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Abstract

In the context of neurodegenerative diseases, vocal analysis is an easy and inexpensive
way to extract useful elements for follow-up, prognostic prediction and rehabilitation
of patients. Datasets with recordings of patients and healthy controls reading prompts
have been collected to allow the development and evaluation of automatic vocal analysis
systems.

This work deals with the tasks of speech recognition and forced alignment, impor-
tant building blocks for such systems, specifically on speech from Parkinson’s Disease
patients and healthy controls.

A system has been designed and developed to perform automatic speech recogni-
tion and forced alignment, based on fine-tuned state-of-the-art models, it can leverage
unlabeled data, and it can be used to align spontaneous speech with no prompts. The
output of the system are the words and phonemes identified in a recording and the time-
alignment of each single word and phoneme; this enables the automatic segmentation
of vocal data and adds other data points for subsequent steps of analysis and correlation
with the clinical parameters of the patients. The performance of the system is evaluated
on “normal” speech datasets and disordered speech.
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Chapter 1

Introduction

Parkinson’s Disease (PD) is the second most common Neurodegenerative Disease (ND),
affecting 6.1 million individuals in 2016[52] and predicted to affect more than 9 million
by 2030[139].

Currently, no reliable test yet exists to spot Alzheimer’s Disease (AD) or PD before
symptoms appear. And, there are neither laboratory nor instrumental tests for mon-
itoring the disease[50] that would be useful during treatment. Moreover, there is no
cure for PD, but it is expected that new drugs will be able to stop its advance or at least
slow it down enough to extend significantly the period in which the patient is indepen-
dent[120]. In this context, an early diagnosis will be crucial. Indeed, emerging evidence
suggests that voice dysfunction is the earliest sign of motor impairment in PD[108] and
it can be noticed up to 10 years before diagnosis[85, 140].

A growing body of literature in the past decades[119, 125] has been focusing on
speech and voice impairment of people with PD, mainly including automatic and com-
puterized analysis. Some of these approaches analyze features related to specific pho-
netic groups in continuous speech, therefore they need to perform first speech segmen-
tation. This operation is often performed manually by a human operator, reducing the
scalability of the approach and increasing their cost.

Automatic speech segmentation or Forced Alignment (FA) has been widely used in
sociolinguistics, phonetics, language documentation, and psycholinguistics[114]. Ap-
plying FA to the speech of PD patients however presents some difficulties. It is hard to
have a patient to read clearly and precisely from a prompt. Typically, recordings contain
repetitions, skipping of words or syllables, mispronunciation, insertion of superfluous
phonemes. This unexpected sounds causemost FA software to output wrong alignments,
often for the entire recording that is being aligned.

The goal of this work is to realize a FA system for speech in Italian, that is robust to the
unexpected sounds just described, to be used as building block for systems of automatic
diagnosis or monitoring of PD through recordings of continuous speech.

1.1 Objectives and hypothesis
The goal previously stated is further subdivided in three smaller objectives

11



Introduction

1. Automatic and robust speech segmentation at phoneme level: The FA system needs
to be robust to errors such as repetitions, skipping of words or syllables, mispro-
nunciation, insertion of superfluous phonemes.

2. Automatic Speech Recognition (ASR): It is hard to have a patient to read clearly
and precisely a prompt. We formulate the hypothesis that the use of ASR in combi-
nation with FA could help in satisfying the robustness requirements stated above.
Moreover, removing the need for audio recordings of known text/prompts allows
analysis of spontaneous speech.

3. Leverage as much as possible unlabeled data: Easier to collect in large quantities,
already available in relatively large quantities

1.2 Outline
This work is divided in three main parts

1. Introduction: this part includes a brief introduction to PD; an introduction to speech,
its production, phonetics, phonology and prosody, speech disorders and voice patholo-
gies, and the effects of PD on speech; a literature review for Automatic Voice and
Speech Condition Analysis (AVSCA), ASR and FA; ending with a description of the
material and overall methodology used in this work.

2. Experiments and solution implementation: describes the data preparations steps,
the experiments and the results obtained.

3. Future work and conclusions: lists the contributions of this work, possible future
developments and ends with the conclusions.

12



Chapter 2

Parkinson’s disease

The brain represents less than 2% of a human body mass[172, 175] and yet it uses more
than 20% of its energy production[56]. It contains about 86 billion neurons[11] which
forms approximately 0.15 quadrillion connections[131, 191]. In NDs specific populations
of these neurons, in the brains or in the peripheral nervous system, are characterized by
progressive loss of function due to damage or cellular death[54].

NDs include AD, PD, Multiple sclerosis and others. AD is the most common NDs
affecting 50 million people in 2020[25], followed by PD affecting 6.1 million individuals
in 2016 [52].

NDs are a common and growing cause of mortality and morbidity worldwide, espe-
cially in the elderly[57]. Disease burden aggregates their impact on people, society and
the economy in terms of mortality, morbidity, financial cost, and other factors; it is usu-
ally measured in terms of Disability-Adjusted Life Years (DALYs) or Quality-Adjusted
Life Years (QALYs) and is reportedly increasing for NDs, due to increasing numbers of
older people and potentially other environmental factors[52, 64].

More specifically the number of people with PD is expected to double between 2005
and 2030[139], while the global burden of PD has more than doubled, and it is predicted
to increase substantially in the near future[52].

An early diagnosis might improve and maintain the quality of life of patients and in-
crease their life expectancy, reducing the burden of these diseases. Currently, no reliable
test yet exists to spot AD or PD before symptoms appear. Moreover, there are neither
laboratory nor instrumental tests for monitoring the disease[50] that would be useful
during treatment. It is worth pointing out that NDs share common characteristics and
advances in one specific disease will probably benefit also other NDs.

In this chapter, we go on to discuss idiopathic PD, the most common type of disease
categorized as parkinsonism, with the goal of providing an overview of this condition,
then transition to how PD affects speech and how this could be used for its diagnosis.

2.1 Prevalence and incidence
PD incidence worldwide is estimated to be between 5 and more than 35 new cases per
100,000 individuals. The global prevalence for all ages is estimated at 0.3%, considering
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Parkinson’s disease

only individuals 80 years old and older the prevalence increases tenfold to more than
3%[139].

In 2007 [51] predicted that by 2030, in the most populous nations, the number of PD
patients could reach up to 9.3 million, more than double the maximum of 4.6 million
individuals estimated to have PD in 2005. Values for 2016 from [52] seem coherent with
this prediction reporting an estimate of 6.1 million individuals with PD globally. The
same study reports also that the 74.3% increase in PD seen between 1990 and 2016 can-
not be attributed solely to the increasing number of older people, which increased only
by 21.7% in the same period. According to [97], other causes could be found in environ-
mental factors (pesticides, herbicides, metals) and specific living conditions (rural living,
farming).

2.2 Mechanisms

Parkinsonism results from a decreased dopaminergic transmission in the motor region
of the striatum, a cluster of neurons with a critical role in the motor and reward systems.

This dopaminergic transmission to the striatum occurs through dopaminergic neu-
rons from the substantia nigra.

The substantia nigra is part of the basal ganglia, located in the midbrain one of three
parts of the brain stem, where the cerebrum connects with the spinal cord. It is divided
into pars compacta and pars reticulata. The pars compacta supplies with dopamine the
striatum.

The pathway from substantia nigra to striatum plays an important role in the control
of motor functions.

Decreased dopaminergic transmission results from the two characteristic features
that together are specific for PD:

• Neuronal loss in specific areas of the substantia nigra; in PD neuronal degenera-
tion is limited to only certain types of neurons in particular brain regions. Initially
limited to dopaminergic neurons in specific areas of the substantia nigra, later on in
the disease becomes more widespread in the midbrain. Degeneration in this region
has been suggested to start before the onset of motor symptoms.

• Widespread accumulation of the α-synuclein protein; abnormal deposition of α-
synuclein in the cytoplasm1 of certain neurons in several different brain regions.
α-synuclein is a protein of yet unknown function, normally is mainly found in
the nervous system, its presence should be dynamically regulated. The misfolding
of α-synuclein is hypothesized to spread in a Prion-like fashion and is considered
responsible for its agglomeration into Lewy’s bodies. These agglomerations have
been linked to dysfunction and death of certain populations of neurons[77]. Age
and failing brain defenses are thought to have a role in the non-removal of excess
α-synuclein[139].

1Gelatinous liquid that fills the inside of a cell[41]
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2.3 – Causes

How PD begins is still a source of discussion, the authors of [24] hypothesized in
2003 that PD begins when a foreign agent enters the body via the nose or gastrointesti-
nal system and travels into the central nervous system through the vagus nerve. The
same study proposed a division in stages of the disease progression based on neurolog-
ical structures reached by neurodegeneration. More recently clinical and pathological
evidence has been presented by [97] and others to support the hypothesis that PD starts
in the gut, coherent with [24], reinforcing the possibility that environmental substances
can trigger pathogenesis. On the other hand, [23] underlines the relative lack of post-
mortem cases with isolated peripheral α-synuclein pathology for the moment, which
weakens the case for a gastrointestinal onset, and that the pathology in most PD pa-
tients may originate in olfactory or gastrointestinal only or mainly because these are
statistically the most likely sites of stochastic α-synuclein misfolding, excluding or lim-
iting the importance of external stimuli.

2.3 Causes

So the causes of PD are not known yet. However, some risk factors have been revealed
as influential in developing the disease, sometimes in relation to theories on possible
mechanisms of the disease. The following categories of risk factors are usually identified,
and generally affected individuals fall in a mix of them.

• Genetic: are estimated to contribute approximately 25% to the overall risk of de-
veloping PD[44]. Several genetic variants have been identified and each of them
contributes a small amount individually to the risk of developing PD. The most im-
pactful include the genes GBA, LRRK2, SNCA, PARK7 and PRKN. It is expected that
even more genes will be found to impact the risk of PD.

• Environmental: over a dozen environmental factors have been associated with the
risk of developing PD. Examples are: exposure to pesticides and use of specific
pesticides, traumatic brain injury, exposure to high air pollution, gut microbiome
conditions, metals, solvents[27]. It is believed that inmost cases environmental fac-
tors are responsible to trigger PD pathogenesis and propagate it to the brain, the
possibility that it starts in the olfactory and gastrointestinal systems agrees with
this hypothesis[97]. Some examples of an inverse association with PD risk include
caffeine consumption, smoking, vigorous exercise, and ibuprofen use. [27] how-
ever underlines that the newly discovered multiple systems’ nature of PD coupled
with decades-long disease initiation and prodromal development period make it
very difficult to achieve reliable and valid exposure assessment in the most rele-
vant periods for PD etiology.

• Aging: it remains the greatest risk factor, with age-related decline in midbrain
dopaminergic neurons and decreased efficiency of defense mechanisms that would
normally contrast protein accumulation.
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Parkinson’s disease

2.4 Symptoms
Motor symptoms are those usually associated with PD, most common motor symptoms
include

• Tremor

• Rigidity

• Bradykinesia or slowness of movements

• Postural instability

• Akinesia, that is a delay at the beginning of movements

• Hipokinesia, consisting of poor, incomplete or simplified movements (an example
is smaller handwriting)

A variety of non-motor symptoms and signs has been identified too, including

• Depression and anxiety

• Constipation

• Olfactory disturbances or loss of smell

• Swallowing problems

• Communication problems

• Dementia, hallucinations, difficulties focusing and performing complex tasks

• Sleeping problems

• Sexual disruptions

Some of these non-motor symptoms like olfactory disturbances, sleep disorders, au-
tonomic dysfunction (especially constipation) and depression can anticipate the onset of
more visible motor symptoms by over a decade[97]. Vocal impairments have also been
demonstrated by [156] to occur in 78% of untreated early PD subjects. These early ap-
pearing symptoms can play a key role in early diagnosis, which in turn can lead to an
important quality of life improvement for individuals with PD.

2.5 Diagnosis and rating scales
The diagnosis of PD for now is still a clinical one and is not straightforward as one may
think, due to different pathogenesis having similar and overlapping signs and symptoms.
Clinical diagnosis requires follow-ups with continuous diagnostic re-evaluation to be
accurate.
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The diagnosis is now typically carried out following standard diagnostic criteria, the
use of standard criteria improved the accuracy of the diagnosis and is now diffuse inmed-
ical organizations. Themost known criteria comes from theUnited KingdomParkinson’s
Disease Society Brain Bank (UKPDSBB) and from U.S. National Institute of Neurological
Disorders and Stroke (NINDS)2. The UKPDSBBwas the first one to be published and uses
three steps [91]:

1. Diagnosis of Parkinsonian syndrome: requiring the occurrence of bradykinesia and
at least one of muscular rigidity, tremor or postural instability

2. Exclusion criteria for PD: inwhich the occurrence of signs common for other causes
of parkinsonisms are used to possibly exclude PD as a cause

3. Supportive prospective positive criteria for PD: three or more supportive features
among unilateral onset, rest tremor, progression of the disorder, persistent asym-
metry, excellent response to levodopa, severe levodopa-induced chorea, levodopa
response for 5 years or more, the clinical course of at least 10 years, are required
for a definitive diagnosis

Ten years later in 1999 Gelb and other American co-authors published a new set
of diagnostic criteria. Unlike UKPDSBB criteria, Gelb criteria were based on different
levels of diagnostic confidence: possible, probable, and definite. The definite diagnosis
only when PD is confirmed at autopsy [110].

An increased understanding of PD on different levels has led to the development,
and publishing in 2015, of new diagnostic criteria from the Movement Disorder Soci-
ety (MDS). This set of criteria proposed in [141], known as Movement Disorder Society
(MDS) Clinical Diagnostic Criteria for Parkinson’s Disease (MDS-PD), encompasses the
two previously discussed sets of criteria and introduces new important aspects as the use
of non-motor symptoms as possible diagnostic features and the adoption of the concept
of prodromal PD, fundamental for research studies. For now, however, this criteria set
still lacks pathological validation and is scarcely employed among clinicians[110].

Scales have also been defined to monitor the progression of PD in an individual, note
that those should not be used to define or diagnose PD[141].

2.5.1 Unified Parkinson’s Disease Rating Scale (UPDRS)
The Unified Parkinson’s Disease Rating Scale (UPDRS) is the most commonly used scale
for the assessment of parkinsonian motor impairment and disability[121]. The rating is
accomplished through interviewswith the patient and clinical observations. The original
version[61] comprises four parts, scores are assigned for each part as follows:

1. mentation, behavior and mood: up to 16 points

2. activities of daily living: up to 52

3. motor: up to 56

2Also known as Gelb criteria, from the name of its main author
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4. complications: up to 23

Each part is composed of items that can have yes/no answers or scored answers,
with integers from 0 to 4 meaning none, mild, moderate, severe, marked respectively.
The total score then goes from 0 to 147, where higher score mean higher affection from
PD. The final score is a sum, so the same score can be obtained with the expression of
different signs.

More recently MDS funded a revision (Movement Disorder Society-Sponsored Re-
vision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS))[72] of UPDRS. It
introduces nine new items that were not captured in any form on the original scale: anx-
ious mood, dopamine dysregulation syndrome, urinary problems, constipation, fatigue,
doing hobbies, getting in and out of bed, toe-tapping, and freezing (objective rating).
Yes/no answers have been changed to answers with values. The meaning of values has
been changed from mild/moderate/severe/marked to slight/mild/moderate/severe, and
the questions have been adapted accordingly, in order to better document changes in
early stages of PD. Moreover, questions have been adapted so that for a large the patient
or the caregiver can answer autonomously.

2.5.2 Hoehn & Yahr (HY)
TheHoehn & Yahr (HY) scale is simpler and easier to apply compared to the UPDRS[73].
It was introduced in 1967 in [86] as a system to grade the severity of PD into 5 stages
corresponding to increasing levels of clinical disability. The broad definition of the scale
stages does not permit consistent detection of effective interventions, this led to the
introduction of intermediate stages such as 1.5 and 2.5[73]. For this reason, even if still
widely used, it has largely been replaced as the primary measure of treatment efficacy
by the UPDRS[73].

The modified HY scale as illustrated in [73] includes the following stages

• Stage 1: symptoms are very mild; motor signs are usually unilateral.

• Stage 1.5: unilateral and axial motor involvement.

• Stage 2: bilateral involvement without balance impairments.

• Stage 2.5: mild bilateral disease with recovery on pull test.

• Stage 3: mild to moderate bilateral disease; some postural instability; the patient is
still physically independent.

• Stage 4: severe disability; still able to walk or stand unassisted.

• Stage 5: patient totally dependent. Wheelchair-bound or bedridden unless aided.

2.6 Treatment
PD currently remains an incurable disease, treatment has the purpose of slowing or
halting the disease progression. Despite being diagnosedwith the same disease, different
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individuals with PD might have different symptoms with varied rates of progression
leading to different treatment strategies.

Main treatments for PD are related to motor symptoms, typically beginning with
pharmacological dopamine replacement; the most common drug is levodopa, usually
mixed with carbidopa[28].

Levodopa provides the most significant symptomatic relief with least adverse side-
effects. The addition of carbidopa helps in transporting levodopa to the central nervous
system avoiding its conversion to dopamine in the peripheral tissues[28]. Main side
effects for prolonged use of levodopa with carbidopa are dyskinesia3 and fluctuating
“off-on” periods of effectiveness[28]. To improve on the latter, methods of continuous
delivery of levodopa/carbidopa have been developed, an example is Duodopa which ad-
ministered in the intestine through a tube and a pump, and are under development[28].

To treat the same symptoms dopamine agonists are also used as an alternative to
levodopa, early in the treatment due to the shorter duration of their effect, or jointly, to
stabilize on-off periods[28]. They can be used with immediate or extended release. They
can present problematic side effects related to impulse control[28].

Another alternative are Monoamine oxidase B (MAO-B) inhibitors, substances that
inactivate the enzyme responsible for the inactivation of dopamine increasing the half-
life of dopamine or levodopa in the brain[28]. They can be used as a monoterapy or in
conjunction with levodopa[28].

For patients suffering from long-term complications from levodopa it is also possible
to use Deep Brain Stimulation (DBS) targeting specific areas of the brain, this however
requires a surgical operation to implant electrodes in the brain[28].

Rehabilitation programs targeted to help with effects of dopamine reduction such as
softer voice and limits to body movements are typically recommended[28].

Moderate exercise has been found to improve the quality of life for people with PD
and strenuous aerobic exercise likely has a neuroprotective effect[28].

3Involuntary muscle movements
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Chapter 3

Speech

At the time of writing 7,151 languages are spoken[89], even though 42% of them are at
risk of disappearing[88] in favor of other more prominent languages.

Speech is the primary realization of human languages, in fact every human language
is or has been spoken at some time and thousands of them have only a spoken form[18].

Speech is characterized by the transmission of sounds and noises, from our phonatory
apparatus that produces them, as sound waves through the air that are then received and
perceived by a listener uditory system and brain.

Different types of speech production can be distinguished as

• spontaneous, like a conversation among few speakers in a familiar environment
about a topic they choose by themselves

• reactive, when reading aloud a written word or naming a picture

• imitative, when an individual speaks the sounds they have heard another person
pronounce

The production of speech is the process by which thoughts are translated into speech
sounds, according to models that have been proposed in the last decades it incorporates
the following stages, in some cases merging some of them into one[65]:

• conceptual stage, in which an abstract form of the proposition to be expressed is
identified

• syntactic stage, where a frame, or sentence structure, is chosen

• lexical stage, in which words are searched based on meaning; once a word has been
found information about its sense, possible collocations, phonology, and morphol-
ogy become available

• phonological stage, where the abstract information collected until now is converted
into a speech-like form

• phonetic stage, when instructions for the muscles that control the articulators are
prepared to be sent, actual motor planning and actuation/articulation
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What follows is a short introduction to phonetics, with a focus on speech production,
a brief overview of phonology and morphology. Finally, the chapter ends with a section
on voice disorders and a section on the effects of PD on speech.

3.1 Phonetics: articulatory and acoustic
Phonetics is the branch of linguistics that studies speech sounds, it is further subdivided
in three sub-disciplines:

• articulatory phonetics, which studies how human produces sounds

• acoustic phonetics, which deals with acoustic characteristics of sounds, some exam-
ples could be amplitude, duration, waveform and fundamental frequency

• auditory phonetics, which focuses on hearing and perception

In the context of this work it is important to introduce some concepts from the first
two sub-disciplines, they are therefore detailed in the next subsections.

3.1.1 Biological aspects of speech and phonatory mechanism
Not one of the organs used for speech production neither any of their anatomical as-
pects can be singled out as specialized for the purposes of producing speech yet[100].
Speech production can thus be considered a function overlaid on more primary bio-
logical system, its actions exploit neuromuscular capabilities with different primary
biological functions such as breathing, sucking, biting, chewing, swallowing, licking,
spitting, sniffing, clearing the throat, coughing, yawning, laughing, crying, shout to
threaten[100].

The fact that a listener can hear speech depends on the presence of amoving stream of
air. Language sounds are normally producedwith an egressive air flow (sounds produced
with an ingressive flow or with no flow also exist and are called ”avulsive”). Air is
expelled in a carefully controlled fashion at a slower rate than normal breathing. The
expulsion is controlled by the action of the muscles moving the diaphragm and by the
various pairs of muscles that act on the rib cage. The air stream is formed in the lungs,
there from the bronchi moves up into the trachea reaching the larynx, where it meets
the vocal folds, and then procedes to the supraglottal cavities, that are the pharynx (or
throat), the oral cavity (mouth) and nasal cavity (nose).

The larynx is the structure composed by vocal folds and their cartilaginous housing.
The larynx could be described as a ”box” made of cartilages in which the frontal wall
would be the thyroid cartilage (responsible for the ”Adam’s Apple”) in the front of the
neck. Eight other cartilages are found in the larynx (for a total of nine): the cricoid
cartilage (almost ring-shaped in the lower part of the larynx where it connects with the
trachea), the epiglottis (spoon-shaped, located in the upper part of the larynx, closes
access to the larynx when swallowing), a pair of arytenoid cartilages (triangular shaped,
located in the posterior part of the larynx, they influence the position and tension of the
vocal folds), a pair of corniculate cartilages (small and horn shaped, located on the top
tips of the arytenoid cartilages), and a pair of cuneiform cartilages (elongated shape, they
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Figure 3.1. Head and neck

sit on top of the arytenoid cartilages, they support the vocal folds). The muscles in the
larynx are classified in extrinsic and intrinsic. Extrinsic muscles connect to the larynx
and other parts around it, they support and position the entire larynx. Intrinsic muscles
are the ones inside the larynx and are responsible for the movement of the vocal folds,
for their abduction (opening), adduction (closing) and tension. There are six intrinsic
muscles:

• the cricothyroid muscle responsible for elongation and tension of the vocals folds

• the posterior cricoarytenoid muscles open the vocal folds for respiration

• the lateral cricoarytenoid muscles oppose the posterior cricoarytenoid muscles,
they close the vocal folds to protect the airway

• the transverse arytenoid muscle closes the vocal folds/glottis especially in the back
part

• the oblique arytenoid muscles and the thyroarytenoid muscles work together to
open or close access to the larynx when swallowing or coughing

All these muscles, except the cricothyroid, are innervated by the recurrent1 laryngeal
nerves, a branch of the vagus nerve[157]. The cricothyroid muscle in innervated by the
superior laryngeal nerve, another branch of the vagus nerve[157].

1It is called recurrent because it extends in a direction opposite to that of the nerve it branches from,
specifically in this case it loops around the aorta before going back to the larynx; this happens also in
other vertebrates, the most remarkable case is in the giraffe, where it extends for about 4.5 meters[31]
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The vocal folds are two specular infoldings of mucous membrane, they stretch hori-
zontally back to front attaching anteriorly to the thyroid cartilage and posteriorly to the
anterolateral surface of the arytenoid cartilages[190]. They are composed of three differ-
ent tissues stacked one on top of the other: the upper one is a non-keratinized squamous
epithelium, under it is located a gel-like layer called lamina propria allowing the vocal
folds to vibrate, and under that are found the vocalis and thyroarytenoid muscles. The
vocal folds are separated and relaxed during normal breathing, but they can contract
and stretch to reduce or block air flow leading to their vibration during phonation. The
space between the vocal folds can thus be free or partially free, and in these cases is
called glottis, or completely blocked. Their size affects the pitch of voice, they are about
11–15 mm long in adult women and 17–21 mm in men[190].

The vestibular folds, also known as false vocal folds, are located on top of the true
vocal folds. In contrast to the true vocal folds they have a minimal role in phonation,
limited to deep sonorous tones, screams, and growls, they protect themore delicate vocal
fold allowing or closing access to the larynx.

After flowing between the vocal folds the egressive pulmonic air stream enters the
pharynx (throat), from there it goes on in the oral cavity and, if the velum allows it, to
the nasal cavity. In the oral cavity active (mobile) and passive (fixed), organs contribute
to speech production.

The pharynx is above the trachea and the oesophagus (the tube going down to the
stomach) and behind oral and nasal cavity. Here food and air entering the human body
are directed by the epiglottis, a flap of cartilage, respectively toward the stomach through
the oesophagus and the lungs through the larynx and the trachea. Due to its position it
plays a role in voicing and articulation.

The oral cavity is found in front of the pharynx. It is bounded in the frontal part by
the lips and teeth on the alveolar bone. In the top by the palate (hard in the front, soft in
the back). The floor is formed by the mylohyoid muscle (running from the neck to the
mandible) and the tongue. A mucous membrane encloses the sides. The uvula projects
downwards from the soft palate. Many articulators are located in the oral cavity.

The tongue constituting the floor of the mouth is a muscular organ covered in moist
mucosa, it starts with the two unattached portions of the tip (technically caled apex)
and the blade, its anchored part is only partially visible and extends downwards where
its root forms the front wall of the pharynx[10]. It is involved in taste, swallowing,
digestion and cleaning of teeth. Its importance in speech is due to its extreme flexibility
due to the fact that its parts can move relatively independently, to the point that they
are considered separately in phonetics.

The nasal cavity, above the oral cavity, begins at the velum and ends at the nostrils.
There are actually two nasal cavities, one extending from each nostril, each divided in
two segments, one in the bottom with respiratory purposes and one in the top for olfac-
tory purposes, where the olfactory nerve is located.

3.1.2 Phonation
Phonation, or voicing, is the process characterized by rapid openings and closings of the
vocal folds which leads to their quasi-periodic vibration and production of sound.

Although there have been different explanations for what makes the vocal folds
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vibrate, it is now generally agreed that the basic theory providing the answer is the
myoelastic-aerodynamic theory of phonation[192]. Formulated by van den Berg[170]
and later revised in [165, 192], its description of the mechanism of vocal folds self-
oscillations during phonation can be summarized as follows[192]:

• the exhalatory airflow starts and its blocked below the closed vocal folds, air pres-
sure higher than above the folds builds up

• this pressure pushes the lower margins of the vocal folds apart, starting to open
the glottis; the upper part of the folds opens with a delay

• the elasticity of the vocal folds tissues leads them to start closing, the tenser the
vocal folds the sooner they start closing (leading to a higher fundamental frequency
as will be soon discussed)

• the lower margins starts closing before the upper ones

• this causes the folds to form a shape that leads to the drop of intraglottal pressure,
this pulls the vocal folds together

• due to their elasticity the movement reverses and the glottis starts opening again
from below, and the cycle repeats

This cycle repeats on average 100-120 times per second for adult male voices and 200-
240 times per second for adult female voices, in children it can be as many as 300 times
per second[10]. These rates can be expressed as frequencies in Hertz, more specifically
they all describe the Fundamental frequency (F0). The different rates or frequencies
of vibration are heard as pitch, a variation introduced going up or down in pitch adds
intonation. Some languages use intonation tomake distinctions between different words
and are called tone languages, other languages use an intonational phrase using tone to
make a phrase sound more like a question or a statement, or make it seem incomplete.

The oscillation of the vocal folds is mostly lateral and partially toward the top, it
serves to modulate the pressure and flow of air through the larynx. This modulated
airflow is the main component of most voices phones. In phonetics the word voice refers
to sounds produced by vocal fold vibration, or voiced sounds, in contrast to unvoiced or
voiceless sounds which are produced without or with very little vocal fold vibration.
There is no vocal folds vibration when the folds are placed laterally (abducted) and are
not close enough to each other, when they are too much or not enough tensed, or where
the pressure drop is not big enough to encourage their closing after their opening. In the
next sections the voiced/unvoiced parameter in conjunction with two other parameters,
that will be introduced later, are used to construct a label for each phone.

Different vibratory patterns are possible and give rise to different vocal registers,
range of tones in human voice corresponding to a specific pattern. Some examples are:

• modal

• breathy voice

• creaky voice
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From an acoustic phonetics point of view, speech is a complex periodic wave that can
be decomposed into the sumof several sinusoidal signals, each characterized by a specific
frequency and intensity (according to Fourier’s Theory). All frequencies components
included in the signal spectrum are integer multiples of a frequency, namely F0, which
is responsible for the pitch perception of speech[95, 99]. The multiples of F0 are in
turn called harmonics or harmonic overtones. This complex periodic wave is also called
Larynx waveform (Lx), its period has a triangular looking shape with a gentler angle in
the opening phase, indicative of the exertion required to push the folds apart (meaning
the movement is slower, occupying more time), and a sharper angle in the closing phase,
indicating a much quicker drawing back together of the folds when the sudden drop in
pressure occurs[10].

An interesting way of viewing voice production is that proposed in source-filter the-
ory[62], which sees the speech production mechanism as composed of two stages[167]:

1. the above described vibration of the vocal folds due to air coming from the lungs,
that produces Lx composed by F0 and its harmonics, that is the “source” sound

2. the air and the sound wave goes up in the vocal tract where frequency components
are amplified or diminished based on the resonances of the vocal tract, that acts
as a “filter”, based on the position of its organs (places of articulation), that will be
discussed more deeply in the next section

This selective modification of the voice source spectrum produces perceptible con-
trasts, which are used to convey different linguistic sounds and meaning[190].

3.1.3 Articulation
The process of articulation consists in the movement of speech organs, normally two,
towards each other to contact and create an obstruction. The goal is to “shape” the air
flowing out of the larynx to obtain sound quality useful for speaking.

The variables relevant for this process are two

1. the “place of articulation”, that is the point where organs meet to create the ob-
struction

2. the “manner of articulation”, that is the way the obstruction is formed and released

Going more into details, a place of articulation is usually characterised by a fixed
point in the vocal tract, called also a passive or stationary place of articulation, that is
approached or contacted by its relevant active organ, also called active or mobile place
of articulation. For the greater part passive organs are located along the upper surface
of the vocal tract while corresponding active articulators are along the lower part, see
figure 3.2.

The place of articulation is used in conjunction with manner of articulation and pres-
ence or absence of voicing for classifications of phones. What follows is a list of place
of articulations with their corresponding adjectives, used in classification:

• active places of articulation, usually in the lower part
26



3.1 – Phonetics: articulatory and acoustic

Figure 3.2. Places of articulation: 1 Exo-labial, 2 Endo-labial, 3 Dental, 4 Alve-
olar, 5 Post-alveolar, 6 Pre-palatal, 7 Palatal, 8 Velar, 9 Uvular, 10 Pharyngeal, 11
Glottal, 12 Epiglottal, 13 Radical, 14 Postero-dorsal, 15 Antero-dorsal, 16 Laminal,
17 Apical, 18 Sub-apical

– lower lip (labial)
– various parts of the tongue: due to the previously described flexibility of the
tongue it is further subdivided in
∗ front (coronal), further divided into

· tip of the tongue (apical)
· blade (laminal), just behind the tip
· under the tip (subapical)

∗ body (dorsal)
∗ base/root (pharyngeal)

another parameter related to the tongue is the shape it assumes during artic-
ulation
∗ central
∗ lateral

– aryepiglottic fold (aryepiglottal)
– glottis (glottal)

• passive places of articulation, usually in the upper part

– upper lip (labial)
– upper teeth (dental)
– alveolar ridge (alveolar)
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– back of the alveolar ridge (post-alveolar)
– hard palate (palatal)
– soft palate (velar)
– uvula (uvular)
– pharynx (pharyngeal)
– epiglottis (epiglottal), at the entrance of the windpipe

In the same way, a way to classify manner of articulation is presented:

• obstruents

– plosives, also called stops, are characterized by an occlusion in the oral vocal
tract and no nasal air flow

– fricatives, characterized by continuous turbulent and noisy airflow produced
by air forced through a narrow channel obtained placing two articulators close
together

– affricates, begin like plosives and end like fricatives
– stridents, containing some fricatives and some affricates

∗ sibilants

• nasals, characterized by an occlusion of the oral tract with air passing through the
nose

• vowels, characterized by no obstruction in the airflow and the presence of phona-
tion

• approximants, characterised by very little obstruction

– semivowels, like a vowel but with the tongue closer to the roof of the mouth

• vibrants

– trills, when the airstream causes an articulator, held in place, to vibrate
– taps/flaps, a momentary closure of the oral cavity

• liquids

– laterals, the airstream proceeds along one or both of the sides of the tongue,
but it is blocked by the tongue from going through the middle of the mouth

– rhotics

For classification and labeling phones are divided in two macro categories[18]

• consonants, can be voiced or voiceless, are characterized by the presence of obsta-
cles partially or completely obstructing the airflow along the tract between the glot-
tis and the end of its path; they are labeled based on 3 parameters: voiced/voiceless,
place of articulation, manner of articulation
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• vowels, characterized by the presence of phonation and the absence of obstacles
obstructing the airflow; they are classified based on the different configuration as-
sumed by the vocal cavity for their production, in particular the position of the
tongue

The parameters for the classification of consonants have already been discussed, are
now introduced the parameters needed for vowels classification.

Vowels articulation is described mainly in function of tongue position and shape of
the lips. Main articulatory features of vowels, useful for classification, are

• height, theoretically referring to the vertical position of the tongue (or the jaw,
depending on the model), goes from high (or close) to low (or open) in seven
steps/degrees; it influences the first formant First formant (F1) (first/lowest har-
monic of F0): the higher the frequency of F1, the lower (more open) the vowel

• backness, theoretically referring to the horizontal position of the tongue relative to
the back of themouth, it is specified in five steps from “front” to “back”; it influences
the second formant Second formant (F2): a “front” position corresponds with a high
frequency F2, the opposite is true for a ”back” position

• roundedness, from the rounding of the lips, we may distinguish rounded and not
rounded vowels; rounded vowels are characterized by a lower F2 and slightly lower
F1 compared to their not rounded counterpart

3.2 Phonology
Phonology is the branch of linguistics that studies how languages organize their sounds.

3.2.1 Transcriptions, phones, phonemes and allophones
Often the written form of a sentence or a word in a given language has not a correspond-
ing pronunciation easily derivable trough rules. In Italian for example is enough to learn
a few rules to read sentences and sound relatively authentic even without knowing the
language itself. The same cannot be said about English for example.

The rules referenced in the previous paragraph are needed to translate characters
or better graphemes, the smallest functional unit of a writing system, to the equivalent
units in sounds of a given language. For a particular language, the unit of sound that
can distinguish one word from another is called phoneme. A phoneme can be consid-
ered an abstraction, it represents a set of sounds that in a particular language are not
distinguishable or, in another way, are perceived equivalently. Note that sounds that
are perceived to be the same phoneme in a language can be distinguished and perceived
as different phonemes in another.

The unit of sound in general, without considering any specific language, representing
every possible sound that the phonatory system can make, is called phone. When two
phones can be used to realize the same phoneme, in a given language, they are said to
be allophones.
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In the same way as graphemes have a concrete written representation, there exists
different alphabetic systems to associate a symbol to phone or phoneme. Examples could
be

• International Phonetic Alphabet (IPA), most widely used and well known, its 2020
revision is illustrated in figure 3.3

• Extended Speech Assessment Methods Phonetic Alphabet (X-SAMPA), designed to
map the 1993 IPA into 7-bit ASCII

Other alphabetic systems also exist, some of them were developed primarily to be
ASCII-based encoding of IPA before it became more usable thanks to wide availability
of Unicode, others are instead language specific.

Symbols from an alphabetic system for phonetic notation can be used to write tran-
scriptions, which in turn can be

• narrow, distinguishing a specific phone in a set of allophones or encoding other
useful information to reproduce exactly a specific sound

• broad, when only themost noticeable phonetic features are transcribed, an example
of broad transcription is the phonemic transcription (which disregards allophonic
differences)

3.2.2 The phonemes of the Italian language
Different languages have a different phonemic inventory, set of distinctive sounds, of dif-
ferent sizes. There exist spoken languages with as few as 11 phonemes in their phonemic
inventory and others with up to 140[18], the number of phonemes for a single language
changes depending on the convention used to count them. Standard Italian counts 30
phonemes, but depending on whether one does not consider separately semivowels or
considers separately consonant lengthening the count becomes 28 or 45[18].

Of the 30 phonemes of the standard Italian 7 are vowels (see table 3.1) and 23 are
consonants (table 3.2).

Front Central Back
Close i u

Close-mid e o
Open-mid ɛ ɔ

Open a

Table 3.1. Vowels of the Italian language[3, 18, 19, 80]

3.2.3 Syllables
Syllables are the “building blocks” used to compose the sound of words, a syllable is a
minimum combination of phonemes that can be pronounced[18]. They are the smallest
unit for suprasegmental and prosodic facts[143].
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Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Bilabial

Dental/alveolar

Palatal

Velar

Uvular

Bilabial

Dental

(Post)alveolar

Palatoalveolar

Alveolar lateral

Examples:

Bilabial

Dental/alveolar

Velar

Alveolar fricative

Clicks Voiced implosives Ejectives

Breathy voiced

Creaky voiced

Linguolabial

Labialized

Palatalized

Velarized

Pharyngealized

Velarized or pharyngealized

Raised

Lowered

Advanced Tongue Root

Retracted Tongue Root

Voiceless

Voiced

Aspirated

More rounded

Less rounded

Advanced

Retracted

Centralized

Mid-centralized

Syllabic

Non-syllabic

Rhoticity

Dental

Apical

Laminal

Nasalized

Nasal release

Lateral release

No audible release

(     = voiced alveolar fricative)

(     = voiced bilabial approximant)

Typeface: Doulos SIL

or or

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2020)
2020 IPACONSONANTS (PULMONIC)

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

OTHER SYMBOLS

DIACRITICS

Some diacritics may be placed above a symbol with a descender, e.g.

VOWELS

Where symbols appear in pairs, the one
to the right represents a rounded vowel.

SUPRASEGMENTALS

TONES AND WORD ACCENTS
LEVEL CONTOUR

Voiceless labial-velar fricative

Voiced labial-velar approximant

Voiced labial-palatal approximant

Voiceless epiglottal fricative

Voiced epiglottal fricative

Epiglottal plosive

Alveolo-palatal fricatives

Voiced alveolar lateral flap

Simultaneous and

Affricates and double articulations
can be represented by two symbols
joined by a tie bar if necessary.

Primary stress

Secondary stress

Long

Half-long

Extra-short

Minor (foot) group

Major (intonation) group

Syllable break

Linking (absence of a break)

Extra
high
High

Mid

Low
Extra
low

Downstep

Upstep

Rising

Falling
High
rising
Low
rising
Rising-
falling

Global rise

Global fall

Close

Close-mid

Open-mid

Open

Front Central Back

Figure 3.3. Full IPA chart (2020 revision) from [92]
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Bilabial Labiodental Dental Alveolar Postalveolar Palatal Velar
Plosive p b t d k g

Affricate ts dz tʃ dʒ
Nasal m n ɲ
Trill r

Fricative f v s z ʃ (ʒ)
Approximant j

Lateral approx. l ʎ

Voiced labial-velar approximant w

Table 3.2. Consonants of the Italian language[3, 18, 19, 80], symbols to the right in a
cell are voiced, to the left are voiceless. The phone in parentheses does not belong to the
Italian phonemic inventory by itself, but only in its affricate forms.

In acoustic terms there are two main theories defining the syllable: one in in terms
of sonority the other in terms of prominence[143]. According to the first theory the
syllable is a portion of word between twominimums in sonority[113], the (relative) peek
in sonority in-between is defined as the nucleus of the syllable[143]. Every spoken word
or sentence is thus constituted by an alternating sequence of phones that have higher
sonority, corresponding to a more open vocal tract, and phones with lower sonority,
corresponding to a more obstructed vocal tract[113].

In most languages, Italian included, a syllable is built around a vowel[18, 143]. Con-
sonants and semivowels are added around the vowel that in a syllable is called “nucleus”,
while the consonants and semivowels added are called “onset” when before the nucleus
and “coda” after the nucleus[18, 113, 143]. The term “rhyme” is used to refer to the
set of nucleus and coda[143]. The onset and the coda can be composed by more than
one element[113]. In Italian usually syllables have an onset composed of zero to three
consonants (a-more V, ca-sa CV, pla-nare CCV, strap-po CCCVC, where C represents a
consonant and V a vowel) and a coda composed by zero or one consonant[143]. Syllables
that end with a coda, that is with a consonant or semivowel, are called “closed” while
those that don’t are called “open”[18, 113].

In other languages, it is possible for lateral, vibrant or nasal consonants to be the
nucleus of a syllable, due to the relatively higher sonority compared to other conso-
nants[113].

When one or two semivowels are present in a syllable together with a vowel re-
spectively a diphthong or a triphthong is obtained[18]. A diphthong, also called gliding
vowel, is a vowel involving the movement of the tongue between two different target
positions, one for the first vowel sound and one for the second in the same syllable[10].
A triphthong is always a monosyllabic vowel combination involving a quick but smooth
movement of the articulator from one target position, to a second, and then to a third.
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3.3 Prosody and non segmental aspects
From the Greek “pros” (towards) and “ōidē” (song), the word prosody originally meant
“song sung to music”[147]. In modern phonetics this word is instead related to the prop-
erties of speech that cannot be derived from the segmental sequence of phonemes un-
derlying human utterances[126].

A segment is a distinguishable sound in a specific language[10], a phone (vowel or
consonant) composing a word or a phrase[29]. Non-segmental aspects are concerned
with what happens when phones contact and phenomena involving units larger than
phones, they are subdivided accordingly in intersegmental and suprasegmental.

The main intersegmental aspects are coarticulation and phonotactics[113].
Suprasegmental facts are related to syllables, stress, tempo, rhythm and intonation[29,

113].

3.3.1 Connected speech and intrasegmental aspects
The term connected speech is used to refer to sounds forming words or sentences in
spoken language when analysed as a continuous sequence[37]. Analysis of connected
speech, as opposed to linguistic units seen in isolation, shows sound changes affecting
phrases, words, lexemes, morphemes, syllables, phonemes or phones[37].

In the articulation of a phone three phases are typically distinguishable[143]:

• onset phase, when the articulators move to reach the appropriate position for the
production of a given sound

• medial phase, in which the vocal tract maintains the optimal configuration it has
reached for sound production

• offset phase, when the articulators move away from the current configuration and
possibly prepare for the configuration needed for the next phone

When phones are inserted in connected speech they are usually influenced by pre-
ceding and following phones[113]. The movements that the phonatory organs have to
make to reach the required positions for a given phone change depending on the posi-
tion in which they were for the previous phone and on the position in which they need
to be for the next phone[113].

This is seen as an overlap between onset and offset phases for consecutive phones,
and it gives origin to mutual interferences named coarticulation.

In some cases coarticulation can lead to more prominent effects, causing the involved
phone to transform in a different phone, these cases are described as assimilation and
are common in many languages[113].

Coarticulation and assimilation are further subdivided in two types

• anticipatory, more frequent, when phonatory organs are taking the required posi-
tion for the articulation of a particular phone and an articulator not involved in it
begins to move in the direction of an articulation needed for a later sound in the
utterance[37, 143]
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• perseverative, when a sound retains a characteristic deriving from an earlier articu-
lation[37], because movements or positions from a previous phone are kept in the
articulation of the current phone[143]

An intersegmental aspect affecting coarticulation is tempo[113], that is the speed of
speaking, also known as rate[37]. It can be measured in phones per second, it is usu-
ally described with the terms “allegro” and “lento”, borrowed from music, respectively
meaning faster and slower than usual[37, 113].

Tempo can affect speech making it[113]

• ipoarticulated, usually associated with a faster speed of speaking, is a characterized
by prominent coarticulation leading to lower articulatory precision, simplification
of sequences of vowels or consonants, weakening or omissions of phones or sylla-
bles. Some speakers are still able to properly articulate speech also at higher speeds,
while others are characterized by ipoarticulation also at lower speaking speeds

• iperarticulated, usually associated with slower speech, typical of reading aloud or
dictation. In iperarticulated speech, phoneweakening and coarticulation are present
only when “mandatory” for a specific phones sequence

Another intersegmental aspect is related to phone sequences and is called phonotac-
tics. More precisely phonotactics concern the sequential arrangements of phonological
units which occur in a language, that is: what counts as a phonologically well-formed
word[37] based on a set of principles that limit the possible successions of phones[113].
As already seen in 3.2.3, only some alternances of consonants and vowels are allowed in
Italian, similar “rules” are present also in other languages. In addition to that, only some
sequences of specific consonants can be used, to form syllables, in a given language[18].

3.3.2 Suprasegmental aspects
Effectswhich extends overmore than one sound segment, that ismore than one phone[37].
As previously stated, suprasegmental aspects include length, stress, pitch and rhythm,
that are now described a little more in detail.

Length refers in phonetics to the duration of a sound or utterance (in this case is
also simply called duration) and in phonology to the relative durations of sounds and
syllables (in this case is also called quantity)[37]. In phonetics length is defined as the
time between the onset of a phone and its offset[18], in theory vowel articulation can be
hold and thus last indefinitely[18] but, in Italian, short ones usually last 40-80 millisec-
onds while long ones are around 80-150, their length depends on syllabic structure[143].
Fricative consonants can in theory be held indefinitely too, while other consonants can
be held only momentarily[18]. In phonology long and short lengths are recognized both
for vowels and consonants, that is languages often have one degree of phonological
length, and may have more than one[37]. For example long vowels occur as distinguish-
able phonemes in Arabic and Finnish but not in Italian or French in which they are
allophones, while long (or double) consonants occur and are distinguishable phonemes
in Italian and Luganda but not in English or French[18, 37, 143]. The long and short
adjectives should be considered only in relative terms[18].
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The term stress, or accent, in phonetics refers to the force or intensity used in produc-
ing a syllable[18, 37] in comparisonwith other syllables in aword or phrase[18]. Stressed
and unstressed syllables are usually distinguished, the former being more prominent
than the latter and marked in transcription with a raised vertical line[37]. The promi-
nence of the stressed syllable is usually due to an increase in loudness, but increases in
length and often pitch may contribute to the overall impression of prominence[37]. The
position of the stress in a language can be fixed or free, in the former case its position its
predictable[10, 18]. Some pairs of words or word sequences in some languages (Italian
included) may be differentiated only by stress variation[18, 37].

Pitch is the acoustic correlate of the frequencywithwhich the vocal folds vibrate[143].
The intonation is instead the melodic trend with which a phrase or an entire tonal group
or rhythmic group is pronounced, that is how pitch varies while speaking[18]. Intona-
tion in most languages allows distinguishing, for example, among affirmations, excla-
mations or questions[18].

Rhythm in this case refers to the division of time into equal portions by languages,
called also “isochrony”[10]. Languages can be syllable-timed, mora-timed or stress-
timed[10].

3.4 Speech and language disorders, voice pathologies
In 2000, [154] reported that communication disorders were estimated to have a preva-
lence of 5% to 10%. Using data collected in the same time period [153] reported that the
lifetime prevalence of a voice disorder was 29.9%. Voice disorders belong, with fluency
and articulation impairments, to the category of speech disorders, which in turn are a
subcategory of communication disorders[46].

A communication disorder is defined by [46] as ”an impairment in the ability to re-
ceive, send, process, and comprehend concepts or verbal, nonverbal and graphic symbol
systems”. Communication disorders are caused by one or a combination of speech dis-
orders, language disorders, hearing disorders and auditory processing disorders[46]. A
communication disorder may result in a primary disability, or it may be secondary to
other disabilities; it may range in severity from mild to profound, and it may be devel-
opmental or acquired[46].

This chapter provides a brief introduction to speech and language disorders in general
and then briefly elaborates on their incidence in NDs and more specifically in PD.

3.4.1 Speech disorders and voice pathologies
A speech disorder is defined as impairment in any of its inter-related components[43],
are considered subcategories of speech disorders[46]:

• articulation disorders consist in atypical speech sounds production characterized by
substitutions, omissions, additions or distortions that may interfere with intelligi-
bility; an example could be difficulty producing [r] sounds in the respective lan-
guage’s standard pronunciation; articulation disorders are not to be confused with
motor speech disorders, such as dysarthria (in which there is actual impairment of
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the speech musculature) or developmental verbal dyspraxia (in which motor plan-
ning is severely impaired)

• fluency disorders are a change or interruption in the flow of speaking characterized
by atypical rate, rhythm, and repetitions in sounds, syllables, words, and phrases

• voice disorders are characterized by abnormal production and/or absences of vocal
quality, pitch, loudness, resonance, and/or duration, which is inappropriate for an
individual’s age and/or sex

As previously stated, a voice disorder occurs when voice quality, pitch, and/or loud-
ness differ or are inappropriate for an individual’s age, gender, cultural background, or
geographic location[174]. It can be hard to distinguish what is appropriate or normal
and what is not because of different perceptions of what is normal and factors that affect
what should be considered normal. However, according to [79], it is possible to iden-
tify some common characteristic that can be regarded as synonyms of non-pathological
voice condition. Specifically they refer to the perceptual definition presented in [9], that
can be summarized in the following points

• a pleasant quality, with an absence of noise, inappropriate breaks, perturbations or
atonality;

• pitch in accordance to the age and sex of the speaker;

• loudness that is appropriate to the communication event;

• pitch and loudness variations that are available to express emphasis, meaning or
subtleties indicating individual feelings and semantic differences;

• sustainability to meet social and occupational needs.

Abnormal voices do not possess any, a combination, or all of the above properties.
Typically, three types of aberrant voices are usually identified[9, 79]:

• muteness, characterized by the absence of vibration of the vocal folds coupled with
the inability to produce audible sounds

• aphonia, characterized by the absence of vibration of the vocal folds and the ability
to produce sounds, resulting in a voice described as extremely breathy

• dysphonia, described as the absence of vocal quality, pitch, loudness, and/or vari-
ability appropriate for an individual’s age and/or sex

[79] proposes to consider superclasses “vocal aspects”, comprising pitch and loudness,
and “vocal quality”, comprising resonant characteristics and vibrational patterns of the
focal volds. Vocal aspects are seldom studied, much more attention has been dedicated
to vocal quality[79].

36



3.5 – Effects of Parkinson’s disease on speech and discourse

3.4.2 Language disorders
A language disorder is impaired comprehension and/or use of spoken, written and/or
other symbol systems[46]. The disorder may involve in any combination[46].

• Form of language

– phonology, the system of sound for a language and the rules that govern sounds
combinations in it

– morphology, structure of words and construction of word forms
– syntax, order and combination ofwords to form sentences, relationships among
the elements within a sentence

• Content of language

– semantics, meanings of words and sentences

• Function of language

– pragmatics, combines the above language components in functional and so-
cially appropriate communication

3.5 Effects of Parkinson’s disease on speech and discourse
Voice disorder in PD is prevalent affecting 70 to 90% of those with PD, abnormalities in
acoustic analysis are found as frequently even in early PD[108].

Over 200 years ago, in “An Essay on the Shaking Palsy”[134], James Parkinson de-
scribedmotor and non-motor symptoms of PD.Most of the essay was dedicated tomotor
problems, especially tremor, however several non-motor problems were mentioned too,
like sleep problems and constipation[43]. Notably, speech and swallowing impairments
in the advanced disease are described as “His words are now scarcely intelligible and he
is not only no longer able to feed himself, but when the food is conveyed to the mouth,
so much are the actions of the muscles of the tongue, pharynx and impeded by impaired
action and perpetual agitation”[43, 134].

3.5.1 Why PD affects speech?
Emerging evidence suggests that voice dysfunction is the earliest sign of motor impair-
ment in PD[108], a way to justify this is that fine motor control involved in vocalization
probably results in dysfunction before the limbs, reductions in the variability of F0 of
speech can be noticed up to 10 years before diagnosis[85, 140].

3.5.2 Characteristics of PD speech
Speech abnormalities occur across the interconnected domains of[127]

• phonation, with occurrence of reduced voice volume (hypophonia) and altered
voice quality (dysphonia)
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• articulation, which is impaired by a reduction in the range of articulatory move-
ments (hypokinetic articulation)

• prosody, with the manifestation of dysprosody by flattened pitch inflection (mono-
pitch) and loss of stress (monoloudness)

PD speech features include also festination and hesitancy.

3.5.3 Treatment
Treatment modalities include[43]

• Medication optimization or pharmacological intervention,

• speech therapy,

• surgical treatment, such as

– deep brain stimulation (DBS)
– vocal fold augmentation
– others…
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Chapter 4

Literature review

This chapter presents a literature review on the topic of automatic voice and speech
analysis for the diagnosis of specific medical conditions, with a focus on PD, covered by
section 4.1. Later, sections 4.2 and 4.3 provide a review of key publications and recent
advances in the fields of ASR and FA respectively and conclude by analyzing their use
in the context of 4.1.

4.1 Automatic voice and speech condition analysis
The complex nature of speech production leads to a product that embeds much more
data than the linguistic content encoded in sounds it was meant to convey[78]. This
embedded data is usually described in four dimensions[78]

• paralinguistic, information about the affective, attitudinal or emotional state of the
speaker

• extralinguistic, identity and state of the speaker such as age, sex, condition and
similar

• linguistic, themessage, variations in language, dialect, sociolect, idiolect and speech
style

• transmittal, physical location of the speaker

Many publications exist in the literature for automatic systems leveraging speech to
isolate a component from these dimensions, examples are systems able to determine
speaker identity, age, sex, emotions, level of interest, accent, and dialect[78].

In the clinical setting, the use of voice recordings for the analysis of speaker condition
is gaining popularity[78]. For example, acoustic analysis of the subject’s speech by an
expert clinician is part of the diagnosis and monitoring of many common neurological
conditions, like PD[15, 125].

Traditionally, the diagnosis of speech or voice disorders can involve neurological,
radiological, psychological, instrumental and perceptual (acoustic) assessment meth-
ods[15, 78]. The latter one extracts not quantifiable multidimensional information and
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describes them qualitatively[78]. Moreover, during a typical outpatient visit, the clini-
cian has to interview the patient to identify any symptoms, examine previous medical
records, and perform a careful investigation of the overall health condition[78].

This process is[15, 78]

• time-consuming and expensive, leading to less frequent evaluations and more in-
consistent results due to a high dependence from the patients’ conditions at the
time of recording;

• subjective, given that the evaluation is strongly dependent on the clinicians’ exper-
tise

To mitigate these problems, AVSCA1 systems have been developed to analyze, clas-
sify, and quantify voice alterations consequent to speech disorders. Given the close
relationship that exists between acoustic features extracted from speech or voice and
related pathology, automatic systems can and have been designed to provide objective
measurements of a patient vocal condition, reducing the evaluation time and the cost
of diagnosis and treatment[78]. They also provide the added advantage of avoiding in-
vasive procedures, employing speech signals which are easily recorded by inexpensive
means[78].

AVSCA systems have been extensively applied to laryngeal pathologies, several ex-
amples exist also for other disorders such as PD, obstructive sleep apnea, AD, dyspha-
gia and lupus[78]. Speech analysis has been singled out as a cost-effective and reliable
method for detecting the presence of mild cognitive impairment[111] and NDs such as
AD[111] and PD[118]. In the past ten to twenty years, many articles and studies have
been published identifying characteristic speech features useful for the accurate distinc-
tion of healthy elder people and those affected by PD[119, 125] or AD[111].

In this context, 4.1.1 introduces the building blocks of a AVSCA system, 4.1.2 de-
scribes difficulties in the actual use of AVSCA systems, while 4.1.3 presents applications
of AVSCA systems to PD and positions this work in the context of related works and
literature.

4.1.1 Building blocks
An AVSCA system usually follows a pattern recognition-like structure[78]: given an
input acoustic signal, characteristics are extracted in the form of a set of features to
accomplish a further decision-making task downstream.

The architecture of the system is conditioned to two important design decisions[78]

• type of input speech, could be sustained phonation of vowels or running speech; the
latter (as stated in the introduction to chapter 3) is further subdivided in sponta-
neous, reactive and imitative, each of these categories can be leveraged to extract
different kinds of information for different kinds of diagnosis;

1Slightly extending the concept of Automatic Voice Condition Analysis (AVCA) proposed by [78] to
cover aspects of speech not dependent only on voice or phonation
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• output decision type, could be detection or binary classification (is distinguishing
control and pathological), identification or multi-class classification (distinguishing
between multiple disorders affecting speech), or assessment/grading (a score on a
perceptual rating scale)

In choosing the type of input speech one may consider that sustained phonation is
easier to analyze, straightforward for the speaker, allow for analysis of voice in isolation
from other speech or linguistic aspects, and their simpler acoustic structure may lead to
more consistent results[78].

On the other hand, using running speech as input allows for the evaluation of the per-
formance of the articulatory system (3.1.3) and consider factors like coarticulation (3.3.1)
which introduces dynamical effects that can be important for certain applications[78].
Moreover, it is desirable to analyze running speech because it is a more realistic use of
voice and the speakers are less likely to compensate for voice problems[78]. Running
speech enables also the analysis of suprasegmental aspects (3.3.2) of speech like varia-
tions in pitch and loudness, onsets, terminations, breaks[78].

The input audio stream, of a specific type of speech among the ones just discussed,
usually goes through the following blocks[78]

• preprocessing. The audio signal is decomposed in short equal-length frames, a du-
ration for which the process generating the signal can be assumed to be stationary;
frames usually partially overlap and on each frame a window function is typically
applied to improve spectral properties; voiced/unvoiced or silence detectors can be
added to analyze only intervals containing phonation or actual speech respectively;
filtering may be used to accentuate certain frequencies relevant to speech, but this
does not necessarily improve performance of the system and can be problematic
when noise-like sounds are the target of some parts of the analysis.

• feature extraction. Features that represent the properties of the classes under anal-
ysis are computed. The result is a vector of d features, usually based on temporal
and acoustic analysis, perturbation and fluctuation, spectral-cepstral, complexity
and others.

• dimensionality reduction. Removal of redundant or irrelevant features that might
affect performance. Several methods are usable, based on singular value decom-
position, linear discriminant analysis, some form of principal component analysis;
a decision-making approach to feature selection can also be adopted using a per-
formance metric obtained using a classifier/regressor, correlation and information
can be used for a filter feature selection approach, while it is also possible to embed
feature selection so that it is done in the training of the final model.

• machine learning and decision-making. Supervised or unsupervised machine learn-
ing algorithms used to evaluate the desired output. Among these, the most com-
mon include Support Vector Machines (SVMs), Artificial Neural Networks (ANNs),
Deep Neural Networks (DNNs), Hidden Markov Models (HMMs), Random Forests,
Linear Discriminant analysis, k-Nearest Neighbors (k-NN), Bayesian classifier, or
regression techniques.
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• evaluation of the system. This step usually involves a test set to assess the perfor-
mance of the system. Test set selection and evaluation can be performed by means
of several techniques, including k-folds cross-validation (one of the more popular
in AVSCA), split sample, leave-one-out, bootstrapping, cross-dataset validation; the
evaluation is used to compute metrics, the simplest one used is the accuracy, while
in the case of binary detection systems Receiver-Operating Curve (ROC), Detection
Error Tradeoff (DET) and Area Under ROC Curve (AUC) are common.

In the end, a decision is obtained as the output of this flow, according to the output
decision type chosen.

4.1.2 Complications
A major source of errors in AVSCA is the variability embedded in speech, examples of
inter-class variability are[78]

• dialects (impacting phonology, morphology, syntax, lexicon and/or semantic level)
and accents (having an impact mostly on the phonological level), with non-prestige
social dialects often associated with disordered speech;

• vocal effort is the subjective interpretation of the level of adaptation of the speech
to demands of communication, a high level of adaptation can cause large variations
in the parameters examined by AVSCA, causing a normophonic voice to seem less
so and vice versa;

• emotions which can act as a confounding factor

• sex and age, which account for most of the variability in ASR systems, can act as a
confounding factor due to physiological, acoustic, and psychophysical factors.

Data concerning some of these factors can be provided as input parameters to models
in the system to adjust the system behavior and support in decision-making[78].

Other influences may be external and dependent on the channel, such as differences
in instrumentation, procedure, environment and transmission mean; including also the
impact of noise from the environment or the speaker[78].

4.1.3 Applications to Parkinson’s Disease (PD) and related work
A growing body of literature in the past decades[119, 125] has been focusing on speech
and voice impairment of people with PD, mainly including automatic and computerized
analysis.

In this context, several studies exist using different kinds of input speech obtained by
having the patient perform different tasks, to ultimately consider mainly three aspects
of voice/speech[119, 125]

• phonatory, related to the glottal production of sound and its resonant characteristics
in the vocal tract; typically analyzed through sustained vowel sounds
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• articulatory, related to the modifications to the speech sounds by muscles in the
upper vocal tract; could be analyzed with diadochokinetic tasks, characterized by
rapid, repetitive and consonant-rich speech which can highlight defective speech
articulation, as well as sentence repetition and connected speech

• communicatory, related to the content/meaning of speech; requires a task which
leads to the production of connected speech, which is usually obtained through a
text-based or conversational task

In [4] Amato et al. performed a multi-level analysis progressively combining a to-
tal number of 126 features, extracted from the entire signal, voiced segments and on-
set/offset regions. For each of the voiced segments, features were computed on a frame-
basis and on the entire signal, hence statistics were extracted to perform a dimensionality
reduction. They used recordings of 25 isolated words for each subject from the PC-GITA
Colombian Spanish corpus, well-balanced in terms of age and gender including 50 PD
patients and 50 healthy controls, to train a k-NN model for the binary classification of
PD patients. The same dataset has been used for validation and testing, obtaining a 99.4%
ten-fold cross-validation accuracy and a 94.3% accuracy in testing. Note that the auto-
matic segmentation performed in this work, aided by the Praat software, was able to
distinguish voiced from unvoiced segments and provide onsets/offsets regions, but does
not take into account phones or phonemes.

More recently, Amato et al. [5] analyzed the Transition Regions (TR) of specific pho-
netic groups to model the loss of motor control and the difficulty to start and stop move-
ments typical of PD.They extracted 60 features from pre-processed vocal signals coming
from two different datasets, Italian Parkinson’s Voice and Speech (IPVS) (5.1.3) recorded
in a controlled environment using professional equipment and an additional dataset
recorded by patients in their homes using smartphones. The features obtained have
been used to optimize two SVMs, one for the controlled environment dataset and one
for the other, obtaining respectively an accuracy of 98% ± 1.1 and 88% ± 2.8 in 10-fold
cross-validation on the respective datasets, for the task of discriminating PD patients
from healthy controls. It is worth noting that the segmentation required to find the TRs
in [5] is performed manually to avoid introducing a bias in the results from the intrinsic
error of an automatic segmentation system[5].

The main purpose of the present work is to implement a ASR and FA system to be
used in the architecture of [5] to replace the manual segmentation step, enabling further
automation and thus increasing the scalability and reducing the cost of the proposed
solutions. It can also add information about phonemes in the architecture of [4].

Beyond its main purpose, this work enables the analysis of spontaneous speech and
different recording tasks, not requiring a transcription, and can add other useful features
for classification, such as measure of speech intelligibility. Indeed this latter proved to
be efficient in [50], although the intrinsic limitations caused by the use of a proprietary
system developed by a third part. These limitations can be overcome with the “open”
structure of the present work.
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4.2 Automatic Speech Recognition (ASR)
Automatic Speech Recognition (ASR), or Speech-to-Text (STT), is the task of recognizing
and translating spoken language to text.

Research in ASR has attracted a lot of attention over the past six to seven decades[96].
The first ASR systems date back to 1952 when researchers from Bell Laboratories built
“Audrey”, a system able to recognize isolated digits from a single speaker[96]. The sys-
tem, similarly to others that followed shortly after, was based on acoustic phonetics,
using the formant frequencies during vowel regions of each digit. This first system was
followed by some similar digit, vowel, syllable or phoneme recognizers in the 1950s and
1960s[96]. Most notably J. Sakai and S. Doshita from the University of Kyoto introduced
a segmenter in their 1962 phoneme recognizer, enabling the use of continuous speech as
input. In 1959, D. B. Fry and P. Denes incorporated statistical information about allow-
able phoneme sequences in English increasing the accuracy of their phoneme recogni-
tion system[96]. Later in 1964 and 1968, T. B. Martin et al. and T. K. Vintsyuk respec-
tively, introduced a way of avoiding the use of an explicit speech segmenter in favor of
the adoption of a non-uniform time scale for aligning speech patterns[96]. Both works
paved the way for dynamic time warping and other dynamic programming based solu-
tions, such as the Viterbi algorithm[96]. The late 1960s have seen the introduction of
Linear Predictive Coding (LPC), source-filter theory (3.1.2) based model to represent or
analyze speech[96]. By the mid 1970s fundamental pattern recognition techniques are
applied to ASR, leveraging LPC methods[96].

During the early 1970s funding to the Speech Understanding Research (SUR) pro-
gram was provided by the United States Defense Advanced Research Projects Agency
(DARPA)[90, 96]. Among the systems built for this program, the Carnegie Mellon Uni-
versity’s “Harpy” was shown to recognize speech with reasonable accuracy, using a
vocabulary of 1011 words[90, 96]. In this system the input speech is put through para-
metric analysis and then segmented, this segmented parametric sequence is then put
through template matching, a technique which had particular success in these years[96].
A graph search is then used, introduction of the beam search algorithm, on the output of
the template matching to find the highest score sequence of words satisfying the lexical,
syntactical and word boundary rules[90, 96].

In parallel with the efforts from SUR, IBM and AT&T Bell Laboratories carried their
speech recognition research using two different approaches which became two different
schools of thought on how to realize solutions with commercial viability[96].

IBM had the goal of making a “voice-activated typewriter”: they developed a speaker-
dependent system with a focus on the size, as large as possible, of the recognition vocab-
ulary and the language model, describing how likely a sequence of words or phonemes
would be[96]. Language models became fundamental in later large vocabulary ASR sys-
tems: it was shown that an n-grammodel with n ≥ 3 outperforms a human in predicting
the next word in a sentence[96].

AT&T Bell Laboratories, to provide automated telecommunication services like voice
dialing or phone-calls routing, focused on speaker-independent systems[96]. With speech
clustering and statistical modeling techniques, the emphasis was on the acoustic model
over the language model[96]. This led also to the development of a keyword spotting ap-
proach, able to recognize single words in running speech, more than sufficient for some
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use cases[96].
Despite the differences, the efforts by IBM and AT&T Bell Laboratories had in com-

mon a strong mathematical formalism which, together with the profound influence they
had at the time, led to the development and adoption of statistical methods in the fol-
lowing years[96].

4.2.1 Traditional approaches
ASR in the 1980s transitioned from template-based approaches to more rigorous sta-
tistical modeling frameworks, among those the most popular became the HMM which
remained the foundation of most ASR systems until the early 2000s[96, 179].

HMMs are a formal foundation for probabilistic modeling of linear sequences “label-
ing problems”[55]. A Markov process is a process whose next state only depends on
the current state, if a Markov process has a finite state space and discrete time-steps it
is known as a Markov Chain[148]. A hidden Markov chain X has unobservable states
(“hidden”). A HMM learns about this hidden chain through an observable process Y
whose outcomes are influenced by X in a known way and only by the outcomes of X of
the corresponding time instant[148].

A HMM could be optimized using an Expectation-Maximization algorithm like the
Baum-Welch (equivalent to training in machine learning)[90, 96], evaluated using the
Forward or Backward algorithms[90] and its output efficiently decoded through the dy-
namic programming Viterbi algorithm[55].

Applications of HMMs to ASR first used a Gaussian distribution for the observations,
and later had more success, especially in speaker independent and large vocabulary per-
formance, with the use a Gaussian Mixture Model (GMM) pioneered by Bell Laborato-
ries[96].

In the 1990s, HMMswere extendedwith finite-state grammar to account for the struc-
ture of language at an articulation and pronunciation level, improving performance and
efficiency in large vocabulary continuous speech recognition[96].

HMM-based models can generally be divided into three parts, each independent and
with a different role[178]:

• the acoustic model, for the mapping between speech input and feature sequence
(typically a phoneme or sub-phoneme sequence)

• the pronunciation model, typically constructed by professional human linguists, for
mapping between phonemes (or sub-phonemes) to graphemes

• the language model, mapping the character sequence to a final transcription
These different modules usually use different technologies, HMMs are mainly used to

do dynamic time warping at the frame level while GMMs are used to calculate emission
probability for the HMM hidden states[178].

The 1990s have seen also the development of open research tools such asHTK, Sphinx,
FSM Library and others started to be available simplifying the development of new sys-
tems[90, 96].

The 2000s have seen a shift toward ANNs. In the late 1980s, the possibility to use
error back-propagation on new more powerful hardware enabled a comeback of ANNs,
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especially in pattern recognition with the multi-layer perceptron able to approximate
any function to an arbitrary prcision[96]. The combination of HMMs and DNNs led to
significant performance improvements, with DNNs replacing GMMs and learning pow-
erful discriminative features while leveraging all the existing research on HMMs[90].
The use of DNNs instead of GMMs led to the use of simpler features such as spectro-
grams and filter banks to allow the DNN to discover more useful representations on its
own[90].

Moreover, the massive amount of data starting to become available enabled improve-
ments in acoustic and language models[90]. For example, eliminating the need for ex-
plicit segmentation and labeling of phonetic strings[90].

As DNNs were replacing GMMs improving acoustic models, Recurrent Neural Net-
works (RNNs) were a significant improvement over N-gram language models and vari-
ants[90].

HMM-based models have been the state of the art for ASR until relatively recently,
but that was not without difficulties in their practical use[178]

• complex training process difficult to globally optimize, due to the different training
methods and datasets used by the different parts of the model; each module is opti-
mized individually not necessarily converging toward the global optimality for the
ASR system

• conditional independent assumptions are used to simplify the model and its training,
but they are often not realistic in ASR systems

4.2.2 End-to-End (E2E) approaches
The wide availability of large quantities of data and the successful adoption of deep
learning technologies for other tasks, coupled with the shortcomings of HMM-based and
traditional models led to more andmore works studying End-to-End (E2E) systems[178].

This new type of system and the corresponding model are called end-to-end because
of their two main characteristics and related advantages[105, 178]

• they directly map an input audio sequence to an output sequence of words or sym-
bols (they do not require further processing to achieve the true transcription or to
improve recognition performance)

• they merge multiple modules into a single deep network

– enabling joint training, allowing the use of a global optimization goal that is
more relevant to the final evaluation criteria

– removing the need for many modules and the mapping between carefully-
designed intermediate states

Even though the model is a single deep network it is usually decomposed into differ-
ent parts with different subtasks (note that there is no clear division between them in
the network as there would be in traditional models) these include[178]

• an encoder, realizing the mapping of the input speech sequence to a feature se-
quence;
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• an aligner, which does the alignment between the feature sequence and language;

• a decoder, which decodes the output of the encoder and the aligner into the final
output of the model

Another advantage of E2E models is that they do not require an explicit alignment of
the audio to the text, using a soft alignment approach that associates each audio frame
to all possible labels with a certain probability distribution[178]. E2E models can be
categorized based on their implementation of soft alignment[105, 178]

• Connectionist Temporal Classification (CTC)-based, which enumerates and then ag-
gregates all possible hard alignments while assuming that the output labels are
independent of each other, this last assumption implies that a CTC cannot incor-
porate a language model, but studies have obtained good results integrating it on
top

• RNN-transducer, enumerates and then aggregates all possible hard alignments but
does not assume independence among output labels and thus can learn the lan-
guage model

• Attention-based, uses the Attention mechanics to directly compute the soft align-
ment information between input audio and output label, also in this case the model
can learn the language model

Hybrid architectures are possible too, for example, [98] uses a combination of CTC-
based and Attention-based alignment.

4.2.3 Supervised, semi-supervised, self-supervised and unsupervised
approaches

The methodologies for ASR described in 4.2.1 and even those described in 4.2.2 may
have relaxed the requirements on aligned labels for training but still require transcribed
speech, which makes them unusable for the vast majority of languages and limits their
performance for others[13]. This is because they have been typically trained with a
supervised approach, meaning that for each audio recording in the dataset the model is
provided the corresponding transcription during training; however, datasets with these
characteristics are relatively expensive to realize and are not available for the majority
of languages, or they are not large enough to obtain good results with simple supervised
approaches[13].

To leverage data with no transcription associated, more widely available for more
languages, three main approaches have emerged[13]

• semi-supervised ASR through self-training, which consists in using pseudo labels,
the output of a ASR model previously trained with a supervised approach, for each
recording and then proceed with training as in supervised approach

• self-supervised, defining and using pretext tasks to learn useful representations of
speech audio from audio only
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• unsupervised, learn from raw audio signal only to identify meaningful units in the
sound stream[2]

Starting from 2015, the Zero Resource Speech Challenge (ZRSC) has the goal of ac-
celerating research in the field of unsupervised speech processing[2]. The interest in
unsupervised approaches is also motivated by the fact that humans learn a lot about
speech just by listening to others around them talking without explicit supervision, even
if other environmental and interactive factors certainly play a role[2, 13].

With no labels, unsupervised learning can only discover recurring patterns in the
input audio signal and learn the relationships between those patterns[2]. The model
learns abstract representation that need other learning approaches to be adapted to or-
thographic or phonetic form[2].

4.2.4 State of the art
At the time this thesis work began, to the best of the author’s knowledge, the XLS-R
model presented in [12] was the state of the art for ASR on Italian.

Later, during the development of this work, [53] found that UniSpeech-ML[177] is
slightly better than XLS-R which however is found to be the second-best model for ASR
on Italian and stands very close to UniSpeech-ML in terms of Word Error Rate (WER)
(5.2.2) and Character Error Rate (CER) (a deeper and more technical discussion on XLS-R
can be found in 5.3.1).

Shortly after the publication of [53], OpenAI released Whisper[149] which is pre-
trained on even more data than XLS-R and outperforms it and Wav2Vec 2.0[14] in some
benchmarks.

4.2.5 Non-normophonic speech
The variability in speech due to the speaker dialect, provenience or social context is
usually a complication or confounding factor for ASR, due to under-representation in
the datasets on which they are trained.

Non-normophonic speech is even more problematic for common general purpose
ASR products or services, because the large datasets typically used to develop and main-
tain these systems contain recordings from people with unimpaired speech[45, 160].

The impact of dysarthric English speech from the TORGO database[155] on popular
commercial ASR systems was recently evaluated by De Russis and Corno [45], which
found[45]

• for Google Cloud Speech, a WER of 16.11% for dysarthric users with “no abnor-
malities” and 78.21% for “severely distorted”, while a WER of 3.95% is obtained on
a healthy control group;

• for Microsoft Azure Bing Speech, 23.16% and 78.59%, 6.94% on control;

• for IBM Watson STT, 14.89% and 89.08%, 5.26% on control.

A similar study has been done by Ballati, Corno, and De Russis [16] on the impact
of Italian dysarthric speech on the performance of voice assistants, finding an average
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WER of 24.88% for Google Assistant, 39.39% for Microsoft Cortana and 70.89% for Apple
Siri.

Oddly enough, Jefferson [93] found that this poor performance of ASR systems on
individuals with speech disorders may actually be a regression, with pre-2011 systems
seemingly performing better than current ones.

Recently there have been some studies and efforts aimed at improving ASR for indi-
viduals with dysarthric speech or other speech disorders[76, 87, 94, 109, 145, 150, 162,
166, 168].

In 2019[162], Google Research announced an initiative focused on helping people
with non-standard speech be better understood, called Project Euphonia, and in this
context has then collected over 1300 hours frommore than 1000 individuals with speech
disorders[109, 145].

Shortly after, Shor et al. [162] used a RNN-Transducer, in a configuration with a bidi-
rectional encoder without attention, trained on the Librispeech[132] English corpus and
then fine-tuned to obtain a personalized model for a single speaker, using the data they
just started collecting in Project Euphonia. The fine-tuning resulted in an improvement
over the base model from 59.7% to 20.9% WER for more severe speech disturbance, and
from 33.1% to 10.8% for less severe ones[162]. Another interesting finding is that 71% of
the improvement can be obtained with only 5 minutes of data for fine-tuning[162].

Later Green et al. [76] refined the approach from [162], in particular introducing the
use of layer freezing and SpecAugment[133] in the personalization/fine-tuning phase.
The accuracies of personalizedmodels were significantly better than those of the speaker
independent models used for comparison, 4.6% median WER against 31% median WER,
personalized models outperformed even human listeners, especially for moderate to se-
vere conditions[76].

In a setup similar to [76], Tobin and Tomanek [166] focused on using small amounts
of per-speaker adaptation data. They fine-tuned the personalized models with small
increments of speech data until a target WER was obtained. This approach, in an home
automation scenario, required only 3 to 4 minutes of speech to reach the target WER for
63% of speakers, 18-20 minutes for 79%[166].

These last 3 works have all been developed using data from Project Euphonia, which
at the moment is not available to the public and covers mainly English, with some pre-
liminary steps on French, Hindi, Japanese, and Spanish[146].

Having access to small datasets, it can be useful to leverage data augmentation tech-
niques (e.g. recently Jin et al. [94] introduced a new technique based on deep convo-
lutional generative adversarial networks to modify normal speech spectra to resemble
those obtained from disordered speech).

4.3 Forced Alignment (FA)

Forced Alignment (FA) is the task that, given a speech signal and its orthographic tran-
scription, automatically aligns speech and the transcription at the word and/or phone
level, usually requiring a way to map graphemes to phonemes and a statistical model of
how phones are realized[20, 114]. It can be decomposed in the sub-tasks of[20]
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• phonetization, also known as Grapheme-to-Phoneme (G2P), the process of repre-
senting text by phonetic signs

• alignment, the process of aligning speech with these signs

Several forced aligners have been developed during the past few decades[21, 70, 74,
114, 124, 151]. Due to the availability of these software solutions and their relative ease
of use, forced alignment has become widely used in scientific research on language over
the past 15 years, including the fields of sociolinguistics, phonetics, language documen-
tation, and psycholinguistics[114].

4.3.1 Methodologies and state of the art
Differentiating the available solutions there are[137]

• architecture and the underlying algorithms and models, traditional solutions are
mostly based on HMMs while recent works are exploring the use of E2E models

• languages supported, most of them support English, some of them support other
languages or support being trained/ported on other languages

• trainability, most of the solutions available have pre-trained models which are not
modifiable, some support training models with new data, from scratch or starting
from pre-trained models

• license, ranging from proprietary/closed source to more or less permissive open
source licenses

Historically, as in ASR systems, HMMs have been used at the core of FA systems[21,
70, 74, 114, 124, 142, 151], mostly with GMMs.

At the beginning of this thesis work, the Montreal Forced Aligner (MFA) as presented
in [114] and later updated[117], was regarded as the state of the art in FA for English[101,
104].

MFA uses the Kaldi ASR toolkit[142], a framework similar to the Hidden Markov
Model Toolkit (HTK)[187] but with a more permissive license allowing for easier dis-
tribution of executables removing the need for source compilation[114]. MFA adapts a
standard GMM-HMM ASR pipeline from Kaldi: it trains and uses monophone GMMs
to obtain a first alignment; then uses these alignments to train triphones GMMs that
take into account the surrounding phonetic context. The alignments generated from the
triphones GMMs can then be used to train a model with speaker adaptation[114]. MFA
derives from the Prosodylab-aligner and maintains one of its key features: its trainabil-
ity, which allows for it to be trained to work on languages different from English[114].
Its evaluation on the Buckeye[138] English corpus results in a phone level boundary
accuracy of 77% and 93% for a tolerance of 25ms and 50ms respectively, for word level
boundaries an accuracy of 68% and 88% respectively for a tolerance of 25ms and 50ms is
reported, see table 1 of [114] for more details.

As in ASR, E2E models introduce architectural improvements, they are deeper, and
they have many more parameters, adding model capacity[98].
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However, highermodel capacity and parameters count require larger training datasets
to achieve comparable levels of performance[98].

As we have seen for ASR, E2E models solve this requirement partially thanks to the
availability of larger datasets compared with the past and mostly leveraging unlabeled
data using self-supervised pre-training or semi-supervised training on pseudo-labels.

Kürzinger et al. [98] uses a pre-trained CTC-Attention hybrid ASR model from ES-
Pnet[180] to pseudo-label more training data from unsegmented or unlabeled datasets.
They introduce and use CTC-segmentation “an algorithm to extract proper audio-text
alignments in the presence of additional unknown speech sections at the beginning
or end of the audio recording”[98], the same algorithm used in this work. The CTC-
segmentation can be used on top of a CTC-based ASRmodel[98]. They evaluated its per-
formance, using the pre-trained ASR model previously mentioned, on the sentence-level
manually aligned TEDlium v2[152] corpus and compared it against HMM-based Mu-
nich AUtomatic Segmentation (MAUS)[124] and Gentle[70] and Dynamic Time Warp-
ing (DTW)-based Aeneas[1, 98]. Kürzinger et al. obtained significant improvements
against MAUS and Aeneas in terms of mean deviation from the ground truth, 0.31-0.35s
against 1.38s and 9.01s, and a percentage of boundaries with an error smaller than 0.5s,
85.1-90.1% against 74.1% and 64.7%[98]. The accuracy of MAUS and Aeneas is further
reduced when additional unknown parts are added at the beginning and end of each
sample[98]. Gentle[70] is closer to the performance of the system from Kürzinger et
al., but it still has a worse mean deviation at 0.41s and lower 0.5s-tolerance accuracy at
82.0%[98]. Differently from MAUS and Aeneas, it was more robust to the addition of
unknown audio parts[98].

Hira [84] included an implementation of the algorithm described by Kürzinger et al.
[98] and related documentation in PyTorch[136] Torchaudio[186] library, enabling easier
adoption of this methodology of FA.

More recently Li et al. [104] used a multi-task learning approach for their “NeuFA”
E2E model based on bidirectional attention: they pre-trainined the model on the Lib-
rispeech[132] English corpus and then had the model learning the bidirectional rela-
tionship between text and speech solving simultaneously the two separate but related
tasks of Text To Speech (TTS) and ASR. They evaluated their model on a subset of the
Buckeye[138] English corpus against MFA[114], having both of them trained on another
portion of Buckeye[104]. NeuFA is found to have a 23.7ms Mean Absolute Error (MAE)
at word level and a 15.7 one at phoneme level, a slight improvement against the 25.8ms
and 18.0ms respectively obtained from MFA[104]. Their accuracies for word level and
phoneme level alignments at 10ms, 25ms, and 50ms tolerances are also improved respec-
tively by 14%, 4%, 1% and 5%, 3%, 1%[104].

Very recently López and Luque [107] developed a system based onCTC-segmentation[98]
and used it to align the RTVE2022DB[42] Spanish database. They do no report metrics
on the quality of the alignment.

Another interesting development in FA has been into its cross-language use, mainly
to make reasonable quality FA available also for languages with less or no transcribed
data[101]. This task is called Cross-Language Forced Alignment (CLFA)[101]. MAUS has
a language-independent version[101] andMFAhas added a “multilingual IPA”mode[116].
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4.3.2 Forced Alignment (FA) on Italian speech
Concerning the use of FA specifically on the Italian language, the earliest article that the
author could find is [32].

Even in the early 1990s, in laboratory conditions, automatic segmentation of Italian
speech had reached very good performance with Angelini et al. [6] obtaining, with a
20ms tolerance, a 90.9% accuracy on a subset of the APASCI[7] Italian corpus and an
86.2% accuracy on a subset of the TIMIT[69] American English corpus[26]. They used an
acoustic-phonetic unit recognizer based on a HMM combined with a rule-based network
to cope with pronunciation variability, finally, the Viterbi[173] algorithm has been used
to determine the most likely phone sequence and phone boundaries[6].

In January 2011, Cangemi et al. [26] reported a 94% accuracy on a larger subset
of APASCI with a 20ms tolerance and a 99% one with 30ms tolerance. They leverage
the Speech Processing, Recognition and Automatic Annotation Kit (SPRAAK)[47] open-
source ASR package to train a GMM-HMM-based acoustic model on a portion of the
Corpora e Lessici di Italiano Parlato e Scritto (CLIPS) corpus (described in detail in 5.1.2)
combined with Vocal Tract Length Normalization (VTLN), Cepstral Mean Subtraction
(CMS), and Mutual Information Discriminant Analysis (MIDA) to increase robustness
for speaker and channel variability[26].

Shortly after, the 2011 edition of EVALITA2, “a periodic evaluation campaign of Nat-
ural Language Processing (NLP) and speech tools for the Italian language”[59], included
a FA task[38].

The EVALITA 2011 FA task provided as training and validation datasets an adapted
version of the dialogic subcorpus of the freely available CLIPS corpus and used as test-set
an unreleased batch3 consisting of approximately 10 minutes of dialogic speech recorded
and labeled during the development of CLIPS[38, 106]. The task is further divided into
two sub-tasks, according to the segmentation level[38]

• word segmentation and

• phone segmentation,

both available in two modalities[38]

• closed, allowing training and tuning only on the material provided by the organiz-
ers, and

• open, allowing the use of additional material.

There were three teams participating in this task[38]: Bigi [22], Ludusan [106] and
Paci, Sommavilla, and Cosi [130]. Table 4.1 provides an overview of the results for the
word segmentation tasks, both in open and closed modalities. Table 4.2 provides an
overview of the results for the phone segmentation task, both in open and closed modal-
ities.

2https://www.evalita.it/
3The author reached out to the organizers of the EVALITA 2011 FA task to obtain a copy of the test-set,

but unfortunately, according to them, the data that was used as test-set was not preserved.
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According to Cutugno, Origlia, and Seppi [38, 40], the evaluation was conducted us-
ing the time-mediated alignment functionality provided by the Score Lite (SCLITE) tool
in theNational Institute of Standards and Technology (NIST) Scoring Toolkit (SCTK)[161].
Time-mediated alignment replaces the default weights used for scoring by the dynamic
programming algorithm used by SCLITE with[40, 161]

D(correct) = |T1(ref) − T1(hyp)| + |T2(ref) − T2(hyp)|

D(insertion) = T2(hyp) − T1(hyp)

D(deletion) = T2(ref) − T1(ref)

D(substitution) = |T1(ref) − T1(hyp)| + |T2(ref) − T2(hyp)| + 0.001

where T1(x) is the beginning time mark of word x and T2(x) is the ending time mark
of word x[40, 161]. The distance D for the insertion or deletion of the NULL token ‘@’
is set to 0.001[40, 161]. Moreover, for some circumstances alternate transcriptions are
provided, that is the scoring system has been configured to accept as correct slightly
different transcriptions or alignments for the same reference[38]. For example, it is not
considered an error to insert a /tS/ instead of a /t/tS/, or in the case of groups of three
neighboring vowels, all possible groups of the three symbols are allowed[38].

The best results, according to the data from [38] reported in tables 4.1 and 4.2, were
those obtained by Ludusan [106].

The system developed by Ludusan [106] is also built on SPRAAK, it uses 43 context-
independent phone models based on Semi-Continuous HMM (SCHMM), in which HMM
states are globally tied, with GMMs[106]. MIDA and the Viterbi algorithm are used
during training[106]. In table 3 of [106], Ludusan reports some statistics on the shift of
their system output boundary marker from the reference4, shown here in table 4.3.

Participant Mode Corr.
%

Subs.
%

Dele.
%

Inse.
%

Error
%

Sentences
with
errors
%

Bigi Closed 97.6 1.0 1.4 1.4 3.8 17.8
Ludusan (5ms) Closed 99.3 0.1 0.5 0.5 1.2 6.7
Ludusan (10ms) Closed 99.2 0.2 0.6 0.6 1.4 7.8
Ludusan (5ms) Open 99.0 0.2 0.8 0.8 1.8 10.0

Ludusan (10ms+VTLN) Open 99.3 0.2 0.5 0.5 1.2 5.6
Paci Closed 98.4 0.4 1.2 1.2 2.8 16.7
Paci Open 97.4 1.2 1.5 1.5 4.1 14.4

Table 4.1. EVALITA 2011 FA task results of word segmentation, from tables 1 and 5 of [38]

4The author could not find an indication on which data (CLIPS portion or training set, unpublished
CLIPS portion or test set, other data) was used to compute these statistics
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Participant Mode Corr.
%

Subs.
%

Dele.
%

Inse.
%

Error
%

Sentences
with
errors
%

Bigi Closed 83.7 11.3 5.0 4.9 21.2 93.9
Ludusan (5ms) Closed 93.0 5.0 2.0 8.1 15.1 80.5
Ludusan (10ms) Closed 93.9 4.9 1.2 7.2 13.3 79.8
Ludusan (5ms) Open 93.0 5.2 1.8 8.2 15.1 81.6

Ludusan (10ms+VTLN) Open 93.6 5.1 1.3 7.2 13.6 79.1
Paci Closed 92.4 5.9 1.7 4.5 12.1 81.0
Paci Open 90.6 7.3 2.1 4.6 13.9 81.3

Table 4.2. EVALITA 2011 FA task results of phone segmentation, from tables 3 and 6 of [38]

Level ≤ 10ms
[%]

≤ 20ms
[%]

≤ 30ms
[%]

≤ 40ms
[%]

> 40ms
[%]

Phone 56.59 82.20 93.78 96.86 100
Word 46.04 70.46 86.03 91.02 100

Table 4.3. Ludusan [106] results for EVALITA 2011 FA task, from table 3 of [106]

All the participants obtained results close to the state of the art for other languages
even if the CLIPS corpus was reported to be particularly challenging[38].

The results from Ludusan in table 4.3 are seemingly worse than those from Cangemi
et al. [26] using the same 20ms tolerance (82.2% vs 94%), but it must be taken into ac-
count that the dialogic sub-corpus of CLIPS, being composed of spontaneous speech, is
much more challenging than APASCI. Moreover, the EVALITA 2011 FA did not provide
a phonetic transcription to align but just the corresponding graphemes, introducing the
further challenge that is the development of a system that considers several pronuncia-
tion variants in the G2P sub-task.

The 2014 edition of EVALITA has seen the general FA task replaced by a task on FA of
children’s speech specifically[60, 67]. This FA task has seen only the participation of the
SPPAS team[21, 36], and was structured similarly to the 2011 one but used the CHILDIT-
2[34] corpus. The transcriptions for the CHILDIT-2 corpus, differently from the CLIPS
corpus, are not manually generated; they are automatically obtained using a, then state-
of-the-art, a Kaldi-based GMM-DNN ASR system trained by [35] on the CHILDIT[33]
corpus[67]. No evaluation or test results have been found on the FA capabilities of the
system from [35]. The results of the SPPAS team for this challenge[67] are similar or
slightly better than the ones obtained by [106] in the EVALITA 2011 FA task, but given
the differences in the corpora used the comparison is not really fair.

To the best of the author’s knowledge, nowork describing E2E FA solutions for Italian
has been published yet.
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4.3.3 Complications
FA is a difficult task. The accuracy of automatic FA systems is normally evaluated on
manually labeled and segmented speech signals from phonetic or speech communication
experts, but even these golden reference labels are implicitly incoherent due to variability
of visual and acoustic perceptual capabilities and difficulties in defining and using a clear
common labelling strategy[32]. Moreover, this kind of labeling and segmentation is
time-consuming and expensive, thus very few corpora exist of this kind that are public
or free to use. On top of that, these resources are typically available only for a small
number of the thousands of languages spoken around the world[20].

The FA task usually takes in input a speech signal and its transcription, a sequence of
graphemes that in this case should be converted to a sequence of phones or phonemes.
The G2P sub-task doing this conversion should take into account all the different ways
in which the same utterance can be pronounced, due to different accents or different
speaking rates[20]. Speech corpora use conventions to establish which phenomena to
transcribe and how[20].

G2P conversion is even more challenging on spontaneous continuous speech, which
is characterized by an important gap in words’ phonological form and their actual pho-
netic realizations[20]. Spontaneous speech presents frequently elision or reduction, but
also substitutions or addition of phonemes, which have an impact on the automatic
phonetization and alignment sub-tasks, in some languages code-switching can add to
the complications too[20].

G2P is historically performed with a dictionary-based, rule-based or some interme-
diate approach[20]. In the EVALITA 2011 FA task, the G2P sub-task has been identified
as the one needing refinement if not deep review to work on spontaneous speech data,
like the dialogic sub-corpus of CLIPS[22, 38].

Another difficulty in the practical application of FA systems is that they typically
assume that the audio contains only the text which should be aligned, but for several
use cases and most public domain data this is not the case[98]. On longer audio tracks,
differences from the transcription can easily lead to a largely misaligned result due to
incapacity to recover[107]. Newer E2E FA systems can however mitigate or solve this
specific problem[98, 104].
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Chapter 5

Overall methodology and
materials

This chapter provides a brief general description for each corpus, dataset, metric and
model used in this work; it introduces their role in this work and then provides an
overview on the architecture and the methods used for the implementation.

5.1 Corpora and datasets
The different tasks composing this work have imposed some common and some specific
requirements on the datasets to be used:

• all the datasets must be in Italian, or have a large enough Italian portion

• at least one dataset must provide accurate transcription of all its audio data

• at least one dataset must provide human annotated phoneme-wise alignment labels

• at least one dataset must include disordered speech caused from PD with relevant
metadata

In the end three corpora/datasets have been singled out: CommonVoice (5.1.1), CLIPS
(5.1.2) and IPVS (5.1.3).

5.1.1 Common Voice

The Common Voice project was started by Mozilla in July 2017[8, 122], the goal of the
project is to provide a free and open source corpus to make speech technology research
and development more accessible, with particular attention to ASR but enabling also
other kinds of developments (e.g. language identification)[8]. The goal is being achieved
in a sustainable and scalable way by employing crowdsourcing for both data collection
and data validation[8].
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Contributors can participate using either the Common Voice website or smartphone
app, recording their voice while reading sentences displayed on the screen or validating
recordings from other speakers[8].

The corpus is thus composed of reading speech, the text read comes from Wikipedia
articles, for languages with more than 500000 articles, or is contributed by users; in both
cases, an automatic system splits the text into sentences and filters them using a set of
rules, after that at least 2 out of 3 reviewers must approve them[8]. If approved they are
served as prompts to be read for contributors.

Recordings from contributors are then reviewed by other contributors. A maximum
of three contributors will listen to any audio clip. If the audio and transcript pair re-
ceives two upvotes, then the clip is marked as valid, if instead the clip first receives two
downvotes then it is marked as invalid[8].

The first release of the Common Voice corpus dates back to November 2017, contain-
ing about 500 hours of English speech from 20000 people[83, 184]. Since then many
releases followed adding more hours of speech and more languages. The project now
aims to release a new version every 3 months, at the time of writing the latest release is
Common Voice Corpus 10.0[122].

Released the July 4th 2022, version 10.0 contains 20,817 hours of recorded speech,
of which 15,234 have also been validated, in 96 different languages[122]. Among these
languages, we have[123]

• English: 2,275 hours validated of 3,050 total hours recorded, from 83,790 unique
speakers

• Italian: 321 hours validated of 347 hours recorded, from 6,735 unique speakers

Each entry in the dataset consists of a uniqueMPEG-3 file with a 48kHz sampling rate
and a row in a Tab-Separated Values (TSV) file containing the corresponding text and
other parameters[8, 122]. Indeed, many of the 20,817 recorded hours in the dataset also
include demographic metadata like age, sex, and accent that can help train the accuracy
of speech recognition engines[122]. The corpus is divided into train, test, and develop-
ment sets bucketed such that any given speaker may appear in only one and saved as
separate TSV files[8].

Since the first release, it has been used, often in conjunction with other corpora or
datasets, to train and evaluate several ASR systems. Some examples are DeepSpeech[82]
and XLS-R[12].

In this work, the Common Voice corpus is used for the fine-tuning of a pre-trained
XLS-R model and for part of its evaluation for the ASR task, section 5.4 and part II deal
with this activities in more details.

5.1.2 Corpora e Lessici di Italiano Parlato e Scritto (CLIPS)
TheCorpora e Lessici di Italiano Parlato e Scritto (CLIPS) corpus, in English “Corpora and
Lexicons of Spoken andWritten Italian”, has been developed from 1999 to 2006 as part of
a project funded by theMinistero dell’Università e della Ricerca Scientifica e Tecnologica
(MURST), the Italian Ministry of University and Scientific and Technological Research
(now Ministero dell’università e della ricerca (MUR))[39, 102].
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Theproject was aimed at the development of tools for the general study and automatic
treatment of the Italian language in written or spoken form[102]. The CLIPS corpus
focuses on the spoken dimension of the Italian language to enable[39, 102, 158]

• the analysis and description of the spoken language in all the conditions it is used

• the development of tools and applications to build automatic systems for speech
recognition and production

For these purposes, the corpus is composed not only of recordings but also tran-
scriptions and labels for a portion of the recordings. Transcriptions contain the text (as
graphemes) of the speech in a recording, while labels consist of the list of time-aligned
phones and/or phonemes pronounced in a recording.

According to [159] the corpus contains 101 hours 36 minutes and 51 seconds of audio
recordings in total, divided into 5 sub-corpora per type of speech, a portion of each sub-
corpus is transcribed and/or labeled as described in[39, 102, 159]

• Dialogico (dialogic), contains elicited speech between couples of speakers obtained
through the “map task” or “spot the difference”

– about 30% of the collected material is transcribed
– about 30% of the transcribed material is labeled (about 9% with respect to col-
lected material)

• Radiotelevisivo or RTV (from radio and television), contains speech from radio or
television programs like news, interviews and talk shows

– about 30% of the collected material is transcribed
– about 30% of the transcribed material is labeled (about 9% with respect to col-
lected material)

• Letto (read-aloud speech), single words and sentences, from several speakers

– about 30% of the collected material is transcribed
– about 30% of the transcribed material is labeled (about 9% with respect to col-
lected material)

• Ortofonico (orthophonic1), read-aloud speech from trained speakers, to be used as
a gold reference of correct spoken Italian

– 100% of the collected material is transcribed
– about 16% of the collected material is labeled

• Telefonico (speech over a telephone line), sampled at 8000 Hz

– 100% of the collected material is transcribed

1From orthophony: the art of correct articulation/speech; voice training[128, 129]
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– about 3.5% of the collected material is labeled

In tables 5.1 and 5.2 are illustrated the durations by locality and sub-corpus according
to [159], respectivelly overall durations and durations for labeled recordings. In table 5.3
total duration and percentages for transcribed and labeled parts of each sub-corpus as re-
ported by [39]. In section 6.3.1 however, the use of a custom-made script to compute the
values illustrated in tables 5.1, 5.2 and 5.3, directly from the corpus files just downloaded,
leads to results that slightly differ from the ones presented by [159] and [39].

Locality Dialogico RTV Letto Ortofonico Telefonico
Bari 2:18:58 0:49:44 0:51:12 / 1:12:30
Bergamo 3:16:00 0:56:09 0:44:56 / 0:59:00
Cagliari 3:13:00 1:02:42 1:39:00 / 1:16:19
Catanzaro 2:34:00 0:51:00 0:56:13 / 0:50:07
Firenze 4:42:00 0:47:19 1:25:49 / 1:15:16
Genova 2:20:00 0:49:51 0:52:07 / 1:00:51
Lecce 2:08:00 0:57:55 0:52:03 / 1:04:48
Milano 3:15:00 0:52:46 1:18:57 / 1:14:40
Napoli 2:54:00 0:54:01 0:49:44 / 0:55:01
Palermo 3:11:00 0:49:17 0:58:34 / 1:14:37
Parma 3:31:00 0:55:22 1:23:09 / 1:01:49
Perugia 3:25:00 0:56:07 0:58:36 / 1:09:41
Roma 3:55:00 0:56:16 0:51:04 / 1:17:48
Torino 4:06:00 0:57:05 1:18:22 / 1:05:55
Venezia 3:25:00 0:46:08 1:21:02 / 1:03:30
National / 3:16:00 / 3:42:28 /
Total 48:13:59 16:37:42 16:20:51 3:42:28 16:41:52

Table 5.1. CLIPS corpus overall recordings total duration per locality and category as
reported in attachment 6 of [159], expressed as hours:minutes:seconds

The corpus has been developed taking into account the strong variability of natural
languages in their uses, with specific attention to four variables[102]

• region, speech changes based on the region the speaker comes from

• social context, speech changes based on the level of education, job, and social envi-
ronment of the speaker

• style, speech changes depending on the situation, for example, the professional
speech of a television host differs from the informal and spontaneous speech of a
conversation with a friend

• individual, speech changes based on anatomic characteristics and idiosyncrasies2

2In linguistics the term can be applied to symbols, words, or structures, indicating them as peculiar or
particular to an individual; examples of these are words or structures invented by the speaker
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Locality Dialogico RTV Letto
Bari 00:17:15.413 00:04:06.625 00:05:59.700
Bergamo 00:23:29.046 00:05:28.632 00:05:30.906
Cagliari 00:21:38.815 00:04:40.345 00:07:04.304
Catanzaro 00:18:03.248 00:05:06.306 00:07:30.316
Firenze 00:26:41.000 00:04:10.025 00:08:54.248
Genova 00:15:54.515 00:04:05.605 00:05:47.624
Lecce 00:20:18.561 00:04:02.268 00:09:53.795
Milano 00:28:41.000 00:04:07.669 00:11:14.586
Napoli 00:19:59.578 00:04:09.295 00:06:13.992
Palermo 00:17:34.796 00:16:50.609 00:07:02.458
Parma 00:23:13.000 00:04:22.704 00:11:26.004
Perugia 00:24:14.609 00:04:25.906 00:08:29.880
Roma 00:25:29.137 00:04:49.000 00:05:26.067
Torino 00:23:42.000 00:04:15.335 00:10:07.813
Venezia 00:19:56.000 00:04:22.768 00:09:27.549
National / 00:02:51.958 /
Total 05:26:10.718 01:21:55.050 02:00:09.242

Table 5.2. CLIPS corpus labeled recordings total duration per locality and category
calculated from attachment 8 of [159], expressed as hours:minutes:seconds.milliseconds

Dialogic Read
speech RTV Telephonic Orthophonic

% 30% 30% 30% 100% 100%Transcription Time 15h 30’ 5h 20’ 4h 30’ 16h 40’ 3h 40’
% 10% 10% 10% 3.5% 16%Labelling Time 5h 30’ 1h 40’ 1h 10’ 35’ 35’

Table 5.3. CLIPS corpus percentage and duration of transcribed and labeled
material per sub-corpus from [39]

of single speakers

For this reason, the corpus presents, in appropriate proportions, recordings to reflect
variations coming from these variables. According to [39, 102, 163]

• the variations due to region and social context have been taken into account in the
choice of the locations where speakers have been recruited

– the study described in [163] lead to the selection of 15 cities: Bari, Bergamo,
Cagliari, Catanzaro, Firenze, Genova, Lecce, Milano, Napoli, Palermo, Parma,
Perugia, Roma, Torino, and Venezia.

• the variations due to style are accounted for by the collection of different speech
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tasks, read-aloud speech or spontaneous dialogic speech, and the inclusion of pro-
fessional speech from radio and television

• at the individual level the dataset has a balanced number of male and female speak-
ers, but it lacks adequate variability in the age of the speakers (in some tasks ranging
only from 18 to 30 years old)

A characteristic of the CLIPS corpus that differentiates it from other public corpora
of Italian speech, in the context of this work, is the presence of manual annotations,
following standards common to other similar corpora also in other languages, including
time-aligned segmental labeling performed by experienced operators[39].

The following paragraphs provide a brief description for the transcriptions and time-
aligned labels provided byCLIPS, the labels associatedwith the audio file DGmtA01T_p1F%23189.wav
are presented as examples.

Segmental time-aligned labeling includes the following levels (fromnarrower to broader),
in different files with a specific extensions but the same file name as the “.WAV” or
“.RAW” file they reference[39, 158]

• acoustic (“.ACS” files), sub-phonemic level, implemented only for occlusive and
affricate consonants to signal with markers the start of silence or the end of silence
or of the release phase, to distinguish them from the intentional or physiological
silent breaks

DGmtA01T_p1F%23189.acs
1 0 26158 __
2 26158 27177 d_cl
3 27177 27630 d_rl
4 27630 30621 __
5 30621 31183 k_cl
6 31183 31950 k_rl
7 31950 42679 __
8 42679 43750 k_cl
9 43750 44341 k_rl
10 44341 47284 __
11 47284 47678 t_cl
12 47678 47806 t_rl
13 47806 50655 __
14 50655 51635 tts_cl
15 51635 54120 tts_rl
16 54120 72113 __
17 72113 73190 t_cl
18 73190 73679 t_rl

• phonetic (“.PHN” files), coded in X-SAMPA with some adaptations, it is a relatively
broad time-aligned phonetic transcription, but it also represents in a narrower form
a closed set of specific phonetic phenomena

DGmtA01T_p1F%23189.phn
1 0 570 __
2 570 2753 s

62



5.1 – Corpora and datasets

3 2753 5792 i
4 5792 15524 __
5 15524 26158 __
6 26158 27630 d
7 27630 29814 u
8 29814 30621 N
9 30621 31950 k
10 31950 33469 w-eE
11 33469 35985 f
12 35985 37857 wO
13 37857 38596 r
14 38596 39356 !i
15 39356 40210 D
16 40210 40970 a
17 40970 41682 &l
18 41682 42679 a
19 42679 44341 k
20 44341 45290 O
21 45290 47284 s
22 47284 47806 t
23 47806 48138 !e
24 48138 49610 ll
25 49610 50655 a
26 50655 54120 tts
27 54120 56826 jO
28 56826 57633 n
29 57633 58583 !e
30 58583 60814 s
31 60814 61384 u
32 61384 61763 &l
33 61763 62713 a
34 62713 65229 s
35 65229 66558 ua
36 66558 67603 D
37 67603 70878 E
38 70878 72113 s
39 72113 73679 t
40 73679 74747 r
41 74747 75958 a

• phonological or citation forms (“.STD” files), coded in Speech Assessment Methods
Phonetic Alphabet (SAMPA) for Italian

DGmtA01T_p1F%23189.std
1 0 570 __
2 570 5792 s"i
3 5792 15524 <sp>
4 15524 26158 <eeh>
5 26158 32492 d"unkwe%
6 32492 33469 %"E
7 33469 39356 fw"Ori
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8 39356 42679 d"alla
9 42679 58583 kostellattsj"one
10 58583 62713 s"ulla
11 62713 66558 s"ua
12 66558 75958 d"Estra

• lexical or orthographic labeling (“.WRD” files), includes also labels for breaks, noises,
disfluencies and similar

DGmtA01T_p1F%23189.wrd
1 0 570 __
2 570 5792 sì
3 5792 15524 <sp>
4 15524 26158 <eeh>
5 26158 32492 dunque%
6 32492 33469 %è
7 33469 39356 fuori
8 39356 42679 dalla
9 42679 58583 costellazione
10 58583 62713 sulla
11 62713 66558 sua
12 66558 75958 destra

• additional level or extra-text (“.ADD” files), contains extra-lexical information, such
as comments, overlaps, kind of voice (e.g. creaking or screaming)

The authors of CLIPS report that labeling was done in order, starting from phonetic
and acoustic, moving then to phonological and lexical, and finishing with the extra-
text[158]. The theory and standards adopted by the authors did not require an alignment
of the markers among the different levels, so it may happen that the boundaries for a
word at the phonological or lexical level do not match the boundaries of their first and
last phones at the phonetic level[158].

For each audio file belonging to the transcribed part, CLIPS also provides the follow-
ing non-time-aligned labels, distributed in files with different extensions but the same
file name as the “.WAV” or “.RAW” file they reference[158]

• base for orthographic labeling (”.WR_” files), used as starting point for the making
of orthographic labeling (“.WRD” files)

DGmtA01T_p1F%23189.wr_
1 sì <sp> <eeh> dunque è fuori dalla costellazione sulla sua destra

• base for phonological or citation forms (.ST_ files), obtained automatically using
an algorithm for grapheme-to-phoneme conversion staring from orthographic la-
beling (”.WR_” files)

DGmtA01T_p1F%23189.st_
1 s"i <sp> <eeh> d"unkwe "E fw"Ori d"alla kostellattsj"one s"ulla s"ua d"Estra
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In this work, the CLIPS corpus is used mainly for the evaluation of the FA task, but
also as part of the evaluation of the ASR task.

Many publications reference the CLIPS corpus but few of them use it for FA[17, 22,
26, 106, 130].

5.1.3 Italian Parkinson’s Voice and Speech (IPVS)

The Italian Parkinson’s Voice and Speech (IPVS) dataset is an open access dataset, avail-
able under the Creative Commons Attribution License (CC BY 4.0)[49]. It was first pre-
sented in [50], which provides some details on how the dataset has been developed.

The dataset has been developed following a protocol illustrated in [50] which includes
for each speaker the recording of

• 2 readings of phonemically balanced text

• repeated execution first of the syllable “pa” and then the syllable “ta”

• 2 phonation of each of the vowels (“a”, “e”, “i”, “o” and “u”)

• reading of phonemically balanced words

• reading of phonemically balanced phrases

In table 5.4 an overview of the phonemically balanced words, phrases and text.
The text in 5.4 is made to be long enough to require the patient to breathe with effort,

to contain similar and complex phonetics close to each other so that they are harder to
pronounce, and to require expression changes passing from one sentence to the next[50].
Phrases andwords are also thought to be used to assess the degree of neurological control
since they are constructed to stress all muscles involved in voice and speech production,
requiring rapid and forceful movements[50].

The recordings in the dataset were performed with professional microphones in a
quiet echo-free room, with a total of 65 Italian native speakers, divided into 3 cate-
gories[5, 50]:

• Young Healthy Control, 15 in number, age 20.8 ± 2.65

• Elderly Healthy Control, 22 of them, age 67.09 ± 5.16

• Patients with PD, age 67.21 ± 8.73, all 28 of them received their usual treatment for
PD; the HY stage (section 2.5.2) for all the patients is less than 4, except for one at
stage 5 and two at stage 4

It must be pointed out that most of the speakers are from the Bari area, in Apulia, a
southern region of Italy[50].

In this work, the IPVS dataset is used for the evaluation of the ASR part of this work
on the speech of patients with PD.
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Text

Il ramarro della zia. Il papà (o il babbo come dice il piccolo Dado) era sul
letto. Sotto di lui, accanto al lago, sedeva Gigi, detto Ciccio, cocco della
mamma e della nonna. Vicino ad un sasso c’era una rosa rosso vivo e lo
sciocco, vedendola, la volle per la zia. La zia Lulù cercava zanzare per il
suo ramarro, ma dato che era giugno (o luglio non so bene) non ne
trovava. Trovò invece una rana che saltando dalla strada finì nel lago con
un grande spruzzo. Sai che fifa, la zia! Lo schizzo bagnò il suo completo
rosa che divenne giallo come un taxi. Passava di lì un signore
cosmopolita di nome Sardanapalo Nabucodonosor che si innamorò della
zia e la portò con sé in Afghanistan

Phrases

• Oggi è una bella giornata per sciare.
• Voglio una maglia di lana color ocra.
• Il motociclista attraversò una strada stretta di montagna.
• Patrizia ha pranzato a casa di Fabio.
• Questo è il tuo cappello?
• Dopo vieni a casa?
• La televisione funziona?
• Non posso aiutarti?
• Marco non è partito.
• Il medico non è impegnato.

Words

pipa, buco, topo, dado, casa, gatto, filo, vaso, muro, neve, luna, rete, zero,
scia, ciao, giro, sole, uomo, iuta, gnomo, glielo, pozzo, brodo, plagio,
treno, classe, grigio, flotta, creta, drago, frate, spesa, stufa, scala, slitta,
splende, strada, scrive, spruzzo, sgrido, sfregio, sdraio, sbrigo, prova,
calendario, autobiografia, monotono, pericoloso, montagnoso, prestigioso

Table 5.4. Phonemically balanced words, phrases and text in Italian used by [49, 50], the
sentence in italic has also been used by [63]

5.2 Evaluation and metrics
The two main tasks characterizing this work are both evaluated at word and phoneme
(or phone) level, for a total of four metrics:

• for the ASR task

– Phoneme Error Rate (PER) (5.2.1)
– Word Error Rate (WER) (5.2.2)

• while for the FA task

– Phone Boundary Error (PBE) (5.2.3)
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– Word Boundary Error (WBE) (5.2.4)

Furthermore, the Connectionist Temporal Classification (CTC) algorithm (5.2.5) is
used as loss function during fine-tuning (5.4.1) and as a step to interpret the output of
the model during inference.

5.2.1 Phoneme Error Rate (PER)
ThePhoneme Error Rate (PER) is often used to evaluate the performance of ASR systems.
In practice, it is a way to compare two strings of phonemic symbols and quantify how
much they differ from one another.

Its definition can be derived from a normalized generalized Levenshtein distance[103,
188] with which it shares core concepts.

Using a notation similar to [188], given a symbols alphabet Σ, Σ∗ being the set of
strings over it and λ /∈ Σ being the null string; xi denotes the ith element in the string
X = x1x2...xn with X ∈ Σ∗.

An elementary edit operation can be defined as a pair (a, b) 6= (λ, λ) with a, b ∈ Σ∪{λ},
usually represented as a → b, it can be of one of three types[188]

• insertion λ → a, with a ∈ Σ

• substitution a → b, with a, b ∈ Σ

• deletion a → λ, with a ∈ Σ

Given two strings X, Y ∈ Σ∗, a sequence of elementary edit operations Ti to trans-
form X into Y is denoted as edit transformation TX,Y = T1T2...Tl[188]. Using a weight
function γ(a → b), the weight of TX,Y is computed as[188]

γ(TX,Y ) =
l∑

i=1
γ(Ti)

a greater weight corresponds to a bigger penalty/cost or distance for an operation.
The Generalized Levenshtein Distance (GLD) among X and Y can then be defined as

GLD(X, Y ) = min{γ(TX,Y )} (5.1)
and represents the difference between two strings, measured as the minimal number of
insertions, deletions and substitutions needed to transform X into Y .

For GLD to be a distance function on Σ∗ the weight function must satisfy ∀a, b ∈
Σ ∪ {λ} the following conditions[112, 188]

γ(a → b) = γ(b → a)

γ(a → a) = 0 (5.2)

k > 0, γ(a → b) = k ⇒ a 6= b (5.3)
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5.1 can be normalized to obtain a normalized levenshtein distance or Normalized Edit
Distance (NED)[112, 188]

NED(X, Y ) = min
{

γ(TX,Y )
L(TX,Y )

}
(5.4)

whereL(TX,Y ) is the number of elementary operations described by TX,Y [112, 188]. Note
that L(TX,Y ) also counts operations of the type a → a that according to 5.2 do not con-
tribute to γ(TX,Y ) since γ(a → a) = 0.

From 5.4, the most common formula for PER can be obtained setting k = 1 in 5.3,
having Σ be the alphabet of phonemic symbols of interest and taking into account that
an elementary edit operation of substitution (a → b) where a = b is a “match” or “correct”
symbol. Having X taking the role of the hypothesis string and Y the one of reference
string, the symbols C , D, I and S respectively can be used to represent the number of
correct symbols and the minimum number of deletions, insertions and substitutions that
can be performed on the reference Y to obtain the hypothesis X . Using the symbols just
defined it can then be seen that γ(TX,Y ) = D + I + S and L(TX,Y ) = C + D + I + S in
5.4. PER is usually normalized using the length N of the reference string Y , so in 5.4
L(TX,Y ) = C + D + I + S is replaced with N to finally obtain

PER(X, Y ) = PER(Hypothesis, Reference) = D + I + S

N
= D + I + S

C + D + S
(5.5)

Considering a recording of the text “La macchina ha subito danni alla fiancata destra”
from Common Voice, its phonological transcription computed as in 6.1 used as reference
is R “la makina a subito danni alla fjankata dɛstra” and a prediction from the model or
hypothesis could be H “alla makina subito daɲɲa alla fjankata destra”. In this case it is
possible to identify 2 insertions, 1 deletion, 4 substitutions and 33 hits. Using 5.5 and the
data from this example, for this hypothesis-prediction association is possible to obtain

PER(H, R) = D + I + S

C + D + S
= 1 + 2 + 4

33 + 1 + 4
= 7

38
' 0.18.

5.2.2 Word Error Rate (WER)
TheWER is a common metric for the evaluation of ASR or machine translation systems.
It can be calculated in the same way as PER in 5.5

WER(Hypothesis, Reference) = D + I + S

N
= D + I + S

C + D + S
(5.6)

where Hypothesis, Reference ∈ Σ∗, this time with Σ being the set of all words in a
language.

In the context of thiswork, thismetric has been used onwordswrittenwith phonemes
instead of graphemes.

Considering the same recording from the example in 5.2.1, with reference R “la mak-
ina a subito danni alla fjankata dɛstra” and prediction from the model H “alla makina

68



5.2 – Evaluation and metrics

subito daɲɲa alla fjankata destra”. In the case of WER, it is possible to identify 0 inser-
tions, 1 deletion, 3 substitutions and 4 hits. Using 5.6 and the data from this example,
for this hypothesis-prediction association is possible to obtain

WER(H, R) = D + I + S

C + D + S
= 1 + 0 + 3

4 + 1 + 3
= 4

8
= 0.5.

5.2.3 Phone Boundary Error (PBE)

The Phone Boundary Error (PBE) is computed as the absolute value of the difference
between a phone boundary from “manual”/reference alignment and the boundary pro-
posed for the same phone by the FA system

PBE(bh, br) = |bh − br| (5.7)

where bh is a boundary from the hypothesis and br is the corresponding boundary in
the reference. The value of the metric is expressed in a unit of measure of time, usually
seconds or milliseconds.

This metric is usually calculated for all the boundaries in a reference sentence or the
entire reference corpus. Given the two sequences of boundaries Bh and Br, respectively
hypothesis and reference, for the same sequence of phoneme labels, mean PBE can be
computed as

PBE(Bh, Br) =
∑|Br|

i=1 |bhi − bri|
|Br|

(5.8)

In cases in which the sequence of phonemes in the hypothesis does not match exactly
the sequence of the reference, it would not be correct to directly compare boundaries
between the two. It is necessary to first “align the alignments” accounting for their
position in the recording but also for the phone label matching, considering also possible
insertions and deletions[117].

The alignment between the two sequences of boundaries is performed on a phoneme
base and not for single boundaries; the left boundary, right boundary and phoneme label
for each phoneme in the sequence are used for the alignment[117]. An overlap scoring
function uses these parameters to classify a phoneme and its boundaries as a “match” or
not[117].

Depending on the set of phonemes or phones on which the system or model to be
evaluated has been trained and depending on the phonemes or phones used in the refer-
ence corpus, it is advisable to introduce a comparison or mapping function considering
as matching/overlapping some sets of similar phones and allophones[117].

Moreover, it must be pointed out that the PBE metric is in some cases computed on
a selection of boundaries not including all the ones present in the reference: [114] for
examples considers only boundaries denotable as .CV C , C.V C , CV.C and CV C. (where
C and V are respectively consonant and vowel, . represent a boundary).
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5.2.4 Word Boundary Error (WBE)
TheWord Boundary Error (WBE) is computed as the absolute value of the difference be-
tween a word boundary from “manual”/reference alignment and the boundary proposed
for the same word by the FA system.

5.2.5 Connectionist Temporal Classification (CTC)
TheCTC algorithmwas introduced by [75] with the aim of enabling the training of RNNs
for sequence-to-sequence tasks using real world input datawith unsegmented labels[75].
The use of CTC enables thus the use of powerful sequence learners such as RNNs, and
now the more recent Transformer based networks, on tasks like ASR or handwriting
recognition that would have otherwise required pre-segmented training data, scarcely
available and expensive to acquire[14, 75, 81].

The idea at the core of CTC is the interpretation of network outputs as a proba-
bility distribution over all possible label sequencesa, conditioned on a given input se-
quence[75]. From this distribution a differentiable objective function can be derived,
that maximises the probabilities of correct labellings and allows training with backprop-
agation through time[75]. It was presented to solve the task of labelling unsegmented
data sequences, also called temporal classification from which the name Connectionist
Temporal Classification[75]. The temporal classification task was evaluated on a NED
based metric[75] similar to PER (5.2.1).

In the context of this work, CTC allows the training of ASR systems using just audio
and its unaligned transcript[81]. A more detailed description of the inner working of
CTC follows, using the ASR task as an example.

Considering an audio input sequence X = [x1, x2, . . . , xT ] of length T , where each xt

is an audio frame, X is preprocessed or passed directly to the model M[75, 81]. Defining
the set of symbols B as the output sequence alphabet, the set of symbols produceed as
output of the softmax layer at the end of the CTCmodel is defined as B0 = B∪{ϵ}, where
the ϵ symbol is added as a special symbol representing empty output[13, 75, 181]. Each
activation in the softmax layer represents the probability of observing the corresponding
label or “blank” at a particular time[75]. Denoting the output of the model M for X as
A = M(X) = [a1, a2, . . . , aT ], where T = |X| = |A| is always the number of frames in X ,
each at can be seen as at = [a1

t , a2
t , . . . , ak

t , . . . , a
|B0|
t ], having an element for each label k

interpreted as the probability of observing it at frame t[75].
Using all the ak

t terms is possible to obtain a distribution overB0T , the set of sequences
of lenght T over the alphabet B0 defined as follow[75]

p(π|X) =
T∏

t=1
at

πt
, ∀π ∈ B0T (5.9)

where π, element of B0T , is also called a path and is a possible alignment on X[13, 75].
On the a posteriori probabilities p(π|X) just described, CTC applies a many-to-one

mapping g : B0T 7→ B≤T , where B≤T is the set of sequences over the alphabet B (with
no ϵ) of length less than T [75]. The mapping g takes a path/alignment and maps it to
a unaligned sequence of symbols, in some cases simple text, first removing consecutive
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repeating symbols and then removing all the ϵ symbols from the alignment, obtaining a
shorter sequence (length≤ T ) and containing only symbols fromB[13, 75]. For example,
an alignment hheϵϵlllϵllo is transformed into heϵlϵlo and then mapped to a text sequence
hello[81]. Notice the role of the ϵ in preventing the merge of repeated symbols when its
actually desirable to have multiple identical consecutive symbols, without the ϵ symbols
the output text would have been helo[81]. The behavior of g corresponds to outputting
a new symbol each time the model switches from predicting a label to no label and
viceversa, or from a label to another[75]. In figure 5.1 a graphical representation of this
example.

Figure 5.1. CTC example. Figure from [81]

The conditional probability of an element L of the set B≤T , obtained through g, can
be computed summing the probabilities of all the alignments/paths mapping to it[75]

p(L|X) =
∑

π∈g−1(L)
p(π|X) (5.10)

where the marginalization on the right hand side of the equation can be computed effi-
ciently through dynamic programming[13, 81].

Given a training set D, during training with a CTC loss the parameters of the model
are tuned to minimize[81] ∑

(X,Y )∈D

− log p(Y |X) (5.11)

where Y is the unaligned label for an audio X .
71



Overall methodology and materials

Inference, or decoding, is approximated with finding the most probable alignment
and mapping it to a symbols/text sequence[13]

Y ∗ = g

(
arg max

A

T∏
t=1

p(at|X)
)

= g

(
T∏

t=1
arg max

at

p(at|X)
)

. (5.12)

5.3 Model
Themodel chosen to implement the solution to both the ASR and the FA tasks is XLS-R.

5.3.1 XLS-R
XLS-R is a “family” of large-scale cross-lingually pre-trained wav2vec 2.0 models[12]
released in November 2021[12, 66]. XLS-R models can be used for speech processing
tasks in many languages due to the cross-lignual representation learning, pre-trained
models are available, and pre-training from scratch does not require labeled data. XLS-R
models, like other wav2vec 2.0 models, according to [12, 14, 30] are composed of

• a multi-layer convolutional feature encoder, mapping raw audio to latent speech
representations, it contains several blocks composed of temporal convolution fol-
lowed by layer normalization and a GELU activation function; the feature encoder
receptive field takes in input 400 samples at a time of raw audio, equivalent to 25ms
with a sampling rate of 16KHz, and then proceeds with a stride of 20ms

• a quantization module, that discretizes the output of the feature encoder to a finite
set of speech representations in self-supervised training3

• a context network, implemented using the Transformer architecture[171] from the
NLPmodel BERT[48], it takes in input latent speech representations and outputting
context representations; differently from BERT it uses a convolutional layer to per-
form relative positional embedding instead of absolute positional embedding

Figure 5.2 shows a block diagram of the model during pre-training.
Overall, the model starts from audio, produces continuous speech representations

and from these derive context representations; then self-attention captures dependencies
over the entire sequence of latent representations end-to-end[14].

Three variants have been published with 317 million, 965 million and 2162 million
parameters[12]. Models so large became common in NLP with strong results on es-
tablished benchmarks when trained on adequately large datasets, spanning billions of
documents[12].

3The concept of supervision or supervised learning, in the context of machine learning, refers to a
paradigm for the learning of mapping functions from labeled data, that is data for which, for each sample
composed of a number of features or data points, there is an annotation or label associcated. Unsupervised
learning is instead characterized by the use of only features or data points, and no labels. Self-supervision
or Self-supervised learning is a paradigm characterized by the use of unlabeled data first on a pretext task
to initialize network Weights followed by supervised or unsupervised learning on the actual task[189].
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Figure 5.2. Self-supervised pre-training model blocks diagram. Figure adapted from
[12]. In black unlabeled speech input, in blue the multi-layer convolutional feature
encoder, in green the quantization module and in yellow the context network.

XLS-R uses a similar approach as NLP models, its name is inspired by the NLP model
XLM-R[12], and applies it to speech. Themodels are pretrained on 436K hours of publicly
available data, across 128 different languages, from the following corpora[12]:

• 372K hours of unlabeled data from VoxPopuli[176] in 23 European languages from
parliamentary speech

• 50K hours of data from Multilingual Librispeech[144] in 8 European languages

• 7K hours from CommonVoice[8] v6.1, the December 2020 release, which covers 60
languages

• 6.6K hours of data in 107 languages based on YouTube content fromVoxLingua107[169]

• about 1K hours of data from BABEL[68] of conversational telephone speech in 17
African and Asian languages

Not all the languages are represented in the same way in the obtained dataset: 24 of
them have more than 1K hours each, 17 have between 1K and 100 hours and 88 have less
than 100 hours each[12].

To learn fromunlabeled data in the obtained dataset a self-supervised learning paradigm
has been used[14]. This paradigm has been found to be particularly successful for NLP,
it is usually followed by fine-tuning using a supervised or semi-supervised approach on
labeled data[14]. Self-supervised learning is characterized by the definition and use of
pretext tasks which do not need labeled data but to be solved require high level semantic
understanding of the input data[189], and are thus useful to learn a general data repre-
sentations from unlabeled data[14]. For example, in computer vision, a commonly used
task is the prediction of correct image rotation, under the assumption that the model
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will be required to learn and understand useful and general concepts about the objects
depicted in the image (such as their location in the image, their type, and their pose) to
be able to predict if the rotation is correct[71].

In the case of XLS-R, and wav2vec2.0 models, the self-supervised pre-training uses
a task similar to the “masked LM” from BERT[12, 14, 48]. The model is required to
solve a contrastive task, that is one with a loss function that encourages the hidden
representations of the same object to be closer together and those of different objects to
be further apart[164]. More specifically, at training time, some segments of the outputs of
the feature encoder are masked, and the model is asked to identify the correct quantized
latent audio representation in a set of distractors for each masked segment[12, 14, 30].
Moreover, pre-training is performed on multiple languages simultaneously, multilingual
batches are formed using a distributionwith a parameter to control the importance given
to high-resource versus low-resource languages[12, 30].

The pre-training phase just described is followed by fine-tuning using labeled data.
XLS-R if fine-tuned and evaluated on a set of different tasks, with appropriate spe-
cific datasets, to demonstrate the ability of generalization of the pre-trained model[12].
The tasks are: Automatic Speech Translation (AST), ASR, language identification and
speaker identification. For the AST a decoder4 Transformer network is stacked on top
of the model, for the language identification and speaker identification task a linear layer
acting as classifier is added on top of the pretrained model[12]. For the ASR task a linear
classification output layer is added on top too, randomly initialized and with classes for
each character/grapheme or phoneme in the dataset used, training is then done using
CTC loss[75]; a language model is added on top of the classifier for some of the datasets
used for evaluation but not for CommonVoice[12, 14]. Weights of the feature encoder
are not updated at fine-tuning time, at first only the added classifier layer is trained, after
a while also the Transformer network is updated[12, 14, 30].

Figure 5.3 shows a block diagram of the model during fine-tuning.
The benefits of the multilingual pre-training presented by [12, 30] led to XLS-R be-

ing the state of the art on CommonVoice and other ASR datasets, at the time it was
published[12].

Thewav2vec2.0 architecture has been chosen as base for implementation of work pre-
sented in this text, more specifically its XLS-R pre-trained version, due to its strong per-
formance onCommonVoice, in several languages including Italian, upon fine-tuning[12].

5.4 Methodologies and architecture
Thiswork experimentswith the use of anXLS-R/wav2vec2.0 based E2Emodel to perform
ASR and FA on both normophonic and non-normophonic speech.

A pre-trained model is first fine-tuned to perform ASR outputting Italian phonemes,
and it is evaluated in terms of WER and PER on normophonic and non-normophonic
speech.

4Referring to the encoder-decoder architecture, see [171] for more details on a Transformer based
encoder-decoder architecture
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Figure 5.3. Fine-tuning model blocks diagram. Figure adapted from [12]. In black un-
labeled speech input, in blue the multi-layer convolutional feature encoder, in yellow the
context network, while the gray circles represent the blocks added for the different tasks
on which the model can be fine-tuned.

The output probabilities of the fine-tuned model are then leveraged to perform FA,
the results are evaluated on normophonic speech in terms of WBE and PBE.

5.4.1 ASR
For the ASR task the selected pre-trained XLS-R model is fine-tuned using the same
architecture used by [12] and a similar methodology. It is worth to point out that [12]
uses CommonVoice as a “few-shots”5 learning benchmark, thus performing training and
evaluation for each language only on a very small subset of the available material from
CommonVoice[12]. In this work instead, the entirity of the training split for Italian
CommonVoice is used for training and test split for evaluation, after the prepocessing
described in part II. During the fine-tuning the training loss, validation loss and valida-
tion WER are computed and monitored. The CTC loss is used as it is done by [12] for
ASR.

The fine-tunedmodel is later evaluated on CommonVoice, CLIPS and IPVS computing
WER and PER.

5.4.2 Forced Alignment (FA)
To extract the alignment information from the output probabilities of the XLS-R based
model from 5.4.1, fine-tuned on ASR with a CTC loss, we use the method proposed by
[98] with an implementation similar to [84], discussed in further details in part II.

5Few-shots learning is a machine learning method aiming at training models to predict the correct
class of instances when a small number of examples are available in the training dataset[183].
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The transcribed phonemes and the frame-wise posteriors probabilities, obtained as
output of the model, are used conjunctly to produce the maximum joint probability of
alighment of the text until a certain character up to a certain audio frame[98]. The maxi-
mum joint probability at a point is computed comparing the two possible transitions, the
one to the blank symbol or the one to the next character[98]. Backtracking on thesemax-
imum joint probabilities, from the most probable temporal position of the last phoneme
in the transcription, the phoneme-wise alignment is obtained[98].

The resuts of this method are evaluated on CLIPS in terms of PBE and WBE, with a
strategy inspired by [117].

See figure 5.4 for an overview of the steps in the architecture adopted and the data
flow which characterizes the experiments described in part II.
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ASR

Forced alignment

Common Voice
 10.0 IT

Normalize and cleanup

CLIPS corpus

Translate X-SAMPA to 'simple' IPA

Italian Parkinson’s
 Voice and Speech

IPA Phonetization

Training

XLS-R finetuned on
 simple italian phonemes

Evaluation

WER and PER
 metrics

Phonemes
 (not aligned)

Label probabilities
 frame by frame

CLIPS corpus
 with simplified IPA

Evaluation (alignment)

WBE and PBE
 metrics

Trellis/backtracking based alignment

Phonemes (aligned) Words (aligned)

IPA Phonetization simplification

 Common Voice IT
 with simple phonemes

Italian Parkinson’s
 Voice and Speech

 with simple phonemes

Pre-trained
 XLS-R

Figure 5.4. Overall architecture; cylinder-shaped nodes represent corpora or datasets,
parallelogram-shaped nodes represent data in general, box-shaped nodes represent mod-
els, rectangular-shaped nodes represent a specific step or process, more specifically rect-
angular-shaped nodes with rounded corners are complex processes with several steps
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Chapter 6

Data preparation and
preprocessing

During data preparation and preprocessing particular attention has been dedicated to
making each step and the overall process as much reproducible as possible, with this
intent, each operation on data has been done through python scripts that can function
as precise descriptions of the procedure.

6.1 Common Voice

The Italian sub-corpus of Common Voice 10.0 is downloaded from [122], to start the
download is necessary to insert a valid email address. The download consists of one
compressed archive in “.tar.gz” format of about 8.07 GigaBytes. Extracting the archive
we are presented with a folder “clips”, containing all the recordings in MP3 format, and
a group of “TSV” files. Each line in these “TSV” files references a recording in the “clips”
folder and provides the label and metadata for it.

A python script has been developed to take as input one of these “TSV” files, read all
of its lines and produce in output a “CSV” file, which contains rows only for the lines
that passed all the filtering, normalization and preprocessing operations applied by the
script.

The lines from the TSV file are divided into chunks of configurable size, each chunk
is then processed by a worker from a pool of configurable size. Each worker executes
on each row in the chunk the following actions in order

• remove the “accents” field

• normalize label graphemes and filtering

• graphemes to IPA phonemes

• normalize and simplify IPA phonemes
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If an error is detected in one of these actions the row is discarded. Out of the 149591
labeled clips in the training split and 14974 in the test split respectively 144541 and 14439
pass all the steps, while 5050 and 535 are discarded.

6.1.1 Normalize label graphemes and filtering
For this operation, the script mostly leverages a validator for Italian from the python
package commonvoice-utils1, many other languages are supported too.

The validator allows only a list of graphemes to be present in the label text, while
removing or replacing others for normalization.

If the label text contains a grapheme for which no rule is specified, the word contain-
ing it is not an Italian word and the corresponding recording is discarded.

6.1.2 Graphemes to IPA phonemes
The Common Voice corpus does not provide phonetic or phonemic labeling for its ma-
terial. With the purpose of obtaining phonemic labels from the label text two software
were individuated and evaluated: espeak-ng and phonetisaurus. The results of the eval-
uation led to the use of espeak-ng.

espeak-ng or eSpeak NG is a compact2 open source software TTS synthesizer for
Linux, Windows, Android and other operating systems. It supports more than 100 lan-
guages and accents, it is available as a command line program and, among other features,
it can be used to translate text into IPA phonemes[58]. It was chosen over phonetisaurus
because of its ability to identify words that do not belong to the Italian language even
though all its graphemes are usable in Italian.

In this operation, espeak-ng is used through the python package py-espeak-ng3, more
specifically its function for grapheme to phoneme translation. The output of this func-
tion is then checked for words marked as belonging to another language, if such mark-
ings are found the sentence is discarded. If the sentence is not discarded the output goes
through a mapping function that replaces some phonemes with their most common and
similar allophone, see table 6.1.

espeak phoneme allophone
ʊ u
ɪ i
ɾ r
ɹ r

Table 6.1. espeak-ng phonemes conversion to allophone

1https://github.com/ftyers/commonvoice-utils
2The program and its data, including many languages, totals about few Mbytes[58]
3https://pypi.org/project/py-espeak-ng
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6.1.3 Normalize and simplify IPA phonemes

Only a subset of IPA phones and phonemes has been chosen to be used as the dictionary
for input and output to and from the model. The selected subset of phonemes is the
one that is most often recognized as the phonemic inventory of Standard Italian and is
illustrated in table 6.2

Allowed IPA symbols
a, e, i, o, u, ɛ, ɔ, p, b, t, d, k, ɡ, f, v, s, ʒ, m, n, l, r, z, j, w, ʃ, ɲ, ʎ, ɱ, ŋ

Table 6.2. Allowed IPA phonemes, 29 symbols

Note how phones that in Italian are usually considered a single phoneme such as t͡s,
d͡z, t͡ʃ and d͡ʒ here are decomposed into two removing the linking, adopting a simplifi-
cation approach similar to the one proposed in [116]. Following [116], diacritics and
prosody symbols are removed, see table 6.3. Sentences that, after the removal of dia-
critics and prosody symbols still contain symbols that are not present in table 6.2 are
discarded.

Diacritics

ː long, i.e. /ɑː/
ˑ half long, i.e. /ɑˑ/
”̆” extra short, i.e. /ĭ/
”̯” non syllabic, i.e. /i/̯
”͡” linking, i.e. /d͡ʒ/
” ” linking, i.e. /d ʒ/
”͜” linking, i.e. /d͜ʒ/
”̩” syllabic, i.e. /n̩/

”̪” dental
Prosody ˈ ˌ .

Table 6.3. Removed IPA symbols for diacritics and prosody

6.2 Italian Parkinson’s Voice and Speech

The Italian Parkinson’s Voice and Speech is downloaded from [49] as a “.zip” archive. The
archive is extracted. Based on information in [49] and [50], a script has been realized
to output a “.csv” file that contains, for each audio file, its path, category(young healthy
control, elderly healthy control, and patient with PD), person name, recording type (see
5.1.3), prompt text, phonemes from prompt text.

The prompt text is obtained from a code in each file name which according to docu-
ments in [49] corresponds to a prompt from [50]. There are prompt texts and not tran-
scriptions, so the content of the recordings may differ from it. As for Common Voice
no phonemic transcription is provided for the prompts, the same process described for
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Common Voice in 6.1.1, 6.1.2 and 6.1.3 is applied to obtain the phonemic transcription
of each prompt text.

6.3 Corpora e Lessici di Italiano Parlato e Scritto (CLIPS)
corpus

The CLIPS corpus is available in the “Private Area” of its website. Following the regis-
tration process, it becomes possible to start browsing, through the website, the folders
and files composing the dataset. There is no direct way to download the entire dataset
as a single archive.

6.3.1 Download and cleaning
As part of this work, a simple crawler has been developed in python using Selenium and
Firefox webdriver to browse the corpus section of the website in-depth, collecting the
URLs for all the files belonging to the dataset. In this way, a list of 129878 unique URLs,
one URL per file, has been obtained and saved to a file. The size of the list is relatively
close to 128457, the number provided in attachment 10 of [159].

A note on the CLIPS website reports that “some folders” contain zip files correspond-
ing to the entire contents of the same name directory on the same path. However, further
investigation into this note has led to finding that

• this “.zip” archives are provided only for some labeled parts of the corpus

• the files contained in the “.zip” archives are not the most updated version of the file
provided by the website, the same file out of the archive seems to be newer or to
contain corrections that are not present in the archive

For this reason, it was not possible to download only the “.zip” archives from the
obtained list, instead, all the files from the list had to be downloaded.

Another python script has been developed to take as input the file containing the list
and download the files from all the URLs of the list. The script is written to accept the
“JSESSIONID” cookie for an authenticated user on the corpus website and use it to exe-
cute multiple downloads in parallel using a pool of 8 downloaders, the downloaded files
are organized by the script with the same folder structure used by the corpus website.

Having downloaded all the corpus files, aggregated durations for the material have
been computed using another custom-made python script. A level of the directory struc-
ture of the corpus divides recordings with segment labels, “etichettato” folders, from the
other material, “corpus” folders. However, recordings in the “etichettato” folders are
duplicated in “corpus” folders, the script takes this into account computing durations
separately for both. The results from this script slightly differ from the ones advertised
in [159] and are illustrated in 6.4 and 6.5.

As described in 5.1.2 for each audio file several files are present for labels at different
levels. To simplify the handling of the dataset a script has been developed to write a
JSON file containing a list of items, one per audio file, each containing the path to the
file and all the labels for it. The script scans in depth the path in which the corpus
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Dialogico RTV Letto Ortofonico Telefonico
48:17:25.060 16:51:37.331 16:04:21.752 3:42:29.317 16:43:32.772

Table 6.4. CLIPS corpus overall recordings total duration computed per sub-corpus from
downloaded files, expressed as hours:minutes:seconds.milliseconds

Dialogico RTV Letto Ortofonico Telefonico
6:21:16.887 1:23:18.721 1:19:03.810 0:33:18.979 0:35:18.444

Table 6.5. CLIPS corpus labeled recordings total duration computed per sub-corpus from
downloaded files, expressed as hours:minutes:seconds.milliseconds

has been saved, looking for “.wav” files in the “etichettato” directories. For each “.wav”
file found the script looks for “.phn”, “.st_”, “.wr_”, “.wrd”, and “.std” files to extract the
respective labels.

This script has also been used to check for inconsistencies in the corpus. Of the
inconsistencies spotted in this way somewere correctedwith a human-supervised fuzzy-
finder and some were corrected manually, a “patch file” has been generated both to have
a precise description of the changes that have beenmade and to make it possible to apply
them automatically on a version of the corpus downloaded from the corpus website. The
categories of inconsistencies that have been found in this way are:

• inconsistent file names: when files for labels have names that slightly differ from
the corresponding “.wav” files; these inconsistencies have been fixed by uniforming
the label files name to the “.wav” file name

• missing files: when some label files are missing for a “.wav” file; some of these
inconsistencies have been fixed by reconstructing the content of the missing label
file from the other label files and the audio

Not all the inconsistencies could easily be fixed, in those cases the associated audio
file and labels were discarded. Table 6.6 shows the changes in total recordings durations
after discarding said inconsistencies.

While collecting and organizing the labels for each audio file the script checks for the
presence of the needed files with appropriate names and, having found the needed file for
a given label type, checks that the content of the label file complies with specifications
from [158]. A parser and a validator have been written and used for every label of
interest, some inconsistencies have been found also in this way and the corresponding
material has been discarded.

Particular effort has been put in the conversion from SAMPA and X-SAMPA encoded
labels to a subset of IPA, further details about it are described in sub-section 6.3.2.

6.3.2 X-SAMPA phones to IPA phonemes
The script writing the JSON file for the dataset leverages a custom parser to translate
X-SAMPA phones directly into simplified IPA as defined in 6.1.3.
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Data preparation and preprocessing

Dialogico RTV Letto Ortofonico Telefonico
6:20:39.557 1:18:38.431 1:18:55.268 0:33:18.979 0:35:00.708

Table 6.6. CLIPS corpus labeled recordings total duration computed per sub-corpus from
downloaded files, expressed as hours:minutes:seconds.milliseconds

Theparser has beenwritten using ANother Tool for Language Recognition (ANTLR)4.
ANTLR is a parser generator for reading, processing, executing, or translating structured
text or binary files, widely used to build languages, tools, and frameworks[135].

From a language grammar, a formal language description, it generates a parser for
that language that can automatically build parse trees, data structures representing how
a grammar matches a given input[135]. It also automatically generates tree walkers that
can be used to visit the nodes of those trees to execute application-specific code[135].

Following the specifics in [158], [182] and [185] a grammar and a lexicon have been
written in a “.g4” ANTLR 4 grammar file.

The lexicon maps every X-SAMPA symbol to a descriptive name, these descriptive
names are used by grammar rules to describe how the corresponding symbols can be
combined to describe a phone. The resulting grammar counts more than 16 rules.

ANTLR 4 is used to generate, from this “.g4” file, python3 code for a lexer, a parser
and a basic parse tree visitor. The basic autogenerated parse tree visitor class is extended
in another python3 class to implement the custom logic necessary for the translation to
simplified IPA.

4https://www.antlr.org/
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Chapter 7

Experiments

This chapter illustrates the activities of fine-tuning that have been performed and the
setup for their evaluation. The chapter is organized in two sections, 7.1 and 7.2, respec-
tively describing the fine-tuning of the XLS-R model and the implementation of the FA
algorithm. Each of the two section contains a subsection detailing the evaluation pro-
cess, 7.1.2 for the ASR part and 7.2.2 for the FA one.

7.1 End-to-end ASR with XLS-R

These experiments have been run on a Google Colab Pro virtual machine, with 54 Giga-
bytes of RAM and a dual-core CPU, taking advantage of Nvidia GPUs such as the Tesla
V100 with 16 Gigabytes of video RAM, to accelerate training and evaluation time.

7.1.1 Fine-tuning

The goal of this activity is to obtain a model that takes in input an audio segment con-
taining speech and outputs its transcription in a reduced set of selected IPA phonemes.
See figure 7.1 for an overview of the operations composing this experiment.

To save training time without compromising on performance, the XLS-R model is not
trained from scratch: a pre-trained model is chosen and then fine-tuned. Three different
versions of the model, with different numbers of parameters, have been released by [12]
and are available for download1

• Wav2Vec2-XLS-R-300M, with 300 million parameters

• Wav2Vec2-XLS-R-1B, with 1 billion parameters

• Wav2Vec2-XLS-R-2B, with 2 billion parameters

1https://huggingface.co/blog/fine-tune-xlsr-wav2vec2
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Figure 7.1. Flow of data in preprocessing, training and validation during the fine-tuning
of a pre-trained XLS-R model; cylinder-shaped nodes represent corpora or datasets, par-
allelogram-shaped nodes represent data in general, box-shaped nodes represent models,
rectangular-shaped nodes represent a specific step or process

88



7.1 – End-to-end ASR with XLS-R

The model with 300 million parameters, Wav2Vec2-XLS-R-300M, has been chosen for
the experiment.

The modified version of the Common Voice corpus, prepared as described in 6.1, is
used for fine-tuning the model. A subset of 50000 and 5000 items respectively from
“training” and “test” splits is selected and carried through preprocessing.

The preprocessing consists of loading the MP3 audio files given the path for each
selected item from the JSON file of the corpus, and then resample it to 16KHz so that
the input to the model has a uniform sample rate. Then, of all the attributes available
for each item, only the resampled audio and “simplified” IPA label are carried on for the
fine-tuning of the model.

A Wav2Vec2 feature extractor is configured and used, this performs pre-processing
audio files to Log-Mel Spectrogram features, normalization and padding. It is configured
to work with a 16KHz sampling rate, a feature dimension of 1, padding with zeros and
returning the attention mask.

A dictionary of symbols is obtained from the labels of the selected items of the dataset,
it is checked that the dictionary contains all the allowed symbols defined in 6.1.3. Note
that in the subset selected for training the ɱ symbol is not represented. However, it is
still added to the dictionary, but it won’t be used. Symbols for “padding” and “unknown”
are added to the dictionary, and the result is saved in a file and is then used to configure
the tokenizer from Wav2Vec2CTCTokenizer.

The training and test subsets are prepared to be used by the Trainer: for each item
in a subset the audio is passed through the feature extractor and the simplified IPA label
through the tokenizer. The output of these two steps are kept for training and validation,
while the other attributes are discarded.

Themodel thus takes as input batches ofN items containing 3 attributes each input_values,
input_length, and label.

The pretrained model is adapted to the custom vocabulary size and its shallower lay-
ers, responsible for feature extraction, are frozen, since the goal is to only learn to map
the current internal representation of phones to the selected subset of “simple” IPA sym-
bols.

The Trainer class from HuggingFace transformers is configured to perform train-
ing and evaluation loops. The experiment carries out 10 epochs, with batch size of 16,
learning rate of 3e-4, 500 warmup steps and floating point precision of 16 bits.

The model uses the CTC loss, discussed in 5.2.5. Together with the loss, the Trainer
is configured to compute the WER metric for each evaluation step.

7.1.2 Evaluation
The model obtained in 7.1.1 is evaluated against the entire test split of the Italian subset
of Common Voice, the entirety of IPVS, and a large portion of CLIPS, all in the version
that has been previously prepared to include simplified IPA labels (as explained in 6).
Differently from the evaluation epochs performed during fine-tuning, the evaluation
epoch is now performed on the entire corpus chosen, there is no subset selection.

The finetuned model, feature extractor and tokenizer from 7.1.1 are loaded.
With a procedure similar to 7.1.1, the three corpora are preprocessed and prepared

for the model: resampling, feature extraction, tokenization, normalization and padding
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are performed.
An HuggingFace Trainer instance is configured to perform an evaluation “epoch”

for each of the three prepared corpora.
The Trainer instance is configured to compute WER and PER metrics, results are

presented and discussed in 8.1.

7.2 FA with XLS-R

The FA task experiment uses the CTC-segmentation algorithm from [98] with an imple-
mentation similar to [84]. Some key differences with [84] are introduced by the use of a
different model, the use of phonemes as output instead of graphemes, the different met-
rics computed, the integration with the HuggingFace library and several changes needed
to perform FA on an entire corpus and correctly aggregate values for the metrics.

The experiments in this section were run on a laptop with 32 Gigabytes of RAM
and a 14-cores Intel CPU, taking advantage of a Nvidia GeForce RTX 3060 GPU with 6
Gigabytes of GDDR6 video RAM, to accelerate inference and evaluation time.

The first step for FA is to load the finetuned model, feature extractor and tokenizer
from 7.1.1.

Then follow a series of step similar to the ones described in 7.1.1: each item in the
corpus goes through resampling, feature extraction, normalization, and padding. In this
case it is not needed to tokenize the “transcription” label, since it is not used in this kind
of evaluation.

7.2.1 FA of a clip

Given a clip from the corpus, its preprocessed audio is passed as input to the fine-tuned
model which produces frame-wise output probabilities in the form of a matrix with time
frames on one axis and phoneme labels on the other axis. Figure 7.2 show the frame-
wise output probabilities for an excerpt of a recording from the IPVS corpus (the original
audio is longer and would have resulted in less readable plots).

Figure 7.2. Frame-wise probabilities obtained as output of the model, given as input a
portion of a recording from IPVS
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7.2 – FA with XLS-R

The argmax function is applied frame by frame and its result is passed to the tokenizer
decode function to obtain a prediction of the transcription of the recording. In the case
of the example in figure 7.2: “ɔdʒi e una bɛlla dʒornata per ʃiare voʎo una maʎa di lana
kolor okra”.

In this case however, the output probabilities will be used for more than predicting
the transcription. Using the frame-wise output probabilities and the transcription of the
recording obtained from the model it is possible to generate the alignment probability. A
2D matrix is defined, with time on an axis and labels from the transcription on the other,
also called trellis. Using t to denote the index on the time axis, j to denote the index
on the labels axis, and k to denote the trellis matrix, the elements of k can be computed
as[84]

k(t+1,j+1) = max(k(t,j)p(t + 1, cj+1), k(t,j+1)p(t + 1, repeat)) (7.1)

where cj is the label at index j, p(t, cj) represents the probability of label cj at time step
t and repeat is the “blank” token from CTC (5.2.5)[84].

The main characteristic of the trellis matrix, observable from equation 7.1, is that
k(t+1,j+1) is the maximum between two values, corresponding to the two only possible
choices during alignment[84]

• staying at the same label, represented by k(t,j+1)p(t + 1, repeat),

• and transitioning to the next label, represented by k(t,j)p(t + 1, cj + 1).

Moreover, the use of max implies that the more probable step choice for k(t+1,j+1) is
taken[84].

Figure 7.3 represent the trellis computed for the example transcription and the frame-
wise output probabilities from figure 7.2.

Figure 7.3. Trellis obtained from frame-wise probabilities and transcription predicted
by the ASR CTC-based model

Given the trellis matrix, the most likely path on it, corresponding to the alignment,
is found through backtracking. That is, starting from the last label index at its time step
of highest probability, the trellis is traversed going back in time.

Traversing, the algorithm chooses if[84]
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• stay at index j with label cj , based on the post-transition probability kt−1,jp(t −
1, cj−1)

• or transition to the following label index j − 1, based on the post-transition proba-
bility kt−1,j−1p(t − 1, repeat)

The trellis matrix is used for path finding but the confidence for each segment in the
alignment is computed based on the frame-wise probability[84].

Figure 7.4 show the most likely path for the trellis matrix in figure 7.3 and the frame-
wise probabilities in figure 7.2.

Figure 7.4. Most probable path on the trellis obtained from frame-wise probabilities and
transcription predicted by the ASR CTC-based model

The points from the path constitute the alignment, but at this stage it still contains
repetitions. The points corresponding to repetitions are merged into segments, averag-
ing the probability from each point being merged[84]. With this last step the alignment
is finally computed.

Figure 7.5 shows the alignment overlaid on the trellis path, together with segment
and point probabilities.

Figure 7.6 overlays the alignment on a graph of the audio track.

7.2.2 Evaluation
A graphical overview of the evaluation steps for the FA task evaluation is provided in
figure 7.7

The alignment strategy and the model are evaluated, for the FA task, on the CLIPS
corpus. The sequence of segments (produced as described in 7.2.1) describing the model
hypothesis for start, end, and label for each phoneme in a recording must be aligned
to the reference sequence to compute the absolute distances between corresponding
boundaries. To obtain this alignment an approach similar to [117] has been adopted.

After loading and preprocessing the CLIPS corpus (see section 6.3), a python script
has been written in order to iterate the procedure over each clip and:

• perform the steps described in 7.2.1 to obtain the alignment segments;

• accumulate values to compute PBE, having aligned hypothesis and reference simi-
larly to [117];

• merge alignment segments into words;
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7.2 – FA with XLS-R

Figure 7.5. Most probable path on the trellis with labels and corresponding probabilities

Figure 7.6. Labels overlaid on corresponding audio track

• accumulate values to compute WBE, having aligned hypothesis and reference sim-
ilarly to [117].

Finally, once every clip in the corpus has been aligned and the necessary data has
been collected, PBE and WBE have been computed.

Results for the evaluation are presented and discussed in 8.
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Chapter 8

Results and discussion

8.1 End-to-end ASR

The results for the ASR task are presented in table 8.1

Corpus PER
[%]

WER
[%]

Common Voice 3.28 13.31
CLIPS 10.39 32.62
IPVS 12.33 34.59

Table 8.1. Overview results ASR

The results on Common Voice indicate that our fine-tuned model outperforms the
models from Babu et al. [12], the same size model for them had a 4.9 PER while their
larger models obtained a 3.5 PER[12]. This is due to the fact that Babu et al. in [12]
performed fine-tuning on Italian Common Voice simulating a few-shot scenario, using
only one hour of training data.

Usually, the performance of an ASRmodel on Common Voice is evaluated using CER,
but since our model outputs phonemes and the hypothesis for a clip is evaluated on the
result of applying G2P conversion to the transcription from Common Voice, comparing
the results we obtained for PER with state-of-the-art CER is imprecise. However, con-
sidering the CER results on Italian for XLS-R and UniSpeech-ML from [53](equal to 3.9%
and 2.4%, respectively) we can see that our result are very close to the state-of-the-art.

Concerning theWER onCommonVoice, a consideration similar to the previous about
CER/PER applies: models from other works produce transcription in graphemes and
thus WER is computed on words written with graphemes, while in our case the model
produces phonemic transcriptions and the “words” that are used to compute WER are
written with phonemes. XLS-R is not evaluated in terms of WER on Common Voice by
[12], but they computeWER for orthographic words on the Italian subset of Multilingual
LibriSpeech (MLS)[144]. The best XLS-R model obtained a 12.1% WER in a few shot
scenario, while the state-of-the-art performance using the entire MLS Italian subset is
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found to have 10.5% WER. Also in this case the results from our model are close to the
state-of-the-art.

The evaluation on IPVS is the first one on an out-of-domain corpus, given that the
model is fine-tuned only on Common Voice.

As can be seen in table 8.1, despite an acceptable performance reduction due to the
fact that the model is not personalized and has not been trained on pathological voices,
the model proved efficient also in presence of dysartric speech (as in PD patients).

The CLIPS corpus is also out-of-domain, but the evaluation on it adds more compli-
cations:

• The phonemic transcription for the recordings in Common Voice and IPVS are ob-
tained through the same G2P system (as described in 6.1.2), while CLIPS already
included manually annotated phonemic transcriptions that have been used after
some preprocessing (described in 6.3.2). The G2P system can adopt conventions
different from the ones adopted by the human operators, being the model trained
on the transcriptions from the G2P system its has the same conventions and biases.

• Differently from Common Voice and IPVS it contains also spontaneous speech

Due to these complications, the results on CLIPS are inevitably worse than on Common
Voice.

8.2 Forced Alignment (FA)
For the evaluation of the FA task, 491394 phoneme boundaries and 119148 word bound-
aries from the alignments predicted by the model have been matched successfully with
boundaries in the reference alignments from CLIPS.

For each couple of predicted-reference boundary the absolute boundary error has
been computed. From this, PBE (5.2.3) and WBE (5.2.4) have been evaluated, obtaining
49ms and 63ms, respectively.

The values distribution for absolute boundary error is further analyzed in table 8.2,
where the percentage of boundaries meeting different tolerances in presented, and in
figures 8.1 and 8.2, showing the distribution of the absolute boundary errors for phoneme
and word boundaries, respectively.

Absolute boundary error [ms]
Level ≤10 ≤20 ≤30 ≤40 ≤50 ≤75 ≤100 ≤500
Phoneme 21% 39% 54% 66% 75% 87% 92% 99%
Word 19% 35% 47% 58% 67% 82% 88% 99%

Table 8.2. Distribution of absolute boundaries errors

The results of the FA evaluation are in line with the results obtained by systems with
similar architectures on other corpora, such as [98] and [107]. Despite a small difference
can be appreciated between the current results and the state of the art (i.e. MFA[114] and
NeuFA[104]), it should be noted that the CLIPS corpus contains more complex speech
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8.2 – Forced Alignment (FA)

Figure 8.1. Distribution of absolute phone boundaries error

Figure 8.2. Distribution of absolute word boundaries error

examples compared to Buckeye[138], and the systemwe developed does not need a tran-
scription to be provided.
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Results and discussion

The latter one is particularly important for the use case envisioned in this work, since
recordings often contain speech not present in the transcription. Conventional FA sys-
tems instead can easily be confused by the presence of utterances absent in the provided
transcription.

Unfortunately, it was not possible to evaluate the performance of the FA system on
speech from PD patients because IPVS does not offer any transcription or segmentation,
only the prompts used for each recording.
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Part III

Future work and conclusions
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Chapter 9

Contributions, future work and
conclusions

This last chapter lists the contributions made by this work (9.1), analyzes some possible
future developments (9.2) and summarizes the conclusions drawn from the experiments
and their results (9.3).

9.1 Contributions
The contributions of the work presented in this master’s degree thesis are mainly related
to the use of state-of-the-art methodologies for ASR and FA on the Italian language and
speech from PD patients, taking into account the requirements for their use in an AVSCA
system for the diagnosis and monitoring of PD. More specifically, these include:

1. An integrated system for ASR and/or FA that can be used as a building block for
AVSCA systems

2. An analysis of the state-of-the-art for FA on Italian

3. An analysis of the state-of-the-art for ASR on speech from speaker with speech
disorders

4. First use of E2E models for FA on Italian

5. Code to download and parse the CLIPS corpus for its use with various Python
frameworks for deep learning

9.2 Future work
Given the time constraints of a master’s degree thesis work, some refinements to the
proposedmethodology could not be realized but are identified by the author as necessary
next step to improve the system:
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• improvements to the fine-tuning methodology

– include the use of data augmentation methods, such as SpecAugment[133]
– include other methods to reduce the “catastrophic forgetting” phenomena1
while fine-tuning to enable the possibility of “unfreezing” other layers

• bridge the domain gap between Common Voice and CLIPS for more accurate eval-
uation of the FA task

– improvements to the G2P system and to the script used to convert CLIPS labels
from X-SAMPA to IPA

– fine-tuning on both Common Voice and a portion of CLIPS

• leverage model confidence to determine which segments to provide to the down-
stream task (evaluation or AVSCA system)

• evaluate the FA capabilities of the system on speech from PD patients
After these refinements, it would be possible to explore the expansion paths that were

considered while defining the architecture:
• support for multiple languages

– XLS-R, and other E2E models for ASR, have been pre-trained on multiple lan-
guages

– the transcription representation in IPA phonemes can represent multiple lan-
guages

– fine-tuning for ASR could be performed simultaneously for more than one
language

– a multilingual system can be used to leverage more corpora of PD speech from
different languages

• semi-supervised or self-supervised learning on speech data from PD patients with
no segmentation or transcription

Moreover, during the development of this thesis work, as observed in the literature
review, other E2E models like UniSpeech-ML[177] and Whisper[149] have been found
to have better performance on Italian[53] and better performance with distorted audio.
The use of these newer models is possible with few changes to the current architecture
and could lead to better performances.

Other interesting developments are possible with more relevant changes to the cur-
rent work and include:

• Methodology change: Even if its output can be used to perform FA, the model on
which the current system is based is designed for ASR; it could be replaced with an
E2E model like NeuFA[104], designed for FA, a better support for the boundaries
positioning can be added on top of an existing E2E ASR model architecture.

1When an ANN abruptly forgets previously learned information upon learning new information[115]
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9.3 – Conclusions

• Architecture Change: The current architecture leverages a speaker-independent
model, but given the results obtained by personalized ASR models on disordered
speech (4.2.5) and the limited amount of data needed for the personalization, it
would be interesting to adopt a similar approach for a FA system.

9.3 Conclusions
This master’s degree thesis explored state-of-the-art methods for ASR and FA, described
an architecture combining them in a system which can be used as a block in an AVSCA
system, detailed an implementation of said combined ASR-FA system, and evaluated its
performance on three different corpora.

The implemented system allows for phoneme level segmentation, robust to repeti-
tions, skipping of words or syllables, mispronunciation, and insertion of superfluous
phonemes which occur frequently in the speech of PD patients. The robustness is ob-
tained also by removing the need for a predefined prompt or known transcription, thanks
to the ASR capabilities of the model. The model used in the system is pre-trained on un-
labeled speech data, available in relatively larger quantities than labeled data. With this
in mind, the objectives defined in the introduction (1.1) can be considered achieved.

The results confirm that E2E models offer state-of-the-art performance for ASR.
Concerning the FA task, the use of an E2E model improves robustness to unexpected

utterances, but currently causes a small reduction in the accuracy of boundaries posi-
tioning.
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