
POLITECNICO DI TORINO

Master’s Degree in Computer Science

Master’s Degree Thesis

Web App Development in
Azure Cloud Environment and DevOps

Supervisors

Prof. Maurizio MORISIO

Prof. Louis JACHIET

Candidate

Alessandro MORINA

October 2022

Summary

Cloud-based technologies gained a lot of ground in the last decade.
Major companies like Amadeus are migrating legacy codebases and
architectures to an all-Cloud environment. A long and complicated
operation for sure, but why are they doing that? Why is it so cost-
effective to develop a cloud-based application? The answer is straight
forward: companies prefer a cloud-based approach because they break
away from all the tasks related to maintaining an online service at all
time. They delegate these tasks to the companies that manages the
cloud service. The benefits of these services, that include the assurance
that your resource(s) will always be reachable, granted backup, and
hardware properly maintained, usually outweigh the costs.

Figure 1: Cloud benefits [1]

ii

In parallel, the DevOps (Development + Operations) methodology has
also been introduced into the world of software development. It is a
methodology, or philosophy for some, adopted by development teams to
ensure excellent product quality, frequent releases and constant feedback
from clients. The key word in DevOps methodology is automation. In
later sections we will talk in more detail about the meaning of the word
automation in our context, the tools needed, and the overall process
(figure 2).

Figure 2: DevOps development cycle [2]

We will see how to get the best out of these two worlds, Cloud develop-
ment and DevOps, through the study of a complete web application
development.

iii

Acknowledgements

My first thank you goes to Alten, for making me a part of this project,
and in particular to Virginie, Massimo and Nicolas, who have

accompanied and guided me all along the way.

Another big thank you goes to my fellow interns and friends.

Amedeo Sarpa
Charly Ducroq

Elisa Alfieri
Grégory Nardi

Maxime Balouard
Sandy Pivato

Saurav Bhatia
Sirine Kraiem

Tommy Lecourt

A special thanks to Tommy who helped me in dark times.

iv

Table of Contents

List of Figures ix

1 Context & Objectives 1

1.1 Internship context . 1

1.2 Practical and theoretical objectives 2

1.3 Scrum . 3

1.3.1 Scrum Team . 3

1.3.2 Scrum Ceremonies 4

1.3.3 Scrum Workflow 5

1.3.4 Scrum in our Internship 6

1.4 Miami v2 . 7

1.4.1 Front-Office vs Back-Office 8

1.4.2 Alten Grains . 9

1.4.3 MVP . 12

2 DevOps methodology 13

2.1 Key concept: Automation 13

vi

2.2 DevOps steps & technologies 15

2.2.1 Plan . 15

2.2.2 Code . 17

2.2.3 Build . 17

2.2.4 Test . 18

2.2.5 Release . 28

2.2.6 Deploy . 32

2.2.7 Operate . 39

2.2.8 Monitor . 40

3 Technical challenges & Solutions 41

3.1 Architecture & C4 model 41

3.1.1 C4 Model . 42

3.1.2 Customer Journey 46

3.1.3 Technology Stack 47

3.2 Databases data structure 48

3.2.1 SQL vs NoSQL 48

3.2.2 Our choices . 51

3.2.3 Front-Office CosmosDB Document Example . . 52

3.3 Cloud architecture & Terraform 53

3.3.1 Entities in Cloud schema 54

3.3.2 Terraform . 55

3.4 Micro-services architecture and Login-System 59

3.4.1 Login Backend 62

vii

3.5 Asynchronous logs queue 64

4 Conclusion 68

Bibliography 70

viii

List of Figures

1 Cloud benefits [1] . ii

2 DevOps development cycle [2] iii

1.1 Scrum in action . 5

1.2 Back-Office homepage 8

1.3 Front-Office dashboard 9

1.4 Alten Grains Activities page 10

1.5 Alten Grains Rewards page 10

1.6 Alten Grains Requesrs page 11

1.7 Send AG to Consultants or suggest them activities . . 11

2.1 DevOps development cycle [2] 13

2.2 DevOps tools description [5] 15

2.3 Jira board Miami v2 Front-Office 16

2.4 Test types [7] . 20

2.5 Main functional tests [8] 21

2.6 applyFilter function BO frontend 23

2.7 Test for the applyFilter function 23

ix

2.8 Karma interface . 24

2.9 Create new Tenant endpoint BO backend 25

2.10 Mocks for BO backend 25

2.11 Test for addNewTenant_success BO backend 26

2.12 Coverage 100% BO frontend 27

2.13 Coverage 76% BO backend 28

2.14 First version of pipeline 29

2.15 Stages in pipeline in gitlab-ci.yaml 30

2.16 Stage definition in gitlab-ci.yaml 30

2.17 Docker stage definition in gitlab-ci.yaml 31

2.18 Docker template definition in gitlab-ci.yaml 32

2.19 Deployment script in gitlab-ci.yaml 33

2.20 Kubernetes Cluster schema [16] 34

2.21 Kubernetes Cluster + Node [17] 35

2.22 Pods Deployment [17] 36

2.23 Our Kubernets Cluster architecture 37

2.24 Helm directory structure 38

2.25 Helm lives within Terraform, to deploy resources in the
AKS . 39

2.26 Lens interface . 40

3.1 General idea of software achitecture 42

3.2 C4 model zooming concept 43

3.3 C4 Context Back-Office 44

x

3.4 C4 Containers Back-Office 45

3.5 C4 Components Back-Office 45

3.6 C4 Context Front-Office 46

3.7 Customer Journey of Sys Admin in Back-Office 46

3.8 Relationship in relational database [21] 49

3.9 Structure SQL vs NoSQL [23] 50

3.10 Example of data in a CosmosDB Document 52

3.11 Schema of Cloud architecture 53

3.12 Terraform providers schema [24] 56

3.13 Include providers in Terraform 57

3.14 Definition of PostgreSQL in Terraform 57

3.15 MSAL form . 63

3.16 Schematization of Login System 64

3.17 Message broker with AQS and AF 66

3.18 LogBuilder AF . 67

xi

Chapter 1

Context & Objectives

1.1 Internship context
Developing a web app from scratch is not an easy task.
The process starts with understanding what the client is asking for,
analyzing the technical possibilities to make the product, and discussing
with the client about them and, in some cases, it is needed to find
compromise, or points of agreement, to actually build the requested
product with the economic and time resources available.

During my internship at Alten GROUP [3], in the Sophia-Antipolis
office, I worked on an internal project, in a team composed solely of
interns.
The purpose of the internship was as much to learn as it was to build a
web app that would replace an existing (old) one, but in a modern key
and with a better design in some poorly developed aspect.

Being all interns (10 in total), with the most varied skills, the undertak-
ing was not easy. It all started with a "cahier des charges", a document
containing all the functional specifications of the desired application. It
should be pointed out that it was forbidden for us, for the duration of
the internship period, to peek at or take cues from the already existing
application.

1

Context & Objectives

The journey began with an in-depth study of the cahier des charges,
in parallel with the drafting of the C4 model, analyzing customer
journey and discussing the technologies we would need to best meet
the requirements.

We always had technical experts and senior developers to ask for advice
or for suggestions about blocking points, but every final design and
development decision was made by us, as the only ones responsible for
the final product.

The app in question, as I mentioned earlier, is intended to replace an
old one internal to the Alten’s division of Sophia-Antipolis, but there
are also plans to be able to export it (with a subscription) to other
Alten divisions around the world.

Our internship lasted 6 months, but the total development time planned
is at least 2 years. We were the first round of interns, the ones who
laid the foundation (and more) of the application that from now on,
we will call Miami v2.

1.2 Practical and theoretical objectives
As mentioned earlier, the internship goal is dual: to learn and to develop
a real and functioning product while doing so.

On the learning side I mean about the technical aspects, that is learning
about a range of technologies and development environments, such as
front-end, back-end and cloud technologies; as well as on the team
workflow aspect, such as Agile Scrum and DevOps deployment method-
ology. I will talk in detail about the benefits and impact of these
methodologies on software development in the next chapters. As a side
note it is worth saying that during the stage period we all tried out
each role in a Scrum team, such as: developer, QA engineer, Scrum
Master and Product Owner.

And of course it was expected that at the end of it, the team would be
able to present to the customer an MVP (Minimum Valuable Product),

2

Context & Objectives

which means a working product with a set of minimum functionalities
required.

1.3 Scrum
Before talking about our application, a few words about the Scrum [4]
framework, with which our team worked, must be said.
Scrum is a framework that helps teams and organizations to handle
complex problems and deliver high-quality products.

In other words, Scrum is a set of practices or rules that are made to
allow the team to self-organize, in order to deal with unexpected and
complex problems. On scrum.org [4], it is described as a heuristic
algorithm, with respect for people.

1.3.1 Scrum Team
Talking about people, let’s spend a few words on the principal roles in
a Scrum Team.

• The Product Owner is the main interface to the client. They
understand and then transfer their knowledge to the team in the
form of User Stories (behaviour of a User in relation to the product.
Each User Story could include several tasks, created by the Product
Owner (PO), or by the developers them-selves), in a set called
Product Backlog. Usually the PO is a full-time role.

• The Scrum Master is the point of reference in the Scrum Team.
When there is a problem of any kind, a member to the team has
to talk with the Scrum Master first. They are also responsible
for directing the Scrum Ceremonies and for making sure that all
team members have understood and are following the rules and
principles of Scrum. Sometimes the Scrum Master could also be a
Developer.

• The Developers is a general name that could refer to various
kinds of developer. In a Scrum team it is whoever is taking part

3

Context & Objectives

to the development process of the product (Software engineer, QA
engineer, ecc...).

1.3.2 Scrum Ceremonies
Scrum Ceremonies are a fundamental parts of the Scrum Team workflow.
They are needed to create regularity and minimize meeting times.
They are key to keep the team efficient, motivated, and with a clear
vision toward the goal.
The following Ceremonies live around the concept of Sprint, which
is nothing more than a definition of time in which the Scrum Team
makes a commitment to fulfill a predetermined set of tasks. A Sprint
duration may vary between 1 and 4 weeks. After a Sprint ends, a new
one begins.

• The Daily Meeting is a very short meeting done every morning
or every evening, in order to flatten out the knowledge of the
progresses of each member and more in general of all the team
during the current Sprint, It is also the moment to talk about
problems and seek for suggestions. If the problems seem too big, it
will be necessary a dedicated meeting.

• During the Sprint Planning the Product Owner explains the User
Stories (US) to the members of the team. Together they decide a
set of US that the team can complete for the next Sprint.

• The Sprint Review is the presentation of the achievement the
team accomplished during the Sprint, to the Client. In other words,
the features they have been able to implement or problems to fix.
During the Sprint Review they can receive immediate feed-back
from the Client. This is one of the strong points of Scrum, that
works very well with DevOps methodology.

• During the Sprint Retrospective the team members are free to
talk about what they think went well and what could be improved.
It’s a meeting dedicated to discuss solutions to increase efficiency,
effectiveness and overall quality.

4

Context & Objectives

1.3.3 Scrum Workflow
The following scheme (figure 1.1), represent the workflow in a Scrum
team.

Figure 1.1: Scrum in action

From left to right we begin with the Product Backlog, that is the set of
requirements (User Stories) created by the Product Owner. Then we
proceed to the right with the Spring Planning in which, as i mentioned
above, the team gathers to discuss about which User Story (taken from
the Product Backlog) they will be able to complete during the next
Sprint, and so forming the Sprint Backlog.
Everyday the team will do the Daily Meeting, referring to the Sprint
Backlog as a point of reference of the progress of the whole team. Each
team member, with the help of tools like Jira, will be able to consult
the Product and Sprint Backlog, in order to know which tasks the other
members are doing and which task is free to be taken.
After the duration of the whole Sprint, the team developed a certain
number of features, that can be called Increment. The Increments are
presented to the Client during the Sprint Review.
Usually right after the review, the team does the Sprint Retrospective
to discuss about general improvement that could be made in the team

5

Context & Objectives

to increase quality of work environment and work delivered.
Sometimes new information arise from the Sprint Review (for example
sometimes Clients change their mind), and so the Product Backlog has
to be updated.
Finally a new cycle begins with the Sprint Planning.

1.3.4 Scrum in our Internship
As I said previously, one of the goal of our internship was to make us
truly understand what it meant to work in such an environment. At
the beginning of the internship we had a 2 days course lectured by an
internal expert of Alten, and then, to make the concept stick, each one
of us had to play each role. Of course the environment was not like in
the real world. We could make mistake and ask questions, but it really
made us ready to work in a real company, in a similar environment.

6

Context & Objectives

1.4 Miami v2
Alten is an engineering consulting firm. It makes the expertise of its
Consultants available to various Clients, whether for existing projects, or
for planning and design of new ones. Without getting lost in the details,
the link between Consultants and Clients is managed by Business
Managers (BMs).
Every user is part of a Tenant, that is a physical division (building) of
Alten GROUP.

Our application will be an internal web portal with multiple features
in function of the role of the user logged in.
In the future version of Miami v2 this could change, but so far we
considered the following:

• Consultants have access to their own profile and to Alten Grains
functionalities.

• BMs will have access to Consultants details, Clients details, and
can manage requests for Alten Grains or Rewards of a Consultant.
They can also see statistics related to their Tenant.

• CMC same as the BM, but they manage the kind of Activity a
Consultant can do to get Alten Grains, and the kind of Rewards a
Consultant can buy with Alten Grains.

• Tenant Admin have the same feature as a CMC, and can also
create users and add them to their Tenant.

• HR can create/modify/delete Consultants profiles.

• System Admin is the main role of the Back-Office portal.

7

Context & Objectives

1.4.1 Front-Office vs Back-Office
As it is clear from the description of the System Administrator role,
the team had to develop in practice 2 web portals. A Back-Office one,
accessible by System Admin and Tenant Admin, and a Front-Office
one, accessible by everyone else, including the Tenant Admin.

The Back-Office web app is a portal in which a System Administrator
can manage the creation, deletion and modification of the Tenant
entities; He or she can assign to other users the System Administrator
and Tenant Administrator role, and can monitor and observe statistics
about tenants. A Tenant Admin have access to the Back-Office platform
but in read-only mode, in order to monitor and consult tenant statistics.

Figure 1.2: Back-Office homepage

8

Context & Objectives

The Front-Office app is instead, as I described briefly earlier, a suit of
features, in function of the role.
Broadly:

• Customizable dashboard with widgets

• Users/Clients management

• Alten Grains System

• Statistics

• Notification System

Figure 1.3: Front-Office dashboard

1.4.2 Alten Grains
It is worth to have a subsection dedicated to the Alten Grains feature,
since it is a whole new system that was not present in the old version
of Miami.
It is an activity-reward sub-portal, where Consultants will be able
to declare to have done/organized a particular kind of Activity, and
consequently, after verification by a BM or CMC, they would gain a
certain amount of a virtual currency: the Alten Grains.

9

Context & Objectives

Figure 1.4: Alten Grains Activities page

The Consultants will then be able to spend Alten Grains in order to
buy Rewards in the designated area (like an online shop).

Figure 1.5: Alten Grains Rewards page

The elements in the pictures are mocked. The pictures are taken from
the development environment.

10

Context & Objectives

From the point of view of a BM/CMC/Tenant Admin instead, we can
also accept or deny the requests for Alten Grains or rewards, or we can
directly send to them Alten Grains (this operation may seem dangerous,
but all the transactions are tracked and monitored).

Figure 1.6: Alten Grains Requesrs page

Figure 1.7: Send AG to Consultants or suggest them activities

11

Context & Objectives

1.4.3 MVP
The MVP requirements for our internship were:

• Widget dashboard on Front-Office
Each user is provided with a customizable main dashboard, on the
Front-Office portal.

• Alten Grains on Front-Office
Alten Grains portal with all features present and working. Ability
to send requests to BMs as a Consultant, to receive Alten Grains,
or to spend them and get Rewards. Ability for BMs and CMCs
to edit possible Activities to be performed and Rewards to be
obtained, and acceptance or rejection of Requests.

• Feature filtered by role
The monolithic portals (FO, BO) offer different functionalities
depending on the role of the logged-in user.

• Back-Office portal entirely working
The BO portal provides all functionality regarding Tenant manage-
ment, System Admin and Tenant Adimn roles.

• Deployment of production environment
The prod environment must be configured and accessible by all
concerned users.

12

Chapter 2

DevOps methodology

2.1 Key concept: Automation
As it is probably clear from the title of this section, the key concept
about the DevOps methodology is Automation.
But Automation of what exactly? Let’s take a step back.
Taking again a look at the DevOps cycle we can notice how it is a
fusion between two worlds.

Figure 2.1: DevOps development cycle [2]

13

DevOps methodology

The left side of the figure 2.1 represents the Development world, that is
concerned about the design of the software architecture and the actual
coding, testing and building of the product. While the other side (the
Operation side) is concerned about the deployment on the machines
(as servers); their main tasks are to assure that everything works fine
on the deployment environment and then monitor how the new version
of the software performs.
In an old-school development environment these would have been two
different teams, and the communication between these two was usually
a critical point.

In DevOps we no longer have this division; developers are responsible for
the steps of the development process, up to and including deployment.
This is achieved through tools, which allow the automation of tasks
such as Verification (Tests, Coverage), Build, Deployment, Operation
and Monitoring.
This is why automation is the main concept of DevOps.
We can speak of DevOps only when the entire process is managed by
an orchestrator tool that manages, like a pipeline, all the steps of the
cycle.
This cycle is called Continuous Integration / Continuous Development.

Now, why there was the need of that revolution?
The benefits are many:

• Frequency of updates: thanks to the automated nature of
deployment, the modification and updates to the code can be
delivered with much more frequency in small portions.

• Rapidity: due to the feed-back after the frequent updates, it is
easier and faster to fix eventual bugs or to apply modifications.
This leads to the next advantage.

• Quality: the code benefits of an increased overall quality, in terms
of performance, and code quality.

• Scalability: thanks to some Operation step tools, as Kubernetes,
it is easy to scale the physical resources in function of the needs.

14

DevOps methodology

2.2 DevOps steps & technologies
In this section I will talk about the tools and technologies that have
enabled us to apply the DevOps methodology, for each step of the cycle.
I will spend a few words introducing the meaning of each step, and how
we handled it in our internship.
I will also use some portions of code taken from our project to give
concrete examples.

Figure 2.2: DevOps tools description [5]

2.2.1 Plan
The first phase is planning.
No specific technologies are needed in this phase, although it is now
almost essential to use tools such as Jira [6], which help team members
keep track of what everyone else (and themselves) is doing.

Depending on the point of view, various roles are responsible for this
phase. From a macro perspective, it is the product owner who is

15

DevOps methodology

Figure 2.3: Jira board Miami v2 Front-Office

responsible in understanding the specifications from the clients, and
organizing them into a set of User Stories (also called Product Backlog,
as explained in this section). In doing so, a sort of road-map to specific
goals can be created by sorting the US in order of priority.

At the same time, the developers have a say in discussing what tech-
nologies/frameworks/data structures/architecture would be optimal to
use in order to best meet the requirements described by the OP. All of
this needs to be done in an initial planning session, but the possibility
of changes during future planning phases is not entirely ruled out,
although one must be aware that making changes on the technical side
at a later stage of development can be extremely costly, which is why
devoting time and energy to the initial planning phase is essential.

On the micro level, however, the planning phase is represented by the
daily meetings that, in a scrum team, are under responsibility of the
scrum master (described previously here), in which he or she must
ensure that all elements of the team know what to do, and do it as
efficiently as possible.

16

DevOps methodology

2.2.2 Code
The code step is about the classic operation of coding, which includes
not only writing code on an IDE, but also maintaining it, organizing it,
and structuring it in a way that allows a whole team of developers to
get their hands on the same codebase at the same time, and be able to
make it easily accessible to any new entry to said team.

The softwares involved in this process are development environments
(IDEs), extensions to enforce a common code style for developers and
others to enforce the avoidance of poor programming practices and,
finally, a versioning control system, to allow all developers to program
easily on the same software, to keep track of old versions and thus
always having the ability to roll back.

During our internship we used different languages: TypeScript, Java,
and C#, but our main IDE has always been VSCode with the appropri-
ate extensions and prettier (for code style consistency). We also used
IntelliJ for the Java language.
As for versioning control, we used Git, offered through the DevOps
platform GitLab (central tool in our whole DevOps cycle).

2.2.3 Build
The build operation is a fairly simple concept: a software build trans-
forms some source code into binaries, ready to be used by the end user
or, as in our case, to be deployed in a cloud environment, in order to
allow access to users via a Web portal.

The build phase, along with the test phase, are considered one after the
other in our pipeline, implemented through the GitLab CI/CD system,
which I will explain in detail in the release phase.

In the build step we used the Apache Maven tool for Java and the
Node Package Management (npm) for all the TypeScript codebases
(Front-Office frontend/backend and Back-Office frontend).

17

DevOps methodology

2.2.4 Test
One of the most important phases in our DevOps cycle, but also in the
software development world in general, is the testing phase. This phase
is responsible for verifying the proper behavior of software features,
to the identification of problems (bugs) and also as an assurance to
the clients that the product is reliable and of high quality. It is worth
noting that testing is not always done correctly, thus undermining
the assurances that this phase is supposed to bring to the team and
customers; therefore, it is important that the tests are at least checked
by senior developers to ensure that they are correct and robust.

This phase, depending on the point of view, is performed either manually
by developers and external users, ensuring that features are working
properly through experimental use of the software, or automatically,
by software that perform a series of coded tests (e.g. Unit Tests), and
can thus be executed during the pipeline. In our case, each code-base
has a Testing step during the release process, and if even one of the
tests fails, the pipeline is stopped.
This indicates that something unexpected occurred and/or a feature
has been compromised through a change, and that it no longer meets
the required specification (or in simple terms no longer works properly).

Benefits

I have said previously that testing is important, but I have not yet
explained why.
Let’s take a look at the most important benefits that effective testing
can bring to the team, to the product, and even to the customers.

• It helps saving money
As previously announced, correcting errors is expensive, depending
on the error, even very expensive. Spending valuable time to create
and perform tests is never a waste.
Testing is a long-term investment; it helps identify problems at
an early stage of development, thus avoiding spending money to
correct errors, or spending even more money to compensate third

18

DevOps methodology

parties who have been "victims" of these errors.

• Quality
The product is considered to be of quality when it meets all the
customer’s requirements, and does so correctly and without pre-
senting problems.
Testing helps to deliver fully functioning software to the clients.

• Customer satisfaction
The practice of testing makes the customer confident that the
product is working properly, making them sure that the product
will offer an optimal user experience.

• Security
Testing can be oriented toward identifying vulnerabilities. Software
security is now a critical issue in the modern world, and software
that is well tested against vulnerabilities is a major goal of many
teams.

• Speed up the development process
Automated testing can help speed up the development process
incredibly.
With automated tests, it is much easier to identify the portions
of code that are guilty of unexpected behavior, thus making the
debugging process almost immediate. They also help develop new
features without the risk of compromising old ones, because good
tests always verify that what exists, continues to work as usual.

Types of tests

So far I have only talked about the importance and the benefits, and I
recognize I was a little confusing, because some benefits are consequences
of certain types of tests, and some from other types.

19

DevOps methodology

Figure 2.4: Test types [7]

In the figure 2.4, we can distinguish 3 main categories:

• Functional
Functional tests are those responsible for the actual functionality
of the product. The tests verify that there are no bugs and that
all behaviors are consistent with the specification.
E.g., Unit Test, Integration Test, User Acceptance Testing

• Non-Functional
Non-Functional tests are responsible for features such as product
portability, reliability, and security. Features that, during our
internship period, were taken into consideration but were not tested.

• Maintenance
This type of testing is done after the release of the product, to add a
level of assurance that everything is working properly after updates
or migration of the product. E.g, Confirmation Test, Regression
Test

20

DevOps methodology

During our internship, we focused more on functional testing, in partic-
ular:

Figure 2.5: Main functional tests [8]

• Unit Test
The Unit Test (UT) is the most basic of the tests.
The task of a UT is to verify the correctness of a basic component.
By basic component I mean a portion of code that does not de-
pend on external systems, for example a function that performs
a simple calculation or that calls different functions in function
of the parameter. I just described the two general cases of UT:
output-based testing and behaviour-based testing. In the former
you test a particular expected output of a function, while in the
latter you check that other functions (unit tested with the former
scenario), get called under specific conditions.

They are the easiest and fastest to code, and it is good practice to
create unit tests for most of the components, even for those that
at first glance may seem "too simple not to work as expected".

• Integration Test
Integration Testing is a bit more complicated than UTs, as they are

21

DevOps methodology

responsible for verifying the correct operation of multiple modules
or external components, which communicate with each other. E.g.,
When a particular backend end-point is called, it creates a new
element in a database.
Integration Tests usually interacts with the real instances of the
external systems, and not stubs or mocks of them.

• End-to-end Test
End-to-end (E2E) tests are the most complete, but also the most
complex and slow to perform. They are a simulation of a real user
behavior, which then triggers the functionalities of the entire stack
of technologies that may be involved in the product.
For example, a simple E2E test could be used in the following
scenario: in a site where there is a section in which a user can
create elements, that then are stored in a database and consequently
shown on the UI, we can simulate the click on the "create" button,
and then check if the elements appears in the designated UI zone.
In this example there is a communication between the frontend
system and the backend, between the backend and the database,
and then the other way around.
This guarantees that the whole communication works correctly, in
an environment similar (or identical) to the real one.

Tests in our internship

In our project we used various frameworks for the 2 main languages
(TypeScript and Java).

• Jest [9] & Karma [10]
Jest is one of the most popular testing frameworks for TypeScript,
being easy to use, offering a smart engine for parallel test execution
and a great mocking system.

Consider the following example code taken from our Back-Office
frontend.

This function is used to update a value of an internal list in a

22

DevOps methodology

Figure 2.6: applyFilter function BO frontend

component, in function of a filter inside another variable.

The following piece of code is a test for the applyFilter function.

Figure 2.7: Test for the applyFilter function

Notice how this is an output-based unit test, because we are manu-
ally assigning a value to evaluate [line 92 in image 2.7], along with

23

DevOps methodology

filter values [lines 94 and 98]. Consequently, we call the compo-
nent’s internal function [lines 95 and 99], which is the one we want
to test, and finally we verify, thanks to the Jest expect syntax,
that the value computed by the applyFilter function (which we
know is assigned to the tenantsFiltered variable), is exactly what
we expect (comparing it with mockedTenantsExpected, through
the toEqual method).

Karma instead is a framework that executes test in relation to
web browsers in real-time. It is used to verify that all tests pass
successfully, regardless of the browser on which the code is run.

Figure 2.8: Karma interface

• JUnit [11] & Mockito [12]
JUnit in turn is one of the most popular frameworks for unit
testing in the Java environment. We also leveraged on the Mockito
framework in parallel, to mock external elements that would be
difficult to run in a UT environment.

24

DevOps methodology

Figure 2.9: Create new Tenant endpoint BO backend

The above code represents an endpoint. It communicates with
several external systems (Azure Queue Storage, Blob Storage,
Database), and yet we need to create a UT for it. The answer lies
in Mockito.

Figure 2.10: Mocks for BO backend

Without getting lost in the technical structure of the BO backend,

25

DevOps methodology

it is worth noticing that all the tests are grouped in relation to a
specific XYZController, in a class called XYZControllerTest.

A Controller, in a backend context, is a set of endpoints (also called
API), which can be accessed by an external request, like a frontend.

In each Controller test class are defined, through Mockito, mocked
object of external system (figure 2.10), as the tenantRepository
which represents the Database connection.

Figure 2.11: Test for addNewTenant_success BO backend

With the keyword when [line 95 of figure 2.11], we can tell the
program to not execute the real behaviour of the external system,
but instead return a mocked response, that we define with the
method thenReturn.
We can also force some components to do nothing when they are
called [line 99], because their execution does not affect the behavior
of the portion of code we intend to test.
Finally, we simulate the call to the endpoint [line 101], and we then
check the expected value (status only in this case).

• Selenium [13]
Selenium is a software that we unfortunately only saw in theory
during a little course taught by an experienced QA Engineer from
Alten at the beginning of our internship, however, it will be used

26

DevOps methodology

to implement E2E testing in a future cycle of the internship.
Selenium is a software for task automation in web-browsers, and
one of its uses is to simulate behaviors similar to those of a real
user, and then verify a browser state. Doing so we can indeed
implement E2E testing. Selenium can also be integrated into a
pipeline, since it creates a virtual instance of a browser to perform
its operations.

Coverage

The last topic regarding the world of testing is that of coverage. Cover-
age is a percentage value, which indicates the amount of code that is
"covered" by testing. Usually a development team will set a minimum
coverage value, which indicates a kind of quality assurance, as it is
usually around 95 percent.

In our case for instance, we have 100% coverage on the frontend, and
76% in the backend, regarding the Back-Office

Figure 2.12: Coverage 100% BO frontend

27

DevOps methodology

Figure 2.13: Coverage 76% BO backend

2.2.5 Release
The release stage can be regarded as the last of the development world,
or first of the operations world. The release phase is responsible in
producing a product release, which is a compiled version of the software.
In order to do this, it is necessary for all tests to be successfully executed,
as well as the compilation phase, and in the end, a release becomes
available.
Available means that a release exists (e.g., as binaries), and is ready
to be deployed. We will address the deployment concept in the next
section.
For now, let’s concentrate on how all of this is automated through the
GitLab CI/CD feature, through a simple file called gitlab-ci.yaml .

GitLab CI/CD

GitLab CI/CD [14] is an incredibly powerful, feature-rich tool for dealing
with the requirements of Continuous Integration/Delivery/Depolyment
methodologies. During our internship, we used it to create a pipeline
that would be triggered whenever something was pushed (or merged) to
the repository (or branch specifically), also within the GitLab portal.

A push operation to a development branch triggered a "reduced" pipeline,
verifying only the test and build steps, while a merge from one of the
development branches, to the main branch, caused the entirety of the
pipeline to execute.

The pipeline, in its primordial version, was defined as shown in the
following diagram:

28

DevOps methodology

Figure 2.14: First version of pipeline

From the diagram shown above we can observe the reduced pipeline
first, and then the full pipeline with all its steps.

Before talking about the Docker and Deploy steps, here is how the
pipelines were defined through the gitlab-cd.yaml file.

The first thing to define in a gitlab-ci.yaml file, is the list of steps
(or stages) of the pipeline.

29

DevOps methodology

Figure 2.15: Stages in pipeline in gitlab-ci.yaml

We can also specify other parameters like tags and environment vari-
ables.

After that, each individual stage must be defined. Taking as an example
a simple stage, such as the build stage (figure 2.16), we can see how
only commands are specified to be executed, some of them are about
configuration (before_script), while others are dedicated to the real
task of the stage (script).

Figure 2.16: Stage definition in gitlab-ci.yaml

More complex stages might be dependent on results from other steps
in the pipeline, might generate artifacts (temporary files), and might

30

DevOps methodology

have rules and conditions for their execution (such as executing the
Docker and Deploy steps only if it is a merge on the main branch).

Docker

Docker is a platform that allows an application to be containerized,
packaging the application itself along with all its dependencies from
libraries and OS. This allows the Docker container to run via a soft-
ware called Docker Engine, on any platform, removing the need for
configuration of any sort.

Docker is an application that is usually considered in the deployment
phase, but in our case, our release is actually a Docker Image.
A Docker Image is the immutable file that contains all the dependen-
cies, from which a Docker Container can then be created and further
configured.
In our case, Docker Containers are automatically created in Kubernetes
Pods, which we will see in the next sections.

The following images represent the stage and the templates it extends.

Figure 2.17: Docker stage definition in gitlab-ci.yaml

31

DevOps methodology

Figure 2.18: Docker template definition in gitlab-ci.yaml

In a nutshell, the template uses a docker image so that we can build our
new image, with the appropriate parameters; and then it is uploaded
to our azure cloud.

From there, the deployment phase can begin.

2.2.6 Deploy
Finally, the deployment phase is the one that, when completed, will
make the new release available for external access.

What it means is that an outside user will be able to type a URL into
his or her browser, and thus be able to access our site.
There are many steps and many middle infrastructure and configurations
that I am glossing over, like firewalls, virtual hosts configuration and
application servers, but mostly of that has been auto configured by the
Terraform template we used (more on Terraform on the appropriate
section).
Not to mention that the deployment phase also considers the deployment
of supporting infrastructure, such as databases (which will be covered
in the Cloud infrastructure section).

32

DevOps methodology

Now, the deployment itself is done rather simply:

Figure 2.19: Deployment script in gitlab-ci.yaml

These two commands in figure 2.19, are all we need in order to deploy
our new release through our Kubernetes Cluster.

But what exactly is a Kubernetes Cluster? Why do we need it? How is
it created? In the next two sections I broadly answer these questions.

Kubernetes

Kubernetes is an open-source container orchestrator, which allows to
automatically manage the deployment and operation process of a set
of containers.
The use of Kubernetes is almost necessary when dealing with non-
monolithic systems, as in our case. I will discuss our multi-service
architecture in a separate section.

Kubernetes features are many [15]:

• Service discovery and load balancing Kubernetes is able to
expose containers externally through DNS or IP addresses. It is
also able to autonomously distribute requests, in case there is a
service running on several servers, so as not to overload just one
and to keep stability.

• Storage orchestration Kubernetes allows you to automatically
mount a storage system of your choice, such as local storages, public
cloud providers, and more.

• Automatic bin packing You provide Kubernetes with a cluster
of nodes that it can use to run containerized tasks. You tell
Kubernetes how much CPU and memory (RAM) each container
needs. Kubernetes can put containers into specific nodes to make
the best use of resources.

33

DevOps methodology

• Self-healing Kubernetes notices when something is not right.
When a container crashes, Kubernetes immediately tries to replace
it with a new one.

• Secret and configuration management Sensitive data can be
handled independently of container images, so that secrets can be
updated without the need of rebuilding.

We understood that the key elements of kubernetes are clusters, nodes
and pods. But how are these elements exactly interconnected?

The following might be a rough representation of a generic Kubernetes
Cluster:

Figure 2.20: Kubernetes Cluster schema [16]

Let’s precisely describe each component [17]:

• Cluster
We can observe that a Kubernetes Cluster is the enclosing entity.
Indeed the Kubernetes Cluster is just a set of Nodes that may run
on several machines. All the nodes are managed by a Master Node,
which are the responsible for the behaviours of the entirety of the
cluster.

• Nodes
Nodes are computing units. They could be physical machines or

34

DevOps methodology

virtual partitions. Each Node has a fixed amount of CPU power
and RAM that can share among its Pods.

Figure 2.21: Kubernetes Cluster + Node [17]

• Pods
Pods run inside Nodes and are a high-level structure that wraps
containers. A Pod can request for a specific amount of resources
(CPU and/or RAM) from its Node. Containers inside the same
Pod will share resources and network properties (like IP).
We can have as many containers as we want inside the same Pod, but
since Pods are the single unit that could be potentially replicated,
or replaced in case of failure, it is wise to make them with the least
number of container inside as possible.

This is because in the case where a service offered by a container
inside a Pod has a large load of requests, the Pod containing this
service is automatically duplicated N times, as much as needed

35

DevOps methodology

(Node resources permitting).
However, if there are other (more or less important) containers
within the same Pod, they too will be multiplied, thus wasting
unnecessary computational resources and memory.

• Containers
Containers on Kubernetes are packaged as Linux containers. They
can contain multiple programs even though once again it is better
to isolate processes for the sake of efficiency, when possible.
In our case Containers are generated automatically from Docker
Images by the Helm Charts through Terraform (we will see all of
that in the next sections).

• Deployments
Actually what our Helm Chart does is define an entity called
Deployment. It is a kind of declaration of parameters to be applied
to a Pod (or more if we decide we want the same Pod duplicated
N times by default).

Figure 2.22: Pods Deployment [17]

• Ingress
Finally, it is necessary to define for each pod offering a service

36

DevOps methodology

outside the Kubernetes Cluster, what is called Ingress.
The Ingress Controller then allows you to define whether and how
to access the service inside the Pod (e.g., an URL).

In our case, the Kubernetes cluster is defined within our cloud, specif-
ically Azure Cloud, which provides native Microsoft functionality to
facilitate the use of a Kubernetes cluster, through the Azure Kubernetes
Service (AKS).

Figure 2.23: Our Kubernets Cluster architecture

The architecture is very simple: we have one node, and many pods,
each containing one container (or service) inside. We will review the
details in the section explaining the Cloud architecture.

Pods are launched through images that the AKS takes from the Azure
Container Registry, which is a storage service inside the Azure Cloud
that contains the latest versions of our releases.

Helm

Helm [18] is the answer to the question: "how do we define the Kuber-
netes architecture?".

There are several ways to configure a Kubernetes Cluster, but in a
DevOps environment, where everything is automated, the creation of

37

DevOps methodology

the Kubernetes cluster must be as well. To do this we used Helm.
Helm is referred to as the Kubernetes Manager. With Helm we can
define, install and update any Kubernetes application.

There are only 3 key concepts about Helm:

• Chart
A Chart is nothing more than a package of files with a well-defined
structure, in which we can define all the specifications of a resource
within a Kubernetes Cluster.

Figure 2.24: Helm directory structure

Exploring how each individual file works is beyond our scope.
However, it can be said that the Chart.yaml file contains basic
information such as name, description, and Release version, and
that the real "magic" is described in the other self-generated (and
properly edited) template files, which are taken into consideration
together with the Chart file.

• Repository
A repository is a place where charts are saved or shared. There are
public repositories accessible directly from the Helm client from
which charts can be downloaded.
Or you can have a private repository where you can create and
save your own charts.

38

DevOps methodology

• Release
Finally, a Release is an instance of the Helm chart deployed in the
Kubernetes Cluster.
Once the chart is installed via the Helm client (or via Terraform
in our case), the Release with a certain version is created, and the
resources in the Kubernetes Cluster are deployed.

As already mentioned, in our case we do not directly use a Helm client
locally.
Everything is managed through the powerful Terraform tool, which
automatically deploys helm releases.

Figure 2.25: Helm lives within Terraform, to deploy resources in the
AKS

The previous scheme will be further developed in the appropriate section
about Terraform.

2.2.7 Operate
The operate phase is about keeping the application up and running.
Fortunately, in a cloud environment, it is not our team’s responsibility
to worry about the hardware being correctly running all the time.

In addition, as discussed earlier, Kubernetes is able to handle the load

39

DevOps methodology

of requests itself and restart any pods with an application that has
crashed.

2.2.8 Monitor
The last phase of the cycle is devoted to observing errors or problems,
which can then be analyzed and considered for the next cycle so that
any issues can be improved and corrected promptly.

During our internship we did not establish communication channels
with users, mainly because our app was developed in a dev environment
(we deployed in a prod environment at the end of our internship, as it
was an MVP requirement).

The development (dev) environment is reserved exclusively for developers
to test site functionalities in an environment equal to a real one, which
is usually called the production (prod) environment.

This mainly means that the only feedback we had was from stakeholders
during sprint reviews, and rarely close colleagues. The only monitoring
channel was the logs generated by Kubernetes pods, which we accessed
through the Lens software [19].

Figure 2.26: Lens interface

40

Chapter 3

Technical challenges &
Solutions

After introducing the DevOps methodology, and the technologies we
used to be able to apply it, in this chapter I will explain the most
important milestones that characterized the actual development of our
application, covering both theoretical and practical aspects.

3.1 Architecture & C4 model
At the beginning of our intenrship, as I mentioned in Chapter 1, we were
given what is called a "cahier des charges" (in French). It is nothing
more than a document containing the functional specifications of the
project (or at least what had been thought of by the client up to that
moment).

The document was 21 pages long, and we spent several days discussing
the various implementation possibilities and what technologies would
support us for the best.

The project was complex. Many users would have had access to our
portal. Each of them would have had access to different functionality

41

Technical challenges & Solutions

depending on their role. The portal offered many different services and
data of various kinds and relationships had to be stored.

The path to take seemed clear to us right from the beginning: microservices-
oriented architecture.

The idea then was to have a microservices back-end system, with
a monolithic front-end and a database (I will address microservices
architecture and database choice in more detail in later chapters).

Figure 3.1: General idea of software achitecture

But the precise definition of the architecture is not a task that can be
done with words alone, nor is it sufficient to take scattered notes or
to draw poorly labeled squares and lines on a white-board (like in the
picture 3.1).
It was essential to use a conceptual model with a well-defined structure
of representation: the C4 model.

3.1.1 C4 Model
The C4 model [20] consists of an approach to schematization divided
into 4 levels of abstraction. It is a way to annotate, describe, discuss,

42

Technical challenges & Solutions

and communicate the structure of software with clients or colleagues,
regardless of their level of technical expertise.

The 4 levels are Context, Container, Components and Code; hence the
name C4 model. We have to think of the C4 model as a concept map,
in which you can zoom in for more detail, and you can do this from
the Contex level (most abstract level), down to Code (most practical
and technical level).

Figure 3.2: C4 model zooming concept

Broadly speaking, each level represents:

• Context
The level of context is the most general. It is not important to
specify technologies or technical details. This level focuses on
people and what systems they will be dealing with. High-level
links between external systems can also be represented. As an
example, take the primordial version of the C4 model we created
for our Back-Office portal (slightly outdated, many specifications

43

Technical challenges & Solutions

have been added over the months).

Figure 3.3: C4 Context Back-Office

You can see how only one user would have access to our main
system, which in turn would have interactions with the Front-Office
system.

• Container
The container layer is not to be confused with elements like Docker
Containers, although they could be Docker Containers. A container
is a unit that could run or be deployed by itself, like for example
server-side app, a Docker container, a databases, ecc.
At this level are shown technologies and protocols, and one can
begin to observe how the system actually interacts with the outside
(and internally) in a technical way. (figure 3.4)

• Component
When zooming inside a container, we can see the components.
Components are an abstraction of a group of code within a container.
Such as controllers or services, but it could be even classes or
interfaces. (figure 3.5)

• Code
Finally, the last level is very similar to a UML diagram, related to
the code of a single component. This layer is rarely needed, and in

44

Technical challenges & Solutions

fact we have not considered it.

Figure 3.4: C4 Containers Back-Office

Figure 3.5: C4 Components Back-Office

The examples just shown depicted our back-office, for which in my

45

Technical challenges & Solutions

opinion it would not have been necessary to use the C4 model. For our
front-office, however, it was essential.

Figure 3.6: C4 Context Front-Office

3.1.2 Customer Journey
In parallel, 4 elements of the team dedicated themselves to the Customer
Journey. It is a diagram representing the actions that an "actor" could
do. In this example, the Sys Admin in the Back-Office.

Figure 3.7: Customer Journey of Sys Admin in Back-Office

The purpose of this parallelization is comparison.

46

Technical challenges & Solutions

Regularly during the initial design days the people dedicated to Cus-
tomer Journeys and those dedicated to the C4 model would discuss, to
check the consistency of their respective schemes. It was a way to have
an overlap of two different point of views with the same end goal.

3.1.3 Technology Stack
At the end of the discussions and after also consulting with experienced
developers, these are the technologies we chose to adopt.

For the Front-Office team:

• React
We had initially opted for Svelte, but since it is still in its primordial
stage, we changed our minds quickly, and then chose to use React.
We consider React easier than Angular, and it made sense for us
to pick it since most of us had never touched web development.

• NextJs
NextJs is a library that facilitates many operations like server-side
rendering, routing and others, and it was strongly recommended
by a senior frontend developer.

• MUI
One of the most popular graphic libraries for importing ready
and well-made components. Ideal for keeping visual consistency
throughout the site.

• NestJs
Based on Node.js, so lighter than Java alternatives. Also easy to
learn and therefore suitable for our inexperienced team. Framework
widely used in our work context (so useful for a future after the
internship).

For the Back-Office team:

• Angular
It should be noted that the back-office development started a few
weeks late, and so, since our main goal during the internship was to

47

Technical challenges & Solutions

learn, we decided to step outside the comfort zone of React and opt
for Angular: framework that is also widely used and could come in
handy during our future in the industry.

• Angular MUI
To keep graphic consistency (as much as possible) with the Front-
Office application.

• Spring-Boot
Again, this choice was dictated by the popularity of the framework
and the desire to try new technologies, plus the fact that we would
never need the speed and performance of NestJs in the BO.

3.2 Databases data structure
As was mentioned earlier, our project is deployed on Azure Cloud (I
will discuss why in the next section).
Working in the Azure Cloud environment has offered us many advan-
tages, but it has also influenced us about certain decisions. One of
these concerns the choice of databases, such as CosmosDB.

Before explaining further the reasons for the choice and internal struc-
ture of our databases, it is good to take a step back and understand
the difference between relational, and non-relational databases.

3.2.1 SQL vs NoSQL
The main characteristic of relational databases is that they contain
highly structured data. Data are usually organized in tables, which
are in turn divided by columns, which identify the information, and by
rows, which identify the whole information record.
Each row has an element that is unique to the entire table: the key. This
element allows us to create relationships between records in different
tables.

The schema in Figure 3.9 represents an Employee table with a number
of information about each employee (Name, Title, HireData) and the

48

Technical challenges & Solutions

Figure 3.8: Relationship in relational database [21]

EmployeeId, which represents the key. On the right, on the other hand
there is a table representing Sales, which contains, in addition to all the
necessary information and its own key (SaleId), what are called foreign
keys (EmployeeId and CompanyId), which reference keys to external
tables (on the schema it’s graphically represented only the relation
between the table Employees). This is the property that defines the
name of relational databases.
The ability to create, in a structured way, relationships between entities.
The way relational databases are created has a number of advantages
and disadvantages:

SQL Pros

• Relational databases are optimal to work with structured data with
a lot of relations.

• The Structured Query Language (SQL) is an extraordinary powerful
tool to extrapolate the right information in an efficient way.

• It exists a well defined normalization process [22] thanks to normal
forms, which are rules that indicate how data inside relational
databases should be stored.
Having a normalized database implies having anomalies (redun-
dancy, lack of integrity, ...) reduced or eliminated.

49

Technical challenges & Solutions

SQL Cons

• The schema of the data should be defined up-front, as it is hard to
change structure.

• In function of the complexity of the structure, SQL retrieval and
manipulation may be slow.

• In order to improve performance, vertical scaling is the only solution,
which could be very expensive.

On the other hand, non-relational databases can contain unstructured
data. It is up to the developers to define how the data will be stored
within them.

Figure 3.9: Structure SQL vs NoSQL [23]

There are many different types of NoSQL databases, such as Key-Value
based, Graph based, and others, but the most common is Document
based, which is what we used too.

Documents are usually organized following a specific format to make
them easy for software to read, such as JSON or XML. In Documents,
there are no strict rules like tables; data can be stored without a specific
pattern. It is also possible to create references such as foreign keys. It
is all in how this data will be read.

50

Technical challenges & Solutions

Non-relational databases are relatively new compared to relational ones,
but there are still pros and cons to analyze when it comes to making a
choice.

NoSQL Pros

• It is much easier to make changes to the structure of data even at
a later stage of development.

• Non-relational databases are optimized to work with a huge quantity
of data.

• It is Cloud oriented. It can easily scale horizontally.

NoSQL Cons

• Manual querying on unstructured database could be hard.

• Difficult to check for integrity and consistency.

3.2.2 Our choices
After explaining the difference between relational and non-relational
databases, it is easy to motivate our choices.

For the Front-Office application, we chose to use CosmosDB (NoSQL).
Not only because it is easy to use and configure in the Azure Cloud
environment, but also because we knew that the data structure was very
dynamic, and could change very often. Plus we knew that potentially
our application could handle a significant amount of data because of
Alten Grains (basically an e-commerce within the HR portal).
We also knew that our data would be highly dependent on relationships
with other data, which made us hesitant. But I think the difficulty in
manually managing the relationships was offset by the flexibility we
had over the months in changing the data structure multiple times.

On the Back-Office side, we opted for PostgreSQL, due to the fact
that the data structure was much simpler, and therefore easy to define

51

Technical challenges & Solutions

before development even began. Again, the data had relationships, and
the volume would never reach that of the Front-Office.

3.2.3 Front-Office CosmosDB Document Example

Figure 3.10: Example of data in a CosmosDB Document

As you can see from the image 3.10, the document is organized with
the JSON format. Every information is represented as a pair key-value,
and the latter can represent any type of data: numeric, string, date,
array, dictionaries, etc...

There are also values that represent foreign keys and primary keys, as in
a relational database, and it is worth noticing that CosmosDB integrates
mechanisms as checking the uniqueness of id by itself. CosmosDB is
indeed considered a NoSQL semi-structured database.

52

Technical challenges & Solutions

3.3 Cloud architecture & Terraform
A whole other thesis could be written on Cloud Computing, but it is
not my intention to do so.
Instead, it is my intention to present a schematic of the Cloud archi-
tecture we have adopted and briefly explain each component, to make
sense of it all.

Figure 3.11: Schema of Cloud architecture

Seemingly meaningless relationships are not an oversight. Arrows

53

Technical challenges & Solutions

represent if an entity has a communication channel with another entity.
The direction of the arrow does not represent the data-flow, rather from
whom the initial request starts and to whom it is directed; after that
often the data-flow is bidirectional.

3.3.1 Entities in Cloud schema
• Azure Cloud

Azure Cloud is of course the most important component of this
architecture. Many of the elements shown in the diagram are
Microsoft proprietary in the Azure environment. Azure Cloud is
a heterogeneous Cloud service, since it can be considered SaaS,
PaaS, and Iaas, although we use it mostly as PaaS, since we ignore
everything related to OS management and runtime management,
and we let Azure handle it.

• User
User represents the end-user that will have access to our web
application through the frontends. They will probably be just
Alten employees who have the right level of permissions to access
our services.

• GitLab and Azure Container Registry
These two are strictly related. The GitLab repository is where all
our code is stored, and as we discussed in the Release section of
the DevOps methodology, at the end of the Release phase in the
pipeline, the Docker Image is uploaded (or "pushed") in the Azure
Cloud. The Azure Container Registry (ACR) is where the latest
version of each image is stored.

• Azure Kubernetes Service
The task of the Deploy phase is indeed to make the Azure Ku-
bernetes Service (AKS) to "pull" the latest image from the ACR,
and with that replace the Pod containing the old image. The AKS
contains instances of Helm Releases running. I omitted the arrows
inside the ASK to avoid confusion, but the frontends communicates

54

Technical challenges & Solutions

with their corresponding backends (the dotted line conceptually sep-
arates the Front-Office (FO) and Back-Office (BO), but the pods all
live in the same node), and in some cases there are communications
even between FO backends and BO backends.

• CosmosDB and PostgreSQL
We can notice how CosmosDB is connected only with the conceptual
part of the FO. That’s because only the FO backends communicates
with the CosmosDB. Respectively, BO backends communicate only
with PosgreSQL.

• Storage Account, Blob Storage and Queue Storage
Both conceptual divisions of the Kubernetes Cluster communicate
with the Storage Account. The Account Storage is a cloud storage
service in Azure, which offers a Blob Storage service, that is used
to store images (logos, profile pictures, ecc...) and a Queue Storage,
about which I will talk more in the Asynchronous logs queue section.

• Azure Functions
Azure Functions (AFs) are pieces of code that live inside the cloud
and can be triggered on particular conditions. I will talk more
about AFs in the asynchronous logs queue section.

All of these elements can be defined through the Azure Portal GUI or
through the Azure Command-Line Interface, but since the elements are
highly interconnected, a change to one element could trigger a chain
reaction for several others, making a change operation time-consuming
and tedious.
Fortunately, we are working in a DevOps environment, thus, automa-
tion.
This is where the Terraform tool, named several times now, comes into
play.

3.3.2 Terraform
Terraform is a tool defined as infrastructure as a code.
Terraform is basically a set of files that contain a structured description

55

Technical challenges & Solutions

of the resources to be deployed on a cloud infrastructure.
Each time we run Terraform, it handles the creation, replacement or
destruction of the resources automatically. This is a process easy to
integrate in an automatized pipeline and has other important advan-
tages:

• It’s easy to share infrastructure, since it’s all defined inside some
files. A lot of infrastructure are ready to take and easy to modify.

• Ease of collaboration, using Terraform files together with a Version
Control System as GitLab.

• It is enough to declare all the properties of the resources in Ter-
raform, and it handles the creation process automatically.

• In case of dependencies, Terraform updates all the resources affected
by a change.

But how does it work exactly?

Terraform’s functionality is based on the APIs of the individual services
with which it can interact. But between the APIs of the services and
Terraform there is another element in order to standardize the way all
elements are defined through Terraform: the providers.

Figure 3.12: Terraform providers schema [24]

Providers are plugins we can include in our Terraform files (like in the
figure 3.13) allowing us to communicate with the target API through
Terraform code.

56

Technical challenges & Solutions

Figure 3.13: Include providers in Terraform

In the following image it’s shown the definition of the PostgreSQL
database in our Azure environment.

Figure 3.14: Definition of PostgreSQL in Terraform

We can see how a resource is defined with the keyword resource followed
by the type (given through the provider) and then the name, that could
be used as a reference inside the Terraform files.

57

Technical challenges & Solutions

For instance at line 95 of figure 3.14 the server_name property
is extrapolated from the attribute name from the resource called
postgresql of type azurerm_postgresql_server .

We can see how in order to define a PostgreSQL, two resource are
needed: a server and the database itself. If we were creating a database
through the Azure Portal, we would have been guided through a step-by-
step process that automatically included both resources. Fortunately,
all Terraform providers are exhaustively documented, and they often
include all necessary resources dependencies (see [25] as an example).

We are left only to understand how Terraform is actually executed. In
our case, we used a Terraform linked to a GitLab template so that we
could include the resource deployment process automatically in the
pipeline. In a primordial stage, the Deployment phase of the general
pipeline actually triggered the execution of a second pipeline, the one
related to Terraform. But we realized that this was not necessary, so we
ended to keep the code pipeline and the Terraform pipeline independent
from each other.

The stages of the terraform pipeline are three:

• Init
The execution of terraform init performs a number of steps
in order to initialize and configure the working directory such as
Backend Initialization, Plugin Installation and so on. [26]

• Plan
With the command terraform plan , Terraform generates what’s
called an execution plan, which describes which resources Terraform
has identified that need to be created, updated, and destroyed, and
in which order it is going to perform these operations.

• Apply
Finally, the terraform apply command uses a saved execution
plan to apply the changes. Otherwise it runs the terraform plan
command again, to generate a new execution plan and apply the

58

Technical challenges & Solutions

planned changes to the actual infrastructure.

3.4 Micro-services architecture and Login-
System

Manage user login, receive requests for Alten Grains and Rewards,
manage notifications, and so on.
These are just some of the services our application offers.
When an application contains many functionalities, it may be the case
to consider a microservices-oriented architecture.

A microservice is defined as an independent deployable element that
manages a particular functionality and, when needed, communicates
with other microservices to send or obtain additional information.

A microservices-oriented architecture is a type of architecture that in-
cludes multiple microservices, each of which is "loosely coupled" to the
others in order to allow communication while maintaining independence.
Containers favor a microservices architecture, and communication chan-
nels are realized through rest APIs or specific protocols such as gRPC.

This independence between microservices (or services from now on) has
numerous advantages:

• Ease of development
It is much easier to develop the individual small components of
a larger whole. Teams or individual team members can easily
divide up the development of individual services, agreeing on a
communication system should the need arise.
It is also much easier to test the entirety of the component without
incurring the risk of an unexpected behavior coming from another
feature in the same monolithic code.

• Deployment and Maintenance
Services can be updated and deployed without creating a general
down-time. It is also easier to identify and localize any problems
within a microservice.

59

Technical challenges & Solutions

• Independence over technology
Independence gives the opportunity to develop each service with a
different technology. This means always using the optimal technol-
ogy for a certain service.
Communication channels are never dependent on technology.

• Overall reliability
One of the strengths of microservices architecture is its strong
resilience and reliability. In the event that one service has problems,
all the others are usually not impacted (those that do not need to
communicate with the service in failure).
It is fair to note, however, that we are not completely exempt from
the risk of a total crash, as it is still possible the presence of a
Single Point of Failure (SPOF). The SPOF, usually present in a
physical or logical network, is an element on which many, if not all
of the other elements are dependent, thus causing in the event of a
crash, a forced stop of all the other components. In a microservices
architecture there is usually some service more important than
others.

• Scalability
With this type of architecture, it is also very easy to duplicate
heavily loaded services so as to keep up with the high volume of
requests.

All the services that live in our Kubernetes cluster are independent
Containers, which are depicted in Figure 3.11. I am going to briefly
introduce each one of them, but there is one, however, that is worth
describing in detail, and that will be the Login backend.

Frontends

Frontends are not usually thought of as microservices, rather microser-
vices provide APIs for frontends.
In any case, Front-Office and Back-Office frontends are the elements
that an end user can access directly through their device’s browser,
and that directly communicates to most of the microservices to provide

60

Technical challenges & Solutions

functionalities.

Alten Grains Backend

The Alten Grains Backend exposes APIs to perform CRUD (Create-
Read-Update-Delete) operations for possible Activities and Rewards,
as well as for Requests that Consultants can make to BMs (indeed to
obtain compensation after an Activity has been made or completed or
to spend Alten Grains to obtain real Rewards).

Notification Backend

The Notification Backend is the core element of the Notification Sys-
tem. It is a support service for various operations that occur in other
backends.
For example, when a Request of a Consultant is accepted by a BM,
the Alten Grains Backend sends a message to the Notification Backend
via the gRPC protocol, which then adds a Notification item to the
database, and sends to the user their notifications that have not yet
been visualized (the Notification Backend is queried on page refresh).

Widget Backend

The Widget Backend exposes the API for widget management on the
user dashboard. The widget Backend is the interface to the database
that stores which and where widgets are placed on a dashboard. One
database element for each user, containing their unique identifier and
the list of widgets present on the dashboard, and their location.

Consultant Backend

Also the Consultant Backend allows just CRUD operations to Consul-
tant profiles. We will see that the Login Backend deals with a similar
concept, but the difference lies in the fact that the user-related objects
managed by the Login Backend serve only for the purpose of access
permissions, while those managed by the Consultant Backend contain

61

Technical challenges & Solutions

all the personal, career, and curriculum data related to each (and only
to) consultant.

Tenant Backend

This is one of the two Back-Office backends, and it is used for CRUD
management of Tenant objects and Logs, which I will discuss in more
detail in the section on asynchronous logs queues.

Monitoring Backend

The other backend of the Back-Office, is responsible in querying the
Front-Office backends (currently only the Login Backend) and the Ten-
ant Backend to process and provide statistics regarding Alten GROUP
users and tenants.

3.4.1 Login Backend
The Login Backend deserves a separate section because the Login
System is the most complex system of them all. The complexity is due
to an initial problem we had to overcome, related to the fact that all
Alten employees would be able to log-in directly into our application
with the already present Alten credentials, which are managed by a
Microsoft Active Directory [27].

Note that the Login Backend is the microservice that exposes the APIs
and functionalities for managing the login, while the Login System
includes everything related to the login process, which I will explain in
a moment.

To enable users to use the Alten credentials, it was necessary to use a
library called MSAL (Microsoft Authentication Library), which, once
logged-in through a Microsoft form, returns a Microsoft signed JWT
token, containing some basic information (name and email of the user).

62

Technical challenges & Solutions

Figure 3.15: MSAL form

The first problem we faced was related to the fact that this basic
information contained in the Microsoft token was actually the only one
we could have access to, due to security restrictions.

The Active Directory contained a lot of other useful information, such
as the role of the users, but we were forced to re-implement another
database, containing the additional information necessary to guarantee
each user the right level of access. Here comes the Login Backend, which
receives the Microsoft token from the frontend, modifies it, adding the
additional information taken from our internal database, and then sends
it back to the user, who will then use it to access the resources (which
are protected).
The image 3.16 schematizes the just explained token exchange.

As we can see, looking at image 3.16, the first thing that happens once
the user successfully logs-in in the Microsoft login popup (figure 3.15),
is receiving the Microsoft JWT token. Immediately afterwards, the
token is sent to the Login Backend, which extracts the information
from it, and verifies the existence of the user’s additional data through
the uniqueness of the email.

63

Technical challenges & Solutions

Figure 3.16: Schematization of Login System

If so, the additional data is added to a new token created and signed
by our Login Backend, to be then sent back to the frontend. The final
token will be finally used together with all the requests coming from
the frontend, so as to be able to verify the roles, and consequently the
access level, of the user in question.
In case the user does not exist yet, the user object in our database is
created by the Login Backend, but since we cannot know which roles
the user holds, he will not be able to fully log in yet. A high-level user
(such as HR or Tenant Adrministrator) can subsequently assign roles
to the user. From that moment on, the new user will have access to
our application.

3.5 Asynchronous logs queue
This section is dedicated to explain the last peculiarity related to our
cloud architecture scheme (figure 3.11): the Azure Functions.

This particular configuration was suggested to us by the technical
supervisor of the internship, who is also a Software Architectures

64

Technical challenges & Solutions

Expert, in relation to a feature demanded by the clients in a later stage
of development.

The request was for the capability to keep meticulous track of all the
operations that were performed within the Back-Office portal, thus
creating logs containing author, action, date, time, and tenant.
The functionality was apparently not complex, but there were several
problematic factors to consider.

First and foremost, time. We did not have time to create a new backend
to manage the logs independently, since when the new requirement
came in there was only 1 month left before the MVP delivery, and
still many things had to be done. Creating a new backend could take
at least two team members occupied for a whole week, considering
configurations in terms of testing and coverage, the implementation of
the pipeline, the addition of the new backend in Terraform, and the
creation of the Controller itself.
Then there was the reliability factor. We suggested adding, for each op-
eration worth of being logged, a communication step with the database,
so as to send the log of the operation just performed. However, there is
a risk in this solution, as a communication with an external component
could always cause some problem, it is better to minimize them. In this
scenario, a failed communication with the database for logging could
cause a whole, potentially much more important operation, to fail.
We could have created a handling system for these errors, but since
logging logs could be very frequent, there was a possibility of affecting
the performance of our backends.
After an analysis of the possibilities, the solution was: asynchrony.

The following diagram, represents the set of components involved in the
final solution, which is an implementation of a message broker, through
the Azure Storage Queue, and an Azure Function.

65

Technical challenges & Solutions

Figure 3.17: Message broker with AQS and AF

First of all, what is a message broker (MB)?
A MB is an architectural component in a communication network,
whose job is to act as an intermediary between two or more systems in
order to make them independent and to manage error handling itself,
to ensure receipt of the message by the receiver and, in certain cases,
to balance the workload.

To explain the life cycle of a log object, we can start at the Tenant
backend, where a call has just been made to an endpoint.
A message composed as a string with the necessary information sepa-
rated by a semicolon is sent to the Azure Queue Storage (AQS) [28].
The AQS is a service to which a large amount of data can be sent,
which is then stored in the form of a queue. The queue can later be
processed asynchronously.
At this point Azure Functions (AF) [29] come into action. As mentioned

66

Technical challenges & Solutions

earlier, Azure Functions are functions that live independently within
the cloud. These functions can be triggered by a variety of conditions
(e.g., at periodic time intervals, by a specific HTTP request, at the
update of a database, at the receipt of a new message in an AQS, and
many others) and, like normal functions, they can receive parameters
and return something.

Figure 3.18: LogBuilder AF

In our case, we can observe in Figure 3.18, the LogBuilder function,
written in C#.
When a message is added to the AQS, the function is executed thanks to
the predefined QueueTrigger. The message is removed from the queue
and passed by parameter to the LogBuilder. Internally, a connection is
established with the PostgreSQL database, the data extrapolated from
the message, and a simple query executed. The function returns no
value.

At a later time, the Tenant backend will be able to access the logs
directly from the database.

67

Chapter 4

Conclusion

The purpose of this internship was dual. Alten needed a rework of one
of its core management software programs, and to experiment with the
"learn as you work" training model in a setting that simulated that of a
real work environment.

During the first period, we had the opportunity to do several workshops
with experts in topics we needed in our work, as Agile and DevOps
methodology, Cloud Architectures and Testing.
These workshops and the sporadic help from technical leaders enabled
us, even though we were the only ones responsible for all technical and
functional decisions in the project, to be on the right track right from
the start.

As I have explained in this paper, the team was responsible for creating
from scratch an application, called Miami v2, whose purpose was to
replace the outdated version of the software that permitted the HR
department and Business Managers to manage Consultants, Clients
and their association, along with other new features such as the Alten
Grains section, and other planned but not yet implemented features,
such as to the management of hiring Candidates.

The project began with the design of the program architecture at the
software level and then at the cloud level.

68

Conclusion

Thereafter, each of us had the opportunity to experiment with new
technologies in each domain in our development context, and then
having the chance to focus on his or her favorite field.

In addition, by rotating and impersonating the 3 core roles in a DevOps
team (developer, scrum master, product owner) throughout the duration
of our project, we were able to better apply and assimilate the concepts
of this methodology.

This way of learning is, in my opinion, extremely effective. Living in an
environment that was not completely relaxed gave us the motivation to
always want to do better. To present a quality product to our managers
and senior devs. This led us to collectively improve in the areas where
we were most lacking.
Being the only ones responsible for our work, without a leader, or
someone more responsible than the others, every problem was addressed
as a team, and solved together.
This created a strong feeling of belonging and unity, and it is this feeling
of "moving forward together" that made our internship and project, in
my opinion, a success.

69

Bibliography

[1] https://bluemogulenterprise.com/advantages-of-cloud-
storages/ (cit. on p. ii).

[2] https://www.atlassian.com/devops (cit. on pp. iii, 13).
[3] https://www.alten.com/ (cit. on p. 1).
[4] https://www.scrum.org/resources/what-is-scrum (cit. on

p. 3).
[5] https://orangematter.solarwinds.com/2022/03/21/what-

is-devops/ (cit. on p. 15).
[6] https://www.atlassian.com/software/jira (cit. on p. 15).
[7] https://www.guru99.com/software-testing-introduction-

importance.html (cit. on p. 20).
[8] https://medium.com/serverless-transformation/bridge-

integrity-integration-testing-strategy-for-eventbrid
ge-based-serverless-architectures-b73529397251 (cit. on
p. 21).

[9] https://jestjs.io/ (cit. on p. 22).
[10] https://karma-runner.github.io/latest/index.html (cit.

on p. 22).
[11] https://junit.org/junit5/ (cit. on p. 24).
[12] https://site.mockito.org/ (cit. on p. 24).
[13] https://www.selenium.dev/ (cit. on p. 26).

70

https://bluemogulenterprise.com/advantages-of-cloud-storages/
https://bluemogulenterprise.com/advantages-of-cloud-storages/
https://www.atlassian.com/devops
https://www.alten.com/
https://www.scrum.org/resources/what-is-scrum
https://orangematter.solarwinds.com/2022/03/21/what-is-devops/
https://orangematter.solarwinds.com/2022/03/21/what-is-devops/
https://www.atlassian.com/software/jira
https://www.guru99.com/software-testing-introduction-importance.html
https://www.guru99.com/software-testing-introduction-importance.html
https://medium.com/serverless-transformation/bridge-integrity-integration-testing-strategy-for-eventbridge-based-serverless-architectures-b73529397251
https://medium.com/serverless-transformation/bridge-integrity-integration-testing-strategy-for-eventbridge-based-serverless-architectures-b73529397251
https://medium.com/serverless-transformation/bridge-integrity-integration-testing-strategy-for-eventbridge-based-serverless-architectures-b73529397251
https://jestjs.io/
https://karma-runner.github.io/latest/index.html
https://junit.org/junit5/
https://site.mockito.org/
https://www.selenium.dev/

BIBLIOGRAPHY

[14] https://docs.gitlab.com/ee/ci/ (cit. on p. 28).
[15] https://kubernetes.io/docs/concepts/overview/ (cit. on

p. 33).
[16] https://phoenixnap.com/kb/kubernetes- objects (cit. on

p. 34).
[17] https://medium.com/google- cloud/kubernetes- 101- pod

s- nodes- containers- and- clusters- c1509e409e16 (cit. on
pp. 34–36).

[18] https://helm.sh/ (cit. on p. 37).
[19] https://k8slens.dev/ (cit. on p. 40).
[20] https://c4model.com/ (cit. on p. 42).
[21] https://www.pluralsight.com/blog/software-development

/relational-vs-non-relational-databases (cit. on p. 49).
[22] https://en.wikipedia.org/wiki/Database_normalization

(cit. on p. 49).
[23] https://medium.com/hackernoon/sql-vs-nosql-what-is-

better-for-you-cc9b73ab1215 (cit. on p. 50).
[24] https://www.terraform.io/intro (cit. on p. 56).
[25] https : / / registry . terraform . io / providers / hashicorp /

azurerm/latest/docs/resources/postgresql_database (cit.
on p. 58).

[26] https://www.terraform.io/cli/commands/init (cit. on p. 58).
[27] https://learn.microsoft.com/en-us/windows-server/ide

ntity/ad-ds/get-started/virtual-dc/active-directory-
domain-services-overview (cit. on p. 62).

[28] https://learn.microsoft.com/en-us/azure/storage/queue
s/storage-queues-introduction (cit. on p. 66).

[29] https://learn.microsoft.com/en-us/azure/azure-functio
ns/functions-overview (cit. on p. 66).

71

https://docs.gitlab.com/ee/ci/
https://kubernetes.io/docs/concepts/overview/
https://phoenixnap.com/kb/kubernetes-objects
https://medium.com/google-cloud/kubernetes-101-pods-nodes-containers-and-clusters-c1509e409e16
https://medium.com/google-cloud/kubernetes-101-pods-nodes-containers-and-clusters-c1509e409e16
https://helm.sh/
https://k8slens.dev/
https://c4model.com/
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://en.wikipedia.org/wiki/Database_normalization
https://medium.com/hackernoon/sql-vs-nosql-what-is-better-for-you-cc9b73ab1215
https://medium.com/hackernoon/sql-vs-nosql-what-is-better-for-you-cc9b73ab1215
https://www.terraform.io/intro
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/postgresql_database
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/postgresql_database
https://www.terraform.io/cli/commands/init
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview

	List of Figures
	Context & Objectives
	Internship context
	Practical and theoretical objectives
	Scrum
	Scrum Team
	Scrum Ceremonies
	Scrum Workflow
	Scrum in our Internship

	Miami v2
	Front-Office vs Back-Office
	Alten Grains
	MVP

	DevOps methodology
	Key concept: Automation
	DevOps steps & technologies
	Plan
	Code
	Build
	Test
	Release
	Deploy
	Operate
	Monitor

	Technical challenges & Solutions
	Architecture & C4 model
	C4 Model
	Customer Journey
	Technology Stack

	Databases data structure
	SQL vs NoSQL
	Our choices
	Front-Office CosmosDB Document Example

	Cloud architecture & Terraform
	Entities in Cloud schema
	Terraform

	Micro-services architecture and Login-System
	Login Backend

	Asynchronous logs queue

	Conclusion
	Bibliography

