately constant value of
Anae that corresponds to the intrinsic maximal growth rate of the producer
population: for this reason we set r; to a value of 0.03, as it was approx-
imately the constant one recorded by Bena and colleagues for low inocula.
The parameters that remain are the two intrinsic maximal growth rates that
characterize the consumer population before and after the signaling (or the
contagion) and the contagion rate. Initial conditions again are picked follow-
ing the procedures outlined in the previous chapter: Ny spans a range of 15
values distributed logarithmically in (10!, 107), and for each value 10 growth
samples are generated, each with a different value of f, = A]/VT;’ for a total of
150 simulated growth curves.

Contagion rate By now we understood that a large value of contagion
rate fosters the birth of the fitness-boosted population at lower inoculum
densities. Since k is now an order of magnitude larger than the values we
tested before we can expect its counterbalancing effect to manifest only at
larger inocula (the smaller k, the lower is the maximum value the producer
population reaches before declining and end up going extinct, preventing
any contagion from happening).We then look at results for ¢7, the contagion
rate,ranging between 10771078,

Intrinsic maximal growth rates 1,73 As 7 is now kept fixed we have
less freedom to vary the difference 6y o = r; — ro. We know that for 6,5 ~ 0
there will be no suppressing of contagion for low inocula, while the greater
the difference between the two rates, the larger Ny needs to be to prevent
rapid extinction of sub-population N,. The chosen value of ry is 0.008 so
that 6, = 0.022.

For what concerns 73, if r3 >> r1 then we expect A,,,, to jump to the 73
value as soon as N is large enough.For r3 = r; instead, we would not observe
any significant increase: we explore a range 73 € [0.04, 0.08]. Best results are
obtained forc; = 5 x 107® r3 = 0.075,we show them in comparison with
laboratory results in figure 4.1.
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Figure 4.1: a) A4, is the average maximal growth rate measured and aver-
aged over Gillespie generated samples. Bars represent the standard deviation
of the measurement. The dotted line marks the average maximum recorded
in vitro. b) Experimental data: orange dots represent parameter estimates
from individual experiments with their standard errors, while red dots rep-
resent the mean values of A\,... In both (a-b) the blue line denotes the
behavior of \,,.. vs Ny expected on the basis of a purely logistic model with
k = 8.6 x 10° and intrinsic maximal growth rate r = 0.029
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Comparison

Mean Behavior In general our model predicts the average behavior
of Aqe fairly well. For approximately the same range of small inocula, we
measure the constant value A4, ~ 0.03. At around Ny ~ 10% , the maximum
growth rate of the population increases until it reaches a maximum of &~ 0.035
, very close to the maximum average recorded during the in vitro experiments.
The gradual decrease towards zero due to Ny — k appears to be smoother
in the trend obtained in [2] while our curve is characterized by a steeper
negative slope.

Fluctuations Qualitatively fluctuations follow the same trend: their
size positively correlates with /Ny , until the correlation becomes negative for
inocula sizes that approach the carrying capacity. Quantitatively, the absence
of significant variations in the constant section of the trend predicted by our
model, might suggest that the source of these variations is ultimately linked
with the appearance of contagion, implying that as long as Ny is too small
to prevent the consumer population to go extinct before being “infected”,
fo , has no relevant effect on the observed growth rate. In fact we always
measure approximately the maximal intrinsic growth rate of the producer
population. When instead the new growth-boosted population N3 finds suit-
able conditions to grow, is able to amplify the fluctuations in the partition
of the initial condition (fy) and translate them in growth rate fluctuations:
a smaller f, would see an onset of contagion for smaller values of the total

population , so that A3 = Bs(1 — ,?*}?}) — D3(1+ ,ivtf”;) is less affected by the

finite environment.
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4.2 Discussion

In summary our analysis tells us that the simple model we developed seems
to capture qualitatively quite well some of the inoculum-dependent behav-
iors described in 1.3. Fierce competition for resources and autocrine growth
factors production are known to be key elements in tumor population growth
[35], and in this case they play a fundamental role in shaping the dynamics of
population growth in relation to initial density size. Similar results might be
achieved reducing the number of free parameters of the model, for example
deriving the value of the contagion rate from the known and quantified phys-
ical and biochemical processes it encapsulates. Another step in the direction
of biological verisimilitude would be to limit the effect of growth signaling
to a period of time, when instead was assumed to be everlasting in our ex-
tremely simplified modeling: it is reasonable to expect the increase in fitness
to fade over time. Further improvement could also be achieved exploring
the possibility of fixing the value of f; to an approximately constant value.
In fact, in [35] the authors found that the two competing populations are
able to coexist in a well established equilibrium, suggesting there might be
a value of fy that (assuming a well mixed population) would reduce part of
the uncertainty defining the initial conditions. This is especially intriguing
considering that the delayed growth bipartite model tested in [2] successfully
predicts relations between the lag time and A,,,,, assuming the total popula-
tion is a bipartite one, characterized by two different adaptation times. Since
death events play a central role in the model one could also explore the its
dependence on growth factor. In [40] it was found that cells growing in high
concentrations of growth factor had an increased susceptibility to cell death
upon growth factor withdrawal.

A simple experimental test of some of the ideas considered in this thesis
would consist of performing the same batch cultures in preconditioned me-
dia, to understand whether chemical signaling in combination with inoculum
size is actually responsible for the modulation of growth parameters. Finally,
considering the more general aim of developing reliable and predictive tumor
growth models, essential features of population growth should be considered:
including a description of the lag phase and phenotypic variability are the
first two steps in this direction.
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Chapter 5

Appendix

5.0.1 A

Calculations for kess

For N,,, = K the total population must stop growing, there fore we set

d Ny, i
d; L= M(K)Ny + A(K)Ny + A3(K)N3 = 0 (5.1)
where
K K
M(K) = Bi(1— —)—D(1+—) (5.2)
Kesy Kefy
K K
Ao(K) = By(1 — A ) — Dy(1+ 2 ) (5.3)
eff eff
K K
A3(K) = By(1 — ) — Da(1+ 2 ) (5.4)
eff eff
Explicitly we have
K K
(BlN1+BQN2+B3N3)(1—k )—(D1N1+D2N2+D3N3)(1+k =0 (5.5)
eff eff
. . B1N1+Ba N2+ B3 N:
Yielding for R = (55t pener ey and A = £
R—RA=1+A (5.6)
and eventually
R—-1 K
~ 5.7
R+1 keff ( )
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