POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

y it iy Politecnico
SR ‘ §EE [®
T il di Torino

Master’s Degree Thesis
Technological features identification for
robotic assembly in non-structured

environments

Tutor Candidate

Prof. ANTONELLI Dario Salvatore Cascino 282122

20 December 2022

Abstract

The goal of the thesis is to develop a computer vision algorithm that can be used by a cobot with the
purpose to recognize different mechanical pieces that are present in the workspace. The recognition
of different mechanical pieces done by a cobot can be used for robotic assembly purpose in non-
structured environments. A robotic assembly operation of a mechanical part requires that the robot
must take the pieces present in the workspace with a precise order to correctly execute the task.
Therefore, the goal of the computer vision algorithm is to automate all the process: the cobot can take
the right mechanical piece also when it does not know a priori the position of the pieces, or, when
they are not in fixed position, and they can be moved in the workspace. In a general assembly
operation, the mechanical pieces involved seem similar to each other, for instance they can have the
same shape, or they can have the same material or the same dimension but are different in at least one
technological feature (they could have different number of holes). For this reason, the computer vision
algorithm must be based on differentiating the mechanical pieces from the others, using different
technological features. The work is divided in two parts: in the first part the algorithm must recognize
what is the right piece among several mechanical pieces present in the workspace, that the cobot must
grab. The development of the algorithm has been done by using the OpenCV library of Python and
the neural network used as model is the YoloV5. To reach this goal, it has been used an external
camera connected to the workstation because the images of the camera have a better resolution than
the images of the one integrated in the robot. the thesis deals with mechanical pieces that have small
features, the resolution of the images from a camera becomes important and critical. In the second
part of the work, after the recognition of the correct mechanical piece, the cobot approaches to the
right piece. Then, it must measure the exact position of the barycenter in order to grasp it by paying
attention to the moments of inertia. This has been done by using the software TMFlow associated to
the Omron cobot. The software uses the internal camera of the cobot. After taking the piece correctly,

the robot can manipulate it for assembly purpose.

INDEX

1. IntrOduction 0000000000000 000 5
1.1 RODOS QN CODOLS .uniiieeeieee et e e eee e e eeeeeaeeeeeaeeeeenaeaeanaaaes 5

2. MOdel Of the CObOt 00 7

2.1 Omron TMS 900oooiiiiiiiii e 7
2.2 CharaCteriStICS .ouvreeurieeiieeriieesieeeieeeieeetteesiteesereesteesteeeareesnseesaseesnneas 8
2.3 Anatomy of Omron TMS 900cccceieviiiiiiiiieeee e 8
2.4 Architecture of the SYStemccoeevuiveiiieiiieiiieeie e 10
B T € 1 41) 1) SRS PSRSTPP 11
2.6 Integrated camera in the CobOL.........cceveviiiiiniiiiiiie e 11
2.7 EXternal CAmMETa.........cocuvieiieeniieniieeieeeite ettt e 12

3. Object detection with featuresccceeeeereeeceeennnennnees 13

3.1 What is machine 1earning?...........ccccceeeeiiiieiiiieniiee e 13
3.2 Machine learning algorithmscccccveieiiiiieniiiece e, 14
3.3 Machine learning vs Deep learningcccceeevvveeecieeencieeeeieeenee, 16
3.4 Deep learning vs Neural networksccceeeeviieeiiiiiciiiieeeeeee, 17
3.5 Computer vision and object detection............cceeevvveeciieencieeeeieeenee, 18
3.6 Yolo algorithimccccviiiiiiiiiiiieeceeeee e 19
3.7 Features and mechanical pilecescceocvveieriiiieiiireeiie et 24

3.8 Python and libraries Usedccoccuvvieiiiiieciiieecieeeeee e 27

4. Code to train the YoloV5 modelceueeeeeeeecenceneees 29

4.1 YOoloV5 archit€Cturesccceeveevierieeiiieiieiesee e 29
4.2 Install and import the dependencies...........ccoeeuveeeiiieeeciieeeciieeeieeeas 33
4.3 Capture IMAZES.....cccvveereererereerreeeieeeteeesseeesseeesreesseesseessseeessseessseennns 37
4.4 Label the IMageSccccoveieiiiieeciieeeciee et 38
4.5 Training COMMANGeeeervreeeriieeeiiieeerieeeeteeeeaeeeeereeeesaeeeesneeens 46

5. Outputs and results of the trained model................ 49

5.1 Results after the trainingcceeeveeeviieriiieniieeeeee e 49

5.2 Output of the Models........coeveviiiiiiiiiieieeee e 69

6. Code for real-time object detectionccceeeeeeeeeceeeees 73

0.1 SEUINES ...vviieeiiieeetee ettt e e e e b e e e er e e e sar e e e e areeeenes 73
6.2 Definition of the WOrkSpace..........ccccvvveeciiiieeiiiieriieece e 75
6.3 Settings for the colour detectionccceeeeviieeiiiieecciieecee e, 77
6.4 Activation of the external webcamccccvvveviiieiiiiiiiieeeeee 79
6.5 From pixels tO MMcooviiiiiiiiiicciiee e 81
6.6 ColoUr AEtECLIONeeieiiieeeiiie ettt 86
6.7 Frame that appears in the workstationccccccveeeeiieieiiieccieeeee, 90

7. Integration of software in the cobotcc....... 93

7.1 Baricenter and manipulationcccceeeeveeieciiienciee e 93

T2 TV FLOW et e e e e e e e aeaaaeaees 93
7.3 ALl NOAES USEA ... e ae e 94

7.4 FIOW PrOZIAMcc.eviiiiiiieeeiieeeeiieeeeteeeeiveeeetaeeeseteeesereeessreeeesseeennnns 99
8. Sending the coordinates through RoboDK........... 119

8.1 Connection to the cobot and zero-machine........cccccuvueeeeeeeeeeeeeennnnn. 119

8.2 Code to sending the coordinates to the cobotcccceeviirnieennnen. 123

COHC]“SionS 00 127
Sitography 00 129

1 3310] 10T 11 0] 1 2 RPPP 133

ACKNOWIEdZMENLS ..cceveeeeiiiiieciininnnenseeeeessssssceesesssssssseeee 135

1. Introduction

1.1 Robots and cobots

The name “cobot” comes from “collaborative robot”. This means that this type of robots
can work and interact together with people in the same work environment. The idea of
collaborative robots was born in 1995 from a research mission of the General Motors
Foundation. The mission aimed to find a way to allow robots and workers to act and
collaborate in the same workspace. The cobots (Figure 1) are the newest types of robots
that are present nowadays in some industries and companies, they differ from the
traditional industrial robots (Figure 2) and therefore there are differences between them.
The collaborative robots can detect people because there are sensors and advanced visual
technology that are implemented on it. This is useful because they can stop immediately
changing their mode from working mode to a safety mode: this has led to an increasing of
the safety of the people and for these reasons the cobots do not need to be locked up in
cages. Instead, the traditional industrial robots do not have the technology of the cobots,
and they cannot interrupt their work even if there are people that are near the robot. This
could lead to injuries and for this reason unlike cobots, industrial robots need to be locked
up. Another difference is in the fact that the industrial robots are autonomous and once
they are programmed to do a certain task, they will do that following the fixed program.
Instead, the cobots that work together with the workers, must assist and complete difficult
tasks that cannot fully be automated. The collaborative robots are small, light and easy to
move and for these reasons can be employed almost anywhere and the space where they
work can be changed, for instance, when they finish a production process, they can be
employed in a different environment making the cobots versatile. In the other hand, the
traditional industrial robots are heavy and work in a fixed environment, therefore when
they are installed, they rarely are moved. Furthermore, while the industrial robots are
complex, suitable for high volume and for fixed production process, the cobots have

become a big advantage for the small and medium companies since they increase the

productivity, improve the quality and change the customer demands in a fast way
guaranteeing a high-mix production. A cobot is also easier to install and simpler to
program with respect an industrial robot making it easier to integrate into a manufacturing

or assembly process [4][5].

Figure 1: Omron [1] Figure 2: KUKA robot [2]

2. Model of the cobot

2.1 Omron TMS 900

The cobot used in the thesis is the Omron TM5-900 (Figure 3), which TMS5 is the model
of the robot and 900 are the maximum mm distance that it can reach. Since it is a
collaborative robot, it was designed to guarantee safety for the workers and interaction
between humans and cobots in the same work area. The Omron TM Collaborative robots
are intended to execute different tasks and applications guaranteeing a flexible production
also because the cobot can be easily moved. One of the most important advantages of the
Omron TM cobot is that it can fit into small spaces making them adaptable to almost any
factory environment. The biggest advantage of this cobot is the integrated vision system,
since it is designed for pattern recognition and object positioning. In the thesis the
integrated vision system is used to find the pattern of each single piece and its barycenter

in order to grasp it.

Figure 3: Omron TM5 900 [3]

2.2 Characteristics

The characteristics of the cobot are shown in Figure 4 [7].

700 mm 6k 1.1 m/s
TM5 +0.05 mm
900 mm 4 kg 1.4m/s

Figure 4: Table [7]

2.3 Anatomy of Omron TMS 900

As shown in Figure 5, the cobot has a base, six joints and an end-effector [7].

GRADE

BUILT-IN
VISION*

STURDY
JOINTS

Figure 5: Joints of the cobot [7]

The end-effector is composed by several buttons that implement different functions. As
shown in Figure 6, the vision button is used to add a new vision node to the execution
flow in the program since the cobot is programmed via a software called TM flow. The
point button is used to add a new recorded point of the cobot in the flow of execution of

the cobot program. The free button, instead, when held down, it enables the hand guidance

mode, this means that the worker can move the cobot by hand in servo-assisted mode.
This is important because the users can guide the cobot into positions and automatically
the cobot record the position in the software and this makes easy to set points to the cobot.
In the Figure 7 are shown other three elements that are present in the end-effector. In the
Analog I/0O Connector there are five pins: the supply, the reference, the digital input of the
type NPN, the digital output of the type NPN and the last one is the analog input + 10 V.
In the Digital I/0O Connector, instead, there are eight pins: the supply, the reference, three
digital inputs of the type NPN and three digital outputs of the type NPN. The indicator
light ring is important since shows the robot status, since the robot can be in manual mode
(green light), automatic mode (blue light). Moreover, if the indicator light ring is red is
because there is an error or the cobot is in an initialization mode. When the light is sky-
blue, it means that the cobot is in a safe startup mode. As shown in Figure 8, the last three
elements that are present in the hand of the cobot are the built-in vision system, the gripper
button and the end-of-arm tooling flange. The built-in vision system, thanks to the hand
guiding and the landmark positioning, allows the cobot to do quick setup for the pick and-
place tasks. The gripper button, instead, is a way in programming to close and open the
gripper and adds these operations to the execution flow of the program of the cobot. Under
the end-of-arm tooling flange it can be possible to insert different tools. For the purpose

of the thesis is inserted a gripper [7].

[]
Figure 6: vision node button (1), point button (2), Figure 7: Analog I/O connector (4), light ring (5),
free button (3) [7] Digital 1/O connector (6) [7]

Figure 8: Vision system (7), gripper button (8), tooling flange (9) [7]

2.4 Architecture of the system

The whole architecture system (Figure 9) is composed by the collaborative robot, the
control box and the TMflow software tool. The control box is connected to the cobot and
has the goal to control it. The robot stick is also connected to the control box, and it can
be possible through the buttons on the robot stick to execute basic operations on the cobot:
turn it on, turn it off, run it, increase, or decrease the speed, pause, or stop it. Moreover,
thanks to the TMflow software installed in the PC connected to the control box, is possible

to write different programs and different tasks that must be executed by the cobot [7].

10

Robot stick

Control box Collaborative robot

Figure 9: Architecture system of the Omron TM5-900 [7]

2.5 Gripper

To manipulate correctly the piece, it has been installed an adaptive gripper (Figure 10).
The model of the gripper is the Robotiq 2F 85 that is two fingers adaptive cobot gripper

with a maximum opening of 85 mm [8§].

Figure 10: Gripper installed in the cobot [8]

2.6 Integrated camera in the cobot

The Omron TMS5 900 also includes a camera (Figure 11) in the wrist. With its camera is
exploited the second part of the work of the thesis: the cobot must measure the exact
position of the barycenter in order to grasp it by paying attention to the moments of inertia
in order to manipulate the piece correctly. The characteristics of the camera are shown in

Figure 12 [7].

11

—

Figure 11: Camera integrated in the cobot [7]

Resolution 5Mpx
Autofocus 100mm > +e=
(rolling shutter)
View angle 60° diagonal
Sensor dimension 1/4 inch

Figure 12: Characteristic of the camera [7]

2.7 External camera

To make the first detection and recognize the right piece that the cobot must grab among
different pieces in the workspace, it has been used the external camera shown in Figure
13 from the Everenty company. It is an USB Full HD 2K 4MP 1440P Webcam and as
said, the frames from this camera have better quality with respect the ones given by the
integrated camera of the cobot [23]. The USB connection allows us to connect the webcam

to the workstation from which we can run the Python Code as we can see later.

Figure 13: External camera used [23]

12

3. Object detection with features

3.1 What is machine learning?

Machine learning is a branch of artificial intelligence (Al). It is a process that uses data
and algorithms so that the machines learn and decide autonomously like humans allowing
them to solve problems and take actions based on past observations without human help.
Machine learning is based on algorithms that thanks to statistical methods are trained to
make classifications and predictions [9][10]. Machine learning must not be confused with
deep learning, indeed, even if the two concepts are sometimes confused and considered
the same thing, actually deep learning is a subfield of machine learning as explained later.
At the same time, deep learning and neural networks must not be considered the same
thing since deep learning is a subfield of neural networks. As a result, machine learning,
deep learning and neural networks are all sub fields of artificial intelligence as shown in

Figure 14 [11].

Any technique which enables computers
to mimic human behavior.

Subset of Al technigues which use
statistical methods to enable machines
to improve with experiences,

Subset of ML which make the - L N
computation of multi-layer neural
networks feasible.

Figure 14: Sub-fields of 14 [24]

13

3.2 Machine learning algorithms

Machine learning can be classified into three families of algorithms: supervised learning,
unsupervised learning, and reinforcement learning. In each of them there can be found
different techniques and algorithms to make predictions and decisions depending on
different cases. The supervised learning algorithms and models make predictions based
on labeled training data, where each training sample includes an input and an output. This
means that each data is tagged with the correct label (Figure 15). The term “supervised”
is because these models need to be fed manually tagged sample data to learn from. The
goal of the supervised learning algorithm is to analyze the samples data to determine an
educated guess when it must determine the labels for unseen data [9][10]. Therefore, it
must approximate the mapping function so well that when it has a new input data, it can

predict the output [13].

Labeled Data

Prediction
OD |:| \'o—l) [Savere
) o.\—|+
l:l A i A Triangle

Lables

<:> I:I Test Data

Hexagon Square

Model Training

Triangle

Figure 15: Example of a supervised learning technique [20]

The unsupervised learning analyzes and clusters unlabeled datasets by uncovering insights
and relationships on them. In these types of algorithms, the models are fed input data and
the desired outputs are unknown (Figure 16). Therefore, these types of algorithms
discover hidden patterns and data grouping by their owns without any guidance, any

human intervention, and any prior training [9][10].

14

INPUT RAW DATA

Unlabeled data

Figure 16: Example of an unsupervised learning [21]

The reinforcement machine learning is a machine learning method similar to the
supervised one, but in this case the algorithm is not trained using sample data. Since there
is no training data, the machine must learn from its own mistakes without humans’
interventions and has the goal to choose the actions that lead to the best solution (Figure
17). As a result, this model learns using errors and trials and a sequence of successful
outcomes will be reinforced to develop the best action and the best path that it should take

in a given situation [9][10].

Input Raw Data (—(Environment)ﬁ

Reward Best Action
. < A
O
State Selection of

Algorithm

;}(Agent)—/

Figure 17: Example of a reinforcment learning [22]

Nowadays the most common techniques and algorithms that are used from machines to

make decisions and predictions are linear regression, logistic regression, clustering,

15

decision trees, random forests and neural networks. The linear regression is a supervised
learning algorithm that is used to predict numerical values, based on a linear relationship
between different data. The logistic regression, instead, is a supervised learning algorithm
that makes predictions for categorical response variables. It is used for classification: for
instance, the results of this algorithm can regard the answers “Yes”, “No” to an initial
question. The clustering is an unsupervised learning algorithm that identifies patterns in
data in order to group them. The decision trees are supervised learning algorithms and are
both used to predict numerical values and to classify data into categories. They use a
sequence of linked decision that are represented with a tree diagram and for this give the
name to this algorithm. The random forest has the goal to predict a value or a category by
combine several results from a certain number of decision trees and for this reason are also
supervised learning algorithms. The last algorithm are the neural networks: they are
supervised algorithms that simulate the way the human brain works, and they are
composed by many linked processing nodes. The neural networks are used to recognize
patterns and are used specially for image recognition and object detection. For this reason,
as explained later, in the thesis are used neural networks in order to recognize different

mechanical objects [9].

3.3 Machine learning vs Deep learning

As said, the deep learning is a subset of machine learning, and they differ in how each
algorithm learns and how much data are used for the algorithm. The deep learning does
not require necessarily a labeled dataset, indeed the deep learning can have as input
unstructured data in raw form, for instance images, and it can automatically find and
determine the set of features which distinguish a category of data from another one. In the
deep learning are eliminated some of the manual human interventions. In the other hand,
machine learning is more dependent on human intervention (Figure 18) to learn since
humans determine the hierarchy of features to understand between different data inputs

[9][12].

16

Machine Learning

& — ks — 1233 [l

Input Feature extraction Classification Output

Deep Learning

Gy —

Input

Output

Figure 18: Machine learning vs Deep learning [25]

3.4 Deep learning vs Neural networks

As shown in Figure 19 the structures of the simple neural network and of the deep learning
seem similar each other: both have an input layer, an output layer, and hidden layers in the
middle. Indeed, the difference between them is on the complexity of the structure. The
term “deep” in deep learning is referred to the depth of the layers in a neural network. A
neural network that has more than three layers is considered a deep learning algorithm

[12].

Simple Neural Network Deep Learning Neural Network
.-'_.' -E?_& ‘_.z' # ""*.-',"' :)

v il
e i,

@ nput Layer @) Hidden Layer @ Output Layer

Figure 19: Neural network vs Deep learning [26]

17

3.5 Computer vision and object detection

Computer vision is a subset of machine learning that takes information from digital images
and makes decision based on the information contained in that images. It can also be seen
as subset of neural networks (that is a subset of deep learning) but instead of processing
simulated data and statistics data, computer vision interprets visual information as images
and videos. It requires a large amount of data (visual information) to train the algorithms
in order to interpret the data. As a result, computer vision system combines deep learning
approaches with hardware like cameras and optical sensors [27]. Computer vision mainly
deals with three tasks: image classification, object localization and object detection. Image
classification has the goal to assign a class label to an image, predicting the class of an
object in an image. The inputs of image classification are images with a single object and
the outputs are class labels. Object localization has instead the goal to locate the presence
of objects in an image indicating their location with a bounding box around them. In this
case the inputs are images with one or more objects and the outputs are one or more
bounding boxes drawn around the objects that are defined by a point, width and height.
The object detection combines the two previous tasks: draws a bounding box around each
object of interest found in an image, localizing it and assigns to it a class label, doing at
the same time a classification [15]. It is shown an example of the three tasks in Figure 20.
The algorithm developed in this thesis has the goal to find the right mechanical pieces
(classified with some features) among several other pieces and for this reason the task of

this thesis is an object detection task.

Object Detection

Classification Localization

DOG DOG

Figure 20: Object detection [28]

18

3.6 Yolo algorithm

The model used in the thesis to do the object detection to recognize different mechanical
pieces is the YOLO model. YOLO is a convolutional neural network (CNN) composed by
a single neural network and it is suitable for object detection in real-time. The main
operation done by YOLO is the following: the image is divided in cells and it predicts the
bounding boxes and the probabilities in each cell for a certain object that must be detected
by the algorithm. It gives as output, the objects located with their bounding boxes and
probabilities. The word “YOLO” stands for “You Only Look Once”, and this means that
the image is seen only one time by the algorithm since the image travels the neural network
only once in order to derive predictions about the presence of an object in the image itself.
Therefore, the algorithm works in a single step where the image is analyzed, and the outputs
are given by the YOLO in the same run. The techniques used in the algorithm are three:
the residual blocks, bounding boxes regression and the Intersection over Union (IoU). In
the residual blocks technique, that is the first step of the YOLO algorithm, the input image
is divided into cells of the same dimension obtaining an image divided into SxS grid cells
(Figure 21). If an object appears in a particular grid cell with a certain probability, that cell
will be liable for detecting objects.

Y,
—*;

Figure 21: Division of the image in cells done by the YOLO model

The bounding box is a rectangular shape box that detect an object in a given image. Each

bounding box is characterized by a width, a height, a class, by a bounding box centre and

19

by the probability to detect the object in the bounding box. An example of a bounding box
is shown in Figure 22 considering the input image in Figure 21: h indicates the height of
the bounding box, w indicates the width, x and y indicate the centre of the bounding box
and c indicates the class of the object that appears in the bounding box. Each cell is
responsible for predicting a bounding box if the center of it is inside that particular cell.
The prediction of the object detected, and its class is done by involving the center, the

width, height and the confidence or probability [28].

Figure 22: Bounding box of the object detected

The Intersection over Union (IoU) is a number that represents a metric used to evaluate and
measure the accuracy of a model that must detect objects. Since any algorithm that provides
as output bounding boxes can be evaluated using the IoU, this evaluation metric is also
used in the YOLO model. To measure the IoU of a model, two bounding boxes must be
defined: the real bounding boxes and the predicted bounding boxes. The real bounding
boxes specify where the objects are actually, and they correspond exactly to the bounding
boxes that we have specified before the training in order to label the objects in the images.
In the other hand, instead, the predicted bounding boxes are the outputs provided by the

YOLO model and they are not necessarily to the real ones, because the model has always

20

some errors. Indeed, the IoU is a measurement of how the real bounding box and the
predicted bounding boxes overlap: if a real bounding box is exactly equal to the predicted
one, the IoU is equal to 1 and is the maximum possible number of the Intersection over
Union [35][36][44]. As shown in Figure 23, the real bounding box is drawn in green and
the predicted one is drawn in red, and they do not coincide generally. The evaluation metric

is computed by using the formula shown in Figure 24 [44].

Figure 23: Real bounding box vs Predicted bounding box

21

7

/AZ

Figure 24: Intersection over Unit computation

Therefore, the Intersection over Union is a ratio between the area of overlap between the
real and the predicted bounding box by the area of union of them. Is considered a good
prediction when the IoU number is greater than 0.5. In the Figure 25(a) and figure 25(b)

are shown some examples and evaluation metrics.

22

63

Figure 25 (a): [oU < 0.5 Figure 25 (b): IoU > 0.5

As a result, it is possible to say that higher is the overlapped area, higher is the IoU and
better will be the prediction by the YOLO model. Combining the three methods we can
have as output the final detection. As a result, to recap the three techniques used in the
YOLO, the prediction of the bounding boxes in each grid cell is done using which the class
probabilities are found out in each grid cell in order to set the class of each object. As shown
in the example in Figure 26, there are three classes of objects, a dog a bicycle and a car.
YOLO uses a single convolutional neural network to make all the predictions
simultaneously and through the IoU, it eliminates any other unnecessary bounding boxes
that do not match the dimensions of the height and the width of objects. The final detection
1s made such that the bounding boxes detect the objects accurately as shown in Figure 26
[28]. As we can see later, the version of the YOLO model used in the thesis is the YOLO
version 5 since it was the latest version released when the thesis study was started, and it

was the best in terms of performance.

23

Bounding boxes + confidence

W
L1 Nt
S x S grid on input ﬁl_!

Final detections

T | Jlr
Ly |

Class probability map

Figure 26: Techniques used by the YOLO model [28]

3.7 Features and mechanical pieces

In a general assembly operation, the mechanical pieces involved seem similar to each
other. For the purpose of the thesis, the cobot must recognize a piece as different from
another one by considering as difference at least one technological feature that
differentiate them. For this reason, they have been chosen different pieces that seems
similar to each other but are different in at least one feature. As shown in Figure 27, two
steel piasters are chosen: they have the same dimension, the same shape, the same number
of holes, they are both in steel even if they reflect the light in different way. The algorithm
has the goal to recognize these two piasters as the same piaster without making any

difference.

24

Figure 27: Steel piasters with different surface

Moreover, it has been chosen also a yellow piaster (Figure 28) that has the same shape,
same dimension, same number of holes of the steel piasters but it has a different material,
indeed this piaster is made of yellow plastic. The developed algorithm must recognize this
piaster as different with respect the steel ones, taking into account the material as a

different feature between them.

Figure 28: Piasters with different materials

Another piaster it has been chosen (Figure 29) and in this case the shape and the number
of holes is always the same, but it has a different dimension even if the material is the
same of the yellow one. The algorithm indeed, must recognize this piaster as different with
respect the others considering as features the dimension and the material. To have pieces

that have different shapes, some flanges they have been chosen (Figure 30).

25

Figure 29: Piasters with different material Figure 30: Flanges with different number of circumferential holes
and dimension

Analyzing the Figure 30, the top left flange has the same dimension and shape of the top
right one and both have the hole in the center of the piece. The only difference between
the two flanges is the number of the circumferential holes, indeed the top left flange has 4
circumferential holes, and the top right flange has 3 ones. The algorithm anyway must
recognize the two pieces in the top as different pieces taking into account the number of
circumferential holes as a different feature between them. Instead, the bottom flange has
the same number of holes and shape of the top right one, however it has a different
dimension. The developed algorithm must recognize this last flange as different with
respect the top ones considering as different features the number of circumferential holes
and the dimension. Another flange it has been chosen (Figure 31): this flange has no
circumferential holes even if it has a hole in the center, the same shape, same dimension
and same material of the small flange with three circumferential holes. In this case the
algorithm must distinguish this flange as different with respect the previous ones.
Moreover, the algorithm must simply recognize these flanges as different with respect the
piasters considering as different feature the shape. The last piece chosen is a flange with a
different shape with respect the previous ones (Figure 32), moreover it has only two

circumferential holes even if it has a hole in the center as happens in all flanges that are

26

chosen. As a result, the features that the algorithms must consider in order to recognize a
mechanical piece as different with respect the other, are the dimension, the shape, the

material and the number of circumferential holes.

Figure 31: Flange with same dimension but different Figure 32: Flange with 2 circumferential hole and
number of holes some cuts in the lateral surface

3.8 Python and libraries used

The goal of the thesis, as said several times, is to recognize real-life objects and this can
be reached by using the library OpenCV since it supports a lot of algorithms that are
related to Computer Vision and Machine Learning. The term OpenCV stands for Open-
Source Computer Vision. It is a free computer vision library that allows to reach different
tasks as image recognition, object localization and object detection. With this library is
possible to reading, writing and manipulate images and videos by doing some operations
on that. Moreover, it is possible to display videos from webcams, manipulating them to
reach different goals. Even if OpenCV supports different programming language like C++
and Java, to make the most of the potential of the OpenCV library, it is used Python as
programming language, even because Python is more suited to the tasks accomplished in
this thesis [28]. Python is an interpreted, object oriented, high-level programming

language with dynamic semantics and very powerful features. It supports modules and

27

packages that makes possible the program modularity and the reusing of the code [33].
Another library used in the thesis is named NumPy. It is a library that depends on the
Python bindings of OpenCV used for scientific and mathematical computing. With this
library is possible to do numerical computation with functionalities that are provided by
NumPy based on linear algebra and matrices. It is also possible doing operations on large
multi-dimensional arrays [28][32]. The fact that Python supports NumPy, makes the goals
of the thesis to be reached, easier. Indeed, NumPy is a highly optimized library for
numerical operations and its syntax is like the MATLAB one. Therefore, the OpenCV
array structures associated to images and videos are converted to and from the NumPy
arrays, in this way the numerical operations with arrays become easier because any
operations done in NumPy, can be translated in OpenCV to reach a large variety of goals
[29]. In the thesis is used the current version 2.3.1 of OpenCV. Even if there are two
Python interfaces that can be used with this version of OpenCV, in the thesis is used the
new module of OpenCV called “cv2”. The reason is that the old module “cv” uses internal
OpenCV datatypes that can be difficult to use from NumPy. With “cv2” instead, it is
possible to use NumPy arrays and is much more intuitive to use with respect to the old
one [30]. Since in the thesis it must be detect objects using points and lines, another library
used for developing the algorithm is Matplotlib. It is an open-source graphic library used
for plotting graphs, drawing points, lines, curves and images with a very high quality [30].
Another advantage to use NumPy is the fact that it has a vast ecosystem to support libraries
as Matplotlib and OpenCV. The last library used in the thesis is called PyTorch. It is an
open-source machine learning library used for developing and training neural networks
and deep learning models. PyTorch can also be used with different programming
languages as Python, C++ and Java but the Python interface is more sophisticated.
PyTorch uses dynamic computation that allows flexibility in building and establishing
complex architectures. PyTorch uses classes, structures and loops that makes it simpler
with respect other frameworks as TensorFlow [31]. PyTorch is based on Torch library and
the core package of Torch is called “torch”. Moreover, PyTorch interoperates with NumPy

to control the tools and libraries of NumPy in order to extend and improve its capabilities.

28

4. Code to train the YoloV5 model

4.1 YoloVS5 architectures

There are different versions of the YOLO model. The YOLO model to detect the
mechanical pieces used in the thesis is the YOLO version 5 (YOLOVS). It is written in the
Pytorch framework and its implementation is developed by the Ultralytics and the first
official version was released in the June of the 2020. The architecture of the Yolov5 is
similar to the Yolov4 with some improvements since the Yolov5 is faster and more
accurate than the YoloV4 [18]. There are several architectures of YOLOVS5 architecture as

seen in Figure 33.

f>®°$$

Nano Small Medium Large XLarge

YOLOvSn YOLOvSs YOLOvSm YOLOvSI YOLOv5x

Figure 33: Different models of the YOLOv5 [16]

The Yolov5n (nano) is the simplest one, instead the Yolov5x (extra-large) is the most
complicated one. The choice of one of these architectures depends on the application. If
the architecture is more complicated, it means that the outputs given by the model will be
better, but the speed of the training and the speed needed to detect an object in real time
decreases. In the purpose of the thesis, we need a model fast with good results and since
the Yolov5n (nano) gives the worst result in terms of the mAP computed in the validation
set images as shown in Figure 34, this architecture was excluded a priori. To understand
what the mAP is we have to understand first what the AP is. The AP is the average
precision, and the value of the AP goes from 0 to 1. It summarizes the precision—recall
curve by averaging precision across different recall values and it represents the area under

the precision— recall curve (details in 5.1 Figure 68). Since in the thesis we consider

29

different classes, there is an AP value for each class and it has no sense take only one AP
value of one class to evaluate the performance of the model. So, the mean average

precision (mAP) is used and can be computed as follows:

N

1
mAP = Nz AP,

i=1
Where the N represents the number of classes considered and the AP; is the average
precision of the single class. The mAP has different forms of calculation. One of these is
to do the computation of the AP considering as IOU threshold a value equals to 0.5 and
the area under the precision-recall curve is measured by using all the points. This type of
AP is called AP 0.5. If instead we consider the mean average precision, it is called the
mAP 0.5. There is another form of calculation called AP 0.5:0.95. In this case the average
precision is computed by considering different IOU thresholds, from 0.5 to 0.95
considering as the difference between a following IOU and the previous one equal to 0.05.
In this case we have as IOU thresholds the values equal to 0.5, 0.55, 0.6, 0.65 and so on.
The result is the average of the Aps considering the previous IOU thresholds [35][36]. If
we consider instead the mAP, the parameter is called mAP 0.5:0.95. In the Figure 35 are
shown all the remained models with the maximum size of images that can be detected, the
mAP 0.5:0.95 computed on the validation set images, the mAP 0.5:0.95 computed in the
test set images, the mAP 0.5 computed in the validation set images and the speed of the
model. Moreover, in the Figure 35 is shown a graph of the mAP 0.5:0.95 computed in the
validation set images as a function of the speed [45]. It is possible to see from the table
and from the graph that the values of the yolov5s are not so far from the values of the
yolov5x, but in the other hand the yolovS5s is five times faster with respect to the yolov5x

and for this reason in the thesis it is used the yolov5s.

30

size mAPval mA Prest mAPval Speed
Model
(pixels) 0.5:0.95 0.5:0.95 0.5 V100 (ms)
YOLOv5s6 1280 433 433 61.9 4.3
YOLOvV5Smo6 1280 50.5 50.5 68.7 8.4
YOLOv5I16 1280 534 534 71.1 12.3
YOLOv5x6 1280 54.4 54.4 72.0 224
Figure 34: mAP values for different YOLOvS models and for different set of images [18]
55 Better
YOLOv5x6

50 A
— 451
2
o
S 404
8 —e— YOLOvV5n6
o 35 - —o— YOLOv5s6

—e— YOLOv5mM6
—e— YOLOV5I6
301 —e— YOLOV5x6
YOLOv5Nn6 o~ EfficientDet
25 T T
0 40 50

1|0 210 3'0
Faster @ GPU Speed (ms/img)

Figure 35: graph of the mAP 0.5:0.95 computed in the validation set images [18]

The whole architecture of the Yolov5 is shown in Figure 36.

31

Backbone: CSPDarknet Neck: PANet Head: Yolo Layer
r——— = 1r————————————| - - =

[BottleNeckCSP BottleNeckCSP

1

t
t

|| BottieNeckesP

|

|

|

|

|

|

| v [l r |
| (_BottieNeckcsP [BottleNeckCSP
|

|

|

|

|

| (e

I

: |1 |
SPP BottleNeckCSP | | BottleNeckCSP |

[R S R
CSP Cross Stage Partial Network Convolutional Layer
SFR Spatial Pyramid Pooling Concatenate Function

Figure 36: Architecture of the YOLOvS model [19][43]

As it is possible to see, it is composed by three main blocks: the backbone, the neck, and
the head. The model backbone is used to extract the key features from the input image. In
the yolov5 is used as a backbone the Cross Stage Partial Networks (CSP) to extract the
most useful characteristics from the input image [19][43]. The model neck is used to create
feature pyramids. These are important to detect the object with different sizes and scales,
since it happens that there are two same objects in an image but with different sizes, and
the model must identify these objects as the same. The FPN, BiFPN, and PANet, use
various sorts of feature pyramid approaches. The model head is responsible as most, for

the final detection step. This model constructs the final output vectors with class

32

probabilities, objectness score, bounding boxes and other metrics and results specified

later [19][43].

4.2 Install and import the dependencies

As said, the model of yolov5 is a great implementation for object detection that use

PyTorch. First of all, it has been installed PyTorch by the following command [45][47]:

I'pip install torch torchvision torchaudio --extra-index-url...
...https://download.pytorch.org/whl/cull3

Then, it has been cloned the repository of yolov5 from GitHub and it has been used the

following command [46]:

| !git clone https://github.com/ultralytics/yolov5

The above command allows to create a folder called “yolov5” and copy on it all the files
and folders shown in Figure 37. In this way all files used to train the yolov5 model are

copied in the workstation from which the model will be trained.

.github 4 File folder

__pycache__ 4, File folder

data 4 File folder

models 4, File folder

runs 4 File folder

utils 4 File folder
=] .gitattributes 4 Text Document 1KB
\=| .gitignore 4 Text Document 5KB
| | .pre-commit-config.yaml 4 YAMIL File 2KB
| | CONTRIBUTING.md 4, MD File 5KB
| | dataset.yaml 5 YAML File 1KB
[# detect 4 Pythan File 14 KB
[# export 4 Python File 30KB
[# hubconf 4 Pythan File TKB
| | LICENSE 4, File I5KB
| | README.md 4, MDD File 16 KB
=] requirements 4 Text Document 1KB
| | setup.cfg 4 CFG File 2 KB
[# train 4 Pythan File I5KB
|| tutorialipynb 4 IPYNEB File 5TEB
F val 4 Python File 20 KB
|| yolov3s.pt 4/30/2022 443 PM PTFile 14,462 KB

Figure 37: Folders inside the yolov5 folder

33

Moreover, yolov5 needs some dependencies, libraries and modules that allow its
implementation. To install all the requirements [45] needed, the command below has been

used:

| Icd yolov5 & pip install -r requirements.txt |

The above command allows to enter in the folder “yolov5” and install all the requirements
written in the txt file “requirements.txt”. This file contains specific versions of the modules
needed for the yolov5 implementation that must be installed. In order to train the model,
after the dependencies’ installation, it is necessary to import them in the notebook from
which the yolov5 model is trained. Therefore, the PyTorch, Matplotlib, NumPy and

OpenCV libraries must be imported using the following commands [55]:

import torch

from matplotlib import pyplot as plt
import numpy as np

import cv2

Moreover, in order to collect images from the webcam the following libraries are also

imported using the commands [55]:

import uuid
import os
import time

Then, they have been created three folders: the folder “data” (Figure 38) contains both the
“images” and the “labels” folders (Figure 39). In the “images” folder we have collected
all the images used to train the model and instead in the “labels” are collected the files

created after labelled the images.

IMAGES_PATH= os.path.join('data', 'images')
labels=["'hole','pl', 'p2', 'p3', 'p4']

data 9/16/2022 4:48 PM File folder

Figure 38: Folder “data”

34

images 4/30/2022 211 PM File folder
labels 5/17/2022 5:47 PM File folder

Figure 39: Folder “images” and “labels”

Examples of the images collected of the flanges are shown in Figure 40.

Figure 40 (b)

Figure 40 (¢)

Figure 40 (e)

Figure 40 (g) Figure 40 (h)

35

It has been used the same approach [45][46][47] also to collect the images of the piasters

and the images detected are shown in Figure 41.

I'pip install torch torchvision torchaudio --extra-index-url...
...https://download.pytorch.org/whl/cull3

['git clone https://github.com/ultralytics/yolovs

| !cd yolov5 & pip install -r requirements.txt

import torch

from matplotlib import pyplot as plt
import numpy as np

import cv2

import uuid

import os

import time

IMAGES_PATH= os.path.join('data', 'images')
labels=['piastra']

Figure 41 (a) Figure 41 (b)

Figure 41 (c¢) Figure 41 (d)

36

4.3 Capture images

In order to obtain the images that represent the input given to the model, we have used a
code to obtain the images directly from the external camera. In this way the images are
the frames captured by the camera at each amount of time. First of all, we have defined
the total number of images that must be captured and is equal to 150. The webcam

connected to the workstation is activated with the function cv2.videoCapture (0)[55]:

total_number_of_images=150
cap=cv2.VideoCapture(90)

Then, we have defined a for cycle in which we collect one frame from the webcam at each

loop:

Loop for each image collected until the total number of images is equal to 1560
for image_number in range(total_number_of_images):

Then, at each time is obtained a frame from the webcam with the function cap.read()

and is saved in the variable frame:

obtain the frame from the webcam
ret,frame=cap.read()

Then, we have defined the path in which we save the images that corresponds to the folder

“images” that is contained in the folder “data” previously created [55]:

defining the path where the frames captured by the camera are saved
IMAGES_PATH= os.path.join('data', 'images')

save the image in the path defined
img_name= os.path.join(IMAGES_PATH, str(uuid.uuid1())+'.jpg")
cv2.imwrite(img_name, frame)

To show the image collected we have used the function cv2. imshow () [55]:

show the frame captured
cv2.imshow('Image Collection', frame)

37

Since it is needed time to move manually the objects in order to have frames with different
positions and rotations of the same object since we want to obtain a trained model with a

high robustness, we have defined the time that occurs between two captures:

4 seconds delay between captures
time.sleep(4)

The last three commands shown below means that until we do not press the key ‘q’ in the
keyboard, the algorithm will run until we obtain a number of frames equals to 150. When
instead we press the key ‘q’ to quit from the program, the webcam will be disactivated
with the function cap.release () and the window that shows the detection in real time

will be also closed using the command cv2.destroyAllwindows () [55]:

1f we want to end the process before the number of frames collected is equal to 150
if cv2.waitKey(10) & OxFF == ord('q'):
break

cap.release()
cv2.destroyAlliWindows ()

By running the code written in 4.3 the webcam will capture a new frame each 4 seconds

and it will save in the folder that we have set.

4.4 Label the images

In the thesis is used the software labellmg to label images for the object detection. To use

that, it is necessary to clone its repository from GitHub through the command [48]:

| ! git clone https://github.com/tzutalin/labelImg |

The above command copies all the files and folders shown in Figure 42 that are needed to
correctly use the software labellmg. These files are copied in the workstation in a folder

called “labellmg”.

38

.github
build-tools
data
demo
libs
readme
requirements
resources
tests
tools
|=| .gitignore
|] travis.yml
F _init_
| | CONTRIBUTING.rst
| | HISTORY.rst
| | issue_template.md
E labellmg
| | LICENSE
|| Makefile
|| MANIFEST.in
| | README.rst
| | resources.gre
| | setup.cfg
|_—A setup

File folder

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
Text Document
¥ML File
Python File
RST File
RST File
MD File
Python File
File

File

IM File

RST File
QRC File
CFG File

Python File

PN

P

o T I

A
A
A
A
A
A
v
A
v
A
1
A
W
A
1
A
A
A

Figure 42: folders inside the “labellmg” folder

1KB
2KB
O KB
1KB
2KB
1KB

69 KB

2KB
1KB
1KB
11 KB
3KB
1KB
4KB

Moreover, to use labellmg, it must be installed “pyqt5” that is a GUI library and “Ixml”

that is a dependency of pyqtS. This is done using the command below [55]:

| ! pip install pyqt5 1lxml --upgrade

To run the labellmg software the following command must be used [55]:

| !cd labelImg && pyrcc5 -o libs/resources.py resources.qrc

The above command (Figure 43) allows to go inside the folder labellmg and run the file

“pyrccS”, passing also through the folder “libs” in order to run the files “resources.py’

9

and “resources.qrc”. In this way the labellmg software is run correctly, indeed a window

will appear (Figure 44).

\labelImg>python labelImg.py_

Figure 43: Command to run labellmg program

39

i labelimg - o x
File Edit View Help
Box Labels
Lo [Fedt Lavel
apen
" [e
=
Open i (] use defouit lobel [dog
24
Change Save Dir 5
nest Image
Frev image
vty Image
»ois
oo
i)
Ouplcate Rects
b
@
Q
Zam out
&
do

Figure 44: Window of the labelimg program

To label the images, first we have to open the directory in which the images are saved,
and this is possible thanks to the command shown in Figure 45. At the same time, we have
to choose the directory in which the labeled images must be saved, and this has been done

thanks to the command shown in Figure 46.

40

vl labellmg ¥ labellmg

File Edit View Help File Edit View Help
Open Open
Open Dir Open Dir
V @en Dir i W
change Save Dir Change Save‘ Change default saved Annotation dir i
Next Image Next Image
Prev Image Frev Image
Verify Image Verify Image
| == | M,
Save ;E
b yolo
YoLo YOLO
Figure 45: Command to choose the directory that must Figure 46: Command to choose the directory where the
be opened images labeled must be saved

In order to correctly label the images in the Yolo format, we have changed the format into

“yolo” as shown in Figure 47.

¥ labellmg

Eile Edit View Help

A\

o
=
©
5

A\

o
=
@
=
=)

A\

Change Save Dir

»

Next Image

€«

Prev Image

]

Verify Image
| = |

Save

yolo

YOLO | Change save format i

Figure 47: Command to change the format in “yolo” format

41

After opened the directory, all the images will appear, one by one (Figure 48) and then it

has started the labeling process.

3

Frev Image

Y]

Verify Image
B
Save
yolo
YOLO

=

o <
Draw a new box

¥ labellmg C:\Users\Utente\Desktop\ Thesis\Yolov detection mech obj with features\data\images\IMG_20220429_192001 jpg [1/ 186]
File Edit View Help

Draw a new box
Create RectBox

* || Box Labels
(A Edit Label
[] difficult

[] use default label | dog

X:1358; Y: 2814

The first step was to create the rectangular box around the piece that the model must

recognize (Figure 49).

Figure 48: Image opened in the labellmg program

Eile Edit View Help

74
Open
74
Open Dir
2
74

Change Save Dir

e

Hext Image

L

Prev Image

]

Verify Image

Click & drag to move shape 'p1’

¥ labellmg C:\Users\Utente\Desktop\Thesis\Yolov detection mech obj with features\data\images\IMG_20220429_192001.jpg [1 / 186]

[~ [Box Labels

] use default label | dog v

Width: 1854, Height: 1838 / X: 3685; Y: 2741

Figure 49: Create the bounding box around the object to be detected

42

After created the rectangular box, another window will be appeared, in this case it is
possible to specify the name of the label detected (Figure 50). The result of the labeling is

shown in Figure 51.

vl labellmg ? X

[p1l |

dog A
person

cat

v

car

meatballs

marinara sauce

tomato soup

rhiclram noadla com

Figure 50: Name assigned to the object that must be detected

¥ labellmg C:\Users\Utente\Desktop\Thesis\Yolov detection mech obj with features\data\images\IMG_20220429_192001.jpg [1/ 186] = [m] X
File Edit View Help

Open

Open Dir

Box Labels

At Label |
[difficult

[] use default label | dog ~

P

Change Save Dir

»

Next Image

P

Prev Image

]

Verify Image

Mpt

Save

X: 3950; Y: 2241

Figure 51: Results of labeling an object

The same process is repeated also for the other classes as holes as shown in Figure 52 and

for the other pieces as shown in Figure 53, Figure 54, and Figure 55.

43

¥ labellmg C:\Users\Utente\Desktop\Thesis\Yolov detection mech obj with features\data\images\IMG_20220429_192001.jpg [1 / 186]

File Edit View Help

Change Save Dir

=

Next Image

-

Prev Image

]

Verify Image

Save

YOLO

&l

Create RectBox

Box Labels
(4 Edit Label

[difficult

[] use default label

[dog

hole

X: 3681; Y: 2034

Figure 52: Labels of holes inside a flange

Eile Edit View Help

¥ labellmg C:\Users\Utente\Desktop\Thesis\Yolov detection mech obj with features\data\images\IMG_20220429_192331,jpg [61 / 186]

7
74
Open

=

74

Open Dir
2,

Change Save Dir

¥

o
A
g
i

ge

3

Prev Image

&

Verify Image

Create RectBox

Box Labels
[Edit Label
[] difficult

[] use defautt label

[dog

X 4267; Y: 2823

Figure 53: labels related to the flange with 3 circumferential holes

44

File Edit View Help

¥ labelimg C:\Users\Utente\Deskiop\Thesis\Yolov detection mech obj with features\data\images\IMG_20220429_192622,jpg [113 / 186]

Verify Image
Save
yolo

YOLO

Create RectBox

[difficult

[use default label

w

X:4607; Y: 2419

Figure 54: label related to the flange that has not any circumferential holes

¥ labellmg C:\Users\Utente\Desktop\Thesis\Yolov detection mech obj with features\data\images\IMG_20220429_192733,jpg [145 / 186]

File Edit View Help

VIV

)

Change Save Dir

g
B
g
a
®

el
2
g
]

7]

Verify Image

Box Labels
[[AEdit Label
[] difficult

[] use default label

w

hole

X 4633; Y: 2392

Figure 55: labels related to the flange with 4 circumferential holes

45

4.5 Training command

!cd yolov5 && python train.py --img 320 --batch 16 --epochs 140 --data dataset.yaml...
...-weights yolov5s.pt --workers 2

The command above [55] allows to train effectively the model. First of all, it goes in the
yolov5 folder and run the train.py Python Script. Then we have to specify the “img” value
that represents the resolution of the objects that must be detected in the images that are the
input of the trained model. If there are many small objects to detect in an image, it is
convenient to use high resolution as 1280. In our case is sufficient to consider 320 as a
resolution. Then it is inserted the number of the batches and the number of epochs. To
understand what the batches and the epochs are, we must start to explain what the samples
are. The sample, also called instance, is a single row of data. The samples are the input of
the algorithm. A training dataset is composed by many samples. Therefore, it is possible
to define what a batch is. The batch defines the number of samples that are used before
updating the internal parameters of the model. It can be seen as a loop where we use some
samples to make the prediction and to train the model. At the end of the batch, the
predictions are compared to the expected output of the model. From this comparison it is
possible to calculate the errors that are used to update the parameters and improve the
model. A high value obviously guarantees a better model with lower prediction errors, but
at the same time if we raise the batch value too much, the time to train the model increases
exponentially. Furthermore, beyond a certain value it is not possible to greatly increase
the quality of the model and decrease the errors. For this reason, it is considered a number
of batches equal to 16. This means that the samples are divided in 16 groups. As a result,
our training dataset is divided into 16 batches. The number of epochs is different from the
number of the batches, since the number of epochs is the number of times that the
algorithm uses the entire training dataset. One epoch represents the possibility from a
training dataset to update the internal parameters of the model. Generally, the number of
epochs is quite large as hundreds. As we said for the number of batches, also in this case
a high value guarantees parameters that give as a result a better model. If we increase too

much the value of the epochs, the training time increases exponentially too even if below

46

a certain value it is not possible to greatly increase the performance of the model.
Therefore, each epoch represents a loop where are proceeded all the training dataset. In
this loop the model is trained over each batch and after each batch the model parameters
are updated. The number of these repeated loops represents the number of epochs. As a
result, we can consider the number of epochs and the number of batches as follows: the
number of the batches is the number of groups in which the samples are divided and each
group of samples represents the number of samples processed before the parameters model
are updated in each epoch (in each loop), instead, the number of epochs is the number of
complete passes (number of loops) through the training samples [37][42]. The
dataset.yaml give us a configuration of the training run. The dataset.yaml has been created
and it contains the path where is possible to see the images used for training and the images
used for the validation. This is because when we train e neural network model, the images

are divided into train images and validation images. The paths are defined as follows [37]:

path: ../data # dataset directory
train: images # train images directory
val: val_images # validation images directory

Then it has been defined the number of classes considered. In this case the model
considered is the model used to detect the holes and the flanges. The number of classes is
20 and the classes of interested are the last 5. As said 15 classes are defined by default.
The classes and the name of each classes are defined in the dataset.yaml in the following

way [37]:

Classes

nc: 20 # number of classes

names: ['dog', 'person', ‘'cat', 'tv', 'car', 'meatballs', 'marinara sauce', 'tomato soup',
'chicken noodle soup','french onion soup', 'chicken breast', 'ribs', 'pulled pork"',
"hamburger', 'cavity', 'hole', ‘pl’, ‘p2°’, ‘p3’, ‘p4’ 1 # class names

Then, it is specified the type of the model that we want to train, and, in our case, it is the
YolovSsmall as said previously. After waiting some time, we get the output of the training
[37]. As shown below, it has been used the same command also to train the piasters. In

the case of the piasters the number of epochs is higher since it is more difficult to obtain a

47

model with a low number of epochs that detects the piasters also when they are rotated.

This problem did not appear in the case of the flanges since the flanges are round objects.

lcd yolov5 && python train.py --img 320 --batch 16 --epochs 400 -data...
...dataset.yaml --weights yolov5s.pt --workers 2

48

5. Outputs and results of the trained model

5.1 Results after the training

The output of the training gives different results. First of all, in the folders

\yolovS\runs\train\exp4\weights (Figure 56) it is possible to find the file best.pt [37].

| C:\Users\ Tesisti\Desktop' Tesi 282122\Yolov detection mech obj with featuresiyolov3\runshtrain\ex pdiweights| - ‘ <]
Mame Date modified Type Size
[best.pt 5/2/2022 £&:55 PM PTFile 14,043 KB

D last.pt 5/2/2022 :35 PM PTFile 14,043 KB

Figure 56: file best.pt

This contains the final model for final Detection and Classification. Instead in the folders

\yolovS\runs\train\exp4 it is possible to find the file results [37] (Figure 57).

<« Tesi 282122 » Yolov detection mech obj with features » yolovd » runs » train > expd » v | O £ Search expd

g
weights confusion_matrix events.out.tfeven
t5.1631457107.LA

PTOP-PE2IKO2.1
18520

4 —_ | B
; -..‘_ lna,

PR_curve results train_batch(train_batchl train_batch2 val_batch0_lzbels val_batchD_pred

val_batchl_labels val_batchl_pred wval_batch2_lzbels val_batch2_pred

Figure 57: Results obtained after the training

49

It contains the summary of accuracy and losses achieved at each epoch that are analysed
later. Moreover, as shown in the Figure 57, it is possible to see graphs and plots that are
explained later [37]. In order to understand the validity and the prevision quality of the
classification model trained, it is used the confusion matrix. It is an important tool in
machine learning since it is useful to analyze the mistakes made by the model after its
training. To understand what a confusion matrix is and how can be used, it is made a
simple example of a binary classification. This means that there are two possible classes
(A and B), and the model must classify a sample, also called an instance, as class A or
class B. The class A is considered as the main and positive class, instead the class B is
considered as a negation and an alternative of the class A, for this reason the class B is the
negative class. In this binary classification case, the confusion matrix is a 2x2 matrix [34].
As shown in Figure 58, there are the predicted classes in the columns of the matrix and

the actual classes in the rows of the matrix.

PREDICTED CLASSES
Class A Class B

ACTUAL Class A
CLASSES Class B

Figure 58: Actual classes and predicted classes

The predicted classes are the output of the model trained, instead the actual classes are the
classes of the correct answers. In the example shown in Figure 59, the model analyzes a
certain number of samples, for instance 100 samples, and classifies them as class A or
class B. In 80 cases, the model classifies correctly the sample, but the other 20 samples

are classified incorrectly.

50

PREDICTED CLASSES

Class A Class B
ACTUAL Class A 50 5
CLASSES Class B 15 30

In this example there are four possible situations that can be verified. The True Positive
(TP) are the samples or instances that the model classifies as positive class (in this example
is the class A), the True Negative (TN) are the samples that the model classifies correctly
in the negative class (in this example is the class B). The summation of the TP and the TN
is 80, and as said, the model correctly classifies the samples in 80 cases. There are two

other situations that can happen: the False Positive FP are the samples that the model

Figure 59: Example of a confusion matrix

classifies as positive while they are negative in reality, the False Negative (FN), instead,

are the instances that the model classifies as negative, while they are positive in reality.

The summation of the FP and the FN is 20, this means that the model is wrong for 20 cases

as previously said (Figure 60).

PREDICTED CLASSES

Class A Class B
ACTUAL Class A 50 = TP 5=FN
CLASSES Class B 15=FP 30=TN

The confusion matrix can also be constructed by considering even more classes as happens

in the case study of the thesis (Figure 61).

Figure 60: TP, TN, FP and FN in a confusion matrix

51

PREDICTED CLASSES
Class A Class B Class C Class D

ACTUAL Class A
CLAS‘SES ["[a_c;s B
Class C
Class D

Figure 61: Confusion matrix with more classes

It is analyzed now the confusion matrix shown in Figure 62 deriving by the model that
must recognize the flanges and the holes. This confusion matrix considers the TP, FP, TN

and FN as percentage.

dog
person
cat
tv
car 0.8
meatballs
marinara sauce
tomato soup
chicken noodle soup 0.6
french onion soup

chicken breast

Predicted

ribs
pulled pork —04
hamburger
cavity
hole 067
1
P -02
p2
p3 003 011

p4 0.02 0.22

background FN
=0.0

dog

person

cat

tv

car

meatballs
marinara sauce
tomato soup
chicken noodle soup
french onion soup
chicken breast
ribs

pulled pork
hamburger
cavity

hole

p1

p2

p3

p4

background FP

True

Figure 61: Confusion Matrix of the model flanges and holes

52

As it is possible to see, the True Positive of the holes, of the first two flanges (p1 and p2)
are 100%. This means that the model does not make any mistake regarding these three
classes. Instead, the data regarding the recognition of the third flange (p3) are divided in
this way: the 98% of the predicted third flange represents the True Positive and the
remained 2% of the predicted third flange represents the False Positive. This means that
the model recognizes the actual third flange (real p3) as the predicted third flange
(predicted p3) for the 98% and for the remained 2% recognizes the actual fourth flange
(real p4) as the predicted third flange (predicted p3) making mistakes for the 2% of the
total predicted third flange. The same discussion can be also done for the fourth flange
(p4), since the 97% of the predicted fourth flange are the True Positive, this means that
the 97% of the fourth flange are the actual fourth flange. The remained 3% of the predicted
fourth flange represents the False Positive because the model recognizes these flanges as
the fourth but in reality, are the third ones. A separate discussion must be made for the
background False Positive (FP). This means that there were False Positives from the
background which shouldn't have been classified at all. The 67% of these False Positives
represents the holes, the 11% represents the third flange (p3) and the remained 22%
represents the fourth flange (p4). The confusion matrix is also important because it is
possible to obtain some performance metrics in order to evaluate the quality of the model.
To explain the metrics, we have to do introduce some variables. We denote the variable
x as the hidden and the unknown state. This unknown state can be x=A 1if it is positive
and, as said, it belongs to the class A, or it can be x=B if the hidden state is negative and
it belongs to the class B. We also denote the variable y as the classified output by the
model. It can be y=A if the model classifies a data as positive and belonging to the class
A, or it can be y=B if the model classifies a data as negative and belonging to the class B.
The first metric analyzed is the Precision. The Precision (p), or the positive predictive
value (PPV), is the probability that the unknown state is positive given that the data is
classified as positive. It can be calculated as the number of the True Positive divided by

the number of all classified positive results (TP + FP) and it is indicated as:

53

TP
TP + FP

p=Prob{x=Aly=A4}=
The recall, also called true positive rate (TPR), is defined by the probability that the model
classifies a data as positive, given that this data is positive in reality. It can be calculated
as the number of the True Positive divided by the number of total actual positives (TP +
FN) and it is indicated as:

TP
TP+ FN

r=Prob{y=Alx=A}=
It is possible to use also the F1 score. It is another performance criteria defined as the
harmonic mean of precision (p) and the recall (r), and it is calculated as the:
pr

2
Fl:l 1=2p+r
—4 =
r.p

From these metrics it is possible to build some graphs as a function of the confidence.
These plots are made automatically by the libraries used after the training of the model is
finished. The confidence value represents a threshold parameter T. It is used to determine
how secure the model is regarding each specific detection. If we consider the example of
the binary classification in the sense that a sample can be classified as positive (class A)
or negative (class B), the class prediction for each sample is made based on a continuous
variable Z. This variable is a score computed for the sample, therefore represents the
estimated probability that a data belongs to a class rather than another one. Given the
confidence threshold value T, an instance is classified as positive (class A) if Z > T,
otherwise is classified as negative (class B). The first plot analyzed is the precision curve

as a function of the confidence value T (Figure 63).

54

1.0

— hole

0.8 o4
= 3|l classes 1.00 at 0.964

0.6

Precision

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figure 62: P-curve of the model flanges and holes

As it is possible to see, the confidence value that optimizes the precision of all the classes
considered is 0.964. This value corresponds to the maximum value of the precision, that
is 1 and this means that the False Positive are nullified. As shown later, we consider this
confidence value later. The second plot considered is the recall curve as a function of the

confidence (Figure 64).

55

1.0+

0.8 1

0.6 1

Recall

0.44

0.2 4

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figure 63: R-curve of the model flanges and holes

The confidence value that optimizes the recall considering all the classes is 0. This value

hole
pl
p2
p3
p4

= all classes 1.00 at 0.000

corresponds to the maximum value of the recall, that is 1 and this means that the False

Negative are nullified. As a result, we must consider the confidence value equal to 0 if we

want to maximize only the recall, instead, it must be equal to 0.964 if we want to maximize

only the precision. In order to maximize both values we have to consider the F1 curve as

a function of the recall (Figure 64).

56

1.0

—— hole

0.8 —— p4
= all classes 0.99 at 0.656

0.6

F1

0.4

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Figure 64: F1 Curve of the model flanges and holes

The F1 score combine precision the and the recall in a single confidence threshold value.
As shown in Figure 62 and in Figure 63, if the confidence increases the precision
increases, instead the recall decreases. The goal is to find the confidence value that
maximizes the F1. As shown in Figure 64, the confidence value that maximizes all the
classes considered (hole, pl, p2, p3 and p4) is 0.656 since the F1 score of all classes are
0.99. As a result, in the code is considered this value to detect correctly one of these
classes. Moreover, in Figure 65 it is possible to see the precision as a function of the recall

and the mAP computed with an IOU threshold equal to 0.5 is equal to 0.994.

57

1.0 ‘ZE

—— hole 0.995
pl 0.995
—— p20.995
—— p30.994
0.8 1 —— p4 0.994
w— 3|l classes 0.994 MAP@0.5
0.6
c
o
n
vl
o
o
0.4 A
0.2 4
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 65: P-R curve of the model flanges and holes

The other results that give the training are shown below. There are three different types of
losses: the box loss, the objectness loss and the classification loss. In a Machine Learning,
the loss functions are used to optimize the model during training. Lower is the value of
the loss and higher is the quality of the model to recognize the objects, so the goal is to

minimize the loss functions [41].

58

0.12

0.10

0.08

0.06

0.04

0.02

Figure 66: box losses using train

0.12

0.10

0.08

0.06

0.04

0.02

0

0

Figure 69: box losses using
validation set

train/box_loss

100

set

vallbox_loss

100

0.035

0.030

0.025

0.020

0.015

0.010

train/obj_loss

—e— results

0 100

Figure 67: objectness losses using

0.025

0.020

0.015

0.010

train set

valfobj_loss

0 100

Figure 70: objectness losses using

validation set

trainfcls_loss

0.08

0.06

0.04

0.02

0.00
0 100
Figure 68: classification losses
using train set

valicls_loss
0.08
0.06
0.04
0.02
0.00
0 100

Figure 71: classification losses
using validation set

The Figure 66, Figure 67 and Figure 68 show the computed losses as a function of the

number of epochs, using the dataset dedicated to the train (train set), instead the Figure

69, Figure 70 and the Figure 71 show the computed losses as a function of the number of

epochs using the dataset dedicated to the validation (validation set). The box loss is the

bounding box regression loss and describes how well the model locate the center of an

object detected and how well the predicted bounding box surrounds this detected object

[38]. To compute the box loss is used the mean squared error (MSE) that represents the

loss function for regression. The mean squared error is the mean overseen data of the

squared differences between the real and the predicted values and can be computed with

the formula:

59

N
1 52
L= NZ(%)
=0

y; represents the i-th real value, 9; is the i-th predicted value and N is the number of values
in the model output [39]. The objectness is the probability that an object exists in an
interested region. If the objectness loss is low, it means that the probability that the model
detects the object in an image is high [38]. To compute the objectness loss is used the

binary cross entropy loss function with the following formula:

N
1
L= =5 yi-log@)+ (1) log(1- 9)
i=1

Also in this case, y; represents the i-th scalar real value, J; is the i-th predicted value and
N is the number of values in the model output [40]. The classification loss describes how
well the model predicts a correct class of a given object [38]. To compute the classification

loss, it is used the cross entropy with the formula:

n

L= =) ti-log(p)

i=1

t; represents the truth label of the sample, while p; represents the probability that a sample
appertain to the i-th class and n is the total number of classes [41]. In this model we obtain
a box loss using the training set, equal to 0,015795 in the last epoch, instead the minimum
loss is reached in the epoch number 138 and is equal to 0,015306 (considering the first
epoch equal to the epoch number 0). In the last epoch the value of the objectness loss
computed in the train set is equal to 0,012745 and the minimum value is reached in the
epoch number 137 that is equal to 0,011006. The value of the classification loss computed
in the train dataset in the last epoch is equal to 0,003865, instead the minimum value is
reached in the epoch number 137 and is equal to 0,0033098. Considering the validation
set, the minimum value of the box loss is reached in the last epoch and is equal to 0,0122.

This consideration is also valid for the objectness loss and for the classification loss, since

60

the minimum objectness loss using the validation set is reached in the last epoch and is

equal to 0,0078598 and the minimum classification loss using the validation set is reached

in the last epoch too and it is equal to 0,0023908. It is possible to find all these values in

the “result” file. In the Figure 72 and Figure 73, are shown the precision and the recall as

a function of the number of epochs.

1.0

08

0.6

04

0.2

0.0

Figure 72: Precision as a function of epochs

0

metrics/precision

100

1.0

08

0.6

0.4

0.2

0

metrics/recall

100

Figure 73: Recall as a function of epochs

In the “results” file we can see that the precision value in the last epoch is equal to 0,98553,

instead the maximum precision value is reached in the epoch number 114, and it is

0,98952. The value of the recall in the last epoch is equal to 0,99209 and the maximum

value is reached in the epoch number 110, and it is equal to 0,993699. Moreover, in the

Figure 74 it is possible to see the mAP 0.5 explained previously, as a function of the

epoch. The maximum value is 0.99446 and is reached in the epoch number 137. In Figure

61

75 instead, it is possible to see the mAP 0.5:0.95 explained previously. The maximum

value is reached in the epoch number 138 and the value is equal to 0.92657.

1.0

0.8

0.6

0.4

0.2

00

metrics/mAP_0.5

0 100
Figure 74: mAP 0.5

metrics/mAP_0.5:0.95

08
0.6
04
02

0.0

0 100
Figure 75: mAP 0.5:0.95

In Figure 76 is possible to see the number of objects detected for each classis during the

training.

600 -

500 -

300 -

instances

200 -

100 -

400 -

cat -
tv -
car -

E T T T TrTTTTTTT
onc N oo+ X = >
o o6 =u>33f80o59L
o n ©>oo00g g 9>
o acmhnhnd -ocsH
Q = o 20
=% c SWcC Ba
oPsTlec =2g
ECE0Cl S
.Eogou ac
o L=
T 05
E o©c
X O
2
ic
o

Figure 76: labels

62

It is possible to see below also the results regarding the model that must be recognize the
piaster. It is analyzed now the confusion matrix shown in Figure 77 deriving by the model

that must recognize the piasters.

Confusion Matrix
dog -
person -
cat -
tv - 0.8
car -
meatballs -
marinara sauce -
0.6

tomato soup -

chicken noodle soup -

Predicted

french onion soup -

chicken breast - -04

ribs -

pulled pork -

hamburger - .
cavity -

piaster - 100 1.00

background -
- 0.0

dog -
person -
meatballs -
marinara sauce -
tomato soup -
chicken noodle soup -
french onion soup -
chicken breast -
ribs -
pulled pork -
hamburger -

cavity
piaster -
background -

Figure 77: Confusion Matrix of the model piaster

As shown in Figure 78, the confidence value that optimizes the precision of the class

piaster is 0.99 that is very high.

63

Precision-Confidence Curve

—— piaster
= gll classes 1.00 at 0.990

0.8

Precision
o
()]

I
~

0.2 4

0.0 T T T T
0.0 0.2 0.4 0.6 038 1.0
Confidence

Figure 78: P-curve of the model piaster

The recall curve as a function of the confidence is shown in Figure 79.

0 Recall-Confidence Curve

—— piaster
all classes 1.00 at 0.000

0.8

0.6

Recall

0.4

0.24 |

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figure 79: R-curve of the model piaster

The confidence value that optimizes the recall considering all the classes is 0. This value
corresponds to the maximum value of the recall, that is 1 and this means that the False
Negative are nullified. As a result, we must consider the confidence value equal to 0 if we
want to maximize only the recall, instead, it must be equal to 0.99 if we want to maximize
only the precision. In order to maximize both values we have to consider again the F1

curve as a function of the recall (Figure 80).

F1-Confidence Curve

—— piaster
== all classes 1.00 at 0.915

0.81

0.6+

F1

044

0.2 4

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figure 80: F1 curve of the model piaster

The F1 score combine precision the and the recall in a single confidence threshold value.
As shown in Figure 78 and in Figure 79, if the confidence increases the precision
increases, instead the recall decreases. The goal is to find the confidence value that
maximizes the F1. As shown in Figure 80, the confidence value that maximizes the piaster
classis 0.915. As aresult, in the code is considered this value to correctly detect the piaster
class. Moreover, in Figure 81 it is possible to see the precision as a function of the recall

and the mAP computed with an IOU threshold equal to 0.5 is 0.995.

65

Precision-Recall Curve

0.8

Precision
o
(=]
|

@
'S
.

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 81: P-R curve of the model piaster

The other results that give the training are shown below.

—— piaster 0.995
= gl classes 0.995 MAP@0.5

66

train/box_loss train/obj_loss train/cls_loss

0.12 0.04 —s— results
0.06
0.10
0.03
0.08 0.04
0.06
0.02
0.04 0.02
0.02 0.0 g
0.00
0 200 400 0 200 400 0 200 400
Figure 82: box losses using train Figure 83: objectness losses using Figure 84: classification losses
set train set using train set
val/box_loss val/obj_loss val/cls_loss
0.10 0.035 0.04
0.030
0.08 0.03
0.025
0.06
0.020 0.02
0.04 0.015
0.01
0.02 0.010 N
0.00
0 200 400 0 200 400 0 200 400
Figure 85: box losses using Figure 86: objectness losses using Figure 87: classification losses
validation set validation set using validation set

In this model we obtain a box loss using the training set, equal to 0,0090579 in the last
epoch, instead the minimum loss is reached in the epoch number 398 and is equal to
0,0087963 (considering the first epoch equal to the epoch number 0). In the last epoch the
value of the objectness loss computed in the train set is equal to 0,0093373 and the
minimum value is reached in the epoch number 377 that is equal to 0,0084673. The value
of the classification loss computed in the train dataset in the last epoch is equal to
0,00055961, instead the minimum value is reached in the epoch number 396 and is equal
to 0,00055232. Considering the validation set, in the last epoch the value of the box loss
computed is equal to 0.0079922, instead the minimum value of the box loss is reached in
the epoch number 398 and is equal to 0,0079569. For the objectness loss instead, the value

computed in the last epoch is equal to 0.0071217 and the minimum value reached is in the

67

epoch number 393 and is equal to 0.0070929. For the classification loss the minimum

objectness loss is reached in the last epoch and is equal to 0.00054349.

1.0

0.8

0.6

0.4

0.2

0.0

Figure 88: Precision as a function of epochs

metrics/precision

0 200 400

metrics/recall

1.0 r
0.9

0.8

07 §

0.6

0.5

0 200 400

Figure 89: Recall as a function of epochs

In the Figure 88 and Figure 89, are shown the precision and the recall as a function of the

number of epochs. In the “results” file we can see that the precision value in the last epoch

is equal to 0,99905 that is the maximum. Regarding the precision value, we have obtained

the maximum possible value that is equal to 1.

In Figure 90 and Figure 91 it is possible to see the results regarding the mAP 0.5 and the

mAP 0.5:0.95 as a function of the epoch.

1.0

0.8

0.6

0.4

0.2

0.0

metrics/mAP_0.5

—

0 200 400
Figure 90: mAP 0.5

metrics/mAP_0.5:0.95

0.8
0.6
0.4
0.2

0.0
0 200 400
Figure 91: mAP 0.5:0.95

68

5.2 Output of the models

The output given by each model is a tensor. A tensor is a multidimensional matrix. Before
saying what a matrix is, we have to define what an array is. An array is defined as a 1D
object that has 1xM dimension, this means that the array has M columns and only one row

as shown below:

[12 3 4]

In the example above, the dimension of the array is 1x4. In Python the array is represented

with two square brackets as shown below:

[1,2,3,4]

A matrix is a 2D array, this means that it has not only one row, but it can have more than
one row. The dimension of the matrix is NxM, where N in this case represents the number

of the rows. An example of a matrix 3 x 2 is shown below:

1 2
5 6

In Python the matrix is represented with the following way:

[[1,2],
[3,4],

[5,6]]

As said previously, the tensor is a multidimensional array, and it can be seen in different

ways (Figure 92).

69

-
o1]|2|3]a4 3
}2 /lm|21lzz‘23]24 5
s |6 |7 |8 |e
|10|11|12|13||4 //
0 1 2 3 4
1112|1314 2 L ////
3< 5|6 |7 |8]|69
15 16 17 18 19 /
“ . J 3 1
20 21 22 23 24 5
25 | 26 27 | 28 | 20 ——
.
L. ~ J 2
5

Figure 92: Representation of a tensor [49]

In Python the tensor is represented with the following way [49]:

tensor([[[@6 1 2 3 4]
[5 6 7 8 9]1,
[[10 11 12 13 14]

[15 16 17 18 19]1,

[[20 21 22 23 24]
[25 26 27 28 29]111)

The tensor can be seen as a mathematical object that contains several superposed matrices.
In the example above, the tensor contains 3 matrices of dimension 2x5. In particular, the
output given by each model can be seen as a mathematical object that contains several
superposed arrays of dimension 1x6. The number of arrays is given by the number of
objects that the model detects in real time. Instead, the six columns represent in order the
abscissa coordinate of the top left point of the bounding box, the ordinate coordinate of
the top left point of the bounding box, the abscissa coordinate of the bottom right point of
the bounding box, the ordinate coordinate of the bottom right point of the bounding box
and the last number represents the class of the object related to that model. We take as

example the Figure 93 [49].

70

100

200 ciostra 0.98

300

400

0 100 200 300 400 500 600

Figure 93: Tensor output of the piaster model

The output of the piaster model is given below.

tensor([[170.20285, 334.79074, 259.31354, 430.66318, 0.97972, 15.0000],
[389.14435, 206.32632, 476.08832, 299.88882, 0.97731, 15.0000]])

The array [170.20285, 334.79074, 259.31354, 430.66318, 0.97972, 15.0000]
is associated to the below piaster. The value 170.20285 and 334.79074 are respectively
the abscissa and ordinate of the point A. The value 259.31354 and 430.66318 are
respectively the abscissa and ordinate of the point B. The value 0.97972 represents the
confidence with which the model detects that object as piaster. The final value 15.0000
simply represents the number of class detected and in this case the number 15 is associated
to the “piaster” class.
The array [389.14435, 206.32632, 476.08832, 299.88882, 0.97731, 15.0000]
is associated to the upper piaster. The same consideration done before, is repeated also for

this object. The value 389.14435 and 206.32832 are respectively the abscissa and

71

ordinate of the point C. The value 476.08832 and 299. 8882 are respectively the abscissa
and ordinate of the point D. The value 0. 97731 represents the confidence with which the
model detects that object as piaster. The final value 15. 0000 simply represents the number
of class detected and in this case the number 15 is associated to the “piaster” class. As
shown later on, in order to easily do mathematical operations with the tensors, these are
transformed into lists. In the previous example, the list associated to the tensor becomes

[49]:

[[170.20285, 334.79074, 259.31354, 430.66318, 0.97972, 15.0000],
[389.14435, 206.32632, 476.08832, 299.88882, 0.97731, 15.0000]]

The list is easy to manage with Python, because from the list it is possible to obtain the
values inside the list in an easy way and therefore it is possible to do operations in the
main code. For this reason, as shown later, in the thesis are used the lists and its contained

numbers instead of the associated tensors.

72

6. Code for real-time object detection

6.1 Settings

First, are imported the libraries needed for the real time detection with the commands

below [55].

Import all the Llibraries used
import torch

from matplotlib import pyplot as plt
import numpy as np

import cv2

import uuid

import os

import time

Then, are loaded the model of the flanges and of the piasters with the following commands

[55]:

Load the model from the folders

model_hole=torch.hub.load('ultralytics/yolov5', 'custom’,...
...path="yolov5/runs/train/exp4/weights/last.pt")

model_piastra=torch.hub.load('ultralytics/yolov5', 'custom’,...
...path="C:/Users/Utente/Desktop/Thesis/Yolov detection...
...colour_dimension/yolov5/runs/train/exp/weights/last.pt"')

In the real time detection is needed to detect all the possible flanges that are in the frame
of the webcam. The function shown below has the goal to consider all the possible classes
of the flanges detected in the frame of the webcam with a confidence greater than 0.7. The
function returns the array flanges that contains the positions in the list 1ist of only the

flanges detected with a confidence greater than 0.656 obtained by the F1 curve.

73

DEFINE THE FUNCTIONS

function useful to count the number of the flanges
def number_flanges(lista):
count the number of flanges detected
number_of_flanges_detected=0
i=0
flanges=[]
n_hole=[]
for i in range(len(lista)):
if lista[i][5]==16 or lista[i][5]==17 or lista[i][5]==18 or lista[i][5]==19: #class
#p1,p2,p3 or p4 in the dataset.yaml
if lista[i][4]>0.656:
number_of_flanges_detected+=1
flanges.append(i)

return flanges

To correctly distinguish a flange from another one, is also used the recognition with

features, and as said previously, the features are the circumferential holes that in the

model hole are represented with the class number 15. The goal of the function below is

to count the number of circumferential holes detected in each flange that was previously

detected with a confidence greater than 0.656. The function returns the number of the

holes that are present in a flange with a confidence greater than 0.656.

function useful to count the number of circumferential holes 1inside a flange
def number_holes(lista):
count the number of holes for each flange detected
i=0
n_hole=[]
for i in range(len(flanges)):
holes=0
j=0
for j in range(len(lista)):
if lista[j][5]==15: #class hole in the dataset.yaml

. and lista[j][2]< lista[flanges[i]][2] and lista[j][3]< lista[flanges[i]][3]:
holes+=1
n_hole.append(holes)

return n_hole

if lista[j][@]> lista[flanges[i]][@] and lista[j][1]> lista[flanges[i]][1] ...

74

6.2 Definition of the workspace

We have to define the workspace in which the piece can be found by the cobot. To do that
we have to define the origin that represents the zero-machine from which the cobot start

to move to find the piece. The origin is placed as shown in Figure 94.

Figure 94: Workspace

In the code the origin has been defined in the following way:

define the © machine
X_base= x1_workspace
y_base= yl1 _workspace

As shown in Figure 95 the workspace is defined by 4 points: A, B, C and D. So, the goal
is to find the pieces only inside the workspace defined by the points A, B, C and D.

75

Figure 95: Coordinates to define the workspace

In the code we have defined 4 coordinates: the x1 workspace represents the x coordinate
of the point A, the x2_workspace represents the x coordinate of the point C. Instead, the
y1l workspace represents the y coordinate of the point A and finally the y2 workspace

represents the y coordinate of the point B.

define the workspace
x1_workspace= 139
x2_workspace= 555
y1l_workspace= 115
y2_workspace= 390

Since the command sent by the Python code are referred to the TCP final position, we
have to define the distance in the y coordinate that there is between the TCP frame and the
camera. This is because the important thing is that the cobot has to move to the center of
the bounding box of the piece in the way that the camera of the cobot can detect the piece.
For this reason, the best way is to move the cobot in order to have the alignment of the
center of the bounding box of the piece with the center of the camera. The offset of the
center of the camera with respect to the frame of the TCP has been measured and has been

defined in the code in the following way:

76

define the distance between the camera and the center of the TCP
coord_camera_y= 62

To send the coordinate of the center of the bounding box of the piece, we have to send the
coordinates along x, y and z. Since the cobot does not move from the zero-machine along

the z axis we define the movement of the cobot along the z axis equal to 0 as follows:

set the coordinate Z equal to @
coord_z_mm= 0

6.3 Settings for the colour detection

Other values that must be defines are the upper and the lower bounded for the colour
detection used for the piasters. To describe the colour of the piasters it has been used the
HSV model. It is a coded digital system with which it is possible to define colors through
three parameters: hue, saturation, and brightness. Therefore, it is a way to represent the
colors in a digital system. The HSV assigns to a color three dimensions that

mathematically describe the space or also called color spectrum (Figure 96).

Figure 96: Color spectrum of the HSV model [54]

77

The hue is the color itself, the saturation represents how saturated we want that color and
the value represents the brightness of the color. By fixing the value parameter, it is possible
to obtain a 2D representation in which the abscissa represents the hue, and the ordinate

represents the saturation (Figure 97).

50 (1) H=S (H: 0-180, S: 0-255, V: 255)

30 40
(H: 0-180, S:

Figure 97: 2D representation of the HSV model by fixing the value V [56]

The value of the hue goes from 0 to 180, the value of the saturation goes from 0 to 255
and finally the value of the brightness (value) goes from 0 to 255. By looking at the Figure
96 and the Figure 97, it has been defined the range of the three values in order to detect
from the frame of the webcam only the objects colored in yellow (H=15:50, S=50:255,
V=200:255). The same thing it has been done also for the object colored in brown
(H=15:50, S=50:255, V=200:255). All these parameters are defined in the main code as
shown below [56].

we define the upper and the Lower bounded for the yellow colour
lower_yellow=np.array([15,50,200])
upper_yellow=np.array([50,255,255])

we define the upper and the lower bounded for the brown colour
lower_brown=np.array([90,50,100])
upper_brown=np.array([50,120,200])

78

6.4 Activation of the external webcam

After defining the functions useful in the main code, it is activated the webcam connected
to the PC with the function cap.isoOpened ()and then, at each time is obtained a frame
from the webcam with the function cap.read (). Then, it is called back the results of the
model hole and of the model piastra because while the webcam is activated, the frame
of the webcam is given as input at each time to the model hole and tothemodel piastra
and they give as output the tensors as explained previously. As said, in order to easily do
mathematical operations and to easy manage the numbers contained in the tensor, it is
used the function tensor.tolist () in order to transform the tensor into a list. All the

operations described are shown below.

ACTIVATE THE WEBCAM
cap=cv2.VideoCapture(0)
while cap.isOpened():

ret,frame=cap.read()

we apply the model of the flanges and holes to our image detected by webcam
results_hole=model_hole(frame)

we apply the model of the piaster to our 1image detected by webcam
results_piastra=model_piastra(frame)

convert the result of the model of flanges and holes in a tensor
tensor_hole=results_hole.xyxy[0]

convert the tensor in a Llist

lista=tensor_hole.tolist()

convert the result of the model of piasters in a tensor
tensor_piastra=results_piastra.xyxy[0]

convert the tensor in a list
list_piastra=tensor_piastra.tolist()

Then, taking as input the list, there are called back the functions that returns the array
flanges that contains the positions in the list 1ist of only the flanges detected with a
confidence greater than 0.656 and the number of the holes that are present in them. These

operations are done with the commands below.

79

1f flanges are detected in the frame of the camera
if len(lista)»>0:
count the number of flanges detected
flanges=number_flanges(lista)

count the number of holes for each flange detected
n_hole=number_holes(lista)

With the commands below the algorithm can detect the flange with a number of
circumferential holes equal to 4. After obtained the coordinate of the bounding box x1,
yl, x2, vy2 to detect the object as a flange, to underline that the flange has three
circumferential holes, the algorithm draws a rectangle (with the coordinate obtained from
the bounding boxes) around the flange with the function cv2.rectangle and writes on
top of the rectangle “4 holes” with the function cv2.putText. In the function
cv2.rectangle it has also defined the colour of the rectangle with the RGB values

(0,255,153) and is also defined the the thickness of the edge of the rectangle (4). It has

been also chosen the font of the writing with cv2.FONT HERSHEY SIMPLEX.

initialize the index that indicates the number associated to the flange
i=0

check the number of circumferential holes for each flange detected
for i in range(len(flanges)):

1f the number of circumferential holes 1in the i-th flange 1is equal to 4
if n_hole[i]==4:

Save the coordinates of the four vertices of the bounding box

x1l=int(lista[flanges[i]][@])

yl=int(lista[flanges[i]][1])

x2=int(lista[flanges[i]][2])

y2=int(lista[flanges[i]][3])

draw the bounding box

frame=cv2.rectangle(frame, (x1,yl),(x2,y2), (0,255,153), 2)

choose the font of the text

font= cv2.FONT_HERSHEY_SIMPLEX

write the text "4 holes"

frame= cv2.putText(frame, '4 holes',(x1-10,y1-10), font,...
...0.7, (0,255,153),2, cv2.LINE_AA)

80

6.5 From pixels to mm

Now we consider the figures below.

7 video - a

Figure 99: coordinate along y axis of the center of the bounding box

81

With the reference of the Figure 98 and the Figure 99, the coordinates of the center of

the piece in pixels have been defined in the code in the following way:

1f the piece 1is inside the workspace:
if x1>=x1_workspace and x2<=x2_workspace and yl>=yl workspace and ...
. y2<=y2_workspace:

memorize the actual coordinate of the centre of the piece
coord_x=(x2-x1)/2 + x1
coord_y=(y2-y1)/2 + yl

To pass from the pixels to the mm that must be sent to the cobot, we have used a linear
proportion. First of all, we have measured the width of the brown piaster shown in Figure
100 and we have obtained 93 mm. Then, we have printed the distance in pixels of the
bounding box detected in the piaster brown in Figure X using the trained model to detect
the piasters. In this way we have obtained that the piaster has the width in pixels

corresponding to 80 pixels.

B video — [m] x

Figure 100: brown piaster detected by the algorithm

Then, to find any coordinates of the center of the bounding box of a piece as shown in

Figure 101, the proportion has been done in the following way:

82

93 mm : 80 pixels = coordinates in mm of point C: coordinates in pixels of point C

B video = o X

Figure 101: center of the bounding box of the brown piaster

This reasoning can be done for any coordinates of the center of the bounding box of the
future pieces detected and the conversion from pixels to mm has been written in the code

in the following way:

coord_x_mm=(93*coord_x)/80 - x_base
coord_y _mm=(93*coord_y)/80 - y base - coord_camera_y

The same considerations are done also for the flanges with a number of circumferential

holes equal to 2.

83

1f the number of circumferential holes in the 1i-th flange 1is equal to 2
if n_hole[i]==2:

Save the coordinates of the four vertices of the bounding box

x1=int(lista[flanges[i]][@])

yl=int(lista[flanges[i]][1])

x2=int(lista[flanges[i]][2])

y2=int(lista[flanges[i]][3])

draw the bounding box

frame=cv2.rectangle(frame, (x1,yl),(x2,y2), (203,192,255), 2)

choose the font of the text

font= cv2.FONT_HERSHEY_SIMPLEX

write the text "2 holes"

frame= cv2.putText(frame, '2 holes',(x1-10,y1-10), font,...
..0.7, (203,192,255),2, cv2.LINE_AA)

1f the piece 1is inside the workspace:
if x1>=x1_workspace and x2<=x2_workspace and yl>=yl workspace and ...
. y2<=y2_workspace:

memorize the actual coordinate of the centre of the piece
coord_x=(x2-x1)/2 + x1

coord_y=(y2-y1)/2 + yl

coord_x_mm=(93*coord_x)/80 - x_base
coord_y_mm=(93*coord_y)/80 - y base - coord_camera_y

When instead the number of holes is equal to 3 we have to make a difference.

1f the number of circumferential holes in the 1i-th flange is equal to 3
if n_hole[i]==3:

Save the coordinates of the four vertices of the bounding box
x1=int(lista[flanges[i]][@])
yl=int(lista[flanges[i]][1])
x2=int(lista[flanges[i]][2])
y2=int(lista[flanges[i]][3])

1f the piece with the 3 holes and it is big
if (x2-x1)>55:
draw the bounding box
frame=cv2.rectangle(frame, (x1,y1l),(x2,y2), (0,153,255), 2)
choose the font of the text
font= cv2.FONT_HERSHEY_SIMPLEX
write the text "3 holes"”
frame= cv2.putText(frame, '3 holes big',(x1-10,y1-10), font,...
..0.7, (0,153,255),2, cv2.LINE_AA)

1f the piece 1is inside the workspace:
if x1>=x1_workspace and x2<=x2_workspace and yl>=yl workspace and ...
. y2<=y2_workspace:

memorize the actual coordinate of the centre of the piece
coord_x=(x2-x1)/2 + x1

coord_y=(y2-y1)/2 + yl

coord_x_mm=(93*coord_x)/80 - x_base
coord_y_mm=(93*coord_y)/80 - y base - coord_camera_y

1f the piece with the 3 holes and is small
else:
draw the bounding box
frame=cv2.rectangle(frame, (x1,yl),(x2,y2), (0,153,255), 2)
choose the font of the text
font= cv2.FONT_HERSHEY_SIMPLEX
write the text "3 holes"
frame= cv2.putText(frame, '3 holes small',(x1-10,y1-10), font,...
...0.7, (0,153,255),2, cv2.LINE_AA)

1f the piece 1is inside the workspace:
if x1>=x1_workspace and x2<=x2_workspace and yl>=yl_workspace and ...
. y2<=y2_workspace:

memorize the actual coordinate of the centre of the piece
coord_x=(x2-x1)/2 + x1

coord_y=(y2-y1)/2 + y1

coord_x_mm=(93*coord_x)/80 - x_base
coord_y_mm=(93*coord_y)/80 - y base - coord_camera_y

With the same method shown previously, below are shown the command that allows the
algorithm to also detect the piasters and the coordinates to which the robot must go. In the
case of the piaster as seen from the results of the model, it has been considered a

confidence for the piaster greater than 0.915 that is derived from the F1 curve.

85

initialize the index that indicates the number associated to the piaster
i=0

check for the i-th piaster if it is yellow brown or steel
for i in range(len(list_piastra)):
if list_piastra[i][4] > ©.915:

Save the coordinates of the four vertices of the bounding box
x1=int(list_piastra[i][@])
yl=int(list_piastra[i][1])
x2=int(list_piastra[i][2])
y2=int(list_piastra[i][3])

6.6 Colour detection

Regarding the piasters the first thing that it has done is to isolate the piasters detected in
the frame of the webcam cutting the rectangle around the piaster with the command
piastra cut=frame([yl:y2,x1:x2]. This simplifies the analysis of the color of the
piaster. Since Python uses as basis the BGR for the color, it has been used the function
cv2.cvtColor () to convert the BGR into HSV that is used in the color detection,
specifying the conversion with cv2.coLorR BGR2HSV. In order to easily manage the
piaster detected with a particular wanted color (in the first case is yellow), it has been
created a mask with the command cv2.inRange () that separate the objects with the color
wanted (yellow) that appears in the cut frame, from the original cut. The mask shows
blocks of colored pixels that are in the chosen range of the HSV. From this figure it can
be easily obtained the contours of all the yellow objects (blocks of the colored pixels) that
appears in the mask. It can happen that the piaster detected with the wanted color is not
only the block of pixels that is present in the cut frame, since there can be small possible
yellow pixels that in the chosen range of the HSV. This problem will be solved later on.
To find the contours of all the possible yellow objects that are in the range of the yellow
color, is used the command cv2.findContours () with the purpose to draw a rectangle
around each possible yellow object detected. The output of this command gives two lists:
contours_yellow and hierarchy yellow. The list contours yellow contains the
coordinate of the contours of the object (block of the pixels with the wanted color), instead,

the hierarchy contains the relationship that the contours have each other. The

86

cv2.RETR EXTERNAL and cv2.CHAIN APPROX SIMPLE are simply flags and in particular
with the flag cv2.cHAIN aApPrOx SIMPLE it is specified that in the list are stored only 4
coordinates of the contour of the yellow object, that represents the four angles of the

contour [56].

The commands explained so far, are used in Python and are shown below for the yellow

objects.

detect only the yellow piaster

piastra_cut=frame[yl:y2,x1:x2]

piastra_yellow=cv2.cvtColor(piastra_cut, cv2.COLOR_BGR2HSV)

mask_yellow=cv2.inRange(piastra_yellow, lower_yellow, upper_yellow)

contours_yellow, hierarchy_yellow= cv2.findContours(mask_yellow, ...
...CVv2.RETR_EXTERNAL, cv2.CHAIN APPROX_SIMPLE)

The same consideration is also done for the brown objects with the same commands

[56].

detect only the brown piaster

piastra_brown=cv2.cvtColor(piastra_cut, cv2.COLOR_BGR2HSV)

mask_brown=cv2.inRange(piastra_brown, lower_brown, upper_brown)

contours_brown, hierarchy_brown= cv2.findContours(mask_brown, ...
...CV2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

What it is done so far is to isolate the piaster detected, create a new frame with the isolate
piaster and then apply the colour recognition on that frame. The problem is that, as said
previously, the algorithm can detect all the possible block of pixels with the wanted colour
that are present in the cut frame, even very small pixels that can be there. For this work
we are interested in detecting only the piaster with a particular colour and not very small
pixels. To solve this problem, the algorithm must check that for each block of pixels with
the colour in the range chosen of the HSV (for contour yellow in
contours_yellow:), the area of the block of pixels must be greater than a certain value
(if cv2.contourArea (contour yellow) > 1000:), in this case it has been chosen a
value of 1000 pixels. This ensures the exclusion of all the possible small blocks of pixels
and therefore, the algorithm, can detect in the cut frame only the block of pixels that

represent the piaster. This it has been done with the following commands [56].

87

1f the piaster detected is yellow
if len(contours_yellow)!=0:
for contour_yellow in contours_yellow:
in order to not detect the small points and features that can be yellow
if cv2.contourArea(contour_yellow) > 1000:

Then, it has been used the function cv2.boundingRect () to obtain the coordinate of the
rectangle around the piaster with the wanted color, and this operation is done in the cut
frame. Then, to draw the rectangle in the original frame it is used the function
cv2.rectangle (). To underline that the algorithm has detected a yellow piaster, the
writing “piastra-yellow” it has putted above the rectangle. As done in previous similar
cases, the font of the text has been set with the command cv2.FONT HERSHEY SIMPLEX
and then the text was putted with the function cv2.putText (). The implementation in

Python is shown below.

we find the coordinate of the yellow piaster
X,Y,W,h=cv2.boundingRect(contour_yellow)

we draw the rectangle around the yellow piaster
frame=cv2.rectangle(frame, (x+x1,y+yl), (x+w+x1,y+h+yl), (49,226,209),2)
choose the font of the text
font= cv2.FONT_HERSHEY_SIMPLEX
write the text "piaster-yellow"
frame=cv2.putText(frame, 'piaster-yellow',...

...(x+x1-10,y+y1-10), font, 0.7, (49,226,209),2, cv2.LINE_AA)

1f the piece 1is inside the workspace
if x1>=x1_workspace and x2<=x2_workspace and yl>=yl workspace...
. and y2<=y2_workspace:

memorize the actual coordinate of the centre of the piece
coord_x=(x2-x1)/2 + x1

coord_y=(y2-y1)/2 + y1

coord_x_mm=(93*coord_x)/80 - x_base
coord_y_mm=(93*coord_y)/80 - y_base - coord_camera_y

The same procedure is repeated also for the piaster with the brown color [56].

88

1f the piaster detected is brown
if len(contours_brown)!=0:
for contour_brown in contours_brown:
in order to not detect the small points and features that can be brown
if cv2.contourArea(contour_brown) > 1000:
we find the coordinate of the brown piaster
X,Y,W,h=cv2.boundingRect(contour_brown)

we draw the rectangle around the brown piaster
frame=cv2.rectangle(frame, (x+x1,y+yl),(x+w+x1,y+h+yl), (0,75,150),3)
choose the font of the text
font= cv2.FONT_HERSHEY_SIMPLEX
write the text "piaster-brown"
frame=cv2.putText(frame, 'piaster-brown’,...

...(x+x1-10,y+y1-10), font, 8.7, (0,75,150),2, cv2.LINE_AA)

1f the piece 1is inside the workspace
if x1>=x1_workspace and x2<=x2_workspace and yl>=yl workspace...
. and y2<=y2_workspace:

memorize the actual coordinate of the centre of the piece
coord_x=(x2-x1)/2 + x1

coord_y=(y2-y1)/2 + yl

coord_x_mm=(93*coord_x)/80 - x_base
coord_y_mm=(93*coord_y)/80 - y base - coord_camera_y

Since the algorithm can also detect a steel piaster and not only the yellow and the brown
one, it has also been written another command shown below. Indeed, if the piaster

detected is not brown neither yellow, it will be in steel material.

1f the piaster detected is steel
else:
draw the bounding box
frame=cv2.rectangle(frame, (x1,yl), (x2,y2), (223,205,0),2)
choose the font of the text
font= cv2.FONT_HERSHEY_SIMPLEX
write the text "piaster-steel”
frame=cv2.putText(frame, 'piastra-steel’,(x1-10,y1-10),font, 0.7,...
...(223,205,0),2, cv2.LINE_AA)
1f the piece 1is inside the workspace
if x1>=x1_workspace and x2<=x2_workspace and yl>=yl workspace...
...and y2<=y2_workspace:

memorize the actual coordinate of the centre of the piece
coord_x=(x2-x1)/2 + x1

coord_y=(y2-y1)/2 + y1

coord_x_mm=(93*coord_x)/80 - x_base

coord_y mm=(93*coord_y)/80 - y base - coord_camera_y

89

6.7 Frame that appears in the workstation

As a result, to show the frame in the PC with all the detections done and underlined with

the text and with the rectangles, the command cv2 . imshow () is used.

show the frame of the camera with the detected objects
cv2.imshow('video', frame)

The last three commands shown below means that until we do not press the key ‘q’ in the
keyboard, the algorithm will run and the frame with the detected object will appear in the
screen of the PC. When instead we press the key ‘q’ to quit from the program, the webcam

will be disactivated with the function cap.release ()and the window that shows the

detection in real time will be also closed using the command cv2.destroyallwindows ().

1f press 'q' we quit from the while cycle
if cv2.waitKey(10) & OxFF == ord('q'):
break

close all the windows and end the program
cap.release()
cv2.destroyAllWindows()

By running the Python Code from the workstation, we can see the output similar to which
is shown in Figure 102. We can easily see that the algorithm can detects each different
piece in real-time reaching the goal of the real-time object detection through technological

features.

90

v T T ‘-.'wi.' i LR o T ===

J!.‘a-'_._ (R el L 1R IR R
Bl pioster—yellow " N ow
o 1 ()il
-

-3 2

Figure 102: Output of the Python code for real-time object detection

By changing the positions and the orientation of each object in real-time as shown in
Figure 103 it is possible to see that the algorithm can detect anyway in the right way

each piece and can distinguish them through the technological features.

+ s e
= TN Y - W

Figure 103: Another output of the Python code for real-time object detection

91

92

7. Integration of software in the cobot

7.1 Baricenter and manipulation

The algorithm implemented so far it is not sufficient to grab each piece for different
reasons. It is true that it is possible to send the coordinate of the center of the bounding
box of the piece as we can see later, but as seen in Figure 102 and Figure 103 the bounding
box does not coincide with the contour of the piece and so the center of the piece could
not coincide with the center of the bounding box of it. Moreover, the barycenter of the
piece could not coincide with the center of the piece itself. This means that knowing the
center of the bounding box that we can know from the Python code, is not sufficient to
grab the piece in the right way because in this way we completely ignore the moment of
inertia. To grip the piece in the right way considering the barycenter and the moments of
inertia so as not to drop it we have to use the integrated camera in the cobot. As we can
see later on, the software that manages the camera includes some functions to find every
time the barycenter. This software is called TM Flow and it is also useful because there is
also a function to allow the communication between the Python code and the cobot itself

making possible the sending of the center of the bounding box of the pieces.

7.2 TM Flow

TMFlow is the software associated to the Omron TM5-900. It is a graphical HMI that
provides an interface for the control of the cobot. Through this HMI it is possible to write
a logic program that the cobot must execute. This is possible because TMFlow provides a
graphical flow chart with blocks with which we can write the logic program that must be
executed by the cobot. With these blocks it is possible to command the cobot, to set some

parameters of the cobot, to move it and program some operations that the cobot must do

[6].

93

7.3 All nodes used

When we open the TMFlow program the first node that we see is the Start node (Figure
104) and is put automatically inside the program. This is because it corresponds to the
initial point of the program and with this node it is possible to start a new program. For
this reason, it is not possible to move the node and it is not also possible to create another

start node [6].

‘ Start

O

Figure 104: Start node [6]

Another node that we have used in the program flow is the Point node (Figure 105). This
node is important because we have the chance to memorize the current position of the
cobot, included the position and the coordinates of the TCP and the positions and the
rotations of all the joints. To memorize the position of the cobot it is sufficient to click the
Point Button in the end effector of the cobot. As shown in Figure 106 it is possible to set
the motion settings of the point node. This means that we have the possibility to choose
the way, so the motion, through which the cobot goes in that position. As we can see in
Figure X, we have three possibilities to choose the type of the motion. In the thesis it has

been chosen the Line Motion [6].

94

Motion Setting @

4 e
¢ PTP '\ Line i WayPoint
.

Point Management

Import from .

Blending
=
Start Advanced Setting
=
Ch.
D pajlzge;\fi to 0 kg
P1
T4 D Precise positioning
e
Figure 105: point node [6] Figure 106: point node settings [6]

A representation of a line motion is shown in Figure 107. As it is possible to see the tool
moves in a straight line at a specific speed. As a result, the line motion specifies that the

motion from a start point to an end point is planned in a straight line [6].

end point

Line

Figure 107: Linear movement of the tool [6]

Another node used in the thesis is the Move node (Figure 108). This node is useful to set

the relative movement from the current position. This means that if we use the Move node

95

to move the cobot along the Z axis of 200 mm, the cobots moves down along the Z axis

of the quantity of 200 mm with respect the current position of the cobot [6].

Figure 108: Move node [6]

An important node used in the program flow is the listen node (Figure 109). With this
node is possible to establish a TCP/IP server and can be connected by an external device
to communicate with the cobot. In our case the device is the workstation from which we
run the Python code. We have used the listen node to send to the cobot the coordinate of
the center of the bounding box of the piece to be taken [6].

Listen]

- PauO @ :

Figure 109: Listen node [6]

Another important node used in the thesis is the vision node (Figure 110). It is used to

find and detect an object in the frame of the camera of the cobot [6].

: »—y,
<> VisionNode

H: |

PassO—O:5 |

Figure 110: Vision node [0]

96

It is important to note that the cobot with the vision node records the relative relationship
of objects by recording the points and lines of the object on a different vision base (Figure
111). When the environment changes and the object to be found will be in different
position with respect the first time which we have taught the position of the object to the
cobot, it can compensate this by the principle of the coordinate transformation without re-
teaching the cobot’s point positions. As shown in Figure 111, the point P1 is recorded on
the vision base. This ensures that the cobot will detect and recognize the object in the
frame of the camera also when the environment in the future will change. This principle

is used in the thesis to approach to the piece that the cobot must take [6].

Figure 111: Vision base [0]

Another node used in the flow as we will see later, is the WaitFor node (Figure 112). It is
useful to stop the project for some conditions, for example stop the project for a certain
amount of time, and then continue to run the program after the set conditions are met. We
have used this node by setting the time. This means that, the cobot will wait for that amount
of time specified by us, after the time is passed the cobot can continue to do the operations

indicated in the flow program and in the nodes [6].

97

—

WartFor?

®

Figure 112: WaitFor node [0]

The ADG V001 SET node (Figure 113) is used to set properly the Robotiq gripper of

the cobot [6].
O

ADG V0015
FT1
J

Figure 113: ADG_V001_SET node [6]

This node has included two nodes: the OK node and the Error node (Figure 114). This
means that if everything in the settings is right without any errors, the program can
continue, if there are errors the program goes in the Error node and the program can not

continue since something goes wrong during the setting of the gripper [6].

(ApG voors
£

v
\1’ Ok | Error

@ / \ ‘407/

Figure 114: Ok node and error node of the settings [6]

We have also used the ADG V001 OPEN (Figure 116) node to open the gripper of the
cobot and the ADG_V001 CLOSE (Figure 115) node to close the gripper [6].

98

—

| ADE voorc
LOSET

P P

v
| NotDetected

®» e 0

Figure 115: ADG V001 _CLOSE node [6]

[apgveoro
PENT

v W
Derecred NotlDetected |

@_.a' h @ NN 'C) "y

Figure 116: ADG V00! _OPEN node [6]

7.4 Flow program

To test the computer vision algorithm to recognize different mechanical piece and use it
from the Omron cobot, we have implemented a case study of sorting. The goal is to define
a sequence of different mechanical pieces that must be taken from the cobot and then the
pieces are divided from the cobot in two different boxes to distinguish the round pieces
from the squared ones. This operation of distinction is called sorting. Therefore, first of
all, the external camera is activated to recognize the right piece in the sequence that must
be taken from the cobot. After the algorithm detects the right piece to be taken from the
cobot, then, the Python code run from the workstation, sends to the cobot the coordinates
of the bounding box of the piece. The bounding box that detects the right piece is the
output of the computer vision algorithm. Then, the cobot approaches to the piece thanks
to the coordinates sent from the Python code. Therefore, the cobot can approach to the
piece and can grab it. Then, depending on the type of the mechanical object, the cobot can
distinguish if the piece is rounded or is squared and it can separate the two different types

of pieces in two different boxes. The sorting, that is the case of study of the thesis, becomes

99

just an example to show that the cobot can take the right piece in the sequence without
knowing it position a priori. This is because in an assembly purpose the cobot must follow
a sequence of piece that must take without making any errors. For this reason, we have
defined in the Python code a sequence of different pieces that the cobot must take. As
shown in the comments below, we have defined the big flange with 3 holes as the first
piece in the sequence to be taken from the cobot, instead the flange with 4 holes has been

defined as the second one and so on.

DEFINE THE SEQUENCE OF THE PIECE TO TAKE
piece number 1 = 3 holes

piece number 2 = 4 holes

piece number 3 = piaster steel

piece number 4 = piaster yellow

piece number 5 = 2 holes

initialize the piece to 1
piece=1

After initialized the variable piece equal to 1, in the code beyond the fact that the piece
must be inside the workspace, we must be sure that the variable piece must be equal to the
number associated to that piece that must be taken. For example, as shown in the comment
above, if the cobot must take the yellow piaster, the variable piece must be equal to 4,
instead if must take the flange with 2 holes, the variable must be equal to 5 and so on. We

must verify these conditions with the command below:

1f the flange is with 3 holes (piece number 1) and inside the workspace:
if piece==1 and x1>=x1_workspace and x2<=x2_workspace and yl>=yl workspace and
...... y2<=y2_workspace:

After the cobot takes the first piece, it must continue to take the other pieces by respecting
the sequence of them. If it has taken the piece number 1 associated to the big flange with
the 3 holes, it will take the piece number 2 associated to the flange with 4 holes. To do
that, for example, if the cobot has taken the piece number 1, the variable piece must be set
equal to 2. In this way, in the next cycle, the cobot will take the piece number 2. The

variable can be set in the following way:

set the next piece to grab
piece= 2

100

Passing to the TMFlow software of the Omron TM, it has been created the flow shown in
Figure 117. This flow means that, after starting the program with the node Start, the cobot
must go in the zero-machine indicated as NewOrigin. After that, the cobot must wait for
the run of the Python code with the node WaitBeginningProgram. Then, the cobot goes in
the listen mode and as explained the Listenl node is useful to receive some data as the
coordinate of the centre of the piece that the cobot must grab. Then we have added the

ADG V001 _SETI in order to set the gripper of the cobot.

~

NewOrgin E

| WaitBeginnin
gProgram

-

A\
p
| Listen

M
Fass Fa
- .

Figure 117: Initial flow

Going more in details, the node NewOrigin (Figure 118) has been set in the way shown
in Figure 119. As it is possible to see, the movement to the zero machine is a line

movement.

101

.o m

ewOrigin
T0 g

+

Figure 118: NewOrigin node

Node Name NewOQrigin
Recorded on RobotBase H T
Motion Setting @

.
m
.

Point Management

Import from .

Blending
=
Advanced Setting
Change
D payload to 0 kg

D Precise positioning

Figure 119: Settings of the zero-machine node

(NewOrigin)

The node WaitBeginningProgram (Figure 120) has been set in the way shown in Figure

121, where the time to wait for the run of the Python code is equal to 5 seconds.

102

M

h—y
WaitBeginnin
gProgram T

®

Figure 120: WaitBeginningProgram node

WaitFor

X

Node Name WaitBeginningProgram

All

Digital I/0 DIO(0)

Time Time(5000 ms)

Variables Variables(0)

Analog /0 XGYO))

Node Return
Value

]
H
L]

Node Return Value(0) >

Delete this node

Figure 121: set-up of the WaitBeginningProgram node

Then, the ADG V00! SET node has been set. From the window shown in the Figure 122,

we have clicked to the Activate or Not button and the window in the Figure 123 has been

appeared. From this window, we have clicked the Variables() button and the window in

Figure 124 has been appeared.

103

GRIPPER_ROBOTIQ_ADG_V001_SET @ X Set X

Provider:Robotiq GRIPPER_ROBOTIQ_ADG_

Node Name V001 SET1 Acti N
Node Name ADG_V001_SET1 ctivate or

Activate or Not Variables Variables(1) >

Close_Settings

Open_Settings

ComPort_Setting

D Advanced
B =
Figure 122: Set-up of the ADG V001 SET node Figure 123: Activate _or_Not section of the set-up

From the window in Figure 124, we have set the bool variable equal to True. This is

important to activate the gripper of the cobot.

104

é Expression Editor Setting é Expression Editor Setting
[’

GRIPPER_RO GRIPPER_RO

bool BOTIAADG. _ 40 BOTIQ_ADG.

V0O1_SET1_v string VOO1 SET1 v~ “80"

ar_reset ar_close_pos
GRIPPER_RO
BOTIQ_ADG_

string VOO1_SET1v = “50"
ar_close_spe
ed
GRIPPER_RO
BOTIQ_ADG_

string VO01_SET1.v = 50"
ar_close_forc
Q

Figure 124: setting of the variable bool Figure 125: Close_settings section of the set-up

Then, from the window in Figure 122, we have clicked the Close Settings button and we
have set the three variables for the closing. The variables are the position, the speed and
the force and have been set in the way shown in Figure 125. Instead, the settings of the

same variables for the opening are shown in Figure 126.

105

e Expression Editor Setting

v

GRIPPER_RO
BOTIQ_ADG_

SMiN9 voor ey - O
ar_open_pos
GRIPPER_RO
BOTIQ_ADG_

sting VOO1.SET1iv = *50°
ar_open _spe
ed
GRIPPER_RO
BOTIQ ADG_

sting VOO1SET1y = “50°

ar_open_forc
e

Figure 126: Open_settings section of the set-up

Regarding the Listenl node, it has been set the Data Timeout equal to 3 seconds as shown
in Figure 127. This means that, the communication between the cobot and the Python code
finishes when the Python code does not send any data for 3 seconds. This time ensure the
correct sending of the centre of the piece as data to the cobot. In this way the cobot goes
in the coordinate corresponding to the centre of the first piece to take, so to the centre of

the big flange with 3 holes.

106

Listen X

Node Name Listen1

Send message as entering this node

“Listen1”

I:] Print received data in log

Connection Timeout 0
Data Timeout 3000

Figure 127: Listen node configuration

After setting the gripper, it has been written the flow program shown in Figure 128.

11
fg}_
Approachfiss E
10 trasmalr
- -~ rey raTe o
Appraschfi E Approachfiz E o > wosEr
T0 ngizdHoles TD ngiaiHoles TO ngizHoles
" 5 = ¥)
:) s
Moves
(" apavoorc |
LasEr
L () >y
P b
v | v
W
| Dereered [| woweezes Erer i
- . —0—
— - 3
} Movelip
Movetin ;

Figure 128: Flow program for the vision tasks

107

If the setting of the gripper is ok, so after passing the Ok node from the ADG V001 SET,
the cobot wait for 2 seconds before going in the Vision Node. The vision nodes in Figure
128 are called Flangia4Holes, Flangia3Holes, Piastra2Holes, FlangiaSmall,
PiastraSteel. Each vision node represents the possibility from the cobot to find with its
camera the flange with 4 holes with the Flangia4Holes vision node, the big flange with 3
holes with the Flangia3Holes vision node, the flange with 2 holes with the Piastra2Holes
vision node, the small flange with 3 holes with the FlangiaSmall vision node and finally
the piaster with the PiastraSteel vision node. Since the vision node is based on the shape
of the piece and on the contours of it, the PiastraSteel vision node is also valid to detect
with its camera the yellow piaster. Each vision node has as output two possibilities: Pass
and Fail. If the program goes in the pass way, it means that the cobot has detected the
piece indicated in that vision node (we will see later in details this fact). If the program
goes in the Fail way, it means that the cobot has not detected the object indicated in that
vision node. The flow program shown in Figure 128 has the following logic: after the
cobot is the position corresponding to the centre of the piece sent by Python code, the
camera is activated, and it starts to find the piece in the workspace in that position. If the
camera can detect the piece, then the program goes in the Pass way with the goal to grab
that piece. If instead the camera can not find the piece indicated in a vision node, the
program flow goes in the Fail way with the purpose to try to detect other pieces: for
example, if the cobot must detect the flange with 4 holes and the camera can not find it in
that position, the camera tries to detect the big flange with the 3 holes always in that
position. This ensure that the camera of the cobot, in a fixed position sent by Python code,
has the possibility to detect and find all the pieces considered. If instead the camera can
find the piece indicated in a vision node, the program flow goes in the Pass way and as
said, the goal becomes to grab that object. To reach this goal, in some cases the cobot must
sets its position going in the point called SetApproaching, this ensure the fact that the cobot
grab the piece at the right height since the piece could be very thin. Indeed, this problem
is not present in the cases of the piasters and in the case of the flange with 2 holes since

these pieces are thick enough. Then for each piece detected and found, the cobot goes in

108

the position to which the reference frame of the TCP coincides with the barycentre of the
piece at the right height. This was done by taking the cobot’s TCP and bringing it to the
position where then, subsequently, if the gripper is closed, the cobot correctly grips the
piece. After the cobot is in the position that we have set manually, we have clicked the
point button on the cobot and we have set as the base frame, the one created by the vision
node. This ensure that if the piece is rotated or is in a different position with respect the
position with which we have created the vision node, the cobot anyway grabs the piece
always in the right way by aligning the centre of the TCP with the barycenter of the piece.
After the alignment, the cobot must close the gripper to grab the piece and this has been
done by adding the ADG V001 CLOSEI node. After that, the cobot can moves up with
the grabbed piece, and this movement has been set by adding the node MoveUp. As shown
in Figure 128, the procedure of grabbing the piece and then move up, has been done for
all the pieces that the cobot can find in the workspace. By going in more details in the
vision node, we have created a new one by clicking in the plus green icon indicated in the
Figure 129. After that, we get the window shown in Figure 130 with the live video from
the camera of the cobot. We get as example the fact that the cobot must detect and find
the flange with the 4 circumferential holes. Therefore, we have clicked in the Task

Designer icon shown in Figure 130.

109

Vision Job]

Camera List Task

Select Job Variable @ EYSie-Fibid m @ = EI
WCam_AF

Piastra4Holes

Flangia3Holes

Live Video

PiastraSteel
Piastra2Holes
FlangiaSmall
PiastraBrown

Flangia4Holes

Figure 129: Vision Job window Figure 130: Live video from the camera of the cobot in the vision
task

Then, we have clicked from the Task Designer icon, the Visual Servoing icon indicated in
Figure 131. By doing this, we get the window shown in Figure 132. By clicking the icon
green indicated on the top in Figure 132, we have clicked then in the Pattern Matching
(shape) indicated in Figure 133.

110

Flow-Servoing Live Video

=
INITIATE b |
TMCam_AF02

123.00 ms

SERVOING

Allz 127.00 ms

Visual Servoing

Figure 131: Visual Servoing icon Figure 132: Window shown by clicking the Visual Servoing

Therefore, the window in Figure 134 has been appeared. This is important to choose the

object to find and detect in the future in the workspace from the camera of the cobot.

Range Decision X

Please select the pattern from image:

Pattern Matching(Shape) ® Standard Original

Figure 133: Pattern Matching icon Figure 134: Selection of the pattern

Then, by clicking Next in the window shown in Figure 134, another window appears

shown in Figure 135. The software of the camera automatically set the center of the blue

111

bounding box that we have chosen previously with its reference frame. Moreover, the
software traces some blue lines in the pattern. This means that, in the future if the cobot
find the lines traced the first time in the vision node, it automatically finds the object
associated to those blue lines and in this case the object is the flange with the 4
circumferential holes. It can happen that for the presence of the light there are some
unusual blue lines that can be removed manually by editing the pattern by clicking Edit
Pattern in the Figure 135. With that command we have passed from the unusual lines
shown in Figure 135 to the simple blue lines shown in Figure 136. This simplifies the
finding of the piece from the camera. Moreover, to simplify more the work done by the
camera it is possible to set other parameters like the number of the pyramid layers and the
score shown in Figure 136: lower are these values and in a simpler way (with less

probability) the camera will find the flange.

Find Live Video

Nurn. of Pyramid Layers

e—1 e
o—1 © o
Max. Num. of Objects

e ¢

Sorted by:

|5CC-I’L" - |

D Directional Edge

Figure 135: Bounding box around the object after selected the pattern

112

Find Live Video

[] orectional Edge

Pixel: (0035, 0956); RGB: (040, 066, 058);

Figure 136: Pattern edited

After set the pattern and the way with which the camera must find the object from its
frame, we get on the left the flow shown in Figure 137. After that, we have clicked the
SERVOING block and the setting from the cobot and the camera has started automatically.

113

Flow-Servoing

INITIATE
TMCam_AFQ2
103.00 ms

FIND
ShapePattern_...
19.00 ms

SERVOING

All: 126.00 ms

Figure 137: Flow Servoing

In this way we have obtained the fact that in the future, the cobot will recognize the object
even in a different position in the frame of the camera with respect the initial one used to
create the vision node. When it appears the red box as shown in Figure 138, it means that
the servoing is finished. What happens in the future is the fact that the blue bounding box
of the pattern could be in a different position as said, but the red one is fixed, and it will
be fixed also in the future. The cobot when recognize the piece, with the help of the camera
will allign the frame of the blue bounding box with the frame of the red one. This is
important since the positions ApproachingFlangia4Holes, ApproachingFlangia3Holes,
ApproachingPiastra2Holes, ApproachingFlangiaSmall and the ApproachingPiastraSteel
are set by using the reference frame of the red box. So, the cobot will move to the position
indicated by the red box, that when it is set the first time in the vision node, it will be
remains fixed in the frame of the camera. When we create the vision node as shown in
Figure 138 as a result, we have that the blue box coincides with the blue one and also their

frames.

114

Flow-Servoing Live Video

INITIATE
TMCam_AF02
116.00 ms

FIND
ShapePattern_...
7.00 ms

SERVOING

All: 127.00 ms

Pixel: (0145, 0321); RGB: (047, 064, 071);

Figure 138: Bounding box after the servoing

But, as said previously, if the piece in the future will be in a different position with respect
the position of the first time when we create the vision node, it means that the red box and
the blue box (which really detect and indicate the object) do not coincide. This problem is
solved because in the future the software of the camera will always align the red box with

the new blue one and also their frames. In this way the cobot goes always in the right way.

In the Figure 139 is shown the continuing of the program flow after the piece has been
grabbed from the cobot and then the cobot goes up with the piece. Then, with the
ReleasePositionRound node, the cobot goes with the piece in a position where it has to
release the piece. As explained later, the cobot after it recognizes the piece and grabs it, it
must distinguish if the piece is a flange or a piaster by executing a sorting task. Therefore,

if the cobot grabs a flange it goes to the position dedicated to the round piece called

115

ReleasePositionRound point node. After that, the cobot goes down and this has been done
by adding the MoveDown node. Then, the cobot opens the gripper with the node
ADG V001 _OPENI. With the node MoveUp the cobot goes up and then it returns to the
zero machine in order to take the next piece respecting the sequence. After it goes to the
zero machine, the cobot is ready to receive the next coordinate of the centre of the next

piece, so it is needed another listen node called Listen2 that can be seen in the Figure 139.

»,
O
ADG_V001.E
LOSE]
P b
| Dseasd v

|
| NotDetected Errar

] \ -
|
Movelip
I\.
| ReleasePositi
T0 | onfound

L PENT

s

y
MoveDowrn

Listen? |

. m.C' ?\

Figure 139: Flow program to grab the round object

The same discussion done for the round pieces it has also been done for the piasters. In
this case the position to which the robot must go to release the piece is called

ReleasePositionPiaster as shown in Figure 140 and is different from the position where

116

which the robot releases the round piece because as seen later, the cobot does a sorting

putting the round pieces and the piasters (squared pieces) in two different types of boxes.

."-l
| Aps vooic

LOSET

p v
Detected | NotDetectad Lrrar

Movellp

[apcveore (-?e.fa:;:pasfrf ﬂ
PENT . '

T A 'I'[J anfizster

‘ MoveDown

™
]

:

Figure 140: Flow program to grab the piasters

At the end as shown in Figure 141, after the cobot receives and goes to the new coordinate
of the center of the new piece, the flow program starts again from the WaitFor2 node, and

then the cobot starts to detect and finds the new mechanical piece in the sequence.

117

Figure 141: Loop of the flow program

118

8. Sending the coordinates through RoboDK

8.1 Connection to the cobot and zero-machine

First of all, it has been imported the model of the Omron TM5-900 that is used in the thesis
as shown in Figure 142. To save the zero machine also in RoboDK, so the position from
which we send the coordinate of the piece to the cobot, we have to establish a connection.
To do that, as shown in Figure 143, we have inserted in the Robot IP/COM field the IP of
the Omron TMS5-900. In the similar way we have inserted the number of the port in the
Robot port field. After setting the IP and the port of the robot we have clicked the Connect
button that is circled as shown in Figure 143. In this way it appears the Connection status
as Ready as shown in Figure 143 and this means that we are connected to the cobot, and
we can send commands to it and it is also possible to get the real position of the cobot.
Getting the real position of the cobot means that we can replicate in the digital model of
RoboDK the same joints positions and the same TCP position of the real one. Our intention
is to memorize the position of the zero machine with all the joints and TCP positions and
this is possible by getting the position and creating some frames. To get the position of the
zero-machine of the real cobot, first of all, the real cobot must be in the zero machine and
then we have clicked the Get Position command shown in Figure 143. In this way the
digital model of the RoboDK replicates the joints and the TCP positions of the real one
[SO][51].

119

File Edit Program View Tools Utilities Connect Help

dyB oc e .

Figure 142: digital model of the Omron TM5-900

imported

@ RoboDK - Thesis_2821 22 _completed - Educational (POL
File Edit Utilities

dvB 9¢C

Connection to Omron TM3-900

Program View Tools Conne

Robot IP/COM: 192.168.81. 164 | ping
Robot port: |5890 = | Explore
Get Position Stop
Disconnect Maowve Joints

Connection status:

== More options Command Show log

Figure 143: Connection to the cobot

After getting the position of the zero-machine we have created a Frame that coincides with

the frame of the TCP in the zero-machine position. The frame created is shown in Figure

144 and it has been called Frame 2 to differentiate that from the Base frame of the cobot.

The position and the rotation of the Frame 2 of the zero machine with respect to the base

frame of the cobot is shown in Figure 145 [50].

Figure 144: Frame 2 (Zero-machine) created

Frame Details: Frame 2 g x
Name: |Frame 2
Visible
Reference position with respect to: _.L Omron TM5-300 Base w
[X,¥,Z]mm | Rot[X,¥ ,Z Jdeg - Fanuc/Motoman ~ "=
241.865 -142.192 389.177 -179.519 -8.292 9e.391

Figure 145: Rotations and positions of the Frame 2 with
respect to the Omron Base

120

The Figure 146 shows how is collocated the Frame 2 with respect to the base of the cobot.

3

'l

Frame 2

Figure 146: Visual position of the Frame 2 with respect to the frame base of the cobot

To send the commands to the cobot we need a target. The target is the position from which
the cobot starts to move. It means that whatever positions of the TCP we send to the cobot,
the positions are always referred with respect to the target. Since the positions sent are the
centre of the piece with respect to the zero-machine, the target must coincide with the
position of the TCP in the zero-machine, so the target must coincide with the Frame 2. For
this reason, all the rotations and translations of the target, called Target 1 with respect to
the Frame 2 are equals to 0 are shown in Figure 148. The Figure 147 shows the position
of the Target 1 with respect to the Base frame that is equal of the position of the Frame 2

with respect to the base frame and is also shown in Figure 149.

121

Figure 147: Target 1 created

Name: |Target 1
Visible Move to target Teach current position
Target type
@ Keep cartesian position
() Keep joint values

Target position with respect to: 9[_ Frame 2 ~
[X,¥,Z]mm | Rot[X,¥ ,Zz Jdeg - Fanuc/Motoman w =
2.eee 2.ee8 2.e88 2.288 2.eee 2.e22
Robot: : Omron TM5-500 ~ Change config.
Robot joints:

|123.31z 3z ||3?.351‘ 3z ||-125.01 3z ||-3.3433 3z ||-90.24c 3z ||-56.5?; 3z |

Figure 148: Rotations and positions of the Target 1
with respect to the Frame 2

Figure 149: Target 1 and Frame 2 are coincident

The Figure 150 shows the digital model of RoboDK in the zero-machine position

122

l 'nT M5-900 Base

Figure 150: digital model of RoboDK in the zero-machine position.

8.2 Code to sending the coordinates to the cobot

The first thing that we have to do in the Python code is to import the libraries related to
RoboDK and this has been done in the following way [53]:

import the roboDK Llibrary
from robolink import *

from robodk import *

from robodk.robolink import *

To start the API of the RoboDK has been used the command below. This ensures the work
of the Python code in RoboDK in the right way [53].

Start the RoboDK API
RDK= Robolink()

Then, it has been defined the Omron cobot as item with which we can do some operations.

To define the cobot as item we have used the command below [53]:

123

define our robot Omron as a RDK item where we can do whatever operations we want
robot = RDK.Item('' ,ITEM_TYPE_ROBOT)

To send the coordinates of the center of the piece, as said before, the cobot must be in
listen mode using the Listen node in the TMFlow in order to receive the coordinates from
the Python code. But this is not sufficient, since the Python code can send the coordinate
to the cobot if it is established a connection with the cobot, after that the Python code can
send commands to the cobot. The Python code must send the coordinates when the camera
has recognized the right piece in the sequence and the cobot must go there. For this reason,

we have to establish a connection entering in the following code:

1f the flange is with 3 holes (piece number 1) and inside the workspace:
if piece==1 and x1>=x1_workspace and x2<=x2_workspace and yl>=yl workspace and
...... y2<=y2_workspace:
memorize the actual coordinate of the centre of the piece
coord_x=(x2-x1)/2 + x1
coord_y=(y2-y1)/2 + yl
coord_x_mm=(93*coord_x)/80 - x_base
coord_y_mm=(93*coord_y)/80 - y base - coord_camera_y

To establish a connection with the real cobot we have used the command

robot.setConnectionParams (1192.168.81.164’, 5890, ‘/’, ‘anonymous’,‘ '),
to set the parameters of the connection. Indeed, the number 192.168.81.164 is the IP of
the cobot and the number 5890 is the port of the cobot, the other parameters are instead
set by default. Then, it has been used the command
robot.ConnectSafe ('192.168.81.164’, 2, 1, None) to establish the real connection
with the robot. The number 192.168.81.164 is again the IP of the real cobot, the number
2 represents the number of times, so the attempts, that the RoboDK API tries to connect
to the cobot and finally the number 1 represents the time in seconds for which the API
tries to connect for one single time and the last parameter is set by default. This procedure
is like which we have done in the 7.1 paragraph, but in this case the connection is done
inside the code. Anyway, with the two processes we can obtain the same result, so the
connection with the cobot. The command robot.Connectsafe (1192.168.81.164", 2,
1, None) gives as output the number O or the number 1. The number 0 means that the

connection with the cobot is established successfully, instead the number 1 means that

124

there was not any possibility to connect to the cobot and so there is not any connection
with the cobot. So, when we use the command
robot.ConnectSafe (1'192.168.81.164’, 2, 1, None) we have saved the output in
the variable status. The process of the connection described so far it has been done with

the following commands [52][53]:

Connect to the real Robot Omron TM
robot.setConnectionParams('192.168.81.164',5890,"'/"', 'anonymous',"'")
status=robot.ConnectSafe('192.168.81.164"',2,1,None)

If the output of the connection is 0, so when we are connected to the cobot, it can be
possible to send the coordinates of the center of the bounding box of the piece. To do that,
it is necessary, as previously said, to define a target associated to the Omron cobot. As
shown in paragraph 7.1 the target is called ‘Target 1°. These operations have been done

with the following commands [52][53]:

If status==0:
Get the reference target by name:
target = RDK.Item('Target 1')
target_pose = target.Pose()

After the connection is established and the target is defined, we can finally send the
coordinates of the center of the bounding box. First of all it has been defined the position
to where the TCP must go and this has been done with the command
target pose.setPos([coord x mm, coord y mm, coord z mm]). The movement
has been sent with the command robot.MoveJd (target pose), this means that the cobot
will move to the position of the TCP defined previously. The commands just described

have been inserted into the code in the following way [52][53]:

Move the robot to the coordinate of the center of the piece
target_pose.setPos([coord_x_mm, coord_y _mm, coord_z_mm])
robot.MoveJ(target_pose)

set the next piece to grab
piece=3

set a delay of 1 second
time.sleep(1)

125

After we have sent command to the cobot and it starts to move we can see in the RoboDK
window something similar shown in Figure 151.

Connectien te Omron TM3-500 & x

Robot IP/COM: [192. 168.81. 164 1 e

Robotport: [8%0 3] Explre

Comect Get Positon stop
Disconnect Move Jonts

Connecton status:

[Working. .]
= More options | | Command Showlog

Target 1

Figure 151: Working mode of the digital model

After the cobot has correctly received the coordinates of the center of the bounding box,
we have to disconnect from the robot in order to find in the workspace the next piece of
the sequence that the cobot must take. This operation has been done by checking when the
status of the connection is 0 and disconnecting from the cobot with the command
robot.Disconnect () . The output of this command gives 1 and we have saved the status
of the connection in the status variable in order to not enter again the while cycle and
finally continue with the next operations that are finding the next piece and send the new
coordinates of the center of the bounding box of the new piece. All the commands just

described have been inserted into the code in the following way [52][53]:

Disconnect from the robot
while status==0:
status=robot.Disconnect()

set a delay of 2 seconds at the end of the process
time.sleep(2)

126

Conclusions

By running the full Python program, is possible to see that the work should be seen from
three different parts: object detection, approach to the piece and finally the precise
grabbing. As said, the object detection includes both the classification and the localization.
This means that with the classification is possible to know if there is or not a precise piece
inside the workspace, instead the localization is useful to know where exactly this piece
is. The object detection has been done with an external camera since in this first part it is
important to know the presence or not of a precise piece and for this reason is needed to
have an overview of the entire workspace. This goal has been reached with a very simple
and cheap industrial type system available on the market. The first important result has
been reached: the algorithm has been implemented with a system that does not need to be
costly and complex. The second result is that the algorithm can recognize a particular
piece, for instance a steel piece, independently from the surface and its scratches and
roughness and so from the precision of the material processing and some small defects.
Moreover, we have to underline that identification done in the thesis is not an aesthetic
identification, but it is a technological one, since the recognition is based on the
recognition through technological features. The power of this algorithm is in the fact that
it can detect also mechanical pieces that have not been inserted as images and so as input
to train the model. In our example the flange with two circumferential holes has not been
inserted as input for the training, but as seen in the final results the algorithm anyway can
detect that. As a result, even if some pieces have not been inserted as input, they can have
some technological features that are the same used by the algorithm to distinguish the
mechanical piece: for example, the number of the circumferential holes. In this case the
algorithm works also for these pieces and the advantage stays in the fact that for these
pieces we do not need to train another model because the already existing model can
recognize them without ever having seen them even once. The other important problem
solved by this work is in the fact that in an assembly purpose, nowadays, the piece must

be put in precise positions and the robots are programmed to go in those positions, but the

127

robot does not know if the piece is actually there or not. In this way, if the productions
changes during the day, with this work does not need to change and the photocells and the
assembly jigs when the production change, since the cobot can recognize and locate of the
piece to be recognize independently from what production is it. The approaching to the
right piece has been done by sending the coordinates to the cobot from the Python code
connecting to the IP and to the port of the cobot as we have seen. The precise grabbing
has been done through the camera at the edge of the wrist of the cobot and we have to
underline that this cobot e is one of the first commercially available cobots that has an
integrated camera. With this camera it has been possible to do a precise grabbing by
considering the barycenter and the moment of inertia of the piece. Some improvements
and future works can follow the work done in this thesis. For example, it is possible to
make the detection also from different views and not only from one view as done in the
thesis. In this way it is possible to distinguish different pieces also from different views
and consider as technological features those who are not possible to detect from the top
view considered in the thesis. Moreover, the recognition may include other features that
are not considered in this thesis obtaining an identification that includes a high variety of
the mechanical pieces. It is also possible to obtain improvements in terms of performance
by decreasing the losses and increasing the mean average precision. This goal can be
reached by using different models of the YoloV as the YoloVI (large version) or the
YoloVx (extra-large version) even if these models are heavier and these require more time
for the training. Moreover, it is also possible to improve and continue this work by using
the new versions of the YoloV (YoloV6 and YoloV7) which were released after the

bibliographic study of the thesis had begun.

128

Sitography

[1] https://industrial.omron.it/it/products/collaborative-robots , 12 October 2022

[2] https://www.kuka.com/it-it/prodotti-servizi/sistemi-robot/software/software-

applicativo/kuka-equalizingtech , 12 October 2022

[3] https://industrial.omron.it/it/products/RT6-0009001 , 12 October 2022

[4] https://www.mobileautomation.com.au/what-are-collaborative-robots/ , 12 October 2022

[5] https://wiredworkers.io/cobot/ , 12 October 2022

[9] https://www.ibm.com/cloud/learn/machine-learning#toc-machine-le-K7VszOk6 , 13 October

2022

[10] https://monkeylearn.com/machine-learning/ , 13 October 2022

[11] https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-

networks , 13 October 2022

[12] https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-

networks , 14 October 2022

[13] https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-

eed6024£db08 , 14 October 2022

[14] https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-

eed6024£db08 , 15 October 2022

[15] https://machinelearningmastery.com/object-recognition-with-deep-learning/ , 15 October

2022

[16] https://medium.com/analytics-vidhya/drivers-license-data-extraction-using-cnn-yolovS5-

14585709f4d8 , 17 October 2022

129

https://industrial.omron.it/it/products/collaborative-robots
https://www.kuka.com/it-it/prodotti-servizi/sistemi-robot/software/software-applicativo/kuka-equalizingtech
https://www.kuka.com/it-it/prodotti-servizi/sistemi-robot/software/software-applicativo/kuka-equalizingtech
https://industrial.omron.it/it/products/RT6-0009001
https://www.mobileautomation.com.au/what-are-collaborative-robots/
https://wiredworkers.io/cobot/
https://www.ibm.com/cloud/learn/machine-learning#toc-machine-le-K7VszOk6
https://monkeylearn.com/machine-learning/
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://medium.com/analytics-vidhya/drivers-license-data-extraction-using-cnn-yolov5-14585709f4d8
https://medium.com/analytics-vidhya/drivers-license-data-extraction-using-cnn-yolov5-14585709f4d8

[17] https://www.ibm.com/topics/computer-vision , 17 October 2022

[18] https://blog.roboflow.com/yolov5-improvements-and-evaluation/ , 17 October 2022

[19] https://www.analyticsvidhya.com/blog/2021/12/how-to-use-yolo-v5-object-detection-

algorithm-for-custom-object-detection-an-example-use-case/ , 17 October 2022

[20] https://www.javatpoint.com/supervised-machine-learning , 18 October 2022

[21] https://www.javatpoint.com/unsupervised-machine-learning , 18 October 2022

[22] https://medium.com/@mehtapriyankalpm/supervised-unsupervised-and-reinforcement-

learning-246781£26730 , 18 October 2022

[23]https://www.amazon.it/gp/product/BOSLVVLCMV/ref=ppx_vyo_dt b_asin_title 000 _s00?ie

=UTF8&psc=1 , 18 October 2022

[24] https://www.kdnuggets.com/2017/07/rapidminer-ai-machine-learning-deep-learning.html ,

19 October 2022

[25] https://vitolavecchia.altervista.org/differenza-tra-deep-learning-e-rete-neurale/ , 19 October

2022

[26] https://laptrinhx.com/future-prospects-of-deep-learning-in-medicine-687217971/, 19
October 2022

[27] https://www.weka.io/blog/computer-vision-vs-machine-learning/ , 19 October 2022

[28] https://medium.com/ieece-women-in-engineering-vit/you-only-live-once-or-you-only-look-
once-a9¢6951bd82b , 21 October 2022

[31] https://towardsdatascience.com/introduction-to-py-torch-13189fb30cb3 , 21 October 2022

[32] https://www.analyticsvidhya.com/blog/2021/04/a-gentle-introduction-to-pytorch-library/ ,
22 October 2022

[33] https://www.python.org/doc/essays/blurb/ , 22 October 2022

130

https://www.ibm.com/topics/computer-vision
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://www.analyticsvidhya.com/blog/2021/12/how-to-use-yolo-v5-object-detection-algorithm-for-custom-object-detection-an-example-use-case/
https://www.analyticsvidhya.com/blog/2021/12/how-to-use-yolo-v5-object-detection-algorithm-for-custom-object-detection-an-example-use-case/
https://www.javatpoint.com/supervised-machine-learning
https://www.javatpoint.com/unsupervised-machine-learning
https://medium.com/@mehtapriyanka1pm/supervised-unsupervised-and-reinforcement-learning-246781f26730
https://medium.com/@mehtapriyanka1pm/supervised-unsupervised-and-reinforcement-learning-246781f26730
https://www.amazon.it/gp/product/B08LVVLCMV/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.it/gp/product/B08LVVLCMV/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.kdnuggets.com/2017/07/rapidminer-ai-machine-learning-deep-learning.html
https://vitolavecchia.altervista.org/differenza-tra-deep-learning-e-rete-neurale/
https://laptrinhx.com/future-prospects-of-deep-learning-in-medicine-687217971/
https://www.weka.io/blog/computer-vision-vs-machine-learning/
https://medium.com/ieee-women-in-engineering-vit/you-only-live-once-or-you-only-look-once-a9c6951bd82b
https://medium.com/ieee-women-in-engineering-vit/you-only-live-once-or-you-only-look-once-a9c6951bd82b
https://towardsdatascience.com/introduction-to-py-torch-13189fb30cb3
https://www.analyticsvidhya.com/blog/2021/04/a-gentle-introduction-to-pytorch-library/
https://www.python.org/doc/essays/blurb/

[34] https://www.andreaminini.com/ai/machine-learning/matrice-di-confusione , 23 October
2022

[37] https://towardsdatascience.com/the-practical-guide-for-object-detection-with-yolov5-
algorithm-74c04aac4843 , 23 October 2022

[39] https://peltarion.com/knowledge-center/modeling-view/build-an-ai-model/loss-

functions/mean-squared-error , 23 October 2022

[40] https://peltarion.com/knowledge-center/modeling-view/build-an-ai-model/loss-

functions/binary-crossentropy , 23 October 2022

[41] https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e , 23 October
2022

[42] https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/ , 26

October 2022

[44] https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/ ,
26 October 2022

[45] https://pytorch.org/hub/ultralytics_yolov5/ , 8 November 2022

[46] https://github.com/ultralytics/yolov5 , 8 November 2022

[47] https://pytorch.org/get-started/locally/ , 8 November 2022

[48] https://github.com/heartexlabs/labellmg , 8 November 2022

[49] https://www.tensorflow.org/guide/tensor , 8 November 2022

[50] https://robodk.com/doc/it/Basic-Guide.html , 9 November 2022

[51] https://robodk.com/doc/it/RoboDK-APLhtml#PythonAPI , 9 November 2022

[52] https://robodk.com/doc/en/PythonAPl/index.html , 9 November 2022

131

https://www.andreaminini.com/ai/machine-learning/matrice-di-confusione
https://towardsdatascience.com/the-practical-guide-for-object-detection-with-yolov5-algorithm-74c04aac4843
https://towardsdatascience.com/the-practical-guide-for-object-detection-with-yolov5-algorithm-74c04aac4843
https://peltarion.com/knowledge-center/modeling-view/build-an-ai-model/loss-functions/mean-squared-error
https://peltarion.com/knowledge-center/modeling-view/build-an-ai-model/loss-functions/mean-squared-error
https://peltarion.com/knowledge-center/modeling-view/build-an-ai-model/loss-functions/binary-crossentropy
https://peltarion.com/knowledge-center/modeling-view/build-an-ai-model/loss-functions/binary-crossentropy
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pytorch.org/hub/ultralytics_yolov5/
https://github.com/ultralytics/yolov5
https://pytorch.org/get-started/locally/
https://github.com/heartexlabs/labelImg
https://www.tensorflow.org/guide/tensor
https://robodk.com/doc/it/Basic-Guide.html
https://robodk.com/doc/it/RoboDK-API.html#PythonAPI
https://robodk.com/doc/en/PythonAPI/index.html

[53] https://robodk.com/doc/en/PythonAPI/robodk.html , 9 November 2022

[54] https://favpng.com/png_view/cube-rgb-color-model-hsl-and-hsv-rgb-color-space-cube-

png/Fr06aXV?2 , 10 November 2022

[55] https://github.com/nicknochnack/YOLO-Drowsiness-Detection , 10 November 2022

[56] https://github.com/CreepyD246/Simple-Color-Detection-with-Python-OpenCV , 10

November 2022

132

https://robodk.com/doc/en/PythonAPI/robodk.html
https://favpng.com/png_view/cube-rgb-color-model-hsl-and-hsv-rgb-color-space-cube-png/Fr06aXV2
https://favpng.com/png_view/cube-rgb-color-model-hsl-and-hsv-rgb-color-space-cube-png/Fr06aXV2
https://github.com/nicknochnack/YOLO-Drowsiness-Detection
https://github.com/CreepyD246/Simple-Color-Detection-with-Python-OpenCV

Bibliography

[6] Omron Corporation, Software Manual TMflow, Software Version: 1.68, Kyoto, Japan, 2018

[7] Slides fornite da Omron Corporation, S01 hardware, S02_Sofiware e Licenze,
S03 Procedura Startup, S04_Basic_Nodes, S06 Vision, SO8_Safety 2

[8] Robotiq, Lean Robotics, Robotiq 2F-85 & 2F-140 for OMRON TM Series Robots Instruction
Manual, 2019

[29] Alexander Mordvintsev and Abid K, OpenCV-Python Tutorials Documentation, Release 1,
5 November 2017

[30] Jan Erik Solem, Programming Computer Vision with Python, Gravenstein Highway North,
Sebastopol, United States of America, O’ Reilly, 2012

[35] Dario G. Lema, Oscar D. Pedrayes, Rubén Usamentiaga, Daniel F. Garcia and Angela
Alonso, Cost-Performance Evaluation of a Recognition Service of Livestock Activity Using

Aerial Images, Basel, Switzerland, Magaly Koch, 13 June 2021

[36] Steven Kolawole, Opeyemi Osakuade, Nayan Saxena, Babatunde Kazeem Olorisade, Sign-
to Speech Model for Sign Language Understanding: A Case Study of Nigerian Sign Language,
5th Workshop on Machine Learning for the Developing World at NeurIPS, 1 November 2021

[38] Margrit Kasper-Eulaers, Nico Hahn, Stian Berger, Tom Sebulonsen, Qystein Myrland and
Per Egil Kummervold, Short Communication: Detecting Heavy Goods Vehicles in Rest Areas in

Winter Conditions Using YOLOvS, Basel, Switzerland, Puneet Sharma, 31 March 2021

[43] Renjie Xu, Haifeng Lin, Kangjie Lu, Lin Cao and Yunfei Liu, 4 Forest Fire Detection
System Based on Ensemble Learning, , Basel, Switzerland, Stelian Alexandru Borz, 13 February

2021

133

134

Acknowledgments

I sincerely thank Prof. Dario Antonelli, supervisor of the final exam, for guiding me in
drafting the thesis through indispensable advice and for constantly supporting me in the

final phase of my academic career.

I thank my father, my mother, my brother Davide, my sister Nicoletta and my two
grandmothers for having supported me emotionally and financially over the years,
remaining by my side especially in times of difficulty, without you it would not have been

possible to achieve this objective goal.

I thank my girlfriend Elisa for supporting me over the years, she has always been there
over the years especially in times of difficulty, she helped me to reach my goal by always

supporting and motivating me, especially before each exam.

I thank my colleagues Luca, Pietro, Gabriel and William, no one better than them has been
able to understand my anxieties, pains and fears over the years, continuously supporting

and motivating me, which is why I wish them the achievement of my goal.

I thank my friends Alessio, Andrea, Angelo, Ciccio, Dario, Giuseppe, Ivan, Oliver and
Pino for having supported me over the years especially in times of difficulty and for

helping me to live my university career with greater serenity.

I thank Marco and Liu for having supported me in these last few months that I have
dedicated to the work of my thesis and for this reason I wish them to reach the goal that I

have achieved.

Thank you for being accomplices, each in their own way, in reaching this goal after an
intense and tortuous journey. Thank you for making a very important milestone special

for me.

135

136

