
  

POLITECNICO DI TORINO  

Master Degree in  

Computer Engineering - Software  

Master Degree’s Thesis  

Advanced C++14 Multithreading  

Modelling of Electronics Systems  

  

Supervisors:  
prof.re Edgar Ernesto Sanchez Sanchez 
prof.re Alessandro Savino prof.re 
Michele Portolan  

                                                                             Candidate:  
Hesamoddin Fathollahi  



Acknowledgements

Thanks to my mother and father for encouraging me to undertake the university

experience in a country other than that my country, gives another vision to another

interest and a wonderful world to me, furthermore, thanks for subsequently sup-

porting all my choices.

Special thanks to my supervisor Prof. Alessandro Savino and Prof. Ernesto

Sanchez and Prof. Michele Portolan who followed me in the various work steps,

directing and advising me to reach the final goal.



Abstract

By increasing chips complexity, the demand for designing automation on a higher

abstraction level is increased, making the functionality simply comprehended and a

more influential trade-off. Automating part of the whole design procedure and up-

dating it to upper levels includes numerous benefits. First, a much shorter design

cycle is assured by automation. Then, it could be possible to examine various styles

in designing as a result of quick generation and evaluation of different designs. The

aim of this thesis adds Thread C++14 standard library to reach a multi-thread pro-

gram and parallelism by Babmu which is a High-Level Synthesis framework.
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Chapter 1

Introduction

1.1 Purpose

In 1965, Intel co-founder Gordon Moore was asked by Electronics Magazine to sum-

marize the electronics industry state and a prediction about the semiconductor com-

ponents industry in the future. Because of this, Moore published a paper[1] entitled

"Cramming more components onto integrated circuits".

While writing the paper, Moore mentioned a double increase in the number of

devices inside the chips (including resistors and transistors) each year, when the size

of transistors could be shrunk by the engineers. It was indicated that the capabilities

and performance of semiconductors were exponentially and continually growing.

Moore modified the law to represent the double increase in the number of transistors

every 24 months, in 1975.

In the early 1970s, Very-large-scale integration (VLSI)1[2] was appeared when

developing communication technologies and complex semiconductors.

VLSI technology makes it possible to have compression of millions of multiple

gates of logic for a chip that is extremely complex limitations for what can and can-

not be made. More than 600 rules may be included in an integrated circuit process

from 2006. Such complexity requires a very difficult chip, if possible, for designing

through the traditional capture and simulated design practice. The evaluation of

VLSI where the number of transistors in are increased every year is shown in the

figure1.1.

1Very-large-scale integration (VLSI) is the procedure to create IC(integrated circuits) by integra-
tion of several circuits based on the transistor into a single chip.
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FIGURE 1.1: Evaluation of VLSI

The product development cycle was comprehensively considered by the indus-

try to decrease the time in designing and reach a competitive edge in the time-to-

market race. By increasing chips’ complexity, the demand for designing automation

on a higher abstraction level is increased, making the functionality simply compre-

hended and a more influential trade-off. Automating part of the whole design pro-

cedure and updating it to upper levels includes numerous benefits. First, a much

shorter design cycle is assured by automation. Then, it could be possible to examine

various styles in designing as a result of quick generation and evaluation of differ-

ent designs. Ultimately, average human designers may be outperformed by design

automation tools to meet most design requirements and constraints.

1.2 Work introduction

Chips become more complex so it is so important to have design automation in the

upper level of abstraction, where the trade-off is more effective and functionality is

simpler for recognizing. This process (automating all or a part of the design process

and shifting automation to the upper levels) has many advantages when it least

to have different styles in design style and it makes the faster designing process.

Furthermore, we could reach a better output by design automation in comparison

to previous methods for designing.

Computer-aided tools are developed with success in different parts of the devel-

opment cycle, they are used when in the design of microelectronic circuits they be-

come useful. These tools, for instance, are used in designing of chemical process[3],

synthesis of heat exchanger network and simulation[4].
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The most important advantage of the synthesis techniques could be mentioned is

increasing the speed of the designing cycle, while human attendance decreases. The

quality of the design cycle could improve by optimization techniques when these

days synthesis and optimization techniques are used for almost all digital circuit

designs.

Register transfer language like VHDL[5] or Verilog[6] in computer science is an

IR (Intermediate Representation) which is similar to the assembly language and

used for simulating a data flow at the register transfer level of architecture.

However, nowadays, designing an electronic system is made with a Register

Transfer Language that is not a fast and easy process to validity in the model for hav-

ing symmetrical interplay among components in RTL and guarantee in they work

correctly, the most important part is having concurrency in control flow and data,

between components and their interaction in both High-Level Synthesis(HLS)[7]

and Verification.

The goal of this thesis is with considering an existing strong HLS framework,

Bambu[8] which is made by c++ language, adding The standard C++14 thread li-

brary to the library of Bambu framework (libBambu), next performing HLS with

this library for having parallel executing blocks by thread library in the Bambu out-

put.

1.3 Thesis Overview

The thesis contains 6 chapters describing in detail the HLS and Bambu and appendix

for C++ source codes.

Chapter 1 is introduction about HLS and its history and its role in nowadays

technologies.

Chapter 2 is a describing the basic concepts that are essential for workflow and

the functionality of Bambu as HLS compiler in the thesis.

Chapter 3 describes threads and their different types, also about their function-

alities, and introduces the C++ standard thread library.

Chapter 4 describes the proposed methodology and approach to reach the de-

sired result and another considered method to achieve the desired result.

Chapter 5 shows and the obtained results , comparing results in terms of latency,

area, and summary of resources that obtained by different simulation configs.
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Chapter 6 is discuss about the thesis conclusion and future works.
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Chapter 2

High-Level Synthesis and Panda

Bambu

2.1 Introduction

By the synthesis methods, the design cycle is accelerated by reducing human efforts.

The design quality is enhanced by optimization methods. Presently, optimization

and synthesis procedures are utilized for most digital circuit designs. Nonetheless,

their power is not yet completely exploited and most of the work is still manually

made.

2.2 The synthesis process

Synthesis is the creation of a circuit model, initiating from a less detailed one. Ab-

straction levels and views are considered to classify the model. Three main abstrac-

tions are considered in the present work :

• Architectural: Circuit performs a set of operations, such as data computation

or transfer at the architectural level

• Logic: A set of logic functions is evaluated by a digital circuit at the logic level.

• Geometrical: A circuit is a set of geometrical entities at the geometrical level.

The creation of a structural view is included in an architectural-level synthesis

for an architectural-level model. Thus, an allocation of the circuit functions to oper-

ators is obtained to determine the resources, and their interconnection while timing
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FIGURE 2.1: HLS Workflow

their execution. It is also known as high-level synthesis or structural synthesis, as a

result of determining the circuit’s macroscopic structure.

As a set of dependencies and operations, a behavioral architectural-level model

can be distracted. Architectural synthesis includes the identification of the hard-

ware resources for implementing the operations, arrangement of the operations’ ex-

ecution time, and connecting them to the resources. Hence, a structural model of

a data path is defined by synthesis to interconnect the resources, and a logic-level

model of a control unit representing the control signals to the data path based on

the schedule.

The logic-level synthesis step should be performed followed by the architectural-

level synthesis. Logic-level synthesis is the task of the generation of a structural

view of a logic-level model. Logic synthesis manipulates the logic specifications for

creating the logic models as interconnecting the logic primitives.

Hence, the microscopic structure of a circuit is determined by logic synthesis. To

transform a logic model into an interconnection of instances of library cells, the logic

synthesis back end, is often represented as technology mapping or library binding.

A state transition diagram of a finite-state machine1 can provide a logic-level

1A FSM or Finite State Machine, is a model for calculation for showing and controlling execution
flow and simulating sequential logic. The FSM is also useful to model problems in different forms
such as linguistics, artificial intelligence, mathematics, or games.
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model of a circuit equivalence by an HDL model or by a circuit schematic. It may be

synthesized from an architectural-level model or specified by a designer. Consider-

ing the circuit’s nature (combinational or sequential) and the initial representation

(the schematic or state diagram), the logic synthesis tasks may be different. Since

there are numerous possible configurations of a circuit, optimization has a key role,

in connection with synthesis to determine the microscopic figures of the implemen-

tation merit. A completely structural representation is obtained such as a gate-level

netlist as the ultimate consequence of logic synthesis.

The last step is the geometrical-level synthesis, which includes the creation of a

physical view at the geometric level. It involves specifying all geometric patterns

to define the chip’s physical layout and position. This is often known as physical

design. The physical design includes the generation of the layout of the chip.

The layout’s layers are based on the masks utilized to fabricate the chip. Thus,

the final target of microelectronic circuit design is the geometrical layout. Physical

design is further based on the style of design. On one end of the spectrum, physical

design is handcrafted for custom design via layout editors. It means that the use

of automated synthesis tools is renounced by the designer in the search to optimize

the circuit geometries by fine hand-tuning. Regarding prewired circuits, physical

design is conducted on the opposite end of the spectrum, virtually, since the chips

are manufactured fully in advance.

Wiring and placement are the major tasks in a physical design known as routing

as well. In the particular case of macro-cell design, cell generation is essential, in

which the cells are synthesized not driven from a library.

Physic and logic-level synthesis steps have already been automatized consis-

tently; for example, Altera and Xilinx performed the logic synthesis well via their

synthesis instruments for FPGA design.

So far, the main problem is that an RTL design is required by these tools ex-

plained through a hardware description language for synthesizing. Thus, a further

stage in design automation is to establish tools for bridging the gap between RTL

design and behavioral specification. Such tools should create RTL design in a quite

short time, regarding design constraints. Moreover, for exploring better and better

solutions in terms of the design objectives, they must discover larger and larger de-

sign space regions. Thus, over the past 20 years, high-level synthesis was a very hot

research topic.

Though, any optimal technique is inefficient to handle the problem since the
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design space is too large. Genetic algorithms are a good option for tackling such

complex explorations, with their simile-random search. This feature was run in the

mixed high-level synthesis for exploiting genetic algorithms and performing design

space exploration to decrease the objectives.

2.3 Bambu

In 2004 the development of the Panada framework[14] for the Polytechnic Univer-

sity of Milan for supporting research infrastructures started and in 2012 the Bambu

which is a high-level synthesis tool in the Panada framework released.

Bambu which is developed by c++11 for the Linux OS is a free framework that

could be downloaded freely2 under GPL licence[15] is able for helping designers in

high-level synthesis in an intricate application which also supports most constructs

in C like:

• Function calls and share the correspond module.

• Arithmetical pointers with the dynamic resolution for memory addresses.

• Accessibility to arrays, structs or any mixture of them.

• Sending the variable and struct via their reference or with function copy.

An important point in Bambu design is that, since it’s extremely modular it is able

to perform different activities in the HLS process and special algorithms, in different

classes of c++ that are working on various IRs related to the level of the synthesis.

Hence the flow in HLS has some similarities to synthesis flow in software that begins

in a high-level specification and after different steps in optimizations and analysis,

the low-level code will be made

2.3.1 Work flow

The Bambu as the input gets source code written by C/C++ language (behavioral

description of a specification) and as output, it will make HDL description of the

corresponding RTL that is matchable by tools in commercial RTL synthesis and

a test-bench because of simulation purpose and behavior validity. The process in

Babmu is divided into three parts as below:

2https://github.com/ferrandi/PandA-bambu
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• Front-end: As it is shown in image 2.2, the entered source code will be con-

verted to intermediate representations which will be used in the next step of

the flow.in this phase, to parse the source code the Bambu use GCC[16] or

CLANG-LLVM[17].

It also supports fully ANSI C (built-in C functions, pointers, etc...) and some

analysis for optimization in the source code. the options in the compiler are

allowed by tools, the intermediate representation file is obtained after the GCC

optimization in the middle-end and will be considered as input for the next

phase.

FIGURE 2.2: Front End

• Middle-end: the task which should be performed in this step is about opti-

mizations and target-independent analyses. In another word, To have clean

code, better memory access, etc... in this phase also some other changes could

be performed in the IR (figure 2.3).

• Back-end: The synthesis process is performed to functions and as result, the

HLS is done. In the image (figure 2.4) the whole process for the HLS is shown
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FIGURE 2.3: Middle-End

visually where after seven main phases from A to G which will describe in the

following, the entered source code will be converted to the HDL.

FIGURE 2.4: Back-End

The full process of the Babmbu from entering the source code to generating the

output(Like HDL) is shown in the image 2.5 which is divided into seven main parts.

In the following, each part with its functionality will describe separately.
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FIGURE 2.5: Bambu Workflow

2.3.2 Input and compile source code

In the first step (section A in figure 2.5 ) of the process, the Babmu framework gets

the input source file( C /C++ source code) and an XML file for the configuration.

Bambu is intake advantage of the customized interface of GCC for the front end

which makes enables the framework possibility of delivering the IR in SSA form3 of

the initial code after some optimizations.

By inputting configuration file or command lines options it could be feasible to

make some optimizations by the compiler4 like constant propagation, dead code

3https://gcc.gnu.org/onlinedocs/gccint/SSA.html
4https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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elimination, loop unrolling.

FIGURE 2.6: Convert source code to IR

As an example, in the figure above (figure 2.6 )we could see a restructuring of

the code on the left side to explicit memory accesses on the right side of the figure.

2.3.3 FRONTEND ANALYSIS and Memories Allocation

As it could be seen in the step B in figure 2.5 Front-End analysis for each function

and next memory allocation will perform in next step.

Firstly in the Front-End analysis of the IR a call graph of the application will

be generate(left part in figure 2.7) and next after GCC optimization for each func-

tion a graph base representaion with identifying of data types, variables, function

parameters and output will be generate (right part in figure 2.7).
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FIGURE 2.7: FRONTEND ANALYSIS

Memory allocation consider the memory space for structures, arrays, global vari-

ables and implementing dynamic memory allocation. For memory access in Bambu

it makes a data-path hierarchy that is connected to dual-port BRAM directly.

On one hand, whenever a global scalar data type or a local aggregated begin in

use with the code determined,when the accesses could be specified during the com-

pile time, that will be resulted to parallel accesses to multiple memory. on another

hand, the memories are interconnected which is feasible for supporting the dynamic

resolution of the addresses.

FIGURE 2.8: Internal Memories
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As it could be seen in image a chip-select logic for accessing internal memories is

performed which tells whether that entered address is for that memory or not while

interfaces for reaching the external memories are performed.

with a memory interface in memory allocation, external variables are reachable

while internal variables are allocated to dedicated heterogeneous memories that

could be reached with functional units.

The image 2.9 represents a schema of external memories. the images show that

it is connected to another interface for generating a chain and gives the possibility

of a dynamic resolution to address.

FIGURE 2.9: Externla Memories

2.3.4 HIGH-LEVEL SYNTHESIS OF THE FUNCTIONS

The HLS part (part C) is the step which the framework starts to make essential mod-

els for implanting the specification, according to the FSM paradigm the controller

modules and the memory interface for them. The Bambu also to resource binding

and scheduling considered several algorithms which could be controlled by the user

(by XML file for configuration or options in command line).

The HLS part for each synthesis step could be extended by different algorithms.

• Resource Allocation:

Resource allocation makes connection between functional units in the resource

library and specification’s operations.
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FIGURE 2.10: Shows the HLS process in Bambu flow.

In middle-end step the specification is performed while operations character-

istics such as operation’s types (multiplication, addition, etc) and value types

for inputs and outputs are recognized.

Operations for floating-point are made in the High-Level Synthesis of a soft-

float library which contain operations of fundamental soft-float or via FloPoCo[9].

In the next step(allocation) they will map to the set of available Functional

Units. They contain some data like number of pipeline stages, latency and

area. Almost all parings are possible between operation and Functional Unit

so the choice of a right Functional Unit is performed with design constraints

and while local data could be bounded to local memories, memory resources

are allocated to Functional Units.

• Scheduling:

In scheduling the LIST-based algorithm is the default one, that is constrained,

with availability of resource based on common metrics. LIST algorithm gives

a priority to any operation.
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By considering the critical path, priority could influence operations mobility.

critical path’s operations get zero-mobility.Increase of the totally circuit latency

because of delay in their execution. mobilities and Critical path could made

by ASAP and ALAP schedules.

The approach of LIST proceeds repeatedly associating any control step, op-

erations which could be executed. With considering availability of resources,

ready operations are scheduled in the current control step. For a resource one

with the higher priority is scheduled, when different ready operations are ex-

isted.

Another solution is , speculative scheduling algorithm that is working on a

system with a variety of constraints. For the scheduling problem it builds an

Integer Linear Programming(ILP) formulation, let to the speculations of oper-

ations and code motions to the diverse basic blocks. This method is working

by ILP solver, that is working by performing the code motions and the specu-

lation introduced by the ILP solution, and next the High-Level Synthesis flow

can be implemented.

It is also possible, after the scheduling task, to make the STG(State Transition

Graph), in which the STG will reach another analysis for making the FSM of

the controller.

• Module Binding:

Sharing the similar instance of FU is not permitted in operations which based

on computed schedule are executing concurrently, so no conflicts in resources.

After the schedule analysis, the graph compatibility could be generated. Op-

erations scheduled are compatible with various control steps. The positive as-

pect of sharing resources by two operations could be obtained by their weights.

As a result of sharing, they are computed by considering area/time exchanges.[11].

the parts that need a big area such as FUs usually become shared. For comput-

ing, the weight, and the number of interconnections for introducing steering

logic in the aspect of area and frequency are considered. Different methods

in Babmbu for converting issues in generic compatibility/conflict graphs are

provided.

• Register and Interconnection Binding:
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Register binding is saving the values in registers which required LA(Liveness

Analysis) that is a priory analysis phase that should identifies the life intervals

of each variable and analyse scheduled function.

Storage values with non-overlapping life intervals could be resulted to sharing

a register. By default in Bambu setting, Bambu flow computes liveness data

by a non-iterative SSA liveness analysis algorithm. Register assignment next

allocated to the matter of colouring a conflict graph in which storage values

are graph’s nodes and conflict relation are shown by edges. It also considered

solution for the issue of weighted clique covering compatibility graph to solve

the register binding.

About the Interconnection binding this phase also follow as before phases,

where for a share resource, on its inputs the algorithm has steering logic. fur-

thermore, It also recognized the relation between control signals and different

operations.

2.3.5 Netlist Generation

Finally, thanks to the novel architecture [10], by attaching all generated modules

and memory interfaces in the master and slave chains the global RTL structural

description could be generated:

• The request generate/published by master .

• The slave’s responsibility is for gives the related data to the corresponding

module for executing the request

• In the case of referring the address to the internal or external memory of the

core, the chains will be blocked by the global external interface.

2.3.6 Generation of Synthesis and Simulation Scripts

Simulation and automatic generation of synthesis are two critical parts of every HLS

flow, In Babmbu this process could be performed by XML configuration files. This

step is presented by E in figure 2.5. Resource library could be automatically char-

acterized in Bambu, with the possibility of technology-aware details. the list below

represents the compatible tools for RTL-synthesis:
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• Xilinx ISE,

• Xilinx VIVADO

• Altera Quartus

• Lattice Diamond

while the supported simulators are:

• Mentor Modelsim

• Xilinx ISIM

• Xilinx XSIM

• Verilator

• Verilog Icarus

2.3.7 Testbenches

The next step in Bambu is the testbenches where with the initial C specification and

XML dataset, it is possible for having test benches as shown in step F in the image

2.6. It works by HDL which is made as the result of the testbench. in fact, for veri-

fication of the execution, it will compare the result with the corresponding software

counterpart. Please consider that it is possible that with different configuration to

synthesize all CHStone benchmarks.

2.3.8 A Datapath Structure

At the register-transfer level (RTL) along with a specification of the finite state, ma-

chines are contained in the output from a high-level synthesizer for controlling the

datapath. A data path includes functional units, interconnection, and storage ele-

ments at the RTL level. Every set of microoperations is specified by the finite state

machine for performing the datapath within each control step. Then, the output can

be synthesized via the related instruments.

The objective is to decrease one or more design targets for minimizing total area

occupied, power consumption, or latency.
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Behaviour is specified by behavioural description based on assignment state-

ments, operations, and control constructs within a common high-level language (C

language).

It is provided by the class behavioural- manager in the Bambu tool. Several

alternatives may exist in the resource library, among which the best one matching

the design constraints and maximizing the optimization is selected by the objective

synthesizer. It is characterized by the class technology-manager in the Bambu tool.

2.4 Function call mechanism

Every time synthesis process is performing on a function that begins from leaves of

call graph that as an example it could be seen in the image 2.11. Finite state machines

with data path(FSMDs) of callee methods pushed inside the caller methods’ data

path by compiler.

FIGURE 2.11: Call Graph

In figure 2.12 in the left side part the HLS performed without using proxy in

function call mechanism which shows in this method at least one callee is needed

for every caller module. This approach will be resulted to sub-optimal resource

utilization.

As it could be clearly seen in image below because of schedules of callers in this

architecture, the funC in existed in both funA and funB modules. In these HLS

compilers different callee modules allocated, when should work execute in mutual

exclusion (funB depends on the call of funC within funA). One solution for solve the

mentioned issues before to makes it possible for sharing modules in the data paths

is function proxy, it is knowns as lightweight control elements on all levels of design
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FIGURE 2.12: Function Call with and Without Function Proxy

hierarchy. thanks to the Function it is also possible that without effect on the design

and controls complication to have manage on the shared resources.

The proxy contains an interface for begin and finish signals for input and return

parameters. The caller has a controller for managing the function modules and its

data path includes the module that by using function proxy becomes replacement

of the instance of shared module in caller datapath that without any modification

in the functionality of the controller of the caller, sends the data signals and control

toward the right instance of the module. In the top of the design hierarchy of the

generated architecture for all shared function module a module’s sample inserted in

the caller’s data path and to any function call there is a proxy inside the data path

of all caller modules.

The right side of the image 2.12 shows the hierarchy of using proxy in function

call mechanism. In Bambu only one proxy is working in a clock cycle that could be

consider that share module calling is usually happened in mutual exclusion. The

merger thanks to sending null signals by inactive proxies needs to manage the in-

coming signals by simple OR and send back the output to the connected proxies by

broadcasting where only active proxy accepts the broadcasted signal.

Common approach in HLS flow is about generate a design by the hierarchical
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point of view for following the schema of the call graph of the input specification,

while in this graph a function is corresponds to a module instantiated in the caller’s

data path. in some other HLS compiler function call have different mechanism ,

because by calling a same function by different modules, next is instantiated in each

of the data path of the callers which finally will resulted to lack of sharing resources.

FIGURE 2.13: Indirect function call mechanism

In the the sequence diagram for a function call is shown where the request starts

by Caller and it have indirect communication with desired function which in this

image it called CALLE, through the builtin.

Next builtin will sends parameters to the desired function(CALLE). So, Caller

should wait for the response until Calle finish it’s computing and sends it’s answer

to the builtin when builtin will write retuned value for the Caller.
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Chapter 3

Thread

3.1 What Is a Thread?

Sequential programs (figure 3.1) could be considered as well known for most pro-

grammers such as "Hello World" which is the first program that is written as the

first program by all programmers or sorting numbers or other sequential programs

which are contains three sections beginning, execution sequence and the end.

FIGURE 3.1: Sequential Program Work Flow

As described before, the thread is also similar to the sequential program but it

could not run autonomously, which also has begin, sequence and the end, which at

the run time of the thread the single point of execution is existed.

A program could has more than one thread which are working in parallel. The

real excitement surrounding threads is not about a single sequential thread. Instead,

it’s for using of multiple threads are active at the same time to perform different

tasks in a single program. In the figure below(Figure 3.2) we could see in a program

we could have a single thread or multi thread which are working in parallel.
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FIGURE 3.2: Multi and Single Thread program

Threads are also using shared code, data and file and operating system resources

(e.g., signals) but the register and stack is not shared and it’s unique for each thread

(figure 3.3).Each thread has private program counter, hardware registers and stack.

FIGURE 3.3: Thread Shared Resources

The advantages of using thread could considered as following :

• Faster response time.

• Increased scalability.

• Shared resources.

• Lower costs for resource management.

There is different example of using multiple threads in software which call multi-

thread programming. For example, when we download a file by web browser, we

can watch a video by that browser concurrently. As another example could refer

to the MS word. The process can check spelling, auto-save, and read files from the

hard-drive, all while you are working on a document.
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On the another hand the drawbacks of using thread could consider as following.

• Without protection for threads

• Without parent-child hierarchy between thread.

There different kinds of thread are exsited which are as following:

• Kernel-level thread : Thread executed at kernel-level The direct support of the

thread concept by the kernel

• User-level thread : Thread executed at user-level The kernel is unaware of

existence of threads

• Hybrid or mixed solution : Both user-level and kernel threads are provided by

the operating system

In image 3.4 the difference between User-Level and Kernel-Level Thread could be

clearly seen.They have different area. Multiple User-Level threads by managing

with a scheduler will be allocated to a Kernel-Level.

FIGURE 3.4: User-Level and Kernel-Level Thread
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3.1.1 Kernel threads

The kernel thread is defined as a "lightweight" part of kernel scheduling. Each

process contains minimum one kernel thread. In case of presence of multiple ker-

nel threads in a process, the same file resources and memory are shared by them.

If process scheduler of operating system is pre-emptive, then kernel threads are

multi-tasked pre-emptively. They own a stack, thread-local storage, the register

copies, with the program counter. Hence, creation and destruction of the is quite

cheap. Besides, thread switching is fairly cheap, which needs a context switching

(stack pointer and restoring and saving registers). However, virtual memory is not

changed, and it is cache-friendly (affording validity to TLB). The task of the ker-

nel is assignment of one thread to logical cores of the system (since each processor

is divided into multiple logical cores if multi-threading is supported by it, or just

one logical core is supported in each physical core if it does not), and it is able to

swap out the blocked threads. Nevertheless, swapping kernel threads is more time-

consuming compared to user threads.

3.1.2 User threads

Sometimes threads are conducted in user-space libraries, hence, they are known as

user threads. The kernel does not have awareness about them. Thus, their manage-

ment and scheduling is done in user-space. User threads of some implementations

is based on top part of kernel threads for taking advantage of multi-processor ma-

chines (M:N model). Green threads are user threads that are executed by virtual

machines.

Considering execution of user thread totally in user-space, it is highly efficient

to have context switch in user threads in the a process since there is no need for

interacting with the kernel. It is possible to run a context switch through local saving

of the CPU registers utilized by the presently implementing user fiber or user thread

and loading the registers needed by the user fiber or user thread to be performed.

Because of occurrence of scheduling in user space, tailoring the scheduling policy

to the program’s workload requirements would be easier. Nevertheless, it would

be challenging in user threads to use blocking system calls (in contrast to kernel

threads). If a system call that blocks is implemented by a user fiber or user thread,

the other user fibers and user threads in the process would not be able run until

return of the system call.
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3.1.3 Hybrid or mixed thread(M:N)

M is the number of application threads are mapped by M:N into N number of ker-

nel entities or "virtual processors." It is a trade-off between user-level ("N:1") and

kernel-level ("1:1") threading. Generally, complexity of implementation of "M:N"

threading systems is higher than user or kernel threads since it is required to apply

some alterations to kernel and user-space code. The threading libraries are in charge

of scheduling user threads on the present schedulable entities in the M:N implemen-

tation, which allows to conduct context switch of threads quickly, preventing system

calls. Nevertheless, it results in increased complexity and the possibility of priority

inversion, and suboptimal scheduling without any extensive (and costly) coordina-

tion between the kernel scheduler and userland scheduler.

3.2 Standard C++ Thread Library

The class thread as an abstraction for a thread of execution is provided by C++11.

This standard library in C++ is a group of classes and functions developed in the

core language and part of the C++ ISO standard that use Standard Template Library

(STL) and effected by research in generic programming.

The standard thread library is not limited to performing specific implementa-

tions and it’s free to perform the implementation.

std::thread 1. is a portable library to be compatible in different operating sys-

tems that are supporting C++142. for example, it use Win32 threads in Win32 and

pthreads in POSIX.

#include <thread> is the header in the standard C++ Library to declare the threads’

functions and classes. the std namespace in C++ Standard Library is responsible for

declaring features.

A single thread is represented by the thread class. muti-threads able to concur-

rently execute multiple functions. The thread execution begins as soon as the object

of the related thread is generated.Each thread has it’s own id that is public member

in the thread class. get_id returns the id of correspond thread.

For constructing a new thread object, the library provides different constructors

that could be use as below.

1https://www.bogotobogo.com/cplusplus/C11/1_C11_creating_thread.php
2https://en.cppreference.com/w/cpp/14
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• Default: thread() noexcept;

• initialization: template <class Fn, class... Args>explicit thread (Fn&& fn, Args&&...

args);

fn represents as a pointer to a function or a member and args... is arguments

that could be pass for calling the fn.

• copy [deleted] : thread (const thread&) = delete;

• move: thread (thread&& x) noexcept;

x represents a thread object.

The generated thread object could be destroys with thread destructor. After cre-

ating a new thread it starts to execution related function. Meanwhile, the main

thread is waiting for terminating the generated thread.this waiting for synchroniza-

tion by blocking the calling thread till completing the thread is perform by join

method(Figure 3.5).

FIGURE 3.5: Thread Join

std::thread::detach provides the execute a thread apart from other threads. in

fact the thread object is able to use detach method to continue its execution without

blocking and synchronizing and releasing the resources when finished.
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hence threads could join or detach prior to their execution flows reach to the

destructor.
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Chapter 4

Modification

Obtaining parallelism in HLS is different than parallelism in software. compilers’

abilities for performing parallelism by high-level language is not sufficient hence de-

velopers are responsible for determining the parallel programs, so the developer can

use a standard library like POSIX Threads or language extensions such as OpenMP.

High-level parallelism in software is performed by runtime libraries but in HLS

this duty is up to the compiler to provide the same behavior in a fundamental com-

putational model.

FIGURE 4.1: HLS Flow In Previous Thesis

The previous thesis "Advanced C++14 Multi-threading Modelling of Electron-

ics Systems"[12] needs some post-processing steps. The workflow of the previous

thesis is shown in figure 4.1 where after entering the C++ source code and using
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the thread library, the generated HDL code needs a post-process step manually to

convert generated sequential FSMDs to parallel FSMDs. The generated parts in the

previous thesis are shown in the image with red color.

The post-process part is not easy to obtain, especially when we want to work on

a bigger or more complex project.

Furthermore, in the previous thesis, the thread library only accepts a limited

number of constructors and for supporting new threads with different numbers of

arguments in generated thread library, we should add a new constructor to the ex-

isting library.

In this section, the aim is to improve some parts of the previous thesis and per-

form different techniques for performing HLS of the multi-thread program by the

newly generated thread library by automatic generation and without post-processing.

The aim in this thesis is represented in the list below.

• Add the new thread library to the libambu as a part of Bambu.

• Enable new library for working by a variable number of arguments and differ-

ent data types.

• HLS with parallel execution for the new thread library without post-processing.

So, as the final output, we expected to have a new workflow as it is shown in

Image4.2.

FIGURE 4.2: HLS Flow In Thesis
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4.1 Bambu Libraries

The Bambu libraries exist in the libbambu folder in /etc/libbambu.

Some functions and libraries are already added in this folder that some of them

is mentioned below:

• assert, puts, putchar, read, open, close, write, printf, exit, abort, bswap32,memcmp,

memcpy, memmove, memset, malloc, free, memalign, calloc, bcopy, bzero,

memchr, mempcpy, libm functions: acos, acosh, asin, asinh, atan, atan2, atanh,

cbrt, ceil, cexpi, copysign, cos, cosh, drem, erf, exp, exp10, expm1,tanh, trunc.

For adding a new library like thread library which is the purpose of this thesis,

this folder should be considered as a host for the new library. After adding the new

library in libBambu the library address like other libraries should be added in the

MAkefile.am.

Since Bambu is able to work with different versions of GCC and LLVM compilers

like:

• GCC5

• GCC6

• GCC7

• GCC8

• CLANG4

• CLANG5

• CLANG6

• CLANG7

In the Makefile.am the target compliers should specify.

After each modification in the Bambu libraries, we should install the Bambu

again to update the compiler and check the new output. For installation, we could

set the desired config first. The suggested configuration by Bambu could be seen in

below(listing 4.1). More information about configure could be seen in the link 1.

1https://panda.dei.polimi.it/?page_id=88
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1 . . / conf igure −− p r e f i x =/opt/panda −−enable −f lopoco

2 −−enable − i c a r u s −−enable − v e r i l a t o r −−enable − x i l i n x

3 −−enable −modelsim −−enable − a l t e r a −−enable −opt

4 −−enable − l a t t i c e −−enable − r e l e a s e

5 −−with−mentor− l i c e n s e =< l i c e n s e − s t r i n g >

LISTING 4.1: Default configuration for installing Bambu

Next, we should perform the subsequent steps, firstly compile the tool.

1 $make

and next install the tool

1 $make i n s t a l l

in case of success install, by the following command, the help message should be

shown in the output.

1 $/opt/panda/bin/bambu

4.2 Thread library with context switching

The first idea for adding the thread library in Bambu is to make a user-level thread

library in C++. The goal is to develop a thread library same to the standard C++

thread library, that makes multi-instance of the threads, manages the memory allo-

cation and scheduling puts them in a list, and executes them at a right time at the

user level. It means the list of threads should be controlled for adding a new one

and removed after execution with considering their priority. To make this library in

Bambu, some other libraries which are not developed in Babmbu should be made

too( Image4.3).

FIGURE 4.3: Thread Library with Context Switching
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We implement FIFO2 dynamic queue for keeping threads in the dynamic list

and managing their priority for execution. For this purpose, the Deque.h library

generate. The responsibility of the FIFO queue in our solution is when a thread in

the head of the queue is running, a new thread will be added to the end of the queue.

Every time a thread becomes in the head of the queue and wants to be executed

after finishing the previous one, first remove the executed thread,and next read the

thread from the ready queue and swap the context between the new current thread

and scheduler, by libucontext_swapcontext function(Listing 4.2).

1

2 while ( ready . GetSize ( ) > 0) {

3 i f ( current −> f i n i s h e d == true )

4 d e l e t e _ c u r r e n t _ t h r e a d ( ) ;

5 Thread * next = ready . GetFront ( ) ;

6 ready . DeleteFront ( ) ;

7 current = next ;

8 l ibucontext_swapcontext ( scheduler , current −>ucontext_ptr ) ;

9 }

LISTING 4.2: Sample Code For Context Switching

In this solution, a thread library by two different constructors is generated. The

first one is the default constructor without any argument and the second, thanks to

the template 3 in C++ supports the variable number of arguments4. The construc-

tors are returned in the listing 4.3.

The thread structure is made with four properties:

• unsigned int id: it is the thread Id, 0 for the first thread, and increases after

adding a new thread.

• char* stack: stack pointer which refers to the top of the stack.

• libucontext_ucontext_t* ucontext_ptr : thread context pointer. a thread context

refer to the subset of thread state(stack environment,registers,...).

• bool finished: flag to show thread is executed or not.

2https://www.geeksforgeeks.org/fifo-first-in-first-out-approach-in-programming/
3Template pass the data type as the parameters instead so by this technique we are able to avoid

making different methods for different kinds of data. Also by a parameter pack (since c++11) it is
possible to consider the variable number of the function arguments.

4https://en.cppreference.com/w/cpp/language/template_parameter
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1 publ ic :

2 //Constructor without argument

3 thread ( ) { }

4

5 //Constructor with v a r i a b l e number of arguments

6 template < c l a s s C, c l a s s . . . R>

7 thread (C( * f ) , R . . . r )

8 {

9 . . .

10 }

LISTING 4.3: Constructors for User-Level thread

When for the first time, a thread with arguments is created, the init value becomes

1 which is 0 by default. Also, make a new instance of the context and assign that

to the scheduler, next move the first thread in the ready queue to the scheduler by

swapping.

• thread(): It’s the default constructor for making a thread without argument.

• template<class C,class... R> thread(C(*f), R... r): Second thread constructor

with a variable number of arguments. the first argument should be the func-

tion name and the next variable number of arguments with different types.

• template<class C,class ... Args> int thread_create(C(*f), Args... r): Makes a

new thread and put it at the end of the ready queue. The main thread is gen-

erated the first time we call the thread library and after making the first thread

init flag becomes true.

• static int exec_func(thread_startfunc_t func,void* arg ): this function after exe-

cuting the thread update the thread status as finished and remove that context

from the scheduler.

• void delete_current_thread(): Delete the current thread and its context.

• int thread_wait(unsigned int lock, unsigned int cond).

• int thread_unlock(unsigned int lock) Remove the thread id from lock_map

queue.

• int thread_lock(unsigned int lock) add the thread id to lock_map queue.
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The functions mentioned below are generated for controlling and switching user-

level context between multiple threads. Since for using context using registers is

essential , assembly is the right choice in this part. Some external assembly libraries

used, that are shown image4.11(swapcontext.s,setcontext.s and getcontext.s).

• int libucontext_getcontext(libucontext_ucontext_t *): this method is responsi-

ble for overwriting the entire context on the current context.

• void libucontext_makecontext(libucontext_ucontext_t *, void (*)(), int, ...): writes

the function and data in a context5

• int libucontext_swapcontext(libucontext_ucontext_t *, const libucontext_ucontext_t

*): Records the current context in the first entered context pointer and switches

to the second context pointer5

• int libucontext_setcontext(const libucontext_ucontext_t *): Assign the current

context to the desired context.6

The image shows that for making a thread library, further existed libraries in Bambu,

also other libraries should developed which could be supported by Babmu for HLS

purposes.

Deque.h which is a Dynamic queue library that is compatible with Babmu is

developed for this solution. In the table below (table 4.1)the library functions are

shown.

bool IsEmpty() Returns true if the queue is empty
bool IsFull() Returns true if the queue is full
void InsertFront(T Value) Add new item in the front of the queue
void InsertRear(T Value) Add new item in the end of the queue
void DeleteFront() Delete the item in the front of the queue
void DeleteRear() Delete the item in the end of the queue
T GetFront() Returns the item in the front of the queue
T GetRear() Returns the item in the end of the queue
int GetSize() Returns the size of the queue

D̃eque() Decountroctor of the class
void GrowArray() Increase the size of the queue

TABLE 4.1: API for Deque Library

5make context and swap context https://linux.die.net/man/3/swapcontext
6setcontext https://linux.die.net/man/3/swapcontext https://linux.die.net/man/2/setcontext
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Figure 4.4 shows the desired architecture for the generated thread library. The

life cycle begins from the program on the disk and finishes after execution by the

CPU. After adding the new Thread library which is described more in the next sec-

FIGURE 4.4: Thread Life Cycle

tion we are able to use Thread like format below for HLS by Bambu.

1 # include <thread >

2 using namespace std ;

3 i n t var ;

4 void funcA ( i n t counter ) {

5 . . .

6 }

7 void funcB ( i n t f i r s t , i n t second ) {

8 . . .

9 }

10 void main ( ) {

11 thread ( funcA , 1 0 0 ) ;

12 thread ( funcB , 1 0 , 1 5 ) ;

13 }

LISTING 4.4: Sample code

Listing 4.4 is a sample code that works with generated thread library and could be

compiled by GCC correctly but not in Bambu. Since in this solution we should use
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some assembly library while HLS starts from high-level languages, another solu-

tion for parallel execution should be considered. However, the generated thread

template with some partial modifications becomes effective in other methods.

4.3 Thread Library

The C++ thread library designed as returned in listing 4.5 to have a multi-threaded

program in Bambu. This decision for developing and choosing this library is ob-

tained after some tests and considering the possibility in HLS workflow.

1 # include <iostream >

2 using namespace std ;

3 s t r u c t Thread {

4 unsigned i n t id ;

5 } ;

6 s t a t i c i n t id = 0 ;

7 c l a s s thread {

8 publ ic :

9 // d e f a u l t c o n s t r u c t o r

10 thread ( ) { }

11 //other c o n s t r u c t o r s

12 template < c l a s s C, c l a s s . . . R>

13 thread (C( * f ) , R . . . r ) {

14 t h r e a d _ c r e a t e ( ( * f ) , r . . . ) ;

15 }

16

17 template < c l a s s C, c l a s s . . . Args> \ _ _ a t t r i b u t e \__ ( ( n o i n l i n e ) )

18 i n t t h r e a d _ c r e a t e (C( * f ) , Args . . . r ) {

19 Thread * t ;

20 t = new Thread ;

21 ( * f ) ( r . . . ) ;

22 t −>id = id ;

23 id ++;

24 re turn 0 ;

25 }

26 } ;

LISTING 4.5: New Thread Library

This thread library works by two different constructors one which works without

any argument and another one which gives as input a function firstly and next
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variable number of other arguments. These two features are(template and function

pointer) supported in Babmbu and thanks to them we are able to make this library.

Another useful feature in Babmu for making Thread library with this template in

C++ is about supporting function pointers [34] while in some other HLS tools, usage

of function pointers to call a function is not possible due to the non-static resolution.

By this mechanism that supports function calls by function pointers, we are able

to use this thread library which is working by the function pointers. For example,

as it could be seen in the source code above, in the thread_create the first argument

is a function pointer.

Another attribute that is supported by Babmu is noinline function. we could

avoid considering our threads to be inline by this attribute and don’t inline this

function under any circumstances. So, if the function has not any side-effect, some

optimizations apart from inlining that use to function calls become optimized away,

however, the function call exists. By this attribute, Bambu generates an independent

module for every noinline function.

4.4 Parallel Programming

In this part, the aim is to describe how it is possible to change the current execution

flow from sequential serial Finite State Machines with Data-path(FSMDs) to the par-

allel Distributed Controller(DC) with access to the shared memory.

While most HLS are focused to generate Instruction Level Parallelism (ILP) which

means they are focused to generate FSMDs which should be scheduled statically, we

want to generate Task Level Parallelism(TLP) by DCs that are able to work by dy-

namic scheduling.

Fortunately, Bambu is compatible with OpenMP[25]that is a programming in-

terface for supporting multiprocessing programming and a multi-platform shared

memory in both C and C++. In other words, it is the solution for creating code to

run on multiple cores/threads.

The source code description by the parallel specification also existed in other

HLS software. For example, LegUp[26] also supports OpenMP specifications, while

for scheduling it needs an instance of an extra general-purpose processor.

However, it usually uses in loop-level parallelism, but it is possible to reach

function-level parallelism too. An advantage of using OpenMP is that we are not
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FIGURE 4.5: Multi Threading Schema In OpenMP

required to add external libraries to compile this code by OpenMP because it is built

inside the compiler.

The execution model of OpenMP for multi-threading is shown in the image4.5.

At the start of the parallel area, the master thread (sequential) makes a group of

threads combined by itself and a collection of threads. Next, at the end of the parallel

area, the thread group finishes the execution while only the master thread continues

the execution of the program.

1 #pragma omp p a r a l l e l // c r e a t e a group of threads

2 {

3 #pragma omp s i n g l e //where a s i n g l e thread

4 {

5 P= head of_ l i s t ( ) ;

6 while ( lend_of_ l i s t ( p ) ) {

7 #pragma omp task //submit a Task

8 process ( p ) ;

9 p= next_ element ( p ) ;

10 }

11 }

12 }

LISTING 4.6: Sample code by OpenMP

The source code in listing 4.6 shows how to generate parallel tasks by OpenMP.The

parallel region makes a group of threads while a single thread creates tasks, next
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adding them to the queue which belongs to the group. The task is a block of instruc-

tions with data that is scheduled for execution with a thread. The task in the queue

is assigned to the thread in their group by the task scheduler.

The functionality of OpenMP in Bambu like most HLS software is to make a

parallel Intermediate Representation(IR) different than a sequential one. For clarifi-

cation and explain the OpenMP functionality and generating parallel IR in Bambu

the workflow is represented.

The synthesis receives different graph-based IR base on the GIMPLE[27] as in-

put. An advantage of using GIMPLE is possibility of decreasing the instrumenta-

tion overhead. It starts to synthesize one function every time according to the call

graph’s structure to generate a modular, hierarchical design. The following most

common IR in compilers are described:

• Control Flow Graph (CFG): the data structure at top of the IR, abstracting the

control flow behavior of a function that could be traversed in function execu-

tion. In this directed graph, vertices represent basic blocks and edges represent

could transfer of control flow from one basic block to another.

• Control Dependence Graph (CDG): a directed graph for controlling the de-

pendencies of a basic block that controls the execution of another basic block

or not.

• Control Dependence Regions (CDR): basic block partitions in the equality classes

that region could be the same with another basic block if they have similar con-

trol dependencies in the control dependency graph.

• Loop Forest:the loops hierarchy inside a control flow graph.

Control Flow Profiles are used in many compilers by collecting code instrumenta-

tion or making static samples from the program counter. After generating a graph

of the program, vertices (basic blocks) or edges (branch transitions) are represented

by profiles, for counting the number of executions of these elements.

For Example, figure 4.6 shows a sequential version of the mainFunc on the left

side and its CFG on the right side. The program contains 20 lines and 10 basic blocks.

the source code is on the left side and the related basic block in the right side with

BB. This basic block in the right side, in CFG is represented as a sequential program

that starts with begin and ends with exist.
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Sample Sequential Code
1 int mainFunc(int c1,int c2,int c3){

2 int a, b, c;//BB1

3 a = c2 + c1; //BB1

4 if (c1) //BB1

5 fun_1(&a); //BB2

6 else

7 a *= 2; //BB3

8 a += b; //BB4

9 b = a + c1; //BB4

10 c1= a; //BB4

11 if (c1) //BB4

12 fun_2(&a); //BB5

13 else

14 a *= 2; //BB6

15 c = 1; //BB7

16 if (c2) //BB7

17 fun_3(&c); //BB8

18 else

19 c *= 2; //BB9

20 return a + b + c; //BB10

(A)

FIGURE 4.6: Sequential Code With Control Flow Graph(A)

The parts of the program with high time consumption could be optimized during

the optimization process. However, there are no completely correct estimates of the

frequently executed paths (sequences of branch transitions) when these profiles are

used broadly.

OpenMP represents path profiling[28] as a method to reach paths’ frequency for

making better profiling information while the amount of instrumentation upward

is limited.

The approach is to divide the program into different tasks. Therefore, profiling



Chapter 4. Modification 42

information without considering the relations among tasks is used to estimate the

performance of single tasks. However, lack of the considering the relation, tools for

analyzing the performance cannot collect essential information on code hot spots

and load balancing, to find the greatest, average, or worst performance estimation

of all the task graphs, the combination of estimations is considered. Next, each task

is represented as a thread and should perform a fork task, and at the end of the

execution of all threads join the task for all of them. This concurrency is represented

by OpenMP.

Architecture properties are essential for a valid performance evaluation of path

profiling and specification. These properties are also considered in the process of

mapping from Gimple nodes to the target assembler statements. The number of

cycles for the target processor could be obtained by using an analytical model with

the list of assembler statements correlated with a GIMMPLE node same approach

to [29] and [30]. This estimation is not exact completely and it has a few errors,

but it’s accepted because it has high accuracy usually since the goal is to focus on

high-speed techniques for task optimization.

The implementation of common parallel embedded applications that are works

by cycles is possible through the hierarchy. Hierarchical Task Graph (HTG) [31] is

the IR of a parallel program that could be obtained from the Control Flow Graph

of the sequential program by recognizing the edges when data and control depen-

dency analyses are used for recognizing the edges in a graph. HTG with considering

control dependences and data generates an intermediate program that makes parti-

tions an application into tasks and specifies parallelism at all levels.

In a hierarchy, a vertex could be:

• Compound: connected to another HTG. These kinds of relations resulted in

stronger graphs than Direct Acyclic Graphs (DAGs), which do not possibly

have feedback edges.

• Simple: only a single task without another task

• Loop: Repetition its body that it’s a separate HTG by itself

The outcome graph is non-cyclic the task could be classified into three categories:

• Fork: multi successors tasks

• Join: multi predecessors tasks
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• Normal: other tasks

The CDG for mainFunc is represented in image (4.7). The graph shows execution

of basic block 2 is depended to the basic block 1 if return true and if it returns false

the block 3 could execute. the story is same for basic blocks 5,6,8 and 9. on the other

hand basic blocks 1,4 and 7 could execute in parallel because there is no dependency

between them.

FIGURE 4.7: The Control Dependency Graph

The source code below (Figure 4.8) shows the sample code for generating parallel

tasks by OpenMP. This program starts with a Main task (Task 0) and finally ends

with Task 4. During this workflow Task, 1,2 and 3 are executed in parallel.

The generated task graph for this source code is represented in figure 4.8 The

image shows the execution graph for the parallel program in left side, where task 1,

task 2, and task 3 can execute in parallel. Possibility of the parallel execution and

concurrency of the model are obtained by explicit fork and next the join by OpenMP

in a shared memory area.
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Sample Parallel Code

1 int mainFunc(int c1, int c2, int c3){

2 int a, b, c;

3 //TASK0

4 #pragma omp parallel sections{

5 //TASK1

6 #pragma omp section {

7 a = c2 + c1;

8 if (c1)

9 fun_1(&a);

10 else

11 a *= 2;

12 a += b;

13 b = a + c1;

14 }

15 //TASK2

16 #pragma omp section {

17 c1= a;

18 if (c1)

19 fun_2(&a);

20 else

21 a *= 2;

22 }

23 //TASK3

24 #pragma omp section {

25 c = 1;

26 if (c2)

27 fun_3(&c);

28 else

29 c *= 2;

30 }

31 }

32 //TASK4

33 return a + b + c;

(A)

FIGURE 4.8: Parallel code With Task Graph(A)
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The aim of this thesis is to put each task in a function and call them in the pro-

gram by our generated thread library(Listing 4.5).In this term, another version of

the program in figure 4.8 could be as below code(Listing 4.7).

1 # include <iostream >

2 # include <thread >

3 void task1 . . . . . . .

4 void task2 . . . . . . .

5 void task3 . . . . . . .

6 i n t mainFunc ( i n t c1 , i n t c2 , i n t c3 ) {

7 i n t a , b , c ;

8 #pragma omp p a r a l l e l s e c t i o n s {

9 thread ( task1 , . . . . )

10 thread ( task2 , . . . . )

11 thread ( task3 , . . . . )

12 re turn a + b + c ;

13 }

14 }

LISTING 4.7: New Solution for Multi-Threading

4.5 Proposed Architecture

The Bambu generates FSMD in HLS that is serial inherently and could be useful for

ILP, but TLP that is a coarser granularity another architecture design for supporting

multiple execution flows by a distributed controller.

The generated architecture for the DC apart from previous methods, a different

and customized approach is considered[35]. The significant advantage of using DC

is, they execute operations dynamically while most HLS approaches work by exe-

cution schedule. In addition, DC is able to manage multi-concurrent execution flow

because any operation and function are controlled apart, while in centralized FSMD

its management is complex. in other words, the number of states and transitions

in an FSM is related to the number of flows. Hence, designing becomes complex

and or infeasible although for a tiny degree of TLP while in DC the design is sim-

pler because its design complexity increases parallel with the number of operations

without considering the number of concurrent flows and operations’ latency.
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This architecture requires an extra step in comparison with FSMD, where the

front-end analysis requires calculating the ACs and generating EPDG. in this term,

Bambu uses a specific algorithm for register [36] and module binding [37].

For concurrency and synchronization in memory resources, the solution is Mem-

ory Interface Controller (MIC)[38] that works without specific modification in syn-

thesis algorithms.

4.5.1 Distributed Controller Architecture

The architecture by adaptive DC [39] performs the dynamic scheduling and parallel

execution with a collection of communication modules each of them is corresponds

to an operation. So by dynamic scheduling, the scheduling (execution order ) in

design time is skipped with the possibility of run-time exploitation of parallelism.

FIGURE 4.9: Extended Program Dependencies Graph

The responsibility of execution of the related operation is up to Execution Man-

agers (EMs) that are module controllers. Execution of the correlated operations is
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performed by EMs immediately after satisfying all of their dependencies and fixing

resource conflicts.

FIGURE 4.10: Distributed Controller Architecture Correspond to Fig-
ure 4.9

After analyzing the Extended Program Dependencies Graph (EPDG) of the algo-

rithm, which represents a common Program Dependence Graph (PDG)7 by control-

flow information(like loops’ back edges), Activating Conditions (ACs) could be

computed for obtaining the least dependencies for every operation.

The communication protocol in EMs is based on a light token-based schema. In

this protocol, EM gets a token signal after satisfying the dependency. As soon as

collecting all AC tokens by the controller(i.e. satisfying all dependencies ) resource

7program dependence graph (PDG) is a graph notation for represents the data and control de-
pendencies explicitly [32] which are for analyzing dependencies during compiler optimization for
performing changes. These changes are performed for improving parallelism and working by multi-
cores[33].
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availability should be checked. The execution starts in case of finding empty re-

sources for related operations. Since this method doesn’t use sophisticated protocol,

there is no overhead in communication.

ACs work as logic functions that are synthesized especially for every EM. fur-

thermore, Resource Managers (RMs) manage resource conflicts in shared resources.

For example, if different operations want to reach a resource, the RM lets access the

operation with a higher priority, and so on.

Figure 4.9 shows an example of an EPDG and its DC is represented in Figure

4.10. The EPDG represents the bonded information and ACs for the corresponding

architecture in the parallel controller. OP1 and OP2 can start to work in parallel

because there is no dependency for executing. Other blocks could execute after

performing their dependencies. The EPDG will use for generating DC in image 4.10.

The architecture shows operations 6,7 are connected to D while Operations 3,4,5 are

connected to the resource C to prevent structural conflict the corresponding EMs

interface by RMs.

The timing can be managed by EMs directly when the latency of execution is

known. Since, in this sample the latency for every operation such as function calls,

and external memory accesses,... is unknown, the EMs were informed about finish-

ing their execution by a done signal from the datapath.

4.5.2 Memory Interface

Calculating resources replication is known as the conventional view for hardware

synthesis in TLP. Threads and tasks are performed via special hardware components

so many of these modules will be used in the final design. Bambu’s policy for paral-

lel working is for different hardware components to bind concurrent function calls

while all resources could not be replicated directly because of memory resources.

In parallel programming, memory could be a shared resource because gener-

ating tasks, that sharing data is convenient among them, and the concurrency of

memory operations should be controlled in parallel execution. In this solution, the

performance could be decreased because of the memory limitation and this effect

is more in memory-bound programs. As consequence the memory could not be

ignored in these programs since its not enough calculation intensity.
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Most proper architectures are working with partitioning and /or distributing

memory. With some extra challenges, these methods provide concurrent access to

memory with different operations.

• During the run time the location of the destination could be recognized be-

cause usually statically memory addresses are not known.

• Structural conflicts should be skipped on shared memory resources

• Synchronization should perform when multiple tasks parallelly want to reach

memory.

Explained issues are solved in Babmu by introducing a Memory Interface Controller

(MIC) during HLS. In fact, it provides the solution for concurrency and synchroniza-

tion in memory resources [40] by mapping memory operations among distributed

and/or multi-ported memories. where N ports in MIC get requests for accessing to

the memory with corresponding address, data, and operation type line that could

be a load or a store.

MIC immediately gets a request when the related port becomes ready, conse-

quently considering the address of the request, the MIC directs the request for an

output port of M. The result sends back to the operation when it receives a done sig-

nal of M with the corresponding result in case of load request. Memory consists of

M autonomous banks that every output port could have access to a bank. it should

mention that non-overlapping addresses are allocated for every memory bank.

For the routing, the considered solution is via a customizable control logic to per-

form the synthesis that could be matched by the common scrambling function for

broadcasting the data in a memory system. Concurrency management is obtained

by preventing each structural conflict in shared resources without extra delay with

a light arbitration plan.
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FIGURE 4.11: Memory Interface Controller(MIC) Schema

Like DC, RMs also represented in MIC to arbitration. For obtaining better mem-

ory bandwidth usage in the system by MIC, resource availability and access rout-

ing are checked in runtime, next issuing concurrent memory operations if both are

not looking for an equal memory address. Atomic memory operations are guar-

anteed by RMs when only atomic memory operation can send the request to the

memory location of the atomic memory operation. Synchronization is possible by

atomic memory operations because of supporting special operations like compare-

and-swap and fetch-and-add.

4.5.3 HLS example

As described previously, we employ OpenMP pragmas for parallelism. According

to different tests and searches in Bambu, as a possible solution for having paral-

lelism is using #pragma omp parallel. the template presented in the sample code

below(Listing 4.8) is an example of using OpenMP pragmas. Since the design uses

accelerators and is not allocated to the special language we could implement the so-

lution in different languages too. In the example, a parallel loop is implemented that

needs concurrent access to the memory. Because of this atomic operations #pragma

omp atomic in line 9 for atomic operation considered. With this solution, the critical

section in parallel execution will be operated in mutual exclusion.
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1 void topfunct ion ( . . . ) {

2 . . . // code block

3 #pragma omp p a r a l l e l f o r

4 f o r ( i = 0 ; i < N; i ++) {

5 {

6 // p a r a l l e l body

7 #pragma omp atomic

8 atomic ( . . . ) ;

9 }

10 }

11 . . . // code block

12 }

LISTING 4.8: Sample Code to Synthesized With OpenMP

for list 4.8, the compilers should distinguish parallel functions that could require

specific HLS steps, hence next to code factoring and wrapping done for transform-

ing from Listing 4.8 to Listing 4.9 functions will be categorized as non-standard or

standard HLS functions. the standard HLS functions are functions that are able

to synthesize by current HLS and are without specific parallelism or context switch-

ing. for example, the topfunction in line 17 of Listing 4.9 doesn’t need any particular

pattern for synthesis that needs a special HLS step, but the generated parallel loop

using OpenMP parallel will be synthesized differently according to describe parts

previously.

1 void atomic ( . . . ) {

2 body

3 }

4 void kernel ( i n t i , . . . ) { // loop body

5 atomic ( . . . ) ;

6 // loop body }

7 void p a r a l l e l ( . . . ) {

8 f o r ( i = 0 ; i < N; i ++)

9 thread ( kernel , i , . . . ) ;

10 }

11 void topfunct ion ( . . . ) {

12 { . . . } //source code

13 p a r a l l e l ( ) ;

14 }

LISTING 4.9: Sample Code to Synthesized With OpenMP After High

Level Synthesis transformations
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4.5.4 Challenges and Solutions

Some fundamental aspects of parallel programming are listed below with the pro-

vided solution in this thesis, some of them related to parallelism in architecture, and

some to memory management.

• Design a parallel architecture instead of existed sequential FSMDs : for this

part, the solution is designing a distributed controller instead of serial FSMDs.

The DC contains a set of EMs and RMs that executes tasks as soon as possible.

• Management of concurrency: MIC provides concurrent access to memory in

distributed/multi-ported shared memories. the MIC also supports memory

scrambling.

• Management of synchronization: MIC also supports atomic operations.because

the atomic operation us able to lock the associated memory port. The atomic

operation also provides area for critical sections of a parallel code that should

be operate in mutual exclusion.
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Chapter 5

Resuls

In this chapter, we validate and evaluate the generated method. We synthesize and

simulate the source code which is added in appendix B by Bambu.

The source code is responsible for making a search inside the graphs with about

26,454 triples. It searches to find items with the same properties as those entered for

searching. The database is made in an XML file which is compatible with the Bambu

simulator as the input file. we performed 4 different configurations for HLS to make

2 parallel samples with 2 and 4 accelerators and 2 sequential samples with 2 and 4

accelerators in the first test.In the first test 4 memory banks for all cases considered

but for the next test, we want to change it to see the effect in latency. The simulation

was performed in Babmu by choosing VERILATOR as the simulator.

In this part, the output performance usually cosider by Area and Latency.

• Area: the number of hardware resources needed for implementing the design

based on the resources available such as block RAMs, look-up tables (LUT),

and registers, ...

• Latency: Amount of required clock cycles to perform a function and obtain the

output.

In the first table (Table 5.1) we want to understand the difference between latency

and area in different models.

Summary of resources

Parallel-4 Accelerators Parallel-2 Accelerators Sequential

Latency(Cycles): 20687 32957 49988

Total estimated area: 5,438 5,438 7,586

max frequency (MHz): 409.53 409.53 348.57

TABLE 5.1: Simulation for parallel and Sequential tests with 2 and 4
Accelerator
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According to the results in table 5.1 we could reach a lower latency by paral-

lelism and a better outcome with fewer clock cycles when the number of accelera-

tors becomes more. In the Bambu configuration, the number of accelerators should

be multiple of 2. By increasing the number of accelerators from 2 to 4 the number

of clock cycles decreased from 32957 to 20687 which is could be considered a good

outcome.

This number remains the same in the sequential version, where increasing the

number of accelerators is without effect in this version.

The total estimated area is the same for both parallel versions and lower than the

Sequential version.

The max frequency (MHz) is also the same in both parallel versions and a bit

more than in the sequential version.

Table(Table 5.2), shows the summary of allocated resources in different simu-

lated models.

Both sequential versions had the same resources, according to the previous table

they had the same latency and area too. So, in conclusion, the number of accelerators

has no effect in the sequential version.

As could be seen in the table above, some resources in the parallel version are

different from the sequential version. For example scheduler or controller_parallel is

represented in parallel versions only. It means that special resources are considered

in parallel models.

Furthermore, the number of resources in a parallel version with 2 accelerators is

lower. For example number of ui_rshift_expr_FU ,ui_pointer_plus_expr_FU, ui_eq_expr_FU

and read_cond_FU.



Chapter 5. Resuls 55

Summary of resources
Parallel with 4 Accelerators Parallel with 2 Accelerator Sequential
AND_GATE: 8 AND_GATE: 4 ASSIGN_UNSIGNED_FU: 7
ASSIGN_UNSIGNED_FU: 20 ASSIGN_UNSIGNED_FU: 10 ASSIGN_VECTOR_BOOL_FU:

2
ASSIGN_VECTOR_BOOL_FU:
5

ASSIGN_VECTOR_BOOL_FU:
3

MEMORY_CTRL: 3

MUX_GATE: 98 MUX_GATE: 52 MUX_GATE: 35
OR_GATE: 25 OR_GATE: 13 OR_GATE: 3
UIdata_converter_FU: 1 UIdata_converter_FU: 1 PRINTF_VECTOR_BOOL32

_UINT32: 1
UUdata_converter_FU: 81 UUdata_converter_FU: 43 UIdata_converter_FU: 1
__controller_parallel: 1 __controller_parallel: 1 UUdata_converter_FU: 26
addr_expr_FU: 6 addr_expr_FU: 4 addr_expr_FU: 4
bus_merger: 54 bus_merger: 30 bus_merger: 20
constant_value: 54 constant_value: 32 constant_value: 24
flipflop_AR: 8 flipflop_AR: 4 flipflop_AR: 3
lut_expr_FU: 4 lut_expr_FU: 2 lut_expr_FU: 1
mem_ctrl_kernel: 9 mem_ctrl_kernel: 5 read_cond_FU: 11
memory_ctrl_parallel: 1 memory_ctrl_parallel: 1 register_SE: 42
read_cond_FU: 32 read_cond_FU: 16 ui_bit_and_expr_FU: 2
register_SE: 12 register_SE: 12 ui_bit_ior_concat_expr_FU: 4
register_file: 156 register_file: 78 ui_eq_expr_FU: 6
scheduler: 4 scheduler: 2 ui_gt_expr_FU: 1
ui_bit_and_expr_FU: 9 ui_bit_and_expr_FU: 5 ui_lshift_expr_FU:13
ui_bit_ior_concat_expr_FU: 10 ui_bit_ior_concat_expr_FU: 6 ui_lt_expr_FU: 4
ui_eq_expr_FU: 24 ui_eq_expr_FU: 12 ui_minus_expr_FU: 2
ui_lshift_expr_FU: 44 ui_lshift_expr_FU: 24 ui_ne_expr_FU: 2
ui_lt_expr_FU: 16 ui_lt_expr_FU: 8 ui_plus_expr_FU: 11
ui_minus_expr_FU: 5 ui_minus_expr_FU: 3 ui_pointer_plus_expr_FU: 18
ui_plus_expr_FU: 30 ui_plus_expr_FU: 16 ui_rshift_expr_FU: 4
ui_pointer_plus_expr_FU: 65 ui_pointer_plus_expr_FU: 35
ui_rshift_expr_FU: 10 ui_rshift_expr_FU: 6

TABLE 5.2: Summary of resources

The next simulation part is performed to see the effect of the memory banks in

the parallel version. for this simulation, the first model with 4 parallel accelerators

and different numbers of memory banks, and the second model with 2 parallel ac-

celerators and different numbers of memory banks.

In image 5.1 that the test was performed with 4 parallel accelerators and 4,8 and

16 memory banks. The statistics show the number of memory banks has a direct

relation with latency, where the number of clock cycles for 4,8 and 16 memory banks

decreased from 20,687 to 17,470 and 16,571 respectively.
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FIGURE 5.1: Simulated Model Latency with 4 Parallel Accelerator

Image 5.2 shows the data about a similar test as the previous, but with 2 acceler-

ators. The changes in the number of clock cycles in this version are not significant

like the previous test but still, we could see a slight decrease after increasing the

number of memory banks. As could be seen image, the number of clock cycles was

reduced slightly from 32,957 to 31,506 after doubling the number of memory banks

from 8 to 16.

FIGURE 5.2: Simulated Model Latency with 2 Parallel Accelerator
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So, increasing the number of memory banks in a version with 4 accelerators is

more effective than another one with 2 accelerators.
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Chapter 6

Conclusion

In this paper, the main goal is to add a standard C++ thread library to the Bambu,

an existing high-level synthesis framework to execute a program in parallel. Bambu

makes it possible to solve some basic parts in parallelism. for example other HLS

frameworks are supporting instruction-level parallelism while we could have task-

level parallelism in Bambu.

Most HLS frameworks are supporting FSMDs only that are serial inherently.

HLS flows usually generate Finite State Machines with Datapaths, which are in-

herently serial Concurrency and synchronization management could be solved by

supporting atomic operations.

So, after working on different solutions for having a C++ thread library for work-

ing in parallel, we used a thread class with a template for calling a thread library

with a variable number of arguments while this library is able by using Open MP,

run multi accelerators in parallel. For more straightforward implantation, the solu-

tion to work on shared memory is introduced. Two main components used in the

solution by Bambu are:

• Distributed Controller (DC): to have task-level parallelism.

• Memory Interface Controller (MIC): for handling accessibility in concurrency

to a multipored shared memory thought shared kernel with the possibility of

atomic operation in memory.

By considering the final result of this solution we could see that in parallel ex-

ecution in contrast with sequential one, an increase in the number of accelerators

will be resulted in to decrease in the number of clock cycles for executing a task so

shorter response time.
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Future Work

The purpose of this paper was to add a standard thread library in C++ which could

be able to perform tasks in parallel. This topic could be performed by different

views in HLS since. In this paper parallel, working is made by using OpenMP.

Another solution for reaching different areas and latency could be using diffident

FSMDs which are working in parallel by static scheduling in Bambu for existed

thread library which is not easy to obtain but the outcome could be interesting.
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Appendix A

Modification

1 # include <iostream >
2 # include " Deque . h"
3 # include < s t d i o . h>
4 # include < s t d i n t . h>
5 # include < s t d l i b . h>
6 # include < s t r i n g . h>
7 # include " b i t s . h "
8 using namespace std ;
9 typedef void ( * t h r e a d _ s t a r t f u n c _ t ) ( void * ) ;

10 extern "C" i n t l i b u c o n t e x t _ g e t c o n t e x t ( l i b u c o n t e x t _ u c o n t e x t _ t * ) ;
11 extern "C" void l ibucontext_makecontext ( l i b u c o n t e x t _ u c o n t e x t _ t * , void ( * )

( ) , in t , . . . ) ;
12 extern "C" i n t l i b u c o n t e x t _ s e t c o n t e x t ( const l i b u c o n t e x t _ u c o n t e x t _ t * ) ;
13 extern "C" i n t l ibucontext_swapcontext ( l i b u c o n t e x t _ u c o n t e x t _ t * , const

l i b u c o n t e x t _ u c o n t e x t _ t * ) ;
14 s t r u c t Thread
15 {
16 unsigned i n t id ;
17 char * s tac k ;
18 l i b u c o n t e x t _ u c o n t e x t _ t * ucontext_ptr ;
19 bool f i n i s h e d ;
20 } ;
21 s t r u c t Lock
22 {
23 Thread * owner ;
24 Deque<Thread * >* blocked_threads ;
25 } ;
26 s t a t i c Deque<Thread*> ready ;
27 s t a t i c Thread * current ;
28 s t a t i c l i b u c o n t e x t _ u c o n t e x t _ t * scheduler ;
29 s t a t i c bool i n i t = f a l s e ;
30 s t a t i c i n t id = 0 ;
31 unsigned i n t lockM = 1 , cond = 1 ;
32 s t a t i c Deque<unsigned int > condition_map1 ;
33 s t a t i c Deque<unsigned int > lock_map ;
34 s t a t i c Deque<Lock*> lock_map_l i s t ;
35 i n t thread_yie ld ( void )
36 {
37 i f ( ! i n i t ) re turn −1;
38 ready . I n s e r t R e a r ( current ) ;
39 l ibucontext_swapcontext ( current −>ucontext_ptr , scheduler ) ;
40 re turn 0 ;
41 }
42 c l a s s thread
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43 {
44 i n t thread_lock ( unsigned i n t lock )
45 {
46 i f ( ! i n i t ) re turn −1;
47 // g e t f r o n t
48 unsigned i n t l o c k _ i t e r ;
49 Lock * l ;
50 i f ( ! lock_map . IsEmpty ( ) )
51 {
52 l o c k _ i t e r = lock_map . GetFront ( ) ;
53 }
54 i f ( lock_map . IsEmpty ( ) )
55 {
56 l = new Lock ;
57 l −>owner = current ;
58 l −>blocked_threads = new Deque<Thread * >;
59 lock_map . I n s e r t R e a r ( lock ) ;
60 lock_map_l i s t . I n s e r t R e a r ( l ) ;
61 }
62 e l s e
63 {
64 l = lock_map_l i s t . GetFront ( ) ;
65 i f ( l −>owner == NULL)
66 l −>owner = current ;
67 e l s e
68 {
69 i f ( l −>owner−>id == current −>id )
70 {
71 re turn −1;
72 }
73 e l s e
74 {
75 l −>blocked_threads −> I n s e r t R e a r ( current ) ;
76 l ibucontext_swapcontext ( current −>ucontext_ptr ,

scheduler ) ;
77 }
78 }
79 }
80 re turn 0 ;
81 }
82 i n t unlock_without_ interrupts ( unsigned i n t lock )
83 {
84 Lock * l ;
85 i f ( lock == lock_map . GetRear ( ) )
86 re turn −1;
87 e l s e
88 {
89 l = lock_map_l i s t . GetFront ( ) ;
90 i f ( l −>owner == NULL)
91 re turn −1;
92 e l s e
93 {
94 i f ( l −>owner−>id == current −>id )
95 {
96 i f ( l −>blocked_threads −>GetSize ( ) > 0)
97 {
98 l −>owner = l −>blocked_threads −>GetFront ( ) ;
99 l −>blocked_threads −>DeleteFront ( ) ;

100 ready . I n s e r t R e a r ( l −>owner ) ;
101 }
102 e l s e
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103 l −>owner = NULL;
104 }
105 e l s e
106 re turn −1;
107 }
108 }
109 re turn 0 ;
110 }
111 i n t thread_unlock ( unsigned i n t lock )
112 {
113 i f ( ! i n i t ) re turn −1;
114 i n t r e s u l t = unlock_without_ interrupts ( lock ) ;
115 re turn r e s u l t ;
116 }
117 i n t thread_wait ( unsigned i n t lock , unsigned i n t cond )
118 {
119 i f ( ! i n i t ) re turn −1;
120 i f ( unlock_without_ interrupts ( lock ) == 0) {
121 unsigned i n t cond_i ter1 = condition_map1 . GetFront ( ) ;
122 i f ( cond_i ter1 == condition_map1 . GetRear ( ) )
123 {
124 condition_map1 . I n s e r t F r o n t ( current −>id ) ;
125 }
126 e l s e
127 condition_map1 . I n s e r t R e a r ( current −>id ) ;
128 l ibucontext_swapcontext ( current −>ucontext_ptr , scheduler ) ;
129 re turn thread_lock ( lockM ) ;
130 }
131 re turn −1;
132 }
133 void d e l e t e _ c u r r e n t _ t h r e a d ( )
134 {
135 d e l e t e current −>s tac k ;
136 current −>ucontext_ptr −>uc_stack . ss_sp = NULL;
137 current −>ucontext_ptr −>uc_stack . s s _ s i z e = 0 ;
138 current −>ucontext_ptr −>uc_stack . s s _ f l a g s = 0 ;
139 current −>ucontext_ptr −>uc_l ink = NULL;
140 d e l e t e current −>ucontext_ptr ;
141 d e l e t e current ;
142 current = NULL;
143 }
144 publ ic :
145 // d e f a u l t c o n s t r u c t o r
146 thread ( ) { }
147 //with prominse
148 template < c l a s s C, c l a s s P , typename . . . R>
149 thread (C( * f ) , P ( * n ) , R . . . r )
150 {
151 //cout << " Thread l i b r a r y Promis .\n " ;
152 }
153 //other c o n s t r u c t o r s
154 template < c l a s s C, c l a s s . . . R>
155 thread (C( * f ) , R . . . r )
156 {
157 i f ( ! i n i t )
158 {
159 i n i t = t rue ;
160 thread_lock ( lockM ) ;
161 t h r e a d _ c r e a t e ( ( * f ) , r . . . ) ;
162 thread_wait ( 1 , 1 ) ;
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163 Thread * f i r s t = ready . GetFront ( ) ;
164 ready . DeleteFront ( ) ;
165 current = f i r s t ;
166 scheduler = new l i b u c o n t e x t _ u c o n t e x t _ t ;
167 l i b u c o n t e x t _ g e t c o n t e x t ( scheduler ) ;
168 l ibucontext_swapcontext ( scheduler , f i r s t −>ucontext_ptr ) ;
169 while ( ready . GetSize ( ) > 0)
170 {
171 i f ( current −> f i n i s h e d == true )
172 d e l e t e _ c u r r e n t _ t h r e a d ( ) ;
173 Thread * next = ready . GetFront ( ) ;
174 ready . DeleteFront ( ) ;
175 current = next ;
176 l ibucontext_swapcontext ( scheduler , current −>ucontext_ptr )

;
177 }
178 i f ( current != NULL)
179 {
180 d e l e t e _ c u r r e n t _ t h r e a d ( ) ;
181 }
182 }
183 e l s e
184 {
185 t h r e a d _ c r e a t e ( ( * f ) , r . . . ) ;
186 thread_unlock ( lockM ) ;
187 }
188 }
189 s t a t i c i n t exec_func ( t h r e a d _ s t a r t f u n c _ t func , void * arg )
190 {
191 current −> f i n i s h e d = true ;
192 l ibucontext_swapcontext ( current −>ucontext_ptr , scheduler ) ;
193 re turn 0 ;
194 }
195 template < c l a s s C, c l a s s . . . Args> i n t t h r e a d _ c r e a t e (C( * f ) , Args . . . r )
196 {
197 i f ( ! i n i t ) re turn −1;
198 Thread * t ;
199 t = new Thread ;
200 t −>ucontext_ptr = new l i b u c o n t e x t _ u c o n t e x t _ t ;
201 l i b u c o n t e x t _ g e t c o n t e x t ( t −>ucontext_ptr ) ;
202 t −>s tac k = new char [ STACK_SIZE ] ;
203 t −>ucontext_ptr −>uc_stack . ss_sp = t −>s tac k ;
204 t −>ucontext_ptr −>uc_stack . s s _ s i z e = STACK_SIZE ;
205 t −>ucontext_ptr −>uc_stack . s s _ f l a g s = 0 ;
206 t −>ucontext_ptr −>uc_l ink = NULL;
207 s t a t i c const std : : s i z e _ t value = s i z e o f . . . ( Args ) ;
208 ( * f ) ( r . . . ) ;
209 l ibucontext_makecontext ( t −>ucontext_ptr , ( void ( * ) ( ) ) exec_func ,

value + 1 , ( t h r e a d _ s t a r t f u n c _ t ) ( * f ) , r . . . ) ;
210 t −>id = id ;
211 id ++;
212 t −> f i n i s h e d = f a l s e ;
213 ready . I n s e r t R e a r ( t ) ;
214 re turn 0 ;
215 }
216 } ;

LISTING A.1: Thread Library
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1 # include <iostream >
2 using namespace std ;
3 #pragma once
4 template <typename T>
5 c l a s s Deque
6 {
7 T * Ptr ;
8 i n t Front ;
9 i n t Rear ;

10 i n t S ize ;
11 void GrowArray ( )
12 {
13 T *Temp = new T [ S ize * 2 ] ;
14 i f ( Front == Rear + 1)
15 {
16 f o r ( i n t i = 0 ; i <= Rear ; i ++)
17 {
18 Temp[ i ] = Ptr [ i ] ;
19 }
20 i n t k = ( S ize * 2 ) − 1 ;
21 f o r ( i n t j = S ize − 1 ; j >= Front ; j −−, k−−)
22 {
23 Temp[ k ] = Ptr [ j ] ;
24 }
25 Front = k + 1 ;
26 d e l e t e [ ] Ptr ;
27 Ptr = Temp ;
28 Temp = n u l l p t r ;
29 Size = Size * 2 ;
30 }
31 e l s e
32 i f ( Front == 0 && Rear == Size − 1)
33 {
34

35 f o r ( i n t l = 0 ; l < S ize ; l ++)
36 {
37 Temp[ l ] = Ptr [ l ] ;
38 }
39 d e l e t e [ ] Ptr ;
40 Ptr = Temp ;
41 Temp = n u l l p t r ;
42 Size = Size * 2 ;
43 }
44 }
45 publ ic :
46

47 Deque ( i n t S ize = 1)
48 {
49 Front = −1;
50 Rear = 0 ;
51 t h i s −>Size = Size ;
52 Ptr = new T [ S ize ] ;
53 }
54 bool I s F u l l ( )
55 {
56 re turn ( ( Front == 0 && Rear == Size − 1) || Front == Rear + 1) ;
57 }
58 bool IsEmpty ( )
59 {
60 re turn ( Front == −1) ;
61 }
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62 void I n s e r t F r o n t ( T Value )
63 {
64 i f ( I s F u l l ( ) )
65 {
66 GrowArray ( ) ;
67 }
68 i f ( Front == −1)
69 {
70 Front = 0 ;
71 Rear = 0 ;
72 }
73 e l s e i f ( Front == 0)
74 Front = Size − 1 ;
75

76 e l s e
77 −−Front ;
78 Ptr [ Front ] = Value ;
79 }
80 void I n s e r t R e a r ( T Value )
81 {
82 i f ( I s F u l l ( ) )
83 {
84 GrowArray ( ) ;
85 }
86

87 i f ( Front == −1)
88 {
89 Front = 0 ;
90 Rear = 0 ;
91 }
92 e l s e i f ( Rear == Size − 1)
93 Rear = 0 ;
94 e l s e
95 ++Rear ;
96

97 Ptr [ Rear ] = Value ;
98 }
99 void DeleteFront ( )

100 {
101 i f ( IsEmpty ( ) )
102 {
103 throw ( "Queue Underflow\n" ) ;
104 }
105 e l s e
106 i f ( Front == Rear )
107 {
108 Front = −1;
109 Rear = −1;
110 }
111 e l s e
112 i f ( Front == Size − 1)
113 Front = 0 ;
114 e l s e
115 Front = Front + 1 ;
116 }
117 void DeleteRear ( )
118 {
119 i f ( IsEmpty ( ) )
120 {
121 throw ( " Underflow\n" ) ;
122 }
123 e l s e
124 i f ( Front == Rear )
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125 {
126 Front = −1;
127 Rear = −1;
128 }
129 e l s e i f ( Rear == 0)
130 Rear = Size − 1 ;
131 e l s e
132 −−Rear ;
133 }
134 T GetFront ( )
135 {
136 i f ( IsEmpty ( ) )
137 {
138 throw ( " Underflow\n" ) ;
139 }
140 re turn Ptr [ Front ] ;
141 }
142 T GetRear ( )
143 {
144 i f ( IsEmpty ( ) || Rear < 0)
145 {
146 throw ( " Underflow\n" ) ;
147 }
148 re turn Ptr [ Rear ] ;
149 }
150 i n t GetSize ( ) {
151 re turn Front −Rear ;
152 }
153 ~Deque ( ) { } ;
154 } ;

LISTING A.2: Deque Library
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1 # include < s t d i o . h>
2 # include <stddef . h>
3 # include < s t d i n t . h>
4 typedef i n t l i b u c o n t e x t _ g r e g _ t , l i b u c o n t e x t _ g r e g s e t _ t [ 1 9 ] ;
5

6 typedef s t r u c t l i b u c o n t e x t _ f p s t a t e {
7 unsigned long cw , sw , tag , i p o f f , c s s e l , dataof f , d a t a s e l ;
8 s t r u c t {
9 unsigned shor t s i g n i f i c a n d [ 4 ] , exponent ;

10 } _ s t [ 8 ] ;
11 unsigned long s t a t u s ;
12 } * l i b u c o n t e x t _ f p r e g s e t _ t ;
13

14 typedef s t r u c t {
15 l i b u c o n t e x t _ g r e g s e t _ t gregs ;
16 l i b u c o n t e x t _ f p r e g s e t _ t fpregs ;
17 unsigned long oldmask , cr2 ;
18 } l ibucontex t_mcontex t_ t ;
19

20 typedef s t r u c t {
21 void * ss_sp ;
22 i n t s s _ f l a g s ;
23 s i z e _ t s s _ s i z e ;
24 } l i b u c o n t e x t _ s t a c k _ t ;
25

26 typedef s t r u c t l i b u c o n t e x t _ u c o n t e x t {
27 unsigned long u c _ f l a g s ;
28 s t r u c t l i b u c o n t e x t _ u c o n t e x t * uc_ l ink ;
29 l i b u c o n t e x t _ s t a c k _ t uc_stack ;
30 l ibucontex t_mcontex t_ t uc_mcontext ;
31 } l i b u c o n t e x t _ u c o n t e x t _ t ;

LISTING A.3: Structures in Thread Library
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Resuls

1 _ _ a t t r i b u t e _ _ ( ( n o i n l i n e ) )
2 void kernel ( s i z e _ t i3 , Graph * graph , NodeId var_2 , PropertyId p3 ,

PropertyId p4 , PropertyId p5 , PropertyId p7 , PropertyId p9 , PropertyId
p11 , s i z e _ t in_degree2 , Edge * var_2_1_inEdges )

3 {
4 unsigned localCounter = 0 ;
5 PropertyId var_3 ;
6 var_3 = var_2_1_inEdges [ i 3 ] . property ;
7 NodeId var_1 ;
8 var_1 = var_2_1_inEdges [ i 3 ] . node ;
9 i n t cond_level_2 = ( var_3 == p3 ) ;

10 i f ( cond_level_2 )
11 {
12 s i z e _ t out_degree1 = getOutDegree ( graph , var_1 ) ;
13 Edge * var_1_3_outEdges = getOutEdges ( graph , var_1 ) ;
14 s i z e _ t i 5 ;
15 f o r ( i 5 = 0 ; i 5 < out_degree1 ; i 5 ++)
16 {
17 PropertyId var_5 ;
18 var_5 = var_1_3_outEdges [ i 5 ] . property ;
19 NodeId var_4 ;
20 var_4 = var_1_3_outEdges [ i 5 ] . node ;
21 i n t cond_level_4 = ( ( var_5 == p5 ) & ( var_4 == p4 ) ) ;
22 i f ( cond_level_4 )
23 {
24 Edge * var_1_5_outEdges = getOutEdges ( graph , var_1 ) ;
25 s i z e _ t i 7 ;
26 f o r ( i 7 = 0 ; i 7 < out_degree1 ; i 7 ++)
27 {
28 PropertyId var_7 ;
29 var_7 = var_1_5_outEdges [ i 7 ] . property ;
30 NodeId var_6 ;
31 var_6 = var_1_5_outEdges [ i 7 ] . node ;
32 i n t cond_level_6 = ( var_7 == p7 ) ;
33 i f ( cond_level_6 )
34 {
35 Edge * var_1_7_outEdges = getOutEdges ( graph , var_1

) ;
36 s i z e _ t i 9 ;
37 f o r ( i 9 = 0 ; i 9 < out_degree1 ; i 9 ++)
38 {
39 PropertyId var_9 ;
40 var_9 = var_1_7_outEdges [ i 9 ] . property ;
41 NodeId var_8 ;
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42 var_8 = var_1_7_outEdges [ i 9 ] . node ;
43 i n t cond_level_8 = ( var_9 == p9 ) ;
44 i f ( cond_level_8 )
45 {
46 Edge * var_1_9_outEdges = getOutEdges (

graph , var_1 ) ;
47 s i z e _ t i 1 1 ;
48 f o r ( i 1 1 = 0 ; i 1 1 < out_degree1 ; i 1 1 ++)
49 {
50 PropertyId var_11 ;
51 var_11 = var_1_9_outEdges [ i 1 1 ] .

property ;
52 NodeId var_10 ;
53 var_10 = var_1_9_outEdges [ i 1 1 ] . node ;
54 i n t cond_level_10 = ( var_11 == p11 ) ;
55 i f ( cond_level_10 )
56 {
57 loca lCounter ++;
58 }
59 }
60 }
61 }
62 }
63 }
64 }
65 }
66 atomicOP(& counter ) , loca lCounter ) ;
67 }
68 }
69

70 _ _ a t t r i b u t e _ _ ( ( n o i n l i n e ) )
71 void p a r a l l e l ( Graph * graph , NodeId var_2 , PropertyId p3 , PropertyId p4 ,

PropertyId p5 , PropertyId p7 , PropertyId p9 , PropertyId p11 , s i z e _ t
in_degree2 , Edge * var_2_1_inEdges )

72 {
73 s i z e _ t i 3 ;
74 #pragma omp p a r a l l e l
75 f o r ( i 3 = 0 ; i 3 < in_degree2 ; i 3 ++)
76 {
77 thread ( kernel , i3 , graph , var_2 , p3 , p4 , p5 , p7 , p9 , p11 ,

in_degree2 , var_2_1_inEdges ) ;
78 }
79 }

LISTING B.1: Multi Threaded Sample Code


