
POLITECNICO DI TORINO
Master’s Degree in Computer engineering

Master’s Degree Thesis

Network connectivity and observability in
multicluster environments

Supervisors

Prof. Fulvio RISSO

Dott. Marco IORIO

Dott. Aldo LACUKU

Candidate

Francesco CHEINASSO

Academic year 2021-2022

Summary

Nowadays cloud computing is becoming more important and the current trend is
to engineer the new web applications to be cloud-native, to split up the application
into micro-services, each one containerized and deployed as an independent part
of a bigger application. A technology that broke through the cloud market is
Kubernetes, a project that allows orchestrating containers in a cloud environment,
creating an abstraction layer that hides the physical machines, allowing to manage
them as a single entity. However, a new trend in the last years is to extend
this abstraction to a group of clusters to create another abstraction layer to allow
managing them like a single entity. This approach is called multi-clusters, a scenario
where multiple independent clusters communicate and create a federation allowing
to share resources between them and to exchange workloads. The advantage of a
multi-clusters approach is the possibility to share the cluster’s resources with others
to optimize the usage of the latter. It also allows companies no longer depend on a
specific cluster or cloud provider.

The goal of this thesis is to study how to interconnect more Kubernetes clusters
and allows their microservices to communicate transparently. For this purpose
two designs have been produced. These designs present a network model to
enable communication with minimal dependencies and without the need for specific
configurations on clusters. To test the new design in a real environment, the thesis
design focuses on Liqo, an open-source project started at Politecnico di Torino.
Each design has been implemented and validated. Finally, the two designs have
been compared to evaluate which is the best. Another goal of the thesis is to
provide the user with a simple way to monitor the status of the network and
to keep track of the performance of the connectivity towards federated clusters.
These observability features have been designed to expose information to other
microservices.

ii

Table of Contents

1 Introduction 1
1.1 The need for Multiple Clusters . 1
1.2 Multi-cluster and Liqo . 2
1.3 Goal of the thesis . 2
1.4 Structure of the work . 3

2 Kubernetes 5
2.1 Kubernetes: a bit of history . 5
2.2 Evolution of workloads management 6
2.3 Container orchestrators . 7
2.4 Kubernetes architecture . 9

2.4.1 Control plane components 9
2.4.2 Node components . 11

2.5 Kubernetes objects . 12
2.5.1 Label & Selector . 13
2.5.2 Namespace . 13
2.5.3 Pod . 14
2.5.4 ReplicaSet . 14
2.5.5 Deployment . 14
2.5.6 DaemonSet . 15
2.5.7 Service . 16

2.6 Kubernetes network architecture . 17
2.6.1 Container communication within same pod 18
2.6.2 Pod communication within the same node 18
2.6.3 Pod communication on different nodes 19
2.6.4 CNI (Container Network Interface) 19
2.6.5 Pod to service networking 20

2.7 Kubebuilder . 21

iv

3 Liqo 22
3.1 Liqo: an overview . 22
3.2 The Liqo peering . 22
3.3 The Liqo reflection . 23
3.4 Network Fabric . 24

3.4.1 Cross-cluster VPN tunnels 24
3.4.2 In-cluster overlay network 25

3.5 Liqo Custom Resources . 25
3.5.1 The NetworkConfig CR . 25
3.5.2 The TunnelEndpoint CR . 26
3.5.3 The ForeignCluster CR . 26
3.5.4 The ShadowPod CR . 26

3.6 Liqo Components . 26
3.6.1 The CRD Replicator component 26
3.6.2 The Virtual Kubelet component 27
3.6.3 The IPAM component . 27
3.6.4 Network manager . 28
3.6.5 The Liqo Gateway . 28

4 Advanced Networking Concepts 30
4.1 Linux Namespaces . 30

4.1.1 Namespace kinds . 30
4.2 Linux Network Stack . 31

4.2.1 NetFiltert . 31
4.2.2 Iptables . 32

4.3 VPN - Wireguard . 32

5 Cross-Cluster Network Design 35
5.1 The Problem . 35

5.1.1 Remapping . 35
5.1.2 Exchanged information . 36

5.2 Architecture . 36
5.2.1 Problem Area . 36
5.2.2 Design SD . 37
5.2.3 Design DS . 39
5.2.4 Comparison . 41

5.3 Implementation . 41
5.3.1 Liqo NetNS . 41
5.3.2 Gateway redirection . 41
5.3.3 VPN interfaces . 44
5.3.4 Conntrack . 45

v

5.4 Conclusion . 45

6 Cross-Cluster Observability Design 47
6.1 The Problem . 47
6.2 Overview . 48

6.2.1 Implementation . 49
6.2.2 ConnChecker . 50

6.3 Messages . 54
6.3.1 Sender . 54
6.3.2 Receiver . 56
6.3.3 Generate metrics . 58
6.3.4 Disconnect Observer . 59
6.3.5 TunnelEndpoint update . 60
6.3.6 Prometheus Metrics . 62

7 Evaluation 64
7.1 Network Design . 64
7.2 Observability Design . 65

7.2.1 Grafana . 65
7.2.2 Liqoctl Status . 67
7.2.3 Performance . 70

8 Conclusion 73

Bibliography 74

vi

Chapter 1

Introduction

In the last several years, the ICT world has seen incredible innovation with the
introduction of virtualization first, then with containerization, and finally with
orchestrators. In this last field, one of the main actors is Kubernetes, an open-
source system for managing containerized applications in a clustered environment.
The spread of Kubernetes is rapidly increasing; in cloud providers such as Google
Cloud Platform and Microsoft Azure it is the most popular choice [1] and many
companies and organizations have started to set up their clusters in order to
migrate their applications on it. With the advent of 5G and edge computing also
telecommunications companies are moving towards Kubernetes-based solutions [2].

1.1 The need for Multiple Clusters
Organizations may need a multi-cluster environment for many different reasons.
We can distinguish between two main categories of environments:

• In a Cloud Environment: where a single company can have many large
data centers, both on-premise (in private infrastructure and on proprietary
hardware) and on managed solutions (in a public cloud provider, like Amazon
Web Services, Google Cloud Platform, Microsoft Azure, and many others).
An organization may need multiple clusters in a cloud environment to have a
high resource availability, distributed in multiple zones, and may require that
these clusters are hosted by different cloud providers to contain costs or to
not be strictly linked to a specific one of them.
The usage of multiple clusters can also reduce scalability problems on very
big clusters.

• In an Edge or IoT Environment: where a single company can have a lot of

1

Introduction

small clusters, even single-node ones. They can be geographically distributed
to be closer to the end-user.
In this scenario, the main needs are the availability of the same API (for the
software) and the re-utilization of the same skills (for the humans) already
used in the cloud world to manage small devices. With the interoperability of
the API, a new and closer integration becomes possible with the movement of
the applications between different devices.

1.2 Multi-cluster and Liqo
Nowadays organizations don’t need anymore more separated clusters, but they
need these clusters to be able to communicate and cooperate. This is called multi-
clusters topology, an approach where more clusters can behave like nodes of a
bigger system. One of the main features needed is the possibility to share resources
between them and exchange workloads dynamically and reactively.

Kubernetes does not support this approach, in fact, the maximum level of
abstraction for Kubernetes is the node entity (see chapter 2), which is usually a
single physical machine that is part of the cluster. The idea behind a multi-clusters
approach in Kubernetes is to allow single clusters to use and share their nodes with
another cluster. In this way is possible to have separated clusters from Kubernetes
view and a logical big cluster (1.1)

Liqo is one of the solutions which allows enabling a multi-clusters approach
inside Kubernetes and this thesis will use it as a workbench to study multi-clusters
network designs.

1.3 Goal of the thesis
The goal of the thesis is to allow 2 clusters to communicate and inter-operate. In
a multi-clusters environment, there are several challenges to face up. The one
on which the thesis focuses is the exchange of network information. Network
information is all the parameters that 2 clusters need to know to establish a
connection. Data exchanged are usually details about the other cluster, that are
needed to setup connections.

The first step to reach this goal is to study some possible network designs
to understand what is the best in terms of simplicity, elasticity, and dynamism,
reducing the amount of information that has to be shared and limiting race
conditions and complexity.

Then another important step is how to integrate a strong and extensible mecha-
nism to allow the observability of the network health status.

2

Introduction

Node 1

Node 2

Node 3

Cluster 1

Node 1

Node 2

Node 3

Cluster 2

Pod 1 Pod 2 Pod 3

Cluster 3

Big Cluster

Figure 1.1: Multi-clusters topology

1.4 Structure of the work
This thesis is structured as follows:

• Chapter 2 provides a presentation of Kubernetes, its architecture, and
concepts;

• Chapter 3 provides a presentation of Liqo, its architecture features, and
concepts;

• Chapter 4 provides a presentation of advanced network concepts used in the
next chapters;

• Chapter 5 analyzes possible cross-cluster network designs and their imple-
mentation with advantages and disadvantages;

• Chapter 6 analyzes possible network observability designs and their imple-
mentation with advantages and disadvantages;

• Chapter 7 evaluation of the obtained results, considering which is the best
approach.

3

Introduction

• Chapter 8 conclusions about the thesis and future perspectives.

4

Chapter 2

Kubernetes

2.1 Kubernetes: a bit of history

Around 2004, Google created the Borg [3] system, a small project with less than
5 people initially working on it. The project was developed as a collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines” [3].

In 2013 Google announced Omega [4], a flexible and scalable scheduler for large
compute clusters. Omega provided a “parallel scheduler architecture built around
shared state, using lock-free optimistic concurrency control, in order to achieve
both implementation extensibility and performance scalability”.

In the middle of 2014, Google presented Kubernetes as on open-source version
of Borg. Kubernetes was created by Joe Beda, Brendan Burns, and Craig McLuckie,
and other engineers at Google. Its development and design were heavily influenced
by Borg and many of its initial contributors previously used to work on it. The
original Borg project was written in C++, whereas for Kubernetes the Go language
was chosen.

In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a
partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [5]. Since then, Kubernetes has significantly grown, achieving
the CNCF graduated status and being adopted by nearly every big company.
Nowadays it has become the de-facto standard for container orchestration [6, 7].

5

Kubernetes

Figure 2.1: Evolution of applications deployments

2.2 Evolution of workloads management
Traditional deployment era In the traditional deployment era, organizations
ran applications on physical servers. There was no way to define application
constraints to limit resource usage, and some applications would end up taking
most of the resources available, making the remaining applications starve. This
led system managers to deploy one server per application, increasing costs and
maintenance work. At this point, the community rediscovered the abandoned
concept of virtualization.

Virtualized deployment era In the virtualized deployment era, developers
could run multiple Virtual Machines (VMs) on a single physical server, and ensure
applications would not interfere with one another, by running one VM per applica-
tion. Virtualization allows defining resource-usage constraints for each VM, and
makes software running on one VM isolated from the rest of the system and other
VMs, leading to a much more stable and secure environment, as applications cannot
interfere with one another, nor freely access private application data. Moreover, it
allows better scalability as application instances can be scaled up or down easily by
spawning or deleting VMs as needed. Each VM includes a whole operating system
and can be tweaked to include the properly versioned dependencies as requested by
the running application: this creates sealed compartments that are easy to manage
and maintain, as well as to debug. Overall, less physical servers are deployed, costs
are lower and companies can get the most out of their available servers, preventing
them from being underused.

Containerized deployment era The next step in the evolution of workloads
deployment came with the rise of containerization. Containers work similarly to
VMs, but with less strict isolation properties so that different applications can

6

Kubernetes

share the same Operating System. For this, they are considered lightweight. Just
like VMs, containers have their own filesystem, share of CPU, memory, process
space, and more. Containers are decoupled from the underlying infrastructure: this
makes them portable across clouds and OS distributions. What makes them so
popular is the set of extra benefits they provide, such as:

• The agile application creation and deployment, given the ease of creation of
container images compared to VM images.

• Continuous development, integration and deployment, thanks to the reliable
and frequent container image build and deployments.

• Application health checks and observability.

• Cloud and OS distribution portability.

• Application-centric management, raising the abstraction level in order to
simply focus on running the application.

• Resource utilization that yields high efficiency and density.

In parallel to the sheer technological advancements, an improvement on the
workload management methods has been observed: from handling VMs as single
entities, we moved to a “cattle” model where VMs were handled in a more general
way (although their management would still be quite coupled to their lives), to
move further and reach a decoupled approach, that is the one used by Kubernetes:
a declarative way that expresses general intentions that are taken by the system
and applied to all of the interested resources, without having to deal with the
single instances, resulting in a more detached view where resources are seen as
commodities that can be created, destroyed, and replaced as needed.

In this chapter we analyse Kubernetes architecture, showing also its history and
evolution through time, in order to lay the foundations for all the work which will
be exposed later on. Kubernetes (often shortened as K8s) is a huge framework
and a deep examination of it would require much more time and discussion, hence
we only provide here a description of its main concepts and components. Further
details can be found in the official documentation [8].

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need of a way to manage
them becomes essential; container orchestrators serve this purpose. A container
orchestrator is a system designed to easily manage complex containerization de-
ployments across multiple machines from one central location. As depicted in

7

Kubernetes

figure 2.2, Kubernetes is by far the most used container orchestrator. We provide
a description of such system in the following.

Figure 2.2: Container orchestrators use [9].

Kubernetes provides many services, including:

• Service discovery and load balancing A container can be exposed using
the DNS name or using its own IP address. If traffic to a container is high, a
load balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the desired
state at a controlled rate. For example, it is possible to automate the creation
of new containers of a deployment, remove existing containers and adopt all
their resources to the new container.

• Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

• Secret and configuration management It is possible to store and manage
sensitive information in Kubernetes, such as passwords, OAuth tokens, and
SSH keys. It is possible to deploy and update secrets and application configu-
ration without rebuilding the container images, and without exposing secrets
in the stack configuration.

8

Kubernetes

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists
of a set of machines, called nodes, that run containerized applications. At least
one of the nodes hosts the control plane and is called master. Its role is to manage
the cluster and expose an interface to the user. The worker node(s) host the pods
that are the components of the application. The master manages the worker nodes
and the pods in the cluster. In production environments, the control plane usually
runs across multiple machines and a cluster runs on multiple nodes, providing
fault-tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the components
linked together.

Figure 2.3: Kubernetes architecture

2.4.1 Control plane components
The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
for simplicity, they are typically executed all together on the same machine, which
does not run user containers.

API server

The API server is the component of the Kubernetes control plane that exposes the
Kubernetes REST API, and constitites the front end for the Kubernetes control
plane. Its function is to intercept REST request, validate and process them. The

9

Kubernetes

main implementation of a Kubernetes API server is kube-apiserver. It is designed
to scale horizontally, which means it scales by deploying more instances. Moreover,
it can be easily redounded to run several instances of it and balance traffic among
them.

etcd

etcd is a distributed, consistent and highly-available key value store used as
Kubernetes’ backing store for all cluster data. It is based on the Raft consensus
algorithm, which allows different machines to work as a coherent group and survive
to the breakdown of one of its members. etcd can be stacked in the master node
or external, installed on dedicated host. Only the API server can communicate
with it.

Scheduler

The scheduler is the control plane component responsible of assigning the pods to
the nodes. The one provided by Kubernetes is called kube-scheduler, but it can
be customized by adding new schedulers and indicating in the pods to use them.
kube-scheduler watches for newly created pods not assigned to a node yet, and
selects one for them to run on. To make its decisions, it considers singular and
collective resource requirements, hardware/software/policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference and deadlines.

kube-controller-manager

Component that runs controller processes. It continuously compares the desired
state of the cluster (given by the objects specifications) with the current one
(read from etcd). Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single process.
These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of pods
for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which links Services
and Pods).

• Service Account & Token Controllers: create default accounts and API access
tokens for new namespaces.

10

Kubernetes

cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor
themselves, and linked to cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

kubelet

An agent that runs on each node in the cluster, making sure that containers are
running in a pod. The kubelet receives from the API server the specifications of
the Pods and interacts with the container runtime to run them, monitoring their
state and assuring that the containers are running and healthy. The connection with
the container runtime is established through the Container Runtime Interface
and is based on gRPC.

11

Kubernetes

kube-proxy

kube-proxy is a network agent that runs on each node in your cluster, implementing
part of the Kubernetes Service concept. It maintains network rules on nodes, which
allow network communication to your Pods from inside or outside of the cluster.
If the operating system is providing a packet filtering layer, kube-proxy uses it,
otherwise it forwards the traffic itself.

Addons

Features and functionalities not yet available natively in Kubernetes, but imple-
mented by third parties pods. Some examples are DNS, dashboard (a web gui),
monitoring and logging.

Figure 2.4: Kubernetes master and worker nodes [8].

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields:

• apiVersion: the versioned schema of this representation of the object;

• kind: a string value representing the REST resource this object represents;

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.;

• ResourceSpec: defined by the user, it describes the desired state of the object;

12

Kubernetes

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the typical CRUD actions:

• Create: create the resource in the storage backend; once a resource is created,
the system applies the desired state.

• Read: comes with 3 variants

– Get: retrieve a specific resource object by name;
– List: retrieve all resource objects of a specific type within a namespace,

and the results can be restricted to resources matching a selector query;
– Watch: stream results for an object(s) as it is updated.

• Update: comes with 2 forms

– Replace: replace the existing spec with the provided one;
– Patch: apply a change to a specific field.

• Delete: delete a resource; depending on the specific resource, child objects
may or may not be garbage collected by the server.

In the following we illustrate the main objects needed in the next chapters.

2.5.1 Label & Selector
Labels are key-value pairs attached to a K8s object and used to organize and mark
a subset of objects. Selectors are the grouping primitives which allow to select a
set of objects with the same label.

2.5.2 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by K8s system, mainly control-plane
agents;

• default: it contains objects and resources created by users and it is the one
used by default;

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing cluster public information;

13

Kubernetes

• kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the cluster into many Namespaces in order to better
virtualize the cluster.

2.5.3 Pod
Pods are the basic processing units in Kubernetes. A pod is a logic collection of one
or more containers which share the same network and storage, and are scheduled
together on the same pod. Pods are ephemeral and have no auto-repair capacities:
for this reason they are usually managed by a controller which handles replication,
fault-tolerance, self-healing etc.

Figure 2.5: Kubernetes pods [8].

2.5.4 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. Usually ReplicaSets are not used directly: a
higher-level concept is provided by Kubernetes, called Deployment.

2.5.5 Deployment
Deployments manage the creation, update and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason an application is typically executed within a Deployment and not
in a single pod. The listing 2.1 is an example of deployment.

Listing 2.1: Basic example of Kubernetes Deployment [8].
1 ap iVers ion : apps/v1

14

Kubernetes

2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 l a b e l s :
6 app : nginx
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app : nginx
12 template :
13 metadata :
14 l a b e l s :
15 app : nginx
16 spec :
17 c on t a i n e r s :
18 − name : nginx
19 image : nginx : 1 . 7 . 9
20 por t s :
21 − conta ine rPort : 80

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in
the selector field, manages all the pods labelled as app:nginx. The template
field shows the information of the created pods: they are labelled app:nginx and
launch one container which runs the nginx DockerHub image at version 1.7.9 on
port 80.

2.5.6 DaemonSet
A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes
are added to the cluster, Pods are added to them. As nodes are removed from the
cluster, those Pods are garbage collected. Deleting a DaemonSet will clean up the
Pods it created [8]. Some typical uses of a DaemonSet are:

• running a cluster storage daemon on every node;

• running a logs collection daemon on every node;

• running a node monitoring daemon on every node.

Listing 2.2: Basic example of Kubernetes daemonset [8].
1 ap iVers ion : apps/v1
2 kind : DaemonSet
3 metadata :
4 name : f luentd −e l a s t i c s e a r c h

15

Kubernetes

5 namespace : kube−system
6 l a b e l s :
7 k8s−app : f luentd −l o gg ing
8 spec :
9 s e l e c t o r :

10 matchLabels :
11 name : f luentd −e l a s t i c s e a r c h
12 template :
13 metadata :
14 l a b e l s :
15 name : f luentd −e l a s t i c s e a r c h
16 spec :
17 t o l e r a t i o n s :
18 − key : node−r o l e . kubernetes . i o / master
19 e f f e c t : NoSchedule
20 c on t a i n e r s :
21 − name : f luentd −e l a s t i c s e a r c h
22 image : quay . i o / f l u e n t d _ e l a s t i c s e a r c h / f l u en td : v2 . 5 . 2

2.5.7 Service
A Service is an abstract way to expose an application running on a set of Pods as a
network service. It can have different access scopes depending on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type;

• NodePort: exposes the Service on a static port of each Node’s IP; the
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

• ExternalName: maps the Service to an external one so that local apps can
access it.

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the app=MyApp label.

Listing 2.3: Basic example of Kubernetes Service [8].
1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : my−s e r v i c e
5 spec :

16

Kubernetes

Pod

Node

Figure 2.6: Kubernetes Services [8].

6 s e l e c t o r :
7 app : myApp
8 por t s :
9 − pro to co l : TCP

10 port : 80
11 ta rge tPor t : 9376

2.6 Kubernetes network architecture
Kubernetes defines a network model that helps provide simplicity and consistency
across a range of networking environments and network implementations. The
Kubernetes network model provides the foundation for understanding how contain-
ers, pods, and services within Kubernetes communicate with each other [10]. The
Kubernetes network model specifies:

1. Every pod gets its own IP address;

2. Containers within a pod share the pod IP address and can communicate freely
with each other;

3. Pods can communicate with all other pods in the cluster using pod IP addresses
(without NAT);

17

Kubernetes

4. Agents on a node (e.g. system daemons, kubelet) can communicate with all
pods on that node;

5. Pods in the host network of a node can communicate with all pods on all
nodes (without NAT);

6. Isolation (restricting what each pod can communicate with) is defined using
network policies.

As a result, pods can be treated much like VMs or hosts (they all have unique IP
addresses), and the containers within pods very much like processes running within
a VM or host (they run in the same network namespace and share an IP address).
This model makes it easier for applications to be migrated from VMs and hosts
to pods managed by Kubernetes. In addition, because isolation is defined using
network policies rather than the structure of the network, the network remains
simple to understand. This style of network is sometimes referred to as a “flat
network”.

2.6.1 Container communication within same pod

Containers in a Pod are accessible via localhost, they use the same network
namespace. For containers, the observable host name is a Pod’s name. Since
containers share the same IP address and port space, different ports in containers
for incoming connections must be used. Because of this, applications in a Pod must
coordinate their usage of ports.

2.6.2 Pod communication within the same node

Before the infrastructure container is started, a virtual Ethernet interface pair (a
veth pair) is created for the container. One interface of the veth pair stays in
the host’s namespace (it tagged with vethxxx) while the other interface is moved
into the container’s network namespace and renamed to eth0. These two virtual
interfaces are like two ends of a pipe that everything goes in one side, comes
out on the other.The interface in the host’s network namespace is attached to a
network bridge that container runtime is configured to use. The eth0 interface in
the container is assigned an IP address from the bridge’s address range. Anything
that application running inside the container sends to the eth0 network interface
and comes out at the other veth Interface in host’s namespace and is sent to bridge.
So, any network connected to the bridge can receive it.

18

Kubernetes

Figure 2.7: Pod to pod communication within same node.

2.6.3 Pod communication on different nodes
Pod IP addresses must be unique across the whole cluster, so the bridges across
the nodes must use non-overlapping address ranges to prevent pods from different
nodes from getting the same IP address. There are many methods for connecting
the bridges on different nodes. This can be done with overlay or underlay networks
or by regular layer 3 routing(direct routing).

2.6.4 CNI (Container Network Interface)
CNI (Container Network Interface) is a Cloud Native Computing Foundation
project consisting of a specification and libraries for writing plugins to configure
network interfaces in Linux containers. CNI concerns itself only with network
connectivity of containers and removing allocated resources when the container
is deleted. Kubernetes uses the CNI specifications and plug-ins to orchestrate
networking. Also, it can address other container’s IP addresses without using the
Network Address Translation (NAT). Every time a Pod is initialized or removed,
the default CNI plug- in is called with the default configuration, which this CNI
plug-in creates a pseudo interface, attaches it to the underlay network, sets IP
Address, routes, and maps it to the Pod namespace. It should be passed –network-
plugin = cni to the Kubelete when launching it for using the CNI plugin. If the
environment is not using the default configuration directory (/etc/cni.net.d), the
CNI plugin passes the correct configuration directory as a value to –cni-conf-dir.
Moreover, the Kubelet looks for the CNI plugin binary at /opt/cni/bin, but it

19

Kubernetes

Figure 2.8: Pod to pod communication across different nodes.

can be specified an alternative location with –cni-bin-dir.

Figure 2.9: Container network interface [11]

2.6.5 Pod to service networking
Pod IP addresses are not durable and will appear and disappear in response to
scaling up or down, application crashes, or node reboots. Each of these events
can make the Pod IP address change without warning. Services were built into
Kubernetes to address this problem. The Kubernetes service manages the state of

20

Kubernetes

Pods, allowing us to track a set of the pod IP address that dynamically changes
over time. Services act as an abstraction over Pods and assign a single virtual IP
address to a group of Pod IP addresses. Any traffic addressed to the virtual IP of
the service will be routed to the set of Pods that are associated with the virtual IP.
This allows the set of Pods associated with a service to change at any time clients
only need to know the service’s virtual IP, which does not change [12].

2.7 Kubebuilder
Kubebuilder is a framework for building Kubernetes APIs using Custom Resource
Definitions (CRDs) [13].

CustomResourceDefinition is an API resource offered by Kubernetes which
allows to define Custom Resources (CRs) with a name and schema specified by
the user. When a new CustomResourceDefinition is created, the Kubernetes API
server creates a new RESTful resource path; the CRD can be either namespaced or
cluster-scoped. The name of a CRD object must be a valid DNS subdomain name.

A Custom Resource is an endpoint in the Kubernetes API that is not available
in a default Kubernetes installation and which frees users from writing their own
API server to handle them [8]. On their own, custom resources simply let you store
and retrieve structured data. In order to have a more powerful management, you
also need to provide a custom controller which executes a control loop over the
custom resource it watches: this behaviour is called Operator pattern [14].

Kubebuilder helps a developer in defining his Custom Resource, taking auto-
matically basic decisions and writing a lot of boilerplate code. These are the main
actions operated by Kubebuilder [13]:

1. Create a new project directory.

2. Create one or more resource APIs as CRDs and then add fields to the resources.

3. Implement reconcile loops in controllers and watch additional resources.

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically).

5. Update bootstrapped integration tests to test new fields and business logic.

6. Build and publish a container from the provided Dockerfile.

21

Chapter 3

Liqo

This chapter introduces the conceptual foundations at the base of Liqo [15], as well
as the core elements that make up its architecture.

3.1 Liqo: an overview
The Kubernetes technology is widely employed to handle cloud tasks. Clusters are
designed to provide more resources—in terms of sheer computing power, available
memory, storage capacity—than the ones normally required, to handle temporary
peaks of load. This means that this excess of capabilities could be used by other
clusters that undergo a period of higher load. Liqo [16] aims to unleash this
potential power by connecting clusters together and have them work synergically
to pursue their goals.

To accomplish this task, clusters establish a peering session that results in a
larger virtual cluster that hosts the sum of the resources exposed by each cluster
involved in the peering process.

The benefit of using Liqo is that it takes the core concepts that are well-known
in the Kubernetes environment and exploits them to achieve more possibilities.
Indeed, a cluster sees its peers simply as (virtual) nodes that add up to its (physical)
ones, and schedules tasks to its nodes regardless of their actual nature.

The next sections will describe more in depth the presented concepts, starting
with a core element and how to establish it: the Liqo peering.

3.2 The Liqo peering
Once two (or more) Kubernetes clusters are available to host workloads, they can
become part of a multi-cluster topology by activating a peering session between
them. This is where the Liqo experience starts off. A Liqo peering takes separate

22

Liqo

entities and joins them into a wider environment that is capable of handling larger
workloads. As a result, each involved cluster becomes aware of the existence of
other remote peers, modeled by the ForeignCluster Custom Resource (CR). This
process entails the exchange network parameters and other cluster information,
so as to create a secure VPN that pods will leverage to communicate with one
another as part of a large distributed cross-cluster application.

Cluster peerings are not required to be symmetric. Their flexibility allows a
cluster to establish:

• An outgoing peering, so that the cluster can offload its workloads, but
won’t receive any by its peer.

• An incoming peering, so that the cluster hosts remote workloads, but won’t
offload any to its peer.

• A bidirectional peering, the union of the two above.

When an outgoing peering is active, it is of paramount importance to control
what could be offloaded and what should not. This is done by leveraging some
native Kubernetes concepts, namely Namespaces and label selectors, and some
logic provided by Liqo to select which namespaces to offload, which pods within
such namespaces to offload, and even which remote peers as the target of this
offloading mechanism. The possibilities are endless.

The basic requirements to start a peering session is to have access to the remote
Kubernetes API Server. This allows clusters to exchange information and create
resources remotely, with the result of having a VPN that remote pods use to
communicate as if they were all in the same Kubernetes cluster.

3.3 The Liqo reflection
Once a peering is established, the workload offloading is enabled by leveraging the
virtual node abstraction and the namespace extension.

A virtual node represents a remote cluster and all of its shared resources (e.g.
CPU and memory). This allows for a transparent extension of the local cluster’s
resources, as the virtual node added to the cluster is seamlessly taken into account
by the vanilla Kubernetes scheduler when selecting the best place for executing
workloads.

In addition to that, Liqo enables the extension of Kubernetes namespaces
across the cluster boundaries. Once a namespace is selected for offloading, Liqo
automatically creates twin namespaces in the selected subset of remote peers. These
remote twin namespaces will host the remotely offloaded pods, as well as other
resources living in the local namespace that has been extended remotely, such as

23

Liqo

those related to service exposition (Ingress, Service and Endpoints resources), or
storing configuration data (ConfigMaps and Secrets), to name a few.

3.4 Network Fabric
The network fabric is the Liqo subsystem transparently extending the Kubernetes
network model across multiple independent clusters, such that offloaded pods can
communicate with each other as if they were all executed locally.

In detail, the network fabric ensures that all pods in a given cluster can com-
municate with all pods on all remote peered clusters, either with or without NAT
translation. The support for arbitrary clusters, with different parameters and com-
ponents (e.g., CNI plugins), makes it impossible to guarantee non-overlapping pod
IP address ranges (i.e., PodCIDR). Hence, possibly requiring address translation
mechanisms, provided that NAT-less communication is preferred whenever address
ranges are disjointed.

The figure 3.1 represents at a high level the network fabric established between
two clusters, with its main components detailed in the following.

Remote ClusterLocal Cluster

Overlay... Overlay...

Viewer does not support full SVG 1.1

Figure 3.1: Network Fabric

3.4.1 Cross-cluster VPN tunnels
The interconnection between peered clusters is implemented through secure VPN
tunnels, made with WireGuard, which are dynamically established at the end of
the peering process, based on the negotiated parameters.

Tunnels are set up by the Liqo gateway, a component of the network fabric
that is executed as a privileged pod on one of the cluster nodes. Additionally, it
appropriately populates the routing table, and configures, by leveraging iptables,
the NAT rules requested to comply with address conflicts.

24

Liqo

Although this component is executed in the host network, it relies on a separate
network namespace and policy routing to ensure isolation and prevent conflicts with
the existing Kubernetes CNI plugin. Moreover, active/standby high-availability is
supported, to ensure minimum downtime in case the main replica is restarted.

3.4.2 In-cluster overlay network

The overlay network is leveraged to forward all traffic originating from local
pods/nodes, and directed to a remote cluster, to the gateway, where it will enter
the VPN tunnel. The same process occurs on the other side, with the traffic that
exits from the VPN tunnel entering the overlay network to reach the node hosting
the destination pod.

Liqo leverages a VXLAN-based setup, which is configured by a network fabric
component executed on all physical nodes of the cluster (i.e., as a DaemonSet).
Additionally, it is also responsible for the population of the appropriate routing
entries to ensure correct traffic forwarding.

3.5 Liqo Custom Resources
The following subsections present some of the Custom Resources used by Liqo to
provide the peering and reflection features.

3.5.1 The NetworkConfig CR

This CR represents a set of network parameters (mainly IP addresses) by means
of which clusters know how a remote peer has remapped the local PodCIDR, as
well as the remote peer’s PodCIDR. The “spec” part includes data related to the
local cluster, while its “status” part reports the changes to the specifications. The
idea is that a cluster creates this CR and sends it to the remote cluster it is going
to establish a peering with. The remote cluster processes this CR and annotates
in the “status” part everything it had to change in terms of IP address ranges to
avoid any conflicts. These updates are reported back to the owning cluster.

Concurrently, the same happens in the opposite direction, so the remote cluster
generates a NetworkConfig, writes its “spec” part and sends it to the local cluster,
which annotates any changes in the “status” part to make the remote cluster aware
of any modifications to the original specifications.

Once both the CRs are processed, a Liqo control loop reconciles them to create
the TunnelEndpoint CR.

25

Liqo

3.5.2 The TunnelEndpoint CR
This CR contains the relevant network configuration to establish a VPN tunnel
with the remote cluster. This is used to make pods reach out to other remote pods
as if they were in the same network.

3.5.3 The ForeignCluster CR
This CR models a remote cluster. It contains the details about the peering
session that is in place between two clusters, such as whether the peering has been
established successfully and what direction it takes (outgoing, incoming, or both).
A ForeignCluster is created starting from the NetworkConfigs that the two parties
have exchanged and processed.

3.5.4 The ShadowPod CR
When a Pod is scheduled onto a virtual node, a Pod is created in the remote cluster
for the actual workload execution. In the remote cluster, a new object paired with
the remote Pod is created: this is the ShadowPod. This resource, combined with
its controller, guarantees the presence of the pod in the remote cluster, also in
cases of connection faults.

3.6 Liqo Components
3.6.1 The CRD Replicator component
This component is dedicated to the reflection of some Liqo CRs just presented.
To do so, it requires access to the remote API Server. It is a core element as
it implements the network parameter exchange between clusters to set up the
TunnelEndpoint CRs which will later be used respectively to keep track of the
active peering sessions and to ensure remote pod-to-pod communications. The
replicated CRDs are:

• NetworkConfig

• ResourceRequest

• ResourceOffer

• NamespaceMapping

The CRD Replicator architecture is quite complex, but essentially it is im-
plemented through a so-called reflector, which is a data structure containing the

26

Liqo

required objects and data to detect changes in local and remote namespaces (using
local and remote informers), as well as to perform the traditional CRUD1 operations
in those namespaces (using local and remote clients). In particular, when an object,
such as a NetworkConfig, is created in a namespace enabled for reflection and with
the proper metadata labels set up, the local reflector (that is the one belonging to
the cluster that created the object) follows these steps:

• It detects a new object to be reflected.

• It creates a copy of that object in the remote namespace by using a pre-
configured client to access the remote API server.

• It listens to any changes occurring in the reflected object, which usually boils
down to a status update performed by the remote cluster controllers, as
happens with NetworkConfigs to let the sender cluster know about possible
remappings.

• It listens to any changes occurring in the local original copy, such as a deletion
that needs to propagate to the remote cluster’s namespace so that the remote
copy gets deleted as well.

3.6.2 The Virtual Kubelet component
This component is a custom version of the Virtual Kubelet project [17]. Whenever
a peering session is established with a remote cluster, a dedicated instance of this
component is created. Once created, it is used to offload pods to remote clusters,
seen by the Kubernetes control plane as normal cluster nodes onto which to schedule
a normal task. In addition to that, it is used to reflect core Kubernetes resources,
such as Services and Endpoints: once deployed in a Liqo-enabled namespace, that
is a namespace extended remotely, they will always be reflected to the selected
remote peers.

3.6.3 The IPAM component
This component contains the logic that translates IP addresses back and forth and
keeps track of all the possible remappings between the local cluster and the remote
peers. It is fundamental within Liqo as it knows all the NAT rules that are used to
avoid address conflicts.

1Create, read, update, and delete (CRUD) are the four basic operations of persistent storage.

27

Liqo

Figure 3.2: CRD Replicator

3.6.4 Network manager
The network manager (not shown in figure) represents the control plane of the Liqo
network fabric. It is executed as a pod, and it is responsible for the negotiation of
the connection parameters with each remote cluster during the peering process.

It features an IP Address Management (IPAM) plugin, which deals with possible
network conflicts through the definition of high-level NAT rules (enforced by the
data plane components). Additionally, it exposes an interface consumed by the
reflection logic to handle IP addresses remapping. Specifically, this is leveraged to
handle the translation of pod IPs (i.e., during the synchronization process from
the remote to the local cluster), as well as during EndpointSlices reflection (i.e.,
propagated from the local to the remote cluster).

3.6.5 The Liqo Gateway
This component is responsible to manage connections with other clusters. All
the traffic between two peered clusters has to pass through this component. It is

28

Liqo

possible to have more than just one Liqo Gateway, but only one at time can be
activated and the others can be used in case of failures. The connection between
clusters is managed with VPN tunnels and this component is the responsible for the
management of them. Liqo support more VPN drivers (eg. Wireguard, OpenVPN,
IPSec), providing an interface to implement the logic. However at the moment the
only implemented driver is Wireguard (see section 4.3).

29

Chapter 4

Advanced Networking
Concepts

In this chapter are explained some networking concepts and technologies have been
used in the thesis implementation phase.

4.1 Linux Namespaces
Namespaces are a feature of the Linux kernel that partitions kernel resources such
that one set of processes sees one set of resources while another set of processes sees
a different set of resources. The feature works by having the same namespace for
a set of resources and processes, but those namespaces refer to distinct resources.
Resources may exist in multiple spaces. Examples of such resources are process
IDs, hostnames, user IDs, file names, and some names associated with network
access, and interprocess communication. Namespaces are a fundamental aspect of
containers on Linux.

4.1.1 Namespace kinds
Since kernel version 5.6, there are 8 kinds of namespaces. Namespace functionality
is the same across all kinds: each process is associated with a namespace and
can only see or use the resources associated with that namespace, and descendant
namespaces where applicable. This way each process (or process group thereof)
can have a unique view of the resources. Which resource is isolated depends on the
kind of namespace that has been created for a given process group. Namespace
kinds are:

• Mount namespace: controls mount points.

30

Advanced Networking Concepts

• PID namespace: provides processes with an independent set of process IDs.

• Network namespace: allows Linux network stack to behave in isolated
groups.

• IPC namespace:allows processes to have separated IPC.

• UTS namespace: allows a single system to appear to have different host
and domain names for different processes.

• User namespace: related to user privileges.

• Control group namespace: hides the identity of the cgroup of which process
is a member.

• Time namespace: allows processes to see different system times.

4.2 Linux Network Stack
4.2.1 NetFiltert
The Netfilter framework within the Linux kernel is the basic building block on
which packet selection systems like Iptables or the newer Nftables are built upon.
It provides a bunch of hooks inside the Linux kernel, which are being traversed
by network packets as those flow through the kernel (see figure 4.1). Other kernel
components can register callback functions with those hooks, which enables them
to examine the packets and make decisions on whether packets shall be dropped,
accepted, or modified.

Figure 4.1: Netfilter stack overview

A network packet received on a network device first traverses the Prerouting
hook. Then the routing decision happens and thereby the kernel determines whether

31

Advanced Networking Concepts

this packet is destined at a local process (e.g. socket of a server listening on the
system) or whether the packet shall be forwarded (in that case the system works
as a router). In the first case, the packet then traverses the Input hook and is then
given to the local process. In the second case, the packet traverses the Forward
hook and finally the Postrouting hook, before being sent out on a network device.
A packet that has been generated by a local process (e.g. a client or server software
that likes to send something out on the network), first traverses the Output hook
and then also the Postrouting hook, before it is sent out on a network device.

4.2.2 Iptables
iptables is a user-space utility program that allows a system administrator to
configure the IP packet filter rules of the Linux kernel firewall. Iptables organizes
its rules into tables and chains, whereas tables for the most part merely are a
means to group chains together, which have something in common. E.g. chains
that are used for nat belong to the nat table. The actual rules reside inside the
chains. Iptables registers its chains with the Netfilter hooks by registering its hook
functions as described above. This means when a network packet traverses a hook
(e.g. Prerouting), then this packet traverses the chains which are registered with
this hook and thereby traverses their rules.

In the case of Iptables all that is already pre-defined. A fixed set of tables exists,
each table containing a fixed set of chains. The chains are named like the Netfilter
hooks with which they are registered.

Table Contains chains

filter INPUT,FORWARD,OUTPUT

nat PREROUTING, (INPUT), OUTPUT, POSTROUTING

mangle PREROUTING, INPUT, FORWARD, OUTPUT, POSTROUTING

raw PREROUTING, OUTPUT

The sequence in which the chains are being traversed when a packet traverses
the hook (their priority) is also already fixed. The Netfilter packet flow image (4.1)
shows this sequence in detail.

4.3 VPN - Wireguard
Wireguard is a communication protocol and free and open-source software that
implements encrypted virtual private networks (VPN). In March 2020, the Linux
version of the software reached a stable production release and was incorporated

32

Advanced Networking Concepts

into the Linux 5.6 kernel. Wireguard is extremely simple yet fast and utilizes
state-of-the-art cryptography. It aims to be faster, simpler, leaner, and more useful
than IPsec. It intends to be considerably more performant than OpenVPN.

To create a wireguard connection between two hosts the first step is to create a
wireguard network interface on each host. This interface has public and private
keys, used to encrypt the communication between the hosts. An important detail
about wireguard interfaces, which will be fundamental in the next chapter, is that
a wireguard interface can support more peers. So if a host has to connect to
other two different hosts, there are two possible solutions. The first is to create
a dedicated interface for each remote host, the second is to use just one interface
and create two different peers for the remote hosts inside the same interface.

Liqo and liqo-gateway have been designed to support more VPN drivers. At
the moment the only implementation available is for the wireguard’s driver. It is
important to clarify this aspect because (as will be explained in chapter 6) parts of
the thesis focused on the implementation of new features inside the VPN drivers.
That’s why this explanation about how wireguard works is necessary, even if Liqo
supports different VPN drivers (see section 3.6.5).

33

Advanced Networking Concepts

Figure 4.2: Netfilter stack details overview

34

Chapter 5

Cross-Cluster Network
Design

Possible network designs to allows inter-cluster communication has been studied
and evaluated. This chapter presents in detail the two main architectures designs
proposed and their implementations.

5.1 The Problem
When two clusters are peered they need some unique IPs to allow pods to commu-
nicate. However, two clusters could have the same PodCIDR and the used IPs can
be replicated. This problem could be solved by setting up a different PodCIDR
for each cluster. This can work but introduces a strong constraint that would be
better to avoid. Another possible solution is to rely on a remapping mechanism.

5.1.1 Remapping
The idea of remapping is to have a component, between two clusters, that converts
a repeated IP to a valid one. For example, if two clusters have the same PodCIDR
(eg. 10.0.0.0/16) could be a problem. Indeed if a pod with IP 10.0.0.5 is present in
both clusters communication between the two pods will be impossible, because the
two entities have the same address. To solve this problem is necessary to associate
another IP with the original one. For example in figure 5.1 cluster1 is able to
send a packet to cluster2’s pod, even if Pod1 and Pod2 have the same IP. That’s
possible because cluster1 autonomously associated another IP to Pod2, which is
20.0.0.5. Cluster 1 is able to send packets to 20.0.0.5 and this packet will be
translated into a correct one, which can be received by cluster2. This process is
called Remapping.

35

Cross-Cluster Network Design

So if the Pod1 inside the Cluster1 needs to communicate with Pod2 in
Cluster2, Cluster1 can identify all the pods inside Cluster2 with a remapped
IP. When the IP packets will be sent to Pod2 the destination and source IP will
be translated with the corresponding remapped IP.

Sent Packet
Dst: 10.0.0.5
Src: 20.0.0.5

REMAP

Cluster 2
PodCIDR
10.0.0.0/16

Remap Cluster1
PodICIDR
20.0.0.0/16

Pod 2
IP: 10.0.0.5

Sent Packet
Dst: 20.0.0.5
Src: 10.0.0.5

Cluster 1
PodCIDR
10.0.0.0/16

Remap Cluster2
PodICIDR
20.0.0.0/16

Pod 1
IP: 10.0.0.5

Figure 5.1: Remapping between 2 clusters with same PodCIDR

5.1.2 Exchanged information
A critical part to allow remapping are the exchanged information required to
implement this mechanism. This will be a fundamental part to identify and evaluate
the best design. The exchanged information, which could be useful to remap an
IP is the locally used PodCIDR and how another cluster’s PodCIDR has been
remapped.

5.2 Architecture
This section presents in detail the two developed architectures. All the presented
examples consider only 2 clusters for simplicity, but all the explained concepts
can be applied to a more complex topology like the one in figure 5.2. Each design
is based on natting (see section 4.2) and the focus will be on how to use this
technology to get the best remapping mechanism.

5.2.1 Problem Area
The developed designs will be about the cross-cluster area of the Liqo network
(see figure 5.2). The main component is the gateway, which acts as a funnel for all
the network traffic directed to another peered cluster. Each gateway redirects the

36

Cross-Cluster Network Design

packets toward the correct cluster. The connections between gateways are called
peers, each connection between two clusters has its own peer and each peer is
independent from the others. They can be created and destroyed without affecting
the connectivity towards other clusters. This is one of the fundamental concepts
which stands behind the creation and deletion of peerings.

Gateway

Pod 1

Pod 2

Pod 3

Cluster 1

Gateway

Pod 1

Pod 2

Pod 3

Cluster 2

Gateway

Pod 1 Pod 2 Pod 3

Cluster 3

cross-cluster area

Figure 5.2: Liqo network cross-cluster area in a 3 clusters setup

5.2.2 Design SD
the name comes from the order in which the NAT rules are applied. To explain
this design, will rely on the topology in figure 5.3. On the left, there is a cluster
called cluster 1 and on the right another one called cluster 2. Cluster 1 uses
as PodCIDR the range 40.0.0.0/16 and remap the cluster 2’s PodCIDR with
30.0.0.0/16. Cluster 2 presents the same PodCIDR (40.0.0.0/16) in order to
have two overlapped IPs ranges, but it remaps the cluster 1’s PodCIDR with
20.0.0.0/16. Of course, would be possible to use the same CIDR to remap each
cluster, but two different CIDRs help to explain the scenario.

37

Cross-Cluster Network Design

The presented images, show the path of a PING packet, going from a cluster1
pod to a cluster 2’s pod having the same IP (40.0.0.1). The steps to make this
possible are listed below:

1. Cluster 1 - Redirect remapped IP towards the gateway: This routing
rule is used to allow packets with a remapped destination to reach the gateway.
In the example, it redirects packets with 30.0.0.1 as destination IP to the
gateway. If more than one pod with remapped IP has to be reached, all
routing rules can be aggregated.

2. Cluster 1 - SNAT: This nat rule converts the source IP of each packet
directed to cluster 2. The purpose of this conversion is to let cluster 2
recognize these packets as incoming from cluster 1. Indeed, in the example,
cluster 2 has remapped cluster 1 with 20.0.0.0/16 and the SNAT rule
is converting all packets for cluster 2 with a source IP which is part of
20.0.0.0/16.

3. Cluster 2 - DNAT: this nat rule converts the destination IP of each packet
incoming from cluster 1. When the pod inside cluster 1 tries to contact the
pod inside cluster 2, the first one needs to use as destination IP a remapped IP
(in this case 30.0.0.1). So when the packets reaches cluster 2, the remapped
destination IP has no meaning anymore, and it has to be changed with a valid
IP for cluster 2. So this nat rule converts 30.0.0.1 in 40.0.0.1, which is the
real destination pod IP.

4. Cluster 2 - Redirect remapped IP towards the gateway: This routing
rule is similar to the first one. Indeed when the pod in cluster 2, has to
answer to the sender, will generate a packet using as destination IP the one
cluster 2 used to remap cluster 1’s pod. So in the example cluster 2’s pod
sends a packet using 20.0.0.1 as destination and the routing rule redirects
this packet to the gateway.

Answer packets do not need any additional rules to reach cluster 1. Indeed the
nat rules chain can be covered in reverse. However, this works only in the direction
shown in figure 5.3, if the pod in cluster 2 wants to send a packet (which is not an
answer) to the one in cluster 1, the same rules must be applied in the reverse order.

Exchanged information

In order to apply those rules, each cluster needs information about the other cluster.
To create SNAT rules a cluster needs to know how it has been remapped by the
peered clusters. Without this information is not possible to change the packets’
source IPs to make them recognizable from the remote cluster.

38

Cross-Cluster Network Design

VPN-GW

wg-1to2

10.0.0.1/24

VPNgw1-eth

40.0.0.2/30

pod1-eth

40.0.0.1/30

SNAT

ip src

from 40.0.0.1

to 20.0.0.1

gw2-eth

40.0.0.2/30

pod2-eth

40.0.0.1/24

VPN-GW

wg-2to1

10.0.0.2/24

ROUTE

30.0.0.1 via

40.0.0.2

DNAT

ip dst

from 30.0.0.1

to 40.0.0.1

Pod 1 Gateway 1 Gateway 2 Pod 2

Ping 30.0.0.1

ROUTE

20.0.0.1 via

40.0.0.2

Cluster 1 Cluster 2

Figure 5.3: Design SD architecture

5.2.3 Design DS
The name comes from the order in which the NAT rules are applied. To explain
this design the topology in figure 5.4 will be used. The configuration is the same
used for the design SD (see figure 5.3).

The presented image shows the path of a PING packet, going from a cluster1
pod to a cluster 2’s pod having the same IP (40.0.0.1). The steps to make this
possible are listed below:

1. Cluster 1 - Redirect remapped IP towards the gateway: This routing
rule is used to allow packets with a remapped destination to reach the gateway.
In the example, it redirects packets with 30.0.0.1 as destination IP to the
gateway.

2. Cluster 2 - DNAT: this nat rule converts the destination IP of each packet
going to cluster 2. When the pod inside cluster 1 tries to contact the pod
inside cluster 2, a remapped IP (in this case 30.0.0.1) is used as destination
IP. Differently from design SD (see figure 5.3) where the DNAT rule is applied
in the destination cluster, here the operation is performed before, in cluster
1. In design SD is necessary to postpone DNAT rule because the destination
remapped IP is used in the origin cluster to redirect a packet toward the
correct remote cluster. Indeed. Design SD when the packet is redirected, it
still has as destination IP the remapped IP. The information about how a
packet has been remapped can be used to understand what is the destination
cluster. In Design DS this information is not available because the DNAT
converts the remapped destination IP before it can be used to select the
destination cluster. So in design SD gateway can not redirect a packet to
the correct cluster, this is a problem and will be discussed in the next section
(see section 5.3) where it will be analyzed and solved. So when the packets
reach cluster 1’s gateway, the remapped destination can be overwritten, and

39

Cross-Cluster Network Design

it can be converted with an IP that is valid inside cluster 2. So this nat rule
converts 30.0.0.1 in 40.0.0.1, which is the real destination pod IP.

3. Cluster 2 - SNAT: This nat rule converts the source IP of each packet
directed to cluster 2. The purpose of this conversion is to let cluster 2
recognize these packets as incoming from cluster 1. Indeed, in the example,
cluster 2 has remapped cluster 1 with 20.0.0.0/16 and the SNAT rule
is converting all packets for cluster 2 with a source IP which is part of
20.0.0.0/16.

4. Cluster 2 - Redirect remapped IP towards the gateway: This routing
rule is similar to the first one. Indeed when the pod in cluster 2, has to
answer to the sender, will generate a packet using as destination IP the one
cluster 2 used to remap cluster 1’s pod. So in the example cluster 2’s
pod sends packets using 20.0.0.1 as destination and the routing rule redirects
these packets to the gateway.

Answer packets do not need any additional rules to reach cluster 1. Indeed the
nat rules chain can be covered in reverse. However, this works only in the direction
shown in figure 5.4, if the pod in cluster 2 wants to send a packet (which is not an
answer) to the one in cluster 1, the same rules must be applied in the reverse order.

Exchanged information

Differently from design SD where each cluster needs to know how it has been
remapped from the other one, in design DS this information is not necessary
anymore. Anyway, each cluster needs to know which PodCIDR is used inside the
peered clusters to apply the DNAT rule. Indeed when the remapped destination
IP of a packet has to be converted, the origin cluster needs to know what are the
valid IPs in the destination cluster.

VPN-GW

wg-1to2

10.0.0.1/24

VPNgw1-eth

40.0.0.2/30

pod1-eth

40.0.0.1/30

DNAT

ip dst

from 30.0.0.1

to 40.0.0.1

gw2-eth

40.0.0.2/30

pod2-eth

40.0.0.1/24

VPN-GW

wg-2to1

10.0.0.2/24

ROUTE

30.0.0.1 via

40.0.0.2

SNAT

ip src

from 40.0.0.1

to 20.0.0.1

Pod 1 Gateway 1 Gateway 2 Pod 2

Ping 30.0.0.1

ROUTE

20.0.0.1 via

40.0.0.2

Cluster 1 Cluster 2

Figure 5.4: Design DS architecture

40

Cross-Cluster Network Design

5.2.4 Comparison
At first glance, it may seem that the two designs are the same in terms of exchanged
information. Design SD needs to exchange remapped PodCIDR, while in design
DS each cluster needs to know what are the real PodCIDRs in each cluster.
Anyway, the second design is better and this is linked to detail about how Liqo
works. Indeed Liqo needs to exchange the NetworkConfig resources (see section
3.5) which include information about PodCIDRs and remapped PodCIDRs.
While remapped PodCIDRs are only used to setup nat rules, PodCIDRs are
also used by other Liqo components. So the second design is the best because
allows reducing the exchanged information, removing the remapped PodCIDRs
from NetworkConfig resources.

5.3 Implementation
As explained in section 5.2.4, the design DS is the best one, thus it was the only
one being considered for implementation. This section explains how the chosen
design has been tested with a proof of concept, what choices have been made to
implement it, and how problems have been solved.

5.3.1 Liqo NetNS
The implementation of the gateway is based on linux network namespaces
(see section 4.1) and it is contained in the liqo-gateway component, which is a
pod running in the Liqo namespace.

Usually, when a pod is instantiated, Kubernetes create a dedicated network
namespace for that pod. However, Kubernetes allows using the host network
namespace if specified in the pod resource. In Liqo this is useful, because allows
applying the routing rules used to connect the vxlan (internal network part of
Liqo), with the cross-cluster part of Liqo network, but it also creates a problem.
The cross-cluster part of Liqo requires applying a set of iptables rules for
every peer, which cannot be aggregated. In order to avoid the insertion of many
iptables rules inside the host network namespace, the liqo-gateway component
creates a dedicated network namespace. So the liqo-gateway component is a
pod using the host network namespace, which creates autonomously another
network-namespace, used to apply the nat rules (see figure 5.5).

5.3.2 Gateway redirection
In section 5.2.3 has been introduced a problem related to the design. After the
packets are modified by the DNAT rule is not possible anymore to understand

41

Cross-Cluster Network Design

VXLAN

Liqo Gateway

Liqo NetNSHost NetNS

Routing
rules

IpTables
rules

VPN
interface

Figure 5.5: Liqo Gateway overview

what is the destination cluster. The information about how a packet has been
remapped can be used to understand what is the destination cluster, but in Design
DS this information is not available because the DNAT converts the remapped
destination IP before it can be used to select the destination cluster. To solve this
issue two alternatives have been found,

Multiple NetNS

The simplest solution is to have more than just one Liqo NetNS (see figure 5.6),
in this way becomes easy to redirect the traffic. Indeed every Liqo NetNS has to
redirect every packet coming from the vxlan to the VPN interface and vice versa.
All the responsibilities about redirection towards the correct peered cluster become
the responsibility of the routing rules inside the host network namespace.

Single NetNS

Another solution is to have a single network namespace with multiple VPN
interfaces inside (see figure 5.7). In this case, the redirection towards a peered
cluster is delegated to the Liqo NetNS, but the problem described in figure 5.4
persists. When a packet enters inside a Liqo NetNS, the first operation performed
is a DNAT which overwrites the destination IP, so there is no possibility to redirect
a packet. The solution to this problem is the mark rule. It is an iptables rule
inserted inside the mangle table, which adds a label with a unique identifier to
the packet. This identifier can be used to select the correct VPN interface used
to reach the peered cluster. Given that mark rules can be placed in prerouting
and mangle table has priority over nat table, it is possible to use the destination
IP to mark a packet before the destination IP changes.

42

Cross-Cluster Network Design

VPN-GW

c1-gw1-wg

10.0.0.1/30

ROUTE

from c1-gw1-eth

to c1-gw1-wg

-

from c1-gw1-wg

to c1-gw1-eth

c1-gw1-eth

169.254.0.2/30

DNAT

ip dst

from 30.1.0.0/16

to 20.0.0.0/16

SNAT

ip src

from 20.0.0.0/16

to 30.1.0.0/16

Gateway 1

VPN-GW

c1-gw2-wg

10.0.0.1/30

ROUTE

from c1-gw2-eth

to c1-gw2-wg

-

from c1-gw2-wg

to c1-gw2-eth

c1-gw2-eth

169.254.0.2/30

DNAT

ip dst

from 30.2.0.0/16

to 20.0.0.0/16

SNAT

ip src

from 20.0.0.0/16

to 30.2.0.0/16

Gateway 2

ROUTE

30.1.0.0/16

via c1-h1-eth

30.2.0.0/16

via c1-h2-eth

Host

c1-h1-eth

169.254.0.1/30

c1-h2-eth

169.254.0.1/30

c1-h-pod

20.0.0.2/16

Cluster 1

Figure 5.6: Implementation with multiple network namespaces

VPN-GW

c1-gw1-wg

10.0.0.1/30

ROUTE

from c1-gw-eth

marked 1

to c1-gw1-wg

-

from c1-gw1-wg

to c1-gw-eth

c1-gw-eth

169.254.0.2/30

DNAT

ip dst

from 30.1.0.0/16

to 20.0.0.0/16

SNAT

ip src

from 20.0.0.0/16

to 30.1.0.0/16

Gateway

VPN-GW

c1-gw2-wg

10.0.0.1/30

ROUTE

from c1-gw-eth

marked 2

to c1-gw2-wg

-

from c1-gw2-wg

to c1-gw-eth

DNAT

ip dst

from 30.2.0.0/16

to 20.0.0.0/16

SNAT

ip src

from 20.0.0.0/16

to 30.2.0.0/16

ROUTE

30.1.0.0/16

via c1-h-eth

30.2.0.0/16

via c1-h-eth

Host

c1-h-eth

169.254.0.1/30

c1-h-pod

20.0.0.2/16

Cluster 1

MARK

ip dst 30.1.0.0/16

set mark 1

MARK

ip dst 30.2.0.0/16

set mark 2

Figure 5.7: Implementation with a single network namespace

43

Cross-Cluster Network Design

Comparison

Each solution takes advantages and disadvantages.

• Single network namespace

– Advantages: Inside the host network namespace there is only one addi-
tional network namespace, it can be an advantage because it scales better
and does noxt require to modify too much the host network namespace

– Disadvantages: Every packet has to be ”marked”, this is an additional
operation that is not needed in the other solution.

• Multiple network namespace

– Advantages: Simplicity of the gateway, inside the Liqo NetNS, is performed
only natting operations and the redirection is simpler than in the other
solution.

– Disadvantages: it does not scale well. Every peer needs a dedicated
network namespace.

5.3.3 VPN interfaces
It is important to note another detail about these implementations.
In the first one (multiple namespaces), every namespace has its own VPN interface
and this is mandatory. Also in the second implementation (single namespace) are
present more interfaces, but it is just a way to simplify the design. It is possible
another approach with a single VPN (see figure 5.8) where traffic is redirected. Of
course, it is not a possible approach with all VPN technologies, but with wireguard
(see section 4.3) is possible. So the second implementation makes the design more
elastic and extensible.

Link local IP

Inside the gateway network namespace, a link local IP has been added to all
interfaces. It is not mandatory but takes some advantages:

• It solves problems with ARP protocol, avoiding proxy-arp which caused the
propagation of ARP messages through VPN tunnels.

• Gives the possibility to ping the other peered VPN interfaces. It helps with
debugging and allows to perform a periodic check on clusters connection (see
chapter 6)

44

Cross-Cluster Network Design

ROUTE

from c1-gw-eth

marked 1

to c1-gw1-wg

-

from c1-gw1-wg

to c1-gw-eth

c1-gw-eth

169.254.0.2/30

DNAT

ip dst

from 30.1.0.0/16

to 20.0.0.0/16

SNAT

ip src

from 20.0.0.0/16

to 30.1.0.0/16

Gateway

VPN-GW

c1-gw2-wg

10.0.0.1/30
ROUTE

from c1-gw-eth

marked 2

to c1-gw2-wg

-

from c1-gw2-wg

to c1-gw-eth

DNAT

ip dst

from 30.2.0.0/16

to 20.0.0.0/16

SNAT

ip src

from 20.0.0.0/16

to 30.2.0.0/16

ROUTE

30.1.0.0/16

via c1-h-eth

30.2.0.0/16

via c1-h-eth

Host

c1-h-eth

169.254.0.1/30

c1-h-pod

20.0.0.2/16

Cluster 1

MARK

ip dst 30.1.0.0/16

set mark 1

MARK

ip dst 30.2.0.0/16

set mark 2

Figure 5.8: Implementation with a single Liqo Gateway and a single VPN interface

5.3.4 Conntrack
In Liqo, NAT rules are applied by the Network Manager (see chapter 3), which
contains a dedicated controller. When two clusters peer all the nat rules have to be
applied, but the controllers in each cluster are not synchronized so there is not a
deterministic order. If a cluster tries to contact a peered one and the initialization
phase has not ended yet, the received packets are automatically redirected to the
vxlan. This redirection is not a problem, indeed when wrong packets reach the
vxlan they are not accepted from any pod and they get lost. However when this
redirection happens, netfilter setup a conntrack entry. After that, when all nat
rules are applied, the conntrack makes it impossible for a packet to enter the nat
chain. The only way to solve this issue is to delete the active conntracks, but it
was not possible to implement this feature inside the code. So the best solution is
to avoid the creation of this conntrack. A DROP iptables rule has been added in
the filter table, which discards all the traffic not directed to the vxlan.

5.4 Conclusion
The described implementations work and both turned out to be a success. They
allow reducing the exchange of information between clusters. As described in
section 5.3.2 each implementation has its own advantages and disadvantages. They

45

Cross-Cluster Network Design

both are considered valid solutions but the best is considered the one based on a
single namespace because scalability would be the best for the future of Liqo.
A deeper evaluation of this chapter is contained in section 7.2, where have been
discussed the integration and development of this implementation.

46

Chapter 6

Cross-Cluster Observability
Design

This chapter explaines how cross-cluster network observability has been designed
and implemented. Observability means being able to get information about the
status of an entity or a process in real-time, to react in case of necessity. The
reasons why the cross-cluster network observability can be considered useful
are several and related to specific use cases, but they can be summarized in 2
categories:

• Performance monitoring: Getting information about clusters connections
performance can be useful to evaluate how Liqo is behaving in a specific
environment. For example, it helps to understand how much bandwidth
offloaded applications are using in the communication between clusters, and
to check that the obtained values respect the expected ones. If these values
are not correct it may be a signal of some infrastructure or settings problems.

• Fault detection: Introducing a mechanism that gives information about the
health of a connection, allowing monitoring systems (like Prometheus and
Grafana) to send notifications in case of disruption.

6.1 The Problem
To monitor a system, metrics are fundamental. They are the data used to get
information about the system’s behavior. So the problems analyzed in this chapter
will be related to these metrics. Two main problems can be found:

• Get metrics: what metrics can be used and how can be retrieved or created.

• Expose metrics: a way to expose metrics and to show the obtained results.

47

Cross-Cluster Observability Design

Metrics

Two types of metrics have been used. The first one is Wireguard metrics about
each peer traffic:

• Total received bytes: the amount of data received by the VPN interface

• Total sent bytes: the amount of data transmitted by the VPN interface

These metrics are offered by wireguard Linux interface and have been exposed as
they are. The second metrics type is the Custom metrics, which are generated by
the liqo-gateway and will be discussed in this chapter. These metrics are:

• The connection status: if two peered clusters are able to cummunicate.

• The latency in communication: the round trip time between two peered
clusters.

6.2 Overview
The purpose of the system that will be explained is to generate and update metrics
related to connectivity and latency. The first one is a boolean value, it says if
connectivity is working for a peer or not. The second one is a value indicating
the Round Trip Time of packets transmission for a peer.

These metrics can be obtained using a ping mechanism. A cluster (having the
client role) can send a ping packet and another cluster (with server role) can send
a pong as answer. Using this mechanism is possible to check if there is connectiv-
ity between two clusters and calculate the latency in communications between them.

In liqo-gateway have been added two components (see figure 6.1):

• Sender: there is one for each peer. Its duty is to send ping packets to
the other cluster. It doesn’t receive answers from a peered cluster (this is a
receiver task).

• Receiver: it is unique for each liqo-gateway. It can receive both ping or
pong packets. If a ping is received it sends a pong to the peered cluster. If
the received message is a pong it does not answer and calculates the metrics
using the data transported by the packet (this data will be studied in depth
in section 6.2.2).

Now that the main components have been introduced, is possible to explain the
flow used by liqo-gateways to calculate the metrics. In this example, it is assumed
to have two clusters peered with each other, called Cluster1 and Cluster2. The
steps performed are:

48

Cross-Cluster Observability Design

1. Cluster1’s sender sends a ping message to the Cluster2’s receiver.

2. Cluster2’s receiver receives the ping message and recognizes it is a ping.

3. Cluster2’s receiver sends a pong message to Cluster1’s receiver.

4. Cluster1’s receiver receives a pong and recognizes it as a Cluster2’s pong.

5. Cluster1’s receiver use the last received pong from Cluster2 to generate
metrics.

As explained in this process the sender never receives an answer and delegates
it to the receiver. It does not act as a client which canonically sends and receives
messages. This mechanism can sound strange and too complicated, but some
technical motivations will be discussed in the sections about implementation (see
section 5.3). Other details will be explained in the next sections: what data are
transported by messages and how metrics are calculated in detail.

SENDER TO
CLUSTER 2

PING

SENDER TO
CLUSTER 1

CLUSTER 1 CLUSTER 2

RECEIVER

PONG

PONG

RECEIVER

GATEWAY GATEWAY

PING

Figure 6.1: Connection checker overview

6.2.1 Implementation
The implementation is based on a UDP ping. To perform measures using UDP
packets a protocol has been designed. UDP has been chosen instead of TCP

49

Cross-Cluster Observability Design

to avoid TCP transmissions controls which would add a non-negligible error to
the performed measures. Indeed, TCP guarantees that a packet is received and in
case it is not delivered retransmits it. This mechanism is made by several steps
which take time and increase the measured latency.

Protocol

The protocol is based on three information transported by packets. These are the
data contained and their roles

• Message type: it can be ping or pong. It is used to understand if a packet
is an answer to a previous request.

• ClusterID: it is a unique identifier for each cluster. It has a double function
in case of ping or pong packets. If it is a ping it means that the destination
of the packet is the cluster with the reported clusterID. Otherwise if it is a
pong packet it means that it is an answer from that cluster.

• Timestamp: It is the timestamp generated when the ping packet has been
generated. It is used to evaluate the latency.

6.2.2 ConnChecker
The implementation has been called ConnChecker. It is contained in a GoLang
package called conncheck. It is a data structure containing the receiver and a
map of senders (see code 6.1). It provides some methods to manage the object,
listed down below.

Listing 6.1: ConnChecker data structure
1 // ConnChecker i s a s t r u c t that ho lds the r e c e i v e r and sender s .
2 type ConnChecker s t r u c t {
3 r e c e i v e r ∗ Rece iver
4 // key i s the t a r g e t c l u s t e r ID .
5 s ender s map [s t r i n g] ∗ Sender
6 sm sync .RWMutex
7 conn ∗ net .UDPConn
8 }

NewConnChecker

It is a function used to create a new ConnChecker (see code 6.2.2). It returns a
new object which can be used to start the sender and receivers.

50

Cross-Cluster Observability Design

1 // NewConnChecker c r e a t e s a new ConnChecker .
2 func NewConnChecker () (∗ ConnChecker , e r r o r) {
3 addr := &net .UDPAddr{
4 Port : port ,
5 IP : net . ParseIP (" 0 . 0 . 0 . 0 ") ,
6 }
7 conn , e r r := net . ListenUDP (" udp " , addr)
8 i f e r r != n i l {
9 re turn n i l , fmt . Er ro r f (" f a i l e d to l i s t e n on UDP socket %s : %

w" , addr , e r r)
10 }
11 klog .V(4) . I n f o f (" conncheck socket : l i s t e n i n g on %s " , addr)
12 connChecker := ConnChecker{
13 r e c e i v e r : NewReceiver (conn) ,
14 s ender s : make(map [s t r i n g] ∗ Sender) ,
15 conn : conn ,
16 }
17 re turn &connChecker , n i l
18 }

RunReceiver

It is used to run the Receiver, The Receiver implementation will be discussed in
the next sections. It is executed using a go routine, which allows running it in
parallel.

RunReceiverDisconnectObserver

It runs the Disconnect Observer which will be discussed in section 6.3.4. It is
executed using a go routine, which allows running it in parallel.

1 // RunReceiverDisconnectObserver runs the r e c e i v e r d i s connec t
obse rve r .

2 func (c ∗ConnChecker) RunReceiverDisconnectObserver () {
3 c . r e c e i v e r . RunDisconnectObserver ()
4 }

AddAndRunSender

It creates a new sender for the specified remote cluster, adds it to the map inside
the data structure, and runs it. It is executed using a go routine, which allows
running it in parallel.

51

Cross-Cluster Observability Design

1 // AddAndRunSender c r e a t e a new sender and runs i t .
2 func (c ∗ConnChecker) AddAndRunSender (c lus te r ID , ip s t r i ng ,

updateCal lback UpdateFunc) {
3 c . sm . Lock ()
4 i f _, ok := c . s ender s [c l u s t e r ID] ; ok {
5 c . sm . Unlock ()
6 klog . I n f o f (" sender %s a l ready e x i s t s " , c l u s t e r ID)
7 re turn
8 }
9

10 ctxSender , cance lSender := context . WithCancel (context . Background
())

11 c . s ender s [c l u s t e r ID] = NewSender (ctxSender , c lus te r ID ,
cance lSender , c . conn , ip)

12

13 e r r := c . r e c e i v e r . I n i tPe e r (c lus te r ID , updateCal lback)
14 i f e r r != n i l {
15 c . sm . Unlock ()
16 klog . Er ro r f (" f a i l e d to add r e d i r e c t chan : %w" , e r r)
17 }
18

19 klog . I n f o f (" conncheck sender %s s t a r t i n g " , c l u s t e r ID)
20 pingCal lback := func (ctx context . Context) (done bool , e r r e r r o r)

{
21 e r r = c . s ender s [c l u s t e r ID] . SendPing (ctx)
22 i f e r r != n i l {
23 klog . Warningf (" f a i l e d to send ping : %s " , e r r)
24 }
25 re turn f a l s e , n i l
26 }
27 c . sm . Unlock ()
28

29 // Ignore e r r o r s because only caused by context c a n c e l l a t i o n .
30 _ = wait . Pol l ImmediateInf in i teWithContext (ctxSender , P ingInterva l

, p ingCal lback)
31

32 klog . I n f o f (" conncheck sender %s stopped " , c l u s t e r ID)
33 }

DelAndStopSender

It stops a sender related to a remote cluster and removes it from the map contained
in the data structure.

52

Cross-Cluster Observability Design

1 // DelAndStopSender s tops and d e l e t e s a sender . I f sender has been
a l ready stoped and de l e t ed i s a no−op func t i on .

2 func (c ∗ConnChecker) DelAndStopSender (c l u s t e r ID s t r i n g) {
3 c . sm . Lock ()
4 d e f e r c . sm . Unlock ()
5

6 c . r e c e i v e r .m. Lock ()
7 d e f e r c . r e c e i v e r .m. Unlock ()
8

9 i f _, ok := c . s ender s [c l u s t e r ID] ; ok {
10 c . s ender s [c l u s t e r ID] . cance l ()
11 d e l e t e (c . senders , c l u s t e r ID)
12 }
13 d e l e t e (c . r e c e i v e r . peers , c l u s t e r ID)
14 }

GetLatency

It allows retrieving the last measured latency related to a remote cluster.

1 // GetLatency r e tu rn s the l a t ency with c lu s t e r ID .
2 func (c ∗ConnChecker) GetLatency (c l u s t e r ID s t r i n g) (time . Duration ,

e r r o r) {
3 c . r e c e i v e r .m. RLock ()
4 d e f e r c . r e c e i v e r .m. RUnlock ()
5 i f peer , ok := c . r e c e i v e r . pee r s [c l u s t e r ID] ; ok {
6 re turn peer . latency , n i l
7 }
8 re turn 0 , fmt . Er ro r f (" sender %s not found " , c l u s t e r ID)
9 }

GetConnected

It allows getting a boolean indicating if the connection between the local cluster
and the specified remote cluster is working.

1 // GetConnected r e tu rn s the connect ion s t a tu s with c lu s t e r ID .
2 func (c ∗ConnChecker) GetConnected (c l u s t e r ID s t r i n g) (bool , e r r o r) {
3 c . r e c e i v e r .m. RLock ()
4 d e f e r c . r e c e i v e r .m. RUnlock ()
5 i f peer , ok := c . r e c e i v e r . pee r s [c l u s t e r ID] ; ok {
6 re turn peer . connected , n i l
7 }
8 re turn f a l s e , fmt . Er ro r f (" sender %s not found " , c l u s t e r ID)

53

Cross-Cluster Observability Design

9 }

6.3 Messages
Exchanged messages are defined like a GoLang data structure called Msg (see
code 6.3). It contains:

• ClusterID: which is the remote cluster clusterID, an identifier for each
cluster.

• MsgType: it is used to distinguish ping messages (sent by senders) and
pong messages (sent by receivers).

• TimeStamp: it contains the timestamp generated from the sender when the
ping packet is sent.

Msg data structure contains some annotations which allow to marshal and
unmarshal the Msg objects.

1 // Msg r e p r e s e n t s a message sent between two nodes .
2 type Msg s t r u c t {
3 ClusterID s t r i n g ‘ j son : " c l u s t e r ID " ‘
4 MsgType MsgTypes ‘ j son : " msgType " ‘
5 TimeStamp time . Time ‘ j son : " timeStamp " ‘
6 }
7

8 // MsgTypes r e p r e s e n t s the type o f a message .
9 type MsgTypes s t r i n g

10

11 const (
12 // PING i s the type o f a ping message .
13 PING MsgTypes = "PING"
14 // PONG i s the type o f a pong message .
15 PONG MsgTypes = "PONG"
16)

6.3.1 Sender
ConnCheckers contains a Sender for each peered remote cluster. Each sender
contains:

• clusterID: the clusterID of the remote cluster, target of the ping messages.

• raddr: the IP address of the remote cluster, the target of the ping messages.

54

Cross-Cluster Observability Design

• cancel: a callback used to stop the sender before it is removed.

• conn: a variable representing the socket used to send messages.

The sender can be created and run using the AddAndRunSender method (see
section 6.2.2).

Listing 6.2: Sender data structure
1 // Sender i s a sender f o r the conncheck s e r v e r .
2 type Sender s t r u c t {
3 c l u s t e r ID s t r i n g
4 cance l func ()
5 conn ∗ net .UDPConn
6 raddr net .UDPAddr
7 }

NewSender

It is the function used to create and initialize a new sender for a remote cluster
(see code 6.3). It is important to notice that this function does not initialize a
new socket when it is called, but receives a pointer to an already existing socket
(parameter conn). This means that each sender uses the same socket, which is the
same one used by the local receiver. The advantages of this approach are explained
in section 6.3.2

Listing 6.3: NewSender function
1 // NewSender c r e a t e s a new conncheck sender .
2 func NewSender (ctx context . Context , c l u s t e r ID s t r i ng , cance l func () ,

conn ∗ net .UDPConn, ip s t r i n g) ∗ Sender {
3 re turn &Sender {
4 c l u s t e r ID : c lus te r ID ,
5 cance l : cance l ,
6 conn : conn ,
7 raddr : net .UDPAddr{IP : net . ParseIP (ip) , Port : port } ,
8 }
9 }

SendPing

It is the method used by Sender objects to send ping messages (see code 6.4) in
loop for each PingInterval. It generates the message and sends it using the
UDP socket.

Listing 6.4: Sender’s PingInterval method

55

Cross-Cluster Observability Design

1 // SendPing sends a PING message to the g iven address .
2 func (s ∗ Sender) SendPing (ctx context . Context) e r r o r {
3 msgOut := Msg{ ClusterID : s . c lus te r ID , MsgType : PING, TimeStamp :

time .Now() }
4 b , e r r := j son . Marshal (msgOut)
5 i f e r r != n i l {
6 re turn fmt . Er ro r f (" conncheck sender : f a i l e d to marshal msg : %

w" , e r r)
7 }
8 _, e r r = s . conn . WriteToUDP(b , &s . raddr)
9 i f e r r != n i l {

10 re turn fmt . Er ro r f (" conncheck sender : f a i l e d to wr i t e to %s : %
w" , s . raddr . S t r ing () , e r r)

11 }
12 klog .V(8) . I n f o f (" conncheck sender : sent a PING −> %s " , msgOut)
13 re turn n i l
14 }

6.3.2 Receiver
Every ConnChecker contains only one receiver. The Receiver is a GoLang data
structure (see code 6.5). It contains a map called peers, the keys are the remote
clusters’ clusterIDs and the values are Peer objects. Peer is a data structure
containing the last evaluated metrics and other information about a remote cluster.
It contains:

• connected: metric about the connectivity status of a peer with a remote
cluster. It is a boolean and its value is true if the communication between
clusters is possible.

• latency: metric about latency time between the local cluster and a peered
one.

• lastReceivedTimestamp: timestamp of the last received ping message. It
is used by the Disconnect Observer (see section 6.3.4).

• updateCallback: it is a function used to update a peer status inside the
TunnelEndpoint CRD (see section 6.3.5).

The receiver can be run using the RunReceiver method (see section 6.2.2).

Listing 6.5: Receiver and Peer data structures
1 // Peer r e p r e s e n t s a peer .
2 type Peer s t r u c t {
3 connected bool
4 l a t ency time . Duration

56

Cross-Cluster Observability Design

5 // lastReceivedTimestamp i s the timestamp when the l a s t r e c e i v e d
PING has been sent .

6 lastReceivedTimestamp time . Time
7 updateCal lback UpdateFunc
8 }
9

10 // Rece iver i s a r e c e i v e r f o r conncheck messages .
11 type Rece iver s t r u c t {
12 peer s map [s t r i n g] ∗ Peer
13 m sync .RWMutex
14 bu f f [] byte
15 conn ∗ net .UDPConn
16 }

Run

The Run method is used to start the Receiver (see code 6.6). This is the core of
the ConnChecker mechanism. An important detail about the Receiver is that
it uses only one socket to listen for incoming packets. As explained in previous
sections, senders do not listen for answers packets, indeed all incoming packets
(ping and pong) are received and managed by the receiver. The reason behind
this choice is to use only one socket. Every cluster runs only one receiver per
liqo-gateway, which means that only one socket needs to be opened. Furthermore,
every sender uses the same socket, which is the same used by receivers (see section
6.3.2). The advantage of this approach is Scalability. In Liqo a cluster is able to
peer with a huge number of clusters. Having to open a new socket for each peered
cluster could become a problem. So being able to use just one socket can help to
scale.

Listing 6.6: Receiver’s Run method
1 // Run s t a r t s the r e c e i v e r .
2 func (r ∗ Rece iver) Run() {
3 klog .V(8) . I n f o f (" conncheck r e c e i v e r : s t a r t i n g ")
4 f o r {
5 n , raddr , e r r := r . conn . ReadFromUDP(r . bu f f)
6 i f e r r != n i l {
7 klog . Er ro r f (" conncheck r e c e i v e r : f a i l e d to read from %s :

%w" , raddr . S t r ing () , e r r)
8 cont inue
9 }

10 msgr := &Msg{}
11 e r r = j son . Unmarshal (r . bu f f [: n] , msgr)
12 i f e r r != n i l {
13 klog . Er ro r f (" conncheck r e c e i v e r : f a i l e d to unmarshal msg :

%w" , e r r)
14 cont inue

57

Cross-Cluster Observability Design

15 }
16 klog .V(9) . I n f o f (" conncheck r e c e i v e r : r e c e i v e d a msg −> %s " ,

msgr)
17 switch msgr . MsgType {
18 case PING:
19 klog .V(8) . I n f o f (" conncheck r e c e i v e r : r e c e i v e d a PING %s

−> %s " , raddr , msgr)
20 e r r = r . SendPong (raddr , msgr)
21 case PONG:
22 klog .V(8) . I n f o f (" conncheck r e c e i v e r : r e c e i v e d a PONG from

%s −> %s " , raddr , msgr)
23 e r r = r . ReceivePong (msgr)
24 }
25 i f e r r != n i l {
26 klog . Er ro r f (" conncheck r e c e i v e r : %v " , e r r)
27 }
28 }
29 }

6.3.3 Generate metrics
The metrics generation is performed by Receiver. When a pong packet is received
(see code 6.6), the ReceivePong method is called (see code 6.7). The received
message contains:

• the clusterID of the remote cluster which is sending the message itself (it
allows to distinguish pong messages from different clusters)

• the TimeStamp, which is the moment in which the local cluster sent the
ping message to which the received message is answering.

In order to discard out of order packets (because UDP does not guarantee the
correct order for received packets) TimeStamp and lastReceivedTimestamp
are compared. If the just received TimeStamp is lower than the last received it
means that the packet is an old packet and it has to be discarded.

If the packet is considered valid, metrics can be evaluated. The latency can
be obtained from the difference between the received timestamp (TimeStamp
variable) and the current timestamp. It is possible to set to true the connected
variable. At the end, metrics are propagated to the TunnelEndpoint resource
(see section 6.3.5).

Listing 6.7: Receiver’s ReceivePong method
1 // ReceivePong r e c e i v e s a PONG message .
2 func (r ∗ Rece iver) ReceivePong (msg ∗Msg) e r r o r {
3 r .m. Lock ()

58

Cross-Cluster Observability Design

4 d e f e r r .m. Unlock ()
5 i f peer , ok := r . pee r s [msg . ClusterID] ; ok {
6 i f msg . TimeStamp . Before (peer . lastReceivedTimestamp) {
7 klog .V(8) . I n f o f (" dropped a PONG message from %s because

out−of−order " , msg . ClusterID)
8 re turn n i l
9 }

10 now := time .Now()
11 peer . lastReceivedTimestamp = msg . TimeStamp
12 peer . l a t ency = now . Sub(msg . TimeStamp)
13 peer . connected = true
14

15 e r r := peer . updateCal lback (true , peer . latency , now)
16 i f e r r != n i l {
17 re turn fmt . Er ro r f (" f a i l e d to update peer %s : %w" , msg .

ClusterID , e r r)
18 }
19 re turn n i l
20 }
21 re turn fmt . Er ro r f ("%s sender has not been i n i t i a l i z e d " , msg .

ClusterID)
22 }

6.3.4 Disconnect Observer
The Disconnect Observer is part of the receiver. It is a method of the Receiver
data structure called RunDisconnectObserver (see code 6.8). It is launched
in parallel with the receiver’s Run method. If the Run method purpose is to
update the metrics in case of success, the disconnect observer has to update
them in case of failure. The mechanism used to notice a failure is based on the
lastReceivedTimestamp. If a defined threshold in terms of time has passed from
the last received ping it means that connectivity is not working anymore and that
a failure has to be notified. So two variables have been defined:

• PingLossThreashold: The number of lost packets after a failure has to be
notified.

• PingInterval: The same variable used by senders to periodically send a ping.

The product of these two variables gives a time interval that can be used to check
if too much time has passed from the last received valid pong message. This
check is repeated periodically. In case of failure, the connected variable is set
to false and the latency becomes 0. In the end, metrics are propagated to the
TunnelEndpoint resource (see section 6.3.5).

Listing 6.8: Receiver’s RunDisconnectObserver method

59

Cross-Cluster Observability Design

1 // RunDisconnectObserver s t a r t s the d i s connec t obse rve r .
2 func (r ∗ Rece iver) RunDisconnectObserver () {
3 klog .V(9) . I n f o f (" conncheck r e c e i v e r d i s connec t checker : s t a r t i n g "

)
4 // Ignore e r r o r s because only caused by context c a n c e l l a t i o n .
5 _ = wait . Pol l ImmediateInf in i teWithContext (context . Background () ,

time . Duration (PingLossThreshold) ∗ Ping In t e rva l /10 ,
6 func (ctx context . Context) (done bool , e r r e r r o r) {
7 r .m. Lock ()
8 d e f e r r .m. Unlock ()
9 f o r id , peer := range r . pee r s {

10 i f time . S ince (peer . lastReceivedTimestamp . Add(peer .
l a t ency)) <= Ping In t e rva l ∗ time . Duration (PingLossThreshold) {

11 cont inue
12 }
13 klog .V(8) . I n f o f (" conncheck r e c e i v e r : %s unreachable " ,

id)
14 peer . connected = f a l s e
15 peer . l a t ency = 0
16 e r r := peer . updateCal lback (f a l s e , 0 , time . Time{})
17 i f e r r != n i l {
18 klog . Er ro r f (" conncheck r e c e i v e r : f a i l e d to update

peer %s : %s " , peer . lastReceivedTimestamp , e r r)
19 }
20 }
21 re turn f a l s e , n i l
22 })
23 }

6.3.5 TunnelEndpoint update
When metrics are evaluated, they need to be saved somewhere in order to be
available to be shown. For this reason, some fields have been added to the
TunnelEndpoint custom resource’s status. In particular, TunnelEndpoint’s
status contains a connection section. The following fields have been added:

• status: the connectivity status, possible values are Connected, Connecting
or Error.

• statusMessage: A message explaining the connection status.

• latency: contains information about current latency

– value: the last evaluated latency.
– timestamp: the timestamp of the moment in which the last latency has

been evaluated.

60

Cross-Cluster Observability Design

The propagation of metrics inside the TunnelEndpoint is performed by the
updateCallback function (see section 6.3.2). This function is generated using
forgeConncheckUpdateStatus function (see code 6.9). The CRD output showed
with liqoctl get tunnelendpoint -o wide has been modified to simplify the
visualization of the metrics.

Listing 6.9: TunnelController’s forgeConncheckUpdateStatus method
1 func (tc ∗ Tunne lContro l l e r) forgeConncheckUpdateStatus (ctx context .

Context , req c t r l . Request) conncheck . UpdateFunc {
2 re turn func (connected bool , l a t ency time . Duration , timestamp time

. Time) e r r o r {
3 var tep = new(netv1alpha1 . TunnelEndpoint)
4 i f e r r := tc . Get (ctx , req . NamespacedName , tep) ; e r r != n i l &&

! k8sApiErrors . IsNotFound (e r r) {
5 re turn fmt . Er ro r f (" unable to f e t c h r e sou r c e %s : %w" , req .

S t r ing () , e r r)
6 }
7 conn := tep . Status . Connection
8 i f connected {
9 conn . Status = netv1alpha1 . Connected

10 conn . StatusMessage = netv1alpha1 . ConnectedMessage
11 } e l s e {
12 conn . Status = netv1alpha1 . ConnectionError
13 conn . StatusMessage = netv1alpha1 . ConnectionErrorMessage
14 }
15 i f tep . Status . Connection . Status != conn . Status | | tep . Status .

Connection . StatusMessage != conn . StatusMessage | |
16 timestamp . Sub(tep . Status . Connection . Latency . Timestamp .

Time) > tc . updateSta tus In t e rva l {
17 i f tep . Status . Connection . Status != conn . Status | | tep .

Status . Connection . StatusMessage != conn . StatusMessage {
18 klog . I n f o f ("%s −> changing s t a tu s to %s %q " ,
19 tep . Spec . C lu s t e r Iden t i t y , conn . Status , conn .

StatusMessage)
20 }
21 conn . Latency = netv1alpha1 . ConnectionLatency {
22 Value : l i q o n e t u t i l s . FormatLatency (l a t ency) ,
23 Timestamp : metav1 . Time{Time : timestamp } ,
24 }
25 tep . Status . Connection = conn
26 i f e r r := tc . C l i en t . Status () . Update (ctx , tep) ; e r r != n i l

{
27 re turn fmt . Error (" unable to update r e sou r c e %s : %w" ,

req . S t r ing () , e r r)
28 }
29 }
30 re turn n i l
31 }

61

Cross-Cluster Observability Design

32 }

6.3.6 Prometheus Metrics
Prometheus

Prometheus is a free software application used for event monitoring and alerting. It
records real-time metrics in a database. Prometheus data is stored in the form of
metrics, with each metric having a name that is used for referencing and querying
it. Each metric can be enriched by an arbitrary number of key/value pairs called
labels, containing information about the metric’s source.

Metrics exposition

As explained in the previous section, evaluated metrics have been propagated in
the TunnelEndpoint resources, but this is not enough. Indeed metrics need to be
exposed to other microservices. This allows external entities to be aware of the
cross-cluster connection state for each peer. The retrieved data can be analyzed
and reworked to obtain further information.

Metrics have been exposed using GoLang prometheus exporter, to expose
them in prometheus format. A specific implementation of the prometheus
exporter can be developed for each VPN driver. This allows having different
metrics, for different VPN drivers. At the moment Liqo just supports Wireguard
as VPN driver, so at the moment the only implementation available is related to it.
As explained in the previous sections two types of metrics can be exposed. The
first includes metrics provided by the VPN interface. For example, Wireguard
can save some statistics inside the interface’s configuration file. These data have
been used to expose these metrics

• liqo_peer_receive_bytes_total: the total amount of received bytes.

• liqo_peer_transmit_bytes_total: the total amount of transmitted bytes

The second type of metric is the one not related to the VPN interface and
they are common to every VPN driver. They are the metrics evaluated by the
ConnChecker and have been exposed using these names:

• liqo_peer_is_connected: it is an integer value, which can be 1 or 0. If
the value is 1 the connection is working successfully, otherwise, it means that
a failure has been detected.

• liqo_peer_latency_us: it is the latency (in microseconds).

62

Cross-Cluster Observability Design

These metrics are related to each peer, so when they are exposed they need to
be distinguished according to the peer to which they refer. To do this, a set of
labels have been attached to all metrics. These labels are:

• clusterID: The ID of the remote cluster

• clusterName: The name of the remote cluster

• device: The name of the VPN interface used to establish the connection

• driver: The name of the VPN river used (eg. Wireguard)

How metrics are scraped will depend on how is operating the Prometheus server.
Liqo presumes that the Prometheus Operator is being used to run Prometheus,
providing a ServiceMonitor resource for each component. Metrics are disabled by
default. In order to allow Prometheus to scrape metrics from the Liqo components,
is necessary to set the –enable-metrics liqoctl flag during installation. This
flag enables the metrics exposition and the ServiceMonitor resources creation. A
ServiceMonitor is a CRD offered by the Prometheus Operator, it is used to allow
the Prometheus server to find the Service exposing the metrics.

63

Chapter 7

Evaluation

This chapter discusses and evaluates the results obtained in each part of the thesis.
Will be explained how obtained results can be useful and be exploited to increase
the user experience of Liqo

7.1 Network Design

In chapter 5 two possible network designs have been presented. As explained in
section 5.2.4 the design SD is considered the best. However a detail has not been
discussed yet about it, the amount of work necessary to switch to this design. At
the moment Liqo uses the first design which has been implemented and took
years to be stable. So the implementation of a new design is not simple work
and requires a not negligible amount of time and human resources. This is the
trade-off that has to be considered before implementing the new design. On one
hand, there is less information that has to be exchanged and a more stable peering
phase. On the other hand, the liqo network-manager needs to be rewritten and
designed, this means a lot of time (maybe more than a year) to have a working
and stable new network-manager supporting the design DS. Furthermore, the
improvement taken by the new design would not justify a similar workload. So
have been decided to not implement the new design and keep the legacy one.

Not always the solution with better performance is the best one, the time of
a team is precious and must be exploited to create new features and increase the
value of a product. A change like the one described before would be invisible and
non-perceived by the users using Liqo.

64

Evaluation

7.2 Observability Design
Chapter 6 has described how in Liqo has been designed and implemented a
mechanism to check and monitor the cross-cluster network area. In order to
do this the ConnChecker has been implemented and the VPN driver, used by
Liqo, has been modified to support metrics exposition (customizable for each VPN
driver).

7.2.1 Grafana
Section 6.3.6 discussed the metrics exposed. To test the exposed metrics a sample
Grafana dashboard has been built. It allows the monitoring of the network inter-
connection for an arbitrary number of Liqo peerings. Grafana is a multi-platform
open-source analytics and interactive visualization web application. It provides
charts, graphs, and alerts for the web when connected to supported data sources.
The provided dashboard includes an overview section presenting the overall cross-
cluster throughput, followed by detailed per-peering information (see figure 7.1).
In particular the overview section includes:

• Connected peers amount: They are the peers which are receiving correctly
pong packets in answer to ping packets sent to the remote cluster

• Disconnected peers amount: They are the peers which are not receiving
pong packets in answer to ping packets sent to the remote cluster

• Received throughput: the received data throughput of all peered clusters
shown stacked

• Transmitted throughput: the transmitted data throughput of all peered
clusters shown stacked

The per-peering sections are dedicated to a single peer and are generated auto-
matically when new peers are established:

• Connectivity: connection status

• Throughput: received and transmitted data throughput

• Latency

• Average Latency

Througput in every graph has been obtained evaluating the
liqo_peer_receive_bytes_total and liqo_peer_transmit_bytes_total
metrics rate. The interval rate is the one defined by the Prometheus Server.

65

Evaluation

Figure 7.1: Liqo cross-cluster network grafana dashboard

66

Evaluation

7.2.2 Liqoctl Status
To give to the users a way to check information about connectivity without having
to enable metrics or watch a TunnelEndpoint resource, the status command of
liqoctl has been extended. Furthermore, other features have been added to this
command, which are not strictly related to peer monitoring. The majority of
liqoctl status command has been rewritten from scratch, and now it allows to
have a better overview about a Liqo installation.

Local

This section is about the liqoctl status command (see list 7.1). It checks the
existence of the Liqo namespace and checks the readiness of all Liqo components. A
further section has been added in the command output, about local information.
These are details about the Liqo installation. It means that they are information
not related to remote clusters peered. An output of this command can be seen in
list 7.1.

Listing 7.1: liqoctl status output
1 > ./ l i q o c t l s t a tu s
2 Namespace e x i s t e n c e check
3 INFO l i q o c o n t r o l plane namespace l i q o e x i s t s
4

5 Liqo c o n t r o l p lane check
6 INFO c o n t r o l p lane pods are up and running
7

8 Local C lus te r In format ion
9 Clus te r I d e n t i t y

10 Clus te r ID : 3 c3c94e3 −07c0−4787−ac2c−de12788d41cb
11 Clus te r Name : c l u s t e r 1
12 Clus te r Labe ls
13 l i q o . i o / prov ide r : kind
14 Network
15 Pod CIDR: 1 0 . 11 2 . 0 . 0 / 16
16 Se rv i c e CIDR: 1 0 . 11 1 . 0 . 0 /1 6
17 External CIDR: 1 0 . 1 10 . 0 . 0 /1 6

Peer

This section is about the new liqoctl status peer command (see list 7.1). It
does not provide only network information about a peer. It is possible to use as
arguments the name of the peered clusters to select the ones whose information
has to be printed. Otherwise, if no argument is provided the information about
all peered clusters is printed. It is also possible to increase the verbosity of the

67

Evaluation

command using the –verbose flag. A verbose output of this command can be seen
in list 7.2

Listing 7.2: liqoctl status peer output
1 > l i q o c t l s t a tu s peer c l u s t e r 2 c l u s t e r 3 −−verbose
2 Peered Clus te r In format ion
3 c l u s t e r 2 − a1c73050−d1ea−4dee −84d2−e548e5242298
4 Type : InBand
5 Dir e c t i on
6 Outgoing : Es tab l i shed
7 Incoming : Es tab l i shed
8 Authent icat ion
9 Status : Es tab l i shed

10 Auth URL: https : / / 1 0 . 1 0 8 . 0 . 3 : 4 4 3
11 Auth Proxy URL: http : / / 1 0 . 1 0 8 . 0 . 2 : 8 1 1 8
12 Network
13 Status : Es tab l i shed
14 Remote CIDRs
15 Or ig ina l
16 Pod CIDR: 1 0 . 11 2 . 0 . 0 / 16
17 External CIDR: 10 . 1 10 . 0 . 0 /1 6
18 Remapped − how " c l u s t e r 1 " remapped " c l u s t e r 2 "
19 Pod CIDR: 1 0 . 11 3 . 0 . 0 / 16
20 External CIDR: 10 . 1 08 . 0 . 0 /1 6
21 Local CIDRs
22 Or ig ina l
23 Pod CIDR: 1 0 . 11 2 . 0 . 0 / 16
24 External CIDR: 10 . 1 10 . 0 . 0 /1 6
25 Remapped − how " c l u s t e r 1 " has been remapped by "

c l u s t e r 2 "
26 Pod CIDR: 1 0 . 11 3 . 0 . 0 / 16
27 External CIDR: 10 . 1 08 . 0 . 0 /1 6
28 VPN Connection
29 Status : Connected − VPN connect ion e s t a b l i s h e d
30 Latency : 301 us
31 Gateway IPs
32 Local : 1 7 2 . 1 8 . 0 . 3 : 3 0 9 8 7
33 Remote : 1 7 2 . 1 8 . 0 . 4 : 3 2 0 8 4
34 Resources
35 Total acqu i red − r e s o u r c e s o f f e r e d by " c l u s t e r 2 " to "

c l u s t e r 1 "
36 cpu : 2190m
37 memory : 3 .13GiB
38 pods : 22
39 ephemeral−s t o rage : 40 .95GiB
40 Total shared − r e s o u r c e s o f f e r e d by " c l u s t e r 1 " to " c l u s t e r 2

"
41 cpu : 1015m

68

Evaluation

42 memory : 1 .36GiB
43 pods : 11
44 ephemeral−s t o rage : 20 .48GiB
45 c l u s t e r 3 − c07ad6c6 −443a−44a4−bf2a−fdb f696309ce
46 Type : InBand
47 Dir e c t i on
48 Outgoing : Es tab l i shed
49 Incoming : Es tab l i shed
50 Authent icat ion
51 Status : Es tab l i shed
52 Auth URL: https : / / 1 0 . 1 1 4 . 0 . 3 : 4 4 3
53 Auth Proxy URL: http : / / 1 0 . 1 1 4 . 0 . 2 : 8 1 1 8
54 Network
55 Status : Es tab l i shed
56 Remote CIDRs
57 Or ig ina l
58 Pod CIDR: 1 0 . 11 2 . 0 . 0 / 16
59 External CIDR: 10 . 1 10 . 0 . 0 /1 6
60 Remapped − how " c l u s t e r 1 " remapped " c l u s t e r 3 "
61 Pod CIDR: 1 0 . 10 9 . 0 . 0 / 16
62 External CIDR: 10 . 1 14 . 0 . 0 /1 6
63 Local CIDRs
64 Or ig ina l
65 Pod CIDR: 1 0 . 11 2 . 0 . 0 / 16
66 External CIDR: 10 . 1 10 . 0 . 0 /1 6
67 Remapped − how " c l u s t e r 1 " has been remapped by "

c l u s t e r 3 "
68 Pod CIDR: 1 0 . 11 3 . 0 . 0 / 16
69 External CIDR: 10 . 1 08 . 0 . 0 /1 6
70 VPN Connection
71 Status : Connected − VPN connect ion e s t a b l i s h e d
72 Latency : 211 us
73 Gateway IPs
74 Local : 1 7 2 . 1 8 . 0 . 3 : 3 0 9 8 7
75 Remote : 1 7 2 . 1 8 . 0 . 6 : 3 1 3 5 0
76 Resources
77 Total acqu i red − r e s o u r c e s o f f e r e d by " c l u s t e r 3 " to "

c l u s t e r 1 "
78 cpu : 3285m
79 memory : 4 .69GiB
80 pods : 33
81 ephemeral−s t o rage : 61 .43GiB
82 Total shared − r e s o u r c e s o f f e r e d by " c l u s t e r 1 " to " c l u s t e r 3

"
83 cpu : 1015m
84 memory : 1 .36GiB
85 pods : 11
86 ephemeral−s t o rage : 20 .48GiB

69

Evaluation

7.2.3 Performance
This section compares the performance of the old and new versions of Liqo. In
particular, the resource consumption of the versions 0.5.4 and 0.6.0 (the first
containing the thesis work) of Liqo have been observed. The comparison aims
to evaluate the impact of the connchecker inside the liqo-gateway. To obtain
statistics about CPU, memory, and traffic, a cluster has been peered with two
other clusters. During the period in which statistics have been acquired the clusters
stayed in IDLE. It means that the tests were conducted without forcing traffic
through the liqo-gateway, to observe just the effects of the connchecker.

Table 7.1 and 7.2 graphs contain the statistics about each version. All statistics
are higher in version 0.6.0 and this is an expected result. But the values obtained
from the old and the new version of Liqo differ slightly. The average CPU and
memory used differ by a negligible amount. Same for the throughput, which slightly
increases in the new version due to the periodic ping performed by the connchecker.

So, the performance evaluation is a success, new features have been added to
Liqo and this has not an impact on consumed resources.

Min Max Average

CPU percentage used 0.005% 0.02% 0.01%

Memory used 18.9MiB 20.5Mib 18.9MiB

Received data 0.09kB/s 2.3kB/s 0.52kB/s

Transmitted data 0.09kB/s 5.68kB/s 0.66kB/s

Table 7.1: Liqo-gateway performance statistics in Liqo 0.5.4

Min Max Average

CPU percentage used 0.02% 0.05% 0.03%

Memory used 20.2MiB 25.7Mib 23.4MiB

Received data 0.56kB/s 3.87kB/s 1.56kB/s

Transmitted data 0.53kB/s 6.95kB/s 1.65kB/s

Table 7.2: Liqo-gateway performance statistics in Liqo 0.6.0

70

Evaluation

CPU consumption

Memory consumption

Data received (idle)

Data transmitted (idle)

Figure 7.2: Resources consumed by liqo-gateway in Liqo 0.5.4

71

Evaluation

CPU consumption

Memory consumption

Data received (idle)

Data transmitted (idle)

Figure 7.3: Resources consumed by liqo-gateway in Liqo 0.6.0

72

Chapter 8

Conclusion

The necessity of multi-clusters approach has become a necessity in the industry.
The possibility to allow different clusters to inter-operate, share resources and
workloads will be a fundamental feature in the future of cloud computing. The
thesis has a dual purpose, one was to analyze what could be the possible network
architecture in a multi-clusters environment, and the other was to design and
implement a way to monitor the network. In particular, the cross-cluster network
part of Liqo has been studied. The current Liqo design has been compared with a
new one, which proved to be more efficient and with fewer dependencies. It was a
success and set a new direction for future development. Indeed (as discussed in
chapter 7), Liqo has reached a certain level of maturity and the new design would
be a breaking change. At the moment the current design works and the benefits
would not justify the effort of a new one. The work for the thesis has remained a
proof of concept which has given to the Liqo team a major awareness of what
could be a direction to follow in the future, in case of a massive rework of the Liqo
network.

However, this has not limited the design and implementation of a mechanism to
monitor connection with other clusters. A monitoring system has been designed
and integrated into Liqo and now the Liqo cross-cluster network status can be
observed and monitored. In the near future, this system can be extended to the
inner part of the Liqo network and could include also other components and parts
of Liqo, to provide users the possibility to monitor Liqo entirely.

73

Bibliography

[1] 8 facts about real-world container use. url: https://www.datadoghq.com/
container-report/ (cit. on p. 1).

[2] Joan Engebretson. Will Kubernetes Be the Operating System for 5G? AT&T
News Suggests Yes. Feb. 2019. url: https://www.telecompetitor.com/wil
l-kubernetes-be-the-operating-system-for-5g-att-news-suggests-
yes/ (cit. on p. 1).

[3] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. «Large-scale cluster management at Google with
Borg». In: Proceedings of the European Conference on Computer Systems
(EuroSys). Bordeaux, France, 2015 (cit. on p. 5).

[4] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
«Omega: flexible, scalable schedulers for large compute clusters». In: SIGOPS
European Conference on Computer Systems (EuroSys). Prague, Czech Re-
public, 2013, pp. 351–364. url: http://eurosys2013.tudos.org/wp-
content/uploads/2013/paper/Schwarzkopf.pdf (cit. on p. 5).

[5] Ferenc Hámori. The History of Kubernetes on a Timeline. June 2018. url:
https://blog.risingstack.com/the-history-of-kubernetes/ (cit. on
p. 5).

[6] Steven J. Vaughan-Nichols. The five reasons Kubernetes won the container
orchestration wars. Jan. 2019. url: https : / / blogs . dxc . technology /
2019 / 01 / 28 / the - five - reasons - kubernetes - won - the - container -
orchestration-wars/ (cit. on p. 5).

[7] Kalyan Ramanathan. 5 business reasons why every CIO should consider
Kubernetes. Oct. 2019. url: https://www.sumologic.com/blog/why-use-
kubernetes/ (cit. on p. 5).

[8] Kubernetes official documentation. url: https://kubernetes.io/docs/
home/ (cit. on pp. 7, 12, 14–17, 21).

74

https://www.datadoghq.com/container-report/
https://www.datadoghq.com/container-report/
https://www.telecompetitor.com/will-kubernetes-be-the-operating-system-for-5g-att-news-suggests-yes/
https://www.telecompetitor.com/will-kubernetes-be-the-operating-system-for-5g-att-news-suggests-yes/
https://www.telecompetitor.com/will-kubernetes-be-the-operating-system-for-5g-att-news-suggests-yes/
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://blog.risingstack.com/the-history-of-kubernetes/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://www.sumologic.com/blog/why-use-kubernetes/
https://www.sumologic.com/blog/why-use-kubernetes/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

BIBLIOGRAPHY

[9] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and se-
curity insights. Oct. 2019. url: https://sysdig.com/blog/sysdig-2019-
container-usage-report/ (cit. on p. 8).

[10] k8s Network Model. url: https://kubernetes.io/docs/concepts/cl
uster-administration/networking/#the-kubernetes-network-model
(cit. on p. 17).

[11] k8s CNI. url: https://kubernetes.io/docs/concepts/extend-kuberne
tes/compute-storage-net/network-plugins/ (cit. on p. 20).

[12] k8s Services. url: https://sookocheff.com/post/kubernetes/understa
nding-kubernetes-networking-model/ (cit. on p. 21).

[13] Kubebuilder git repository. url: https://github.com/kubernetes-sigs/
kubebuilder (cit. on p. 21).

[14] Kubernetes Operator pattern. url: https://kubernetes.io/docs/concept
s/extend-kubernetes/operator/ (cit. on p. 21).

[15] Liqo documentation. url: https://docs.liqo.io/ (cit. on p. 22).
[16] Liqo GitHub repository. url: https://github.com/liqotech/liqo (cit. on

p. 22).
[17] Virtual Kubelet GitHub repository. url: https://github.com/virtual-

kubelet/virtual-kubelet (cit. on p. 27).

75

https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://docs.liqo.io/
https://github.com/liqotech/liqo
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet

	Introduction
	The need for Multiple Clusters
	Multi-cluster and Liqo
	Goal of the thesis
	Structure of the work

	Kubernetes
	Kubernetes: a bit of history
	Evolution of workloads management
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Label & Selector
	Namespace
	Pod
	ReplicaSet
	Deployment
	DaemonSet
	Service

	Kubernetes network architecture
	Container communication within same pod
	Pod communication within the same node
	Pod communication on different nodes
	CNI (Container Network Interface)
	Pod to service networking

	Kubebuilder

	Liqo
	Liqo: an overview
	The Liqo peering
	The Liqo reflection
	Network Fabric
	Cross-cluster VPN tunnels
	In-cluster overlay network

	Liqo Custom Resources
	The NetworkConfig CR
	The TunnelEndpoint CR
	The ForeignCluster CR
	The ShadowPod CR

	Liqo Components
	The CRD Replicator component
	The Virtual Kubelet component
	The IPAM component
	Network manager
	The Liqo Gateway

	Advanced Networking Concepts
	Linux Namespaces
	Namespace kinds

	Linux Network Stack
	NetFiltert
	Iptables

	VPN - Wireguard

	Cross-Cluster Network Design
	The Problem
	Remapping
	Exchanged information

	Architecture
	Problem Area
	Design SD
	Design DS
	Comparison

	Implementation
	Liqo NetNS
	Gateway redirection
	VPN interfaces
	Conntrack

	Conclusion

	Cross-Cluster Observability Design
	The Problem
	Overview
	Implementation
	ConnChecker

	Messages
	Sender
	Receiver
	Generate metrics
	Disconnect Observer
	TunnelEndpoint update
	Prometheus Metrics

	Evaluation
	Network Design
	Observability Design
	Grafana
	Liqoctl Status
	Performance

	Conclusion
	Bibliography

