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Summary

Digital identity employed on IoT devices makes them unique and distinguishable
from each other. Self-Sovereign Identity (SSI) is a paradigm that aims to pro-
vide a digital identity that is both verified and verifiable to IoT objects while
building a digital ecosystem for secure interactions between heterogeneous devices.
However, in many real-world use cases, IoT devices cannot run natively a full Self-
Sovereign Identity stack implementation, due to hardware and software constraints.
For this reason, an edge device has been designed with the capability of securely
aiding constrained devices to create and manage their own identity according to the
SSI paradigm. The software has been developed using Keystone, an open-source
framework for building Trusted Execution Environments, for establishing a trusted
communication channel between the IoT device and the edge device that handles
offloaded operations. By defining a new paradigm called Self-Sovereign Identity as
a Service, constrained devices can exploit the full SSI stack on demand. Such a
solution has the advantage to increase the number of devices that can interact in a
secure digital ecosystem of this kind by shifting the computational operations onto
more powerful edge devices.
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Chapter 1

Introduction

The concept of digital identity has been evolving in the last decades. Digital identity
is the expression and storage of one’s identity in digital form, which is a set of claims,
i.e. assertions of some truths, made about a subject, which can be a person, a thing,
a device, etc. Despite this, only in recent years privacy, control and ownership over
digital identity and personal data are being increasingly recognized as relevant
factors by individuals [1]. Since the advent of the Internet, digital identity models
have gone through several stages, from centralized identity to federated identity,
becoming more user-centric over time reaching the definition of the Self-Sovereign
Identity (SSI) paradigm [2]. In the Internet’s early days, digital identity issuers
and authenticators were designed as centralized authorities. Unfortunately, giving
centralized authorities control over a user’s digital identity has several drawbacks.
For example, a single authority can deny a user’s identity or even confirm a false
one, so the user has no control over his own identity. SSI is the next development
of digital identity where the main idea is that the user must be at the centre of
identity management [2].

The Internet of Things increasingly involves the collection, processing and trans-
mission of a wide variety of data to services and other devices [3]. Reasonably obvi-
ous privacy risks arise from IoT-connected devices when they exchange identifiable
information, as this can reveal the activities and behaviours of users’ devices and
subtle risks arise when a considerable amount of data is available for analysis and
linkage to additional data sets, since user identification or re-identification may
happen as a result [3]. Moreover, IoT-constrained devices might lack important
security features, such as protection against physical attacks [4] and side-channel
attacks [5, 6]. Digital identity, such as SSI, could be a solution for building a digital
realm where heterogeneous objects and people interact securely. This will allow IoT
devices to be unique and distinguishable from one another.

In this document, Self-Sovereign Identity is introduced, as well as Keystone
enclave, an open-source framework for building customizable Trusted Execution
Environments based on RISC-V hardware. Then is presented the solution, which
has been designed to support a constrained device to create and manage its own
digital identity.
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Chapter 2

Self-Sovereign Identity

Self-Sovereign Identity (SSI) [7] is a new model for digital identity. In the SSI
ecosystem, a user can fully control his own identity and can use it between any
service. SSI is different from today’s digital identities: it is anchored to distributed
ledgers so is not controlled by any centralized services. One SSI innovation is the
design and development of a common set of specifications: Decentralized Identifiers
(DIDs) [8] and Verifiable Credentials (VCs) [9]. Thanks to a standardised set of
specifications, user identity can be anchored to different distributed ledgers, but it
will also be defined in the same standard way.

2.1 Decentralized Identifiers

DIDs [8] are identifiers referring to any subject determined by the controller of the
DID. A DID’s controller can demonstrate control over a DID by design allowing a
verifiable, decentralized digital identity, which will be independent of any identity
providers, and certification authorities.

Overview

A DID is a type of URI [10] scheme that links a DID subject with a DID document
allowing trustable interactions associated with that subject. The subject of a DID
is the entity identified by the DID and can be a person, a group or an organization,
a device, etc. Typically the DID subject is also the controller, but a DID can have
more than one controller.

Specifically, a DID is a simple text string, as shown in Fig. 2.1, consisting of
three parts:

• the DID URI scheme identifier

• the identifier for the DID method

• the DID method-specific identifier

9



Self-Sovereign Identity

Figure 2.1. A simple example of a DID [8].

A DID document contains information about a DID subject and cryptographic
material that will be used to prove control of that DID. DID documents can be
represented in JSON [11] or JSON-LD [12] format, as specified in W3C specification
[8]. An example of DID document can be seen in Fig. 2.2. Only the controller of
the DID has the right to make changes to the related DID document.

DIDs are generally stored in some underlying system or network for the reso-
lution to DID documents. A verifiable data registry is a system that enables the
recording of DIDs and the return of the data required to produce DID documents.
Distributed ledgers, decentralized file systems, all types of databases, peer-to-peer
networks, and other trusted data storage methods are some examples. The op-
erations to create, resolve, update, and deactivate a DID and the related DID
document are defined by DID methods and their specifications, which are gener-
ally coupled with a distinct verifiable data registry [8]. A DID resolves to a DID
document by using the read operation of the applicable DID method [8]. A DID
URL expands the syntax of a DID with other standard components of URI such
as path, query, and fragment to find a specific resource, such as a cryptographic
public key inside a DID document or a resource outside the DID document.

{
"@context": [

"https://www.w3.org/ns/did/v1",
"https://w3id.org/security/suites/ed25519-2020/v1"

]
"id": "did:example:123456789abcdefghi",
"authentication": [{

"id": "did:example:123456789abcdefghi#keys-1",
"type": "Ed25519VerificationKey2020",
"controller": "did:example:123456789abcdefghi",
"publicKeyMultibase":

"zH3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
}]

}

Figure 2.2. Example of a simple DID document from [8].

10



2.2 – Verifiable Credentials

Figure 2.3. DID architecture overview and relationships between components [8].

2.2 Verifiable Credentials

Verifiable Credential [9] provides a standard method to express credentials on the
internet in a way that is cryptographically safe, privacy-respecting, and machine-
verifiable. Outside the technological domain, a credential could consist of:

• information related to identifying the subject of the credential (for example,
a photo, name, or identification number)

• information related to the issuing authority (for example, a city government
or a university)

• information related to the type of credential this is (for example, a passport
or a driving license)

• information related to specific attributes or properties being asserted by the
issuing authority about the subject (for example, nationality, the classes of
vehicle entitled to drive, or date of birth)

• information related to constraints on the credential (such as expiration date,
or terms of use).

In verifiable credentials, the additional inclusion of digital signatures makes
them more trustworthy and more tamper-evident compared to physical credentials.
These allow third-party verified machine-readable personal information usable on
the Web for receiving services and benefits as in the physical world [9].

Overview

Distinct actors can be identified in the verifiable credentials ecosystem, which de-
fines the roles and the relationships between them. The separation of roles allows
the standardization of interfaces and protocols. In detail the existing entities that
determine the so-called trust triangle [13] are:

11



Self-Sovereign Identity

• holder : his role is to request, possess or use verifiable credentials. Example
holders include students, employees, and customers.

• issuer : his role is to create a verifiable credential and provide that to a holder
by asserting claims about one or more subjects. For example, an issuer is a
government.

• verifier : his role is to process verifiable credentials provided by holders. Ex-
ample verifiers are whoever provides a service.

Issuer
Issues VCs

Issue Credentials

Verify Identifiers 
and use Schemas

Holder
Acquires, stores,

presents VCs

Send Presentation

Register Identifiers 
and use Schemas

Verifier
Verifies VCs

Verify Identifiers
and Schemas

Verifiable Data Registry
Maintains identifiers and schemas

Figure 2.4. The roles and information flows of Verifiable Credential [9].

To use verifiable credentials with a specific verifier, a holder has to generate
verifiable presentations. A verifiable presentation encloses one or more verifiable
credentials, issued by one or more issuers. Before presenting the verifiable pre-
sentation to a verifier, a holder signs the verifiable presentation content, proving
authorship of the data and possession of verifiable credentials. However, The fact
that a credential is verifiable by the verifier does not mean that the claims it con-
tains are true. Another aspect that verifiable credentials enhance is privacy. The
usage of machine-readable credentials allows malicious actors to collect and corre-
late data, compromising holders’ privacy. Verifiable credentials specification draft
how to deal with these issues, by using privacy-enhancing technologies, such as
zero-knowledge proof [14].

Verifiable Credential

Credential Metadata

Claim(s)

Proof(s)

Verifiable Presentation

Presentation Metadata

Verifiable Credential(s)

Proof(s)

Figure 2.5. Basic components of a verifiable credential and a
verifiable presentation [9].

Verifiable credentials and verifiable presentations can be represented in JSON
[11] or JSON-LD [12] format, as specified in W3C specification [9]. Examples can
be seen in Figs. 2.6 and 2.7.
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2.2 – Verifiable Credentials

{ "@context": ["https://www.w3.org/2018/credentials/v1"],
"id": "http://example.edu/credentials/1872",
"type": ["VerifiableCredential", "AlumniCredential"],
"issuer": "https://example.edu/issuers/565049",
"issuanceDate": "2010-01-01T19:23:24Z",
"credentialSubject": {

"id": "did:example:ebfeb1f712ebc6f1c276e12ec21",
"alumniOf": {

"id": "did:example:c276e12ec21ebfeb1f712ebc6f1",
"name": [{

"value": "Example University",
"lang": "en"

}]
}

},
"proof": {

"type": "RsaSignature2018",
"created": "2017-06-18T21:19:10Z",
"proofPurpose": "assertionMethod",
"verificationMethod":

"https://example.edu/issuers/565049#key-1",
"proofValue": "eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsI..."

}
}

Figure 2.6. A simple example of a verifiable credential [9].

{ "@context": ["https://www.w3.org/2018/credentials/v1"],
"type": "VerifiablePresentation",
"verifiableCredential": [{

...
}],
"proof": {

"type": "RsaSignature2018",
"created": "2018-09-14T21:19:10Z",
"proofPurpose": "authentication",
"verificationMethod":

"did:example:ebfeb1f712ebc6f1c276e12ec21#keys-1",
"challenge": "1f44d55f-f161-4938-a659-f8026467f126",
"domain": "4jt78h47fh47",
"proofValue": "Qy72IFLN25DYuNzVBAh4vGHSrQyHUGlc..."

}
}

Figure 2.7. A simple example of a verifiable presentation [9].
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Self-Sovereign Identity

2.3 Distributed Ledgers Technologies

Distributed Ledger Technology (DLT) is a new paradigm for collecting and shar-
ing information between people. A distributed ledger is a database that is spread
across several nodes or computing devices in a network. An exact copy of the
ledger is replicated and stored on each node. The revolutionary aspect of dis-
tributed ledger technology is that no single administrator or central authority is
responsible for maintaining the ledger. Each network’s participant node keeps its
state updated by constructing and recording updates to the ledger independently.
The nodes then vote on these adjustments to ensure that the majority agrees with
the conclusion reached. This voting and agreement on the state of the ledger is
called consensus and is conducted automatically via a consensus algorithm [15].
The following criteria can be used to categorize DLTs: data structures, consensus
algorithms, permissions, mining accessibility and so on. The main data structure
types are blockchains and Directed Acyclic Graphs (DAGs). Although blockchains
are the most popular and well-known DLT type, DLTs based on Directed Acyclic
Graph (DAG) data structures are becoming more popular because they increase
transaction speeds [16]. The key features of DLTs are:

• decentralization: everyone can participate in consensus without being granted
access. No single entity has control over the network

• immutability: the validated transaction cannot be altered. From a security
point of view, this provides integrity to the data stored

• transparency: everyone can observe the transactions in the network

An Example of DAG DLT is The Tangle of IOTA [17], a cryptocurrency for
the IoT industry. IOTA offers the ability to transfer messages for free. There are
several types of implemented messages. Some messages transfer value (the IOTA
token or digital assets), while others transfer only pure data, and some message
types can even contain both value and data. These properties make the Tangle
suitable for storing SSI-related information. However, since the data on the Tangle
are public, it may be necessary to protect them using encryption algorithms or
other cryptographic protocols such as those described in [18, 19].

Figure 2.8. Visualizations of the IOTA Tangle [17].
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Chapter 3

Keystone Enclave

As a result of the increasing popularity of networked devices in recent years, device
manufacturers are now taking security concerns more seriously than they previously
did [20]. To adequately address security challenges, i.e. integrity and confidential-
ity properties of sensitive data when using connected devices, Trusted Execution
Environments (TEEs) have been defined. Keystone [21] is an open-source frame-
work for creating TEEs that are adaptable for use on a variety of platforms and
are based on RISC-V hardware.

3.1 Trusted Execution Environment

A Trusted Execution Environment (TEE) is an execution environment that runs
alongside but is isolated from the device’s main operating system. It ensures that
the confidentiality and integrity of the code and data loaded in the TEE are pre-
served [22]. Trusted applications running on TEE have access to the full capabili-
ties of a device’s main processor and memory, while hardware isolation shields these
components from user-installed apps running in the main operating system. The
various included trusted applications are protected from one another by software
and cryptographic isolations within the TEE [20]. The two most common TEE
implementations at the moment are ARM TrustZone and Intel SGX. All these
TEEs make design decisions based on either the target applications or threat mod-
els and these choices are fixed since they are strictly hardware related. They were
not designed to have flexibility or extensibility for enclave developers. If the hard-
ware changes or has a new feature, the enclave developer has to redesign the TEE.
All TEE platforms aim to reduce the enclave’s trusted computing base, and they
have managed to achieve different degrees of success [23]. The Trusted Computing
Base (TCB) is a section of the system, which could include hardware, firmware and
software. It is responsible for enforcing the security policy of the system [24]. Addi-
tionally, closed-source hardware and microcode implementations make it impossible
for a third party to evaluate the security of TEEs.
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Keystone Enclave

3.1.1 Customizable Trusted Execution Environment

Customizable TEE is the solution to closed-source hardware-implemented TEEs
problems. It has been designed to be flexible, and configurable and to have a small
TCB. It has been designed with clear abstractions and a modular programming
model which simplifies for others to extend and add features to the TEE. An ex-
ample of a customizable TEE is Keystone [21]. Three logical actors, such as the
manufacturer (who makes the hardware), the platform provider (runs the hardware,
such as a cloud provider), and the enclave developer (who writes software that runs
in the enclaves), were identified by Keystone developers as being a part of the cus-
tomizable TEE ecosystem. In a customizable TEE, as opposed to a standard TEE,
decisions made by all 3 actors together determine the security guarantees offered
and the functionalities enabled [23]. Keystone offers security primitives that can be
joined together via the software framework rather than creating a single instance
of TEE hardware. The TEE can be modified by the creator of the enclave and the
platform provider to suit their threat models or platform configurations. The Key-
stone project offers a general and formally proven interface for a variety of devices
to create an open standard for TEEs [21].

3.2 RISC-V Background

RISC-V [25] is open-source, which provides Keystone with several benefits. The
most noticeable is that anyone can see how it works, understand the threat model
it can operate under, and verify how exploits/patches function [26]. Other advan-
tages of RISC-V are security-oriented primitives, which provide efficient isolation,
the most notable being Physical Memory Protection (PMP) [27]. RISC-V is an
evolving and community-driven Instruction Set Architecture (ISA). Keystone has
been designed and developed using RISC-V standard security features. Moreover,
the ever-growing world of RISC-V gives Keystone a wide variety of potential plat-
forms and different deployment scenarios to which it can adapt to [26].

3.2.1 RISC-V Privilieged ISA

RISC-V [25] has three software privilege levels (in increasing order of capability):
user mode (U-mode), supervisor mode (S-mode), and machine mode (M-mode).
Only one of the privilege modes can be active on the processor at once. The active
privilege level determines what the software can do while it is running. These are
typical applications for each level of privilege:

• U-mode: user processes

• S-mode: kernel (including kernel modules and device drivers) or hypervisor

• M-mode: bootloader and firmware.

When the processor is in the highest privilege mode, M-mode, it is in control of all
physical resources and interrupts. As with microcode in Complex Instruction Set
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3.2 – RISC-V Background

Computer (CISC) ISAs (such as x86), M-mode is not interruptible and not affected
by the interference of lower modes. M-mode is used in Keystone for executing the
TCB of the system, the security monitor (SM).

Figure 3.1. Architecture differences between x86 and Keystone

The following are some advantages of utilizing an M-mode software as the TCB:

• programmability: unlike microcode for x86, in RISC-V M-mode software can
be written using pre-existing toolchains and programming languages, such as
C

• agile Patching: since the TCB is purely software, bugs or vulnerabilities can
be patched without updates, which are specific to a particular hardware

• verifiability: compared to hardware, the software is generally simpler to be
formally verified.

3.2.2 Physical Memory Protection

Physical Memory Protection (PMP) [27] is a strong standard primitive that enables
M-mode to control the access to physical memory from lower privileges modes.
Keystone requires PMP to implement memory isolation of enclaves. Only software
in M-mode can configure the PMP, which is controlled by a series of control and
status registers (CSR) that limit physical memory access to the U-mode and S-
mode. Depending on the platform design, PMP entries number can change.

Since PMP exclusively works on physical addresses, S-mode can continue to
support virtual addresses without affecting the security of the system. Even though
each processor may implement PMP differently in hardware, the basic guarantees
are part of the standard. PMP is used by Keystone Security Monitor to create
memory isolation.
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Keystone Enclave

Figure 3.2. Image representing PMP registers [28].

3.3 Keystone components

A Keystone-capable system is made up of different modules operating in various
privilege modes as shown in Fig. 3.3.

Figure 3.3. Keystone system with host processes, untrusted OS, security monitor,
and multiple enclaves (each with runtime and eapp) [21].

Trusted Hardware

Trusted Hardware is a CPU package built by an honest manufacturer that must
enclose standard RISC-V cores, which are Keystone compatible, and a root of trust.
Optional features of the hardware could also include memory encryption, cache
partitioning, a cryptographically safe source of randomness, etc. Platform-specific
plug-ins are needed by the Security Monitor to support optional features.
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3.3 – Keystone components

3.3.1 Security Monitor

Security Monitor (SM) is a trusted software that runs in M-mode and works as the
small trusted computing base (TCB) in the Keystone system. Before the SM can
be considered trusted, it must be verified by the hardware root of trust. Then, the
root of trust measures the SM, generates a keypair for remote attestation, signs the
public key, and eventually can continue booting. The measurement of the SM con-
sists in computing the hash of the SM firmware image. The SM manages isolation
boundaries between the enclaves and the untrusted OS, therefore it implements the
majority of Keystone’s security guarantees. It serves as an interface for managing
the enclave’s lifecycle and utilising platform-specific features. The OS and enclaves
may call SM functions using the Supervisor Binary Interface (SBI). Specifically, the
SM provides the following functionality:

• memory isolation using RISC-V PMP

• remote attestation (signatures and measurement): the goal is to demonstrate
to a remote client that the enclave contains the expected application, and is
running on trusted hardware

• and other features, such as system PMP synchronization, enclave thread man-
agement and side-channel defences

3.3.2 Runtime

Keystone developers implemented the Runtime (RT) with the goal of minimal and
flexible TCB. It is an S-mode software. As a result, enclave applications can use
modular system-level abstraction (e.g., virtual memory management). It provides
kernel-like functionality, such as system calls, trap handling, virtual memory man-
agement and so on. Although the RT functions similarly to a kernel inside an
enclave, most kernel functionalities are not necessary for the enclave application.
To allow enclave developers to include only the necessary functionality and min-
imize the TCB, Keystone developers created an example of RT called Eyrie. It
enables reusability since it is compatible with multiple-user programs. And by
adding RT modules, they expand RT functionality without changing user applica-
tions or without complicating the SM.

Figure 3.4. Example of runtime reusability on the left and its func-
tionalities on the right [28].
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Keystone Enclave

Figure 3.5. Enclave Lifecycle [28].

3.3.3 Enclave

An Enclave is an environment isolated from the untrusted OS and other enclaves.
Each enclave is provided with a private physical memory region which is accessible
by only the enclave and SM. Each enclave consists of a user-level enclave application
called eapp and a supervisor-level runtime. An eapp is a user-level application that
executes in the enclave. A developer can create a custom eapp from scratch, or just
execute an existing RISC-V binary in Keystone. The enclave lifecycle can be seen
in Fig. 3.5. The main phases are:

• creation: when an enclave is started it has a contiguous range of physical
memory that is called Enclave Private Memory (EPM). In the beginning, the
EPM is allocated by the untrusted host, which initialises it with the enclave’s
page table, the runtime and the enclave application. When the untrusted
host calls the SM to create an enclave, the SM isolates and secures the EPM
using a PMP entry, and then the PMP status is propagated throughout all of
the system’s cores. Subsequently, before the enclave execution, the enclave’s
initial state is measured and verified by the SM.

• execution: the SM enters the enclave on one of the cores as soon as the
untrusted asks for it. The PMP permission is enabled to the core by the
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SM, and the core starts running the eapp. The RT can exit or re-enter the
enclave at any time depending on the execution flow of the eapp. The PMP
permissions are switched to keep the isolation each time a core exits or enters
the enclave.

• destruction: the untrusted host may want to destroy the enclave at any mo-
ment, when it happens, the EPM is cleared by the SM and the PMP entry is
freed. The untrusted host then definitely reclaims the released memory.

3.3.4 Edge Calls

Function calls that enter or exit the enclave are known as edge calls in Keystone,
as in other enclave systems. For instance, if an enclave wants to send a network
packet, it must use an edge call to deliver the data to an untrusted host process.
The current version of Keystone allows enclave → untrusted host calls, also known
internally as ocalls (outbound calls, names under discussion). In the current ver-
sion of Keystone, all ocall wrapping code uses shared memory regions to transfer
data. When referencing data in these regions virtual address pointers are never
used, instead, only offsets into the region are used [28].

UntrustedHost OS Enclave Runtime SecurityMonitor

1 ocall_do_something()

2 ocall()

3 dispatch_edgecall_ocall()

4 copy_from_user()

5 sbi_stop_enclave()
enclaves[eid].state = STOPPED
context_switch_to_host()
osm_pmp_set()
cpu_exit_enclave_context()

6 oFuncDispatch(getSharedBuffer())

7 do_something()

8 ioctl()

9 sbi_sm_resume_enclave()

10 resume_enclave()
enclaves[eid].state = RUNNING
context_switch_to_enclave()
osm_pmp_set()
cpu_enter_enclave_context()

11 copy_to_user()

execution continues

Figure 3.6. Simplified example of an ocall lifecycle [28].

Edge Calls Lifecycle

Consider for example a generic ocall do something, as represented in Fig. 3.6.
This call transfers some values passed as arguments from the enclave to be processed
by the host process (it could be a value to be printed, a file to be stored and so
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on). The enclave application calls ocall do something(...), which is an edge
wrapper function. ocall do something(...) uses the system-call-like interface to
the runtime to execute an ocalls similar to ocall(OCALL DO SOMETHING, &input,
sizeof(input), &ouput, sizeof(output)). The enclave passes a pointer to the
value, the size of the argument and any necessary return buffer information. After
allocating an edge call structure in the shared memory region, the runtime fills
out the call type, copies the value into another part of the shared memory, and sets
up the offset to the argument value. Note that, in Keystone, edge calls employ offset
values in the shared memory area, rather than pointers. The runtime subsequently
exits the enclave with an SBI CALL, i.e. sbi stop enclave(), passing a value
indicating that the enclave is executing an ocalls rather than shutting down.

After resuming execution of the Keystone kernel driver, it checks the enclave’s
exit status, notes a pending ocalls and handles control to the userspace host process.
The registered ocalls handler wrapper for OCALL DO SOMETHING is dispatched by the
userspace host process, which also consumes the edge call. The wrapper generates a
pointer to the argument value from the offset in the shared memory region and then
calls do something with the value as an argument. The host wrapper determines
whether any return values must be copied into the shared memory region upon
return and returns the control to the driver after setting the edge call return status
to SUCCESS.

Through an SBI CALL, the driver rejoins the enclave runtime. The enclave
ocalls wrapper code is resumed once the runtime determines whether any return
information has to be copied from the shared region into return buffers. Finally,
the enclave function that has called at the beginning ocall do something receives
any return values from the ocalls wrapper code [28].

3.4 Memory isolation using RISC-V PMP

In Keystone, developers refer to the memory section that an enclave uses as a region
and each region is defined by a PMP entry. The SM employs two PMP registers
for internal purposes (i.e. security monitor memory and untrusted memory). One
active enclave may use one of the remaining PMP entries each. RISC-V PMP has
several properties, the most relevant are:

• prioritization by index: the index of PMP entries statically determines the
priority. Indices go from 0 to N, where N depends upon the platform. 0 is the
highest priority, whereas N is the lowest

• default denies: if no PMP entry matches with an address, the memory access
will be rejected by default.

For simplicity, in the following explanation PMP entries are denoted as pmp[i]
where i is an index. Fig. 3.7 shows the memory at the initial state. At the start
of the boot process, physical memory is not accessible by U- or S-modes.
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-: inaccessible (NO_PERM), =: accessible (ALL_PERM)

pmp[1:N] | | : undefined
net result |---------------------------------------|

Figure 3.7. Memory state when booting start [28].

The SM sets the highest priority PMP entry to cover the address range containing
itself and sets all permission bits to 0. Suddenly, the SM sets the lowest priority
PMP entry to cover the full memory and sets all permission bits to 1, this will allow
the OS to access the remaining memory and start booting. The result can be seen
below in Fig. 3.8.

-: inaccessible (NO_PERM), =: accessible (ALL_PERM)

pmp[0] |-------| | : SM memory
pmp[others] | | : undefined
pmp[N] |======================================| : OS memory
net result |-------|==============================|

Figure 3.8. Memory state just after booting [28].

Every time the SM creates an enclave, it will select a PMP entry for the enclave to
defend its memory from other U-/S-mode software. This can be seen below in Fig.
3.9.

-: inaccessible (NO_PERM), =: accessible (ALL_PERM)

pmp[0] |-------| | : SM memory
pmp[1] | |---------| | : enclave

memory
pmp[others] | | : undefined
pmp[N] |======================================| : OS memory
net result |-------|======|---------|=============|

Figure 3.9. Memory accessible by the untrusted host [28].

When the SM enters the enclave and executes the eapp, it flips the permission bits
of the enclave’s PMP entry and the last PMP entry. Untrusted shared buffer is the
term for the contiguous memory region that Keystone enables the OS to allocate
in the OS memory space in order to use it as an enclave’s communication buffer.
This is shown below in Fig. 3.10. The SM just flips the permission bits back when
it leaves the enclave. When an enclave is destroyed by the SM, the PMP entry is
made available for usage by other enclaves.
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-: inaccessible (NO_PERM), =: accessible (ALL_PERM)

pmp[0] |-------| | : SM memory
pmp[1] | |=========| | : enclave

memory
pmp[others] | | : undefined
pmp[N] | |==| | : untrusted

shared
buffer

net result |-------|------|=========|-------|==|--|

Figure 3.10. Memory accessible by a running enclave [28].

3.5 Keystone key-hierarchy

Fig. 3.11 shows the key hierarchy of Keystone. The root of the key hierarchy is the
asymmetric processor key pair (SK D and PK D). The asymmetric security monitor
key pair (SK SK and PK SM) is derived from the measurement of the security monitor
(H SM) and the private processor key (SK D) [28]. As a result, the computed security
monitor key pair is bound to the processor and to the identity of the security
monitor itself.

Figure 3.11. The key hierarchy of Keystone [28].

3.5.1 Sealing-Key Derivation

In Fig. 3.11 is also visible how sealing-keys are derived. An enclave can generate
a key for data encryption using the data-sealing capability, enabling it to store
data in untrusted non-volatile memory outside the enclave. This key is tied to the
identity of the processor, the security monitor, and the enclave. As a result, only
the same enclave using the same processor and security monitor can generate the
same key. Data can be encrypted using this key and stored in unsecured, non-
volatile memory. After an enclave restart, it can generate the same key once more,

24



3.5 – Keystone key-hierarchy

retrieve the encrypted data from the untrusted storage, and then use the derived
key to decrypt it [28]. A sealing key is computed starting from three inputs:

• the private security monitor key (SK SM)

• the hash of the enclave (H SM)

• a key identifier

The key identifier is an extra input for the key derivation function selectable by
the enclave. A single enclave can generate several keys by giving the key identifier
various values.
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Chapter 4

Self-Sovereign Identity as a
Service

The idea of a Self-Sovereign-Identity as a Service (SSIaaS) is to support a con-
strained device to create and manage its Self-Sovereign Identity. Since IoT devices
cannot run natively the complete SSI stack there is a need to design and develop an
edge device capable of providing such an identity to constraint devices as a service.
Such a solution has the advantage of increasing the number of devices that can
interact in such a secure digital ecosystem.

4.1 Use case analysis

The first step is to analyse and identify critical cryptographic operations involved
in self-sovereign-identity management. The examples in Figs. 4.1, 4.2 and 4.3
illustrate a high-level procedure to create and use verifiable credentials.

DLT Holder

1 gen - keypairs

2 gen - DID

3 create - DID doc

4 register - DID doc

5 ok

Figure 4.1. Creation of a DID
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4.1.1 Creation of a DID

Independently from the chosen DLT, when a holder creates a DID, he uniquely
binds cryptographic proofs with the DID identifier. In this process, the holder
typically needs to generate public and private key pairs and then insert them in
the DID document. The order of operations is presented in Fig. 4.1.

4.1.2 Verifiable Credential Issuance

Holder Issuer

1 request credential

2 verify identityissuer examines
provided documentation

3 generate credential

4 sign credential

5 send (issued) credential

6 verify credentialensure it reflects
requirements

7 verify signature

8 store credentiallocal wallet,
credential repository

Figure 4.2. Issuance - verifiable credential creation

After the creation of a DID, a holder can get a verifiable credential from an
issuer, that will verify the identity in some way, for example by examining some
provided documentation. If the requirements are satisfied, the issuer will generate a
verifiable credential by linking her identity information to DID. The holder receiving
the verifiable credential will verify its validity and save it in his personal credential
repository. The whole procedure is depicted in Fig. 4.2.

4.1.3 Verifiable Credential Verification

As can be seen in Fig. 4.3, once a holder has a DID and a verifiable credential, he
can use them to access a service to a verifier. The holder will use the DID to prove
to the requesting party that it is the controller of that DID through some sort of
challenge-response. Then, the holder will create a verifiable presentation starting
from one or more verifiable credentials. Whenever possible, to reduce correlation it
is recommended to use selective disclosure, i.e. presenting proofs of claims without
revealing the entire verifiable credential. Once created the verifiable presentation,
the holder can send it to the verifier, which will check its validity and will authorize
the holder if everything is correct.
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Holder Verifier

1 resource discovery

2 request - access

3 request a proof

4 create - verifiable presentationoptional
zero-knowledge proof
mechanisms

5 sign - verifiable presentation

6 send - verifiable presentation

7 verify claimverify - vp proof and metadata
verify - vc proof and metadata
no issuer needed

8 authorization

Figure 4.3. Verification - verifiable credential usage

4.2 Performance analysis

After analysing the different use cases, as highlighted in Figs. 4.1, 4.2 and 4.3, the
cryptographic operations that could be critical for a constrained device are:

• keys generation

• signature generation and verification

• proof generation and verification

To understand how much critical these operations are on a constrained device
it is necessary to analyse the differences between a non-constrained one by getting
their execution times and comparing the result. STM32L4+ Discovery kit IoT
node[29] has been used as a constrained device equipped with the STM32L4S5 MCU
@ 120 MHz, 2 Mbytes of flash memory and 640 Kbytes of SRAM. The employed
non-constrained device is instead more powerful and is equipped with an Intel
Xeon Silver 4110 CPU @ 2.10GHz.

Mbed TLS [30] has been used as a library that implements the operation for key
generation and signature (generation and verification). Mbed TLS is a C library
that implements cryptographic primitives, it supports RSA, ECDSA, and other
algorithms such as Ed25519. It has a small code footprint which makes it reasonable
to use for embedded systems [30]. To test if a constrained device could be capable
to implement and use some zero-knowledge proof mechanisms, it has been decided
to use a library that implements the BBS+ signature scheme [31]. BBS+ signatures
can be used to generate signature proofs of knowledge and selective disclosure zero-
knowledge proofs [32] and they are implemented on top of BLS12-381 elliptic curve
[33], which is a curve not supported in Mbed TLS. Since available BBS+ libraries

29



Self-Sovereign Identity as a Service

Figure 4.4. STM32L4+ Discovery kit IoT node[29].

are also not supported for STM32L4, it has been decided to take execution times
only on the edge device. Then execution times between the ECDSA signature
scheme and BBS+ signature scheme are comparable since they are been taken on
the same architecture and they are both elliptic curve signature schemes.

4.3 Results

It is evident from Table 4.1 that RSA is usable on constrained devices in real-life
applications only if the key generation is precomputed, otherwise is unusable. On
the constrained device, RSA signing and verification are faster than ECDSA, but
ECDSA provides the same level of security as RSA but it does so while using much
shorter key lengths. In applications where it could be useful to generate a keypair
on the fly, ECDSA is a must. On the edge device, the ECDSA signing operation is
faster than RSA, while the RSA verification process is faster than ECDSA. It can
also be noted that the time difference between the constrained device and the edge
device is extensive, due to the frequency of operation of the MCU and the CPU.

Operation constrained device⋆ edge device⋆

EC-p256-keygen 318 ms 0.5 ms
ECDSA-p256-SHA256-sign 1 503 ms 0.6 ms
ECDSA-p256-SHA256-ver 6 031 ms 2.0 ms
RSA2048-keygen 622 749 ms 186 ms
RSA2048-SHA256-sign 1 305 ms 3.60 ms
RSA2048-SHA256-ver 331 ms 0.07 ms

⋆mbedTLS library

Table 4.1. Execution time comparison between constrained and non-
constrained devices

Furthermore, in Table 4.2 ECDSA signatures and BBS+ signatures are compared
on the same CPU architecture. The obtained results are that BBS+ signature
scheme is much slower than the ECDSA one, even if they are both elliptic curve
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based. The order of magnitude of the percentage increase is 3, which is a significant
difference.

Operation ECDSA⋆ BBS+⋆† % increase
keygen 0.2 ms 39 ms +7 800
sign 0.6 ms 27 ms +4 500
verify 2.0 ms 166 ms +8 300

⋆Xeon 2.10GHz †Rust bbs library

Table 4.2. Execution time comparison between ECDSA and BBS+

4.4 Design and implementation choices

The results obtained in Sect. 4.3 suggest that a constrained device cannot use the
BBS+ signature scheme in real-world applications, since it can be supposed that
execution times will be considerably high. In the SSIaaS paradigm, a new role,
called edge, is defined. The interaction with the edge device allows IoT-constrained
devices to join the SSI ecosystem. Roles and interactions of SSIaaS can be seen in
Fig. 4.5.

Figure 4.5. The roles and information flows of Self-Sovereign-Identity as a Service
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4.4.1 Self-Sovereign-Identity as a Service Ecosystem

The edge device interacts with IoT-constrained devices and provides functionalities
to create and support them in identity management. As represented in Fig. 4.6,
the exposed operations by the edge device are:

• key pairs generation: the IoT device can request the edge node to generate
key pairs that could later use to generate a verifiable presentation

• storage of a verifiable credential: the IoT device can store on the edge node
a verifiable credential got from an issuer

• generation of a verifiable presentation: if the IoT device wants to interact with
a verifier, it has to provide a verifiable presentation, which is generated by the
edge device starting from the verifiable credential and signing the verifiable
credential with a keypair previously generated for that specific IoT client

VERIFIER
IoT
dev.

send VP

ISSUER    issue VC

EDGE
node

gen keys

store VC

get VP

DLT

                         register identifiers

Figure 4.6. Exposed operations by the edge device and basic components of SSIaaS

Since these are security-critical operations because they handle the identity of
an IoT node, it needs the guarantee that the data shared with the edge device
and the executed code are protected with respect to confidentiality and integrity.
Hence, TEEs are a solution to address these challenges. To implement TEE on the
edge device, the Keystone framework has been used.

In consideration of the architecture reported in Fig. 4.6 this work focuses on the
interactions between the edge device and the IoT-constrained node. Sect. 4.4.2 and
Sect. 4.4.4 explain the architecture and the preliminary interactions between the
IoT device and the edge device before the constrained device can request SSI-related
services.

4.4.2 IoT Device Provisioning

Before deploying an IoT device in the network, it needs to be configured and ini-
tialised to be able to communicate and establish a trust relationship with the edge
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device. This operation is named provisioning. After the provisioning, the IoT de-
vice can be authenticable by the edge device and can communicate with it. In the
implemented solution, a trustworthy system administrator provisions the client, i.e.
the constrained device, with:

• a key pair (client secret and public keys) used to authenticate itself to the
server, i.e., the edge device

• expected security monitor and enclave hashes to verify that the edge device
is running the expected application in the enclave

• the device public key of the edge device to verify that is running on trusted
hardware

Figure 4.7. System administrator provisions IoT client with expected hashes,
keys and signature of the public key

Then, the system administrator signs the public key of the IoT client and saves
the signature. The signature is verifiable with the public key of the system admin-
istrator. It proves that the device with access to the client’s secret belongs to a
recognised IoT network group. This rest on the assumption of a pre-existent trust
relationship between the system administrator and the edge device. The client au-
thentication method just described has been chosen because the edge device only
needs to retain in memory the system administrator’s public key, rather than keep-
ing track of all the clients’ public keys in a database, to determine whether a client
is authorized to access edge SSI services on-demand.

4.4.3 Attestation Report and Session Context

Keystone supports a basic attestation mechanism, as introduced in Sect. 3.3 and
uses ed25519 signatures [34] for computing hashes of the security monitor and
enclave content. Once an enclave has started the execution, it requests the SM to
generate a signed enclave report and a signed SM report. The SM Report contains a
hash of the security monitor and the attestation public key, all signed by the device
root key. The enclave report consists of a hash of the enclave at initialization and a
data block from the enclave of up to 1Kbytes, all signed with the attestation public
key of the SM.
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A client will verify the signatures and values contained in the attestation report
by using the device’s public key, the expected SM hash, and the expected enclave
hash. An example of an attestation report is shown in Fig. 4.8.

{
"enclaveApplication": {

"hash": "11ff35526c90c469ca6878dc22494703c554db654...",
"enclaveData": "b07dfd3047fb5213b8af9b76594a06891...",
"signature":

"58ca380c6b4476ed7b27143d92dec14fff2858ffef8ed6ef4..."
},
"securityMonitor": {

"hash": "e51749130b6036fe85b27409a4ea3e1c078fe4dcb76...",
"publicKey":

"cd98f4a28a8523ba8ecd31175aa0e2330b2f46e70...",
"signature":

"e738f4e708f73ffa4a0d3dc2199c9e0ac119bf14b32da33a..."
},
"devicePublicKey":

"0faad4ff01178583baa588966f7c1ff32564dd17d..."
}

Figure 4.8. Example of an attestation report generated by the enclave.

{
"sessionContext": {

"data": "3a2992fe52a2082b26f8009117be53decff68...",
"dataSignature": "02b0b554aecd929419a6c525ebfde..."

},
"stubCertificate": {

"clientPublicKey": "e95f84f09574d8fe73c0e692905c6c8d...",
"rootSignature": "a8b20a77877b79ca0d699091f8b303463b..."

}
}

Figure 4.9. Example of a session context generated by the client.

When designing the demo, the session context has been introduced to authen-
ticate the client on the server side. The session context includes two sections: the
stub certificate and the homonym session context. The first section contains the
client’s public key and the signature of the client’s public key, made at the provi-
sioning phase by the system administrator and verifiable with the public root key.
The enclosed session context contains a data block, all signed by the client public
key. The edge node will verify the signatures of this structure by using the root
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public key of the system administrator. An example of a session context is shown
in Fig. 4.9.

In the demo implementation, the data part of the session context and the at-
testation report are both used for the Diffie-Hellman key exchange protocol so that
the two parties can securely compute a shared key for creating a secure encrypted
channel.

4.4.4 Demo Architecture

To ease the development of a first demonstration application, the architecture de-
scribed in Sect. 4.4.1 has been simplified. In the presented implementation a single
instance of edge device can handle requests only from one IoT node at a time. The
developed application demonstrates how a remote-constrained device can request
on-demand SSI services, by offloading computations to be performed on an un-
trusted edge server using an enclave. It has to be pointed out that the developed
application code contains test keys, which are not safe and should not be used in
production.

As represented in Fig. 4.10, the demo architecture consists of:

• a server enclave application and an untrusted host application hosted on a
RISC-V processor

• an IoT client provisioned by the system administrator

Figure 4.10. Architecture of the demo (high-level view)

The demo enclave application has essential enclave capabilities (attestation re-
port generation, data sealing, etc.). It uses Libsodium [35] for establishing a secure
channel between the IoT client and the edge server. It exposes the three SSI-related
services, as presented in the Sect. 4.4. The untrusted enclave host serves a few
functions: starting the enclave, proxying network packets from and to the client
and storing sealed data. The remote client establishes a connection with the un-
trusted host, verifies the enclave report, transmits the session context, and creates a
secure channel before being able to communicate with the host to request offloaded
SSI-related computations.
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Figure 4.11. Execution flow and architecture of the demo

Execution flow of the demo

As can been seen in Fig. 4.11, at the start, the client will connect to the enclave
and perform the remote attestation. Expected hashes in the attestation report
will be used by the trusted client to verify that the enclave is created with the
right application and initialized by the known version of the security monitor. If
the attestation is successful, the client can send its attestation, also called session
context. The server will check the signature validity provided by the client verifying
it with the public key of the system administrator (root pk). On the other hand,
if the edge device attestation report is invalid, the client will close the connection
for security reasons, i.e. it is not the known edge device. Upon exchanging the
session context and the attestation report, they establish a secure channel and the
enclave-host waits for service requests.

4.4.5 Offloaded Operations

Once the edge node and the constrained devices have established a secure chan-
nel to communicate, the enclave waits for the client to request service. Once a
message is received, the enclave authenticates and decrypts the message. If suc-
cessful, it processes the message and passes the request to a specific ocall, i.e
ocall wait for request(...), which dispatches the requests proxied by the un-
trusted host coming from the client. The enclave understands what service has been
requested by checking the type of request sent by the IoT client. After processing
the request, the enclave returns the result through the secure channel previously
established. Figs. 4.13, 4.14 and 4.15 show a high-level view of the operations that
have been implemented.
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Setup phase

Using Keystone SDK, the generated sealing key size will be 128 bytes. In the
demo implementation, the sealing key is used as a seed for generating an ed25519
key pair. The sealed data are signed with the ed25519 key pair. Whereas, the key
used for encryption consists of the first crypto aead chacha20poly1305 KEYBYTES
bytes, i.e. 32 bytes. of the sealing key. As is visible in Fig. 4.12, libsodioum, a
cryptographic library written in C, is used for generating these keys.

// here sealing_key is used as a seed to gen sign keys
crypto_sign_seed_keypair(enclave_signing_pk, enclave_signing_sk,

sealing_material.key);

// sealing key here is used for the data encryption usage
memcpy(enc_key, sealing_material.key,

crypto_aead_chacha20poly1305_KEYBYTES);

Figure 4.12. Setup of the encryption key and ed25519 keypair.

Generate public keys

Consider the service of key pairs generation. The client sends this request along
with the key type and a secret. The server processes the incoming request. It
generates the sealing key, using as an identifier in the key derivation function the
client’s public key and the secret sent by the client. Then, it generates two key
pairs of the type that the client indicates in the request. (To ease the development
only EdDSA can be generated, in the future BBS+ signature scheme will be imple-
mented). Next, it encrypts the generated key pair with the obtained sealing key
and signs the obtained ciphertext with an enclave signing key. The encryption of
the data prevents the untrusted host to violate confidentiality. By checking the
integrity and authenticity of the stored data with the signature, the enclave is able
to verify that no alteration has been carried out from the untrusted host. Next, the
enclave application calls ocall save sealed data(...), which is the edge wrap-
per function to the system-call ocall(OCALL SAVE SEALED DATA, buffer, len,
0, 0). This call exports the buffer, containing the ciphertext and the signature of
the generated key pairs, from the enclave to be stored in the untrusted non-volatile
memory by the host process. The file name is composed of the public key of the
client and the type of data saved, in this case, keys. Hence, the file name will
be <client pub key> keys. The host saves the data received with the ocall and
returns the control to the enclave. Finally, the enclave sends the response to the
host, which will proxies the response back to the client. The response contains only
the public part of the generated keys.
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TrustedClient UApp Eapp

1 ocall_wait_for_request(req)

2 request(gen_keys)
Request:

key type
secret

3 process_request(gen_keys)

4 get_sealing_key(identifier: client_pub_key+secret)

5 gen_keys(type)

6 enc(keys,seal_key)

7 sign with Enclave-signing-key

8 ocall_save_sealed_data(keys_sign)<client_pub_key>_keys

9 return(pub(keys))

Figure 4.13. Key pairs generation operation (pseudo-code)

Store verifiable credential

The IoT client device can request the edge device for the storage service of a veri-
fiable credential. The client sends this request along with the verifiable credential
and a secret. The server processes the incoming request. It generates the sealing
key, using as an identifier in the key derivation function the client’s public key and
the secret sent by the client. The sealing key employed for encryption will be identi-
cal for the same client. Then, it encrypts the received verifiable credential with the
obtained sealing key and signs the obtained ciphertext with an enclave signing key.
The encryption of the data prevents the untrusted host to violate confidentiality.
By checking the integrity and authenticity of the stored data with the signature, the
enclave is able to verify that no alteration has been carried out from the untrusted
host. Next, the enclave application calls ocall save sealed data(...), which
is the edge wrapper function to the system-call ocall(OCALL SAVE SEALED DATA,
buffer, len, 0, 0). This call exports the buffer, containing the ciphertext and
the signature of the verifiable credential, from the enclave to be stored in the un-
trusted non-volatile memory by the host process. The file name is composed of the
public key of the client and the type of data saved, in this case, a verifiable creden-
tial. Hence, the file name will be <client pub key> vc. The host saves the data
received with the ocall and returns the control to the enclave. Finally, the enclave
sends the response to the host, which will proxies the response back to the client.
The response contains only feedback about the success of the storage operation.
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4.4 – Design and implementation choices

TrustedClient UApp Eapp

1 ocall_wait_for_request(req)

2 request(store_vc)
Request:

verifiable credential
secret

3 process_request(store_vc)

4 get_sealing_key(identifier: client_pub_key+secret)
same key for the same related identity

5 enc(vc,seal_key)

6 sign with Enclave-signing-key

7 ocall_save_sealed_data(vc_sign)<client_pub_key>_vc

8 return(ok)

Figure 4.14. Storage of a verifiable credential operation (pseudo-code)

Get verifiable presentation

The IoT client device can request the edge device to create a verifiable presentation.
The client sends this request along with a nonce and a secret. The server processes
the incoming request. It generates the sealing key, using as an identifier in the key
derivation function the client’s public key and the secret sent by the client. The seal-
ing key employed for encryption will be identical for the same client. Then, the en-
clave application calls ocall retrieve sealed data(...), which is the edge wrap-
per function to the system-call ocall( OCALL RETRIEVE SEALED DATA, buffer,
len, msg, sizeof( struct edge data )). This call exports the buffer, contain-
ing the file name to be retrieved, and the host once reading the correct file copies it
into the shared memory region, sets the edge call return status to SUCCESS and
returns control to the enclave. The host saves the data obtained from the enclave
and returns the control. The runtime copies the file from the shared region into
return buffers and then resumes the enclave ocall wrapper code. The function will
be executed for retrieving from the untrusted non-volatile memory the verifiable
credential (the file name will be <client pub key> vc) and for retrieving the previ-
ously generated keys (the file name will be <client pub key> keys). The enclave
will check the validity of signatures and decrypt the sealed data. Finally, the en-
clave using the retrieved keys signs the verifiable credential with the nonce received
from the client and sends the response to the host, which will proxies the response
back to the client. The response contains a freshly generated verifiable presentation.
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Self-Sovereign Identity as a Service

TrustedClient UApp Eapp

1 ocall_wait_for_request(req)

2 request(get_vp)
Request:

verifier_nonce (optional)
secret

3 process_request(get_vp)

4 get_sealing_key(identifier: client_pub_key+secret)
same key for the same related identity

5 ocall_retrieve_sealed_data()<client_pub_key>_keys
<client_pub_key>_vc

6 dec(keys,seal_key) and check sign

7 dec(vc,seal_key) and check sign

8 vp = sign(vc,assertion key)

9 return(vp)

Figure 4.15. Generation of a verifiable presentation operation (pseudo-code)
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Chapter 5

Conclusion and Future Work

In conclusion, the goal of this work was to allow IoT-constrained devices to estab-
lish a secure communication channel with the edge device and trusted SSI-related
operations computation on-demand. The designed architecture enables to access
higher computational performances and more flexible hardware and software re-
quirements. In the future, this opens up new scenarios employing additional and
more modern cryptographic primitives for privacy-preserving credentials, which are
yet not implemented in the current solution. Another future research topic could
be the integration of a TLS connection between an external client and the enclave
and how securely terminate TLS within the enclave, considering that the untrusted
host proxies enclave messages. Additionally, another enhancement of the edge de-
vice could be the monitoring of the untrusted host integrity with a TPM. This is
just an introductory work to enable and ease the adoption of the Self-Sovereign
Identity as a Service paradigm.
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A.1 Constrained and edge device comparison

This section describes how to install and execute the code used for testing the
cryptographic capabilities of constrained and non-constrained devices.

A.1.1 Test MbedTLS library

Mbed TLS [30] is a C library and it was used for testing RSA and ECDSA crypto-
graphic primitives. The version used is mbedtls-3.1.0, available from this repos-
itory: https://github.com/Mbed-TLS/mbedtls.

Test on non-constrained device

First, MbedTLS needs to be installed on the chosen system.

$ wget
https://github.com/Mbed-TLS/mbedtls/archive/refs/tags/v3.1.0.zip

$ unzip v3.1.0.zip
$ cd mbedtls-3.1.0/
$ sudo make install

Once the library has been installed, enter the Mbed TLS test directory and compile
the program.

$ cd mbedtls-test
$ gcc -o test main.c mytest.c -lmbedtls -lmbedx509 -lmbedcrypto

Then tests can be launched and the results can be stored on a file with the following
command.

$ ./test > results.txt
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The output should be similar to the following shown in Fig. A.1.

Seeding the random number generator... ok

Test: ECDSA key gen
p256
0.000266988,
0.000238424,
...
Test: ECDSA sign-gen
p256 key gen time: 0.000260937
0.000004468,0.000309109,0.001057424, # (hash, sign, ver) times
0.000003286,0.000296264,0.001026635,
...

Test: RSA 2048 key gen
0.133808741,
0.087886941,
...

Test: RSA sign-ver
rsa2048 key gen time: 0.065950689
0.000003988,0.002522734,0.000039014 # (hash, sign, ver) times
0.000003206,0.001853610,0.000038684
...

Figure A.1. Example of MbedTLS tests output on a non-constrained device.

Test on constrained device

STM32CubeIDE [36] has been used (version 1.9.0) for developing and flashing the
binaries onto the STM32L4+ board [29].

For simplicity, the complete project is provided and it just needs to be imported
into STM32CubeIDE as an existing project. Click File > Import > Existing
projects into Workspace, then select the archive file mbedtlsv1-stm32.zip from
the file system, select the project Test1 and click Finish. Then plug the board
into a USB port and click Project > Build Project. The code will be compiled.
When it is done (and 0 errors appear in the console panel at the bottom), click
Run.

The output on the board is very similar to the previous one, for debug messages
the output of the printf function is redirected to one UART and it can be read
with a terminal emulator that supports serial port, such as Teraterm or Putty,
by reading the COM that correspond to the STM32 debugger. The output should be
similar to the following shown in Fig. A.2.
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Seeding the random number generator... ok
Test: ECDSA key gen, sign-gen
p256
318,
316,
...
key gen time: 319
5;357;1257 # (hash, sign, ver) times
5;361;1264

Figure A.2. Example of MbedTLS tests output on a constrained device.

A.1.2 Test BBS+ signatures scheme

BBS+ rust library was used for testing BBS+ signatures that can be used to generate
signature proofs of knowledge and selective disclosure zero-knowledge proofs. In
these tests, only simple single-message signing and verification were tested.

Before starting, we need to install Rust. The installation of Rust is through a
tool called Rustup, which is a Rust installer and version management tool. The
way to install Rustup differs by platform, on Unix, run the next command in the
shell. This downloads and runs rustup-init.sh, which in turn downloads and
runs the correct version of the rustup-init executable for your platform. For
other platforms check the Rust documentation [37].

$ curl https://sh.rustup.rs -sSf | sh

When Rustup is installed, it will also add the latest stable version of the Rust build
tool and package manager, also known as Cargo. The following commands will
install dependencies and build the project.

$ cd bbs-test
$ cargo build

To launch the test and take executions times of BBS+ signatures and verification,
run:

$ cargo run

The output should be similar to the following shown in Fig. A.3.
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AVG Time elapsed in key generation() is: 25 ms
AVG Time elapsed in sign() is: 18 ms
AVG Time elapsed in ver() is: 102 ms

Figure A.3. Example of BBS+ tests output.

A.2 Proof of concept

The proof of concept relies on the full Keystone SDK. The easiest way for building
and try Keystone and the proof of concept is to use QEMU. QEMU is an open-
source machine emulator, in this case, is used to emulate RISC-V architecture. The
proof of concept has been tested with Ubuntu 18.04.

A.2.1 Keystone installation and requirements

The following dependencies must be installed before installing Keystone.

$ sudo apt update
$ sudo apt install autoconf automake autotools-dev bc \

bison build-essential curl expat libexpat1-dev flex gawk \
gcc git gperf libgmp-dev libmpc-dev libmpfr-dev libtool \
texinfo tmux patchutils zlib1g-dev wget bzip2 patch vim-common \
lbzip2 python pkg-config libglib2.0-dev libpixman-1-dev \
libssl-dev screen device-tree-compiler expect makeself \
unzip cpio rsync cmake p7zip-full

Then check out the Keystone repository and install everything with the quick setup
script, it will install the RISC-V toolchain and if KEYSTONE SDK DIR environment
variable is not set, it will also install Keystone SDK.

$ git clone https://github.com/keystone-enclave/keystone.git
$ cd keystone
$ ./fast-setup.sh

If everything goes right, the following message is shown:

RISC-V toolchain and Keystone SDK have been fully setup

After running fast-setup.sh, run the following command to temporarily set in
the current shell relevant environment variables:

$ source source.sh
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Otherwise for permanently store the environment variables, if bash is used this
command will add the lines in source.sh to the shell’s startup file:

$ cat source.sh >> $HOME/.bashrc

CMake [38] is used as a build system. As <build directory> the name build has
been chosen. Then all components can be built, beware that this will take a while.

$ mkdir build
$ cd build
$ cmake ..
$ make

U It has been noted that under Windows Subsystem for Linux (WSL) the
build of the image can fail. To solve this issue just modify the PATH to not
include /mnt/c/* folders.

A.2.2 Build the demo

Extract the provided zip file that contains the demo of the proof of concept. The
extracted folder should contain the developed code explained in this document. The
riscv-musl-toolchain has been used for building the server eapp, which can be
set with the ./setup musl.sh script. Then, the ./quick-start.sh will build the
demo, the script will create two files: demo-server.ke and trusted client.riscv.

$ cd keystone-demo-poc
$ source ./setup_musl.sh
$ SM_HASH=./include/sm_expected_hash.h ./quick-start.sh

Then once the demo is built, the binaries need to be copied into the Keystone build
folder.

$ cp ./build/demo-server.ke ./build/trusted_client.riscv
../keystone/build/overlay/root/

Now the QEMU image can be re-generated.

$ cd keystone/build
$ make image
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A.2.3 Run QEMU

The following script will run QEMU, and start executing from the emulated sili-
con root of trust. The root of trust then jumps to the SM, and the SM boots Linux.

$ cd keystone/build
$ ./scripts/run-qemu.sh

The script will start ssh on a random forwarded localhost port, which allows multi-
ple test runs on the same development machine. The script will print what port it
has forwarded ssh to on start. For example, to start a new shell in another window
the next command can be used, and it is useful to run the client and the server in
two different terminal windows.

$ ssh root@localhost -p <port number>

Login as root with the password sifive. You can exit QEMU by ctrl-a ‘+‘ x
or using poweroff command.

A.2.4 Run the demo

Inside QEMU, run the following commands. The first one will load the Keystone
kernel module and the second one will set up the loopback device.

> insmod keystone-driver.ko
> ifdown lo && ifup lo

On the server side run:

> ./demo-server.ke

On the client side run:

> ./trusted_client.riscv 127.0.0.1

The client will connect to the enclave and perform the remote attestation. If the
attestation is successful, the client can send back the session context. Then, if server
checks go right, the communication can start and the client can request operation
to the server.

If the enclave server app will be modified, the expected hash values have to be
regenerated, otherwise, it can be tested with an option that will ignore the valida-
tion of the attestation report (it will still print the status of the validation).

> ./trusted_client.riscv 127.0.0.1 --ignore-valid
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A.2.5 Expected output

The output of the client and the server should be similar to the following Figs. A.4
and A.5.

=== Security Monitor ===
Hash: e51749130b6036fe85b27409a4ea3e1c078fe4dcb76eb697e7e3cdc5ff
313144628a1ec10558cea5ad94641de7fb31fda759758115caf1144b2c49603f
42db3a
Pubkey: cd98f4a28a8523ba8ecd31175aa0e2330b2f46e7034545254660126a
9f3b8cb9
Signature: e738f4e708f73ffa4a0d3dc2199c9e0ac119bf14b32da33afe842
66803c9ae0766eb6d9f83e6d3b2511cbe8443996feb0bf8714f35c0c678aa593
90846a8d50a

=== Enclave Application ===
Hash: 11ff35526c90c469ca6878dc22494703c554db65406dcc9942417be2d9
010722843d1bda7115604f518fabd47ec3ba79cd89a560847bb5b810c314201e
2217d6
Signature: 58ca380c6b4476ed7b27143d92dec14fff2858ffef8ed6ef40156
515d36da50a220e494d936cafedd23558b8d16ce66c6d5f00bdb7ec973ee46ec
f7a48c6fa0d
Enclave Data: b07dfd3047fb5213b8af9b76594a06891c893001c6c4be448a
d8b13f7eb02a19b27d0263bfd9aa8941345f837788159897a8aea2ecb33da926
b8d4747328eaace08a34d55fcdc41e2938838da173900485e99bcc1fb9eb7b00
dac1e2fe5a5174

-- Device pubkey --
0faad4ff01178583baa588966f7c1ff32564dd17d7dc2b46cb50a84a69270b4c
[TC] Attestation signature and enclave hash are valid
[TC] Session keys established

Available services
1. generate keys
2. store verifiable credential
3. get verifiable presentation
. everything else to quit

Type the service to request:
> 1

Figure A.4. Example of output at client side.
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Verifying archive integrity... All good.
Uncompressing Keystone Enclave Package
[EH] Got connection from remote client
[SE] NOT USING REAL RANDOMNESS: TEST ONLY
[SE] Stub certificate signature is valid
[SE] [C] Successfully generated session keys.
[EH] Got an encrypted message:
3e5d0575e8bccf73 eb5255dad244eee1 93fcae78f5ad0459 ...

[SE] Sealing key derivation successful!
generate_public_keys

EdDSA_keys_t: [192]
07FAC4B1522F06D916C55D321BB839F23AEF95AA48E051E53DB2AF284D7845...

Ciphertext [208]
AB35E2D0F9C3ADFDD10E448D4ABD7A42E00ED87CE569C4AC3809785CC9A028...

Sign [272]
FA72997814FA1F16D111DA0189D0440F0F245EB606BACACD0566DEB0767D44...
[EH] Saving sealed data
[EH] Filename: /root/075CFECFC6617F ... 26A116B1611_keys_sign
Response payload: [64]
8E120A739BA94B7E9AE2F590166682170570D7AFCB70026B513405E56E90C1...

Figure A.5. Example of output at server side.

A.2.6 Tools for updating enclave and sm hashes

If the SM or the eapp will be modified, the expected hashes need to be modified to
generate a valid report for the client. The next command will create the necessary
files in the include directory. The demo must be recompiled and the QEMU image
rebuilt before and after this command is executed.

# build the demo
# copy the binaries and build qemu image
$ KEYSTONE_BUILD_DIR=<path/to/keystone/build path>

./scripts/get_attestation_modified.sh ./include
# build the demo
# copy the binaries and build qemu image

If the sm expected hash.h is not present in the include folder, can be gen-
erated for the first time following the instruction in the README.md file of the SM
repository available at the following url: https://github.com/keystone-enclave/
sm.git.
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A.2.7 Tools for provisioning

The file provision can be used to generate a new test client key.h, which will
contain the root key pair, the client key pair and the signature of the client public
key made by the system administrator with its secrey key.

It could be modified to meet your purposes (for example to generate more client
key pairs and signatures or to use a fixed root key). The program uses libsodium
to generate an Ed25519 key pair for the system administrator. Then will generate
another Ed25519 key pair for the client and the public part will be signed with the
system administrator key pair. The server will use the system administrator public
key to authenticate that the client is part of the system administrator network.

Once libsodium has been installed, compile provision.c, run it and redirect
the output to a file with the name test client key.h. The file test client key.h
is already present in the include folder, but it may be necessary to generate a new
one and it can be done with the following commands.

$ git clone https://github.com/jedisct1/libsodium.git
$ cd libsodium
$ git checkout 4917510626c55c1f199ef7383ae164cf96044aea
$ ./configure
$ make && make check
$ sudo make install
$ sudo ldconfig

$ cd keystone-demo/provisioning
$ gcc -o provision provision.c -lsodium

$ ./provision > ../include/test_client_key.h
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B.1 Constrained and edge device comparison

B.1.1 Test MbedTLS library

mytest.c is the most relevant file for this subproject. It is equal for both non-
constrained devices and the constrained device (STM32L4+ board [29]). The
only difference is the function used for measuring the elapsed time of a crypto-
graphic primitive. The function clock gettime(), of the standard library time.h,
is used on the non-constrained device, while on the STM32L4+ board is used the
HAL GetTick(). Fig. B.1 describes in a pseudo-language how to measure the
elapsed time of a cryptographic primitive. Then, the available tests are described.

start = clock_gettime( ) or HAL_GetTick()
// mbedtls cryptographic primitive
end = clock_gettime( ) or HAL_GetTick()
print ( end - start ) // in ms

Figure B.1. Pseudo algorithm for measuring the elapsed time.

int test RSA keygen(...)
It generates N RSA key pair and prints the elapsed for each generation in a CSV
format.
Input:

• int key size, size of the generated key (possible values: 2048, 3072 or 4096)
• mbedtls ctr drbg context *ctr drbg, reference to CTR DRBG context struc-

ture for random number generation
• int iterations, number of times that the test will be executed

Output: Returns 1 if successful, or an MBEDTLS ERR XXX XXX error code
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int test RSA(...)
It generates an RSA key pair, computes the RSA signature of a random hashed
message (of 1024 bytes) and verifies the generated signature. Then, it prints the
elapsed for each signature and verification in a CSV format. (Everything is repeated
N times).
Input:

• int key size, size of the generated key (possible values: 2048, 3072 or 4096)
• int sha alg,
• mbedtls ctr drbg context *ctr drbg, reference to CTR DRBG context struc-

ture for random number generation
• int iterations, number of times that the test will be executed

Output: Returns 1 if successful, or an MBEDTLS ERR XXX XXX error code

int test ECDSA keygen(...)
It generates N EDSA key pair and prints the elapsed for each generation in a CSV
format.
Input:

• int ecparams, the identifier of domain parameters (curve, subgroup and gen-
erator),(possible values: MBEDTLS ECP DP SECP256R1, MBEDTLS ECP DP SECP384R1
or MBEDTLS ECP DP SECP521R1)

• int sha alg,
• mbedtls ctr drbg context *ctr drbg, reference to CTR DRBG context struc-

ture for random number generation
• int iterations, number of times that the test will be executed

Output: Returns 1 if successful, or an MBEDTLS ERR XXX XXX error code

int test ECDSA(...)
It generates an ECDSA key pair, computes the ECDSA signature of a random
hashed message (of 1024 bytes) and verifies the generated signature. Then, it
prints the elapsed for each signature and verification in a CSV format. (Everything
is repeated N times).
Input:

• int ecparams, the identifier of domain parameters (curve, subgroup and gen-
erator),(possible values: MBEDTLS ECP DP SECP256R1, MBEDTLS ECP DP SECP384R1
or MBEDTLS ECP DP SECP521R1)

• int sha alg, digest algorithm (possible values: MBEDTLS MD SHA256, MBEDTLS MD SHA384
or MBEDTLS MD SHA512)

• mbedtls ctr drbg context *ctr drbg, reference to CTR DRBG context struc-
ture for random number generation

• int iterations, number of times that the test will be executed
Output: Returns 1 if successful, or an MBEDTLS ERR XXX XXX error code
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B.1.2 Test BBS+ signatures scheme

For this subproject, the most relevant files are:

• Cargo.toml where dependencies are added, such as bbs and rand.

• main.rs where tests for BBS+ key generation, signature and verification are
defined.

– fn key gen test(iterations: usize)
– fn simple sign ver test(iterations: usize)

Fig. B.2 describes in Rust language how to measure the elapsed time of a cryp-
tographic primitive.

fn <primitive>_test(iterations: usize) {
let mut sum: u128 = 0;
for i in 0..iterations {

let start = Instant::now();
// bbs+ cryptographic primitive
let duration = start.elapsed().as_millis();
sum += duration;

};
println!("AVG Time elapsed is: {:?}", sum/iterations as u128);

}

Figure B.2. Pseudo algorithm for measuring the elapsed time.

The program does the following, it launches the test for key generation and the
test for signature and verification, operations are executed iterations times and
the average is displayed on the output video.

fn main() {
let iterations: usize = 100;
key_gen_test(iterations);
simple_sign_ver_test(iterations);

}
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B.2 Proof of concept

B.2.1 Guide to Keystone Components

The Keystone repository consists of several sub-components such as gitmodules or
directories. This is a brief overview of them.

+ keystone/
|-- patches/
| # required patches for submodules
|-- bootrom/
| # Keystone bootROM for QEMU virt board, including trusted boot

chain.
|-- buildroot/
| # Linux buildroot. Builds a minimal working Linux image for

our test platforms.
|-- docs/
| # Contains read-the-docs formatted and hosted documentation,

such as this article.
|-- riscv-gnu-toolchain/
| # Unmodified toolchain for building riscv targets. Required to

build all other components.
|-- linux-keystone-driver/
| # A loadable kernel module for Keystone enclave.
|-- linux/
| # Linux kernel
|-- sm/
| # OpenSBI firmware + Keystone security monitor
|-- qemu/
| # QEMU
+-- sdk/

# Tools, libraries, and example apps for building enclaves on
Keystone
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B.2.2 Guide to Keystone Demo Proof of concept

The designed solution has been developed starting from the officially kestone-demo
repository available at this link: https://github.com/keystone-enclave/keystone-
demo, commit 8c6c0565e44f3d0e00bc3e4a6e77fc84c9e6d343. The demo uses test
keys and is not safe for production use.

+ keystone-demo-poc/
|-- docs/
| # Contains read-the-docs formatted and hosted documentation,

such as this article.
|-- include/
| # Contains shared files between eapp and client
|-- provisioning/
| # C program to generate new client and root key pairs
|-- scripts/
| # Contains a script for performing the attestation of sm and

eapp
|-- server_eapp/
| # small enclave server that is capable of remote attestation,

secure channel creation, and performing a simple
word-counting computation securely

|-- sodium_patches/
| # Contains patch for libsodium that will run in the server eapp
+-- trusted_client/

# simple remote client that connects to the host, validates the
enclave report, constructs a secure channel, and then can
send messages to the host for computation.
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B.2.3 Relevant files of the demo

Below are explained relevant files that change from the official kestone-demo repos-
itory. Functions, types and variables not mentioned here can be deepened in the
official kestone-demo repository and Keystone documentation.

include/eh shared.h

This file is shared between the enclave and the untrusted host. It defines the fol-
lowing data structure for exchanging sealed (encrypted) data between the enclave
and the untrusted host.

typedef struct stored_data_t{
unsigned short file_type;
unsigned char client_pk[crypto_kx_PUBLICKEYBYTES];
size_t c_len; // content len
unsigned char content[]; // Flexible member

} stored_data_t;

include/messages.h

This file is shared between the client and the enclave and it defines the messages
(request and response) they exchange.

typedef struct request_message_t {
unsigned short request_type;
unsigned char secret[SECRET_LEN];
size_t len;
unsigned char payload[]; // Flexible member

} request_message_t;

typedef struct response_message_t {
unsigned short response_type;
size_t len;
unsigned char payload[]; // Flexible member

} response_message_t;
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include/session context.c and include/session context.h

The session context is the structure that the client provides to the enclave to prove
that is built by a trusted manufacturer. With the function session context from buffer
the session context is extracted from the received buffer.

struct session_context_t {
unsigned char dh_public_key[PUBLIC_KEY_SIZE];
unsigned char challenge[CHALLENGE_SIZE];
unsigned char data_signature[SIGNATURE_SIZE];

unsigned char client_public_key[PUBLIC_KEY_SIZE];
unsigned char root_signature_of_client_pk[SIGNATURE_SIZE];

};

void session_context_from_buffer(struct session_context_t*
session_context, unsigned char* buffer);

int session context verify(...)
Input:

• struct session context t session context, the session context to verify
• unsigned char* challange, the challenge that the server has sent to the

client
• const unsigned char* root public key, the public key of the manufac-

turer
Output: an int value, 1 if it is a valid session context, 0 if not.
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server eapp/service.c and server eapp/service.h

The file service.h just exposes the function that processes the request received
by the client.

response_message_t* process_request(request_message_t *request,
size_t *pt_finalsize) {

setup_sealing_material(request->secret);

switch (request->request_type) {
case SERVICE_GEN_KEYS:

return generate_public_keys(pt_finalsize, EdDSA);
break;

case SERVICE_STORE_VC:
return store_verifiable_credential(pt_finalsize,

request->payload, request->len);
break;

case SERVICE_GET_VP:
return get_verifiable_presentation(pt_finalsize,

request->payload, request->len, EdDSA);
break;

default:
ocall_print_buffer("Invalid request type!\n");

}
return NULL;

}

int store data (...)
It saves the sealed data in untrusted non-volatile memory.
Input:

• unsigned char* buffer, data to save
• size t len, length of the data to save
• unsigned short file type, type of the data to save (possible values: FILE CLI-

ENT KEYS SIGNATURE or FILE CLIENT VC SIGNATURE)
Output: an int value, 1 if the operation is successful, 0 if not.

unsigned char* seal data and sign (...)
It encrypts and signs the data to save in untrusted non-volatile memory.
Input:

• unsigned char* data, data to encrypt and sign
• size t data len, length of the data to encrypt and sign
• size t* sign len, a pointer to store the actual length of the signed message

Output: the signed message, which includes the signature plus an unaltered copy
of the message.
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response message t* build response (...)
It builds the response to sand back to the client.
Input:

• size t* pt finalsize, pointer to store the final length of the response
• unsigned short response type, type of the response (possible values: SERVICE -

GEN KEYS, SERVICE STORE VC, SERVICE GET VP, MSG EXIT)
• unsigned char *buffer, response to send back to the client
• size t len, length of the response

Output: the built response

response message t* generate public keys (...)
It handles the request of the client to generate two key pairs. It saves the key pairs
sealed in the untrusted non-volatile memory and sends back to the client only the
public part.
Input:

• size t* pt finalsize, pointer to store the final length of the response
• int key type, the key type that the client chooses to generate

Output: the built response

response message t* store verifiable credential (...)
It handles the request of the client to store a verifiable credential that the client
obtained from an issuer. It saves the verifiable credential sealed in the untrusted
non-volatile memory and sends back to the client a 0 if everything goes right.
Input:

• size t* pt finalsize, pointer to store the final length of the response
• unsigned char* vc, verifiable credential to be stored
• size t vc len, length of the verifiable credential to be stored

Output: the built response

response message t* get verifiable presentation (...)
It handles the request of the client to generate a verifiable presentation to use when
interacting with a verifier. It retrieves from the untrusted non-volatile memory the
previously stored verifiable credential and key pairs and sends back to the client
the sign of the verifiable credential with one using an assertion key of the type that
the client chose.
Input:

• size t* pt finalsize, pointer to store the final length of the response
• unsigned char* nonce, (optional) nonce that the verifier asks the client to

insert in the verifiable presentation
• size t nonce len, length of nonce
• int key type, the key type that the client previously chose to generate

Output: the built response
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server eapp/server eapp.c

In this file, the important functions to mention are:
void attest and establish channel()
In this function, as explained in Chap. 4, the enclave sends its report to the client
and waits for the session context of the client. Once received, it validates the ses-
sion context and established the channel with the client. If some error occurs, the
program terminates.

void attest_and_establish_channel() {
// ...
randombytes_buf(challenge, CHALLENGE_SIZE);
// ...
ocall_send_report(buffer, MAX_REPORT_SIZE);

unsigned char session_ctx_buffer[SESSION_CTX_SIZE];
ocall_wait_for_client_session_ctx(session_ctx_buffer,

SESSION_CTX_SIZE);
// signatures validity check
validate_session_context(session_ctx_buffer, challenge);

channel_establish(); // Ask libsodium to generate session keys
based on the received pk

}
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void handle requests()
In this function, as explained in Chap. 4 and in Sect. B.2.3, the enclave will wait
for client requests. Whenever a request arrives, the enclave copies the request from
the shared region, processes the request (interacting with the enclave host for data
sealing), and sends the response back to the client. If some error occurs, the pro-
gram terminates.

void handle_requests() {
struct edge_data msg;
while(1){

ocall_wait_for_request(&msg);
// ...
copy_from_shared(request, msg.offset, msg.size);
// ...
switch (request->request_type) {

case MSG_EXIT:
ocall_print_buffer("Received exit, exiting\n");
EAPP_RETURN(0);

break;
default:

response = process_request(request, &r_size);
break;

}
if (response == NULL) {

ocall_print_buffer("Response handling error\n");
EAPP_RETURN(0);

}
// ...
channel_send((unsigned char*) response, r_size, boxed_buffer);
ocall_send_reply(boxed_buffer, boxed_size);
// ...

}
}
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trusted client/trusted client.c and trusted client/trusted client.h

In this file, the important functions to mention are:
int gen session context(...)
It generates the client session context that will contain a data part and the signature
of the client’s public key made by the system administrator at the provisioning
phase. The data part is composed of a key for the Diffie Hellam key exchange
protocol and the challenge sent by the server, all the data part is signed by the
client’s public key.
Input:

• byte* buffer, a pointer to the buffer that will contain the session context
Output: an int value, 1 if the operation is successful, 0 if not.

request message t* generate request message(...)
It builds the request message to request a service to the server.
Input:

• char* buffer, a buffer of the data to send to the server (it can contain the
key type or the verifiable credential)

• size t buffer len, length of the data
• size t* finalsize, a pointer to store the final length of the request message
• unsigned char* secret, the secret that the server will use to generate the

sealing key in the key derivation function
• unsigned short request type, the request type that the client has chosen

to send to the server (possible values: SERVICE GEN KEYS, SERVICE STORE VC
or SERVICE GET VP)

Output: the built request message

request message t* generate exit message(...)
It builds the request message to close the connection with the server.
Input:

• size t* finalsize, a pointer to store the final length of the request message
Output: the built exit request message
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