
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering and

Master’s Degree in Computer Engineering

Master’s Degree Thesis

ROS-based autonomous navigation and
object recognition for a mobile

manipulator operating in a warehouse
environment

Supervisor

Prof. Marina INDRI

Candidates

Antonio RAGAZZO

Federico MARESCA

December 2022

Summary

One of the most challenging problems nowadays is the development of robotic
systems capable of carrying out increasingly problematic tasks with a high level of
autonomy. In this sense, this thesis work aims to develop a software architecture for
a mobile manipulator (Locobot WX250) that can: (i) recognize an obstacle along
its path, and (ii) perform pick and place tasks without being aware of how the
map is constructed. The mobile manipulator software architecture is implemented
using ROS (Robot Operating System) to communicate within its modules. ROS
represents the state of the art in middleware software and has a modular structure
that can be updated, enriched, or simplified at any moment without corrupting the
whole system. Furthermore, along with ROS, the manipulator’s tasks are developed
using the MoveIt framework. This choice allows the use of different possible motion
planning algorithms, leaving the decision on which is the most suitable depending
on the end user’s necessities. The obstacle awareness for the manipulator is brought
through Octomap, while the algorithms picked for solving the motion planning
problem are: Stochastic Trajectory Optimization for Motion Planning (STOMP),
Covariant Hamiltonian Optimization for Motion Planning (CHOMP), and Open
Motion Planning Library (OMPL). Thanks to the rich framework of ROS and
widely available, open-source packages we were able to test various techniques for
localization and mapping, path planning and obstacle avoidance. The navigation
stack that is at the core of the mobile base software uses odometry and sensor
data (both Lidar and RGB-D), is highly modular and can be customized for each
use case. For mapping and localization we adopted RTAB-Map, a graph based
SLAM algorithm, that uses real time loop-closure on previously seen locations
and that makes use of all sensors available on the Locobot. Obstacle detection is
achieved through Lidar and RGB-D sensors, both of which are used to construct
occupancy grid costmaps that are then used by the global and local path planner to
instruct the mobile base’s movements. For global planning we explore both A* and
Dijkstra’s algorithms and for local planning Trajectory Rollout, Dynamic Window
Approach(DWA) and Timed Elastic Band (TEB) algorithms. After a thorough
comparison we selected A* for its computational speed and Timed Elastic Band for
its flexibility and stability. We also explored and added a social-navigation layer for

ii

human avoidance during path planning with a Gaussian based costmap approach.
Our architecture makes use of these packages to implement a search of known and
unknown spaces following an ARTag request. The Locobot will reach the ARTag
and perform a pick task with the manipulator. After a successful pick operation
it will place the requested object in a previously chosen location. To validate our
algorithm, we tested the robot both in a simulated environment, thanks to Gazebo,
and in a real application using the laboratory as an adapted warehouse.

iii

Table of Contents

List of Tables ix

List of Figures xi

Acronyms xvi

1 Introduction and problem statement 1
1.1 Robotics nowadays . 1
1.2 Classification of robotic systems . 2

1.2.1 Description of a mobile manipulator 3
1.2.2 Example of mobile manipulators employments 3

1.3 Problem statement . 4
1.4 Goal of the thesis . 5

1.4.1 Problem description . 5
1.4.2 Environment description . 5
1.4.3 Functionalities required . 5

1.5 Thesis structure . 6

2 State of the art 7
2.1 Available Mobile Manipulator Solutions 7
2.2 Middleware software for communication 8

2.2.1 RT-Middleware . 8
2.2.2 ZeroMQ . 9
2.2.3 ROS Robot Operating System 9

2.3 Autonomous Navigation . 11
2.4 Simultaneous Localization and Mapping 11

2.4.1 Overview of SLAM algorithms 11
2.5 Mobile Base Path Planning . 14

2.5.1 Global Path Planning Algorithms 14
2.5.2 Local Path Planning Algorithms 16
2.5.3 Obstacle Recognition, Tracking and Path Prediction 16

v

2.5.4 Social Navigation . 18
2.6 Manipulator motion planning algorithms 19

2.6.1 Memory-based Stochastic Trajectory Optimization STOMP-M 19
2.6.2 Bidirectional Potential Guided RRT* 20

2.7 Item detection . 21
2.7.1 Item recognition via Convolutional Neural Network 21
2.7.2 Item recognition via a set of markers 21

2.8 Grasping techniques . 23

3 ROS state of the art 24
3.1 MoveIt planning framework . 24
3.2 What is a motion planning algorithm 26
3.3 Motion planning algorithms for mobile manipulators 27

3.3.1 CHOMP description . 28
3.3.2 STOMP description . 29
3.3.3 OMPL description . 31

3.4 Obstacle detection and avoidance 33
3.4.1 Octomap as obstacle detection 33

3.5 Mobile Base Navigation . 34
3.5.1 Navigation Stack . 34
3.5.2 Transform tree . 34
3.5.3 Costmap 2D Package . 35
3.5.4 Move Base Package . 36

4 Hardware description of the Locobot WX250 38
4.1 Robot hardware description . 39

4.1.1 Mobile base . 39
4.1.2 6 DOF Manipulator . 39
4.1.3 Gripper description . 42

4.2 Robot sensors . 44

5 Description of the robot’s communication structure 46
5.1 Communication structure . 46
5.2 Item request handling . 47
5.3 Search phase . 48
5.4 Fail handling . 49

5.4.1 Arm fail . 49
5.4.2 Base fail . 51

5.5 Pick and place routines . 52

vi

6 Software architecture of the manipulator 53
6.1 Communication structure . 53

6.1.1 Description of the arm_status topic 54
6.1.2 Description of the pose goal topics 54
6.1.3 Description of the pick_or_place topic 54

6.2 Obstacle avoidance . 63
6.2.1 Octomap . 63

6.3 Object recognition . 65
6.3.1 ARTag markers . 65

6.4 MoveIt framework . 68
6.5 ROS mobile manipulator’s motion planning algorithms 68

6.5.1 OMPL planning library . 68
6.5.2 STOMP planner . 70
6.5.3 CHOMP planner . 73
6.5.4 Planning adapters . 75

7 Software architecture of the mobile base 76
7.0.1 Our SLAM Algorithm: RTAB-Map 76

7.1 Path Planners Plugin Choice . 77
7.1.1 Global Planning Plugin Choice 77
7.1.2 Local Planning Plugin Choice 77

7.2 Path Planning Setup . 78
7.2.1 Global Planner Settings . 78
7.2.2 Local Planner Settings . 79

7.3 Human detection and path avoidance 80
7.3.1 People package . 80
7.3.2 Social Navigation Layer . 81
7.3.3 Spencer People Tracking Package 83
7.3.4 Tracked People Translator Node 84

7.4 Software Architecture for the Base 85
7.4.1 Base Control node structure 85
7.4.2 Description of the mobile base goal topic 85
7.4.3 Description of the base status topic 85
7.4.4 Description of the no marker 86

8 Simulation and experimental results 87
8.1 Simulation setup in Gazebo . 87
8.2 Working of the robot in simulation 87
8.3 Laboratory setup . 91
8.4 Working of the robot in a real environment 94
8.5 Motion planner tests . 98

vii

8.6 Object detection testing . 100
8.6.1 ARTag test . 100

8.7 Mobile Base Testing . 101
8.7.1 SLAM Testing . 101
8.7.2 Path Planning testing . 102

9 Conclusions and future works 106

Bibliography 108

viii

List of Tables

2.1 Comparison of global and local path planners 14

4.1 Arm main characteristics . 40
4.2 Table of exponential parameters . 41

6.1 Octomap parameters used by the plugin in case we use the real robot 64
6.2 Octomap parameters implemented by the plugin in case we use the

simulation of the robot . 64
6.3 Parameters for running Octomap in a simulated environment 65
6.4 Parameters for running Octomap in a real environment 65
6.5 Table of the parameters ar_track_alvar 66
6.6 Selected parameter for ar_track_alvar node 66
6.7 Parameters present in RRT* that we can select to tune the behavior

of the motion planner . 69
6.8 Parameters of RRT* selected for our implementation 69
6.9 Optimization parameters characterizing the STOMP algorithm . . 70
6.10 Optimization parameter values chosen for characterizing the STOMP

algorithm . 71
6.11 Noise generator parameters values chosen for characterizing the

STOMP algorithm . 71
6.12 Cost Function parameters for characterizing STOMP algorithm . . 72
6.13 Cost Function parameters values selected for characterizing STOMP

algorithm . 72
6.14 Update Filter parameters selected for characterizing STOMP algo-

rithm . 73
6.15 Update Filter parameters values selected for characterizing STOMP

algorithm . 73
6.16 CHOMP parameters used for tuning the behavior of the motion

planning algorithm . 74
6.17 CHOMP parameter values for our application 75

ix

7.1 Global planner plugin parameter settings 78
7.2 Global planner plugin parameter settings 78
7.3 Local planner plugin parameter settings 79
7.4 Social Layer plugin parameter settings 82
7.5 Spencer Launch file settings . 83
7.6 Spencer Launch file settings . 83
7.7 Laser detector launch file settings 84
7.8 Point Cloud Library detector launch file settings 84

8.1 Results from the experiment to determine the best choice for the
size of the markers . 100

x

List of Figures

1.1 Example of manipulator working in a dangerous environment (foundry)
for die casting in metal manufacturing [1]. 2

1.2 Prototype of a mobile robot [2], the mobile base is constituted
by differential wheels while on top we have an anthropomorphic
manipulator. 3

1.3 Robot prototype developed for [4] composed by a mobile base and a
manipulator. 4

2.1 An example of RT functionalities are wrapped into an RT component
that communicates through ports in the RT-Middleware [7] 9

2.2 An example of ROS communication nodes while publishing and
subscribing to a topic.[9] . 10

2.3 An example of a ROS communication structure where is involved a
simulation in Gazebo and the visualization in RViz 10

2.4 Example of the current available fiducial marker systems [41] . . . 22
2.5 An example of an ARTag implemented in our system 22

3.1 Structure of the move_group interface which governs the planning
request for the manipulator as described by MoveIt website [45] . . 25

3.2 Structure of the planning scene monitor, which controls the update
of the planning scene and the obstacles present in the environment
as described by MoveIt website [45] 25

3.3 In this figure, we can represent an invalid path (left) and a valid
path (right). The grey space represents the obstacles on the map,
while the white area is the free space. [46] 27

3.4 How matrix A is defined . 30
3.5 The STOMP pseudo-code [37] solved iteratively 30
3.6 An overview of the OMPL structure [51] with the calls and the

functions characterizing the algorithms. 32
3.7 An example of the obstacles sampling made by Octomap (right) of

the environment (left) . 34

xi

3.8 Overview of the cell value related to occupancy cost [54] 35
3.9 High level move_base package overview from [55] 36

4.1 Mobile manipulator Locobot WX250-6DOF. Front view (left), lateral
view (right) . 38

4.2 Intel NUC NUC8i3BEH Mini PC 39
4.3 Kobuki YMR-K01-W1, mobile platform used for navigation 39
4.4 WidowX 250 Robot Arm used for manipulation 40
4.5 New gripper designed to substitute the original one 43
4.6 Lateral view (top) and top view (bottom) of the finger with some

relevant measurements . 43
4.7 Intel® RealSense™ Depth Camera D435 44
4.8 RPLIDAR A2M8 360° Laser Range Scanner 45

5.1 Structure of the software implemented for performing the task . . . 47
5.2 How the algorithm of search works 49
5.3 How the mobile base is intended to reposition returning from the

incorrect pose to home and then repositioning in front of the correct
shelf. 51

5.4 Actions performed for pick and place of an object 52

6.1 Manipulator node communication structure 53
6.2 Flowchart for understanding in which order the actions are performed. 55
6.3 Definition of the pre-grasp pose with respect to the item, 10 cm

away along the z-axis of the item 57
6.4 Pre-grasp pose example taken from the experimental phase where

we can see the end effector and the item to be fetched 58
6.5 Pose of the end-effector after reaching the grasp pose for fetching

the item . 58
6.6 The end-effector here grasped correctly the item reaching its position

with a different orientation . 59
6.7 Definition of the retraction pose starting from the grasp pose, 10 cm

away along the z-axis and the y-axis of the ARTag frame 60
6.8 Here the picking is finished so the manipulator reaches the retraction

pose with the item in its hand . 61
6.9 The end-effector with the object attached reaches the placing pose

that the user previously decided through the code. 62
6.10 Position of the end-effector frame during a place action 63
6.11 Visualization of the detected ARTag in Rviz 66
6.12 Representation of the transformation tree where we can appreciate

the presence of the ARTag as connected to the camera link 67

xii

6.13 Message published on the dedicated topic where we can find the
necessary information such as pose and ARTag id [61] 67

7.1 Structure of the software implemented for controlling the base . . . 86

8.1 Map constructed in Gazebo to test the working of the robot in
simulation. 88

8.2 The robot received the command, so it is going to approach the
medicine stored on the shelf, here only the mobile base is working. . 88

8.3 The base reached the desired pose so now the manipulator arrives
at its pre-grasp pose. The item to be grasped is added to the
planning scene as an object (green box). 89

8.4 Now the manipulator is ready to pick the object, the fingers of
the end effector are opened, and the box added previously in the
planning scene is attached to the end effector link so that the robot
is aware of its presence. 89

8.5 The object has been picked so now it is running the place pipeline.
The base returned home. 90

8.6 The manipulator reaches the place pose, then it opens the gripper
and finally detaches the item (box returns green instead of purple) . 90

8.7 The manipulator finishes its operations, so it returns in]home pose.
The robot is ready to take another command 91

8.8 In the first figure (left), we can have a look at the robot in its home
position, which is also the starting point of our research phase;
instead, in the second figure (right), we can see the depot zone
where the robot will deposit the grasped item. 92

8.9 In these figures, we can have a look at possible positions assumed by
the shelf for validating the algorithm. These positions are marked
with duct tape on the floor to assure the repeatability of the experi-
ments. 92

8.10 Here we show an overall view of the environment where we conducted
our experiments. It comprises three objects: the home, the depot,
and the shelf where the items are stored. 93

8.11 The robot received the command, so it is going to approach the
medicine stored on the shelf, here, only the mobile base is working. 94

8.12 Manipulator reaches the pre-grasp pose after positioning in front of
the shelf. 95

8.13 Now the manipulator is ready to pick the object, and the fingers of
the end-effector are opened. 95

8.14 The object has been picked, so now it is running the place pipeline. 96

xiii

8.15 The mobile base reaches the place pose, now the arm should start
running . 97

8.16 The manipulator reaches the place pose, then it opens the gripper
and finally detaches the item (box returns green instead of purple) . 97

8.17 The manipulator finishes its operations, so it returns in home pose.
The robot is ready to take another command 98

8.18 Here is an image of the robot performing a pick routine. The software
is Gazebo for simulation and RViz for visualization. 99

8.19 The planning scene after adding the box to be picked, the voxels are
cleaned around the zone where the pick happens 99

8.20 Here is a picture of the medicine with the marker positioned on the
front. 101

8.21 Office grid map . 102
8.22 Complete office occupancy grid map 103
8.23 Path planning with no obstacles. 103
8.24 Obstacles path planning. 104
8.25 Standing person path planning. 105
8.26 Images showing how speed affects the gaussian function shape (colour

purple) . 105

xiv

Acronyms

POE
Product of exponentials

ROS
Robot Operating System

OMPL
Open Motion Planning Library

CHOMP
Covariant Hamiltonian Optimization for Motion Planning

STOMP
Stochastic Trajectory Optimization for Motion Planning

STOMP-M
Memorey-based Stochastic Trajectory Optimization for Motion Planning

CNN
Convolutional Neural Network

APF
Artificial Potential Field

RRT
Rapidly-exploring Random Trees

SLAM
Simultaneous Localization and Mapping

xvi

RFID
Radio Frequency Identification

DOF
Degree of Freedom

EKF
Extended Kalman Filter

LIDAR
Light detection and ranging

RGB
Red-Green-Blue

RGB-D
Red-Green-Blue-Depth

GA
Genetic Algorithms

TEB
Timed Elastic Band

HOG
Histogram of Oriented Gradients

EB
Elastic Band

DWA
Dynamic Window Approach

xvii

Chapter 1

Introduction and problem
statement

1.1 Robotics nowadays
Robotics nowadays is a science that is deeply involved in technological progress
in many aspects. More and more robots are employed to carry out tasks that
require high reliability and precision. For example, in this case, we can cite an
example of a robotic manipulator, shown in Figure 1.1, constructed to teleoperate
in scenarios where human intervention could be dangerous or its presence is not
strictly necessary.
The main advantage behind employing robots is that they can operate in dangerous
environments but can also be deployed in industries where it is required to perform
repetitive tasks faster. For this reason, they operate in many big companies’
production chains. In general, we can say that every robotic system is composed of
a certain number of subsystems:

• power source, for powering the other subsystems composing the structure.

• actuation for moving the robot parts.

• sensing for perceiving the surrounding environment.

• manipulation for manipulating items or, more in general, performing tasks
that require interaction with other objects.

• locomotion for changing the robot’s position in the environment.

Each of these subsystems contributes to differentiating the kind of robotic system
we are dealing with.

1

Introduction and problem statement

Figure 1.1: Example of manipulator working in a dangerous environment (foundry)
for die casting in metal manufacturing [1].

The increasing interest in developing more specific solutions to work with robots to
accomplish tasks resulted in the birth of numerous solutions regarding the software
structure. In this thesis work, we will analyze some of them and give particular
attention to the state of the art while looking at the available commercial solutions.
We intend to develop an application that could be furtherly developed in the future;
for this reason, we will preferably look at open-source solutions.
In our particular thesis work, we have to develop the software architecture for a
mobile robot that is commercially available and comes with a certain number of
software solutions already built-in.

1.2 Classification of robotic systems
When talking about robots, it is crucial to understand the type of robotic system
we are dealing with. In particular, a robotic system can be classified according to
different criteria. We can differentiate based on the environment where they will
work if it is constructed previously or the system has to explore, according to their
position on the map if they are fixed in a precise location or they can move in the
surroundings, and, indeed, if they have to approach or operate along with humans
or in a map where only the robots are allowed to work. Moreover, we can have
teleoperated robots or autonomous systems that only need human supervision, not
intervention.
Specifically talking about the robot employed in this thesis work, we are dealing with
a mobile manipulator capable of moving on the map while having a manipulator
for grasping the objects. The robot will operate in an environment where we can
have human interaction and will not require, in our intention, to be teleoperated.

2

Introduction and problem statement

1.2.1 Description of a mobile manipulator
When talking about a mobile manipulator, we highlight that it is a system capable of
moving in a fixed frame, like a map, changing its position. For example, considering
the mobile manipulator in Figure 1.2, it has a manipulator on top and then a
mobile base so that it can move to reach a suitable position before manipulating
the desired object. Thanks to this, we can consider the mobile base as an additional
degree of freedom of the manipulator so that each position in the map can be
potentially reachable in a favourable pose; this principle will be examined in depth
in the following chapters and deployed for the application presented in this thesis
work.
In Figure 1.2, we can observe an example of a mobile manipulator developed for a
research paper:

Figure 1.2: Prototype of a mobile robot [2], the mobile base is constituted by
differential wheels while on top we have an anthropomorphic manipulator.

In general, we can observe that a mobile manipulator is composed of three main
subsystems: the sensors implemented for describing the surrounding environment,
the manipulator responsible for grasping the objects and the mobile base accountable
for navigating the robot.

1.2.2 Example of mobile manipulators employments
Nowadays, multiple solutions are implemented in real-life applications that use
mobile manipulators to carry out tasks regarding picking and placing objects. In
this paper [3], for example, they constructed a robot that interfaces with the
customers in a supermarket environment. Its objective is to pick the objects chosen
by the user which can be identified using RFID (Radio Frequency Identification).
The robot comprises a mobile base and a 6 DOF arm for manipulating objects.
The main drawback in this implementation is that the items must carry a system
for RFID and, as we can see from the user interface, the subset of the products to
be fetched has to be constructed before.

3

Introduction and problem statement

Another example of a mobile manipulator used for assistance is presented in [4].
This paper discusses the usage of a teleoperated mobile manipulator, presented
in Figure 1.3, for performing kitchen tasks, such as preparing food. The robot is
intended to be used by users with disabilities to perform simple tasks in a house
environment. The GUI implemented, in this case, allows, through the camera, to
control the robot in its operations.
From these examples, we can understand that the main objective of these solutions
is to automate repetitive operations avoiding involving human operators.

Figure 1.3: Robot prototype developed for [4] composed by a mobile base and a
manipulator.

1.3 Problem statement
As anticipated by the examples presented, the problem that we tried to address
regards the construction of the software for a mobile manipulator that can work
almost as a plug-and-play solution. Many of the applications presented or cited
before work in a specific environment with the supervision of a human operator;
our goal is to create a solution that can work stand-alone following only a request
for a product from the user. The solutions presented in the previous section are
much more specific for the implementations decided by the authors; in this sense,
we prefer to construct a solution that can be easily modified and replicated for any
robot that has a similar hardware structure. In particular, the robot has first to
map the ambient, then, according to an identification system, locate the object of
interest and grasp it without, in this phase, being aware of the object or how the
shelves where the item is located are made. We think that to make the robot as
efficient and flexible as possible, these tasks must be performed online time by time

4

Introduction and problem statement

when necessary; moreover, they must be independent of the map exploited for the
navigation tasks.

1.4 Goal of the thesis
Now we can formally present the objective of our thesis work, focusing on the
problem to be addressed.

1.4.1 Problem description
The goal of this thesis is to program an already-built mobile robot so that it can
accomplish tasks of picking and placing in a dynamic environment. We explored
different possibilities for implementing the state of the art in terms of obstacle
avoidance, human recognition, object recognition, and motion planning for both the
manipulator and the mobile base. Each of these capabilities will be implemented via
ROS packages, while the communication with the algorithm will happen through
topics and services. The application designed to accomplish our goal will be
implemented as a ROS node, independent of the robot itself, and possibly work
with all the robots with a similar software architecture.

1.4.2 Environment description
The target environment for the application is a warehouse that has the necessity
of picking stored items and placing them in a depot. This environment will have
static obstacles, such as shelves, walls, and dynamic obstacles with varying degrees
of predictability, varying from other mobile manipulators to humans. Since the
arm payload and the maximum height reachable by the arm are not suitable for a
real warehouse, we decided to scale the problem by recreating a room with some
obstacles, humans, and some shelves where the items will be stocked. The robot
will construct the map before being able to satisfy the requests from the user.
Moreover, as items to be manipulated, we consider some medicines that have a
suitable dimension for the gripper constructed and are compliant for the maximum
payload.

1.4.3 Functionalities required
It is required, by this application, that the robot is able to accept a request for an
item from the user, identify the requested item between all those in the scene and
then manipulate it safely without damaging the object and harming the operators.
The algorithm is also responsible for detecting dynamic obstacles like humans and
modifying the computed mobile base trajectory online to avoid collisions.

5

Introduction and problem statement

1.5 Thesis structure
This thesis structure is composed so that we will analyze the current state of
the art in Chapter 2. Going into Chapter 3, we will describe, particularly, the
solutions present on the market regarding ROS. The hardware selected is described
in Chapter 4, while the software structure developed will be presented in Chapters
5, 6, and 7. Finally, we will present the results and tests in Chapter 8. The
conclusions and some considerations will be presented in Chapter 9.

6

Chapter 2

State of the art

2.1 Available Mobile Manipulator Solutions

The solutions developed in the research field are currently focusing on designing
service robots, like the ones cited in Chapter 1, that are increasingly autonomous.
As an example of an application, we suggest the following paper [5] where a mobile
base has been developed to perform shelf analysis. This solution presents some
stimulating features such as the implementation of OpenCV to deal with object
recognition. Moreover, as middleware, it implements ROS so that the software
is composed of open-source packages. Simultaneous Localization and Mapping
(SLAM) is the solution selected in this work to map the environment where the
robot will operate. The main deficiency behind this solution is that it still needs
human intervention to pick an object from the shelf. The OpenCV software, which
performs object recognition, is undoubtedly less precise in pose estimation than
the ARTag markers package provided by ROS because of the uncertainty derived
by the image classification operation.
Another application similar to this thesis work’s objective that expresses the efforts
made to automate repetitive works is the one presented in [6], where the researchers
present a solution for goods picking in a supermarket environment. The paper
proposes different solutions such as an innovative trajectory planning strategy in
joint space for grasping different types of items present in an emulated standard
grocery store. Grasping is done by implementing a suction cup different from
the gripper mounted on the Locobot WX250; its working principle is limited
to the presence or absence of objects with a plain surface where the grasper can
adequately stick. Moreover, the software architecture is not ROS-based, so changing
the hardware will force rewriting the entire software losing the possibility to reuse
the algorithm for different manipulators. We are looking for a solution that can
be adapted to different hardware types without losing its efficiency and reliability.

7

State of the art

Moreover, according to our analysis, another weakness is that the motion planning
algorithm does not provide any online obstacle avoidance algorithm, so this solution
may work under the assumption that the items can be freely picked without any
obstacle.

2.2 Middleware software for communication
Currently, on the market, there are several possible choices of middleware structure
to communicate within robots’ submodules. In particular, we can mention the
following ones:

• ROS Robot Operating System

• ZeroMQ library

• RT-Middleware

Between those cited we will analyze ROS in the next chapter because the Locobot
already comes with the packages intended for use with this communication middle-
ware.
The idea behind implementing a middleware such as the ones mentioned above
relies on the fact that, in this way, there is a faster and easier way to communicate
with all the software packages composing the architecture of a robot. Although in
the research field many systems implement these structures in real applications
they are not so popular; it is preferred, instead, to develop systems intended for the
specific application. We can differentiate them based on the level of abstraction of
the hardware that the code can provide; some of them are at High-Level and then
easier to adapt to different hardware solutions, while others are at a Low-Level
stage, and hence they are more specific for the target hardware.

2.2.1 RT-Middleware
RT-Middleware is a software platform used for constructing robotic systems by the
composition of multiple software modules that characterize the robot’s functional el-
ements. The open-source project correlated to this framework is the OpenRTM-aist
which stands for Open-source and open architecture Robot Technology Middleware
implemented by National Institute of Advanced Industrial Science and Technology
(AIST). The objective of this structure is to implement the functionalities hierarchi-
cally provided by the modules to construct a robotic system. The communication
between each component is made through ports to exchange data and information,
as shown in Figure 2.1.

8

State of the art

Figure 2.1: An example of RT functionalities are wrapped into an RT component
that communicates through ports in the RT-Middleware [7]

2.2.2 ZeroMQ
ZeroMQ is a Low-Level middleware networking library. As stated in [8], it can
run without a broker and works through the use of patterns in messaging such as
pub/sub, request/reply, client/server, etc.
The main drawback behind this implementation is that it needs to be implemented
at a low level inside the software that our robot runs so the code becomes application-
oriented and loses its generality. Because of its complex implementation to make
the robot communicate within its modules, it is less attractive than the other two
solutions proposed.

2.2.3 ROS Robot Operating System
ROS is an open-source software meta-operating system for developing robotic
applications. ROS can provide many functionalities such as hardware abstraction,
process management, multiprocess communication, and package management. Its
structure is made of three crucial components that are: nodes, services, and topics.
The whole working of the system is based on the communication between nodes
which is possible thanks to the existence of topics. As we can see from Figure 2.2,
a node could be a publisher or/and a subscriber of a certain topic. Using this
approach, we can draw schemes where we can clearly understand the communication
that each node maintains with the others. For debugging purposes this is clearly

9

State of the art

helpful, mainly when we deal with a lot of nodes and topics; an example of a
network established when starting a robot is reported in Figure 2.3.

Figure 2.2: An example of ROS communication nodes while publishing and
subscribing to a topic.[9]

Figure 2.3: An example of a ROS communication structure where is involved a
simulation in Gazebo and the visualization in RViz

10

State of the art

The main advantage of implementing a system like ROS for managing the robots is
that it does not need particular hardware to run; instead, it aims to deal, possibly,
with different computers in the same fashion without losing the specificities of
the application. We must remember that ROS was born from the need to avoid
re-implementing the basic features of each software architecture from the beginning
for each particular robot or computer while guaranteeing fast solutions to the most
common problems.

2.3 Autonomous Navigation
Autonomous navigation is the capability of a mobile base to reach a goal position
and plan its path within an environment without external commands or human
intervention. Generally, sensors are placed on the mobile base to allow it to sense
obstacles in its path. Also, a map has to be constructed to localize the base’s
position and to calculate the path from the base’s current position and the goal.
To tackle this subject, we will first discuss SLAM and its applications, then path
planning and finally object and human detection.

2.4 Simultaneous Localization and Mapping
The goal of SLAM is to obtain an accurate estimate of the robot’s location in
space while traversing and constructing a map of such space. It is one of the most
important problems in autonomous navigation since its solution would solve both
the need for accurate and continuous localization of a robot and for precise maps
of the environment. The SLAM problem is tightly tied to the noisy nature of the
available sensors. So the problem is described in terms of a probability computation.
In an unknown environment, the movement of the robot along its path from time
0 to time T can be described by a sequence of variables x1 : T = x1, . . . , xT . The
sensors take a sequence of odometry measurements u1 : Tu1, . . . , uT and external
measurements of the environment z1 : T = z1, . . . , zT . Solving the full SLAM
problem consists of estimating the posterior probability of the robot’s trajectory
x1 : T and the map m of the environment given all the measurements plus an
initial position x0

p(x1:T , m | z1:T , u1 : T , x0) (2.1)

2.4.1 Overview of SLAM algorithms
Of course, the formulation of the general SLAM problem does not lead to one single
solution so, over the years, there have been many approaches to solving it. The

11

State of the art

following SLAM algorithms have been proposed over the years and are some of the
most used and studied in the field.

Extended Kalman Filter SLAM

Extended Kalman Filter (EKF) SLAM was one of the earliest algorithms proposed
to solve the SLAM problem [10] . The locations of the robot and features of
the environment are described in a single state vector and a covariance matrix
represents the relationships between the robot and environment state estimates. It
uses two successive phases to accurately predict the robot’s poses :

• prediction step

• update step
At first, odometry measurements are used to calculate an a-priori estimate of the
robot’s pose, then, during the update phase, exteroceptive measurements are used
to update the estimate through the use of features in the environment to calculate
an a-posteriori estimate. An example of EKF SLAM is Hector SLAM [11], it
achieves fast results with low resource consumption together with very low-drift
odometry. However, it does not solve the full SLAM problem, since it does not
perform loop closures to reduce errors in the state estimate.

Particle Filter SLAM

Particle filters can be visualized as a set of guesses in the state space. At each step,
a set of particles are stochastically generated from the previous sets of particles.
Then after a sensor message, the update step occurs. In this step, the set of particle
filters is assigned a certain probability or weight given this new information. After
the update, a resampling step is used to prune the set of particles so as to keep
only the most probable ones. The main issue with particle filters is that in the
context of SLAM, the dimensionality of the state space is such that generating a
large enough set of particles for each feature is costly and so scales exponentially
with the dimension of the state space. To counter this issue Particle Filter SLAMs
have used optimizations such as the conditional independence hypothesis and
Rao-Blackwellization, where the particles are drawn from the robot’s path posterior
and the associated map’s probability distribution is represented as a Gaussian
distribution given the selected particles. A well-known and well-researched Particle
Filter SLAM is FastSLAM [12].

Graph-Based SLAM

The most intuitive way of approach to SLAM is by envisioning the solution as
a graph where the robots poses and landmarks are the nodes connected with

12

State of the art

edges that contain the sensor measurements [13]. Due to the noisy nature of the
measurements, there may be contradictory perceptions and fuzzy landmark distance
so not all edges will be consistent with prior knowledge . This problem can then
be seen as a graph optimization problem, where the least contradictory graph is
extracted from the originally constructed one. Each successive location node xi-1,
xi is connected by an edge that contains odometry information ui and other edges
to map nodes mi that contain landmark information sensed by the sensors at time
step i. Some SLAM algorithms have used this intuition to build solutions that have
more recently seen a resurgence. The SLAM method chosen for this thesis work
belongs to this family of algorithms and uses this same intuition.

Sensors For SLAM

SLAM nowadays is tackled using a variety of sensors regardless of the paradigm
used (EKF, Particle Filter, Graph, etc). The most common sensors are RGB(Red
Green Blue), RGB-D(Red Green Blue Depth), 2D LIDAR (Light Detection and
Ranging), 3D LIDAR, IMU(Inertial Measurement Unit) and Wheel Encoders.
RGB and RGB-D belong to the family of camera sensors, RGB sensors are widely
available and low cost, so they are used by many algorithms, especially since the
surge in popularity of Convolutional Neural Networks (CNNs) and Visual machine
learning classifiers. RGB-D are cameras with stereo or time of flight capabilities
that enhance the frames they capture with depth information. Usually, they are
less costly than LIDAR sensors but are affected by lighting conditions and have
a reduced horizontal Field of View (FoV). 2D and 3D LIDAR (Light detection
and ranging) uses the time of flight to gather obstacle distance information by
measuring the time it takes for a beam of light to travel to and reflect from an
obstacle. The main advantage of 2D LIDARs over normal cameras is their wide
horizontal FoV and longer depth measurement range. Their main drawback is the
lack of vertical resolution, meaning that sensing only occurs on the plane orthogonal
to the laser direction. While more expensive, LIDAR is more accurate and does
not suffer from lighting conditions as much as the RGB sensors, however, it loses
accuracy when measuring around reflective and transparent surfaces. In [14], the
analysis deals with RGB-D sensor-based vSLAM algorithms (with examples such
as SLAM++, ElasticFusion, and Dense Visual SLAM). Our experiments take place
in an office so typical lighting issues that arise when doing SLAM outdoors are
not an issue, however, there are many reflective and glass walls that can cause
problems in both kinds of sensors.

A research work presented in [15], investigates various ROS-based visual SLAM
methods and studies their feasibility and applicability in a homogeneous indoor
environment (defined as a office-style environment with homogeneously painted
walls and containing reflective surfaces such as windows and mirrors). A stark

13

State of the art

comparison between 2D LIDAR based Hector Slam and RGB-D based RTAB-Map.
Both performed well but the former was much more accurate with a maximal
trajectory deviation of 0.18m against the latter’s 0.67m. This environment closely
mirrors ours, so following their conclusion, RGB-D is a good choice together with
LIDAR when there are glass or large monochrome walls.

2.5 Mobile Base Path Planning
SLAM builds up a global map that will be used for localization during the robot’s
movement. When a new target is received, odometry data are used to calculate
the current pose and the global planner will calculate a possible path to reach
the target path. During navigation, the local planner will then take into account
the local costmap information to try to follow as closely as possible the plan laid
out by the global planner, while avoiding obstacles that are not present on the
global costmap, such as moving objects or objects that have been moved after the
construction of the map. The main differences in the global and local planners are
summarized in Table 2.1.

Global Path Planning Local Path Planning
Map based Sensor based

Apriori knowledge of obstacles Only local and current obstacles
Calculate a path from start to goal pose Calculate a path to follow the global path

Slower Faster

Table 2.1: Comparison of global and local path planners

2.5.1 Global Path Planning Algorithms
Artificial Potential Fields

First introduced in [16] this path-planning algorithm uses the concept of repulsive
and attractive forces to move the robot in the surrounding space. Obstacles generate
repulsive forces that push away the mobile base and the goal attracts it. At any
given point the attractive and repulsive potentials can be used to calculate the
total potential U and the next movement towards the goal by identifying the most
promising negative gradient.

Rapidly exploring Random Trees

A rapidly exploring random tree (RRT) [17] is an algorithm that explores a given
space by building a random tree that fills the space. The tree expands incrementally
at each interaction by sampling the available free space and adding these samples

14

State of the art

to the tree. This kind of technique though simple is efficient at exploring the free
configuration space. The procedure is, in fact, biased towards the space that has
yet to be visited by the tree.

Genetic Algorithm

Genetic Algorithms (GA) were first presented in [18]. They take inspiration from
Darwinian evolution. First, a generation of solutions is calculated and their quality
is evaluated, then this generation is used to breed the next generation. Each
generation is also mutated to ensure diversity in the population pool.

Dijkstra Algorithm

Dijkstra’s algorithm is a highly influential shortest path finding algorithm first
proposed by Edsger W. Dijkstra in 1959 [19]. It visits unvisited graph edges from
lowest to largest cost in a BFS (Breadth First Search) fashion. The solution to a
path-finding query using Dijkstra will always result in the shortest possible path
since it visits all possible edges in every direction. By translating a 2D occupancy
grid to a graph using the cells of the grid as nodes and the cost of those cells in the
edges connecting them we can use Dijkstra to compute the shortest path between
cells.

A*

A* was first proposed in 1968 [20] by Stanford researchers. While Dijkstra finds the
shortest path from a starting location to all possible locations, A* only takes into
account the shortest paths from a starting location to a target location. This change
allows the algorithm to use heuristics to improve its speed. A simple heuristic, in
this case, could be: given the a-priori knowledge of the goal location, if two cells
have the same cost then choose the one that is in a straight line the closest to the
goal. This can result, if the heuristic is admissible (it cannot overestimate the cost
of reaching the goal), in the optimal solution. The example of the straight line
heuristic is not admissible since it does not take into consideration the fact that
even if a cell is closer in a straight line there could be an obstacle in that cell’s
direction, greatly increasing the cost down the line.

D*

D* is a heuristic algorithm that was originally presented in [21] and has been
further modified and developed since then. The main difference between D* and
A* is that D* searches for the path starting from the goal and backtracking to the
start.

15

State of the art

2.5.2 Local Path Planning Algorithms
Dynamic Window Approach (DWA)

The Dynamic Window Approach [22] is a real-time planner that is used in local
path planners to calculate the best admissible velocity for a mobile base to reach a
goal. First, it generated a set of valid velocities in the state space and then selects
the optimal velocity from the set. The trajectory is chosen by using a look-ahead
function of the next iteration or dynamic window. This makes sure to allow for
safe movement taking into account the dynamics of the robot such as stopping in
case of obstacles.

Trajectory Rollout

Trajectory Rollout [23] is a predecessor of DWA. It does not take into account the
dynamic constraints of the robot such as maximum acceleration or velocities.

Elastic Band (EB) and Timed Elastic Band (TEB)

The online path planning method that was proposed in [24] works by generating a
complete path, called elastic band, at the start of the planning sequence. During
the movement, the encountered obstacles that had not initially been taken into
account during path planning generate artificial forces that deform the elastic band
in real-time. While deforming, the elastic band still attempts to follow the global
path. The forces used are repulsive external ones generated from the obstacles and
an internal contracting force that is a property of the elastic band. The external
forces are generated from the obstacles as stated above. The internal one keeps the
path tight and as short as possible while attempting to come back to the original
state, the global path. This approach has been subsequently been expanded into the
timed elastic band technique [25]. It modifies the previous method’s approach by
adding constraints related to the dynamic nature of the robot and obstacles to the
real-time calculation of the path. The dynamic constraints inform the external and
internal forces of the elastic band by taking into account the limited acceleration
and speed of the mobile base and the movement of obstacles. While the previous
method could only optimize for the shortest possible path, the objective function
of this new approach can be changed to find the fastest path or a mix of both by
weighting their contributions in the final path.

2.5.3 Obstacle Recognition, Tracking and Path Prediction
This step is an important part of the thesis project since the robot must be able to
work in an environment that can contain humans and other moving parts. Obstacles
can vary from simple items such as a moving cart to complicated ones like humans.

16

State of the art

Recognition is the simplest step as real-time and effective visual methods are
already available (for both LIDAR and RGB-D data).
Obstacle tracking and path prediction are relative to the robot’s ability to analyze
obstacle information and predict the obstacle movement direction or goal; this
is much more complicated than mere recognition since the path prediction may
change together with the type of object. Just taking into consideration humans as
obstacles, the velocity direction may change drastically from one moment to another
with no connection to current velocity and pose. The robot must be able to react,
dynamically changing its path plan and adapting it to the new conditions. Obstacle
path avoidance is the last step where the previously calculated path is changed to
reflect the current and future (predicted) real-world situations. Various techniques
exist to tackle this problem. In a highly controlled and predictable setting, like
a warehouse, the use of QR codes or other easy-to-read markers on both human
and non-human obstacles would be a safe and optimal solution since it removes
the guesswork and CPU-Load of Machine Learning and other probability-based
techniques. This reduces the plug-and-play capabilities of the software by requiring
prior environment preparation by placing markers on objects and obstacles, this
also may make some obstacles invisible to the robot in case the code is misplaced
or not placed at all. Objects should be both recognized and, if they are moving,
tracked to update the movement prediction that is being made online.

Methods for Recognition

Object recognition has been a rich field of study ever since the birth of Viola-Jones
Detectors [26] that use haar wavelets to look for facial features and Histogram of
oriented gradients (HOG) [27] that identify objects by looking at the distribution
of edge directions. Neural Networks (NN) have emerged as a natural fit for this
task and are widely used in industrial applications [28] together with traditional
image processing [29]. NNs have had a recent renaissance with the speed up of
computing and the use of GPU cores for image processing, they usually require a
GPU for real-time detection but are stable and can identify humans where other
more traditional methods (such as HOG) fail. In particular, CNNs are at a mature
stage of study and many models are being used for human recognition. Recently
for real-time human detection, speed up in algorithms together with hardware
improvements have made it possible to use these algorithms in an online fashion[30].
Other least computationally intensive classifiers can be used:

• Random Forest (RF)

• Histogram of oriented gradients (HOG)

• Haar Cascade

17

State of the art

The most popular is the Kalman Filter, as shown in [31] where a 2D LIDAR and
Kalman Filter is used to track legs and predict the position of the leg clusters.
HOG detector

2.5.4 Social Navigation

Social navigation is the study of the path planning and behaviour of a robot in a
social setting; it can include human behaviour prediction, such as reading social
cues. This aspect of navigation also includes the study of proxemics, a term coined
by anthropologist Edward T. Hall in 1963 [32]. It is the study of human behaviour
in space, social cues and interactions. Regarding this thesis, the most relevant
aspect of proxemics is the robot’s ability to respect a human’s personal space
and infer their movement by through detection and tracking. Hall divided human
interpersonal distances from closest to farthest :

• Intimate space

• Personal space

• Social space

• Public space

To respect these spaces path planning must take into account the difference between
a box and a human, one may be passed more closely while the other must be kept
farther away. A work presented [33] divides path planning for social navigation
into reactive and predictive planning.

• Reactive Planning Reactive planning takes into account, at all time steps,
every possible movement of the robot and removes any movement that may
cause a collision. This planning approach is the most conservative and safe
but it cannot take into account human behaviour or read social cues. It can
also incur into the Freezing Robot Problem [34], where the robot stops moving
since any course of action could lead to a collision.

• Predictive Planning Predictive planning models in some way human be-
haviour. By being able to understand human movement it can plan a path
optimally when near people and move in a "human-friendly" way. This of
course is a probabilistic approach and so can lead to a collision in some cases
when the movement prediction is wrong and the robot can’t stop in time to
avoid it.

18

State of the art

Obstacle Path Prediction

Path prediction can be subdivided into 3 major methods: Physics-Based, Pattern-
Based and Planning-Based [35].

• Physics-based Physics-based prediction methods use some dynamic equation
to predict human motion without taking into account human decision-making
and by simply modelling people as static linear velocity objects.

• Pattern-based
Using machine learning one can use data sets of human movement to infer
patterns of behaviour and, given a certain position, velocity and environment
predict the most probable path for a tracked human.

• Planning-based
Planning-based methods output hypothetical movement plans for tracked
humans and other moving objects using cost functions and other heuristics
either reward functions or statistical learning.

A linearization of previous tracking information to infer future paths is simple
but rudimentary and can lead to errors, especially if tracking humans; learning
human movement patterns with neural networks instead is effective but complex
and hardware intensive. Also datasets and annotation can be difficult for this kind
of pattern learning, since the amount of data to be learnt is much larger than, for
example, a simple color image for a classifier.

2.6 Manipulator motion planning algorithms
Motion planning for manipulators is a problem that nowadays seems challenging
to be solved without giving a remarkable computational effort. For this thesis
work, we analyzed different approaches, two of them are based on the state of
the art in terms of improving existing algorithms while the other is a framework
that implements many algorithms that are currently valid alternatives in terms of
reliability.

2.6.1 Memory-based Stochastic Trajectory Optimization
STOMP-M

The following algorithm is presented in [36] and is an improvement of an existing
algorithm name STOMP [37]. The main idea behind this modification is that we
can use precedent-computed trajectories to speed up the computation of the
new one. In particular, as explained previously, it stores information about the

19

State of the art

previously computed trajectory along with data about the presence of obstacles.
When a new goal position is provided, it matches the request with the previous
data to find if previously a similar path has been computed. Although we do
this, it is not guaranteed that this trajectory is better than the one obtained
with interpolation so, to ensure this, the result is then compared with the linear
interpolation, and the best between them is then selected.
However, the algorithm wholly avoids the matching phase if the current goal is far
from the ones present or the obstacles in the planning scene change. The algorithm
is the same as for E2STOMP, which is an improved version of STOMP. However,
it also includes a search in memory for previously computed trajectories at the
beginning and a comparison with the linear interpolation at the end.

2.6.2 Bidirectional Potential Guided RRT*
The approach presented in [38] is an upgrade of an existing algorithm already
used in many applications where the manipulator has to perform pick and place
tasks. The approach attempts to improve the performance of the standard RRT*
algorithm by supporting the computation with another algorithm named Artificial
Potential Field (APF). This algorithm is particularly useful when working
in a scene with many obstacles; it is based on describing the target pose as an
attractive force while the obstacles are represented as repulsive forces; in this way,
an artificial potential field is described. The target point is considered reached
when the repulsive forces are balanced with the attractive ones.
The APF algorithm, as cited in [38], presents two possible problems that can cause
falling in a local minimum where the algorithm is stuck or unable to reach the
destination:

• The target point is in a zone with many obstacles and the forces are balanced
before approaching the target point

• Obstacles are positioned so that there is a local minimum zone where the
algorithm is trapped and can not continue path planning

The trajectory computation is still carried out almost entirely by APF, while RRT*
is invoked only when there is the risk of falling in one of the two cases above. In this
manner, searching for a possible trajectory is faster and more robust guaranteeing
a faster convergence with respect to standard RRT

20

State of the art

2.7 Item detection

Object detection is one of the hardest tasks to accomplish with a low level of
uncertainty and high reliability. During this thesis work, we analyze the possibility
of implementing an "online" recognition based on deep-learning techniques and
an "offline" one which relies on the presence of markers attached to the item of
interest.

2.7.1 Item recognition via Convolutional Neural Network

Going in deep into the analysis of the possible deep-learning methods, an interesting
approach is presented in [39] where the objective is to classify a series of retail
items that, as in our case, are stored on shelves.
It explains that the most common problem for identifying an object is that the
images are taken each time with different ambient conditions so that is difficult to
forecast the actual result of the identification. To overcome this problem the images
are classified according to their blurriness level. Then, the author, explains that a
VGG16 neural network is implemented, which is a CNN with 16 different layers.
Each time a layer analyzes a smaller subset of the total image until it reaches the
identification of the object. This gave fundamental results in terms of the reliability
of this system. In our specific case, the main disadvantage of implementing this
solution is that the robot cannot perform such a high computational effort and
the recognition must be done faster. For this reason, we present the alternative
method using markers to recognize the object.

2.7.2 Item recognition via a set of markers

In this case, image recognition is performed by characterizing each object that has
to be grasped with markers. Actually, on the market, there are different types of
markers such as AprilTag, ARTag, and QR code. In our analysis, we decided to
consider the introduction of ARTags. Examples of markers are shown in Figure
2.4. An essential aspect of our thesis work’s objective is identifying an object that
has to be grasped. For what concerns this aspect we decided to analyze the role
that the ARTags [40] have in this field since they are widely employed to accomplish
this task and they are not so heavy to employ from the computational point of
view. An ARTag is a fiducial marker system to support augmented reality and it
works through a series of "images" like the one presented in Figure 2.5.

21

State of the art

Figure 2.4: Example of the current available fiducial marker systems [41]

Figure 2.5: An example of an ARTag implemented in our system

It has the advantage of providing some information such as an id. In particular,
they can be generated so that each is associated with a unique id that can be
useful to identify an item in our specific case. Moreover, they work with the depth
camera, so their position and orientation can be easily tracked over time. As well
presented in [40] they are a bi-tonal system comprising a total of 2002 possible
unique planar markers. The first 1001 consists of markers with a black square
border and a grid of 6x6 white cells; the other 1001 are the opposite in terms of
colours. The algorithm works in such a way that it locates the entire ARTag in the
scene then analyzes the interior and samples the black and white square with a
series of ’1’ and ’0’. The risk of a false positive in identifying a marker or confusing
the markers between each other is quantified to be approximately < 0.0039% as
stated in [40].
The main drawback behind this approach is that it relies on the fact that each
item is associated uniquely with an item. Since the subset of possible markers is
finite, the objects can not be more than a certain number so the types of items to

22

State of the art

be stored must be known a-priori. The main advantage is that, given the structure
of the robot, it is capable of being adapted to different scenarios without being
aware of the object to be grasped but recognizing it by its marker.

2.8 Grasping techniques
The challenge related to the grasping problem is identifying the optimal grasping
position in an object with possibly irregular shape and/or density. For this reason,
many papers suggest using a convolutional neural network to identify the object
and then select the grasping target. An example of this is presented in [42] where
the authors suggest employing a CNN (convolution neural network) to detect the
item (as presented in the "object detection" section) and then estimate its pose in
the space. This is made to determine the best point to approach the object to be
grasped.
Considering our specific application, the hardware composition of the manipulator
forced us not to consider this as a problem that can be handled since the gripper
lacks any kind of force feedback sensor that would have helped in developing some
grasping algorithm; for this reason, this problem, cannot be addressed in this thesis
work.

23

Chapter 3

ROS state of the art

Because of the advantages previously presented, Trossen Robotics, the producer
of our robotic platform, decided to choose ROS (Robot Operating System) as
middleware software. ROS is the state of the art regarding flexibility, reliability,
and adjustability for the open-source solutions available on the market. Considering
specifically our tasks, as a working environment for grasping and manipulating, we
choose MoveIt, which is widely supported and has a lot of potential for development.
In particular, ROS is intended to have a modular structure where we can add or
remove functionalities without corrupting the whole system. Each function, such
as obstacle avoidance, could be included by compiling its ROS package and tuning
the specific parameters in a configuration file. The mobile base instead uses as the
core of its navigation stack the one reported in [43], the standard package for ROS
navigation. Other ROS packages will be leveraged to achieve the correct obstacle
avoidance and manipulation goal.

3.1 MoveIt planning framework

Along with ROS, we implemented a planning framework with the objective of
taking care of controlling the manipulation part of the tasks. In particular, MoveIt
[44] provides two interfaces to deal with the two main aspects of manipulation:
the move_group interface and the planning_scene interface. The first one,
as shown in Figure 3.1, performs direct and inverse kinematic, collision checking
between the obstacles and the manipulator, planning and executing the trajectories
while reading and interpreting the measurements of the robot’s sensors.

24

ROS state of the art

Figure 3.1: Structure of the move_group interface which governs the planning
request for the manipulator as described by MoveIt website [45]

Figure 3.2: Structure of the planning scene monitor, which controls the update
of the planning scene and the obstacles present in the environment as described by
MoveIt website [45]

25

ROS state of the art

The main point of using move_group to manage the manipulation is that it can
invoke the motion planning algorithm and, based on the planning scene and
on the instructions provided by the user, it can compute, plan and execute a path
following the limitations given by the constraints. These provisions could regard
the following aspects of the manipulator’s motion:

• Obstacles along the path

• Waypoints to go through when moving the arm

• Tolerance constraints for both the path and the goal position

• Limitations about joint angles, velocities, accelerations, and effort

The planning scene, instead, is supervised by the planning scene monitor, as we
can see in Figure 3.2. It has the task of managing the objects in the scene and the
robot itself. The purpose of using such a tool is to allow to add the objects to be
grasped in the planning space so that the robot is aware of their presence and not
they are not considered obstacles. The objects can be added to the scene by coding
or reading sensor measurements, depending on how the software is programmed.
Considering the last case, an example of a tool that takes a sensor reading and
provides an occupancy grid in the planning scene is Octomap. Once the whole
system is implemented, the goal is to update the scene via the planning scene
monitor with the new information provided by the sensors for reaching correctly the
goal position that the user gave via the move_group interface. Along with MoveIt,
it is possible to invoke RViz so that we can plan arbitrary poses for the manipulator
or for the mobile base and have a look at what the sensors are measuring.

3.2 What is a motion planning algorithm

A motion planning algorithm is, in general, a computational solution to a problem
that consists in finding a way to connect two points through a series of valid
configurations that the robot can assume. In this sense, the algorithm must
consider different aspects and constraints so that the input request, an ideal goal
pose, is transformed, starting from a consistent start pose, in a series of valid
configurations assumed by the manipulator. In Figure 3.3, we report an example
of what a motion planner aims to do to find a feasible trajectory.

26

ROS state of the art

Figure 3.3: In this figure, we can represent an invalid path (left) and a valid path
(right). The grey space represents the obstacles on the map, while the white area
is the free space. [46]

It is demonstrated that the problem of finding a suitable path is of type PSPACE-
complete, so it is difficult to find a mathematical formulation that can be considered
valid for every situation. In this sense, most algorithms can find a solution, if it
exists but cannot prove the non-existence of a valid path for accomplishing the
task. Previously, we analyzed two innovative motion planning algorithms that are
currently the state of the art. Since we presented ROS and MoveIt as possible
solutions, we will discuss the motion planning algorithms that MoveIt exploits to
solve the planning problem.

3.3 Motion planning algorithms for mobile ma-
nipulators

Motion planning algorithms are fundamental when considering a robot that works
in a dynamic environment where avoiding obstacles is essential to prevent harming
humans and damaging objects. In this sense, MoveIt provides a series of manipu-
lation algorithms. According to the MoveIt website [44],[45] the motion planners
available are the following:

• Covariant Hamiltonian Optimization for Motion Planning (CHOMP)

• Stochastic Trajectory Optimization for Motion Planning (STOMP)

• Open Motion Planning Library (OMPL)

• Pilz Industrial Motion Planner

• Search-Based Planning Library (SBPL)

27

ROS state of the art

In our work thesis, we decide to analyze the first three solutions because two
are already tested and fully operative in MoveIt (OMPL and CHOMP) while
the last one, STOMP, presents an approach that can guarantee surprisingly good
performances.

3.3.1 CHOMP description

CHOMP planner [47] implements gradient-based trajectory optimization proce-
dures. This algorithm is structured such that it can generate and optimize the
trajectory reacting to the surrounding environment by quickly changing its path
while maintaining control of the joint velocities and accelerations. In particular,
the objective of the algorithm is to compute, as said previously, a trajectory be-
tween two predefined points that are qinit and qgoal; this computation is made by
discretizing the trajectory in a set of n waypoints q1, ..., qn and evaluating, at each
waypoint, the dynamical quantities such as velocity and acceleration. Furthermore,
the optimization is made by evaluating a cost function, as said in [48], that is
formed in the following way:

U(ξ) = fprior(ξ) + fobs(ξ) (3.1)

where fprior measures the cost of dynamical quantities, and it is assumed to be
independent of the environment; fobs instead quantifies the cost of being near to an
obstacle with the trajectory. The technique proposed in [48] aims to improve the
trajectory at each iteration of the algorithm by minimizing a local approximation
of (3.1) given in the following form:

U(ξ) ≈ U(ξk) + gT
k (ξ − ξk) (3.2)

where gT
k = ∇(ξk). By exploiting this approximation, the update can be written in

the following formal form:

ξk+1 = arg min{U(ξk) + gT
k (ξ − ξk) + λ

2 ||ξ − ξk||2M} (3.3)

CHOMP is said to be a method based on covariant because, as we can see from
(3.3), the update depends only on the trajectory itself and not on the representation
used (waypoint based in our case). Thanks to this formulation of the problem as a
covariant optimization, we can optimize directly in the space of trajectories.

28

ROS state of the art

3.3.2 STOMP description

STOMP planner [49] is an optimization-based motion planner based on the PI2

(Policy Improvement with Path Integrals) algorithm. Its characteristic is that it
can produce smooth paths for the manipulator to avoid colliding with obstacles.
Moreover, it can optimize arbitrary cost functions that take into account, for
example, the motor efforts. The approach relies on the fact that, at each iteration,
noisy trajectories are generated; after that, the cost of each trajectory is evaluated
through a suitable cost function and then the candidate path is updated according
to the results obtained.
In the case of STOMP, the goal of the algorithm is, as for the previously cited
procedures, to find a smooth trajectory that minimizes the cost function associated
with collisions and other constraints. As for CHOMP, also, in this case, we define
an initial point, a goal point, and a series of waypoints equally distanced in time T.
For the solution to the problem, we have to assume that the initial point and the
goal point are fixed during optimization. The objective is to solve the following
optimization problem [37]:

min
θ̃

E
C

NØ
i=1

q(θ̃i) + 1
2 θ̃T Rθ̃

D
(3.4)

where:

θ̃ = N (θ, Σ) (3.5)

θ̃ expresses a noisy parameter vector with mean value θ and variance Σ, R expresses
the control cost and q(θ̃i) is an arbitrary state-dependent cost function. The main
objective behind this approach is that the algorithm allows us to use an arbitrary
cost function q(θ̃i) that could be not derivable, non-differentiable, or non-smooth.
The algorithm can be iteratively solved, and it needs some precomputed values
such as the matrix A, the matrix R, and the matrix M. First, we can define A
such that when multiplied by the position vector produces accelerations, as can be
seen in Figure 3.4. If we want to have a glance at how the algorithm works and
how the other two matrices are related to A, we can have a look at Figure 3.5:

29

ROS state of the art

Figure 3.4: How matrix A is defined

Figure 3.5: The STOMP pseudo-code [37] solved iteratively

30

ROS state of the art

3.3.3 OMPL description

OMPL library [50] is a collection of sample-based motion planning algorithms.
It is based on the assumption that to find a feasible solution, we do not have to
look for all the possible configurations but we can define a set of uniform random
samples that can be linked until we find a collision-free path that can connect our
start position effectively with our goal position. A more accurate and convenient
solution can be found if we enlarge the set of random configurations analyzed.
The necessity to adopt this approach is to give a solution in a reasonable amount
of time. In the library, we can choose between many algorithms such as PRM
(Probabilistic Roadmap Method), RRT (Rapidly-exploring Random Trees), SPARS
(SPArse Roadmap Spanner algorithm), EST (Expansive Space Trees), KPIECE
(Kinematic Planning by Interior-Exterior Cell Exploration), STRIDE (Search
Tree with Resolution Independent Density Estimation), PDST (Path-Directed
Subdivision Trees), FMT (Fast Marching Tree algorithm), BFMT (Bidirectional
Fast Marching Tree algorithm) and QRRT (Quotient-Space RRT), and others.
An important distinction can be made to distinguish the most suitable for our
application:

• Geometric planner: this class of planners only contemplates geometric or
kinematic constraints. It is based on the assumption that if a trajectory is
feasible then it can be transformed into a dynamically feasible path.

• Control-based planners: this category, instead, also takes care of differential
constraints. They implement state propagation instead of interpolation to
generate a feasible path.

: Here, in Figure 3.6, we can have a look at the structure and the calls that can be
made to the algorithm:

31

ROS state of the art

Figure 3.6: An overview of the OMPL structure [51] with the calls and the
functions characterizing the algorithms.

Regardless of the algorithm chosen for motion planning, OMPL provides a common
structure that interfaces with the motion planning algorithm. The core of the
library is composed of the following structures:

• Definition of the state space: it is the representation of the search spaces,
in the more generic possible way. This approach is intended to be applied to
many different applications so that the motion planning algorithms can be
applied at each state space defined.

• State validation and integration: their duty is to check if a state is valid
or not. In particular, it checks if a path does not collide with any obstacles or,
in general, respects the predefined constraints. After that, if two states are
considered valid, it analyzes if their interpolation is still valid.

• Samplers: they perform the sampling functionality. OMPL includes four

32

ROS state of the art

types of samplers: state space samplers, valid state samplers, control samplers,
and direct control samplers. As stated in [51], selecting a suitable sampler
can significantly influence the computational time required by the planning
algorithm.

• Goal representation: this analyzes the request for a given state and decides
if it is a valid goal state or not. It offers an indication of how to reach the goal
region. This is important because it addresses the search for the goal.

• Planning algorithms: those are the algorithms cited before that can be
purely geometric or control-aware.

3.4 Obstacle detection and avoidance

3.4.1 Octomap as obstacle detection
The obstacle detection task is trivial to be solved since we need a not-so-heavy
solution, from the computational point of view, that can be easily included in
MoveIt. Moreover, the solution selected must accurately describe the obstacles
present in the scene using the depth camera and the lidar sensor. In our case, we
decide to implement Octomap [52]. It is fully compatible with MoveIt and has
some important characteristics for our application: it is compact and updatable.
The entire system relies on constructing a 3D occupancy grid map that has the
following characteristics:

• The map is capable of modelling the environment without prior information.
In case we are dealing with a robot with a static camera frame, as in our case,
the occupancy grid will be constructed according to the field of view of the
camera. Each time the framing changes the map will be reconstructed.

• It is possible to update the map every time is needed and, eventually, to delete
it. This is particularly important if we think this tool can be implemented
when considering multiple robots moving in the same environment.

• As said previously, when considering this application, the size of the map is
not important to be known in advance because in case it is needed, it can be
dynamically expanded.

• When storing the information on the map, it is not required to have much
space in the disk because it will be stored efficiently.

An example of how Octomap can efficiently model the obstacles is presented
in Figure 3.7. We can emphasize that the smaller the cube for describing the

33

ROS state of the art

object more precise the representation will be. As described in the tool’s official
documentation, the cube’s size, such as other parameters, can be tuned to satisfy
our needs.

Figure 3.7: An example of the obstacles sampling made by Octomap (right) of
the environment (left)

3.5 Mobile Base Navigation

3.5.1 Navigation Stack
The ROS architecture uses the Navigation [43] package for the robot movement.
The inputs are external sensors and odometry from the robot and the outputs
are goal poses translated to velocity commands to move the robot. Odometry is
information that comes from sensors that can calculate a change in position relative
to a known position. Other typical sensors are LIDARs and RGB-D sensors. To
use the navigation stack the robot must, of course, have ROS installed and have
nodes that publish sensor data in the correct message format for ROS to read.
There must also be a description of the robot available to be able to calculate the
transforms for the joints of the robot.

3.5.2 Transform tree
The transform tree is a description of the robot at a geometric level. The rotation
and translations between every frame that makes up the robot. Every frame has
a transform relationship with at least one other frame, this way a tree is built,
from which the entire robot can be described. For example, starting from the laser
frame one can find the pose of the wheel frame. The package in charge of handling
the transform tree is called tf [53], it maintains the correspondence between the
coordinate frames contained in the transform tree.

34

ROS state of the art

3.5.3 Costmap 2D Package
The Costmap 2D package [54] uses sensor data and the tf package to build a map
of the world surrounding the robot. The map is based on a 2D or 3D occupancy
grid: a grid of cells that contain occupancy information in the form of integers. A
value less or equal to one represents free space while a value of 254 is an obstacle
that represents a certain collision. As the title of the package shows, occupancy
is a cost that needs to be taken into account while planning the movement of the
robot around the space.

Figure 3.8: Overview of the cell value related to occupancy cost [54]

When an obstacle is found by reading sensor information it inflates the cost
around it by a certain inflation radius, this variable is usually user defined.

This package makes use of layers. These are separate occupancy grid maps,
divided by functionality, that work in an additive manner. While layer types can
be further customized by writing custom plugins the predefined layer types are:

• Static Map Layer : The static map layer contains information on static
obstacles that are, usually, permanent. Obstacles that can belong to this
category are, for example, walls, shelves and other heavy furnishings. This
is usually information that is already known before even moving the robot.

35

ROS state of the art

Maps built with SLAM are usually loaded into this layer.

• Obstacle Map Layer : The obstacle map layer carries sensor information
about the current obstacles in the environment. Any obstacle that is not
included in the static map layer is shown here.

• Inflation Layer : The inflation layer does not contain real-world information
but is used as an optimization layer. It inflates the cost around lethal obstacles.
This radius is usually the same or similar to the radius of the mobile base. This
way the resulting costmap can more accurately represent the free configuration
space.

3.5.4 Move Base Package
The move_base package [55] as part of the navigation package[56] . The navigation
package is a 2D navigation stack that receives sensor and odometry data and sensor
transforms to handle the navigation packages such as the planner packages, both
global and local, build the global and local costmaps and send Twist messages to
the mobile base for movement. The move_base package is tasked with handling
the goal-reaching action of the navigation stack. Given a goal and all sensor
information and obstacle information it will try to reach the goal location.

Figure 3.9: High level move_base package overview from [55]

As shown in Figure 3.9 the package takes information from the map publisher,
the sensor streams and the transform tree to build a local and global costmap. The
global map contains a-priori information about obstacles inside all of the mapped

36

ROS state of the art

space. The local costmap usually has a much lower size than the global map,
limited by the range of the sensors on the robot. The global and local planner use
their respective maps to plan the robot’s trajectory. While the former uses only
information from the global costmap and the received goal, the latter uses both
the plan generated by the global planner and the obstacle information from the
local costmap. The resulting trajectory is then translated to velocity commands
for the robot base.

The base package comes with a global and local path planner preinstalled, but
these can be changed at any time with custom plugins and modified easily through
the use of configuration files.

Global and Local Planner Plugins

Path planners are implemented as plugins for the move_base package [55], by
modifying its configuration files. Both the global and local planners are further
modified according to the plugins used. We leveraged this flexibility in our human
path avoidance method, by adding costmap layers to these planners.

37

Chapter 4

Hardware description of the
Locobot WX250

The robot selected for our thesis work is the Locobot WX250 produced by Trossen
Robotics [57]; here in Figure 4.1, we can see an image of the mobile platform taken
from their website:

Figure 4.1: Mobile manipulator Locobot WX250-6DOF. Front view (left), lateral
view (right)

We can identify three subsystems composing the robot itself that we will analyze
in deep in the following sections: the sensors, the manipulator, and the mobile
base. For evaluating the sensors measurements, the robot comes with a NUC
computer, shown in Figure 4.2, with the following characteristics: 8th Gen Intel
Dual-Core i3, 8GB DDR4 Ram, 240GB Solid State Drive (SSD), Intel Iris Plus
Graphics 655, Wifi, Bluetooth 5.0, Gigabit Ethernet, USB, Thunderbolt 3, Ubuntu
20.04. The entire system has two batteries: one for the Kobuki base and another
of 50000 mAh responsible for powering up the computer, the sensors, and the
manipulator’s motors.

38

Hardware description of the Locobot WX250

Figure 4.2: Intel NUC NUC8i3BEH Mini PC

4.1 Robot hardware description

4.1.1 Mobile base

The mobile base is a Kobuki base that has two driving wheels so that the rover
can steer thanks to the fact that each wheel is independent. In front, instead, we
have a freewheel. The base is capable of sensing if we are near a cliff or, thanks to
the active bumper, to sense if we are slamming into an obstacle. In Figure 4.3,
we can see an image of the Kobuki base [57]:

Figure 4.3: Kobuki YMR-K01-W1, mobile platform used for navigation

4.1.2 6 DOF Manipulator

The manipulator is the second subsystem composing the entire robot. It is controlled
thanks to the DYNAMIXEL X Series servos, and it is an anthropomorphic
arm with six degrees of freedom. It has a spherical wrist, so it is capable of reaching
numerous poses in space. In Figure 4.4, we report an image of the arm and the
main technical characteristics in Table 4.1.

39

Hardware description of the Locobot WX250

Figure 4.4: WidowX 250 Robot Arm used for manipulation

Degrees of freedom 6
Reach 680 mm
Span 1360 mm

Working payload 250 g
Repeatability 1 mm

Table 4.1: Arm main characteristics

Product of exponentials method

If we want to have a look at the direct and the inverse kinematics of the manipulator,
we have first to introduce the product of exponential method (POE). As can be
seen from the official vendor website [57] of the manipulator, the transformation
between the base frame and the end-effector frame can be described by two matrices
and the vector imposing the joint angles. The method is well presented in [58] with
a particular emphasis on the fact that it could be an alternative to the Denavit-
Hartenberg convention. This technique utilizes a first matrix M, which describes
the initial position of the manipulator defined as "zero configuration":

M =

1 0 0 0.452575
0 1 0 0
0 0 1 0.36025
0 0 0 1

Then, we can define a second matrix S, which gives us the contribution of the ith

joint angle to the linear and angular motion of the end-effector frame. For each
joint of the kinematic chain, we can define q as the vector of the position of the

40

Hardware description of the Locobot WX250

joint and the vector ω as the axis of rotation of the joint with respect to the base
frame. Analyzing the theory we can write that:

Si =
A

−ωi × qi
ωi

B

where:

• vi = −ωi × qi expresses the linear motion

• ωi expresses the angular motion

So, for each joint ith, we can derive its contribution to the end-effector in terms of
linear and angular motion. Below we report the computations in order to obtain
the S matrix which expresses the contribution of each joint to the final pose of the
gripper.

Si =

0 −0.11025 −0.36025 0 −0.36025 0
0 0 0 0.36025 0 0.36023
0 0 0.05 0 0.3 0
0 0 0 1 0 1
0 1 1 0 1 0
1 0 0 0 0 0

In the following Table 4.2, we can resume the computation made in order to obtain
the proposed S matrix.

Jointn qi ωi −ωi × qi

Joint1 (0,0,0)T (0,0,1)T (0,0,0)T

Joint2 (0,0,0.11025)T (0,1,0)T (−0.11025,0,0)T

Joint3 (0.05,0,0.36025)T (0,1,0)T (−0.36025,0,0.05)T

Joint4 (0.22155,0,0.36025)T (1,0,0)T (0,0.36025,0)T

Joint5 (0.3,0,0.36025)T (0,1,0)T (−0.36025,0,0.3)T

Joint6 (0.365,0,0.36025)T (1,0,0)T (0,0.36025,0)T

Table 4.2: Table of exponential parameters

Once having computed that, for a certain configuration of the joints, we can
compute the matrix from the base frame to the end-effector frame as:

T (θ) = e[S1]θ1 · · · e[S6]θ6M (4.1)

41

Hardware description of the Locobot WX250

e[Si]θi will be composed of a rotational and a translational part. The rotational
part will be derived as follows:

R = I + ωm sin(θ) + ω2
m(1 − cos(θ)) (4.2)

where:

ωm =

 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

Instead, the translational part will be derived as follows:

t = (I − R)(ω × v) + ωωT vθ (4.3)

Finally, we obtain that:

e[Si]θi =
C
R t
0 1

D

What is the purpose and the advantage of this representation with respect to
the classical Denavit-Hartenberg convention? As stated in [59], generally, for a
calculator, is simpler from the computational point of view to use this method
because the inverse kinematic, as proved in the cited paper, will not involve the
computation of the Jacobian but will exploit an iterative algorithm.

4.1.3 Gripper description
The mobile manipulator comes with a gripper composed of two parts that can
span from an open configuration with 4 cm of space between the fingers to a
configuration where they are closed. From experience matured analyzing multiple
medicines boxes, we comprehend that the average width of a package is about 6.5
cm. For this reason, and thanks to the fact that the end-effector can be easily
substituted, we produced a model of the gripper that we will implement. It is about
4 cm larger when open so that the gripper can grasp a greater number of types of
items without being too precise in positioning. In Figure 4.5 and Figure 4.6, we
can have a look at the new end-effector and the measures used for construction,
respectively.

42

Hardware description of the Locobot WX250

Figure 4.5: New gripper designed to substitute the original one

Figure 4.6: Lateral view (top) and top view (bottom) of the finger with some
relevant measurements

The gripper once drawn is then printed using a 3D printer. The fingers produced

43

Hardware description of the Locobot WX250

are made in PLA plastic which has good properties in durability and flexibility.
The measures of the new gripper in millimetres are reported in Figure 4.6.

4.2 Robot sensors

The sensors available on the Locobot are :

• Wheel Encoder

• RPLidar A2M8 (360° 2D Lidar)

• Intel RealSense D435 (Stereo RGB-D)

The RPLIDAR A2M8 is a 360° 2D Lidar and stands on top of the LocoBot at
62.28 cm. The main advantage of a 2D Lidar over normal cameras is their wide
horizontal FoV, longer depth measurement range and measurement consistency.
Their main drawback is the lack of vertical resolution, meaning that sensing only
happens on the plane orthogonal to the laser direction. This means that obstacles
that are lower or higher than the 2D Lidar height cannot be detected, in an office-
like environment this can be anything from chairs to boxes to sensitive equipment
such as computer towers. While effective in gathering direct, high-resolution range
information, the Lidar sensor available is not sufficient to ensure a correct and
safe exploration of the target space. The Intel RealSense D435 is an RGB-D
sensor mounted with tilt and pan capabilities. It consists of an RGB module
for image capture and a stereoscopic system (Intel RealSense Module D430) for
depth perception. RGB sensors are widely used in robotics and the added Depth
information only increases their usefulness. The colour information taken from
the camera is one of the most important differences from LiDAR and is exploited
in many tasks such as segmentation or object detection. They also tend to be
cheaper than LiDAR sensors; however, the FoV of cameras is typically limited on
the horizontal axis as is the depth detection range. The vertical axis instead is
larger than the A2M8 and gives full 3D depth perception up to 6m, but with an
error rate larger than 2% after the 2m range.

Figure 4.7: Intel® RealSense™ Depth Camera D435

44

Hardware description of the Locobot WX250

Figure 4.8: RPLIDAR A2M8 360° Laser Range Scanner

45

Chapter 5

Description of the robot’s
communication structure

5.1 Communication structure
In our intentions, the robot’s software architecture has to maintain a modular
structure so that the debugging operations will be simpler for whoever wants to
update or enrich the application’s functionalities. Moreover, we thought that each
subsystem should have its own controller so that the robot would work even with a
subsystem failure.
The structure is composed of three nodes, as can be seen in Figure 5.1:

• Base controller: it is responsible for exchanging information with the com-
munication manager about the working status of the hardware or the goal
position’s planning success or failure.

• Arm controller: it is accountable for planning the motion of the servos to
reach the desired pose. It also controls the opening or closure of the gripper
by publishing to a specific topic. As for the base controller, the arm controller
will also communicate the hardware working status to the communication
manager.

• Communication node: its task is to manage the ARTag present in the scene
and the communication with base and arm. In particular, the node reads
the IDs of the ARTags present in the scene and compares them with the ID
request. When there is a match between a requested id and a marker present
in the environment it will send the commands to start the pick/place routine.
Along with these operations, it has a failure-handling mechanism.

46

Description of the robot’s communication structure

In Figure 5.1, we present the core structure governing the mobile manipulator’s
behaviour.

Figure 5.1: Structure of the software implemented for performing the task

Now we will deeply analyze how the communication node deals with an id
request, how it searches for an id not present in the scene, and how it manages
the pick and place phases. Essentially the goal of the communication node is
to deal with a request for an id and manage the operations of the mobile base
and the arm. This is achieved through the status topics and sending a pose goal
to each component. For safety reasons, we decided to deal with each component
individually, so the arm can run only if the base is idle and vice-versa.

5.2 Item request handling
The first thing that has to be done when receiving a request for an id is to
search if it is present in the robot’s field of view. The software will listen to
the ar_pose_marker topics which contain details such as pose and orientation
characterizing each marker. To ensure that the arm and the mobile base have a
correct reading at each time instant without having to perform any transformation
online we set up two different ar_track_alvar nodes so that ones computes the
positions for the mobile base (so with respect to "map" frame) and another one
that estimates the position with respect to "locobot/base_footprint" which is the
planning frame of MoveIt.
The id request is handled following the pseudocode presented in Algorithm 1:

47

Description of the robot’s communication structure

Algorithm 1 Algorithm for handling id requests through a callback
Require: BASE_IDLE
Require: ARM_IDLE

if ARTag FOUND then ▷ Request correct, start picking
Send goal to the mobile base

else if ARTag NOT_FOUND then
Enter in search mode ▷ Search phase explained in the following section

else
return ▷ Request malformed, return error

end if

5.3 Search phase
If an item is not found among all the available in the scene the robot enters a
function that performs a series of predefined actions presented in the following
Algorithm 2. The function has some parameters that can be tuned according to the
application’s necessities: we can tune the spots to be investigated and the degrees
of rotation that the mobile base performs at each iteration.

Algorithm 2 Algorithm implemented for the search function of the robot
Require: BASE_IDLE
Require: ARM_IDLE

while ARTag NOT_FOUND do
if retry ≤ 2 then ▷ If reached maximum retry exit with error state

while Rotation ≤ 360 degrees do
Rotate base about 30 degrees ▷ Rotate about 30 degrees on itself
if ARTag FOUND then

return FOUND
end if
Move base to another spot ▷ Decided previously by the user

end while
else

return NOT_FOUND
end if

end while

The algorithm presented above tries to explore the surrounding environment moving
the base first with a rotation and then searching in another spot. For each spot, a
complete rotation of 360 degrees is made to ensure that the environment is being
explored. In Figure 5.2 we can have a look at how the search phase is performed:

48

Description of the robot’s communication structure

Figure 5.2: How the algorithm of search works

If, for example, a request marker is found during any moving action, the software
will break the search function to enter the picking phase.

5.4 Fail handling
The communication manager is also accountable for managing situations in which
the arm or the mobile base fails. In particular, each component is expected to enter
a repositioning phase that changes depending on who failed. This failure handling
is based on assumptions: the robot base or arm hardware can not fail, and the
robot does not get stuck with obstacles. Having said that, we managed only the
fails related to the software part or, more in general, the ones related to failed
planning for both the base and the manipulator. For this reason, the mobile base
and the manipulator will check, before executing any movement, the feasibility of
the planned path.

5.4.1 Arm fail
To deal with an arm failure that can be caused, for example, by incorrect positioning
we exploit the mobile base as another degree of freedom so that the arm can be

49

Description of the robot’s communication structure

repositioned. If the arm fails, we decide to reposition the base so that the behaviour
is similar to the one described in the search phase. The following pseudocode
(Algorithm 3) describes the working principle implemented in the code:

Algorithm 3 Arm fail handling in the communication manager
Require: BASE_IDLE
Require: ARM_FAIL

if PICK then
if retry ≤ 2 then ▷ If reached maximum retry exit

Reposition base
Compute then new ARTag pose
Send goal to arm

else
Repositioning failed

end if
else if PLACE then

if retry ≤ 2 then ▷ If reached maximum retry exit
Reposition base
Send goal to arm ▷ Do not need ARTag for place

else
Repositioning failed

end if
end if

The arm will enter fail mode so the communication manager can handle the
repositioning request. The request is composed of different phases. In the first
phase, the arm controller node will send to the communication manager the status
FAIL to communicate that probably the position assumed by the base is wrong so
it requires a repositioning. This phase consists in:

• Return to the HOME position

• Restart a search phase to re-estimate the correct marker position

This procedure can be done a maximum of two times before considering the item
unreachable and returning home ready to take another command. An example of
an arm fail-handling procedure is presented in Figure 5.3.

50

Description of the robot’s communication structure

Figure 5.3: How the mobile base is intended to reposition returning from the
incorrect pose to home and then repositioning in front of the correct shelf.

5.4.2 Base fail

Goals sent to the mobile base are already confirmed as valid using the exposed API
on the navigation stack of the global path planner. These functions let us check the
validity of a goal by generating a plan without executing it. When an id request is
matched to a visible ARTag in the scene the communication node calculates a goal
pose in front of it. It then checks with the aforementioned API if the given goal
is feasible or not. If not, then the communication manager node tries to increase
the distance of the goal pose from the ARTag until a correct plan is generated, it
attempts this step no more than twice before giving up on the given goal. This is
done following the intuition that, due to sensor noise and map uncertainty, a found
ARTag pose might not match the real position or it might be slightly inside the
shelf.

51

Description of the robot’s communication structure

5.5 Pick and place routines
The pick-and-place routine is constructed considering the interaction between the
mobile base and the arm that can interface through the communication node.
Figure 5.4 shows the main steps performed by the software to pick and place an
object.

Figure 5.4: Actions performed for pick and place of an object

In all the intermediate steps, the system that has to run next waits until the
previous one has finished; this is achieved by implementing the status topic where
the subsystem can communicate whether they are running, failing, or succeeding.
The movement of each subsystem could be divided into two sub-movements, one
needed to move up to a certain distance from the target and one in which the
component effectively reaches the goal pose. The reasoning behind doing this is
to correct the pose estimation of the marker as we move toward it. The different
phases will be further explained in the following chapters regarding the software
architecture of the manipulator and the base.

52

Chapter 6

Software architecture of the
manipulator

6.1 Communication structure
Now we can go in deep to analyze the role of the arm controller. It is constructed
such that the node exchanges some information with the communication node. The
topics used are the following: arm_status, pick_or_place, grasp_pose_goal,
and pre_grasp_pose_goal. A general view of the communication structure is
sketched in Figure 6.1.

Figure 6.1: Manipulator node communication structure

53

Software architecture of the manipulator

6.1.1 Description of the arm_status topic
The first topic that we will analyze is the arm_status topic. It is capable of
communicating four status that characterizes the working flow of the arm:

• ARM FAIL: it is implemented to allow the replanning of the mobile base if
the pick or place actions fail.

• ARM SUCCESS: this status is the one sent at the end of a pick/place
action that is performed successfully. After 5 seconds the status is changed
back to ARM IDLE.

• ARM IDLE: this is a necessary step to make the communication node aware
that the arm completed its motion. Without this status published the base
cannot move.

• ARM RUNNING: this message is exchanged only to make the user aware
that the arm_controller is running.

6.1.2 Description of the pose goal topics
These topics, grasp_pose_goal and pre_grasp_pose_goal, are constructed
only to exchange the two pose goals, that the arm will exploit to perform its motion.
The messages sent and received are of type geometry_msgs/PoseStamped,
so they store information such as position, orientation, and frame of reference for
which those values are computed.

6.1.3 Description of the pick_or_place topic
The routine of movements to be performed changes depending if we are dealing
with picking or placing. We construct the following topic to make the arm aware
of the sequence of action to be executed. As we know, the options are PICK or
PLACE.
According to this subdivision, we split the routine into two parts depending on what
has to be performed, as can be seen in Figure 6.2. The main difference between
these two phases regards the update of the planning scene and the presence or not
of some intermediate poses to approach the target position.
Once the arm controller has received the goal pose and the action to be achieved,
the routine starts and performs the desired moves taking into account the planning
scene. Here we report the main steps that the manipulator performs in each
situation:

54

Software architecture of the manipulator

Figure 6.2: Flowchart for understanding in which order the actions are performed.

55

Software architecture of the manipulator

Pick routine

As reported in Figure 6.2, the picking routine is the one that has the highest
number of actions to be performed. The steps that take place, from the motion
planning point of view, are:

1. Perform the motion to go in the pre-grasp pose as can be seen in Figure 6.3
and Figure 6.4.

2. Give the command to Open the gripper.

3. Move in the grasp pose as depicted in Figure 6.5 and Figure 6.6.

4. Give the command to Close the gripper.

5. Perform the motion to go in the retraction pose as described in Figure 6.7
and Figure 6.8.

At the same time, we have to update the planning scene so that the motion planner
will take into account the presence of the item attached to the end-effector. To do
so we have to perform the following actions in sequence:

1. Add the medicine in the planning scene.

2. Attach the item to the gripper so that the motion planner can consider the
item’s presence.

In the following figures, we can describe how the grasp, pre-grasp, and retraction
poses are computed. First, we must remember that we have the position and the
orientation of the ARTag and the end-effector in the space with respect to the map
frame. Knowing this, we can obtain the roto-translational transformation from the
ARTag frame to the map frame. To obtain the poses, we define a point with the
orientation of the end-effector 10 centimetres along the z-axis of the ARTag then
we apply the following transformation.
Given:

Tmap
ART ag frame ∈ R4x4

which is the homogenous roto-translational matrix that expresses the rotation and
translation from the map frame to the ARTag frame and it is composed of:

Tmap
ART ag frame =

C
R t
0 1

D
56

Software architecture of the manipulator

R ∈ R3x3 rotational square matrix

t ∈ R3x1 translation vector

we can define the vector of the new position in the ARTag frame as:
pre_graspART ag frame ∈ R3x1

pre_graspART ag frame =

 0
0

0.1

and then apply the transformation to calculate its components in the map frame
by multiplying the pre_graspART ag frame vector for the Tmap

ART ag frame matrix:
pre_graspmap ∈ R3x1C

pre_graspmap

1

D
= Tmap

ART ag frame

C
pre_graspART ag frame

1

D
(6.1)

so that we obtain the pre_graspmap position vector, which is the coordinates that
the end-effector has to reach before performing the grasp of the object.
The first phase, as said previously, consists of the approach to the object to be
grasped. The end-effector assumes the pre-grasp pose. To know how the gripper
is positioned, we can look at Figures 6.3 and 6.4.

Figure 6.3: Definition of the pre-grasp pose with respect to the item, 10 cm away
along the z-axis of the item

57

Software architecture of the manipulator

Figure 6.4: Pre-grasp pose example taken from the experimental phase where we
can see the end effector and the item to be fetched

Then, we can define the grasp pose as the same coordinate of the marker with a
different orientation. Figures 6.5 and 6.6 depict the situation when reaching this
pose.

Figure 6.5: Pose of the end-effector after reaching the grasp pose for fetching the
item

58

Software architecture of the manipulator

Figure 6.6: The end-effector here grasped correctly the item reaching its position
with a different orientation

Similarly to what we say for the pre-grasp pose, we can define the retraction pose
as 10 centimetres away along the x-axis and 10 centimetres higher to simulate
the action normally a human would perform. The resultant final position after
retraction can be seen in Figure 6.7 and Figure 6.8.
Given:

Tmap
ART ag frame ∈ R4x4

which is the homogenous roto-translational matrix that expresses the rotation and
translation from the map frame to the ARTag frame and it is composed of:

Tmap
ART ag frame =

C
R t
0 1

D

R ∈ R3x3 rotational square matrix

t ∈ R3x1 translation vector

we can define the vector of the new position in the ARTag frame as:

retractionART ag frame ∈ R3x1

59

Software architecture of the manipulator

retractionART ag frame =

 0
−0.1
0.1

and then apply the transformation to calculate its components in the map frame
by multiplying the retractionART ag frame vector for the Tmap

ART ag frame matrix:

retractionmap ∈ R3x1C
retractionmap

1

D
= Tmap

ART ag frame

C
retractionART ag frame

1

D
(6.2)

Figure 6.7: Definition of the retraction pose starting from the grasp pose, 10 cm
away along the z-axis and the y-axis of the ARTag frame

60

Software architecture of the manipulator

Figure 6.8: Here the picking is finished so the manipulator reaches the retraction
pose with the item in its hand

Place routine

After having performed the picking routine we have to place the object so that, after
the base moved correctly, the arm has to do the following actions that constitute
the place routine:

1. Perform the motion to go in the target place pose as shown in Figure 6.9.
2. Give the command to Open the gripper.
3. Perform the motion to go in the retraction pose as depicted in Figure 6.10.
4. Give the command to Close the gripper.

Also, in this case, the planning scene has to be updated to consider the object’s
presence in the grasping hand. Since we added and attached the item in the
previous routine, we have only to perform two actions:

1. Detach the medicine from the end-effector.

2. Remove the object from the planning scene.

61

Software architecture of the manipulator

The position reached to place the item is shown in Figure 6.9 where we can see the
item’s reference frame and the end-effector’s reference frame.

Figure 6.9: The end-effector with the object attached reaches the placing pose
that the user previously decided through the code.

The reasoning for defining the post-place pose is the same exploited for the pre-
grasp position. As previously, we define the position as the one 10 centimeters
positive along the z-axis of the ARTag frame depicted in Figure 6.10.
Given:

Tmap
ART ag frame ∈ R4x4

which is the homogenous roto-translational matrix that expresses the rotation and
translation from the map frame to the ARTag frame and it is composed of:

Tmap
ART ag frame =

C
R t
0 1

D

R ∈ R3x3 rotational square matrix

t ∈ R3x1 translation vector

we can define the vector of the new position in the ARTag frame as:

retractionART ag frame ∈ R3x1

retractionART ag frame =

 0
0

0.1

62

Software architecture of the manipulator

and then apply the transformation to calculate its components in the map frame
by multiplying the retractionART ag frame vector for the Tmap

ART ag frame matrix:

retractionmap ∈ R3x1

C
retractionmap

1

D
= Tmap

ART ag frame

C
retractionART ag frame

1

D
(6.3)

Figure 6.10: Position of the end-effector frame during a place action

6.2 Obstacle avoidance

Octomap [52] has been implemented in the robot to accomplish the obstacle
avoidance task. The planning framework is always MoveIt which provides a plugin
that can interact with the motion planning algorithm avoiding colliding with the
objects in the scene. The scene model obtained by implementing Octomap is
updated according to a specific rate established in a configuration file. The map
can be canceled each time we want by calling a rosservice.

6.2.1 Octomap

The implementation of Octomap in the robot is achieved by adding a new launch
file to the ones present in the original packages coming with the robot to maintain a
modular structure as the original of Locobot, where we can define some parameters
depending on the characteristics of our application. In particular, in our case, we
set the following parameters reported in Table 6.1:

63

Software architecture of the manipulator

Parameter name Value Description
octomap_frame "locobot/base_footprint" Frame to which we refer Octomap

octomap_resolution 0.05 meters Maximum accuracy in mapping
maximum_range 4 meters Measurement range of the camera

Table 6.1: Octomap parameters used by the plugin in case we use the real robot

Here is the file implemented where, as can be seen, we can specify the fixed
reference frame of the robot and tune some parameters based on the camera
implemented. In our case, looking at the datasheet of the Intel Realsense camera,
we imposed a maximum range of 4 meters. Since this is the file implemented in
the simulation, a rough resolution is selected so that the computational effort is
not so high. In the simulated robot, the octomap_resolution, where we can
simulate an infinite dense pointcloud instead, the parameter is substituted with
the one reported in Table 6.2:

Parameter name Value Description
octomap_resolution 0.02 meters Maximum accuracy in mapping

Table 6.2: Octomap parameters implemented by the plugin in case we use the
simulation of the robot

Once we declare the launch file, we can have a look at the specific configuration of
the plugin [60] invoked to collaborate with MoveIt. It is composed of the following
parameters:

• sensor_plugin: which specifies the plugin name that has to be invoked

• point_cloud_topic: which is the topic where we read the PointCloud
messages

• max_update_rate: this sets the rate at which Octomap should update the
map of the scene

• filtered_cloud_topic: that is the topic where we publish the filtered cloud
of points for debugging reasons

In our particular case, the parameters used for the simulation of the robot are
reported in Table 6.3:

64

Software architecture of the manipulator

Parameter Value
sensor_plugin "occupancy_map_monitor/PointCloudOctomapUpdater"

point_cloud_topic "/locobot/camera/depth_registered/points"
point_subsample 1.0
padding_offset 0.1
padding_scale 1.0

max_update_rate 10.0

Table 6.3: Parameters for running Octomap in a simulated environment

For the real robot instead, as previously, in order to reduce the computational
effort of the CPU of our NUC we decided to impose some delays in the code and
to have an update rate 10 times slower as can be seen in Table 6.4:

Parameter Value
sensor_plugin "occupancy_map_monitor/PointCloudOctomapUpdater"

point_cloud_topic "/locobot/rtabmap/depth/color/voxels"
point_subsample 1.0
padding_offset 0.1
padding_scale 1.0

max_update_rate 1.0

Table 6.4: Parameters for running Octomap in a real environment

6.3 Object recognition
As mentioned before, we decided to implement ARTags to recognize the medicines
on the shelves. In particular, they will be used to retrieve the position and the
orientation of those markers with respect to the camera frame. In our application,
we could associate a marker with each object that must be grasped.This way, the
object’s pose can be retrieved and translated into a pose goal for the end-effector.

6.3.1 ARTag markers
The implementation in the robot, both in the real case and in the simulation, is
obtained by exploiting a package of ROS called "ar_track_alvar" [61] that will
generate a node subscribed to the topics of the camera and will compute the pose of
the marker relative to the camera frame. To launch the node, we generate a launch
file that constraints the parameters necessary to the package; their descriptions are
reported in Table 6.5:

65

Software architecture of the manipulator

Name Type Description
marker_size double width in cm of the black square marker

max_new_marker_error double threshold to detect new marker
max_track_error double maximum tracking error of ARTag

camera_image string topic that provides camera frames for detecting ARTags
camera_info string topic of the calibration parameters

output_frame string frame to which we attach the frame of the marker

Table 6.5: Table of the parameters ar_track_alvar

For both the simulated and the real robot, we chose to use the following values
reported in Table 6.6:

Name Description
marker_size 5.65 cm

max_new_marker_error 0.08 cm
max_track_error 0.02 cm

camera_image "/locobot/camera/color/image_raw"
camera_info "/locobot/camera/color/camera_info"

output_frame "locobot/base_footprint"

Table 6.6: Selected parameter for ar_track_alvar node

In Figure 6.11 we can see an ARTag recognized by the package where it placed
a frame directly connected to the Locobot camera frame; this relation is clearer
when analyzing the transformation tree characterizing the robot as in Figure 6.12.

Figure 6.11: Visualization of the detected ARTag in Rviz

66

Software architecture of the manipulator

Figure 6.12: Representation of the transformation tree where we can appreciate
the presence of the ARTag as connected to the camera link

Figure 6.13: Message published on the dedicated topic where we can find the
necessary information such as pose and ARTag id [61]

67

Software architecture of the manipulator

The node implemented, when detecting an ARTag, publishes a message of type
"ar_track_alvar_msgs/AlvarMarkers", which gives us different information such
as frame of reference, ID of the marker, position, and orientation, in the topic
"/locobot/move_group/ar_pose_marker" as highlighted in Figure 6.13.

6.4 MoveIt framework

Before giving the details of each motion planner parameter we can have a look
at the possible meaning of each descriptor, highlighting the most significant ones.
Then, each planner is analyzed, explaining the possible tuning that can be made.

6.5 ROS mobile manipulator’s motion planning
algorithms

In this section, we will introduce the parameters that can be tuned per each motion
planning algorithm, together with a brief description of their role.

6.5.1 OMPL planning library

Our particular application’s main objective is to avoid collision with the shelves
when picking a medicine. Since the main point is not optimizing quantities such as
acceleration, velocities, and jerks, we only need to consider the geometric planner.
Specifically, we take into consideration three algorithms that are widely used in
MoveIt and come as default planners: RRTConnect,RRT and RRT* [50].
We analyze the role and the parameters of RRT*, which, differently from the
others, allows us to select the cost function to be optimized during the motion
planning. In Table 6.7 we report the description of the parameters.

68

Software architecture of the manipulator

Parameter Description
optimization_objective It allows us to select the cost function to be minimized

range it represents the maximum motion that can be added
to the tree of motion

goal_bias
it represents the probability to choose, in the joint space,

the actual goal state in attempt to go towards in
exploring the space

delay_collision_checking

when set to 1 (true) delays the collision checking
so that the planners sorts first the paths with the
lowest cost function then it analyzes if they are

coherent with the collision check.

Table 6.7: Parameters present in RRT* that we can select to tune the behavior
of the motion planner

The cost function that can be selected in the optimization_objective parameter
are the following ones:

• PathLengthOptimizationObjective

• MechanicalWorkOptimizationObjective

• MaximizeMinClearanceObjective

• StateCostIntegralObjective

• MinimaxObjective

Planner settings

We test the functionalities of RRT* as a motion planning algorithm. After
evaluating the behavior of the motion planner with different parameters, we
selected the following values reported in Table 6.8: We can see that the selected

Parameter Values
optimization_objective PathLengthOptimizationObjective

range 0.0
goal_bias 0.05

delay_collision_checking 1

Table 6.8: Parameters of RRT* selected for our implementation

cost function optimizes the path length above all the other quantities. This is
essential since we must optimize the duration of the battery, and longer paths

69

Software architecture of the manipulator

would have meant more energy consumption. The other cost function considered
was MechanicalWorkOptimizationObjective, but it produced longer trajectories
with respect to the one selected.

6.5.2 STOMP planner
STOMP is the most promising motion planner among the available ones. It has
good tunability and stable behavior in scenes dense with obstacles. Furthermore,
it has the following parameters that can be tweaked for each planning group; for
simplicity, we will divide them into classes depending on what they can influence.
The classes are the following: Optimization parameters, Noise Generator
parameters, Cost Function parameters, and Update Filter parameters.

Optimization parameters

The optimization parameters are the constants responsible for effectively changing
the optimizer’s behavior. They regard, principally, how the optimizer tries to
deal with the cost function. The configuration file allows to tune the descriptors
explained in Table 6.9. Before we describe which values we selected for this class

Parameter Description

num_timesteps The number of timesteps the optimizer can take
to find a solution before terminating.

num_iterations Number of iterations that the planner can
take to find a good solution while optimization.

num_iterations_after_valid Maximum iterations to be performed after a valid
path has been found.

num_rollout The number of noisy trajectories.

max_rollouts The combined number of new and old rollouts
during each iteration should not exceed this value.

initialization_method This is the initialization method chosen to select
how to initialize the trajectory

control_cost_weight This is the percentage of the trajectory accelerations
cost to be applied in the total cost calculation.

Table 6.9: Optimization parameters characterizing the STOMP algorithm

of parameters, we have to specify how many initialization methods there are.
There are four methods: Linear interpolation, Cubic Polynomial, Minimum
control cost, and Fill trajectory. The last method is of particular interest for our
application because it is the one involved when using a pre-processor for STOMP,
while the others, in our application, showed similar behavior and performances, so
we decided to use Linear interpolation.

70

Software architecture of the manipulator

In our specific case, considering STOMP as a single planner and not as a post-
processor, we can resume the values assigned for each parameter in Table 6.10:

Parameter Value
num_timesteps 60
num_iterations 100

num_iterations_after_valid 0
num_rollout 30
max_rollouts 30

initialization_method 1 (Linear Interpolation)
control_cost_weight 0

Table 6.10: Optimization parameter values chosen for characterizing the STOMP
algorithm

Noise Generator parameters

This subset of parameters helps to define the noisy trajectory the algorithm can
explore to find a collision-free path. In particular, it is composed of:

• class: by this parameter, we can set different classes of noise generation:

– NormalDistributionSampling

– GoalGuidedMultivariateGaussian

• stddev: this is an array containing the amplitude of noise that can be applied
at each joint. In the case of the Locobot, the arm is of dimension 1x6. Larger
values in this class correspond to larger motion of the joints

In Table 6.11, we report the values assigned in our configuration file corresponding
to these two constants:

Parameter Value
class stomp_moveit/NormalDistributionSampling

stddev [0.05, 0.8, 1, 0.8, 0.4, 0.4]

Table 6.11: Noise generator parameters values chosen for characterizing the
STOMP algorithm

71

Software architecture of the manipulator

Cost Function parameters

Depending on the cost function selected, we can have different parameters that
can be tweaked. The cost functions available are the following: CollisionCheck,
ObstacleDistanceGradient, and ToolGoalPose. The first one is the cost
function that in this paragraph will be explored since the objective of our motion
planning algorithm is to prevent colliding with obstacles. In Table 6.12, we report
the description of the parameters to be tuned, while Table 6.13 shows the values
assigned for this plugin.

Parameter Description
collision_penalty This is the value assigned to a collision state

cost_weight This is the weight of the cost function

kernel_window_percentage The multiplicative factor used to compute the window_size
for doing kernel smoothing

longest_valid_joint_move This parameter indicates how far can a joint move in
between consecutive trajectory points

Table 6.12: Cost Function parameters for characterizing STOMP algorithm

Parameter Value
class stomp_moveit/CollisionCheck

collision_penalty 1
cost_weight 1

kernel_window_percentage 0.2
longest_valid_joint_move 0.05

Table 6.13: Cost Function parameters values selected for characterizing STOMP
algorithm

Update Filter parameters

The algorithm, as explored in the state of the art, is based on updating the
trajectory computed to find a better one in terms of smoothness and path length;
for this reason, we can also set some parameters defining our update filter such as
the ones reported in Table 6.14.
The possible classes available are: PolynomialSmoother and Constrained-
CartesianGoal. In Table 6.15, we resume our configuration for what concerns the
update filter:

72

Software architecture of the manipulator

Parameter Description

class Update filter function used for improving
the trajectory

poly_order This is the order of the polynomial function
used for smoothing trajectories

Table 6.14: Update Filter parameters selected for characterizing STOMP algo-
rithm

Parameter Value
class stomp_moveit/PolynomialSmoother

poly_order 6

Table 6.15: Update Filter parameters values selected for characterizing STOMP
algorithm

6.5.3 CHOMP planner

CHOMP is the planning algorithm that performs the worst among the three
analyzed. It is highly tunable in its parameters but is also subject to problems
related to local minima and has many difficulties in finding a feasible path in narrow
ambient with many obstacles. The parameters characterizing the algorithm are
described in Table 6.16.
The last parameter, trajectory_initialization_method, is important when
using a pre-processor for the CHOMP algorithm. It is possible to select between
the following methods; the last one is used when implementing two algorithms
simultaneously.

• Quintic-spline

• Linear

• Cubic

• FillTrajectory

73

Software architecture of the manipulator

Parameter Description

planning_time_limit This value represents the maximum time, in seconds,
that the planner can take to find a solution

max_iterations This represents the maximum number of executions
that the planner can take to find a good solution

max_iterations_after_collision_free Maximum number of iterations to be performed after
having found a collision-free path to improve the path itself

smoothness_cost_weight This parameters sets the weight of the cost function
that CHOMP is actually optimizing

obstacle_cost_weight This variable sets the weight of avoiding the obstacles
in the final cost function (e.g. 0 means obstacles ignored)

learning_rate Learning rate to find the global/local minima
smoothness_cost_jerk Weight of jerk in being minimized in the cost function

smoothness_cost_acceleration Weight of acceleration in being minimized in the cost function
smoothness_cost_velocity Weight of velocity in being minimized in the cost function

ridge_factor This represents the noise added to the total cost function
matrix in order to avoid obstacles, doing this could worse the smoothness

use_pseudo_inverse Enable pseudo inverse calculations or not
pseudo_inverse_ridge_factor If pseudo inverse is enabled, set its ridge factor

joint_update_limit Set the update limit for robot joints

collision_clearance Minimum distance between the arm
and the obstacles to be maintained

collision_threshold This parameter represents the collision threshold
cost that needs to be maintained to avoid collisions

use_stochastic_descent
If set to true (1) we do not use all the points of the trajectory

to find a solution but only one. With this parameter on the convergency
is guaranteed but it may take more time to find a solution

enable_failure_recovery If set to true CHOMP, when can not find a solution, tries,
by tweaking some parameters, to find a feasible path

max_recovery_attempts Number of maximum attempts that CHOMP can do to find a good path

trajectory_initializaiton_method This parameter sets the interpolation method
that CHOMP will use when trying to reach the goal state.

Table 6.16: CHOMP parameters used for tuning the behavior of the motion
planning algorithm

Planner settings

For our particular application, we selected the values reported in Table 6.17 for
the parameters previously described. According to our experience derived by
performing some simple tests in actuating poses in an environment where we have
to pick from shelves, we will leave CHOMP as a possibility for performing the
motion. However, using it along with RRT* as a pre-processor is preferable.

74

Software architecture of the manipulator

Parameter Value
planning_time_limit 10 sec

max_iterations 200
max_iterations_after_collision_free 5

smoothness_cost_weight 0.1
obstacle_cost_weight 1

learning_rate 0.01
smoothness_cost_jerk 0

smoothness_cost_acceleration 1
smoothness_cost_velocity 0

ridge_factor 0.01
use_pseudo_inverse false

pseudo_inverse_ridge_factor 0.0001
joint_update_limit 0.1
collision_clearance 0.2
collision_threshold 0.07

use_stochastic_descent true
enable_failure_recovery true
max_recovery_attempts 5

trajectory_initializaiton_method Linear

Table 6.17: CHOMP parameter values for our application

6.5.4 Planning adapters
Using multiple planning algorithms is a possibility given by MoveIt [45] to enforce
the computation of a trajectory. In particular, we can use, for example, RRT* as
a pre-processor for STOMP/CHOMP. The result of this approach is to produce
robust paths. In our robot, we provided different possibilities:

• Use RRT* as pre-processor for STOMP

• Use RRT* as pre-processor for CHOMP

This results in longer computational time required but better accuracy and smoother
paths.

75

Chapter 7

Software architecture of the
mobile base

7.0.1 Our SLAM Algorithm: RTAB-Map
We tested two graph-based SLAM algorithms on the Locobot platform: Slam-
Toolbox [62] and RTAB-Map (Real Time Appearance Based Mapping) [63]. Slam
Toolbox’s contribution to the SLAM research space is the ability to effectively map
large spaces as large as 9000 m2 in real time while keeping an accurate estimate of
the robot’s pose by using only Lidar to map a 2D environment of the surrounding
space. RTAB-Map uses a variety of sensors from RGB-D cameras to 2D and 3D
Lidar both separately and combined by synchronizing their information using time
stamp information. It uses a bag of words approach for loop closure detection and
memory management for long term SLAM to prune the graph size so as to be able
to keep Graph Optimization and Loop Closure detection within real-time speeds.
While SlamToolbox was easy to use and integrate in the Locobot navigation stack
the constrain on sensor usage (only 2D Lidar) quickly became an issue since the
office space contains many reflective and glass walls. This meant that during SLAM
there were missed measurements and issues with localization. So RTAB-Map
seemed a natural choice due to its availability and high flexibility. RTAB-Map has
several outputs, most important for the navigation process is the 2D Occupancy
Grid [64]. It also gives the option of generating an OctoMap when using 3D Lidar
or RGB-D (3D occupancy grid) and an optional dense Point Cloud.

76

Software architecture of the mobile base

7.1 Path Planners Plugin Choice
In the following section, we explain the choice made for path planners and the ROS
plugins that we will use to implement them on the mobile base.

7.1.1 Global Planning Plugin Choice
The Locobot has the standard navFn package[65] already available as a global
planner package, however, it only allows for Djikstra’s algorithm for path calculation.
We chose the Global Planner package[66], another option from the ROS Noetic
navigation stack. This package gives the option of using A* and has much more
flexible settings. There is a tradeoff between the two path planners: Djikstra is
better for smoother and shorter paths while A* leads to faster computing time. A*
would be far better for a dynamic environment, allowing the Locobot to recompute
a global path when it encounters a moving obstacle large enough that does not
permit the local path planner to keep to the global plan within the set constraints.
However, A* paths tend to be angular and non-natural, taking the shape of stair-like
patterns (this is where most of the distance losses with respect to Djikstra are). A
good alternative, proposed in [67], is the use of A* global path planner with a local
planner that allows for path smoothing which shortens the resulting path (TEB or
EBAND).

7.1.2 Local Planning Plugin Choice
The paper [68] presents a comparative study of navigation local planners, in
particular:

• Dynamic Window Approach (DWA)

• Elastic Band

• Timed Elastic Band (TEB)

It points out previous studies on these algorithms such as [67] where DWA was shown
to have issues with dynamic obstacle avoidance. Of course, there are computing
power requirements to be mindful of, and DWA is the least computationally
expensive while TEB is heavier on resources. TEB also was found to be faster and
produced smoother paths when going around obstacles For our use case the most
important aspect is accuracy since the starting pose of the mobile base is of utmost
importance for the arm to successfully pick up the required object. We chose TEB
[69] since it compliments the global path planner A* well, by smoothing the global
plans stair-like pattern.

77

Software architecture of the mobile base

7.2 Path Planning Setup

The move base package comes preinstalled on the Locobot and by modifying its pa-
rameters in the move_base_params.yaml configuration file we are able to choose
the local and global planner plugins. Most importantly the base_local_planner
and base_global_planner are set from the default values to the TEB local planner
plugin 7.2.2 and the Global Planner plugin 7.2.1. The other settings handle the
frequency at which the move_base package sends commands, recalculates the
global path and oscillates in recovery mode.

Move Base settings Value
base_global_planner global_planner/GlobalPlanner
controller_frequency 10
controller_patience 20
planner_frequency 1
planner_patience 15

max_planning_retries 2
oscillation_timeout 10
oscillation_distance 0.2
base_local_planner "teb_local_planner/TebLocalPlannerROS"

base_global_planner "global_planner/GlobalPlanner"

Table 7.1: Global planner plugin parameter settings

7.2.1 Global Planner Settings

The global planner [66] plugin is used by modifying the global_planner_params.yaml.

Global Path Planner Parameter Value
use_dijkstra false

allow_unknown false
use_grid_path true

orientation_mode 2

Table 7.2: Global planner plugin parameter settings

We set use_dijkstra to false to use A* as a global planning algorithm. The
other settings are default except for the orientation mode. This setting sets the
intermediate poses for the global plan to face a forward direction. This way we can
help the local planner avoid using backwards velocities.

78

Software architecture of the mobile base

7.2.2 Local Planner Settings
The TEB local planner package [69] was built for differential drive robots that could
move in reverse. While the Locobot has this capability we wanted to discourage it
since we only have an RGB-D detector in front and could only detect obstacles
behind it with the laser. Since it is only 2D LIDAR it might hit obstacles that are
lower than its plane of detection. The settings for the local planner are shown in
Table 7.3.

Local Path Planner Parameter Value
acc_lim_x 0.3
acc_lim_y 0

acc_lim_theta 3.2
max_vel_x 0.3
min_vel_x 0.1

max_vel_theta 1.0
min_in_place_vel_theta 0.4

escape_vel -0.1
escape_reset_dist 0.05

include_dynamic_obstacles true
holonomic_robot false

vx_samples 3
meter_scoring true

path_distance_bias 0.75
goal_distance_bias 1.0

occdist_scale 0.01
dwa true

min_obstacle_dist 0.3
inflation_dist 0.47

dynamic_obstacle_inflation_dist 0.47
weight_kinematics_forward_drive 1000

allow_init_with_backwards_motion false
max_vel_x_backwards 0.01

Table 7.3: Local planner plugin parameter settings

Acceleration and velocity were kept unchanged. Prohibiting backward motion
is impossible since this planner only takes in soft constraints and calculates the
optimal path for every weighted objective and penalty. This means that even if
the penalty for backwards motion is set to the maximum possible value there are
situations where the robot might move in reverse. Setting the weights to such
high values can also negatively impact the optimization function slowing down the
convergence speed to the optimal solution.

79

Software architecture of the mobile base

So to discourage backwards motion we set:

• weight_kinematics_forward_drive :1000
This weight pushes the choice towards forward directions (positive x velocities).
A small value will allow backward driving and setting it to 1000 almost forces
it to always choose forward drive.

• allow_init_with_backwards_motion :false
Setting this to false means that the robot cannot start moving from a static pose
with a backwards velocity, this discourages car-like behaviours for repositioning.

• max_vel_x_backwards :0.01
This setting limits the speed of the robot to a slow pace. This further
discourages backwards motion.

7.3 Human detection and path avoidance
As stated previously in section 1.4.3 human detection is an important part of this
thesis work, both for safety requirements and path planning efficacy. The Locobot
has an Intel NUC mini desktop with no dedicated GPU. This lack of computing
power meant that we had to choose algorithms that could be reliable while needing
as few resources as possible. For human detection, though highly effective, machine
learning algorithms such as neural networks and image detection CNNs were not
possible due to their resource usage. For human detection, we used a random forest
classifier for the LIDAR sensor coupled with a HOG-based point cloud library
detector [70] for the RGB-D sensor. We decided to use a reactive approach to path
avoidance together with a physics-based method for path prediction.

The chosen packages are

• People package[71]

• Social Navigation Layer [72]

• Spencer people tracking[73]

7.3.1 People package
The people package is a software stack that contains various algorithms used for
people tracking and detection. At first, we tested the leg detector package [74] that
is part of this stack but it resulted in a high amount of false positives. Also, its
inefficient implementation based on python meant that running the leg detector
negatively affected the performance of other ROS nodes.

80

Software architecture of the mobile base

This package was useful since it defines a people_msg ROS message. This is
used by the social layer package [72] to read the detected people published by
the detector nodes. The people_msg defines 5 types of messages :

• people_msgs/PositionMeasurement: This is the standard message used
by the package. It contains a geometry_msgs/Point message giving the
position of the person and a reliability value for the detection.

• people_msgs/PositionMeasurementArray : This is an array of peo-
ple_msgs/PositionMeasurement.

• people_msgs/Person: This message contains more detailed information
about the detected persons. It has a position geometry_msgs/Point
message, a velocity geometry_msgs/Point message and a reliability value
for the detection.

• people_msgs/PersonStamped: This message contains a header together
with a people_msgs/Person message.

• people_msgs/People: This is a message containing an array of peo-
ple_msgs/Person messages.

These messages are published on the People topic. No settings were changed for
this package since we used it only for its message functionalities.

7.3.2 Social Navigation Layer
This package adds two custom layers to the [54] package. These layers use informa-
tion from the People topic to add an inflated cost to the obstacles recognized as
humans. The two layers are:

• social_navigation_layers::ProxemicLayer: This layer uses the theory of
proxemics [32] to add a gaussian cost to the detected humans, this cost forces
the path planner that reads it to take this cost into account during the path
calculation.

• social_navigation_layers::PassingLayer: This layer adds a similar cost
to that of the proxemic layer, but adds a gaussian cost area to a desired side
of the detected human. This way if the robot has to pass by the human it is
forced to plan a path on the other side.

The ProxemicLayer was added to the global and local path planner. This is done
by adding it to the plugin list in the global and local path planner configuration
files. The gaussian cost that is added is deformed by the velocity of the person.

81

Software architecture of the mobile base

When stationary the gaussian is a circle shape with a cost that decreases along the
radius. When a person is moving then the velocity deforms the gaussian function
towards the direction of movement, resulting in an oval shape that envelops the
space in front of the person. This is done to take into account the temporal aspects
of a moving obstacle, so as to discourage path plans that use the cells in front of it.
The faster the speed the more deformed the gaussian. This is shown in Figure 8.26.

The settings used for the plugin are reported in Table 7.4.

Social Layer Parameters Default Value
enabled True
cutoff 10.0

amplitude 77.0
covariance 0.25

factor 5.0
keep_time 0.75

Table 7.4: Social Layer plugin parameter settings

The most important settings are amplitude and factor.

• amplitude scales the size of the gaussian up or down. If this value is too
small then the inflation radius will overtake the proxemic inflation and this
plugin will have no effect, if it is too large then the path planners will have
trouble finding an optimal path.

• factor is a multiplicative factor that is used to weigh by how much to deform
the gaussian function. The larger the factor then the larger the deformation.
A value that is too small will result in a circular Gaussian even when a
human is moving at fast speeds, while a value that is too large will result
in overcorrection. The robot will correct its path a far distance ahead of a
slow-moving person as if it was running.

Social Navigation Layer settings

The default values were too high for our environment. An amplitude value of
77 meant that the gaussian generated occupied most of the corridor available for
testing, making the robot give more than 2.5m of space to the human. This caused
the robot to always stop when encountering a person since it could not path plan
around the cost. We found that a value of 40 was more reasonable and to increase
the effect of speed on the shape of the gaussian we doubled the value of factor to
10.

82

Software architecture of the mobile base

Spencer People detection Parameters Value
amplitude 40

factor 10

Table 7.5: Spencer Launch file settings

7.3.3 Spencer People Tracking Package
The package we used for human detection and tracking comes from the work
presented in [75] and [76] by Linder, T et al. It reviews recent work in human
tracking and explores the use of a multi-modal online LIDAR/RGB-D people
tracking framework. Some of the detectors available in this framework can be
leveraged by the Locobot since they make use of low computational effort algorithms
like Nearest Neighbours and Random Forest classifiers. It uses also a groundHOG
classifier that, however, we could not use since it requires an Nvidia GPU with
Cuda library capabilities. The detection and tracking models are compatible with
our sensors but were both trained and tested on different sensors with different
configurations. For example, the random forest model for the laser leg detector
was trained with front and rear 2D LIDAR SICK LMS500 at 70 and 75 cm height
with a more accurate angle resolution. The RGB-D data was taken from an Asus
Xtion Pro Live at a height of 1.6m whereas the Locobot has a Realsense stereo
camera at around 60 cm height. By tweaking the parameters of the following files
we were able to achieve human detection and tracking.

Tracking_on_robot.launch file settings

The whole package is launched using the tracking_on_robot.launch file. The
following settings 7.6 were modified in order to adapt the package to the LocoBot.

Spencer People detection Parameters Value
height_above_ground 0.54

use_upper_body_detector False
use_pcl_detector False
use_hog_detector True

base_footprint_frame_id locobot/base_footprint

Table 7.6: Spencer Launch file settings

Laser detector settings

The laser detector uses a random tree classifier model trained on a 2D LIDAR
SICK LMS500 at a different height from our LIDAR. Nevertheless, by changing
the settings as shown in 7.7 we were able to achieve stable human detection.

83

Software architecture of the mobile base

Laser detector parameters Value
model_prefix lms500_0.25deg_height70cm_fr_rathausgasse"

decision_threshold 0.25
min_avg_distance_from_sensor 0

laser_max_distance 4
laser locobot/scan

detector_type random_forest

Table 7.7: Laser detector launch file settings

The model is easily modifiable by changing the model_prefix parameter.
The decision_threshold and laser_max_distance parameters were the most
important settings to change in order to achieve detection.

Point Cloud Library detector settings

The Point Cloud Library detector is modified from an available classifier from
the Point Cloud Library [70]. It uses a HOG support vector machine to identify
full-body images of humans. We chose this detector since the other detector in the
framework, an upper-body classifier, needs a dedicated GPU to work.

Point Cloud Library detector parameters Value
input_topic /locobot/rtabmap/depth/color/obstacles

camera_info_topic /locobot/camera/color/camera_info
base_link_frame locobot/base_footprint
detection_frame pcl_people_detector_front_link

ground_coeffs 0 0 -1 0

Table 7.8: Point Cloud Library detector launch file settings

We modified the input topics for this package as shown in 7.8 to allow it to read
the depth information from the sensors.

People Tracker settings

The people tracker settings in freiburg_people_tracking.launch are kept as is.

7.3.4 Tracked People Translator Node
Having set up the previously described packages we needed a way for the detections
to be seen by the social navigation layers. The Spencer People Tracking package
uses its own ROS messages to publish detections and tracking information and
publishes them to the /spencer/perception/tracked_persons topic. The Social
Navigation Layers package expects detections to be published to the /People

84

Software architecture of the mobile base

topic. To merge these two packages we implemented a C++ ROS translator note
named tracked_people_translator. This node is launched together with the
detectors and subscribes to /spencer/perception/tracked_persons, reads the
messages and translates them to people_msgs/People.

7.4 Software Architecture for the Base

7.4.1 Base Control node structure
As stated in the overview of our software architecture we use a decoupled algorithm.
The entire task, from the object pickup request to the placement operation, is
planned by the communication manager that commands the manipulator and the
base individually through dedicated channels.

As we can see from Figure 7.1 the node structure is composed by:

• The base controller node is responsible for performing the navigation task.
It receives the goal pose for the mobile base and calculates and executes a
navigation plan.

• The communication node controls the entire execution logic. It sends the
goal pose and receives information on the base status to send commands to
the manipulator when the base successfully reaches the goal location.

7.4.2 Description of the mobile base goal topic
The mobile base goal topic is used by the communication manager to send goals to
the base_controller. The messages are geometry_msgs::PoseStamped and
contain the desired position and orientation with respect to the frame of reference
that is defined in their header. Thebase_controller node uses this information
as is without any modifications.

7.4.3 Description of the base status topic
The base_controller node publishes its status to the base_status topic. The
communication_manager node subscribes to this topic. The messages are
std_msgs::Int64 and are simple macros defined in a header file.

• BASE TO GOAL: this status lets the communication manager know that
the base is moving to the goal and has yet to conclude its movement.

• BASE GOAL OK: this status is temporarily sent to the base_status to
signal the successful completion of the movement.

85

Software architecture of the mobile base

• BASE GOAL FAIL: this status is necessary for the re-planning steps
described in section 5.4.2.

• BASE IDLE: while sending a goal to the base, the communication manager
checks for this flag. If the base is idle then it can receive new goals if not the
communication manager waits for it to become available.

7.4.4 Description of the no marker
This topic contains a simple boolean message, it is a redundancy in view of future
software expansions. When sending a mobile goal message the base_controller
can read this topic to know whether the movement is to reach an ARTag or towards
a goal that is unrelated to the markers. The home and deposit goals are such
examples.

Figure 7.1: Structure of the software implemented for controlling the base

86

Chapter 8

Simulation and experimental
results

After explaining our application’s software architecture, we performed different
tests to determine this structure’s limits and advantages. The tests we performed
can be split into two types depending on the environment where the robot is
executed: the ones performed in simulation through Gazebo and the ones where
the deployment is in our laboratory where we positioned some fake medicines with
ARTags to be picked up and placed.

8.1 Simulation setup in Gazebo

The map implemented in Gazebo, which describes a possible warehouse environment,
has some obstacles that the mobile base can avoid during path planning. The items
to be manipulated are positioned on shelves, representing a possible situation we
can face in reality. We can look at the world built in Gazebo in Figure 8.1.

8.2 Working of the robot in simulation

Figures 8.2 - 8.7 show the different working phases of our algorithm previously
described performed to pick an object in a simulated environment. They appear in
order of execution.

87

Simulation and experimental results

Figure 8.1: Map constructed in Gazebo to test the working of the robot in
simulation.

Figure 8.2: The robot received the command, so it is going to approach the
medicine stored on the shelf, here only the mobile base is working.

88

Simulation and experimental results

Figure 8.3: The base reached the desired pose so now the manipulator arrives at
its pre-grasp pose. The item to be grasped is added to the planning scene as an
object (green box).

Figure 8.4: Now the manipulator is ready to pick the object, the fingers of the
end effector are opened, and the box added previously in the planning scene is
attached to the end effector link so that the robot is aware of its presence.

89

Simulation and experimental results

Figure 8.5: The object has been picked so now it is running the place pipeline.
The base returned home.

Figure 8.6: The manipulator reaches the place pose, then it opens the gripper
and finally detaches the item (box returns green instead of purple)

90

Simulation and experimental results

Figure 8.7: The manipulator finishes its operations, so it returns in]home pose.
The robot is ready to take another command

8.3 Laboratory setup

The laboratory where we studied and tested our robot is smaller than a real
warehouse. However, it could accurately represent the obstacles that a mobile robot
can face, such as humans and other furniture. This has also been done because the
mobile manipulator could reach a maximum of approximately one meter, so real
shelves are unsuitable for our tests.
The tests are conducted in an environment that is composed of three items, two of
them are depicted in Figure 8.8 while an overall view of how the three elements
are positioned in the scene is visible in Figure 8.10:

• Depot, where the grasped medicines will be placed after completing the
picking phase. This position is known as in a real warehouse, and it is defined
with respect to the map constructed starting from the home position.

• Home, where the robot starts its research at each iteration and where it
returns as soon as a place operation is finished.

• Shelf, where the items to be grasped are stored. To validate our algorithm
we positioned the shelf in three different positions completely different from
each other.

91

Simulation and experimental results

Figure 8.8: In the first figure (left), we can have a look at the robot in its home
position, which is also the starting point of our research phase; instead, in the
second figure (right), we can see the depot zone where the robot will deposit the
grasped item.

Figure 8.9: In these figures, we can have a look at possible positions assumed by
the shelf for validating the algorithm. These positions are marked with duct tape
on the floor to assure the repeatability of the experiments.

92

Simulation and experimental results

Figure 8.10: Here we show an overall view of the environment where we conducted
our experiments. It comprises three objects: the home, the depot, and the shelf
where the items are stored.

As we can see from Figure 8.9 we positioned on a shelf two boxes, each with a
different ARTag id, so that we could test if the robot effectively picks the right one.
Moreover, to test the algorithm more deeply, we also selected three positions and
orientations that the shelf can assume. In particular, this test let us understand
that the algorithm works finely and the pose estimation is done correctly and inde-
pendently from the position of the markers in the space. The possible configurations
are shown in Figure 8.9.

93

Simulation and experimental results

8.4 Working of the robot in a real environment

The simulated and the real robot perform almost the same actions to successfully
carry a request from the user. Here we report the main steps for completing a pick
and place action in order of execution.
The first step starts when the robot unit receives a request for an ID. In this case,
we enter the search phase that ends when the requested marker is found. When
the ARTag is found, the mobile base receives the command to move and reach the
desired pose, as shown in Figure 8.11.

Figure 8.11: The robot received the command, so it is going to approach the
medicine stored on the shelf, here, only the mobile base is working.

Once the base reaches the position in front of the shelf, the manipulator starts
running while the base is idle. The arm controller receives the pre-grasp and the
grasp pose goal, and the pick command. The routine starts with the update of
the Octomap, and then, as we can see in Figure 8.12, the manipulator reaches the
pre-grasp pose.

94

Simulation and experimental results

Figure 8.12: Manipulator reaches the pre-grasp pose after positioning in front of
the shelf.

Figure 8.13: Now the manipulator is ready to pick the object, and the fingers of
the end-effector are opened.

Having completed the previous step, the arm will run to reach the grasp pose. In
this phase, the gripper has been opened so that we can approach the item positioned

95

Simulation and experimental results

on the shelf. Before being able to grasp, as described in the chapter about the
software architecture of the manipulator, the planning scene is updated with the
item to be picked, and then, finally, the arm can move toward the marker. Figure
8.13 shows the situation when these operations are completed. In this part of the
manipulation, different tools are involved, such as the planning_scene_monitor
and the move_group interface. Each of them plays an important role: the
first one governs the obstacle present in the scene to be taken into account by
the anthropomorphic arm, while, the second one, invokes the motion planning
algorithm, RRT ∗, that solves the motion planning problem.

Figure 8.14: The object has been picked, so now it is running the place pipeline.

Once the grasping part is finished, the arm will return to idle status, as shown
in Figure 8.14, and the mobile base will receive the pose of the depot as the goal
pose.
The mobile base reached its final position to complete the placing routine. Now, as
for the picking action, the manipulator will start its operations while the mobile
base will remain in idle status. The actions to be performed in this stage will
involve the arm for reaching the place position and then the gripper for releasing
the item in the depot. The first phase is shown in Figure 8.15 while the second
one is depicted in Figure 8.16.

96

Simulation and experimental results

Figure 8.15: The mobile base reaches the place pose, now the arm should start
running

Figure 8.16: The manipulator reaches the place pose, then it opens the gripper
and finally detaches the item (box returns green instead of purple)

97

Simulation and experimental results

Figure 8.17: The manipulator finishes its operations, so it returns in home pose.
The robot is ready to take another command

Finally, the mobile robot completed all the operations to be performed in order
to pick and place the item requested by the user at the beginning of the test. Now
the mobile robot will return to its home position to be ready for the subsequent
request. The time necessary to carry on the whole process is about six minutes;
it could be drastically reduced by improving some components and the timing of
certain operations, as discussed in the final chapter. In Figure 8.17 the mobile
manipulator is returning home after having completed its task.

8.5 Motion planner tests

The motion planners implemented in MoveIt currently working finely are STOMP,
CHOMP, and the algorithms of OMPL. The algorithm can be selected before the
robot starts giving a command as an argument of the launch file. Figure 8.20 shows
what happens in the planning scene when the arm approaches a shelf to pick an
item. The obstacles in the scene are represented as boxes in RViz.

98

Simulation and experimental results

Figure 8.18: Here is an image of the robot performing a pick routine. The
software is Gazebo for simulation and RViz for visualization.

Figure 8.19: The planning scene after adding the box to be picked, the voxels
are cleaned around the zone where the pick happens

99

Simulation and experimental results

Then, if we add an object to be picked in the planning scene, as shown in Figure
8.19, the planning_scene_monitor automatically cleans the planning scene in
that part of the scene so that the arm can reach the object. In conclusion, the
main drawback behind this solution is represented by the limitations given by the
hardware so that the obstacle map takes some seconds before being constructed.
This means that the manipulator now takes about two minutes to perform a pick
or place action. For what we tested, the best working algorithm is RRT* so we
selected this solution as default for all our tests.

8.6 Object detection testing

8.6.1 ARTag test

We performed a simple experiment to analyze which size of ARTag to experiment
with. We test, in particular, the maximum error in retrieving the pose of the
ARTag when the robot is positioned at a certain distance. In this way, we obtain
the maximum recognition distance and the uncertainty in computing the position
at a certain distance. Furthermore, the sizes under test are compatible with the
medicines box, so they must be a manageable size.

ARTag dimension [cm] Maximum distance
recognition [m]

Uncertainty in position
computation [cm]

5x5 2.1 0.6 ÷ 1
4x4 2 1 ÷ 3
3x3 1.5 > 5
2x2 1.2 > 5

Table 8.1: Results from the experiment to determine the best choice for the size
of the markers

As a result of this experiment, we selected the ARTag of size 5.5x5.5 cm maximizing
the size because we noticed that by enlarging the dimension the estimation of the
pose gets better and more precise.
In conclusion, we must remember that the marker is positioned on a well-lit shelf
for optimal recognition of the item.

100

Simulation and experimental results

Figure 8.20: Here is a picture of the medicine with the marker positioned on the
front.

8.7 Mobile Base Testing

8.7.1 SLAM Testing

The results for Slam are shown in Figures 8.21 and 8.22. We tested SlamToolbox [62]
and RTABMap [63]. The results of the first package, being based only on LIDAR
sensor results are highly susceptible to the reflective and transparent surfaces of the
office. Especially in 8.21 we can see the effects of the noise coming from the glass
surfaces. The second image is the result of SLAM from the RTABMap package.

The complete office area was mapped as shown in Figure 8.22. The left image
shows the raw results of SlamToolbox, the noise comes from the glass surfaces
where the LIDAR depth measurements reach the opposite side of the room or are
noisy from the reflections. Especially there is an issue with angular drift when
mapping in the office corridor (bottom of image), which appears to be at an angle
with respect to the office room (top right of image).

101

Simulation and experimental results

(a) Office SlamToolbox Results (b) Office RTABMap Results

Figure 8.21: Office grid map

8.7.2 Path Planning testing

Path planning was tested by setting up different scenarios and environments for
the robot to traverse as listed below. The Locobot behaves correctly in all of the
tests. Even without human detection, A* global planning together with TEB local
planning reacts quickly to a sudden obstacle in front of the mobile base, stopping
without collision. Adding human detection further improves this behaviour. The
images show Rviz [77], the visualization software we used when testing on the real
robot. This allows us to visualize topic outputs, the map and how the robot sees
the space around it. We chose a fixed starting and goal position so as to make the
tests repeatable. The starting and goal positions can be seen in image (a) of 8.24.

No Obstacles

We first performed a simple test with no obstacle to record a baseline shown in
Figure 8.24. As expected from Section 7.1.2, the global planner finds a stair-like
path (green) and the local planner (red) follows it using curving patterns that
achieve a shorter route overall.

102

Simulation and experimental results

(a) Raw Map Result from SlamToolbox (b) Clean Map from RTABmap Person

Figure 8.22: Complete office occupancy grid map

(a) Global path in green and Local path
in red

Figure 8.23: Path planning with no obstacles.

103

Simulation and experimental results

Obstacles present

To test the local planner at first we placed static obstacles that did not appear on
the map. The boxes were of different heights to test both the LIDAR and RGB-D
sensors.

(a) Global path at the start (b) Local in red follows the global path

(c) The second box is detected (d) Global and local path are modified
and the third box is detected

(e) At first the paths are modified and
the robot attempts to pass to the right

(f) Real-time path planning finds a faster
route to the left of the box

Figure 8.24: Obstacles path planning.

Static Person

The images in Figure 8.25 show how the gaussian cost around a standing person
changes the path planning. On the left (a) we detect a person and do not build
the gaussian around them, the global path planner sticks to the obstacle and the
local planner respects the inflation radius. On the right (b) the detected person
has a gaussian. This way we see both the path planners increase their distance to
respect the added cost.

104

Simulation and experimental results

(a) Person not recognized leads to the
robot passing closely

(b) Detected human generates a gaussian
that forces a larger pass-by distance

Figure 8.25: Standing person path planning.

Moving Person with Obstacles

We tested the gaussian function’s ability to change shape according to different
speeds as stated in Section 7.3.2. By passing the robot in front and from behind
we tested the ability of the LIDAR to detect humans without confirmation from
the RGB-D based detector. Different modalities tested where :

• Person stopping in front
• Person passing from behind
• Person passing in front
• Two people passing from behind
The robot reacts as expected in all of these scenarios. The gaussian is deformed

as shown in Figure8.26. The human costmap shape forces the robot to move out of
the way of the person passing from behind or in front. If the human steps in front
of the robot it stops as expected and waits for the costmap to return to free space.

(a) Static Person (b) Slow Person (c) Fast Person

Figure 8.26: Images showing how speed affects the gaussian function shape
(colour purple)

105

Chapter 9

Conclusions and future
works

Working on this project has been stimulating and has undoubtedly helped us deepen
our knowledge of the mechanism governing ROS as middleware operating systems.
The platform where we developed our application, the Locobot WX250, is a good
research platform that, in most cases, guarantees good performance, especially
from the computational point of view. Furthermore, the application we developed
is available on GitHub to improve and eventually test other systems since our
primary goal was to develop the most general and flexible software architecture
possible.
The main disadvantage of this application relies on the hardware that composes
the mobile manipulator. The motors are servos that can guarantee a certain level
of precision which is not suitable for applications of this kind; moreover, the torque
that can be provided could carry only payloads up to 250 grams. Another drawback
is that ROS, as we know, still needs to be implemented in the industrial system as it
is because it is subject to message losses and latency in refreshing topics. Industrial
applications need to be real-time and guarantee a certain level of security that ROS
could not provide. Therefore, future work is likely attractive to implement ROS2,
which is more industrial-oriented. For what concerns the camera, the Intel D435
provides, as we understood from our experiments, limitations for what concerns the
point cloud. To guarantee a better working of Octomap, we would prefer a camera
with a dense point cloud so that the obstacle grid constructed time by time could
have a higher resolution. Furthermore, we noticed that the NUC provided with the
robot is limited in computational power, so some operations require some delays
that, with more powerful hardware, such as an Nvidia Jetson, could be avoided.
We propose improvements from the hardware point of view regarding, for example,
installing a camera on the arm’s end-effector and implementing suction cups instead

106

Conclusions and future works

of fingers. The suction cup is certainly a more complex system but can guarantee
the grasping of numerous types of items independently of their shape or width.
Though human detection was surprisingly effective, it suffered from false positives
and issues with tracking. A time-consuming but necessary improvement would be
the recording and annotating of new datasets and training of new models from the
Locobot sensors.
Further improvements can also be made from the software point of view. For
example, the architecture governing the robot could be made to provide better
handling of errors in case of either software or hardware failure. In addition, with a
more powerful NUC and a camera mounted on the manipulator, we could substitute
the marker recognition with proper recognition of the objects with a neural network.
Employing a neural network for object recognition will lead to a higher effort from
the computational point of view but will result in a more flexible system.

107

Bibliography

[1] KUKA Roboter GmbH.
https://commons.wikimedia.org/wiki/File:Automation_of_foundry_
with_robot.jpg (cit. on p. 2).

[2] Vivek Annem, Pradeep Rajendran, Shantanu Thakar, and Satyandra Gupta.
«Towards Remote Teleoperation of a Semi-Autonomous Mobile Manipulator
System in Machine Tending Tasks». In: June 2019. doi: 10.1115/MSEC2019-
3027 (cit. on p. 3).

[3] Leo Pauly, M. V. Baiju, P. Viswanathan, Praveen Jose, Divya Paul, and
Deepa Sankar. «CAMbot: Customer assistance mobile manipulator robot».
In: 2015 IEEE Bombay Section Symposium (IBSS). 2015, pp. 1–4. doi:
10.1109/IBSS.2015.7456644 (cit. on p. 3).

[4] Maria E. Cabrera, Tapomayukh Bhattacharjee, Kavi Dey, and Maya Cakmak.
«An Exploration of Accessible Remote Tele-operation for Assistive Mobile
Manipulators in the Home». In: 2021 30th IEEE International Conference on
Robot & Human Interactive Communication (RO-MAN). 2021, pp. 1202–1209.
doi: 10.1109/RO-MAN50785.2021.9515511 (cit. on p. 4).

[5] Rohit Nilesh Mehta, Hitaishi Vijay Joshi, Inziya Dossa, Rahul Gyanch Yadav,
Sarika Mane, and Mansing Rathod. «Supermarket Shelf Monitoring Using
ROS based Robot». In: 2021 5th International Conference on Trends in
Electronics and Informatics (ICOEI). 2021, pp. 58–65. doi: 10.1109/ICOEI5
1242.2021.9452895 (cit. on p. 7).

[6] Wenqian Hu, Jie Qiu, Fan Zhang, Qian Yang, Pengbo Wang, and Changing
Geng. «Control and Fetching Strategy of Goods-Picking Robot in the Self-
service Supermarket». In: 2019 IEEE 9th Annual International Conference
on CYBER Technology in Automation, Control, and Intelligent Systems
(CYBER). 2019, pp. 1285–1288. doi: 10.1109/CYBER46603.2019.9066628
(cit. on p. 7).

[7] documentation RT-Middleware website.
https://openrtm.org/openrtm/en/doc/aboutopenrtm/rtmiddleware
(cit. on p. 9).

108

https://commons.wikimedia.org/wiki/File:Automation_of_foundry_with_robot.jpg
https://commons.wikimedia.org/wiki/File:Automation_of_foundry_with_robot.jpg
https://doi.org/10.1115/MSEC2019-3027
https://doi.org/10.1115/MSEC2019-3027
https://doi.org/10.1109/IBSS.2015.7456644
https://doi.org/10.1109/RO-MAN50785.2021.9515511
https://doi.org/10.1109/ICOEI51242.2021.9452895
https://doi.org/10.1109/ICOEI51242.2021.9452895
https://doi.org/10.1109/CYBER46603.2019.9066628
https://openrtm.org/openrtm/en/doc/aboutopenrtm/rtmiddleware

BIBLIOGRAPHY

[8] ZeroMQ library.
https://zeromq.org/get-started/ (cit. on p. 9).

[9] ROS master-node-topic communication. https://commons.wikimedia.org/
wiki/File:ROS-master-node-topic.png (cit. on p. 10).

[10] Randall Smith, Matthew Self, and Peter Cheeseman. «A stochastic map
for uncertain spatial relationships». In: Proceedings of the 4th international
symposium on Robotics Research. 1988, pp. 467–474 (cit. on p. 12).

[11] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. «A Flexible and
Scalable SLAM System with Full 3D Motion Estimation». In: Proc. IEEE
International Symposium on Safety, Security and Rescue Robotics (SSRR).
IEEE. Nov. 2011 (cit. on p. 12).

[12] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al.
«FastSLAM: A factored solution to the simultaneous localization and mapping
problem». In: Aaai/iaai 593598 (2002) (cit. on p. 12).

[13] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard.
«A tutorial on graph-based SLAM». In: IEEE Intelligent Transportation
Systems Magazine 2.4 (2010), pp. 31–43 (cit. on p. 13).

[14] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. «Visual SLAM algo-
rithms: A survey from 2010 to 2016». In: IPSJ Transactions on Computer
Vision and Applications 9.1 (2017), pp. 1–11 (cit. on p. 13).

[15] Ilmir Z Ibragimov and Ilya M Afanasyev. «Comparison of ROS-based visual
SLAM methods in homogeneous indoor environment». In: 2017 14th Workshop
on Positioning, Navigation and Communications (WPNC). IEEE. 2017, pp. 1–
6 (cit. on p. 13).

[16] Oussama Khatib. «Real-time obstacle avoidance for manipulators and mobile
robots». In: Autonomous robot vehicles. Springer, 1986, pp. 396–404 (cit. on
p. 14).

[17] Steven M LaValle et al. «Rapidly-exploring random trees: A new tool for
path planning». In: (1998) (cit. on p. 14).

[18] John H Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT
press, 1992 (cit. on p. 15).

[19] Edsger Wybe Dijkstra. «A note on two problems in connexion with graphs:(Numerische
Mathematik, 1 (1959), p 269-271)». In: (1959) (cit. on p. 15).

[20] Peter E Hart, Nils J Nilsson, and Bertram Raphael. «A formal basis for the
heuristic determination of minimum cost paths». In: IEEE transactions on
Systems Science and Cybernetics 4.2 (1968), pp. 100–107 (cit. on p. 15).

109

https://zeromq.org/get-started/
https://commons.wikimedia.org/wiki/File:ROS-master-node-topic.png
https://commons.wikimedia.org/wiki/File:ROS-master-node-topic.png

BIBLIOGRAPHY

[21] A. Stentz. «Optimal and efficient path planning for partially-known envi-
ronments». In: Proceedings of the 1994 IEEE International Conference on
Robotics and Automation. 1994, 3310–3317 vol.4. doi: 10.1109/ROBOT.1994.
351061 (cit. on p. 15).

[22] D. Fox, W. Burgard, and S. Thrun. «The dynamic window approach to
collision avoidance». In: IEEE Robotics & Automation Magazine 4.1 (1997),
pp. 23–33. doi: 10.1109/100.580977 (cit. on p. 16).

[23] Brian Gerkey and Kurt Konolige. «Planning and control in unstructured
terrain». In: (Jan. 2008) (cit. on p. 16).

[24] Sean Quinlan and Oussama Khatib. «Elastic bands: Connecting path plan-
ning and control». In: [1993] Proceedings IEEE International Conference on
Robotics and Automation. IEEE. 1993, pp. 802–807 (cit. on p. 16).

[25] Christoph Rösmann, Wendelin Feiten, Thomas Wösch, Frank Hoffmann, and
Torsten Bertram. «Trajectory modification considering dynamic constraints
of autonomous robots». In: ROBOTIK 2012; 7th German Conference on
Robotics. VDE. 2012, pp. 1–6 (cit. on p. 16).

[26] P. Viola and M. Jones. «Rapid object detection using a boosted cascade
of simple features». In: Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1.
2001, pp. I–I. doi: 10.1109/CVPR.2001.990517 (cit. on p. 17).

[27] Navneet Dalal and Bill Triggs. «Histograms of oriented gradients for human
detection». In: 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05). Vol. 1. Ieee. 2005, pp. 886–893 (cit. on
p. 17).

[28] Chuyi Li et al. «YOLOv6: a single-stage object detection framework for
industrial applications». In: arXiv preprint arXiv:2209.02976 (2022) (cit. on
p. 17).

[29] Radu Adrian Ciora and Carmen Mihaela Simion. «Industrial applications of
image processing». In: Acta Universitatis Cibiniensis. Technical Series 64.1
(2014), pp. 17–21 (cit. on p. 17).

[30] Yandong Li, Zongbo Hao, and Hang Lei. «Survey of convolutional neural
network». In: Journal of Computer Applications 36.9 (2016), p. 2508 (cit. on
p. 17).

[31] Angus Leigh, Joelle Pineau, Nicolas Olmedo, and Hong Zhang. «Person
tracking and following with 2d laser scanners». In: 2015 IEEE international
conference on robotics and automation (ICRA). IEEE. 2015, pp. 726–733
(cit. on p. 18).

110

https://doi.org/10.1109/ROBOT.1994.351061
https://doi.org/10.1109/ROBOT.1994.351061
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/CVPR.2001.990517

BIBLIOGRAPHY

[32] Edward T Hall. «A system for the notation of proxemic behavior». In: Amer-
ican anthropologist 65.5 (1963), pp. 1003–1026 (cit. on pp. 18, 81).

[33] Jiyu Cheng, Hu Cheng, Max Q-H Meng, and Hong Zhang. «Autonomous
navigation by mobile robots in human environments: A survey». In: 2018
IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE.
2018, pp. 1981–1986 (cit. on p. 18).

[34] Peter Trautman and Andreas Krause. «Unfreezing the robot: Navigation in
dense, interacting crowds». In: 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2010, pp. 797–803 (cit. on p. 18).

[35] Carlos Medina Sánchez, Matteo Zella, Jesús Capitán, and Pedro J Marrón.
«From Perception to Navigation in Environments with Persons: An Indoor
Evaluation of the State of the Art». In: Sensors 22.3 (2022), p. 1191 (cit. on
p. 19).

[36] Yunfan Wang and Xian Guo. «Memory-based Stochastic Trajectory Opti-
mization for Manipulator Obstacle Avoiding Motion Planning». In: 2022
7th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). 2022,
pp. 188–194. doi: 10.1109/ACIRS55390.2022.9845580 (cit. on p. 19).

[37] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and
Stefan Schaal. «STOMP: Stochastic trajectory optimization for motion plan-
ning». In: 2011 IEEE International Conference on Robotics and Automation.
2011, pp. 4569–4574. doi: 10.1109/ICRA.2011.5980280 (cit. on pp. 19, 29,
30).

[38] Wang Xinyu, Li Xiaojuan, Guan Yong, Song Jiadong, and Wang Rui. «Bidi-
rectional Potential Guided RRT* for Motion Planning». In: IEEE Access
7 (2019), pp. 95046–95057. doi: 10.1109/ACCESS.2019.2928846 (cit. on
p. 20).

[39] Pankaj Wajire, Savita Angadi, and Lokesh Nagar. «Image Classification
for Retail». In: 2020 International Conference on Industry 4.0 Technology
(I4Tech). 2020, pp. 23–28. doi: 10.1109/I4Tech48345.2020.9102699 (cit.
on p. 21).

[40] M. Fiala. «ARTag, a fiducial marker system using digital techniques». In:
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 2. 2005, 590–596 vol. 2. doi: 10.1109/CVPR.
2005.74 (cit. on pp. 21, 22).

[41] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco Madrid-Cuevas, and
Manuel Marín-Jiménez. «Automatic generation and detection of highly reliable
fiducial markers under occlusion». In: Pattern Recognition 47 (June 2014),
pp. 2280–2292. doi: 10.1016/j.patcog.2014.01.005 (cit. on p. 22).

111

https://doi.org/10.1109/ACIRS55390.2022.9845580
https://doi.org/10.1109/ICRA.2011.5980280
https://doi.org/10.1109/ACCESS.2019.2928846
https://doi.org/10.1109/I4Tech48345.2020.9102699
https://doi.org/10.1109/CVPR.2005.74
https://doi.org/10.1109/CVPR.2005.74
https://doi.org/10.1016/j.patcog.2014.01.005

BIBLIOGRAPHY

[42] Reynaldo Cruz Villagomez and Jhon Ordoñez. «Robot Grasping Based on
RGB Object and Grasp Detection Using Deep Learning». In: 2022 8th In-
ternational Conference on Mechatronics and Robotics Engineering (ICMRE).
2022, pp. 84–90. doi: 10.1109/ICMRE54455.2022.9734075 (cit. on p. 23).

[43] Eitan Marder-Eppstein. Navigation Package. https : / / wiki . ros . org /
navigation?distro=noetic, Last accessed on 2022-10-30 (cit. on pp. 24,
34).

[44] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. «Reducing
the barrier to entry of complex robotic software: a MoveIt! case study». In:
arXiv preprint arXiv:1404.3785 (2014) (cit. on pp. 24, 27).

[45] Ioan A. Sucan, Sachin Chitta. MoveIt website. https://moveit.ros.org/,
Last accessed on 2022-10-30 (cit. on pp. 25, 27, 75).

[46] Wikipedia contributors. Motion planning — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Motion_planning&oldi
d=1109255335. [Online; accessed 26-September-2022]. 2022 (cit. on p. 27).

[47] Covariant Hamiltonian Optimization for Motion Planning. https://www.
nathanratliff.com/thesis-research/chomp (cit. on p. 28).

[48] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa.
«CHOMP: Gradient optimization techniques for efficient motion planning».
In: 2009 IEEE International Conference on Robotics and Automation. 2009,
pp. 489–494. doi: 10.1109/ROBOT.2009.5152817 (cit. on p. 28).

[49] Stochastic Trajectory Optimization for Motion Planning. http://wiki.ros.
org/stomp_motion_planner (cit. on p. 29).

[50] Open Motion Planning Library. https://ompl.kavrakilab.org/index.
html (cit. on pp. 31, 68).

[51] Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. «The Open Motion Planning
Library». In: IEEE Robotics & Automation Magazine 19.4 (2012), pp. 72–82.
doi: 10.1109/MRA.2012.2205651 (cit. on pp. 32, 33).

[52] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-
fram Burgard. «OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees». In: Autonomous Robots (2013). Software available at
https://octomap.github.io. doi: 10.1007/s10514-012-9321-0. url:
https://octomap.github.io (cit. on pp. 33, 63).

[53] Eitan Marder-Eppstein. Transform tree Package. http://wiki.ros.org/tf,
(cit. on p. 34).

[54] Eitan Marder-Eppstein. Costmap 2d Package. http : / / wiki . ros . org /
costmap_2d?distro=noetic, (cit. on pp. 35, 81).

112

https://doi.org/10.1109/ICMRE54455.2022.9734075
https://wiki.ros.org/navigation?distro=noetic
https://wiki.ros.org/navigation?distro=noetic
https://moveit.ros.org/
https://en.wikipedia.org/w/index.php?title=Motion_planning&oldid=1109255335
https://en.wikipedia.org/w/index.php?title=Motion_planning&oldid=1109255335
https://www.nathanratliff.com/thesis-research/chomp
https://www.nathanratliff.com/thesis-research/chomp
https://doi.org/10.1109/ROBOT.2009.5152817
http://wiki.ros.org/stomp_motion_planner
http://wiki.ros.org/stomp_motion_planner
https://ompl.kavrakilab.org/index.html
https://ompl.kavrakilab.org/index.html
https://doi.org/10.1109/MRA.2012.2205651
https://octomap.github.io
https://doi.org/10.1007/s10514-012-9321-0
https://octomap.github.io
http://wiki.ros.org/tf
http://wiki.ros.org/costmap_2d?distro=noetic
http://wiki.ros.org/costmap_2d?distro=noetic

BIBLIOGRAPHY

[55] Move Base Package. http://wiki.ros.org/move_base (cit. on pp. 36, 37).
[56] Navigation Package. http://wiki.ros.org/navigation?distro=noetic

(cit. on p. 36).
[57] Trossen Robotics. Trossen robotics webpage. https://www.trossenrobotics.

com/. [Online; accessed 20-July-2022] (cit. on pp. 38–40).
[58] Bruno Siciliano, Oussama Khatib, and Torsten Kröger. Springer handbook of

robotics. Vol. 200. Springer, 2016, pp. 19–21 (cit. on p. 40).
[59] Yunhao Pan, Jingdi Tang, Qingyuan Zhao, and Shengyi Zhu. «Forward and

Inverse Kinematics Modeling and Simulation of Six-axis Joint Robot Arm
Based on Exponential Product Method». In: 2020 IEEE 3rd International
Conference on Automation, Electronics and Electrical Engineering (AUTEEE).
2020, pp. 372–375. doi: 10.1109/AUTEEE50969.2020.9315719 (cit. on p. 42).

[60] MoveIt documentation for Octomap. https://ros-planning.github.io/
moveit_tutorials/doc/perception_pipeline/perception_pipeline_
tutorial.html (cit. on p. 64).

[61] ar_track_alvar documentation.
http://wiki.ros.org/ar_track_alvar (cit. on pp. 65, 67).

[62] Steve Macenski and Ivona Jambrecic. «SLAM Toolbox: SLAM for the dynamic
world». In: Journal of Open Source Software 6.61 (2021), p. 2783. doi: 10.
21105/joss.02783. url: https://doi.org/10.21105/joss.02783 (cit. on
pp. 76, 101).

[63] Mathieu Labbé and François Michaud. «RTAB-Map as an open-source lidar
and visual simultaneous localization and mapping library for large-scale
and long-term online operation». In: Journal of Field Robotics 36.2 (2019),
pp. 416–446. doi: https://doi.org/10.1002/rob.21831. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21831. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/rob.21831 (cit. on pp. 76,
101).

[64] Alberto Elfes. «Using occupancy grids for mobile robot perception and navi-
gation». In: Computer 22.6 (1989), pp. 46–57 (cit. on p. 76).

[65] NavFN Ros. http://wiki.ros.org/navfn?distro=noetic (cit. on p. 77).
[66] Global Planner. http://wiki.ros.org/global_planner (cit. on pp. 77,

78).
[67] Maximilian Pittner, Markus Hiller, Florian Particke, Lucila Patino-Studencki,

and Joern Thielecke. «Systematic analysis of global and local planners for
optimal trajectory planning». In: ISR 2018; 50th International Symposium
on Robotics. VDE. 2018, pp. 1–4 (cit. on p. 77).

113

http://wiki.ros.org/move_base
http://wiki.ros.org/navigation?distro=noetic
https://www.trossenrobotics.com/
https://www.trossenrobotics.com/
https://doi.org/10.1109/AUTEEE50969.2020.9315719
https://ros-planning.github.io/moveit_tutorials/doc/perception_pipeline/perception_pipeline_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/perception_pipeline/perception_pipeline_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/perception_pipeline/perception_pipeline_tutorial.html
http://wiki.ros.org/ar_track_alvar
https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783
https://doi.org/10.21105/joss.02783
https://doi.org/https://doi.org/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21831
http://wiki.ros.org/navfn?distro=noetic
http://wiki.ros.org/global_planner

BIBLIOGRAPHY

[68] B Cybulski, Agnieszka Wegierska, and Grzegorz Granosik. «Accuracy com-
parison of navigation local planners on ROS-based mobile robot». In: 2019
12th International Workshop on Robot Motion and Control (RoMoCo). IEEE.
2019, pp. 104–111 (cit. on p. 77).

[69] Timed ELastic Band Ros. http://wiki.ros.org/teb_local_planner
(cit. on pp. 77, 79).

[70] Radu Bogdan Rusu and Steve Cousins. «3D is here: Point Cloud Library
(PCL)». In: IEEE International Conference on Robotics and Automation
(ICRA). Shanghai, China: IEEE, May 2011 (cit. on pp. 80, 84).

[71] People Package. http://wiki.ros.org/people (cit. on p. 80).
[72] Social Navigation Layers Package Planner. http://wiki.ros.org/navigat

ion_layers (cit. on pp. 80, 81).
[73] Spencer People Tracking Package. https://github.com/spencer-project/

spencer_people_tracking (cit. on p. 80).
[74] Leg Detector Package. http://wiki.ros.org/leg_detector (cit. on p. 80).
[75] Timm Linder, Stefan Breuers, Bastian Leibe, and Kai O Arras. «On multi-

modal people tracking from mobile platforms in very crowded and dynamic
environments». In: 2016 IEEE international conference on robotics and au-
tomation (ICRA). IEEE. 2016, pp. 5512–5519 (cit. on p. 83).

[76] Timm Linder and Kai O Arras. «People detection, tracking and visualization
using ros on a mobile service robot». In: Robot Operating System (ROS).
Springer, 2016, pp. 187–213 (cit. on p. 83).

[77] Rviz Software Package. http://wiki.ros.org/rviz (cit. on p. 102).

114

http://wiki.ros.org/teb_local_planner
http://wiki.ros.org/people
http://wiki.ros.org/navigation_layers
http://wiki.ros.org/navigation_layers
https://github.com/spencer-project/spencer_people_tracking
https://github.com/spencer-project/spencer_people_tracking
http://wiki.ros.org/leg_detector
 http://wiki.ros.org/rviz

	List of Tables
	List of Figures
	Acronyms
	Introduction and problem statement
	Robotics nowadays
	Classification of robotic systems
	Description of a mobile manipulator
	Example of mobile manipulators employments

	Problem statement
	Goal of the thesis
	Problem description
	Environment description
	Functionalities required

	Thesis structure

	State of the art
	Available Mobile Manipulator Solutions
	Middleware software for communication
	RT-Middleware
	ZeroMQ
	ROS Robot Operating System

	Autonomous Navigation
	Simultaneous Localization and Mapping
	Overview of SLAM algorithms

	Mobile Base Path Planning
	Global Path Planning Algorithms
	Local Path Planning Algorithms
	Obstacle Recognition, Tracking and Path Prediction
	Social Navigation

	Manipulator motion planning algorithms
	Memory-based Stochastic Trajectory Optimization STOMP-M
	Bidirectional Potential Guided RRT*

	Item detection
	Item recognition via Convolutional Neural Network
	Item recognition via a set of markers

	Grasping techniques

	ROS state of the art
	MoveIt planning framework
	What is a motion planning algorithm
	Motion planning algorithms for mobile manipulators
	CHOMP description
	STOMP description
	OMPL description

	Obstacle detection and avoidance
	Octomap as obstacle detection

	Mobile Base Navigation
	Navigation Stack
	Transform tree
	Costmap 2D Package
	Move Base Package

	Hardware description of the Locobot WX250
	Robot hardware description
	Mobile base
	6 DOF Manipulator
	Gripper description

	Robot sensors

	Description of the robot's communication structure
	Communication structure
	Item request handling
	Search phase
	Fail handling
	Arm fail
	Base fail

	Pick and place routines

	Software architecture of the manipulator
	Communication structure
	Description of the arm_status topic
	Description of the pose goal topics
	Description of the pick_or_place topic

	Obstacle avoidance
	Octomap

	Object recognition
	ARTag markers

	MoveIt framework
	ROS mobile manipulator's motion planning algorithms
	OMPL planning library
	STOMP planner
	CHOMP planner
	Planning adapters

	Software architecture of the mobile base
	Our SLAM Algorithm: RTAB-Map
	Path Planners Plugin Choice
	Global Planning Plugin Choice
	Local Planning Plugin Choice

	Path Planning Setup
	Global Planner Settings
	Local Planner Settings

	Human detection and path avoidance
	People package
	Social Navigation Layer
	Spencer People Tracking Package
	Tracked People Translator Node

	Software Architecture for the Base
	Base Control node structure
	Description of the mobile base goal topic
	Description of the base status topic
	Description of the no marker

	Simulation and experimental results
	Simulation setup in Gazebo
	Working of the robot in simulation
	Laboratory setup
	Working of the robot in a real environment
	Motion planner tests
	Object detection testing
	ARTag test

	Mobile Base Testing
	SLAM Testing
	Path Planning testing

	Conclusions and future works
	Bibliography

