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Summary

Nowadays, Quantum Computing (QC) and Machine Learning (ML) are two of
the most innovative research fields of information technologies. Quantum Machine
Learning (QML) merges these two topics, developing models for ML tasks whose
computational complexity can be reduced with QC techniques. A relevant ML ap-
plication is Classification, which identifies the class to which new input data belong,
according to a model built during a preliminary learning process. This is achieved
on a training dataset composed of features (numerical vectors describing data) and
labels (the expected output class). The accuracy of a classifier can be quantified
in terms of the total number of correctly predicted outcomes over the total num-
ber of processed data. For near-term applications, the limits of current quantum
hardware, in terms of execution reliability and scalability, promote the definition of
hybrid QML solutions making the best of quantum and classical processing. Among
these, the Variational Quantum Circuit and the quantum-kernel-estimation-based
Support Vector Machine can be mentioned. The former implements the classifica-
tion model with a parameterized quantum circuit optimized classically to achieve
better accuracy. The other tries to maximize the distinguishability of data be-
longing to two different classes with a classical optimizer, assisted by quantum
computing, mapping features in a higher dimensional space. In both cases, a pre-
liminary encoding operation to represent classical data onto a quantum system is
required. Then, specific quantum and classical operations complete Classification
according to the hybrid solution and how the information has been represented.
This thesis aims to verify that the data encoding strategy influences the model’s
accuracy, so it must be treated as an optimizable degree of freedom for QML algo-
rithms. In particular, the Amplitude and Angle Encodings, which have the most
promising scalability, have been considered. The first one maps data features to
the probability amplitudes of the qubits state vector, while the other consists of
embedding the data as the angle parameter for rotational gates. In this work,
new Angle Encoding techniques have been explored and compared with those al-
ready present in the literature to observe the impact on accuracy, examining sixty
different strategies. The derived models have been developed and simulated with
the Pennylane QML library, while the tests have considered the Iris and Wine
datasets to prove the dependence of classification accuracy on encoding. For each
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case study, the best encoding strategy has been identified as the best compromise
between learning performance requirements and execution time. For each dataset,
three different benchmarking classifications have been performed, considering the
available classes: 1vsAll, where the model has to identify if new data belong to
class 0; 1vs1, in which the classification is accomplished by taking just two among
all classes; and Multi-class, for which all classes are evaluated concurrently. From
the obtained results, it can be concluded that the best encoding strategy cannot be
chosen from previous analyses but depends on the specific case study. Moreover,
some encodings can be discarded because they do not separate data effectively.
Therefore, the encoding choice is a crucial preliminary operation to be properly
pondered for efficient QML model development.
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Chapter 1

Quantum Computing

Quantum Computing is an innovative field of computation that tries to reduce
the complexity of some problems considered hard using classical methods.
It exploits quantum physics phenomena, such as superposition and entangle-
ment to speed up the processing.
In this chapter, the fundamentals and the characteristics of this approach are pre-
sented. Further details can be found in the bibliography [1].

1.1 Qubit
The unit of information for Quantum Computing is the qubit, such as the bits for
Classical computation. Differently from classical bits, which can only represent 0 or
1 values, the qubit can potentially assume infinite states as a linear combination
of its basis states, |0⟩ and |1⟩.

|0⟩ =
A

1
0

B
|1⟩ =

A
0
1

B
. (1.1)

The state vector of a single qubit can be written as:

|ψ⟩ =
A
c0
c1

B
= c0 |0⟩ + c1 |1⟩ , (1.2)

where c0 and c1 are complex numbers, called probability amplitudes, because
|c0|2 represents the probability of the qubit of measuring it as |0⟩, while |c1|2 the
probability of measuring it as |1⟩. The sum of these probabilities must be equal to
1 and, for this reason, the norm of the state vector is equal to 1.

|c0|2 + |c1|2 = 1 (1.3)

The state of the qubit can be also represented graphically using the Bloch Sphere.
Each point of the Bloch sphere represents a possible state, and it can be represented
using the projection along the three axes X, Y, and Z.
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1 – Quantum Computing

φ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 1.1: Bloch Sphere.

To map the quantum information of a qubit in the sphere, the generic state |ψ⟩
is also expressed as:

|ψ⟩ = cos θ |0⟩ + eiϕ sin θ |1⟩ (1.4)
Where θ and ϕ are the two angles, as defined in fig. 1.1. While ϕ is comprised in
the interval [0, 2π], θ belongs to [0, π

2 ]. On the top of the sphere is mapped the
state |0⟩, while on the bottom |1⟩.

1.2 Measurement
Differently from classical computation, measurement in quantum computing is
an operation that alters the system and is a non-deterministic process. The
measurement operation is done by using an observable Ω. The reading value
would be the eigenvalue, λ, of the observable defined, and the resulting state
after the operation is the eigenvector associated.

Example Consider the measurement of the state |ψ⟩ and the observable Ω.

• |ψ⟩ = 1
2

A
1
1

B

• Ω =
A

−1 −i
i 1

B
The eigenvalues associated to this specific observable are λ1 and λ2 while the eigen-
vector are e1 and e2.
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1.3 – The basis of Quantum Computing

• λ1 = −
√

2

• λ2 =
√

2

• e1 =
A

−0.9239i
−0.3827

B

• e2 =
A

−0.3827i
0.9239

B

Then, the probability of the state |ψ⟩ to collapse in |e1⟩ is calculated doing the
square of the inner product of the two states, so the square of the product of |e1⟩
by the conjugate and transpose of the state vector |ψ⟩. The same is done for the
probability of |ψ⟩ to go into |e2⟩.

p1 = |⟨ψ|e1⟩|2 p2 = |⟨ψ|e2⟩|2 (1.5)

The expected value of the measurement, denoted by the expression ⟨ψ|Ω|ψ⟩, can
be determined by summing the contributions of each eigenvalue multiplied by the
probability of the state to collapse in the corresponding eigenvector state.

⟨ψ|Ω|ψ⟩ = p1 × λ1 + p2 × λ2 = 0. (1.6)

1.3 The basis of Quantum Computing
The two most important quantum mechanics properties exploited in Quantum
Computation are:

• Superposition

• Entanglement

The superposition is achieved when the qubit has a no-null probability of being
in both the state |0⟩ and |1⟩. By exploiting this effect, it is possible to represent 2n

states simultaneously from a system with n qubits. A graphical representation of
the superposition is shown in fig. 1.2.

The other property examined is the entanglement. It involves the correlation
of two qubits. The most iconic example that describes this phenomenon is the Bell
States, which represents a correlation between two qubits. The correlation can be
positive if the two qubits at the output are in the same state, or negative if the
two qubits are in the opposite state. A graphical representation is shown in 1.3 .
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1 – Quantum Computing

Figure 1.2: Superposition representation. The green color represents the state |0⟩,
while the blue is associated with state |1⟩. The other ball, colored with shades of
green and blue, is in superposition.

Figure 1.3: Representation of the Bell states. On the left, an example of a positive
correlation of the two qubits is shown, which collapse both in |0⟩ or |1⟩ when
measured. On the right, the two qubits are anti-correlated and collapse in the
opposite state.

1.4 Quantum gates
The qubits are manipulated by applying transformations called quantum gates.
They are associated with matrices that, by multiplying the initial state, transform
it into a new one, as shown in the following equation, where G is the quantum gate
applied.

|ψ(t+1)⟩ = G |ψ(t)⟩ (1.7)

The main properties related to these transformations are:

• Linearity

• Unitary

• Reversibility
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1.4 – Quantum gates

Linearity The quantum gates are linear transformations that are applied to the
state vector.

Unitary A matrix is unitary if:

UU † = U †U = I (1.8)

where U † is the conjugate and transpose matrix of U. It guarantees that the state
vector norm remains constant.

Reversibility Quantum gates are reversible and their input quantum state can
be always reconstructed through inverse transformation.

The gates presented in this thesis are the most common for Quantum Machine
Learning and do not cover the totality of the possible gates. The presented ones
are:

• The Pauli gates

• The Hadamard gate

• The Rotational gates

• The Controlled gates

Pauli, Hadamard, and Controlled gates belong to the Clifford set, while the others
compose the Rotational set. Each gate is associated with a matrix, which describes
the operation.

Pauli gates The application of the Pauli gates rotates the state of the qubit of
180° on the Bloch Sphere around the corresponding axis X, Y, or Z.

X Y Z

Figure 1.4: Graphical representation of the Pauli gates X, Y, and Z.

The corresponding matrices are

X =
A

0 1
1 0

B
Y =

A
0 −i
i 0

B
Z =

A
1 0
0 −1

B
(1.9)

Considering the Bloch sphere, if a qubit is in |0⟩ and a Pauli gate is applied, the
qubits will be in |1⟩ due to a rotation of 180° concerning the X-axis. Vice versa,
using a Pauli gate to a qubit in |1⟩, it will rotate to |0⟩. For this reason, this
transformation is associated to the classical NOT gate.

7



1 – Quantum Computing

Hadamard The Hadamard, shown in fig. 1.5, is one of the most exploited gates
in Quantum Computing. It permits obtaining the uniform superposition starting
from the ground state, where all qubits are in |0⟩.

H

Figure 1.5: Representation of the Hadamard gate.

The matrix that describes this behavior is presented in 1.10.

1√
2

A
1 1
1 −1

B
(1.10)

If this gate is applied to a qubit in |0⟩, it will be rotated to |+⟩ = 1√
2

A
1
1

B
, while if

the initial state is |1⟩, the resulting vector is |−⟩ = 1√
2

A
1

−1

B

Rotational gates The rotational gates, shown in fig. 1.6, rotate the state of the
qubit along one of the three axes X, Y, and Z by an angle θ passed as a parameter.

RX(θ) RY (θ) RZ(θ)

Figure 1.6: Representation of the rotational gates, which rotates the state along
the X, Y, and Z axis respectively.

They can be defined as exponential matrices with the corresponding Pauli matrix
passed as an argument:

RX(θ) = e−i θ
2 X =

A
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

B

RY (θ) = e−i θ
2 Y =

A
cos θ

2 sin θ
2

sin θ
2 cos θ

2

B

RZ(θ) = e−i θ
2 Z =

A
e−i θ

2 0
0 ei θ

2

B (1.11)
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1.5 – Encoding

Controlled gates The controlled gates are multiple input gates in which there
are one or more qubits used as control and a single target qubit. The example
reported in figs. 1.7 and 1.8 is the C-NOT gate, where the Pauli-X gate implements
the transformation if the control qubit is in the state |1⟩.

|x⟩ • |x⟩
|y⟩ X |x⊕ y⟩

Figure 1.7: Graphical representation
of the C-NOT gate, where the top
qubit in state |x⟩ is the control, while
the bottom qubit in state |y⟩ is the
target.

|x⟩ |y⟩ |ψout⟩
|0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |1⟩
|1⟩ |0⟩ |1⟩
|1⟩ |1⟩ |0⟩

Figure 1.8: Representation of the truth
table related to the circuit in fig. 1.7. The
input qubits are in state |x⟩ and |y⟩, while
|ψout⟩ is the state of the bottom qubit af-
ter the application of the CNOT.

The resulting operation for the target qubit is similar to the XOR function be-
cause it is in the state |0⟩ if both the input qubit are in the same state, else the
output qubit state is |1⟩.

Also, considering the controlled gates, another example is the Toffoli Gate. For
this gate, the Pauli-X gate is active if both the 2-control qubits are in the state |1⟩.

•
•
X

Figure 1.9: Graphical representation of the Toffoli gate. The bottom qubit is the
target, while the others are the controls.

1.5 Encoding
The goal of encoding is to represent the data in a quantum system. Different
methods can be implemented but the ones explored in this thesis are Basis, Am-
plitude, and Angle encoding, which would be presented in the following sections.
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1 – Quantum Computing

The information described can be deepened in [2].

1.5.1 Basis Encoding
Basis Encoding consists in mapping the data, written in binary, by maximizing the
probability amplitude of the corresponding basis state. In order to do this, Pauli-X
gates are applied.

Example Consider to encode a vector x = (0.1 , -0.6 , 1.0). The elements are
encoded using the sign and magnitude technique, and for this example the precision
is supposed to be τ = 4.

0.1 −→ 0 0001
−0.6 −→ 1 1001
1.0 −→ 0 1111

The resulting state will be:

|ψ⟩ = |00001 11001 01111⟩

The limiting aspect of this encoding strategy is related to the number of qubits,
which are limited in current devices. Supposing to encode the feature −0.6, it
would be necessary to apply a Pauli-X gate for each non-zero bit of the value, as
shown in fig. 1.10.

|0⟩ |1⟩
|0⟩ |1⟩
|0⟩ |0⟩
|0⟩ |0⟩
|0⟩ |1⟩

Figure 1.10: Example of basis encoding for the parameter -0.6.

1.5.2 Amplitude Encoding
Amplitude Encoding is another encoding technique that consists of encoding a value
as a probability amplitude associated with the reference state vector.

10



1.5 – Encoding

Example Consider the same case of the Basis encoding. Firstly, it is necessary to
normalize the vector, in order to embed it as a state vector. For the normalization,
each element is divided by the norm-2 of the vector.

x

norm(x) = 1√
0.12 + 0.62 + 1.02

1
0.1 0.6 1.0 0

2
=

=
1
0.085 −0.513 0.854 0.000

2 (1.12)

The resulting state is:

|ψ⟩ = 0.0854 |00⟩ − 0.513 |01⟩ + 0.854 |10⟩ + 0 |11⟩ (1.13)

To prepare the desired state, RY and CNOT gates can be used and an example is
proposed in fig. 1.11 whose results in output in terms of amplitudes and probabilities
are shown in fig. 1.12.

q0

q1 2.05
RY

2.81
RY

Figure 1.11: Example of a quantum circuit capable of preparing the state |ψ⟩ =
0.0854 |00⟩ − 0.513 |01⟩ + 0.854 |10⟩ + 0 |11⟩

00 01 10 11
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
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itu
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00 01 10 11
0.0

0.2

0.4
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Figure 1.12: Amplitudes and probabilities for the desired encoded state
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1 – Quantum Computing

The number of qubits required for this encoding is log2 N , where N is the number
of elements of the vector. It represents an advantage with respect to the other
techniques, but it requires a huge number of gates that will slow the computation.

1.5.3 Angle encoding
Angle Encoding consists in embedding the data using rotational gates. The value
to encode (i.e. the feature) is passed as an angle parameter, and the resulting state
depends on the rotational gate applied.

Example Supposing to encode the value -0.513 using RY gates, the resulting
state will be:

|ψ(−0.513)⟩ = cos(−0.513/2) |0⟩ + sin(−0.513/2) |1⟩ (1.14)

For this encoding technique, the number of qubits required is proportional to
the number of elements. For this reason, it requires more qubits, but it is faster
than the Amplitude Encoding state preparation.

RY (−0.513)

Figure 1.13: Example of angle encoding for the parameter 0.513 using the R-Y gate
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Chapter 2

Introduction to Machine
Learning

Machine Learning is a research field of Artificial Intelligence that became popular
in the last few years. It can be used for solving problems that are too computation-
ally expensive using classical programming techniques. The basic idea of Machine
Learning is to define models that generalize from data to solve these kinds of prob-
lems. The information described in this chapter is taken from [2].
A generic definition, proposed by Mitchell [3], of Machine Learning is:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

According to this definition, it is possible to analyze the principal elements of a
Machine Learning algorithm, that would be:

• The Task

• The Model

• The Training process

• The Metrics

2.1 Task
The objective of each Machine Learning model is to create a model capable of
producing an answer for a problem, given an initial dataset.
The learning problem can be categorized into three different approaches:

• Supervised Learning

13



2 – Introduction to Machine Learning

• Unsupervised Learning

• Reinforcement Learning

For this thesis, it is analyzed just Supervised Learning.

Supervised Learning Its goal is to predict the label of a new unclassified data
vector, starting from a dataset composed of features and target labels.
The main tasks for this kind of learning are:

• Regression

• Classification

For the regression, the predicted value is a real number. A typical example of this
task is the value of houses, which can depend on different features like where the
house is located (the latitude and longitude), the number of bedrooms, the number
of bathrooms, and others.

Differently from the regression, the predicted label of a classification problem
is a discrete value. The classification can be binary, multiclass, or multilabel.
Binary Classification consists of predicting the label of a data sample from two
mutually exclusive classes. For Multiclass classification, the possible classes are
more than two. Finally, multi-label classification assigns zero or more labels to
each data sample.

(a) Example of a regression prob-
lem.

(b) Example of a binary classification.

Unsupervised Learning It has to recognize the characteristics of the dataset.
The dataset is composed of features with no labels.
The most diffused tasks are the Principal Component Analysis (PCA), where

14



2.1 – Task

the algorithm has to identify the principal components of a dataset, and the Clus-
tering, in which, given the number of clusters, the algorithm finds the data group
similar to each other.

Figure 2.2: Example of a Clustering task in which the number of clusters is set to
3.

Reinforcement Learning Here, the model is inserted in a close loop with the
environment. The model has to generalize from experience and with the environ-
ment. The most iconic problem is the computer that plays chess.

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 2.3: Example of a chess board that represents Reinforcement Learning.
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2 – Introduction to Machine Learning

2.2 Model
As previously stated, it is critical in Machine Learning to define a model, which
is a collection of functions, algorithms, or rules that define a relationship between
input data and the output outcomes. This relationship is also defined by a set of
trainable parameters that will be optimized to get the predicted value as close to
the real one as possible.

2.3 Train
The training part is the heart of Machine Learning algorithms. In this process, the
parameters are optimized to achieve the best performance possible.
To do that, it is important to first define the Cost function. It is constituted of two
contributions:

• The Loss

• The Regularisation

2.3.1 Loss function
The Loss term is used to calculate the difference between predicted and actual
values. There are several loss functions, some of which are the following.

Squared Loss The Squared Loss function is the most well-known, which com-
putes the squared distance between the prediction and the expected value.

L = 1
2(f(x; θ) − y)2 (2.1)

where f(x; θ) is the outcome of the model which depends on the input data x and
on the parameter θ, while y is the expected label.

Absolute Loss The Absolute Loss is similar to the squared loss, substituting the
square with the absolute value.

L = 1
2 |f(x; θ) − y| (2.2)

Hinge Loss The Hinge Loss is useful for binary classification, in which the classes
are 1 or -1.

L = max(0, 1 − f(x; θ)y) (2.3)
The result is in the interval [0, 2], with 0 indicating that the prediction is equal to
the true value and 2 indicating that the prediction class differs from the expected.

16



2.3 – Train

Logistic Loss Logistic Loss is determined starting from the logistic function. It
is used for binary classification in which the classes are positive and negative. If
the prediction and the target are different, the error is maximized.

L = log(1 + e−yf(x;θ) (2.4)

Cross-entropy Loss Cross-entropy Loss is used for those classifications in which
the result of the model is a probability value. For binary classification, in which
the classes are 0 and 1, it is:

−y log p− (1 − y) log(1 − p) (2.5)

For multi-class classification, the classifications in which the outputs of the model
are mutually exclusive, the loss function will be equal to the logarithm of the
probability of obtaining the class as result.

L = log(p(x, y|θ)) (2.6)

While for multi-label classification, in which the outputs are not mutually exclu-
sive, the loss function is:

L =
DØ

d=1
yd log p (2.7)

2.3.2 Regularisation term
The regularisation is an additional term that can be added to reduce the over-
fitting. Overfitting is a Machine Learning problem in which trained models are
incapable of generalizing from data. To determine whether this phenomenon oc-
curs, dataset is divided into two parts: training and testing. The training section
is used to train the model, and the test section is used to evaluate its performance.
Another Machine Learning problem is the underfitting, which happens when the
model is not capable of visualizing the relationship between inputs and outputs.
The regularisation term is associated with a parameter λ that if it is too low, the
model may overfit; if it is too large, the model may underfit.

Cost = Loss+ λReg (2.8)

2.3.3 Optimization function and Gradient Descent
As previously stated, the objective of the training is the minimization of the errors
accomplished by the Machine Learning models, that in this case is represented by
the cost function.
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To do that, at each step every parameter θ is subtracted by the derivative of the
cost function to the parameter analyzed.

θ(t+1) = θ(t) − η
dC

dθ
, (2.9)

where η is the learning rate, a parameter that set the step size.
The algorithm presented is related to the Gradient Descent [4]. The entire training
set is run through the model, and after each iteration, the derivatives and param-
eters are calculated and updated. Other approaches would include the Stochastic
Gradient Descent [5], which speeds up the algorithm by passing only a subset of
the entire training set and updating the parameters each time. The problem with
this algorithm is that it does not guarantee that the cost function will be reduced
each iteration.

2.4 Important Metrics
The evaluation of the performance of a Model is defined by some metrics. The
most important ones are the following:

• Accuracy

• Precision

• Recall

• F1-score

To describe them, it can be useful to define the Confusion matrix, which is a
matrix for evaluating the performance of the model. In this matrix, the real labels
are defined on the column, while the predicted ones on the rows. Then, the results
of a binary classification (-1, 1) can be defined as:

• True Positive (TP), if the data is correctly predicted as 1

• True Negative (TN), if the data is correctly predicted as -1

• False Positive (FP), if the model misses the prediction and classifies the
point as 1

• False Negative (FN), if the model misses the prediction and classifies the
point as -1

It is desired to obtain the highest possible value of True Positive and True Negative
data, minimizing model errors.
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Figure 2.4: Confusion matrix

2.4.1 Accuracy
The accuracy of the model is the number of data well predicted over the entire set
of elements evaluated.

Accuracy = TP + TN

TP + FP + TN + FN
(2.10)

This metric is useful to evaluate the model performance if the number of elements
belonging to a class is the same for the other. Otherwise, it’s possible to achieve a
good result of accuracy in classifying the whole dataset with just one class.

2.4.2 Precision
The Precision is the number of corrected predicted positives over the number of
positive predictions.

Precision = TP

TP + FP
(2.11)

2.4.3 Recall
The Recall is the number of corrected predicted positives over the number for which
the real label is the positive one.

Recall = TP

TP + FN
(2.12)

2.4.4 F1-Score
In some cases, the Precision and the Accuracy are not well balanced, for this reason,
to choose the best model, F1-score can be defined as an additional metric to achieve
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the best trade-off. It is obtained as the harmonic mean of Precision and Recall.
This metric is maximized if the Precision and Recall are similar to each other.

F1 = 2 Precision ∗Recall
Precision+Recall

(2.13)
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Chapter 3

Quantum Machine Learning

The most important models for Quantum Machine Learning, related to classifi-
cation tasks, are the Variational Quantum Classifier [6] and the Support Vector
Machine with the Quantum Kernel Estimation [7]. The models proposed are hy-
brid, therefore, there is an evaluation task based on Quantum devices while the
optimization one is done classically. These models can be developed also in near-
term quantum devices because require a limited number of qubits.

3.1 Variational Quantum Classifiers
The variational quantum classifier is a model composed of an encoding part, to
represent the input classical data in the quantum devices, and a variational block,
composed of rotational gates in which the parameters are the rotational angles and
whose values are optimized by classical methods.
The training set is passed to the variational quantum circuit to optimize the pa-
rameters, and then, for the evaluation, just the encoding part is changed.

S(x) W(θ)

θ 

Classical
Optimizer

0

1

TRAINING 
DATA
TEST 
DATA

END 
TRAINING

END 
TRAINING

CLASSIFICATION

END 
TRAINING

VQC

Figure 3.1: Variational Quantum Circuit
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3 – Quantum Machine Learning

3.1.1 Measurement
For the binary classifications, the measurement is done on a qubit and the expected
value is read using a Pauli gate as observable, generally, the Pauli-Z that has the
eigenvalue 1 for the state |0⟩ and -1 for the state |1⟩. The equation that describes
the measurement operation is the following:

Tr(ρσz) = ⟨ρ | σz | ρ⟩ (3.1)

Where ρ represents the density matrix for the measured qubit. To describe the
measurement, using the observable Pauli-Z, the following image is used. The prob-
abilities of the qubit to be in states |0⟩ and |1⟩ are calculated, then they are mul-
tiplied by the corresponding eigenvalue for the states |0⟩ and |1⟩. Then, the two
quantities are summed with a trainable parameter b to obtain the prediction value.

PREDICTION LABEL

LOSS

PR
O
B
A
B
IL
IT
IE
S

EIGENVECTORS

EIGENVALUES

Figure 3.2: Representation of how the measurement is done for the VQC. The two
probabilities of the qubit to collapse to the eigenvectors |0⟩ and |1⟩ are multiplied
by the corresponding eigenvalue and summed. Then, the sum with a trainable bias
parameter b gives the result of the prediction.

3.2 Support Vector Machine with quantum ker-
nel estimation

The Support Vector Machine model is a type of model that is also used in classical
computation. The idea, for the classification task, is to maximize the margins,
which are the distances between the two classes.
For non-linearly separable classes, the kernel functions are used. These functions
map the data points in a higher-dimensional space. Originally the dot product is
applied for each data point to each data of the training set.
Using the kernel trick, other kernel functions can be used, like the Gaussian. The
resulting data are then saved in a M ×M matrix and the optimization started.
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3.3 – Figures of Merits

In quantum, there are two different methods in the State-of-Art, one explicit and
the other one implicit. The explicit method consists in apply also the optimization
task in quantum, which is the method proposed by Rebentrost [8]. The implicit one
consists of doing the kernel evaluation in quantum and the optimization classically.
To do that, a possible solution consists in applying an encoding circuit to encode the
data x, and an adjoint circuit to encode the data t. Then, measure the probability
of getting the ground state in output.
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Figure 3.3: Support Vector Machine with quantum kernel estimation

3.3 Figures of Merits
Considering both the approaches described, some Figures of Merit can be described.
The ones in common are depth, complexity, and number of qubits. All of them
influence the simulation time.

Depth

The depth is a relevant Figure of Merit that represents the longest path of a quan-
tum circuit. If the depth increases, the overall processing requires more sequential
transformations, enlarging the simulation time and the probabilities of suffering
non-ideal phenomena, like decoherence and relaxation. For these reasons, if two
models guarantee the same accuracy for the classification in an ideal simulation,
the one with the less depth can be considered as more profitable.
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Complexity

The complexity represents the total number of quantum gates applied to the quan-
tum circuit. This metric influences the simulation time and is often correlated with
the depth.

Number of qubits

The number of qubits required by the system is an important metric, especially for
the limited capabilities of near-term devices. It is related to the encoding strategy
adopted. For example, defining N as the number of features, the number of qubits
needed using the Angle encoding strategies is equal to N, while are necessary log2N
qubits using the Amplitude approach.
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Chapter 4

Implementation of the thesis

4.1 Goal of the Thesis

As described in the previous chapters, the objective of Machine Learning is to define
the best possible model that better classifies data. This thesis aims to verify how
the choice of the encoding mechanism influences the model performance.
This hypothesis is verified using two different approaches, the Variational Quan-
tum Circuit and the Support Vector Machine with the quantum kernel
estimation, hybrid models that do not require many qubits and, for this reason,
can be implemented in actual devices.
For the simulation of the developed circuits, the Pennylane [9] library is used, which
permits the management of the training operation as in the classical neural net-
work case with the PyTorch [10] and Tensorflow [11] interface commonly employed
in classical Machine Learning.

4.2 Variational Quantum Classifier

As mentioned in section 3.1, the Variational Quantum Classifier (VQC) is
composed of an encoding circuit used to represent data and a parametric part
to process them. The variational block is defined by rotational gates, in which
the parameter angles associated are optimized at each step to achieve a better
classification. After defining the quantum circuit, the top C qubits of the system
are measured using the Pauli-Z observable. The parameter C depends on the
classification task, equal to 1 for the binary classification; otherwise, equivalent
to the number of classes.
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S(x) W(θ)

VQC

Classical
optimizer

Figure 4.1: The figure represents a Variational Quantum Circuit model. The green
rectangle represents the encoding part, while the red is the parametric block. The
parameters of the variational block are updated using a classical optimizer.

4.2.1 Encoding strategies for Variational Quantum Classi-
fiers

The goal of the encoding circuit is to represent data in the quantum circuit, as
mentioned in 1.5. The strategies evaluated are Angle and Amplitude encoding.
Due to the limited number of qubits of the actual devices, the Basis encoding
strategy is not exploited in this thesis.

Angle Encoding

As described in section 1.5.3, using the Angle encoding technique, the numerical
value associated with a specific characteristic of the data analyzed, i.e. the feature,
is embedded as a parametric angle for a set of rotational gates. This approach
requires N-qubit systems to encode a vector, where N is the number of elements.

The following sections describe the developed strategies related to this encoding
strategy.
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4.2 – Variational Quantum Classifier

Figure 4.2: Representation of a quantum circuit for which the feature vector, com-
posed of three values, is embedded using the RX gates.

Rotational gates used for the data encoding The performance of the model
can depend on the type of rotational gate used for data encoding. This thesis evalu-
ates strategies with a series of single, double, or triple rotational gates, considering
a combination of RX, RY, and RZ gates.
Figure 4.3 shows the exploited strategies related to the rotational part.

RX RY RZ

RX RY RY RX RZ RX

RX RY RZ RY RX RZ RZ RX RY

RX RZ RY RZ RZ RY

RX RZ RY RY RZ RX RZ RY RX

Figure 4.3: The possible combinations of rotational gates are here reported. The
parameter angle is the same for all the rotational gates placed on the same qubit.
On the top of the figure, there are the single gate strategies, using a single rotational
gate. Then, the strategies that use 2 or 3 rotational gates are presented.

Uniform superposition strategy An exploited strategy consists of applying
the uniform superposition before the rotational gates. The idea is to remove the
offset on the measurement that uses the Pauli-Z observable, as described in the
section 1.2. The initial state is in a uniform superposition of |0⟩ and |1⟩, which
guarantees to measure the expected value 0 using the Pauli-Z observable. The
models that use this property have an initial layer made by Hadamard gates applied
on each qubit before the rotational encoding gates.
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H ENC

Figure 4.4: Uniform superposition strategy that consists of the application of the
Hadamard gate on each qubit of the system right before the rotational gates.

Analysis of the encoding techniques

For the goal of this thesis, an initial study of the encoding circuit is crucial.
Each encoding circuit is evaluated by changing the angle parameter in the interval
[0, π] and observing the effect on the output using the Pauli-X, Pauli-Y, and Pauli-
Z observables. The results are shown in Figures figs. 4.5 to 4.13.

Among the different graphs, there are some which deserve an additional consid-
eration. For example, let’s consider the curves in the presented images are constant,
the model is not working correctly, considering that the encoding does not map each
feature in a different point of the block sphere. For this reason, RZ and H-RX
strategies, whose state vector is on the same axis of rotation, can be discarded
for the realization of the VQC model.
Moreover, it is also possible to observe that some encoding strategies are similar to
others. For example, let’s consider the RX and RZ-RX encodings.
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As can be seen from eqs. (4.1) and (4.2), the difference between the two encoding
strategies is simply a phase rotation that would not influence the measure-
ment, and, therefore, the two techniques are equivalent. See eqs. (4.3) and (4.4)
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for the mathematical proof.
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All the equivalent encodings strategies are shown in table 4.1. During the tests,
only the more compact circuit representations are taken into account (the longest
encoding circuits from the list can be eliminated).

Table 4.1: Equivalent encoding circuit strategies.

Circuit Equivalent Circuit
RZ-RX RX

RZ-RX-RY RX-RY
RZ-RY RY

RZ-RY-RX RY-RX
H-RX-RY H-RY

H-RX-RY-RZ H-RY-RZ
H-RX-RZ H-RZ

H-RX-RZ-RY H-RZ-RY
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Figure 4.5: Evaluation of encoding strategies that use the rotational gates RX,
RX-RY, RX-RY-RZ, RX-RZ, RX-RZ-RY measured using the Pauli-X observable.

32



4.2 – Variational Quantum Classifier

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Parameter ( )

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ea

su
re

m
en

t u
sin

g
Pa

ul
i-X

 o
bs

er
va

bl
e

Y_H
Y_noH

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Parameter ( )

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ea

su
re

m
en

t u
sin

g
Pa

ul
i-X

 o
bs

er
va

bl
e

YX_H
YX_noH

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Parameter ( )

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ea

su
re

m
en

t u
sin

g
Pa

ul
i-X

 o
bs

er
va

bl
e

YXZ_H
YXZ_noH

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Parameter ( )

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ea

su
re

m
en

t u
sin

g
Pa

ul
i-X

 o
bs

er
va

bl
e

YZ_H
YZ_noH

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Parameter ( )

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ea

su
re

m
en

t u
sin

g
Pa

ul
i-X

 o
bs

er
va

bl
e

YZX_H
YZX_noH

Figure 4.6: Evaluation of encoding strategies that use the rotational gates RY,
RY-RX, RY-RX-RZ, RY-RZ, RY-RZ-RX measured using the Pauli-X observable.
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Figure 4.7: Evaluation of encoding strategies that use the rotational gates RZ, RZ-
RX, RZ-RX-RY, RZ-RY, RZ-RY-RX measured using the Pauli-X observable.
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Figure 4.8: Evaluation of encoding strategies that use the rotational gates RX,
RX-RY, RX-RY-RZ, RX-RZ, RX-RZ-RY measured using the Pauli-Y observable
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Figure 4.9: Evaluation of encoding strategies that use the rotational gates RY,
RY-RX, RY-RX-RZ, RY-RZ, RY-RZ-RX measured using the Pauli-Y observable.
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Figure 4.10: Evaluation of encoding strategies that use the rotational gates RZ,
RZ-RX, RZ-RX-RY, RZ-RY, RZ-RY-RX measured using the Pauli-Y observable.
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Figure 4.11: Evaluation of encoding strategies that use the rotational gates RX,
RX-RY, RX-RY-RZ, RX-RZ, RX-RZ-RY measured using the Pauli-Z observable.
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Figure 4.12: Evaluation of encoding strategies that use the rotational gates RY,
RY-RX, RY-RX-RZ, RY-RZ, RY-RZ-RX measured using the Pauli-Z observable.
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Figure 4.13: Evaluation of encoding strategies that use the rotational gates RZ,
RZ-RX, RZ-RX-RY, RZ-RY, RZ-RY-RX measured using the Pauli-Z observable.
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Amplitude encoding

Amplitude encoding involves mapping the classical value into one of the probability
amplitudes of the state vector. The Mottonen State Preparation[12], also developed
in the Pennylane library[9], can be used to prepare a system in a specific state.

Mottonen state preparation Mottonen state preparation use C-NOT and Ro-
tational gates, particularly the RY gate, to prepare the state to the desired one. If
all the probability amplitudes of the desired state are positive, the resulting state
at the output is equal to the one desired and it is obtained using just RY and
CNOT gates. Otherwise, the state obtained will have an additional phase variation
and it would be necessary to use also RZ gates, increasing the number of qubit
transformations and slowing the model. For this reason, in this thesis, the value of
the initial features are scaled in the interval [0, 1].
The feature vector must then be transformed again to be embedded, as it is nec-
essary to ensure that its norm equals 1. Therefore, each feature is divided by the
norm-2 of the vector.
After these transformations, it is required to calculate the parameters angles asso-
ciated with the RY gates as:

βs
j = 2 arcsin

òq2s−1
l=1

---a(2j−1)2s−1+l

---2òq2s

l=1

---a(j−1)2s+l

---2 (4.5)

where

• βs
j is the rotation angle for the RY gate of the jth qubit

• s is the control state qubit

• aj is the probability amplitude desired

As an example, supposing to encode the state |ψ⟩ =
√

0.2 |000⟩ +
√

0.5 |010⟩ +√
0.2 |110⟩ +

√
0.1 |111⟩, the resulting angles are reported in Tab 4.2.

β1
1 = 0 β1

2 = 0
β1

3 = 0 β1
4 = 1.231

β2
1 = 2.014 β2

2 = 3.142
β3

1 = 1.159

Table 4.2: Resulting angle parameters associated with the RY gates in the Mottonen
state preparation to obtain the state |ψ⟩ =

√
0.2 |000⟩ +

√
0.5 |010⟩ +

√
0.2 |110⟩ +√

0.1 |111⟩
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The graphical representation of the quantum circuit which can be derived is
presented in figure 4.14. The state obtained by applying this circuit is coherent with
the expected values of probability amplitudes, as shown from the results reported
in Fig 4.15.

|0⟩ RY (1.231) RY (0) RY (0) RY (0)

|0⟩ RY (3.142) RY (2.014) • •

|0⟩ RY (1.159) • • •

Figure 4.14: Representation of the Mottonen’s state preparation circuit capable to
get the state |ψ⟩ =

√
0.2 |000⟩ +

√
0.5 |010⟩ +

√
0.2 |110⟩ +

√
0.1 |111⟩ starting from

the ground state.
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Figure 4.15: Mottonen state preparation encoding results

Entangling block used for data encoding

For both the encoding strategies, Angle and Amplitude, an entangling block after
the rotational gates can be added. This strategy adds another degree of complexity
to the model, obtaining a higher correlation of the features, and, in theory, could
be helpful for complex classifications.
Figure 4.16a shows an example of an entangling circuit obtained by applying the
C-NOT on each of the qubits of the quantum system in a round configuration. The
effect of this block is a shuffle of the probability amplitudes of the state vector. To
better describe the outcome of the circuit, Figure 4.16b represents how the state
vector changes by adding this block.
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|q2⟩ •
|q1⟩ •
|q0⟩ •

(a) Entangling block circuit defined in a 3-qubits
system. The C-NOT gates are applied on each
of the qubits in a round configuration. The top
qubit represents the most significant one.

(b) Transformation on the proba-
bility amplitudes of the state vec-
tor applying the entangling block.

4.2.2 Analysis of the variational block
The variational block is composed of the Rotational gate Rot(ϕ, θ, ω), which results
equal to the composition of RZ(ϕ)RY (θ)RZ(ω), and an entangling block defined
by the C-NOT placed in a round configuration. During the training step, the angles
associated with the Rotational gates are optimized to achieve better accuracy for
the classification task.
The circuit, described by the StronglyEntanglingLayer class by Pennylane[9], is
presented in Fig 4.17.

0

1

2

3

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Rot

Figure 4.17: A representation of the variational block for a system with four qubits
and four-parameter layers, described using the PennyLane library. The rotational
gate Rot is equal to the application of the RZ, RY, and RZ gates.

4.2.3 Re-uploading tecnique
The re-uploading technique is a strategy that consists of encoding the data every
time a new parameter block is defined.
Applying this strategy, the model adds another degree of complexity, allowing better
performance for hard-classification tasks. The circuit obtained is shown in Fig.
4.18.
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Figure 4.18: A graphical representation of the reuploading technique, which consists
of encoding the data every time a new parameter block is added.

4.2.4 Figure of Merits for the evaluation of the Variational
Quantum Circuit model

Referring to Section 3.3, the most important Figure of Merits related to the Vari-
ational Quantum Circuit can be analyzed.

Depth

Figure 4.21 shows how to calculate the depth of a variational quantum circuit.
This metric is influenced by the techniques applied, the data encoding strategies
and the number of parameter layers. For the techniques that use the Angle encoding
strategies, the depth results are summed in tables 4.3 to 4.6.

RZ

RZ

RZ

RY

RY

RY

RZ

RZ

RZ

ENC

ENC

ENC

RZ

RZ

RZ

RY

RY

RY

RZ

RZ

RZ

Figure 4.19: The figure shows how the depth is calculated for a Variational Quan-
tum Circuit defined with three qubits and without applying the entangling block
and the re-uploading technique. The highlighted path represents the longest one.
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Table 4.3: Report of the depths calculated for models that use the Angle encoding
strategy in which the entangling block and the re-uploading technique are not
applied. N stands for the number of qubits of the system.

Encoding L1 L2 L4 L8
X 4 + 1 ×N 7 + 2 ×N 13 + 4 ×N 25 + 8 ×N

X_H 5 + 1 ×N 8 + 2 ×N 14 + 4 ×N 26 + 8 ×N
XY 5 + 1 ×N 8 + 2 ×N 14 + 4 ×N 26 + 8 ×N

XY_H 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N
XYZ 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N

XYZ_H 7 + 1 ×N 10 + 2 ×N 16 + 4 ×N 28 + 8 ×N
XZ 5 + 1 ×N 8 + 2 ×N 14 + 4 ×N 26 + 8 ×N

XZ_H 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N
XZY 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N

XZY_H 7 + 1 ×N 10 + 2 ×N 16 + 4 ×N 28 + 8 ×N

Y 4 + 1 ×N 7 + 2 ×N 13 + 4 ×N 25 + 8 ×N
Y_H 5 + 1 ×N 8 + 2 ×N 14 + 4 ×N 26 + 8 ×N
YX 5 + 1 ×N 8 + 2 ×N 14 + 4 ×N 26 + 8 ×N

YX_H 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N
YXZ 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N

YXZ_H 7 + 1 ×N 10 + 2 ×N 16 + 4 ×N 28 + 8 ×N
YZ 5 + 1 ×N 8 + 2 ×N 14 + 4 ×N 26 + 8 ×N

YZ_H 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N
YZX 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N

YZX_H 7 + 1 ×N 10 + 2 ×N 16 + 4 ×N 28 + 8 ×N

Z 4 + 1 ×N 7 + 2 ×N 13 + 4 ×N 25 + 8 ×N
Z_H 5 + 1 ×N 8 + 2 ×N 14 + 4 ×N 26 + 8 ×N
ZX 5 + 1 ×N 8 + 2 ×N 14 + 4 ×N 26 + 8 ×N

ZX_H 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N
ZXY 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N

ZXY_H 7 + 1 ×N 10 + 2 ×N 16 + 4 ×N 28 + 8 ×N
ZY 5 + 1 ×N 8 + 2 ×N 14 + 4 ×N 26 + 8 ×N

ZY_H 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N
ZYX 6 + 1 ×N 9 + 2 ×N 15 + 4 ×N 27 + 8 ×N

ZYX_H 7 + 1 ×N 10 + 2 ×N 16 + 4 ×N 28 + 8 ×N
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Table 4.4: Report of the depths calculated for models that use the Angle encoding
strategy in which the entangling block is applied but not the re-uploading technique.
N stands for the number of qubits of the system.

Encoding L1 L2 L4 L8
X 4 + 2 ×N 7 + 3 ×N 13 + 5 ×N 25 + 9 ×N

X_H 5 + 2 ×N 8 + 3 ×N 14 + 5 ×N 26 + 9 ×N
XY 5 + 2 ×N 8 + 3 ×N 14 + 5 ×N 26 + 9 ×N

XY_H 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N
XYZ 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N

XYZ_H 7 + 2 ×N 10 + 3 ×N 16 + 5 ×N 28 + 9 ×N
XZ 5 + 2 ×N 8 + 3 ×N 14 + 5 ×N 26 + 9 ×N

XZ_H 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N
XZY 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N

XZY_H 7 + 2 ×N 10 + 3 ×N 16 + 5 ×N 28 + 9 ×N

Y 4 + 2 ×N 7 + 3 ×N 13 + 5 ×N 25 + 9 ×N
Y_H 5 + 2 ×N 8 + 3 ×N 14 + 5 ×N 26 + 9 ×N
YX 5 + 2 ×N 8 + 3 ×N 14 + 5 ×N 26 + 9 ×N

YX_H 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N
YXZ 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N

YXZ_H 7 + 2 ×N 10 + 3 ×N 16 + 5 ×N 28 + 9 ×N
YZ 5 + 2 ×N 8 + 3 ×N 14 + 5 ×N 26 + 9 ×N

YZ_H 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N
YZX 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N

YZX_H 7 + 2 ×N 10 + 3 ×N 16 + 5 ×N 28 + 9 ×N

Z 4 + 2 ×N 7 + 3 ×N 13 + 5 ×N 25 + 9 ×N
Z_H 5 + 2 ×N 8 + 3 ×N 14 + 5 ×N 26 + 9 ×N
ZX 5 + 2 ×N 8 + 3 ×N 14 + 5 ×N 26 + 9 ×N

ZX_H 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N
ZXY 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N

ZXY_H 7 + 2 ×N 10 + 3 ×N 16 + 5 ×N 28 + 9 ×N
ZY 5 + 2 ×N 8 + 3 ×N 14 + 5 ×N 26 + 9 ×N

ZY_H 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N
ZYX 6 + 2 ×N 9 + 3 ×N 15 + 5 ×N 27 + 9 ×N

ZYX_H 7 + 2 ×N 10 + 3 ×N 16 + 5 ×N 28 + 9 ×N
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Table 4.5: Report of the depths calculated for models that use the Angle encoding
strategy in which the re-uploading technique is applied but not the entangling block.
N stands for the number of qubits of the system.

Encoding L2 L4 L8
X 8 + 2 ×N 16 + 4 ×N 32 + 8 ×N

X_H 10 + 2 ×N 20 + 4 ×N 40 + 8 ×N

XY 10 + 2 ×N 20 + 4 ×N 40 + 8 ×N

XY_H 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

XYZ 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

XYZ_H 14 + 2 ×N 28 + 4 ×N 56 + 8 ×N

XZ 10 + 2 ×N 20 + 4 ×N 40 + 8 ×N

XZ_H 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

XZY 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

XZY_H 14 + 2 ×N 28 + 4 ×N 56 + 8 ×N

Y 8 + 1 ×N 16 + 4 ×N 32 + 8 ×N

Y_H 10 + 2 ×N 20 + 4 ×N 40 + 8 ×N

YX 10 + 2 ×N 20 + 4 ×N 40 + 8 ×N

YX_H 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

YXZ 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

YXZ_H 14 + 2 ×N 28 + 4 ×N 56 + 8 ×N

YZ 10 + 2 ×N 20 + 4 ×N 40 + 8 ×N

YZ_H 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

YZX 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

YZX_H 14 + 2 ×N 28 + 4 ×N 56 + 8 ×N

Z 8 + 1 ×N 16 + 4 ×N 32 + 8 ×N

Z_H 10 + 2 ×N 20 + 4 ×N 40 + 8 ×N

ZX 10 + 2 ×N 20 + 4 ×N 40 + 8 ×N

ZX_H 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

ZXY 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

ZXY_H 14 + 2 ×N 28 + 4 ×N 56 + 8 ×N

ZY 10 + 2 ×N 20 + 4 ×N 40 + 8 ×N

ZY_H 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

ZYX 12 + 2 ×N 24 + 4 ×N 48 + 8 ×N

ZYX_H 14 + 2 ×N 28 + 4 ×N 56 + 8 ×N
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Table 4.6: Report of the depths calculated for models that use the Angle encoding
strategy where both the re-uploading technique and the entangling block are ap-
plied. N stands for the number of qubits of the system.

Encoding L2 L4 L8
X 8 + 4 ×N 16 + 8 ×N 32 + 16 ×N

X_H 10 + 4 ×N 20 + 8 ×N 40 + 16 ×N

XY 10 + 4 ×N 20 + 8 ×N 40 + 16 ×N

XY_H 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

XYZ 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

XYZ_H 14 + 4 ×N 28 + 8 ×N 56 + 16 ×N

XZ 10 + 4 ×N 20 + 8 ×N 40 + 16 ×N

XZ_H 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

XZY 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

XZY_H 14 + 4 ×N 28 + 8 ×N 56 + 16 ×N

Y 8 + 4 ×N 16 + 8 ×N 32 + 16 ×N

Y_H 10 + 4 ×N 20 + 8 ×N 40 + 16 ×N

YX 10 + 4 ×N 20 + 8 ×N 40 + 16 ×N

YX_H 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

YXZ 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

YXZ_H 14 + 4 ×N 28 + 8 ×N 56 + 16 ×N

YZ 10 + 4 ×N 20 + 8 ×N 40 + 16 ×N

YZ_H 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

YZX 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

YZX_H 14 + 4 ×N 28 + 8 ×N 56 + 16 ×N

Z 8 + 4 ×N 16 + 8 ×N 32 + 16 ×N

Z_H 10 + 4 ×N 20 + 8 ×N 40 + 16 ×N

ZX 10 + 4 ×N 20 + 8 ×N 40 + 16 ×N

ZX_H 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

ZXY 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

ZXY_H 14 + 4 ×N 28 + 8 ×N 56 + 16 ×N

ZY 10 + 4 ×N 20 + 8 ×N 40 + 16 ×N

ZY_H 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

ZYX 12 + 4 ×N 24 + 8 ×N 48 + 16 ×N

ZYX_H 14 + 4 ×N 28 + 8 ×N 56 + 16 ×N
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4.2 – Variational Quantum Classifier

The depth increases linearly with the number of qubits of the system and the
number of parameter layers. The strategies that use the Re-uploading and the ones
that use more rotational gates have a higher depth.
The same metric is considered for the Amplitude encoding models. However, it is
evaluated using a specific PennyLane function for difficulties in generalizing to a
generic N-qubit system. The results are reported in Tables 4.7 and 4.8.

Table 4.7: Report of the depths for models that use the Amplitude encoding strat-
egy for a two-qubit system calculated by using the PennyLane library.

Strategy adopted L1 L2 L4 L8
NoReup_NoEnt 9 14 24 44

NoReup_Ent 11 16 26 46
Reup_NoEnt 9 18 36 72

Reup_Ent 11 22 44 88

Table 4.8: Report of the depths for models that use the Amplitude encoding strat-
egy for a four-qubit system calculated using the PennyLane library.

Strategy adopted L1 L2 L4 L8
NoReup_NoEnt 33 38 51 74

NoReup_Ent 37 42 55 78
Reup_NoEnt 33 66 132 264

Reup_Ent 37 74 148 296

To better analyze the linear behavior of the depth with the number of parameter
layers, the plots in Fig. 4.20 are reported that show the depth results for a two-qubit
system and a four-qubit system for each strategy adopted.
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Figure 4.20: Plot of the variation of the depth with respect to the number of layers
for a two-qubit system, in Figure 4.20a, and a four-qubit model, in Figure 4.20b.
The strategies evaluated consider the presence of the entangling block and the
application of the re-uploading technique.

Complexity

For the analysis of the complexity, the contributions of the gates are categorized
into Rotational gates, decomposing also the Rot gate of the variational part into two
RZ gates and an RY gate, Hadamard, and C-NOT. Figure 4.21 shows an example
of how to compute this metric.
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Figure 4.21: The figure shows how the complexity metric can be calculated for a
Variational Quantum Circuit defined with three qubits and without applying the
entangling block and the re-uploading technique. The green block represents the
contributions of the Hadamard, the yellow rotational gates, and the light blue one
the CNOT.

The Angle encoding strategies complexities are reported in Tables tables 4.9
to 4.12.
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Table 4.9: Complexity for models in which the entangling block and the re-
uploading technique are not applied. Each column stands for the number of
layers for the model analyzed, while the results of the same row share the encoding
strategy.

Encoding L1 L2 L4 L8

X (4R + 1CX) ×N (7R + 2CX) ×N (13R + 4CX) ×N (25R + 8CX) ×N

X_H (1H + 4R + 1CX) ×N (1H + 7R + 2CX) ×N (1H + 13R + 4CX) ×N (1H + 25R + 8CX) ×N

XY (5R + 1CX) ×N (8R + 2CX) ×N (14R + 4CX) ×N (26R + 8CX) ×N

XY_H (1H + 5R + 1CX) ×N (1H + 8R + 2CX) ×N (1H + 14R + 4CX) ×N (1H + 26R + 8CX) ×N

XYZ (6R + 1CX) ×N (9R + 2CX) ×N (15R + 4CX) ×N (27R + 8CX) ×N

XYZ_H (1H + 6R + 1CX) ×N (1H + 9R + 2CX) ×N (1H + 15R + 4CX) ×N (1H + 27R + 8CX) ×N

XZ (5R + 1CX) ×N (8R + 2CX) ×N (14R + 4CX) ×N (26R + 8CX) ×N

XZ_H (1H + 5R + 1CX) ×N (1H + 8R + 2CX) ×N (1H + 14R + 4CX) ×N (1H + 26R + 8CX) ×N

XZY (6R + 1CX) ×N (9R + 2CX) ×N (15R + 4CX) ×N (27R + 8CX) ×N

XZY_H (1H + 6R + 1CX) ×N (1H + 9R + 2CX) ×N (1H + 15R + 4CX) ×N (1H + 27R + 8CX) ×N

Y (4R + 1CX) ×N (7R + 2CX) ×N (13R + 4CX) ×N (25R + 8CX) ×N

Y_H (1H + 4R + 1CX) ×N (1H + 7R + 2CX) ×N (1H + 13R + 4CX) ×N (1H + 25R + 8CX) ×N

YX (5R + 1CX) ×N (8R + 2CX) ×N (14R + 4CX) ×N (26R + 8CX) ×N

YX_H (1H + 5R + 1CX) ×N (1H + 8R + 2CX) ×N (1H + 14R + 4CX) ×N (1H + 26R + 8CX) ×N

YXZ (6R + 1CX) ×N (9R + 2CX) ×N (15R + 4CX) ×N (27R + 8CX) ×N

YXZ_H (1H + 6R + 1CX) ×N (1H + 9R + 2CX) ×N (1H + 15R + 4CX) ×N (1H + 27R + 8CX) ×N

YZ (5R + 1CX) ×N (8R + 2CX) ×N (14R + 4CX) ×N (26R + 8CX) ×N

YZ_H (1H + 5R + 1CX) ×N (1H + 8R + 2CX) ×N (1H + 14R + 4CX) ×N (1H + 26R + 8CX) ×N

YZX (6R + 1CX) ×N (9R + 2CX) ×N (15R + 4CX) ×N (27R + 8CX) ×N

YZX_H (1H + 6R + 1CX) ×N (1H + 9R + 2CX) ×N (1H + 15R + 4CX) ×N (1H + 27R + 8CX) ×N

Z (4R + 1CX) ×N (7R + 2CX) ×N (13R + 4CX) ×N (25R + 8CX) ×N

Z_H (1H + 4R + 1CX) ×N (1H + 7R + 2CX) ×N (1H + 13R + 4CX) ×N (1H + 25R + 8CX) ×N

ZX (5R + 1CX) ×N (8R + 2CX) ×N (14R + 4CX) ×N (26R + 8CX) ×N

ZX_H (1H + 5R + 1CX) ×N (1H + 8R + 2CX) ×N (1H + 14R + 4CX) ×N (1H + 26R + 8CX) ×N

ZXY (6R + 1CX) ×N (9R + 2CX) ×N (15R + 4CX) ×N (27R + 8CX) ×N

ZXY_H (1H + 6R + 1CX) ×N (1H + 9R + 2CX) ×N (1H + 15R + 4CX) ×N (1H + 27R + 8CX) ×N

ZY (5R + 1CX) ×N (8R + 2CX) ×N (14R + 4CX) ×N (26R + 8CX) ×N

ZY_H (1H + 5R + 1CX) ×N (1H + 8R + 2CX) ×N (1H + 14R + 4CX) ×N (1H + 26R + 8CX) ×N

ZYX (6R + 1CX) ×N (9R + 2CX) ×N (15R + 4CX) ×N (27R + 8CX) ×N

ZYX_H (1H + 6R + 1CX) ×N (1H + 9R + 2CX) ×N (1H + 15R + 4CX) ×N (1H + 27R + 8CX) ×N
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Table 4.10: Complexity for models in which the re-uploading technique is
applied but not the entangling block.

Encoding L2 L4 L8

X (8R + 2CX) ×N (16R + 4CX) ×N (32R + 8CX) ×N

X_H (2H + 8R + 2CX) ×N (4H + 16R + 4CX) ×N (8H + 32R + 8CX) ×N

XY (10R + 2CX) ×N (20R + 4CX) ×N (40R + 8CX) ×N

XY_H (2H + 10R + 2CX) ×N (4H + 20R + 4CX) ×N (8H + 40R + 8CX) ×N

XYZ (12R + 2CX) ×N (24R + 4CX) ×N (48R + 8CX) ×N

XYZ_H (2H + 12R + 2CX) ×N (4H + 24R + 4CX) ×N (8H + 48R + 8CX) ×N

XZ (10R + 2CX) ×N (20R + 4CX) ×N (40R + 8CX) ×N

XZ_H (2H + 10R + 2CX) ×N (4H + 20R + 4CX) ×N (8H + 40R + 8CX) ×N

XZY (12R + 2CX) ×N (24R + 4CX) ×N (48R + 8CX) ×N

XZY_H (2H + 12R + 2CX) ×N (4H + 24R + 4CX) ×N (8H + 48R + 8CX) ×N

Y (8R + 2CX) ×N (16R + 4CX) ×N (32R + 8CX) ×N

Y_H (2H + 8R + 2CX) ×N (4H + 16R + 4CX) ×N (8H + 32R + 8CX) ×N

YX (10R + 2CX) ×N (20R + 4CX) ×N (40R + 8CX) ×N

YX_H (2H + 10R + 2CX) ×N (4H + 20R + 4CX) ×N (8H + 40R + 8CX) ×N

YXZ (12R + 2CX) ×N (24R + 4CX) ×N (48R + 8CX) ×N

YXZ_H (2H + 12R + 2CX) ×N (4H + 24R + 4CX) ×N (8H + 48R + 8CX) ×N

YZ (10R + 2CX) ×N (20R + 4CX) ×N (40R + 8CX) ×N

YZ_H (2H + 10R + 2CX) ×N (4H + 20R + 4CX) ×N (8H + 40R + 8CX) ×N

YZX (12R + 2CX) ×N (24R + 4CX) ×N (48R + 8CX) ×N

YZX_H (2H + 12R + 2CX) ×N (4H + 24R + 4CX) ×N (8H + 48R + 8CX) ×N

Z (8R + 2CX) ×N (16R + 4CX) ×N (32R + 8CX) ×N

Z_H (2H + 8R + 2CX) ×N (4H + 16R + 4CX) ×N (8H + 32R + 8CX) ×N

ZX (10R + 2CX) ×N (20R + 4CX) ×N (40R + 8CX) ×N

ZX_H (2H + 10R + 2CX) ×N (4H + 20R + 4CX) ×N (8H + 40R + 8CX) ×N

ZXY (12R + 2CX) ×N (24R + 4CX) ×N (48R + 8CX) ×N

ZXY_H (2H + 12R + 2CX) ×N (4H + 24R + 4CX) ×N (8H + 48R + 8CX) ×N

ZY (10R + 2CX) ×N (20R + 4CX) ×N (40R + 8CX) ×N

ZY_H (2H + 10R + 2CX) ×N (4H + 20R + 4CX) ×N (8H + 40R + 8CX) ×N

ZYX (12R + 2CX) ×N (24R + 4CX) ×N (48R + 8CX) ×N

ZYX_H (2H + 12R + 2CX) ×N (4H + 24R + 4CX) ×N (8H + 48R + 8CX) ×N
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Table 4.11: Complexity for models in which the entangling block strategy is
applied but not the re-uploading technique.

Encoding L1 L2 L4 L8

X (4R + 2CX) ×N (7R + 3CX) ×N (13R + 5CX) ×N (25R + 9CX) ×N

X_H (1H + 4R + 2CX) ×N (1H + 7R + 3CX) ×N (1H + 13R + 5CX) ×N (1H + 25R + 9CX) ×N

XY (5R + 2CX) ×N (8R + 3CX) ×N (14R + 5CX) ×N (26R + 9CX) ×N

XY_H (1H + 5R + 2CX) ×N (1H + 8R + 3CX) ×N (1H + 14R + 5CX) ×N (1H + 26R + 9CX) ×N

XYZ (6R + 2CX) ×N (9R + 3CX) ×N (15R + 5CX) ×N (27R + 9CX) ×N

XYZ_H (1H + 6R + 2CX) ×N (1H + 9R + 3CX) ×N (1H + 15R + 5CX) ×N (1H + 27R + 9CX) ×N

XZ (5R + 2CX) ×N (8R + 3CX) ×N (14R + 5CX) ×N (26R + 9CX) ×N

XZ_H (1H + 5R + 2CX) ×N (1H + 8R + 3CX) ×N (1H + 14R + 5CX) ×N (1H + 26R + 9CX) ×N

XZY (6R + 2CX) ×N (9R + 3CX) ×N (15R + 5CX) ×N (27R + 9CX) ×N

XZY_H (1H + 6R + 2CX) ×N (1H + 9R + 3CX) ×N (1H + 15R + 5CX) ×N (1H + 27R + 9CX) ×N

Y (4R + 2CX) ×N (7R + 3CX) ×N (13R + 5CX) ×N (25R + 9CX) ×N

Y_H (1H + 4R + 2CX) ×N (1H + 7R + 3CX) ×N (1H + 13R + 5CX) ×N (1H + 25R + 9CX) ×N

YX (5R + 2CX) ×N (8R + 3CX) ×N (14R + 5CX) ×N (26R + 9CX) ×N

YX_H (1H + 5R + 2CX) ×N (1H + 8R + 3CX) ×N (1H + 14R + 5CX) ×N (1H + 26R + 9CX) ×N

YXZ (6R + 2CX) ×N (9R + 3CX) ×N (15R + 5CX) ×N (27R + 9CX) ×N

YXZ_H (1H + 6R + 2CX) ×N (1H + 9R + 3CX) ×N (1H + 15R + 5CX) ×N (1H + 27R + 9CX) ×N

YZ (5R + 2CX) ×N (8R + 3CX) ×N (14R + 5CX) ×N (26R + 9CX) ×N

YZ_H (1H + 5R + 2CX) ×N (1H + 8R + 3CX) ×N (1H + 14R + 5CX) ×N (1H + 26R + 9CX) ×N

YZX (6R + 2CX) ×N (9R + 3CX) ×N (15R + 5CX) ×N (27R + 9CX) ×N

YZX_H (1H + 6R + 2CX) ×N (1H + 9R + 3CX) ×N (1H + 15R + 5CX) ×N (1H + 27R + 9CX) ×N

Z (4R + 2CX) ×N (7R + 3CX) ×N (13R + 5CX) ×N (25R + 9CX) ×N

Z_H (1H + 4R + 2CX) ×N (1H + 7R + 3CX) ×N (1H + 13R + 5CX) ×N (1H + 25R + 9CX) ×N

ZX (5R + 2CX) ×N (8R + 3CX) ×N (14R + 5CX) ×N (26R + 9CX) ×N

ZX_H (1H + 5R + 2CX) ×N (1H + 8R + 3CX) ×N (1H + 14R + 5CX) ×N (1H + 26R + 9CX) ×N

ZXY (6R + 2CX) ×N (9R + 3CX) ×N (15R + 5CX) ×N (27R + 9CX) ×N

ZXY_H (1H + 6R + 2CX) ×N (1H + 9R + 3CX) ×N (1H + 15R + 5CX) ×N (1H + 27R + 9CX) ×N

ZY (5R + 2CX) ×N (8R + 3CX) ×N (14R + 5CX) ×N (26R + 9CX) ×N

ZY_H (1H + 5R + 2CX) ×N (1H + 8R + 3CX) ×N (1H + 14R + 5CX) ×N (1H + 26R + 9CX) ×N

ZYX (6R + 2CX) ×N (9R + 3CX) ×N (15R + 5CX) ×N (27R + 9CX) ×N

ZYX_H (1H + 6R + 2CX) ×N (1H + 9R + 3CX) ×N (1H + 15R + 5CX) ×N (1H + 27R + 9CX) ×N
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Table 4.12: Complexity for models in which both the re-uploading technique
and the entangling block are applied.

Encoding L2 L4 L8

X (8R + 4CX) ×N (16R + 8CX) ×N (32R + 16CX) ×N

X_H (2H + 8R + 4CX) ×N (4H + 16R + 8CX) ×N (8H + 32R + 16CX) ×N

XY (10R + 4CX) ×N (20R + 8CX) ×N (40R + 16CX) ×N

XY_H (2H + 10R + 4CX) ×N (4H + 20R + 8CX) ×N (8H + 40R + 16CX) ×N

XYZ (12R + 4CX) ×N (24R + 8CX) ×N (48R + 16CX) ×N

XYZ_H (2H + 12R + 4CX) ×N (4H + 24R + 8CX) ×N (8H + 48R + 16CX) ×N

XZ (10R + 4CX) ×N (20R + 8CX) ×N (40R + 16CX) ×N

XZ_H (2H + 10R + 4CX) ×N (4H + 20R + 8CX) ×N (8H + 40R + 16CX) ×N

XZY (12R + 4CX) ×N (24R + 8CX) ×N (48R + 16CX) ×N

XZY_H (2H + 12R + 4CX) ×N (4H + 24R + 8CX) ×N (8H + 48R + 16CX) ×N

Y (8R + 4CX) ×N (16R + 8CX) ×N (32R + 16CX) ×N

Y_H (2H + 8R + 4CX) ×N (4H + 16R + 8CX) ×N (8H + 32R + 16CX) ×N

YX (10R + 4CX) ×N (20R + 8CX) ×N (40R + 16CX) ×N

YX_H (2H + 10R + 4CX) ×N (4H + 20R + 8CX) ×N (8H + 40R + 16CX) ×N

YXZ (12R + 4CX) ×N (24R + 8CX) ×N (48R + 16CX) ×N

YXZ_H (2H + 12R + 4CX) ×N (4H + 24R + 8CX) ×N (8H + 48R + 16CX) ×N

YZ (10R + 4CX) ×N (20R + 8CX) ×N (40R + 16CX) ×N

YZ_H (2H + 10R + 4CX) ×N (4H + 20R + 8CX) ×N (8H + 40R + 16CX) ×N

YZX (12R + 4CX) ×N (24R + 8CX) ×N (48R + 16CX) ×N

YZX_H (2H + 12R + 4CX) ×N (4H + 24R + 8CX) ×N (8H + 48R + 16CX) ×N

Z (8R + 4CX) ×N (16R + 8CX) ×N (32R + 16CX) ×N

Z_H (2H + 8R + 4CX) ×N (4H + 16R + 8CX) ×N (8H + 32R + 16CX) ×N

ZX (10R + 4CX) ×N (20R + 8CX) ×N (40R + 16CX) ×N

ZX_H (2H + 10R + 4CX) ×N (4H + 20R + 8CX) ×N (8H + 40R + 16CX) ×N

ZXY (12R + 4CX) ×N (24R + 8CX) ×N (48R + 16CX) ×N

ZXY_H (2H + 12R + 4CX) ×N (4H + 24R + 8CX) ×N (8H + 48R + 16CX) ×N

ZY (10R + 4CX) ×N (20R + 8CX) ×N (40R + 16CX) ×N

ZY_H (2H + 10R + 4CX) ×N (4H + 20R + 8CX) ×N (8H + 40R + 16CX) ×N

ZYX (12R + 4CX) ×N (24R + 8CX) ×N (48R + 16CX) ×N

ZYX_H (2H + 12R + 4CX) ×N (4H + 24R + 8CX) ×N (8H + 48R + 16CX) ×N
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Analyzing the tables, it could be observed how the complexity increases linearly
with the number of qubits of the system and the number of parameters. Also, the
application of the re-uploading technique and entangling block increases the result
of this metric.
For the Amplitude Encoding, the results, illustrated in Tables 4.13 and 4.14 are
calculated using, also in this case, the PennyLane library. Even in this case, the
number of qubits and the techniques adopted influence this metric.

Table 4.13: Report of the complexity for models that use the Amplitude encoding
strategy for 2-qubits system calculated by using PennyLane library.

Strategy adopted L1 L2 L4 L8
NoReup_NoEnt 9R + 4CX 15R + 6CX 27R + 10CX 51R + 18CX

NoReup_Ent 9R + 6CX 15R + 8CX 27R + 12CX 51R + 20CX
Reup_NoEnt 9R + 4CX 18R + 8CX 36R + 16CX 72R + 32CX

Reup_Ent 9R + 6CX 18R + 12CX 36R + 24CX 72R + 48CX

Table 4.14: Report of the complexity for models that use the Amplitude encoding
strategy for 4-qubits system calculated by using PennyLane library.

Strategy adopted L1 L2 L4 L8
NoReup_NoEnt 27R + 18CX 39R + 22CX 63R + 30CX 111R + 46CX

NoReup_Ent 27R + 22CX 39R + 26CX 63R + 34CX 111R + 50CX
Reup_NoEnt 27R + 18CX 54R + 36CX 108R + 72CX 216R + 144CX

Reup_Ent 27R + 22CX 54R + 44CX 108R + 88CX 216R + 176CX

To detail this behavior, the values of CNOT and rotational gates for the Ampli-
tude encoding for a 2-qubit system and a 4-qubit system are also plotted in Figures
4.22 and 4.23. In particular, the number of Rotational gates depends only on the
number of layers and the application of the re-uploading technique. The same de-
pendencies are valid for the number of CNOT, and also it depends on the presence
of the entangling layer.
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Figure 4.22: Reporting graph of the complexity for a two-qubit Variational Quan-
tum Circuit. In Figure 4.22a the number of CNOT for each strategy concerning
the number of layers is reported. In Figure 4.22b the number of Rotational gates
considering just the re-uploading technique to the number of layers.
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Figure 4.23: Reporting graph of the complexity for a four-qubit Variational Quan-
tum Circuit. In Figure 4.23a the number of CNOT for each strategy to the number
of layers is reported. In Figure 4.23b, the number of Rotational gates considering
just the re-uploading technique to the number of layers.

Number of parameters

Another Figure of Merits evaluated for the Variational Quantum Circuit is the
number of parameters of the parametric layer. This value represents a hyper-
parameter to consider for the definition of the model; in fact, a higher number of
parameters implies a higher simulation and training time. It increases linearly with
the number of qubits and layers of the system.
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4.3 Support vector machine with Quantum Ker-
nel Evaluation

The Support Vector Machine algorithm with quantum kernel estimation is also
developed in the present thesis. The SVM is a classical algorithm used for the clas-
sification of data. For this method, kernel functions, which map features in a higher
dimensional space, are used. They consist of estimating the distance between two
points xi and xj. The resulting feature vector is an M-vector, where M is the num-
ber of training points, in which each element is evaluated as the distance between
a given point and another one of the training set. Then, the results are saved in
the Gram matrix, composed of the new M-feature vectors. After the definition of
this matrix, a classical optimizer develops and tests the model. The representation
of this approach is shown in Fig. 4.24.
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Figure 4.24: Representation of the Kernel evaluation. The steps required are two,
the quantum kernel estimation part used to calculate the Gram matrix (1) and the
classical optimization (2).

4.3.1 Definition of the Kernel Function
The basic strategy to define a kernel function using quantum devices consists of
applying the encoding circuit for the xi value and the adjoint of the encoding circuit
for xj. If xi is equal to xj, the probability of obtaining the ground state at the
output of the circuit is maximized, using the Unitary property of the gate matrix.
The resulting value, saved in the Gram matrix, corresponds to the probability of
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measuring the ground state at the end of the circuit. A generic representation of
the Kernel function is displayed in Fig. 4.25.
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Figure 4.25: Kernel evaluation

4.3.2 Encoding strategies used for the Kernel evaluation

The data encoding techniques exploited for this approach are the same described for
the Variational Quantum Circuit in section 4.2.1. The kernel circuit can be defined
in a multi-layer approach generating different kernel functions. Considering the
time required for the simulation, the circuits defined are composed of a number of
layers in the interval [1, 4].

4.3.3 Analysis of the kernel functions defined

The kernel functions defined are analyzed by visualizing their behavior. In this
study, the feature vector xi is fixed while xj changes in the interval [0, π].
The results are plotted from figs. 4.26 to 4.37.

It is important to note that some encodings do not guarantee a correct estimation
of the distance between the points. In particular, the problems can be classified into
two types: those with constant kernel functions and those with many peaks. The
encoding strategies that suffer the first problem are the ones that do not map each
feature in a different point of the Bloch Sphere, described also in the Variational
Quantum Circuit section. The same encoding strategies that have problems in
classifying data in the Variational Quantum Classifier approach suffer from the
first problem. The same consideration for the Variational Classifier can be done.
The other issue is related to the fact that the kernel function of the basic block
is periodic, so repeating the block many times raises the frequency of the kernel
function obtained and the estimation of the distance would not be correct.
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Figure 4.26: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RX, RX-RY, RX-RY-RZ, RX-RZ, RX-
RZ-RY using just 1 layer.
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Figure 4.27: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RY, RY-RX, RY-RX-RZ, RY-RZ, RY-
RZ-RX using just 1 layer.
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Figure 4.28: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RZ, RZ-RX, RZ-RX-RY, RZ-RY, RZ-
RY-RX using just one layer.
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Figure 4.29: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RX, RX-RY, RX-RY-RZ, RX-RZ, RX-
RZ-RY using two layers.
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Figure 4.30: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RY, RY-RX, RY-RX-RZ, RY-RZ, RY-
RZ-RX using two layers.
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Figure 4.31: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RX, RX-RY, RX-RY-RZ, RX-RZ, RX-
RZ-RY using two layers.
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Figure 4.32: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RX, RX-RY, RX-RY-RZ, RX-RZ, RX-
RZ-RY using three layers.
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Figure 4.33: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RY, RY-RX, RY-RX-RZ, RY-RZ, RY-
RZ-RX using three layers.
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Figure 4.34: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RX, RX-RY, RX-RY-RZ, RX-RZ, RX-
RZ-RY using three layers.
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Figure 4.35: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RX, RX-RY, RX-RY-RZ, RX-RZ, RX-
RZ-RY using four layers.
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Figure 4.36: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RY, RY-RX, RY-RX-RZ, RY-RZ, RY-
RZ-RX using four layers.
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Figure 4.37: Evaluation of kernel function measured using the probability of getting
the ground state for the encoding strategies RX, RX-RY, RX-RY-RZ, RX-RZ, RX-
RZ-RY using four layers.

4.3.4 Figure of Merits for the evaluation of SVM models
The Figure of Merits described in section 3.3 can be analyzed also for the SVM
models, in particular focusing on the depth and the complexity, both depending
on the encoding strategy used.

Depth The depth depends on the encoding gates considered. In particular, it is
equal to E × L, where E stands for the number of gates while L is the number of
repeated layers for the definition of the kernel circuit.

Complexity For the evaluation of complexity, the contributions of the Hadamard
and the Rotational gates are considered. In this case, it is equal to (2×R×L+2×
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H)×N , where R stands for the number of rotational gates needed for the encoding,
L the number of repeated Layers, N is the number of qubits and H is a value equal
to one if uniform superposition is applied; otherwise, the contribution is null.
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Chapter 5

Results and Conclusions

The previously defined models are tested on real datasets. This chapter describes
the methodology adopted and analyzes the results obtained.

5.1 Methodology adopted
Each classification task is characterized through the same methodology. In partic-
ular, firstly it is necessary to define the dataset and preprocessing techniques to
apply, such as feature scaling and Principal Component Analysing [13] (used to
reduce the number of features the model has to manage).

The entire dataset is then split into two parts, the Training set, used for the
optimization of the model, and the Test set, a smaller portion used to test the
performance of the model. For this thesis, the Training set includes 70% of the
entire dataset, while the other 30% is used for the Test portion. The percentage of
this split represents a trade-off between the classical 80% Train and 20% Test and
60% Train, 20% Validation (dataset used for choosing the best model considering
the hyper-parameters), and 20% Test.

Then, the approach used, the Variational Quantum Circuit or the Support Vec-
tor Machine with Quantum Kernel Estimation, is defined. The quantum circuit and
the optimization technique adopted for each of the two methods are defined. The
optimizer chosen for the Variational Quantum Circuit is the Adam [14], which is a
stochastic gradient descent algorithm in which the learning rate, which represents
the length of the step, changes at each iteration. For the Support Vector Machine,
the optimization is done by using a specific Sci-Kit learn library [15] comprises in
the definition of the model.

In the end, the models are tested on the training and test set. This procedure
is repeated for each model 10 times, to obtain a mean of the results, reducing the
dependency on the randomness of the choice of the parameters.
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For the choice of the best model, the following priority of the metrics is defined:

1. Accuracy on the test set

2. Accuracy on the training set

3. Depth and Complexity

This priority order guarantees to choose the model that can better classify data,
and, if the accuracy performance is the same, it is selected the one with reduced
simulation time.

5.2 Analysis of the dataset used and the classifi-
cation executed

The first step described in the methodology part is the definition of the dataset.
The datasets employed are the Iris[16] and the Wine dataset [17].

The Iris dataset is composed of 150 features vectors, each characterized by four
features. Moreover, they are categorized into three classes, each constituted of 50
data. Classes 1 and 2, related to the Versicolour and Virginica Iris, are not linearly
separable.
Using this dataset, the classification tasks executed are related to identifying if
data belongs to class 0, classifying between classes 1 and 2, and implementing a
Multiclass classification, based on evaluating simultaneously all the possible output
classes.

The Wine dataset is composed of 178 features vector, characterized by thirteen
features and divided into three classes. Also in this case, the classifications are the
one that identifies if data belongs to class 0, the classification between class 0 and
1, and the Multiclass classification.

5.3 How the results are represented
The results obtained for each classification are saved in a matrix form using the
heatmap, as shown in Figure 5.1. In this way, it is easier to compare the accuracy
of the different models; indeed, the yellow cells represent the best ones for this task,
while the blue ones are the worst. The encoding gates used are reported on the
y-axis, while on the x-axis are defined the other adopted strategies.
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Figure 5.1: Example of a heatmap in which the accuracy results are reported. On
the y-axis, there are the encoding gates adopted, while on the x-axis, the strategies
exploited.

5.4 Classify if data belongs to class 0 for Iris
dataset

The analysis proposed is related to SVM and VQC models, which determine if
data belongs to class 0 of the Iris dataset. These models are characterized by the
encoding strategy adopted, which influences the number of qubits of the system
(equal to two for the Angle Encoding and four for the Amplitude).

5.4.1 Support Vector Machine
For the SVM models, the results are shown in Figure 5.2. For this classification,
many strategies reach an accuracy of 100% in both the train and test sets. For
this reason, the models are compared by using depth and complexity. The best
encoding strategies are the ones that employ RX gates or RY gates, whose depth
is equal to 2. The kernel circuits are shown in fig. 5.3
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(a) Training set.

L1 L2 L3 L4

X
XY

XYZ
XZ

XZY
Y

YX
YXZ
YZ

YZX
Y_H

YX_H
YXZ_H
YZ_H

YZX_H
Z_H

ZX_H
ZXY_H
ZY_H

ZYX_H

1 1 0.95 0.84
1 0.56 0.38 0.37

0.99 0.99 0.97 0.48
1 0.91 0.74 0.8
1 0.85 0.81 0.84
1 1 0.93 0.84
1 0.66 0.34 0.37

0.99 0.74 0.75 0.65
1 0.92 0.77 0.81

0.96 0.91 0.78 0.64
1 0.99 0.94 0.88
1 0.92 0.76 0.8

0.99 0.84 0.84 0.83
1 0.59 0.38 0.36

0.97 0.98 0.96 0.42
1 0.99 0.94 0.84
1 0.94 0.76 0.79

0.97 0.95 0.78 0.62
0.99 0.59 0.37 0.39
1 0.76 0.74 0.61

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Test set.

Figure 5.2: Report of the accuracy results for SVM models that classify data be-
longing to class 0 of the Iris dataset. On the left 5.2a, the models are evaluated on
the training set are shown, while on the right 5.2b, the results obtained using the
test set.
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Figure 5.3: Representation of the best kernel circuits for the classification of class
0 data of the Iris dataset. On the left the one that uses RX gates to encode data
is reported, while the other uses RY gates.

5.4.2 Variational Quantum Classifier

The accuracy results related to the VQC models for classifying data belonging to
class 0 are reported from figs. 5.4 to 5.7. Considering that most of them have an
accuracy of 100% in both training and test sets, the best models are collected in
Table 5.1, considering the techniques that use four parametric layers to maximize
the accuracy while minimizing the depth. In the table, the best models are the
ones that use the RX or RY gates for embedding data, as shown in Figure 5.8.
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(a) Training set.
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(b) Test set.

Figure 5.4: Report of the accuracy results for Angle encoding VQC models that
classify if data belongs to class 0 of the Iris dataset. On the left 5.4a, the models
are evaluated on the training set are shown, while on the right 5.4b, the results
related to the test set.
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(a) Training set.
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(b) Test set.

Figure 5.5: Report of the accuracy results for Angle encoding VQC models that
use the entangling block that classify if data belongs to class 0 of the Iris dataset.
On the left 5.5a, the models are evaluated on the training set are shown, while on
the right 5.5b, the results related to the test set.
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Figure 5.6: Report of the accuracy results for Amplitude encoding VQC models
that classify if data belongs to class 0 of the Iris dataset. On the left 5.6a, the
models evaluated on the training set are shown, while on the right 5.6b, the results
related to the test set.
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Figure 5.7: Report of the accuracy results for Amplitude encoding VQC models
that uses the entangling block and classify if data belongs to class 0 of the Iris
dataset. On the left 5.7a, the models are evaluated on the training set are shown,
while on the right 5.7b, the results related to the test set.

78



5.4 – Classify if data belongs to class 0 for Iris dataset

Table 5.1: Report of the best VQC models that achieve an accuracy of 100% in
both the training and test set to classify data belonging to class 0. As can be seen,
the best encoding strategies are characterized by simple RX gate or RY.

Strategy Depth
RX_L4 29

RX-RZ_L4 30
RY_L4 29

RY-RZ_L4 30
RZ-RX_L4 30
RZ-RY_L4 30
H-RY_L4 30

H-RY-RX_L4 31
H-RZ_L4 30

H-RZ-RX_L4 31
RX_ENT_L4 33

RX-RZ_ENT_L4 34
RY_ENT_L4 33

RY-RZ_ENT_L4 34
RZ-RX_ENT_L4 34
RZ-RY_ENT_L4 34
H-RY_ENT_L4 34

H-RY-RX_ENT_L4 35
H-RZ_ENT_L4 34

H-RZ-RX_ENT_L4 35
Amplitude_Reuploading_ENT_L4 44
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Figure 5.8: Representation of the best VQC for the classification of class 0 data of
the Iris dataset. On the top is reported the one that uses RX gates to encode data,
while the other uses RY gates. The rotational gate Rot is equal to the application
of the RZ, RY, and RZ gates.

5.5 Classification between classes 1 and 2 of the
Iris dataset

The analysis proposed is related to VQC and SVM models, which try to classify non-
linearly separable data belonging to classes 1 and 2. These models are characterized
by the encoding strategy exploited, which influences the number of qubits of the
system (equal to two for Angle Encoding and to four for Amplitude Encoding).

5.5.1 Support Vector Machine
The accuracy results for models that use the Support Vector Machine approach are
reported in Figure 5.9.

The best accuracy obtained on the test set is equal to 0.97. It is achieved by the
single-layer circuit which uses the RY gate to embed the data, as shown in fig. 5.10.
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Figure 5.9: Report of the accuracy results for SVM models that classify data be-
tween non-separable classes 1 and 2 of Iris dataset. On the left 5.9a, the models
evaluated on the training set are shown, while on the right 5.9b, the results ob-
tained using the test set.
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Figure 5.10: Representation of the best kernel circuit for the classification between
non-linearly separable classes 1 and 2 of the Iris dataset. The encoding circuit used
is characterized by RY gates.

5.5.2 Variational Quantum Classifier
The accuracy results related to the VQC model for the classification between class 1
and 2 data of the Iris dataset are shown from figs. 5.11 to 5.14. From the heatmaps,
the strategies with the best performance in the test set are reported in Table 5.2.
There, the VQCs are compared using the accuracy in the training set and the
depth. The best model identified is constituted of RY gates for the encoding and
four parametric layers, shown in fig. 5.15.
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(a) Training set.
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Figure 5.11: Report of the accuracy results for Angle encoding VQC models that
classify data between non-separable classes 1 and 2 of the Iris dataset. On the left
5.11a, the models evaluated on the training set arr shwon, while on the right 5.11b,
the results related to the test set.
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(a) Training set.
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Figure 5.12: Report of the accuracy results for Angle encoding VQC models with
the entangling block used for classifying data between non-separable classes 1 and
2 of the Iris dataset. On the left 5.12a, the models evaluated on the training set
are shown, while on the right 5.12b, the results related to the test set.
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Figure 5.13: Report of the accuracy results for Amplitude encoding VQC models
used for classifying data between non-separable classes 1 and 2 of the Iris dataset.
On the left 5.13a, the models evaluated on the training set are shown, while on the
right 5.13b, the results related to the test set.
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Figure 5.14: Report of the accuracy results for Amplitude encoding VQC models
with the entangling block used for classifying data between non-separable classes 1
and 2 of the Iris dataset. On the left 5.14a, the models evaluated on the training
set are shown, while on the right 5.14b, the results related to the test set.
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Table 5.2: Report of the best encoding strategies for accuracy in the test set. As
can be seen, the model that uses RY gates for the encoding and four parametric
layers is the best one in terms of accuracy and depth.

Encoding Strategy Accuracy Test Accuracy Train Depth Complexity
H-RY_L4 0.96 0.94 30 4H + 52R + 16CX
RY_L4 0.96 0.95 29 52R + 16CX

H-RY-RX_L4 0.96 0.94 31 4H + 56R + 16 CX
H-RZ-RX_L8 0.96 0.95 59 4H + 104R + 32CX

H-RZ-RX-RY_L4 0.96 0.93 32 4H + 60R + 16CX
H-RZ-RX_ENT_L4 0.96 0.94 35 4H + 56R + 20CX
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Figure 5.15: Representation of the best VQC for the classification of data belonging
to the non-separable classes 1 and 2 of the Iris dataset. The rotational gate Rot is
equal to the application of the RZ, RY, and RZ gates.
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5.6 Multiclass classification for Iris dataset
The objective of multiclass classification is to determine to which class data belong
among the three available. In this case, the only approach tested is the VQC. In
fact, SVM is based on binary classification and, for the multiclass task, requires
the implementation of three different models.

Moreover, the only encoding strategies used are Angle Encoding. The reason
is that this particular classification circuit must have at least three qubits, each
associated with a class, and by using Amplitude encoding, the system would have
only two qubits. The results of this classification task are reported in figs. 5.16
and 5.17b. To visualize the models with the best accuracy in the test set, they
are reported in table 5.3. The best model found is composed of an encoding part
realized using RX-RY-RZ gates and eight parametric layers.
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(a) Training set.
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Figure 5.16: Heatmaps representing the accuracy results for Angle encoding VQC
models for multiclass classification of the Iris dataset. On the left 5.16a, the models
evaluated on the training set are shown, while on the right 5.16b, the results related
to the test set.

Table 5.3: Best accuracy result in Test set for the Multiclass classification. The best
model is the one that uses RX-RZ-RY gates for the encoding and eight parametric
layers.

Strategy Accuracy Test Accuracy Train
H-Z_Reuploading 0.95 0.94
RX-RZ-RY_L8 0.95 0.95
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(a) Training set.
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Figure 5.17: Heatmaps representing the accuracy results for Angle encoding VQC
models with the entangling block for multiclass classification of the Iris dataset.
On the left 5.17a, the models evaluated on the training set are shown, while on the
right 5.17b, the results related to the test set.

Figure 5.18: Representation of the best VQC model for the multiclass classification
of the Iris dataset, characterized by RX-RZ-RY gates for the encoding, and eight
parametric layers. The Rot gate corresponds to the sequential application of RZ-
RY-RZ gates.
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5.7 Classify if data belongs to class 0 for Wine
dataset

The analysis proposed is related to both the VQC and SVM models to determine
if data belongs to class 0 of the Wine dataset. The number of qubits and the
preprocessing techniques depend on the encoding strategies adopted. For Angle
Encoding, a Principal Component Analysis is applied to reduce the number of
features from thirteen to five. For Amplitude Encoding, no other preprocessing
techniques over feature scaling are applied, and the number of qubits of the system
is equal to four.

5.7.1 Support Vector Machine
The results of this classification for the SVM model are reported in fig. 5.19. The
encoding strategies used by the circuit associated with the SVM model with better
performance on the test set are highlighted in table 5.4. From this subset, the
best one found is the circuit that uses RX gates for the encoding and the layer is
repeated 2 times, as shown in fig. 5.20.
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(a) Training set.
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Figure 5.19: Report of the accuracy results for Support Vector Machine models for
the classification data belonging to class 0 of the Wine dataset. In the left, 5.19a,
the models evaluated on the training set are shown, while on the right, 5.19b the
results related to the test set.
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Table 5.4: Best SVM model identified to classify if data belongs to class 0 of the
Wine dataset. The best circuit is characterized by RX gates for the encoding and
the layer is repeated two times.

Strategy Accuracy test Accuracy train Depth
RY_L1 0.97 0.97 2

H-RY_L1 0.97 0.97 4
H-RZ-RX_L1 0.97 0.98 6

RX_L2 0.97 0.98 4
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Figure 5.20: Representation of the best kernel circuit to classify if data belongs to
class 0. The encoding circuit used is characterized by RX gates and the circuit is
repeated 2 times.

5.7.2 Variational Quantum Circuit
The accuracy results related to the VQC models for classifying if data belongs to
class 0 are reported from figs. 5.21 to 5.24. As can be seen, the Amplitude Encoding
models, which do not require Principal Component Analysis, perform better than
the Angle ones. The strategies that achieve the highest value of accuracy on the
training and test sets are compared through the depth values in Table table 5.5.
As can be seen, the best choice consists in applying Amplitude Encoding followed
by four parametric layers, as shown in fig. 5.25.
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(a) Training set.
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(b) Test set.

Figure 5.21: Report of the accuracy results for Angle encoding VQC models that
classify data belonging to class 0 of the Wine dataset. On the left 5.21a, the models
evaluated on the training set are shown, while on the right 5.21b, the results related
to the test set.
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(a) Training set.

L1 L2 L2_R L4 L4_R L8 L8_R

X
XY

XYZ
XZ

XZY
Y

YX
YXZ
YZ

YZX
Y_H

YX_H
YXZ_H
YZ_H

YZX_H
Z_H

ZX_H
ZXY_H
ZY_H

ZYX_H

0.74 0.82 0.86 0.91 0.89 0.94 0.91
0.68 0.78 0.85 0.89 0.86 0.89 0.83
0.67 0.71 0.79 0.82 0.87 0.84 0.9
0.69 0.84 0.8 0.94 0.84 0.94 0.83
0.74 0.83 0.74 0.89 0.71 0.93 0.73
0.64 0.84 0.82 0.93 0.93 0.94 0.92
0.67 0.83 0.81 0.84 0.87 0.91 0.83
0.75 0.89 0.73 0.88 0.71 0.91 0.68
0.72 0.84 0.88 0.91 0.86 0.95 0.81
0.72 0.72 0.82 0.86 0.9 0.86 0.85
0.77 0.91 0.76 0.93 0.89 0.94 0.91
0.76 0.87 0.83 0.91 0.89 0.94 0.85
0.74 0.81 0.75 0.87 0.77 0.91 0.68
0.73 0.75 0.79 0.87 0.84 0.92 0.82
0.68 0.7 0.82 0.8 0.88 0.85 0.88
0.7 0.86 0.9 0.91 0.91 0.94 0.94
0.81 0.82 0.86 0.93 0.84 0.93 0.81
0.69 0.78 0.79 0.86 0.9 0.85 0.92
0.67 0.75 0.84 0.83 0.85 0.92 0.85
0.72 0.85 0.74 0.87 0.73 0.92 0.69 0.65

0.70

0.75

0.80

0.85

0.90

(b) Test set.

Figure 5.22: Report of the accuracy results for Angle encoding VQC models that
use the entangling block that classify data belonging to class 0 of the Wine dataset.
On the left 5.22a, the models evaluated on the training set are shown, while on the
right 5.22b, the results related to the test set.
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Figure 5.23: Report of the accuracy results for Amplitude encoding VQC models
that classify data belonging to class 0 of the Wine dataset. On the left 5.23a, the
models evaluated on the training set are shown, while on the right 5.23b, the results
related to the test set.
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Figure 5.24: Report of the accuracy results for Amplitude encoding VQC models
that uses the entangling block and classify data belonging to class 0 of the Wine
dataset. On the left 5.24a, the models evaluated on the training set are shown,
while on the right 5.24b, the results related to the test set.
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5.7 – Classify if data belongs to class 0 for Wine dataset

Table 5.5: Best encoding strategies for the Variational Quantum Circuit used to
classify if data belongs to class 0 of the Wine dataset. The best model is defined
using Amplitude Encoding and four parametric layers.

Strategy Depth
Amplitude_L4 51

Amplitude_Reuploading_L4 132
Amplitude_L8 74

Amplitude_Reuploading_L8 264

Figure 5.25: Representation of the best VQC model used for classifying if data be-
longs to class 0 of the Wine dataset. It is characterized by the Amplitude encoding
circuit and four parametric layers.
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5 – Results and Conclusions

5.8 Classification between classes 0 and 1 of the
Wine dataset

The analysis is based on classifying if data belongs to class 0 or 1 of the Wine
dataset. The number of qubits and the preprocessing techniques considered de-
pend on the encoding strategies adopted. Also in this case, for Angle Encoding,
a Principal Component Analysis is applied to reduce the number of features from
thirteen to five, while for Amplitude Encoding, no other preprocessing techniques
over feature scaling, and the number of qubits of the system is equal to four.

5.8.1 Support Vector Machine
The results related to the classification of data between class 0 and 1 are shown in
Figure 5.26. From the heatmaps, the models with the best performance in the test
set can be extracted and compared, evaluating the accuracy in the training set and
the depth, as shown in Table 5.6. The best encoding technique, considering the
metrics analyzed, is a single-layer circuit that uses RX gates to embed the data, as
shown in fig. 5.27.
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Figure 5.26: Report of the accuracy results for Support Vector Machine models for
the classification of data belonging to class 0 or 1 of the Wine dataset. In the left,
5.26a, the models evaluated on the training set are shown, while on the right, 5.26b
the results related to the test set.
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5.8 – Classification between classes 0 and 1 of the Wine dataset

Table 5.6: Best model identified to classify if data belongs to class 0 or 1 of the
Wine dataset. The strategies are compared to the accuracy of the training set and
the depth. The best circuit is characterized by a single layer with the RX gates for
the encoding.

Strategy Accuracy test Accuracy train Depth
RX 0.99 0.99 2

H-RY 0.99 0.99 4
H-RY-RX 0.99 0.99 6

H-RZ 0.99 0.99 4
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RX

RX

RX

RX

RX

RX

RX

RX

RX

Figure 5.27: Representation of the best kernel circuit to classify if data belongs to
class 0 or class 1 of the Wine dataset. The circuit is single-layer and the encoding
is done by RX gates.

5.8.2 Variational Quantum Circuit
The results of the VQC model for this classification are reported from figs. 5.28
to 5.31. From the results obtained, the models with the better performance on the
test set are indicated in Table 5.7 and the best one found is the one that uses RY
for encoding the data and eight parametric layers, as shown in fig. 5.32.
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(a) Training set.
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Figure 5.28: Report of the accuracy results for Angle encoding VQC models that
classify data between classes 0 and 1 of the Wine dataset. On the left 5.28a, the
models evaluated on the training set are shown, while on the right 5.28b, the results
related to the test set.
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(a) Training set.
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Figure 5.29: Report of the accuracy results for Angle encoding VQC models with
the entangling block used for classifying data between classes 0 and 1 of the Wine
dataset. On the left 5.29a, the models evaluated on the training set are shown,
while on the right 5.29b, the results related to the test set.
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5.8 – Classification between classes 0 and 1 of the Wine dataset
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(a) Training set.
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Figure 5.30: Report of the accuracy results for Amplitude encoding VQC models
used for classifying data between classes 0 and 1 of the Wine dataset. On the left
5.30a, the models evaluated on the training set are shown, while on the right 5.30b,
the results related to the test set.
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(a) Training set.
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Figure 5.31: Report of the accuracy results for Amplitude encoding VQC models
with the entangling block used for classifying data between classes 0 and 1 of the
Wine dataset. On the left 5.31a, the models evaluated on the training set are
shown, while on the right 5.31b, the results related to the test set.
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Table 5.7: Best model identified to classify if data belongs to class 0 or 1 of the
Wine dataset. In this case, it is chosen as the preferred circuit the one characterized
by the RY gates for the encoding and eight parametric layers.

Strategy Accuracy test Accuracy train
RX_L8 0.97 0.98
RY_L8 0.97 0.99

H-RY-RX_L8 0.97 0.98
RX_ENT_L8 0.97 0.98
RY_ENT_L8 0.97 0.98

RY-RZ_ENT_L8 0.97 0.98
H-RZ_ENT_L8 0.97 0.98

Figure 5.32: Representation of the best VQC model for the classification between
classes 1 and 2 of the Wine dataset. It is composed of RY gates to embed data
and the rotational gate Rot corresponds to the application of the RZ, RY, and RZ
gates.

5.9 Multiclass classification for Wine datset

The task of this classification is to identify to which of the three classes data
belongs simultaneously. In this case, only the Angle Encoding VQC models are
evaluated and the results obtained are reported from figs. 5.33 and 5.34. The best
model identified is the one that uses the RX-RZ strategy to encode the data, the
entangling block, and eight parametric layers, as represented in fig. 5.35.
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5.9 – Multiclass classification for Wine datset
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(a) Training set.
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Figure 5.33: Report of the accuracy results for Angle encoding VQC models for
multiclass classification of the Wine dataset. On the left 5.33a, the models evaluated
on the training set are shown, while on the right 5.33b, the results related to the
test set.
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Figure 5.34: Report of the accuracy results for Angle encoding VQC models with
the entangling block for multiclass classification of the Wine dataset. On the left
5.34a, the models evaluated on the training set are shown, while on the right 5.34b,
the results related to the test set.
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5 – Results and Conclusions

Figure 5.35: Best VQC model for multiclass classification of the Wine dataset.
It is composed of RX-RZ gates for the encoding, the entangling block, and eight
parametric layers.

5.10 Final Observations
From the results collected, some final considerations can be drawn. As pointed out
during the previous analysis on the results obtained the best encoding strategy for
both the VQC and SVM models depends on the case study. For this reason, it has
to be considered as a hyper-parameter to optimize during the cross-validation step.
Another conclusion is related to the models that exploit the re-uploading approach.
They suffer from overfitting, considering the high variation from the accuracy of
the training and test set. For this reason, regularisation techniques can be adopted
to reduce this phenomenon.
In the end, it can be seen that SVM methods permit achieving higher accuracy in
predicting the label of data with respect to VQC models.
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Chapter 6

Conclusion and Future
perspective

The objective of this thesis is to verify the dependence between the accuracy and
the encoding strategy adopted in near-term Quantum Machine Learning models.
In particular, the Variational Quantum Circuit and the Support Vector Machine
with Quantum Kernel Estimation have been taken as a reference for the analyses
conducted. The encoding approaches explored are the Angle and Amplitude strate-
gies, which are embedded in more than 280 Variational Quantum Circuits and 80
Support Vector Machines models. These models are evaluated on both the Iris and
Wine dataset, executing binary and multiclass classifications.
The results demonstrate that the best encoding strategy depends on the specific
case study and, for this reason, it has to be considered as a hyper-parameter to
optimize for the choice of the best model. Moreover, some additional considerations
can be drawn.

Models that exploit re-uploading suffer from overfitting and, for them, it could
be convenient to apply regularisation techniques and reduce the number of para-
metric layers (this phenomenon becomes more relevant by increasing the number
of parameters of the same model).

Comparing the accuracy results of the SVM models to the VQC ones, it can be
seen that the former achieve higher accuracy than the others. For this reason, it
would be useful to invest in implementing the entire algorithm in Quantum, even
if the current quantum devices represent a limit for its development.

The research on this topic has just started. New horizons could be expanded,
developing new models or accelerating the existing classical ones by exploiting the
quantum advantage. Starting from this thesis, various future works can be foreseen.
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6 – Conclusion and Future perspective

First, the number of measurements for the evaluation of the quantum circuit has
to be considered for the choice of the best model, because it represents a cost to be
optimized as much as possible, especially in near-term devices. Another proposal,
related to what concerns this thesis, is to implement new parametric layers for the
Variational Quantum Circuits models to improve the classification.

In general, other explorations can be conducted on the Quantum Machine Learn-
ing topic. For what concerns the definition of new models, Quantum Generative
Adversarial Networks and Quantum Convolutional Networks can be implemented.
They are the quantum counterpart of the classical algorithm which tries to be more
computationally efficient.
Considering the optimization step, a good approach could be to describe the Ma-
chine Learning problem in the QUBO form and optimize it using techniques like
the Grover Adaptive Search and Quantum Approximate Optimization Algorithm.
In this way, the entire problem will be integrated into Quantum devices.

Machine Learning is a topic that is expanding day by day, involving, for example,
domotic and biomedical applications, becoming even more computationally expen-
sive. For this reason, it is looking for a quantum advantage capable of opening the
doors to new Machine Learning algorithms with unimaginable capabilities today.
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