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Abstract

Diffractive optical elements (DOEs) such as spatial light modulators (SLMs), binary phase
gratings, microelectromechanical systems (MEMS) and metasurfaces, have matured to the
extent that they can reshape the scattered wavefront, i.e., altering the phase, amplitude
and polarization of light. Metasurfaces — flat optic elements composed of subwavelength-
spaced array of scatterers with spatially varying geometric parameters such as shape, size,
orientation —are among the recent tools that can mould optical wavefronts into arbitrary
shapes, point-by-point, with subwavelength resolution. Owing to the recent advances in
nanofabrication, multi-layer metasurfaces have now become feasible. Here, we explore
the possibilities offered by bilayer metasurfaces and show how it can overcome some of
the intrinsic limitations of the widely adopted single layer metasurfaces. As an example,
a new class of reflective bilayer metasurfaces is designed and fabricated. Such a device
can, in principle, impart Pancharatnam-Berry phase on linearly polarized incident light
as opposed to single layer Berry phase metasurfaces that primarily operate on circular
polarization bases. In this process, we analyze the coupling within these bilayer structures
and provide a design recipe for which this coupling can be neglected. In addition, we
explore the use of programmable SLMs for generating new class of structured light beams;
namely, optical vortices whose orbital angular momentum (OAM) can be adiabatically
controlled along the optical path. We discuss the theoretical formalism, modeling, and
experimental generation of this new class of beams and show that such an evolution in
their OAM state is associated with a topological Berry phase factor that is accumulated
along the propagation direction, at-will. Lastly, an outlook for this area of research and
possible future directions are discussed.

Keywords: structured light, nanophotonics, metasurfaces, geometric phase, optical an-
gular momentum.
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1| Wavefront shaping with

metasurface

In the framework of metasurfaces, flat optic elements composed of subwavelength-spaced
array of scatterers with spatially varying geometric parameters (such as shape, size, ori-
entation), have been demonstrated to provide full control over the wavefront of incident
light and its properties, including amplitude, phase and polarization[1]. In this section,
we present a self-contained summary of polarization optics, introducing a mathematical
treatment and language that is needed to represent polarization of light. Then, we review
the history of metasurfaces, highlighting some of the optical properties of these devices for
wavefront designs, focusing on the ability of these devices of controlling the polarization
of light.

1.1. Propagation of light

Light is a portion of the electromagnetic spectrum, and its behavior is classically de-
scribed by Maxwell’s equations. Maxwell’s equations can be combined, in a isotropic,
nondispersive, and homogeneous medium, to yield the wave equation:

∇2−→E (−→r , t) = µϵ
∂2

∂t2
−→
E (−→r , t) (1.1)

where
−→
E (−→r , t) is the electric field, −→r represents the spatial coordinate and µ and ϵ are

respectively the magnetic permeability and the electric permittivity of the medium. One
of the possible solutions of Eq. (1.1) can be obtained by separation of space and time
variables and it is represented by periodic functions of space and time known as "plane
waves". In this case, the electric field is given by:

−→
E (−→r , t) =

−→
E0(

−→
k · −→r − ωt) =

−→
E0Re{ei(

−→
k ·−→r −ωt)} (1.2)
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where ω is the angular frequency and
−→
k is the wave vector with |

−→
k | = ω

√
µϵ. At a given

time t, Eq. (1.2) defines planes of constant phase given by −→r with constant values of
−→
k · −→r . In a uniform medium, substituting the expression of a plane wave into Maxwell’s
equations, it follows that

−→
k ·

−→
E0 = 0 so the plane wave is a transverse wave that means

that the electric field is confined to a plane perpendicular to its wave vector. In Cartesian
coordinates, assuming

−→
k = kẑ, (without loss of generality) the plane wave’s electric field

is constrained to lie in the xy plane, and so it follows that:

−→
E (z, t) = (Exe

iϕxx̂x̂+ Eye
iϕy ŷŷ)ei(ωt−kz) (1.3)

that can be packaged in vector notation as:

−→
E (z, t) =

(
Exe

iϕx

Eye
iϕy

)
ei(ωt−kz) (1.4)

Rearranging the expression above, removing an overall phase and normalizing vector’s
amplitude it follows that:

−→
E (z, t) = E0e

iϕx

(
cosχ

sinχeiϕ

)
ei(ωt−kz) (1.5)

where E2
0 = E2

x + E2
y and ϕ = ϕy − ϕx. Equation (1.5) is very useful in order to describe

the state of polarization of light.

1.1.1. Jones calculus

In order to describe the polarization of light, the propriety that specifies the geometrical
orientation of the oscillations of the electric field, we review the basics of the Jones calculus:
a matrix formalism to handle polarized light proposed by Robert Clark Jones[2–5]. From
Eq. (1.5) it is possible to retrieve the "shape" of the electric field vector that is given by:

|j⟩ =

(
cosχ

sinχeiϕ

)
(1.6)

The expression reported in Eq. (1.6) is commonly referred to as a "Jones vector" and
describes a shape that is in general an ellipse. Depending on the value of the parameters
χ and ϕ we can distinguish between linear, circular and elliptical polarization. Cases
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in which ϕ = 0 describe oscillation of the electric field along a line, linear polarization.
Cases in which χ = ±π

4
and ϕ = ±π

2
the ellipse traces out a circle (whose rotation is

right-handed or left-handed) and in this case we talk about circular polarization. Other
cases describe elliptical polarization. In order to describe how polarization state changes
when light passes passes through optical elements, or perhaps after undergoing reflection
or refraction at material interfaces, a 2x2 matrix known as Jones matrix J . A Jones
matrix, in the most general case, has 4 complex entries and maps one Jones vector |j⟩
into another |j′⟩:

|j′⟩ =

[
J1,1 J1,2

J2,1 J2,2

]
|j⟩ (1.7)

A given Jones matrix J describe how a passive element can attenuate a given incident
polarization, and it may advance or retard it in phase, or perform these operations selec-
tively on orthogonal components of the polarization; the effect of a specific Jones matrix
J can perform a specific operation to a given Jones vector resulting in a given output that
will be completely different from the output Jones vector when the same Jones matrix is
operating on a different input, provided that linearity, and thus superposition, holds. A
variety of optical devices have been proposed (and demonstrated), which enable modu-
lation of polarization at optical frequencies; among them we are discussing in the next
section about metasurfaces.

1.2. Introduction to metasurfaces

A metamaterial is defined as an artificial material whose physical properties are not found
in nature. Among these it is worth citing negative refractive index (n <0 ) able to focus
and amplify evanescent waves, beating the traditional diffraction limit [6] , or ϵ and µ

values near 0[7]. Usually, metamaterials are made from assemblies of multiple elements,
arranged in a repeating pattern and separated by sub-wavelength distances[8]. Metama-
terials’ physical properties rely mostly on their structures. Surface-type metamaterials
are generally called metasurfaces. The word “metasurface” has a long history: the first
time it has been used in literature was back in 1902, when Robert Wood found that the
reflection spectra of subwavelength metallic grating had dark areas[9]. An explosion of
metasurface research in optics can be traced to the publication of [10] in 2011 where,
thanks to gold antennas with spatially varying phase response, an abrupt phase change
over the scale of the wavelength is introduced at he interface between two materials. As
a consequence of this patterning of the surface, anomalous reflection and refraction phe-
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nomena are observed. The introduction of an abrupt phase shift, that is denoted in [10]
as "phase discontinuity", at the interface between two media allows to revisit the laws of
reflection or refraction applying Fermat’s principle. Assuming to have an incident wave
with an angle θi with respect to the normal to the interface between the two media and
denoting with Φ and Φ + dΦ the phase discontinuity, it can be proved (interpreting the
phase gradient as an effective wavevector, leading to a generalization of the conservation
of the wavevector parallel to the surface) that:

sin (θr)− sin (θi) =
λ0
2πni

dΦ

dx
(1.8)

sin (θt)nt − sin (θi)ni =
λ0
2π

dΦ

dx
(1.9)

where θr is the angle of reflection and θt is the angle of refraction. Equation (1.8) and
(1.9) are respectively the generalized law of reflection and the generalized Snell’s law
of refraction that is obtained whenever a nonzero phase gradient is introduced at the
interface between two media. These generalized laws indicate that the transmitted and
reflected light beams can be bent into arbitrary directions in their respective half space,
depending on the direction and magnitude of the inter-facial phase gradient, as well as
the refractive indices of the surrounding optical media. In [10] the phase discontinuity
is obtained patterning a silicon substrate with an array of plasmonic (gold) V-antennas
leading to anomalously reflected and refracted beams in accordance with the generalized
laws of reflection and refraction (Fig. 1.2).

Figure 1.1: SEM image of gold V-antenna array on silicon and schematic experimental
setup for y-polarized excitation (electric field normal to the plane of incidence).Figure
from [10].
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These arrays of gold antennas are the first example of what is now know as a "plasmonic
metasurface".

1.3. Plasmonic metasurfaces

Earlier works on metasurfaces have utilized various metallic nanostructures with different
shapes and orientations[11–13]: this class of metasurfaces is referred as to "plasmonic
metasurfaces". In metallic nanostructures, resonant scattering of light by oscillating
free electrons at the surface occurs due to a resonant electronic–electromagnetic oscil-
lation known as localized plasmonic resonance (LPR). The rigorous treatment of time
harmonic radiation of thin-wire antennas involves the solution of the electric field integral
equation[14]. According to a simplified model, the LPR can be represented by damped
oscillator of a charge q with mass m driven by an incident electric field with frequency ω
[15]. From second Newton’s law it follows that:

d2x

dt2
+
γ

m

dx

dt
+
k

m
x =

q

m
E0e

iωt +
2q2

3mc3
d3x

dt3
(1.10)

As it can be seen looking at Eq. (1.10),in addition to the ohmic losses (represented by the
damping term γ and proportional to the velocity), another damping term (proportional
to d3x

dt3
) is needed to describe the recoil that the charge feels when it emits radiation. A

possible solution of Eq. (1.10) is given by

x(t) =
q
m

(ω2
0 − ω2) + i(ω γ

m
+ ω3 2q2

3mc3
)

(1.11)

For ω → 0, from Eq. (1.11) it can be seen that the amplitude of oscillation is in phase
with the incident field (so the phase delay is zero) while for ω → ∞ it is phase delayed by
π. It follows that plasmonic metasurfaces using only resonant scattering do not achieve
phase coverage of 2π so it is not possible to obtain full wavefront control. Furthermore
plasmonic metasurfaces exhibits high optical losses at wavelengths shorter than the mid-
IR not guaranteeing high scattering efficiency.

1.4. Dielectric metasurfaces

The highlighted limitations of plasmonic metasurfaces were overcome using dielectric res-
onators instead of metals, so introducing the so called "dielectric metasurfaces": these
metasurfaces are made of arrays of high-index dielectric light scattering particles whose
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size is comparable to light’s wavelength[16]. The scattering proprieties of these particles
were initially investigated by Faraday [17] and then deepened by Mie [18] whose analyti-
cal solutions of the fields are in accordance with the experimental data. Differently form
plasmonic metasurfaces, dielectric metasurfaces provide controllable phase delay over the
entire 2π range and at the same time almost unitary transmission efficiency. [19]. Initially
amorphous silicon (an high-index dielectric with low loss) was used for applications in the
telecom and near-IR spectral regions being also easy to manipulate since amorphous sili-
con structures can be fabricated depositing silicon as thin film on top of a substrate and
then patterned with reactive ion etching (RIE) [16]. Then also other materials were used
such as silicon nitride ([20]), single crystal silicon ([21]) and titanium dioxide ([22]) al-
lowing to explore also the visible range. The individual structures comprising a dielectric
metasurface can possess form birefringence; the latter is an effect that comes about when
light interacts with anisotropically structured materials. The dimension of the individual
scatterers, being comparable to the optical wavelength wavelength, allows to obtain bire-
fringence also if the material involved is isotropic. Form birefringence specifically results
when orthogonal polarization states experience different phase delays due to the shape of
the fins of the dielectric metasurface: each individual element possesses two perpendicular
axes of mirror symmetry if the shape is rectangular or elliptical. Light’s interaction with
the fin is said to be similar to light propagation in a 2D waveguide with anisotropic cross
section. From the symmetry of the rectangular of elliptical geometry, light linearly po-
larized along one axis or another will excite modes whose electric fields point along these
directions as well. These modes experience different propagation constants, and accord-
ingly different modal refractive indices, yielding form birefringence. The birefringence
that is so obtained has been used to make up polarization-sensitive metasurfaces. Each
individual structure, separated from its neighbors by less than a wavelength is commonly
referred to as the metasurface’s “unit cell,” or the “meta-atom”. A metasurface is obtained
stitching together these unit cells. Each meta-atom acts as a retarder imparting indepen-
dent phase shifts on a basis of linear polarization states along the symmetry axes with
an adjustable orientation. As a consequence the metasurface can be described by a Jones
matrix that is spatially varying, enabling point by point polarization transformation:

J(x, y)(θ, ϕx, ϕy) = R(−θ(x, y) ·

[
eiϕx(x,y) 0

0 eiϕy(x,y)

]
·R(θ(x, y) (1.12)
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Figure 1.2: Model of dielectric metasurface.Figure from [23].

This almost unique propriety of metasurface combined with the intrinsic compactness of
the device, have garnered significant interest in the last years, especially for polarimetry:
metasurfaces were designed to obtain polarization beam splitters [24], polarization sen-
sitive cameras [25], polarization insensitive lenses[26] and other innovative technologies
that will unlock unprecedented possibilities.
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metasurface

In this section, we present a systematic strategy for designing a single layer metasurface.
We start by building a metasurface library based on the results and ideas discussed in
Ref. [27]. At the end of the section, we discuss the limits of single layer metasurfaces.

2.1. Generate a library

The first step was to replicate the results reported in [27]. To the aim of obtaining a direct
relation between the phase shift and the dimension of the nanofins, a library has been
generated by performing a parameter sweep with finite-difference time-domain (FDTD)
simulations. In a simplified picture, each subwavelength structure can be considered as
a truncated waveguide or a low-quality-factor Fabry-Perot resonator [28]. Nanofins with
different dimensions (length and width) will induce different confinement of the field im-
pinging on the structure. This confinement provides an effective refractive index that
differs along the two polarization components. As it has been discussed in chapter 1,
form birefringence is obtained thank to the subwavelength size of the fins so that, as
exploited in the conventional waveplates, a different refractive index along orthogonal
components is obtained. The FDTD software used is Lumerical: the software allows to
solve Maxwell’s equations on a discrete spatial and temporal grid in complex geometries
such as the analyzed case.
A model of the simulated structure is the one shown in Fig. 2.1: it is formed by a fused
silica substrate and a TiO2 rectangular nanofin. The boundary conditions applied at
the edges of the simulation box are the Periodic Boundary Conditions that emulate the
existence of an infinitely periodic array of these rectangular fins so that the simulated
structure is only the unit cell of the metasurface. The dimension of the basis, named Dx

and Dy, ranged from 50 to 250 nm (for an overall of 2601 geometries) that is able to cover
the range of phase from 0 to 2π and nearest-neighbor separation d = 420 nm that is the
unit cell size. The structure is illuminated by an x-polarized plane wave source at 532 nm
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that has been placed at a distance of 600 nm from the bottom basis of the substrate. At
this wavelength the refractive index of the fused silica and of TiO2 are set respectively to
0.811+ i0.366 and 2.48. In order to compute the phase in the far-field and the percentage
of transmitted power a monitor has been placed a few wavelengths above the top of the
fin. The mesh size of this simulation is set to 10nm x 10nm x 10nm.

Figure 2.1: Unit cell of the single layer metasurface.

The obtained results are shown in Fig. 2.2 and they match the results obtained in [27]. It
is necessary to note that the plots of the phase ϕy and of the power transmission Ty would
be identical but with the x and y axes exchanged for the case of y-polarized source so they
are not shown. As it was expected looking at the results shown in [27], the parameter
space is able to completely cover the 0−2π range as it can be noticed from Fig. 2.2a. The
Power Transmission plot (Fig. 2.2b) shows that the fins gives a almost uniform unitary
transmission for fins with small Dx while some geometries with larger Dx manifests some
resonances phenomena and a decrease in transmission. In the complex transmission plot
shown in Fig. 2.2b the red dots correspond to the electric field amplitude txeiϕxof each
simulated geometries. The average transmission is around 0.91 (black curve) and the red
circle represent the unitary circle.
Thanks to the obtained results it is possible to map to each nanofin geometry a different
Jones matrix.
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(a) (b) (c)

Figure 2.2: Simulation data for two-dimensional parameter sweeps of TiO2 rectangular
fins (h = 600 nm). (a) : Phase shift ϕx on x-polarized light. The phase shift has been
computed as the ratio between the phase collected in the center of the far field projection
of a monitor above the structure when the nanofin is present on top of the substrate and
the phase at the same monitor when only the silica substrate is present. Units in radians.
(b) : Power Transmission Tx for x-polarized light. The total power passing through a
monitor above the structure relative to the source. (c) : Complex Transmission. The
blue dots represent the electric field plotted on the complex plane for all the simulated
geometries. The black circle corresponds to the averaged transmission. The red circle is
the unit circle.

In the design of metasurface, it is possible to introduce a third degree of freedom: a
rotation θ of the fin around its geometrical center as shown in Fig. 2.3. This is needed
since the unitary symmetric Jones matrix associated to each simulated element would
produce zero-valued elements in the anti-diagonal of each diffraction Jones matrix if no
rotation angle is introduced.

Figure 2.3: Unit cell of the single layer metasurface. The nanofin is rotated around its
geometrical center by an angle θ.



12 2| Building a single layer metasurface

The Jones matrix that describes a rotated nanofin can be modeled as follows:

J(θ, ϕx, ϕy) = R(−θ) ·

[
eiϕx 0

0 eiϕy

]
·R(θ) (2.1)

where R(θ) is the 2× 2 rotation matrix that is defined as:

[
cos θ − sin θ

sin θ cos θ

]
(2.2)

The combination of the introduced rotation θ around the geometrical center of the nanofin
and the linear structural birefringence enables the possibility to convert an incident vector
state to another, locally, while achieving full 2π phase coverage as shown in Fig. 2.2a.
From the obtained library it is so possible to pick, for example, a quarter wave plate
(QWP) selecting the right geometry. The Jones matrix of a QWP is given by:

JQWP = e
iπ
4

[
1 0

0 −i

]
(2.3)

To select between the 2601 simulated geometries the ones acting as a QWP the following
criteria were imposed:

• |J11| > 0.9;

• |J22| > 0.9;

• |J22 − J11| < 0.05;

• ||∠J22 − ∠J11| − π
2
| < π

36
;

It turned out that there is more than one geometry able to satisfy the conditions listed
above. Among them, we report in Table 2.1 the Jones matrix elements of two structure
that satisfy the conditions listed above: the dimensions of the basis of the first structure
(QWP1 in Table 2.1) are 134nm × 202nm while the dimensions of the second structure
(QWP2 in the Table 2.1) are 114nm × 154nm.
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Jones matrix elements of selected QWP

|J11| |J22| |J11| − |J22| |∠J22 − ∠J11|

QWP1 0.9636 0.9302 0.0334 86.58°
QWP2 0.9775 0.9277 0.0498 89.9085°

Table 2.1: Jones matrix elements of two possible QWP

2.2. Metasurface Polarization Optics

Thanks to the created library it is possible to select the desired geometry for the design
of the metasurface. The selection of the optimal geometry to impose a given phase can be
performed by setting a threshold ϵ and saving the dimensions of all the geometries satisfy
the following equation:

|taverageeiϕdesired − tsimulatione
iϕsimulation | < ϵ (2.4)

.

At each point on the substrate, we place the optimum unit cell (420 nm in size) that is
closest to the target phase shift required at that position. It is assumed that the light
that is scattered by each nanofin is mainly affected by the geometrical parameters of the
nanofin and has negligible dependence on the neighbouring nanofins so that each unit cell
will act as a independent pixel. As a consequence, each nanofin will impose the desired
polarization-dependent phase shift on the light that will be transmitted and modifies
both the phase and the polarization of light. At this point it is necessary to highlight the
difference between propagation phase design and geometrical phase design [28].

2.2.1. Dynamic and Geometric phase

By fixing the rotation angle θ of the nanofin around its geometrical center, while varying
the nanofin dimensions it is possible to impose a phase shift ϕx and ϕy on any set of
orthogonal, linear polarization using the so-called propagation (or dynamical) phase. As
an example, using propagation phase design it is possible to build a device able to act as
a different blazed gratings for orthogonal linear polarization states as described in [29].
Another relevant case is the chance to impart phase profiles of two independent phase
holograms on orthogonal linear polarization states, yielding polarization-switchable far-
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field holographic images [30, 31]. While propagation phase is so related to the variation of
the optical path length (OPL), the geometric phase, is connected to polarization changes.
The geometric phase is a phase factor acquired whenever a system undergoes a cyclic
evolution governed by a slow change of parameters. Geometric phase is not strictly an
optical phenomena neither a factor related to quantum mechanics [32]. The general
concept of geometrical phase was introduced by sir. M. Berry [33]. From the adiabatic
theorem, at any time t the system must be in an eigenstate of the Hamiltoninan H(R).Sir
Berry showed that if the Hamiltonian’s parameters slowly change, completing a full cycle,
the final state of the system will be the same as the initial state with the addition of
a phase factor called "geometric phase". This additional phase entirely depends on the
geometry of the parameter’s cyclic path. In optics, whenever light propagates trough
an anisotropic medium with a slowly varying change of its polarization, it acquires this
geometric phase factor that is referred to as "Pancharatnam–Berry phase"[34]. In order to
be able to recognize the geometric nature of the phase shift the key is to take advantage of
the the Poincaré sphere. The Poincaré sphere is a 2D mapping of the polarization vector
space that allows to easily visualize polarization states on a unit sphere (Fig. 2.4).

Figure 2.4: Poincaré sphere.

Linear polarization states conventionally lie on the equator of the sphere, the circular
polarization (RCP and LCP) are located at the poles and the elliptical polarization states
are located elsewhere. It is also possible to represent partially polarized light by locating
them inside the sphere. Sir. Berry showed that a geometric phase is acquired if the polar-
ization state traces a closed path on the Poincaré sphere. The acquired phase is exactly
half the solid angle of the geodesic triangle spanned by the points on the Poincaré sphere.
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The concept of Berry phase has been widely used in optics, also before the introduc-
tion of metasurfaces. In [35] a computer-generated subwavelength Pancharatnam–Berry
phase-based diffraction grating is presented for imparting the desired phase at a wave-
length of 10.6 µm. The grating acts as a space-variant polarization state manipulator on
a circularly polarized beam. The grating is designed so that the zero order has the same
polarization as the impinging wave front and does not undergo any phase variation while
the first diffracted order has acquired a phase factor that is purely geometrical so that it
has change handness.

2.3. The limitations of a single layer metasurface

As it has been highlighted in the first chapter, single layer metasurface have enabled
the possibility to manipulate light in an unprecedented manner, finding application in
holography, structured-light generation, and polarization control. On the other hand, the
single layer suffers from some intrinsic limitations related to the restricted set of allowable
Jones matrices. The Jones matrix of a single nanofin has to be a unitary symmetric Jones
matrix in the linear polarization basis. The unitary of the Jones matrix is a consequence
of the energy conservation in case a lossless medium is used (TiO2 in our case) away from
resonance. The symmetry of the Jones matrix can be proved using the reciprocity that
links the original system to the case in which the propagation is reversed. The general
2x2 Jones matrix can be written as:

J =

[
J1,1 J1,2

J2,1 J2,2

]
(2.5)

and we suppose that this matrix is describing one nanofin of Fig. 2.5a. According to de
Hoop reciprocity, the Jones matrix of the reciprocal system, where the structure remains
the same and the propagation direction is reversed (Fig. 2.5b) can be written as:

Jreciprocity =

[
J1,1 −J2,1
−J1,2 J2,2

]
(2.6)

At the same time an inversion of the propagation direction can be obtained also with a
mirror reflection with respect to the xy plane (Fig. 2.5c). The Jones matrix of the system
can be obtained as:
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Jmirrored =M · J ·M−1 =

[
J1,1 −J1,2
−J2,1 J2,2

]
(2.7)

where M is the matrix describing the mirror given by M =

[
1 0

0 −1

]
. So comparing the

expression of Jmirrored and Jreciprocity it follows that B = C so the Jones matrix describing
the nanofin of a single layer metasurface must be symmetric.

(a) (b) (c)

Figure 2.5: Symmetry analysis of a single layer metasurface (a) : Single layer metasurface,
original situation, (b) : Reciprocal case: propagation direction is reversed. (c) : Mirrored
system with reversed propagation direction.

It can be proved that if a Jones matrix is unitary and symmetric, then its eigenpolarization
states are linearly polarized. If a Jones matrix is unitary it can be rewritten as

J = eiϕ(e−iα
2 ⟨n|n⟩+ ei

α
2 ⟨n⊥|n⊥⟩) (2.8)

where ⟨n| and |n⊥⟩ represent the eigenstates.

Being the Jones matrix symmetric, its transpose JT = J . The expression of the transpose
of J is:

JT = eiϕ(e−iα
2 ⟨n∗|n∗⟩+ ei

α
2 ⟨n∗

⊥|n∗
⊥⟩) (2.9)

So comparing the expressions of J and JT it follows that |n∗⟩ = |n⟩ and |n∗
⊥⟩ = |n⊥⟩ so

by definition these eigenstates are linear polarization states.

In principle these limits could be overcome using nanofins with tilted sidewalls with an
angle that spatially varies but the fabrication process would be extremely complex in this
case. As a consequence it is not possible to enable arbitrary conversion of amplitude,
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phase and polarization with a single layer due to the constrains on the Jones matrix
describing it. It is so necessary to introduce a new optical component able to embody
any arbitrary passive Jones matrix array and gain complete control on coherent light
transmission. In order to achieve this goal, in the next section, we explore the possibility
offered by a bilayer metasurface that allows to overcome the limit of the symmetric Jones
matrix.
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3| The Bilayer Metasurface

The concept of bilyer metasurface (Fig. 3.1) is a relative new one since the possibility
of stacking multiple layers of metasurfaces has been limited by the complexity of the
fabrication process in the last years [36–38]. In this section we list all the steps that were
needed in order to design a bilyer metasurface. In order to obtain an optical component
with a non-symmetric Jones matrix it is needed study the coupling between the two layers
of the two layers of the proposed metasurface. We start by checking if the two layers can
indeed be decoupled by considering metasurfaces in transmission and reflection modes.
Intra-layer decoupling significantly simplifies the selection criteria when building a bilayer
metasurface as it allows the user to run one FDTD simulation for the single layer library
and reuse it to build the bilayer metasurface. Lastly, we proceed to report on a new class
of Berry phase metasurfaces based on these bilayer structures.

Figure 3.1: A schematic of the bilayer metasurface. It consists of two layers of TiO2

rectangular nanofins fabricated on top of one another.

3.1. The Jones matrix of a bilayer metasurface

The addition of a second layer affords the possibility to access the entirety of retarder
space (the entire sphere, with arbitrary overall phase control) so allowing the possibility of
obtaining any possible Jones matrix thus relaxing the matrix symmetry constraint. It can
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be proved that an arbitrary 2-by-2 unitary matrix can be decomposed into two unitary
symmetric matrices, which is the key theoretical foundation at the basis of the design of
a bilayer metasurface. The product of two arbitrary 2-by-2 unitary symmetric matrices
each describing a single layer metasurface, can be written as:

J1 · J2 = R(−θ) ·

[
eiϕ

1
x 0

0 eiϕ
1
y

]
·R(θ) ·R(−θ′) ·

[
eiϕ

2
x 0

0 eiϕ
2
y

]
·R(θ′) (3.1)

where J1 and J2 are the Jones matrix of a single layer in the form Eq.(3.1), R(θ) is the 2
× 2 rotation matrix, θ and θ′ are the rotation angle of the fins of the two layers, choosing
ϕ1
x = 0 and ϕ1

y = π, Eq (3.1) be rearranged as follows:

J1 · J2 = R(−2θ) ·

[
1 0

0 −1

]
·R(2θ) ·R(−θ′) ·

[
eiϕx,2 0

0 eiϕy,2

]
·R(θ′) = (3.2)

R(−θ′′) ·

[
eiϕx,2 0

0 eiϕx,2+π

]
·R(θ′) (3.3)

where θ′′ is defined as θ′′ = 2θ− θ′. For arbitrary eiϕx,2 , eiϕy,2 , θ and θ′′, the product J1 ·J2

expressed as in Eq. (3.3), according to [39], is a factorized form of an arbitrary 2x2 unitary
matrix. This proves that the bilayer affords the possibility to access all possible unitary
Jones matrix so that the constrain of symmetry of the single layer is overcome.

3.2. The coupling between the layers

In this section we explore the possibility to compute the Jones Matrix of the bilayer as the
product of two Jones matrix of single layer metasurface. This implies that the coupling
between the two fins is negligible and independent from the dimensions of the two fins
and from a possible relative rotation between the two fins. In order to do so, we will
compare the results of the FDTD simulations of the bilyer with the "analytical" results
obtained starting from the data of the single layer reported in Fig. 2.2. We consider the
bilayer unit cell reported in Fig. 3.2. The unit cell size is the some one of the single layer
metasurface (420 nm). The two fins are made of TiO2 have the same height (600 nm) and
the dimension of the basis (Dx, Dy) of the nanofin can vary from 50 nm to 250 nm. We
will refer to the two nanofins as "bottom nanofin" and "top nanofin". The rotation of the
bottom nanofin will correspond to the parameter θ while the rotation of the top nanofin
will correspond to the parameter θ′. Initially we will test the case of a bilayer metasurface
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working in transmission mode: as it was for the single layer the structure is illuminated
by a x-polarized plane wave source at 532 nm that has been placed at a distance of 600
nm from the bottom basis of the substrate (the vales of the refractive indices used are the
same reported in the previous chapter). In order to compute the phase in the far-field
and the percentage of transmitted power a monitor has been place a few wavelengths
above the top of the nanofin. Also in this case, as it was for the single layer metasurface
simulation, at the borders of the metasurface Periodic Boundary Conditions were applied
while at the extremes of the simulation box along the z direction, PML were forced. Given
the complexity of this structure and in order to obtain high accuracy, we used a fine mesh
size of 2.5nm x 2.5nm x 2.5nm and we repeated the simulations of the single layer with
this finer mesh to be consistent.

Figure 3.2: Unit cell of the bilayer metasurface.

3.2.1. Bilayer simulations: the effect of the relative rotation

The first case analyzed is the effect of a relative rotation between the two fins of the
metasurface. Two cases are tested: in the first case we used the dimensions of the QWP1

(134nm x 202nm) both for the bottom and top nanofins while in the second case we
used the dimensions of the QWP2 (114nm × 154nm). The rotation angle of the bottom
nanofin is set to zero (θ = 0) and we sweep the rotation of the top nanofin (θ′) that can
assume the values between 0 and 90 with a step of 15. The cases of rotation angle of the
top nanofin θ′ > 90 can be analytically obtained from the analyzed ones from symmetry
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argument. In Table 3.1 - 3.4 it is reported the element by element comparison between
the Jones matrix of the simulated bilayer (Js) and the "analytical Jones matrix (Ja)"
obtained as follows:

Ja = Jtop · Jbottom = R(−θ′) ·

[
eiϕx,top 0

0 eiϕy,top

]
·R(θ′) ·

[
eiϕx,bottom 0

0 eiϕy,bottom

]
(3.4)

where R(θ′) is the 2x2 rotation matrix.

|J1,1;a| − |J1,1;s| |J1,2;a| − |J1,2;s| |J2,1;a| − |J2,1;s| |J2,2;a| − |J2,2;s|

θ′ = 0 0.0653 0 0 -0.0548

θ′ = 15 0.0307 -0.0154 0.0434 -0.0547

θ′ = 30 -0.0203 -0.0345 0.0148 -0.0386

θ′ = 45 -0.0281 -0.0404 -0.0280 -0.0155

θ′ = 60 -0.0398 -0.0381 -0.0443 -0.0101

θ′ = 75 -0.0643 -0.0257 -0.0328 -0.0225
θ′ = 90 -0.0776 0 0 -0.0323

Table 3.1: Element-by-element comparison between the magnitude of the Jones matrix
elements of the simulated bilayer Js and the elements of the analytical Jones matrix Ja

for the QWP1(134nm× 202nm)

∠(J1,1;a)− ∠(J1,1;s) ∠(J1,2;a)− ∠(J1,2;s) ∠(J2,1;a)− ∠(J2,1;s) ∠(J2,2;a)− ∠(J2,2;s)

θ′ = 0 8.6° 0 0 2.5°

θ′ = 15 6.7° 6.5° 9.0° 3.5°

θ′ = 30 6.3° 6.6° 4.4° 3.5°

θ′ = 45 7.3° 7.0° 4.5° 3.9°

θ′ = 60 5.1° 6.5° 4.4° -4.8°

θ′ = 75 4.4° 6.3° 4.2° 5.4°
θ′ = 90 3.2° 0 0 5.1°

Table 3.2: Element-by-element comparison of the phase of the Jones matrix ele-
ments of the simulated bilayer Js and the elements of the analytical Jones matrix Ja

QWP1(134nm× 202nm)
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|J1,1;a| − |J1,1;s| |J1,2;a| − |J1,2;s| |J2,1;a| − |J2,1;s| |J2,2;a| − |J2,2;s|

θ′ = 0 -0.0291 0 0 0.0112

θ′ = 15 -0.0343 0.0277 0.0122 0.0564

θ′ = 30 -0.0324 0.0174 -0.0036 0.0375

θ′ = 45 -0.0367 0.0029 0.0085 0.0025

θ′ = 60 -0.0523 -0.0002 -0.0005 -0.0309

θ′ = 75 -0.0609 0.0108 0.0158 -0.0469
θ′ = 90 -0.0560 0 0 -0.0439

Table 3.3: Element-by-element comparison of the magnitude of the Jones matrix elements
of the simulated bilayer Js and the elements of the analytical Jones matrix Ja for the
QWP2(114nm× 154nm)

∠(J1,1;a)− ∠(J1,1;s) ∠(J1,2;a)− ∠(J1,2;s) ∠(J2,1;a)− ∠(J2,1;s) ∠(J2,2;a)− ∠(J2,2;s)

θ′ = 0 -1.8° 0 0 1.7°

θ′ = 15 -1.2° -3.9° 1.6° 0.8°

θ′ = 30 -1.2° 1.7° 0.1° 1.2°

θ′ = 45 -1.6° 2.2° 0.7° 0.1°

θ′ = 60 -1.7° 0.2° 1.8° 1.3°

θ′ = 75 -2.6° 2.6° 3.4° 2.7°
θ′ = 90 2.2° 0 0 2.6°

Table 3.4: Element-by-element comparison of the phase of the Jones matrix ele-
ments of the simulated bilayer Js and the elements of the analytical Jones matrix Ja

QWP2(114nm× 154nm)

The discrepancy that arises between the Jones matrix of the simulated bilayer and the
"analytical Jones matrix" is on average not so large and can be considered acceptable
for both cases both for phase and amplitude. This implies that, at least for the tested
geometries, is is possible to use the formula reported in Eq. (3.4). In order to explain
the errors it is necessary to remember that both in the simulation of the single layer
metasurface and in the simulation of the bilayer metasurface, on the borders of the unit
cell, Periodic Boundary Conditions were applied allowing to calculate the response of the
entire system by only simulating one unit cell. When the simulation runs, the Periodic
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Boundary Conditions simply copy the EM fields that occur at one side of the simulation
and inject them at the other side. The results reported in Fig. 2.2 are so related to the case
of no rotation of the fin: the Periodic Boundary Condition emulate the existence of an
entire structure composed of all identical fins with zero rotation angle. The field obtained
at the borders of the unit cell in the case of zero rotation angle will be so different from
the case of a rotated fin. In the case of the simulated bilayer a rotation was superimposed
on the top nanofin. As a consequence the results obtained starting from the library of a
single layer and applying Eq. (3.4), being influenced by the PBC applied for the creation
of the library, are different from the ones obtained in the simulation of the bilayer where
a rotation of one the fins is present. From the data reported in the tables it can be also
assumed that the discrepancy between the analytical and simulated case is higher in the
case of the QWP1 maybe due to its bigger dimension with respect of QWP2 so a rotation
of the fin of the case of the QWP1 will effect more the variation of the electric field.

3.2.2. Bilayer simulation: bottom fin fixed and sweeping of the
top fin

Once it has been verified that the rotation of one of the two fins allows to use Eq. (3.4)
to compute the Jones matrix of a bilayer metasurface at least for the tested structure, we
moved to a much more computational intensive simulation (the simulation takes about
20 hours to be completed also due to the fine mesh used): we fixed the dimension of
the bottom nanofin and we performed a parameter sweep for the dimensions of the top
nanofin without introducing a rotation angle between the fins. This is needed since we
want to verify if the two layers can be considered decoupled for all the geometries. If
that’s the case, then the Jones matrix of the bilayer can be expressed as:

Jbilayer = Jtop · Jbottom =

[
eiϕx,1 0

0 eiϕy,1

]
·

[
eiϕx,2 0

0 eiϕy,2

]
(3.5)

As it was for the previous section we compared the results obtained from the simulation
of the bilayer with the "analytical" ones that are obtained starting from the simulation
of the single layer. The dimension of the bottom nanofin are the one of the QWP1:
134nm x 202nm. As a consequence, for the bottom nanofin we used the Jones matrix
of this element reported in Table 2.1: these value will be the same for all the bilayer,
independently from the dimensions of the top nanofin. The results of the simulation are
shown in Fig. 3.3.
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(a) (b)

Figure 3.3: Simulation results of a bilayer metasurface with the dimension of the bottom
fin fixed and are 134nm x 202nm: (a) : Phase shift ϕx on x-polarized light for a bilayer
metasurface. Units in radians. (b) : Power Transmission Tx for x-polarized light. The
total power passing through a monitor above the structure relative to the source.

The difference between the analytical Jones matrix and the simulated case are graphically
visualized and shown in Fig. 3.4 and in Fig. 3.5. Each point of the plots represents the
difference between the simulated and the analytical case for a different dimension of the
top nanofin. From the plots it can be seen that Eq. (3.5) can be used for a wide range of
geometries where the error is close to zero for both magnitude and phase for both J11 and
J22. The few geometries that exhibits a large error are the same ones that correspond to
the resonance lines in the top right of the Fig. 3.3. This implies that for these geometries
it is needed to simulate the whole structure while for all the other cases the library of
a single layer to obtain the Jones matrix of the bilayer. In order to understand what
happens at of the geometries for which the product of the Jones matrices of a single layer
does not accurately reproduce the results of the simulation of the bilayer, a near-field
analysis needs to be performed taking advantage of a different formalism such as the one
of scattering matrices. From the simulation performed is also possible to confirm that
the bilayer is able to cover the 0 to 2π phase range that is a necessary requirement for
the design of a metasurface. This is shown in Fig. 3.6 looking at the z-axis: it can be
noticed that the the 0 to 2π phase range is covered by the structure with low phase error
with respect to the analytical case (represented by the color-map ) so that it is possible
to exclude the geometries that exhibit a large error.
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(a) (b)

Figure 3.4: Plots of the difference in magnitude between the Jones matrix elements of
the simulated bilayer with bottom fin fixed and the Jones matrix elements of a bilayer
analytically computed: (a) : Difference between the phase of J11 extracted from the
simulation and the phase of J11 analytically computed from the data of the single layer.
(b) : Difference between the phase of J22 extracted from the simulation and the phase of
J22 analytically computed from the data of the single layer.

(a) (b)

Figure 3.5: Plots of the difference in magnitude between the Jones matrix elements of
the simulated bilayer with bottom fin fixed and the Jones matrix elements of a bilayer
analytically computed: (a) : Difference between the magnitude of J11 extracted from the
simulation and the magnitude of J11 analytically computed from the data of the single
layer. (b) : Difference between the magnitude of J22 extracted from the simulation and
the magnitude of J22 analytically computed from the data of the single layer.
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(a)

(b)

Figure 3.6: Plots of the difference in phase between the Jones matrix elements of the
simulated bilayer with bottom fin fixed and the Jones matrix elements of a bilayer ana-
lytically computed showing the ability of the bilayer metasurface to cover 0 to 2π phase
range: (a) : Difference between the magnitude of J11 extracted from the simulation and
the magnitude of J11 analytically computed from the data of the single layer. On the
z axis is possible to appreciate that the simulated geometries are able to 0 to 2π phase
range. (b) : Difference between the magnitude of J22 extracted from the simulation and
the magnitude of J22 analytically computed from the data of the single layer. On the
z axis is possible to appreciate that the simulated geometries are able to 0 to 2π phase
range
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3.2.3. Bilayer simulations: sweep of the dimensions of both bot-

tom and top nanofin: the fractal metasurface

The last step performed was a simulation consisting in the sweep of both the dimensions
of bottom and top nanofins. It was not possible to simulate the complete set of structures
simulated in the previous steps since it would have implied a total number of structure
to be simulated larger than 106. As a consequence, decided to simulate the combination
of 121 geometries per layer (each dimension could have 11 different values) for a total of
14641 different geometries. On the other hand, we choose to maintain the same mesh
size to guarantee the highest possible accuracy. As a result, the simulation took almost
a month to be completed on our supercomputer. Once we obtained the results of the
simulation, we used Eq. (3.5) to understand if it is possible, in the most general case, to
use the library of a single layer to compute the Jones matrix of a bilyer.

In Fig. 3.7 the results obtained from the product of the Jones matrix is shown: the Figure
is a grid made of 121 subplots. The figure has to be interpreted as follows: each subplot
represent the values of the Jones matrix of a bilayer whose bottom fin has dimension equal
to the ones reported on the axis while the dimensions of the top nanofin are sweeping. In
Fig. 3.8 it is possible to appreciate the results of the FDTD simulation: the meaning of
the plot is the same described above but in this case the plots represent the results of the
simulation and not the analytical product. From the figure it is possible to notice that,
both for the analytical and the simulated case, the behaviour of each subplot resemble
the behaviour of the whole plot like as it is for fractal objects.
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(a) (b)

Figure 3.7: Plots of the analytical Jones matrix of a bilayer computed as the product of
the Jones matrices of a single layer.: (a) : Plot of the analytical power transmission of a
bilayer computed starting from the data a single layer. (b) : Plot of the analytical phase
of a bilayer computed starting from the data a single layer.

(a) (b)

Figure 3.8: Plots of the analytical Jones matrix of a bilayer metasurface: (a) : Plot of
the simulated power transmission of a bilayer metasurface. (b) : Plot of the analytical
phase of a bilayer metasurface.

From Fig. 3.9 it is possible to look at the error between the simulated and the analytical
cases. For the 70% of the simulated geometries the error in the phase is lower than the 10%
in magnitude while for the 85% of the structures the error in the phase is lower than 15°.
This analysis ensures the possibility to write the Jones matrix of a bilayer metasurface
as the product of the Jones matrix of a single layer metasurface over this parameter
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space. In order to get a reason of why some of the bilayer metasurface show a different
behaviour from the one obtained using the analytical approach a different analysis needs
to be performed. It is so possible to assert that for a large number of geometries the
hypothesis of decoupling between the two layers can be considered as valid. The phase
redundancy afforded by the metasurface library offers a sufficient number of decoupled
geometries with full 2π phase coverage.

(a) (b)

Figure 3.9: Plots of the error between the simulated Jones matrix of a bilayer metasurface
and the analytical Jones matrix computed as product of Jones matrix of a single layer:
(a) : Plot of the error in the power transmission of a bilayer metasurface. (b) : Plot of
the error in the phase of a bilayer metasurface.

3.3. The bilayer metasurface in reflection

The previous analysis have shown that we can evaluate the Jones matrix of a bilayer
working in transmission starting from the Jones matrix of a single layer metasurface. This
allows the designer to build a bilayer metasurface by only making use of the single layer
metasurface library, thereby, simplifying the design process. In this section, we investigate
the possibility of writing the Jones matrix of a bilayer metasurface (Fig. 3.10) in reflection
as the product of four Jones matrix of a single layer metasurface. The product of one
element of the bilayer metasurface in case no rotation angle of the nanofins is introduced
is given by:

Jbilayer = Jtop · Jbottom ·M · Jbottom · Jtop (3.6)

where M is the Jones matrix of a mirror. As it can be seen from Eq. (3.6) the elements
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of the product are 2 by 2 equal: the first two elements are related to the path that the
light make when impinging on the metasurface and it passes thorough the two nanofins,
then it is reflected by the mirror and so it passes through the two fins one again but this
time, in the reverse order.

Figure 3.10: Model of s bilayer metasurface in reflection. The silver layer represents the
mirror. The yellow arrow represents the incident light.

In order to test the validity of Eq. (3.6) we started by simulating a unit cell consisting
of a single layer in reflection and then we move to the discussion of a bilayer metasurface
metasurface in reflection presenting as an example a Pancharatnam–Berry phase-based
bilayer metasurface.

3.3.1. Single layer metasurface in reflection

Following the same approach used in the previous section, we simulated a single layer
metasurface in reflection in order to verify if, in presence of a mirror, it was possible to
write the Jones matrix of the system as product as follows:

Jbilayer = Jtop ·M · Jbottom =

[
eiϕx,1 0

0 eiϕy,1

]
·

[
1 0

0 −1

]
·

[
eiϕx,2 0

0 eiϕy,2

]
(3.7)
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The unit cell (whose size is always 420nm × 420nm) simulated is the one shown in
Fig. 3.11. The unit cell is illuminated with a plane x- polarized wave source at 532 nm
that has been placed at a distance of 600 nm from the top of the basis of the nanofin. A
150nm thick Aluminum mirror has been place between the substrate and the nanofin: the
refractive index of the Aluminium at the used wavelength has been set to 0.91+ i6.55. A
monitor has been placed a few wavelengths above the nanofins to collect the electric field
that is reflected by the structure.

Figure 3.11: Unit cell of a single layer metasurface working in reflection mode. The silver
sheet represent a 150nm thick Aluminum mirror. The structure is illuminated from the
top as denoted by the yellow arrow.

The results of the simulation are shown in the (a)s of Fig. 3.12 and in Fig. 3.13. From
Fig. 3.3b it is possible to appreciate the results analytically computed from the product
of the Jones Fig. of a single layer in transmission. It is noticed that the new structure in
reflection has both power transmission and phase shift completely different from the ones
obtained from an analytical approach since in the reflection case some peculiar features
arise from the simulation that could not be obtained from a simple product of Jones
matrix. It can be assumed that, the interface between the mirror and the nanofin have
changed the effective refractive index of the TiO2 that result in a different response of the
structure when illuminated. So it can be concluded that, differently from what happens in
the case of the transmissive bilayer metasurface where in most of the cases the analytical
approach is accurate enough to allow to use the data coming from the library of a reflective
single layer metasurface, in the case of a single layer this can not be done. In order to
reduce the error between the simulated case and the analytical approach we tried to
modify the mirror matrix from the "standard" expression used in Eq. (3.7) with a Mirror
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matrix that was able to reproduce the effect of an aluminum mirror but the reduction of
the error was not so much. We also tried to optimize the mirror thickness varying it in a
range between 10nm and 300nm but we found out that a mirror thickness of around 150
nm guarantee an average error similar to the other mirror thickness. So to reduce the
error we modified the structure as it will be discussed in the next section.

(a) (b)

Figure 3.12: Comparison of the power transmission plots between a simulated single layer
metasurface in reflection and the results obtained from the product of Jones matrix: (a)
: Results of the simulation. (b) : Plot of the analytical power transmission.

(a) (b)

Figure 3.13: Comparison of the phase shift plots between a simulated single layer meta-
surface in reflection and the results obtained from the product of Jones matrix: (a) :
Results of the simulation. (b) : Plot of the analytical phase shift.
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3.3.2. The addition of a silica spacer in a single layer metasur-

face working in reflection

The strategy that we adopted in order to match the results analytically obtained from the
product of the Jones matrix of a single layer in transmission we modified the structure
inserting a silica spacer between the mirror and the nanofin. Since we assumed that the
change of the refractive index of the TiO2 fin was due to the interface between the mirror
and the fin, the insertion of a spacer, whose dimension needs to be optimized, should be
able to match the behaviour of the nanofin when working in transmission where it was
in direct contact with the silica substrate. The unit cell of the new structure is shown in
Fig. 3.14.

Figure 3.14: Unit cell of a single layer metasurface working in reflection mode with the
addition of a silica spacer. The silver sheet represent a 150nm thick Alluminum mirror.
The structure is illuminated from the top as denoted by the yellow arrow.

In order to optimize the space thickness we sweep the thickness of the spacer between
20nm and 160 nm and for each spacer thickness we sweep the dimension of the fin in the
unit cell between 50nm and 250nm. Then for each fin geometry we selected the spacer
dimension that was minimizing the difference between the phase difference between the
analytical product of the Jones matrices of a single layer metasurface working in reflection
and the results of the simulation with the optimized space thickness. In Fig. 3.15 it is
shown the comparison between the analytical phase shift and the results of the space
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selection method described above.

(a) (b)

Figure 3.15: Comparison of the phase shift plots between a simulated single layer meta-
surface in reflection and the results obtained from the product of Jones matrix: (a) :
Results of the simulation. (b) : Plot of the analytical phase shift.

As it can be clearly noticed from Fig. 3.15 the difference between the analytical approach
and the simulation results selecting the optimum spacer thickness is reduced from the
case where the spacer was not used (Fig. 3.13). So thanks to the addition of a spacer it
is now possible to write also for the case of a single layer metasurface in reflection, its
Jones matrix describing the structure as a product of the Jones matrix of a single layer
metasurface. The validity of the analytical approach is confirmed looking at Fig. 3.16
where the errors of the power transmission and the phase shift are plotted. Since the
selection rule of the spacer it is on the phase shift is can be seen that the error in the
phase (Fig. 3.16a) is almost zero for all the structure (the error in the phase shift is lower
than 3° for 95% of the cases) while it is on average bigger on the power transmission
(Fig. 3.16b). The geometries that exhibit a larger error are the biggest in the simulated
range: probably it would be needed to increase the spacer thickness to reduce the error
also for these dimensions. It can be argued that the insertion of a given spacer dimension
that optimize the response of a certain geometry will constrain to fabricate a metasurface
that has always the same geometries so limiting the degrees of freedom of the system.
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(a) (b)

Figure 3.16: Plots of the error between the simulated Jones Matrix of a single layer
metasurface in reflection and the analytical Jones Matrix computed as product of Jones
matrix of a single layer in transmission. (a) : Plot of the error in the power transmission
of a single layer metasurface in reflection. (b) : Plot of the error in the phase of single
layer metasurface in reflection.

The figure of merit of this analysis is Fig. 3.17. The reported figure shows the optimum
spacer thickness as a function of the nanofin dimensions. On the z axis the error in the
phase is reported.

Figure 3.17: Optimum spacer dimension as a function of the nanofin geometry. On the z
axis the error in the phase is reported.
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3.3.3. Bilayer simulation: bottom fin fixed and sweeping of the

top fin

To the aim of designing a bilayer metasurface in reflection we repeated the same analy-
sis performed in transmission described in 3.2.2: we fixed the dimension of the bottom
nanofin and we performed a parameter sweep of the dimensions of the top nanofin with-
out introducing a rotation angle between the fins. The previous analysis on the spacer
optimization was needed to select the spacer dimension that optimizes the response of the
fixed bottom geometry. This allow us to verify the assumption of decoupling in reflection
for all the geometries. We also confirm that the spacer dimension from the single layer is
valid for the design of a bilayer metasurface in reflection; in which case the Jones matrix
of the bilayer can be written as shown in Eq. (3.6).
The dimension of the bottom nanofin are the one of the QWP1: 134nm × 202nm. As
a consequence for the bottom nanofin we used the Jones matrix of this element reported
Table 2.1: this value will be the same for all the bilayers, independently from the dimen-
sions of the top nanofin. From the previous analysis the optimized spacer thickness is set
to 100nm. The simulated unit cell is shown in Fig. 3.18.

Figure 3.18: Unit cell of a bilayer metasurface working in reflection mode with the addition
of a silica spacer. The silver sheet represent a 150nm thick Aluminum mirror. The
structure is illuminated from the top. The yellow arrow represents the incident light.
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Fig. 3.19 and Fig. 3.20 report the difference between the simulated case and the analytical
approach. It can be noticed that the error is on average close to zero both for power and
phase plots for both the Jones matrix elements. The phase error is lower than 5° for 81%
of the cases for J11 and 88% of the cases for J22. The cases that show larger errors are
the ones composed by a top nanofin that is much larger than with respect to the bottom
one. This can be due to the reflections that occur between the mirror and the base of the
top nanofin. The spacer selection rule defined above allows to correctly design a bilayer
metasurface working in reflection whose Jones matrix can be predicted starting from a
simple library of a single layer metasurface working in transmission. It can be concluded
so that, in order to design a bilayer metasurface working in reflection it is not needed
to simulate a full library describing all the possible cases sweeping the dimensions of the
bottom and the top nanofin but it is sufficient to start from a library describing a single
layer metasurface working in transmission (that is much less computational intensive) and
to select the optimum spacer thickness according to the selection rule described above
whose results are shown in Fig. 3.17.

(a) (b)

Figure 3.19: Plots of the difference in magnitude between the Jones matrix elements of
the simulated bilayer in reflection with bottom fin fixed and the Jones matrix elements of
a bilayer analytically computed: (a) : Difference between the phase of J11 extracted from
the simulation and the phase of J11 analytically computed from the data of the single
layer. (b) : Difference between the phase of J22 extracted from the simulation and the
phase of J22 analytically computed from the data of the single layer.
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(a) (b)

Figure 3.20: Plots of the difference in magnitude between the Jones Matrix elements of
the simulated bilayer in reflection with bottom fin fixed and the Jones matrix elements of
a bilayer: (a) : Difference between the magnitude of J11 extracted from the simulation
and the magnitude of J11 analytically computed from the data of the single layer. (b) :
Difference between the magnitude of J22 extracted from the simulation and the magnitude
of J22 analytically computed from the data of the single layer.

3.4. A Pancharatnam–Berry phase-based bilayer meta-

surface

On the basis of the analysis discussed up to now, here we show a possible application
a bilayer metasurface in reflection. In analogy to the case of single layer metasurface,
we present a Pancharatnam–Berry phase bilayer metasurface that, thanks to the larger
number of degree of freedom that this metasurface enables, allows to work on linear polar-
ization and not only on circularly polarized light as it was with single layer metasurfaces.
In [40] a Michelson interferometer like system (Fig. 3.21) consisting of two quarter wave-
plates and a mirror on one arm and a single mirror in the other arm of the interferometer
is designed in order to take advantage of the geometric phase accumulation to shift the
frequency of the impinging light beam.
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Figure 3.21: Experimental arrangement for the generation of a tine-varying geometric
phase. The basic configuration is that of a Michelson interferometer. Figure from [40]

Each quarter wave plate will act as a as a rotation through π/2 about an axis in the
equatorial plane of the Poincare sphere. A rotation of the quarter-wave plate (about the z
axis normal to the plate) by θ would rotate this equatorial axis by 2θ. If we consider light
polarized along the x axis incident on a quarter-wave plate whose slow axis makes an angle
of π/4 with the x axis. The emergent light which is left circularly polarized then passes
through a second quarter wave plate whose slow axis makes an angle of 3∗π/4+ϕ with the
x axis. The incident light is represented by the point X on the Poincare sphere, the light
emerging from the first quarter-wave plate by LCP, and that from the second quarter-
wave plate by the linear polarization state A. This light falls normally on a plane mirror
and after reflection passes back through the two quarter wave plates. The polarization
state is transformed from A to RCP and then to X as shown in Fig. 3.22a. For y-polarized
light the evolution is again cyclic, but given by the reflection of this circuit through the
origin (Fig. 3.22b). Clearly, the two circuits are traversed in opposite senses; and hence
subtend equal and opposite solid angles at the origin equal to 4ϕ and as a consequence a
Berry phase of ±2ϕ will be acquired respectively from x and y polarization. In the article
the second quarter wave plate is rotated uniformly so that the geometric phase changes
linearly in time contributing to a shift in frequency. Here we present a static device: a
bilayer metasurface grating whose principle is similar to the structure described in [40].

From the library shown in Fig. 2.2 we selected two nanofins whose Jones matrix is the
one of a quarter wave plate. Among the possible structure that behaves as quarter wave
plates we choose the QWP1 (134 nm × 202 nm) to be the bottom nanofin and the
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QWP2 (114 nm × 154 nm) to be the top nanofin of a bilayer metasurface working in
reflection. The analysis previously discussed allows to consider these two nanofins as
decoupled and guarantee that they behave as quarter waveplates also when being part of
a bilayer metasurface in reflection. When x-polarized light impinges on the system, as it
was for the inteferometer described above, the top nanofin (that is a quarter wave plate),
it will be transformed to left circularly polarized light that, going trough the bottom
nanofin, will be transformed into linearly polarized light again. After the reflection of the
mirror, the polarization will be transformed respectively into right circularly polarized
light after the bottom nanofin and back to x-polarized light after the top nanofin A closed
path on the Poincaré sphere, shown in Fig. 3.22, as it was for the interferometer, will be
then traced.For y-polarized light the evolution is again cyclic, but given by the reflection
of this circuit through the origin. By introducing a relative rotation between the nanofins
it will be also possible to vary the path on the Poincarè sphere so that the solid angle
subtended by the path will change accordingly to the relative rotation angle.

(a) (b)

Figure 3.22: Evolution of polarization on the Poincare sphere: starting from x-polarized
light, passing trough the top nanofin, polarization will be transformed into LCP. Then
going trough the bottom nanofin we go from LCP to point A that depends on the relative
rotation between the two nanofins. Light is then reflected by the mirror it goes trough the
bottom nanofin again going from A to RCP and then, thank to the second nanofin, from
RCp back to X. Polarization transformations due to the top nanofin are represented by
the blue arrows while transformations due to the bottom nanofins are represented bu the
pink arrows.For y-polarized light the evolution is again cyclic, but given by the reflection
of this circuit through the origin. (a) : Incident x-polarized light. (b) : Incident y-
polarized light.
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So, depending on the rotation angle, that is internal geometric parameter, and conse-
quently on the solid angle, light will acquire a phase factor that is nothing else than the
Pancharatnam–Berry phase. On this basis we designed a simple grating (Fig. 3.23) con-
sisting of 24 unit cells each one containing a bilayer structure: between the two fins a
rotation angle is introduced and the rotation spatially varies from 0° to 360° with a step
of 15°. What we expect is that, depending on the incident beam that is x or y-polarized,
the light will be scattered into the +1 or -1 diffracted order.

Figure 3.23: Model of the designed grating.

(a) (b)

Figure 3.24: Fraction of transmitted power as a function of diffracted angle: (a) : X
polarized incident beam. (b) : Y polarized incident beam.
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From the Fig. 3.24 it can be seen that only a small fraction of the input energy appears
in the zeroth order with a diffraction efficiency of 80%. As expected, when the incident
polarization is linear, the two orthogonal components of the beam are subject to different
diffractive geometric phase (that arise due to the different path on the Poincaré sphere)
of opposite sign and are diffracted to first order in different directions (−1 for x-polarized
light in Fig. 5.17a and +1 for y-polarized light in Fig. 5.17b). To conclude, we have
demonstrated a bilayer metasurface application: a polarization-dependent optical bilayer
metasurface based on the Pancharatnam–Berry phase. In contrast to the system from the
system described in [40], our metasurface is a static device, so, once the device has been
fabricated, it is not possible to rotate one of the two fins to obtain a frequency shift. A
non static device that offers the possibility to tune phase, amplitude or polarization of an
optical wavefront will be discussed in the next section: the Spatial Light Modulator.





45

4| Dynamic wavefront shaping

with SLMs

Spatial light modulators (SLMs) refer to a number of devices that allow to modify phase,
amplitude or polarization of an optical wavefront as a function of position across the wave-
front. These devices can be reconfigured in real time electrically (computer-controlled) or
optically (optical addressing). In this section we provide an introduction to these devices
and we describe the polarization transformation attainable with cascades of several SLMs.

4.1. Principle and application of SLMs

Spatial light modulation can be achieved through a plethora of technologies such as me-
chanically or thermally deformable mirrors [41], magneto-optic devices or acoustic-optic
Bragg cells [42], or liquid crystals (LCs). The latter are organic materials characterized by
physico-chemical proprieties between those of liquids and solids, enabling the possibility
to locally change the phase of the propagating readout light. Elongated LC molecules
therefore have both a structural order and anisotropy specific to crystals such as opti-
cal, dielectric or even elastic anisotropy; at the same time the existence of a liquid order
allows to tune the proprieties of LCs. The application of an electric field results in the
creation of elastic forces leading to the reorientation of the molecules that tend to line up
in the direction where the strain energy is minimal and the intensity of the electric field
modulates the molecular orientation. Spatial control of the applied electric field, pixel by
pixel, offers the ability to spatially modulate the phase of an incident optical wave. This
effect can be either used as a pure phase modulator (if the incident polarization is always
linearly polarized along the bias-tunable axis) or as a pure-amplitude modulator (if the
LC cell is placed between analyzers that may be crossed or parallel, depending on the
exact implementation, as in LC displays).
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Figure 4.1: Liquid Crystal Spatial light modulator: when an electric field is applied, the
orientation of the molecules changes so that the optical refractive index changes and the
phase of a propagating light is modified accordingly. Figure from [43]

4.2. Polarization-Transformations with Systems of Mul-

tiple SLMs

SLMs based on liquid crystals are among the most common and widely used, especially
those integrated on silicon with CMOS drive electronics. Cascades of LC SLMs enable
the possibility to spatially modulate polarization as it has been described in [44]. As it is
for metasurfaces, an SLM can be described by a spatially varying Jones matrix:

J(x, y) =

[
eiϕx(x,y) 0

0 1

]
(4.1)

since each pixel of the SLM can be seen as a tunable retarder and where ϕx(x, y) is the
phase shift on linear x-polarized light that can be tuned. In order to obtain the same
control over y-polarized light rotating an SLM by 90 so cascading two SLMs a diagonal
Jones matrix can be obtained. However, cascading two SLMs it is not possible to obtain
a Jones matrix of the form of Eq. (1.12) since the pixel of the SLM cannot be individually
and independently rotated as it is for the nanofins of dielectric metasurfaces. In order
to implement the rotation matrix R(θ) it is necessary to sandwich the SLM between
two quarter-wave plates, oriented at ±45. The first quarter wave plates converts the
incoming light into the circular basis that is retarded along one polarization by an angle
that the SLM can control spatially, and converted back to its original basis by the second
quarter wave-plate. If a cascade of two SLM (that implements a diagonal Jones matrix),
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is sandwiched between the latter described system ( Fig. 4.2), it is possible to obtain a
Jones matrix of the form (1.12) that can be realized with a single layer metasurface. The
advantage of using SLM with respect to metasurface is the electrical, computer-addressed
tunability of the SLM with respect to metasurfaces that are static devices albeit at much
lower resolution.

Figure 4.2: Implementation of spatially varying polarization control with configurations
of spatial light modulators (SLMs). Figure from [44]
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light: Rotatum

In this chapter, we study a popular class of structured light known as vortex beams, which
carry orbital angular momentum (OAM). Using a spatial light modulator, we control the
OAM of those beams following a step-like, linear, and quadratic evolution along their
optical path. The latter yields a new property of light that we refer to as the "optical
rotatum". We also show that the continuous evolution of OAM is associated with a
perturbation in the longitudinal component of the wave vector that is connected to the
Pancharatnam-Berry phase.

5.1. Frozen waves

The existence and the proprieties of localized waves have been well known for a long time
being introduced in [45]. These particular waves have the peculiarity to being able to
resist to diffraction for a long distances.e., of possessing a large depth of field. The most
popular among the possible localized waves is the Bessel beam. If Bessel beams with
the same frequency, but with different longitudinal wave numbers are superimposed, it
becomes possible to control the beam intensity longitudinal shape within a chosen interval
so that the intensity envelope remains static, i.e., with velocity v = 0 [46]. This peculiar
superposition of Bessel beams is generally known as "Frozen wave".

5.1.1. Mathematical formalism of Frozen waves

A possible solution of the Helmoltz equation is given by the zeroth-order Bessel beam:

Ψ(ρ, z, t) = J0(kρρ)e
ikzze−iωt (5.1)

where ω, kρ and kz are respectively the angular frequency, the transverse and longitudinal
wave number that must satisfy:
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k2ρ + k2z =
ω2

c2
(5.2)

The superposition of 2N + 1 Bessel beams with the same frequency and different longi-
tudinal wave numbers can be written as follows:

Ψ(ρ, z, t) = e−iωt

N∑
n=−N

AnJ0(kρnρ)e
ikn,zz (5.3)

Equation (5.3) defines the "Frozen Wave". For each n, Eq. (5.2) must be satisfied.
Supposing that, in a certain interval (0 < z < L) we want that

|Ψ(ρ, z, t)|2 = |F (z)|2 (5.4)

where F (z) can be expanded in Fourier series as:

F (z) =
+∞∑

m=−∞

Bme
i 2π
L
mz (5.5)

it is necessary to determine the values of kz,n and An in Eq. (5.3) so that

∣∣∣∑N
n=−N Ane

ikn,zz

∣∣∣2 = |F (z)|2. (5.6)

This problem can be solved selecting a Q > 0 and so that kz can be written as

kz,n = Q+
2π

N
n (5.7)

and as a consequence An can be obtained as:

An =
1

L

∫ L

0

F (z)e−i 2π
L
nxdz (5.8)

The exposed methodology and theory regarding frozen waves enables the possibility to
control over the longitudinal direction, the intensity pattern (Fig. 5.1) in a certain region
both in nonabsorbing [47] and absorbing media [48]. In [49] it is shown the possibility
to change the intensity profile of a Frozen Wave over time. Frozen waves are at the
foundation to a manipulation technique used to control the topological charge (sign and
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magnitude) along the propagation direction [50] that is at the basis of the method here
presented.

Figure 5.1: (a) Comparison of desired longitudinal intensity function (blue line), theo-
retical prediction by Ψ(ρ, z) (black line), and experimental result (red line) for a step
function; and (b) 3D plot of experimental intensity. Figure from [47]

5.2. Orbital Angular Momentum

Definition and generation of OAM beams

An important example, of fundamental and practical interest, has been light beams struc-
tured to carry orbital angular momentum (OAM). In 1992, Allen et al. highlighted that
light beams with an azimuthal phase dependence of eiℓϕ carry an orbital angular momen-
tum (OAM) [51]: the OAM is a completely distinct quantity with respect to SAM ( spin
angular momentum of ±ℏ per photon) associated to circularly polarized light. Referring
to classical mechanics a simple relationship can be established between linear(p = mv)
and angular momentum L:

L = r× p (5.9)

where r is the position of the particle. The first time-derivative of the angular momentum
L is the torque τ = dL

dt
, while the second order time-derivative is known as rotatum.

The simplest possible example of an OAM beam is one with a phase in the transverse
plane of ϕ(r, ϕ) = eilϕ , where ϕ is the angular coordinate and the variable ℓ, known
as topological charge,‘can be any integer value, positive or negative. As it can be seen
looking at (Fig. 5.2), light beams described by ϕ(r, ϕ) = eiℓϕ have an helical phase front:
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the number of helices depends on the magnitude of ℓ while their handedness depends on
the sign of ℓ. It can be clearly seen that if ℓ is different from zero, the Poynting vector,
which is parallel to the surface normal of the phase fronts, has an azimuthal component
around the beam and hence an angular momentum along the beam axis. As it was pointed
out in [52], the Poynting vector forms an angle of ℓλ

2πr
with respect to the beam axis and

as a consequence the value of the azimuthal component of the light’s linear momentum is
ℏk0ℓλ
2πr

per photon. From Eq. (5.9) it follows that the OAM can assume only values of the
form ℓℏ and so it is quantized.

Figure 5.2: Helical phase fronts for (a) ℓ = 0, (b) ℓ = 1, (c) ℓ = 2, and (d) ℓ‘ = 3. . Figure
from [53]

The easiest way to generate an OAM beam with the peculiar helical phase fronts is to use
of an optical element with a helical surface whose thickness varies along the azimuthal
component that is ℓℏθ

2π(n−1)
where n is the refractive index [54]. OAM can be also obtained

using diffractive optical elements: combining a linear phase ramp and the the phase dis-
tribution of the desired optical component creates a forked diffraction grating that is able
to produce a helically phased beam in the first diffraction order [55]. The components
are effectively holograms of the desired optical element and are thus often referred to as
“computer generated holograms” (CGH). This holographic technique can be implemented
thanks to spatial light modulators (SLM) that can be programmed to acts as holograms.
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5.2.1. Superposition of OAM beams

The superposition of these OAM beams allows to produce e nonrotationally symmetric
intensity patterns that rotate at a constant angular velocity[56]. The superposition of
two OAM beams with opposite topological charge (ℓ1 = ℓ2) and different propagation
constant it can be obtained that the phase dependence is given by;

ei(ℓϕ−z∆kz) + e−i(ℓϕ−z∆kz) ∝ cos (ℓϕ− z∆kz) (5.10)

As a consequence, the angular velocity computed as the derivative along the propagation
direction of the the orientation of the intensity profile Φ(z) = zz

ℓ
is constant and has no

angular acceleration ψ:

dΦ

dz
=

∆kz
ℓ

(5.11)

.

The zero angular acceleration ψ is a direct consequence of the linear variation in the
phase profile as a function of the azimuthal angle. A periodic phase profile would instead
produce an angular acceleration ψ of the form:

ψ(ϕ) = ℓϕ+ cos(ℓϕ) (5.12)

that has a non zero second derivative. In [57] it is shown that, taking advantage of digital
holograms, it is possible to continuously tune the angular acceleration of these fields that
can be engineered to extend over arbitrarily long distances.

5.3. Evolution of orbital angular momentum using

frozen waves: step-like OAM transition

As it was reported in [50] it is possible to take advantage of the proprieties of frozen wave
to dynamically control the topological charge with propagation direction. The evolution
of the topological charge can be obtained from the superposition of frozen waves (ψℓ)
expressed as:

Ψ(ρ, ϕ, z, t) =
+∞∑

ℓ=−∞

ψℓ = e−iωt

+∞∑
ℓ=−∞

+N∑
m=−N

Aℓ,mJl(kρρ)e
iℓϕeikz,ℓ,mz (5.13)
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where, differently from Eq. (5.1), here the 2N+1 are Bessel beams are not of order zero but
of order ℓ. The real part of the longitudinal wave number kz,ℓ,m has the form of Eq. (5.7)
and must satisfy for each Bessel beam Eq. (5.2). The imaginary part of the longitudinal
wave number is expressed as Im{kz,ℓ,m} = nrni

Rekz ,ℓ,m
, where nr and ni are respectively the

real and imaginary part of the index of refraction of an arbitrary medium. The complex
coefficients Aℓ,m in Eq. (5.13) representing the weighting factors for the Bessel beams
in the superposition have the some form expressed in Eq. (5.8). The key to control
the topological charge in the longitudinal direction is given by the possibility to modify
the morphological function Fℓ(z) at will so allowing to select which frozen waves can
contribute effectively to the beam center over a finite space interval and which frozen
waves needs to be dispersed over a larger space in the outer rings of the beam so that
they do not contribute to the topological charge of the beam center in that interval. It
should be noticed that this evolution of the OAM does not violate the conservation of
the orbital angular momentum: the outer ring of the Bessel beams composing the Frozen
wave act as an OAM reservoir and can be restored at further propagation distance to the
central ring so that the global OAM of the beam is preserved. The presented methodology
allows to obtain a step-like transition so we replicated the results shown in [58]. In order
to obtain a topological charge transition from ℓ = 1 to ℓ = 2 we defined two Frozen
waves as superposition of 13 (2N+1 with N=6) Bessel beams. The vale of Q is set to
099999252π

λ
. The value morphological function Fℓ(z) associated with each Frozen wave

mode ϕℓ was defined as:

Fℓ(z) =


F1 = 1 0cm ≤ z < 10cm

F−1 = 1 10cm ≤ z < 20cm

F−1 = F1 = 0 elsewhere

(5.14)

Once the morphological function Fℓ(z) is defined, it is possible to obtain the coefficients
according to Eq. (5.13) and so the complete expression of the frozen waves from Eq.
(5.13). The results of the simulation are shown in Fig. 5.3.
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Figure 5.3: Simulated intensity (top row) and phase (bottom row) of the beam evolving
its topological charge from ℓ = 1 to ℓ = 2 with a step-like transition. Phase and intensity
profiles obtained at propagation distances: z = 0 cm, z = 5 cm, z = 10 cm, z = 15 cm,
and z = 20 cm.

From the plots of the intensity and phase reported in Fig. 5.3 it can be noticed that the
topological charge evolves along the propagation direction. The OAM, in the paraxial
regime, can be computed starting from the ratio of angular momentum to energy per unit
length of the beam whose expression is given by:

Jz
W

=

∫ ∫
rdrdϕ(r × ⟨E×B⟩)z

c
∫ ∫

rdrdϕ⟨E×B⟩z
=
ℓ

ω
(5.15)

Calculating the OAM from Eq. (5.15), Fig. 5.8 shows its value as a function of z, the
propagation direction. From the figure it can be noticed that the transition between the
two values of two topological charge is sharp: the OAM does not increase continuously
along the propagation direction but around z = 10cm it goes from ℓ = 1 to ℓ = 2. The
transition could have been also sharper if an higher number of Bessel beams was used to
build the frozen wave.
The method that will be presented in the next chapter will allow instead to vary contin-
uously along the propagation direction the value of topological charge.
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Figure 5.4: OAM evolution along the propagation direction. Step-like transition.Result
of the simulation.

5.4. Continuous variation of topological charge along

the propagation direction

The idea at the basis of the proposed method is the possibility to add a phase factor
in the complex coefficient expression Aℓ,m, and in particular in the expression of the
morphological function Fℓ(z). In this method is necessary to use zero order Bessel beams
constituting the frozen wave according to the formula reported in Eq. (5.1) differently form
the step-like transition where it was needed to set two different frozen waves constituted
by Bessel beams of different orders. The expression of the complex coefficient is given by:

Aℓ,m =
1

L

∫ L

0

Fℓ(z)e
−i( 2π

L
m)zdz (5.16)

and now we modify the expression of the morphological function so that it can be written
as:

Fℓ(z) = eiℓ(z)Φ (5.17)

The expression in Eq. (5.17) allows to control the phase evolution of the beam trough
the definition of an appropriate function ℓ(z). It is so possible, depending on the function
ℓ(z) to add a degree of freedom that is related to how the topological charge is evolving
in space. In the case ℓ(z) is linear, it is possible to tune the slope of the evolution that is
nothing else than the first derivative of the angular momentum and so, it is pointed out
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in the previous charge, to the the spatial analogous of Self-Torque τ . The Self-Torque, as
light degree of freedom has been only recently "discovered" in [59] where time evolving
OAM beams exhibit a time-dependent angular momentum that called self-torque. In the
case ℓ(z) is parabolic is it possible not only to control the light self-torque but a new
degree of freedom is introduced since it is possible to tune also the second derivative of
the orbital angular momentum that, being the function ℓ(z) parabolic, will be non-zero.
In analogy with classical mechanics, as it was for the spatial analogues of the self-torque,
we named this new light degree of freedom as "Rotatum". In the following we report the
simulation and experimental results obtained both or a linear and a parabolic ℓ(z).

5.4.1. Linear evolution of OAM

In order to obtain a linear variation of the topological charge along the propagation
direction the expression of the morphological function Fℓ(z) is the following:

Fℓ(z) = ei10Φz (5.18)

The coefficient 10 is necessary to obtain a integer value of the topological charge every
10cm. As it has been clarified the order of the Bessel beams constituting the Frozen wave
has to be set to zero ℓ = 0 so from now one, the index ℓ will be not reported. The values
of the coefficient Am is computed from Eq. (5.16):

Am = − e
2ϕi−( 4

5
)i−i

5ϕ− 2πm
(5.19)

The results of the simulation are shown in Fig. 5.5. From Fig. 5.5 it can be noticed
that, differently from the case reported in Fig. 5.3, both phase and intensity evolves
continuously from ℓ = 0 at z=0 to ℓ = 2 at z=20cm. The main differences can be noticed
at the "intermediate" distances (z=5cm and 15cm) where both the amplitude and the
phase have not the characteristic shapes of OAM exhibiting an integer topological charge
while at these distances we can appreciate unprecedented fractional topological charge. As
a consequence, using the expression reported in Eq. (5.15), it is also possible to compute
the light’s orbital angular momentum evolution along the propagation direction that is in
turn fractional. In Fig. 5.6 it is reported the results of the computation of the OAM as a
function of z.
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Figure 5.5: Simulated intensity (top row) and phase (bottom row) of the beam evolving
its topological that charges linearly from ℓ = 0 to ℓ = 2. Phase and intensity profiles
obtained at propagation distances: z = 0 cm, z = 5 cm, z = 10 cm, z = 15 cm, and z =
20 cm.

Figure 5.6: OAM evolution along the propagation direction. Linear transition. Result of
the simulation.
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5.4.2. Parabolic evolution of OAM

In order to obtain a parabolic variation of the topological charge along the propagation
direction the expression of the morphological function Fℓ(z) is the following:

Fℓ(z) = ei200Φz2 (5.20)

If follows that the expression of Am computed from Eq. (5.16) is given by:

Am =
√
πe−

im2π2

25ϕ erf
15ϕ− πm

5
√
iϕ

i+
erf πm

5
√
iϕ

105
√
iϕ

(5.21)

The coefficient 200 in the exponential in Eq. (5.30) it is needed in order to obtain a
topological charge ℓ = 1 at 10cm and a topological charge ℓ = 4 at distance of 20cm.
The evaluation of Eq. (5.21) is not straightforward since the erf error function is defined
only for real numbers while in this case its argument is complex. It was so necessary to
introduce an approximation that is able to provides an excellent high-accuracy coverage
over the required domain that has an extremely large computational cost. To better
visualize the characteristics of this evolution we decreases the value of Q to 0.99952π

λ
so

that it was possible to increase the number of Bessel beams that constitute the Frozen
wave up to 93 (2N+1 with N=46). The results of the simulation are shown in Fig. 5.7.
In Fig. 5.7 the evolution of the OAM along the propagation direction computed from Eq.
(5.15) is reported.
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Figure 5.7: Simulated intensity (top row) and phase (bottom row) of the beam evolving
its topological charge parabolically from ℓ = 0 to ℓ = 4. Phase and intensity profiles
obtained at propagation distances: z = 0 cm, z = 10 cm, z = 13 cm, z = 17 cm, and z =
20 cm.

Figure 5.8: OAM evolution along the propagation direction. Parabolic evolution.Result
of the simulation.

5.4.3. Experimental measurements

The experimental setup used to experimentally verify the simulation results is similar
to the one shown in Fig. 5.9. The frozen wave were generated using programmable
amplitude spatial lights modulator (SLM) where a computer-generated hologram (CGH)
is mapped. Differently from the setup shown in figure, out SLM works in reflection mode.
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A Gaussian beam was expanded, collimated, and imaged onto the SLM. The emerging
beam is spatially filtered using a 4f system incorporating an iris to remove unwanted
diffraction orders letting only the first order be able to go trough. A CCD camera was then
used to monitor the transverse intensity profile of the resulting beam with propagation.
To collect different intensity patterns at different distances from the last lens of the 4f,
the CCD is mounted on top of a moving stage that can control the position of the CCD
camera. From the intensity patterns collected at different distances it was possible, using
a modified and optimized version of the GS-algorithm to retrieve the phase of the field at
each position[60].

Figure 5.9: Experimental setup used to verify the simulation results.Figure from [58]
.

The results of the experimental measurements (both measured intensity and retrieved
phase) are shown in Fig. 5.10 and Fig. 5.11 that are related respectively to step-like case
and to the linear case. The parabolic evolution has not been measured yet. In Fig. 5.12 is
it also possible to see how the OAM calculated form Eq. (5.15) using the data obtained
from the experiments: the plots of the calculated OAM from the experimental data are
consistent with the simulation results.
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Figure 5.10: Measured intensity (top row) and retrieved phase (bottom row) of the beam
evolving its topological charge from ℓ = 1 to ℓ = 2 with a step-like transition. Phase and
intensity profiles obtained at propagation distances: z = 0 cm, z = 5 cm, z = 10 cm, z =
15 cm, and z = 20 cm.

Figure 5.11: Measured intensity (top row) and retrieved phase (bottom row) of the beam
evolving its topological charge linearly from ℓ = 0 to ℓ = 2. Phase and intensity profiles
obtained at propagation distances: z = 0 cm, z = 5 cm, z = 10 cm, z = 15 cm, and z =
20 cm.
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(a)

(b)

Figure 5.12: OAM evolution along the propagation direction computed from the data
obtained from the experiment: Top panel : Step-like transition Bottom panel : Linear
evolution.

5.5. Direct observation of spatially evolving Berry

phase

In this section we show that, thanks to the method previously described, it is possible to
observe that the orbital angular momentum evolution is accompanied by the accumulation
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of a phase shift that is nothing else than the Berry phase [44]. Recalling that the expression
of Frozen waves is given by Eq. (5.1) that define a FW as composed of 2N+1 Bessel
beams which are equally separated in the kz,n and centered at the longitudinal wave-
vector component kz,0, it can be noticed that the superposition of Bessel beams acquires
a propagation phase of ∼ eikz,0z. The variation of OAM that is introduced in the complex
coefficient of the frozen waves contains a phase factor (as expressed in Eq. (5.15)) that if
added to the dynamical phase, can be rewritten as

∼ ei(kz,0z+Φ(z)) (5.22)

This additional phase factor can be related to the topological phase factor that that is
acquired whenever system undergoes a cyclic evolution governed by slow change in its
parameter space, in this case, its orbital angular momentum and so it is nothing else then
the geometric Berry phase ΦPB The variation of the phase ΦPB(z) due to the varying
orbital angular momentum implies that it is possible to define an additional wavevector
component kPB as ∂ΦPB

∂z
that denotes a perturbation of the original value of kz,0. From

Eq. (5.2) it follows that also the transversal component needs to be modified accordingly
to the variation of kz,0.. This shift manifests as a change in the beam’s diameter. In
order to confirm these statements we tested two different cases where it was possible
to evaluate this acquired Berry-phase factor in the change of the size of the beam. We
defined two sets of Frozen waves that linearly change theirs orbital angular momentum:
in the first case the orbital angular momentum increase linearly from ℓ = 0 to ℓ = 2 in
the interval between 0 and 10 cm and then linearly decreases from ℓ = 2 to ℓ = 0 in
the range between 10cm and 20cm. In the second case the orbital angular momentum
initially decreases linearly form ℓ = 2 to ℓ = 0 in the interval between 0 and 10cm and
in the interval between 10cm and 20cm it linearly increase from ℓ = 2 to ℓ = 0. In the
case of linearly increase-decrease variation of the orbital angular momentum (simulated
results shown in Fig. 5.13 and experimental results shown in Fig. 5.14) it is possible
to notice that the size of the beam depending on the slope of the transition (if it is
increasing or decreasing). As an example, when the orbital angular momentum is ℓ = 1

the size of the beam in the intensity patterns is different when the topological charge is
increasing with respect to the case when it is decreasing; the diameter size at 5cm is in
fact slightly larger with the respect to the diameter at 15cm. The effect is reversed in the
case of the decreasing-increasing linear variation(simulated results shown in Fig. 5.15 and
experimental results shown in Fig. 5.16) where the diameter at 15cm is larger with respect
to the one at 5cm even if the topological charge in both cases is ℓ = 1. The comparison
between the OAM calculated from the simulation data and from the experimental data
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are shown in Fig. 5.17.

Figure 5.13: Simulated intensity (top row) and phase (bottom row) of the beam linearly
increasing its topological charge from ℓ = 0 to ℓ = 2 and then linearly decreasing from
ℓ = 2 to ℓ = 0. Phase and intensity profiles obtained at propagation distances: z = 0 cm,
z = 5 cm, z = 10 cm, z = 15 cm, and z = 20 cm.

Figure 5.14: Measured intensity (top row) and retrieved phase (bottom row) of the beam
linearly increasing its topological charge from ℓ = 0 to ℓ = 2 and then linearly decreasing
from ℓ = 2 to ℓ = 0. Phase and intensity profiles obtained at propagation distances: z =
0 cm, z = 5 cm, z = 10 cm, z = 15 cm, and z = 20 cm.



66 5| A new degree-of-freedom of light: Rotatum

Figure 5.15: Simulated intensity (top row) and phase (bottom row) of the beam linearly
decreasing its topological charge from ℓ = 2 to ℓ = 0 and then linearly increasing from
ℓ = 0 to ℓ = 2. Phase and intensity profiles obtained at propagation distances: z = 0 cm,
z = 5 cm, z = 10 cm, z = 15 cm, and z = 20 cm.

Figure 5.16: Measured intensity (top row) and retrieved phase (bottom row) of the beam
linearly decreasing its topological charge from ℓ = 2 to ℓ = 0 and then linearly increasing
from ℓ = 0 to ℓ = 2. Phase and intensity profiles obtained at propagation distances: z =
0 cm, z = 5 cm, z = 10 cm, z = 15 cm, and z = 20 cm.
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(a)

(b)

Figure 5.17: OAM evolution along the propagation direction with Berry phase accumula-
tion: Top panel :Linear increase of the topological charge from ℓ = 0 to ℓ = 2 followed by
a linear decrease from ℓ = 2 to ℓ = 0. Bottom panel : Linear decrease of the topological
charge from ℓ = 2 to ℓ = 0 followed by a linear increase from ℓ = 0 to ℓ = 2.
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6| Conclusions and future

developments

In this work, we studied two emerging wavefront shaping tools, metasurfaces and spa-
tial light modulators, and investigated their use in generating new classes of structured
light. We proposed and demonstrated a strategy to design a bilayer metasurface and have
shown a possible application. Starting from a library of a single layer metasurface, it was
demonstrated that is possible assume that the two fins composing the bilayer metasurface
can be considered as decoupled independently on the relative rotation between the two
fins and on the fin geometries both in transmission and reflection mode. These results
enable to overcome some of the limitations of a single layer metasurface enabling new
possibilities in the wavefront shaping. As an example, a geometric metasurface has been
designed: depending on the relative rotation between the two nanofins a different Berry
phase is accumulated along the optical path. Some generalization of the proposed device
working also on elliptical polarization can be developed in the future. In the context of
structured light, the concept of Berry phase has been discussed also in association with
optical vortexes. Starting from Frozen waves formalism a new method to obtain a con-
tinuous variation of the OAM along the propagation direction has been developed and
experimentally demonstrated. This method allow to tune at will the spatial derivative
of the momentum (named "torque" in association with the temporal derivative of the
momentum) and also the second order derivative, for the first time observed, named "Ro-
tatum". These new degrees of freedom in beam manipulation can be utilized in many
application such as as optical trapping, dense data communications, and remote sensing
and imaging, leading to further advances in the context of structured light. With recent
advances in wavefront shaping, new classes of structured light will keep emerging. The
key is the achievement of a dynamical control of all degrees of freedom light with high
spatial and temporal resolution in space and time. With this versatile level of control, this
rapidly growing ares will help unlock new optical phenomena in the next years, ranging
from the atomic to the astrophysical scale.
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A| Appendix A - Bilayer
simulation: the effect of a
relative rotation of 45°
sweeping the dimensions of
the top nanofin fixing the
dimension of the bottom
nanofin

In chapter 3 we analyzed the effect of a relative rotation when both the bottom and
top nanofin dimensions were fixed. On the other hand it is not guaranteed that the
relative rotation does not significantly effect the assumption of decoupling between the
two nanofins. In order to verify if the assumption of decoupling is valid also when a
relative rotation between the nanofins constituting the metasurface we simulated a bilayer
structure with the bottom nanofin dimensions fixed, sweeping the dimension of the top
nanofin that is rotated with respect to the bottom one by an angle of 45. The dimension
of the bottom nanofin are the one of the QWP1 (134nmx202nm). This was useful to
identify the geometries for which the error between the analytical and the simulated Jones
matrix is maximum. In the following figures the errors of the diagonal elements of the
Jones matrix (phase in Fig. A.1) and amplitude in Fig. A.2)) are reported: as it can be
noticed the error is very low for most of the simulated geometries. The error is maximum
in correspondence of the geometries that have one dimension much bigger with the respect
to the other one: in these cases a relevant portion of the top nanofin is is exceeding the
dimension of the basis of the bottom nanofin so reflections can happen between it and
the substrate.
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A| Appendix A - Bilayer simulation: the effect of a relative rotation of 45°
sweeping the dimensions of the top nanofin fixing the dimension of the

bottom nanofin

(a) (b)

Figure A.1: Plots of the difference in magnitude between the Jones matrix elements of
the simulated bilayer with bottom fin fixed and the Jones matrix elements of a bilayer
analytically computed.Relative rotation between the nanofins: 45. (a) : Difference be-
tween the phase of J11 extracted from the simulation and the phase of J11 analytically
computed from the data of the single layer. (b) : Difference between the phase of J22
extracted from the simulation and the phase of J22 analytically computed from the data
of the single layer.

(a) (b)

Figure A.2: Plots of the difference in magnitude between the Jones matrix elements of
the simulated bilayer with bottom fin fixed and the Jones matrix elements of a bilayer an-
alytically computed.Relative rotation between the nanofins: 45. (a) : Difference between
the magnitude of J11 extracted from the simulation and the magnitude of J11 analytically
computed from the data of the single layer. (b) : Difference between the magnitude of
J22 extracted from the simulation and the magnitude of J22 analytically computed from
the data of the single layer.
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The phase of the optical field at each position was obtained by a modified version of
the single-beam multiple-intensity reconstruction (SBMIR) method. The CCD camera
do not provide the complex amplitude of a wave field since it is not sensitive to the
phase of the field and so this information is lost during the recording processes. On the
other hand it has been shown that, recording at least two intensity patterns of the object
at different positions and by application of iterative algorithms it is possible to retrieve
also the phase profile. The algorithm here used is similar to the one presented in [61].
The presented algorithm works as follows: n + 1 intensity patterns are recorded using a
CCD camera at equidistant positions (∆z is the distance between two images); once all
the patterns have been collected, a constant phase (ϕ0 = 0) is assumed for the intensity
pattern at the origin (z0 = 0) so that it is possible to write a wave front of the form

√
I0e

iϕ0

that is then propagated from z0 = 0 to z1 = z0 + ∆z using the Rayleigh–Sommerfeld
relation. The obtained complex amplitude given by A1e

iϕ1 is then rearranged as follows:
the term eiϕ1 is combined with the square root of the measured intensity so that the
new complex wave front at the position z1 = z0 + ∆z is given by

√
I1e

iϕ0 ready to be
propagated to the new position z2 = z0 + 2∆z. The same procedure is so repeated for
all the other intensity patterns until the last one at the position zn = z0 + n∆z. Once
also this last complex amplitude has been obtained, the same process is repeated using
back-propagation Rayleigh–Sommerfeld relation.
The modified version of the presented method is depicted in Fig. B.1. The distance
between two different intensity patterns can vary from ∆z = 0.25mm up to ∆z = 1mm

depending on the pattern and 300 images were collected in total. Differently from what has
been described above, during each propagation step, we use the measured intensity profile
and the retrieved phase profile as the initial boundary conditions for the propagation. The
resultant forward or backward propagated field phase at the target plane then becomes
the updated retrieved phase at the target plane. The starting retrieved phase estimated
for all planes is random between 0 and 2π. Each cycle has been repeated 2000 times
or if convergence has been reached: to reach convergence it was necessay that the root-
mean-squared (RMS) deviation between the estimated intensity (each normalized by their
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respective maximum intensities) after a propagation step and the true intensity map at
that plane was lower than a certain threshold. Differently from the method presented
above Fresnel and Fraunhofer diffraction formula were used to propagate the field from
one position to another depending on the propagation distance. These modifications
allowed to obtain better results with respect to the technique presented in [61].

Figure B.1: Iterative single-beam multipleintensity reconstruction phase retrieval algo-
rithm.
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