
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

A Feasibility Study for Enhancing
Student’s Engagement

in Remote Lectures

Supervisors Candidate

Prof. Bartolomeo MONTRUCCHIO Fereshteh FEIZABADI FARAHANI

Dr. Antonio Costantino MARCEDDU

Dr. Jacopo SINI

Dr. Luigi PUGLIESE

December 2022

Summary

During the COVID-19 pandemic, almost all learning activities, as well as other daily
face-to-face activities, were moved to online environments. This form allowed the
students to continue almost all the usual educational activities that were normally
carried out in school buildings, such as reading, writing, watching video tutorials,
taking exams, and attending meetings.

Although e-learning has many advantages, it also has some disadvantages
when compared to traditional face-to-face education. One of the most significant
features is the lack of direct contact between teachers and students and less
active participation with respect to face-to-face lectures. This led to the first new
difficulties in deciphering common student states, such as boredom, confusion,
and frustration. In this regard, technological support that can accurately and
efficiently detect the level of attention of their students online can therefore be
of great help to remote teachers. In this way, they could change their teaching
approach dynamically and adopt techniques of capturing the attention of the
students when necessary, increasing the effectiveness of the lessons themselves.
So, e-learning platforms could enable the incorporation of novel technologies to
estimate various factors such as eye blinking, gaze tracking, and facial expressions,
which are important indicators of student engagement.

The purpose of this thesis is therefore to carry out a study on the possibility
of creating an integrated system to detect the level of involvement and attention
of students in real-time during remote lessons. The idea is that starting from the
individual student video it is possible to detect input parameters such as gaze
detection, blink detection, and facial expression detection.

There are several algorithms for detecting eye blinking and gazing. Three of
these algorithms, called OpenFace, GazeTracking, and Gaze Controlled Keyboard
were used to test videos shot in different conditions, including good and bad lighting
and the presence or absence of glasses. These videos are representative of a normal
lesson activity and involve viewing the webcam with simple eye movements to the
right, left, and center and normal blinking. The accuracy of the blink and gaze
tracking models was determined by comparing the output of the models to the
ground truth. This was defined by manually labeling the individual video frames.

i

The comparison between the outputs of the models and the ground truth allowed
us to select two of the models, which are OpenFace and GazeTracking, as the
preferred ones for the realization of the system.

The OpenFace library is a comprehensive tool built with C++ for facial land-
mark detection, head pose estimation, facial action unit recognition, and eye-gaze
estimation. It can do this by getting a video feed from a webcam or by using a
prerecorded video. So, starting with the OpenFace GUI example provided with
the library, facial expression detection was added to the software. The new C++
code is capable of detecting facial expressions using a trained Tensorflow model; it
has been added as a static library to the OpenFace GUI, which was modified to
show the expected emotion for each frame among the following: Angry, Contempt,
Disgust, Fear, Happiness, Neutrality, Sadness, and Surprise.

GazeTracking is written in Python and requires the use of libraries such as
NumPy, OpenCV, and Dlib. In this system, the Haar Cascade Classifier is used to
detect facial landmarks on either a live webcam or recorded video. Thereafter, the
library can detect the user’s iris and provide labels such as blink, look right, left,
and center. As for OpenFace, also for this library has been added the possibility
of detecting facial expressions. The outputs of both programs are provided in
real-time but are also saved in a CSV file to make a deferred analysis of the results.

We discovered that, in addition to facial expressions, the frequency of blinking
and gaze tracking might be important factors in determining whether a student is
engaged or distracted during remote lectures.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Background . 1
1.2 What is Engagement in E-Learning Environments? 2
1.3 Our Idea . 3
1.4 Thesis Structure . 3

2 Extracting Features 5
2.1 Introduction . 5
2.2 Face Detection . 5

2.2.1 Challenges for Face Detection 6
2.3 Classical Algorithms of Face Detection 6

2.3.1 Haar Cascade . 6
2.3.2 Dlib-HOG . 7

2.4 Face Detectors Based on Deep Learning 7
2.4.1 SSD . 7
2.4.2 MTCNN . 8
2.4.3 Dual Shot Face Detector . 8
2.4.4 RetinaFace . 9
2.4.5 MediaPipe . 10
2.4.6 YuNet . 10

2.5 Performance Comparison of Face Detectors 11
2.5.1 Average Precision (AP) . 11

2.6 Facial Landmarks . 11
2.6.1 Dlib’s Facial Landmark Detector 13
2.6.2 Understanding Dlib’s Facial Landmark Detector 13

2.7 Blink Detection . 14
2.7.1 Understanding the Eye Aspect Ratio 14

iii

2.7.2 Real-Time Eye Blink Detection Using Facial Landmarks . . 15
2.8 Studied Frameworks . 15

2.8.1 Model 1: OpenFace . 15
2.8.2 OpenFace Pipeline . 16
2.8.3 Eye Gaze Estimation in OpenFace 17
2.8.4 Facial Expression Recognition in OpenFace 18
2.8.5 OpenFace Interface . 18
2.8.6 OpenFace Code Layout . 18
2.8.7 Model 2: Gaze Controlled Keyboard 22
2.8.8 Model 3: Eyes Position Estimator with MediaPipe 23
2.8.9 Model 4: Gaze Tracking . 24

3 Test and Result of Models 27
3.1 Recorded Sample Videos . 27

3.1.1 Data Logging . 27
3.1.2 Ground Truth Annotation 28
3.1.3 Processing Data in Excel . 29

3.2 Frameworks Outputs . 30
3.2.1 Classification Accuracy . 30
3.2.2 Frameworks Accuracy . 30
3.2.3 OpenFace Output Format 30
3.2.4 Basic . 32
3.2.5 Gaze Related . 32
3.2.6 Action Units . 32

3.3 Selected Frameworks . 33

4 Emotion Detector Model 35
4.1 Facial Emotion Recognition . 35

4.1.1 State of the Art . 36
4.2 Choice of the Neural Network for Facial Expressions 36

4.2.1 Neural Networks Training 38
4.3 Facial Action Coding System . 38

4.3.1 Intensity and Presence of AUs in OpenFace 39
4.3.2 Can AUs be used to detect facial emotions? 39

4.4 Integrated System . 40
4.4.1 Result of Emotion Detector 42
4.4.2 Integrating Emotion Detector model with OpenFace 42

5 Detecting Engagement 45
5.1 Engagement in Remote Lectures . 45
5.2 Improvements towards an Attention Detection Algorithm 46

iv

5.3 Experiment . 47
5.3.1 Application to Measure the Response Time 47
5.3.2 Our choice for Software . 47
5.3.3 Standard Deviation . 48

5.4 Experimental Results . 48
5.4.1 Gaze Tracking . 48
5.4.2 Facial Emotion . 50
5.4.3 Data Processing Tools . 50

6 Conclusions 55
6.1 Conclusions . 55
6.2 Future Works . 55

Bibliography 57

v

List of Tables

2.1 Comparison of the models, based on FPS. Data from [25] 12
2.2 Comparison of the models, based on average precision at IoU thresh-

old of 0.5. Data from [25] . 12

3.1 Video frames annotations of the CSV files 28

4.1 Available pictures for each emotion in the chosen databases [52]
aFER+ annotations . 38

vi

List of Figures

2.1 Timeline of the evolution of face detection algorithms. Figure from
[25] . 6

2.2 Haar Cascade Classifier. Figure from [27] 7
2.3 Dlib-HOG. Figure from [25] . 7
2.4 Structure of SSD. Figure from [25] 8
2.5 MTCNN. Figure from [25] . 9
2.6 Dual Shot Face Detector. Figure from [30] 9
2.7 Machine learning solutions by MediaPipe. Figure from [33] 10
2.8 The area under the Precision-Recall curve is defined as the average

precision. 11
2.9 Output of Dlib’s face landmarks on the images of HELEN dataset.

Figure from [37]. 13
2.10 The 68-face landmark coordinates from the iBUG 300-W dataset

are graphically represented. 14
2.11 For multiple video sequence frames, the eye aspect ratio EAR is

plotted. There is only one blink. Figure from [38] 15
2.12 OpenFace 2.0 implements modern facial behavior analysis algorithms,

including facial landmark detection, head pose tracking, eye gaze,
and facial action unit recognition. Figure from [39] 16

2.13 The OpenFace 2.0 facial behavior analysis pipeline includes land-
mark detection, head posture estimation, eye gaze estimation, and
recognition of facial action units. All these systems’ outputs (shown
in green) can be saved to disk or transmitted in real-time via the
network. Figure from [39] . 17

2.14 Example landmark detection from OpenFace 2.0. It is possible to
notice its capability to deal with profile faces and occlusions. Figure
from [39] . 17

2.15 List of AUs in OpenFace 2.0. It predicts the intensity and presence
of all AUs, except for AU28, for which only presence predictions are
made. Figure from [39] . 19

vii

2.16 OpenFaceOffline running an analysis 20
2.17 OpenFace in Visual studio 2017 . 21
2.18 Head pose live . 21
2.19 OpenFace demo . 22
2.20 The facial landmarks for detecting the eyes through Dlib. Figure

from [45] . 23
2.21 Lines for detecting open and closed eyes. Figure from [45] 23
2.22 Screenshot of Eyes Position Estimator with MediaPipe 24
2.23 Screenshot of Gaze Tracking . 24
2.24 Steps of eye isolation in GazeTracking. Figure from [47] 26
2.25 Impact of thresholding for detecting eyes. Figure from [47] 26

3.1 The output of all models with ground truth for calculating accuracy 28
3.2 Daylight . 29
3.3 With glasses . 29
3.4 Low light . 29
3.5 The recorded videos in three different conditions 29
3.6 Considered states for eyes and looking 29
3.7 Accuracy of frameworks for gaze tracking and blinking 30
3.8 Value of gaze-angle-x column(looking right, left, center) in OpenFace

for frequent blinking video . 31
3.9 OpenFace output for gaze-angle-x versus ground truth 31
3.10 GazeTracking output for looking versus ground truth 31
3.11 Eye landmarks. Figure from [44] . 33
3.12 CSV output of OpenFace . 33

4.1 AUs. Figure from[63] . 39
4.2 Presence and intensity of AUs Detected by OpenFace 40
4.3 The emotion and gaze direction of the subject are displayed by the

GazeTracking application. 41
4.4 Structure of the Emotion Detector code. Figure from [64] 41
4.5 Visualization of the Tensorflow model for detecting facial expression

by the Netron app . 43
4.6 Frequency of Emotions in four sample recorded videos 44
4.7 Live webcam facial emotion detector in OpenFace 44

5.1 The workflow of the studied approach. Figure from [24] 45
5.2 Running the OpenFace on the three recorded videos 49
5.3 From the charts displayed, it is possible to notice that (a) is aligned

with the ground truth of engagement (b) 50
5.4 Python code for computing the standard deviation on an input column 51
5.5 standard deviation for gaze value in sample video 1 52

viii

5.6 standard deviation for gaze value in sample video 2 52
5.7 standard deviation for gaze value in sample video 3 53
5.8 Frequency of facial emotions in three samples; The dominant emotion

is Neutral. 53
5.9 Standard deviation of Blinking for three samples 54
5.10 The sum of standard deviations for blinking in comparison to the

ground truth . 54

ix

Chapter 1

Introduction

1.1 Background

In recent decades, E-learning and virtual education platforms have grown rapidly
[1], becoming an essential component of the academic strategy of the most impor-
tant higher education institutions in the world. During the COVID-19 outbreak,
practically all learning and meeting activities were moved to online environments
[2]. Online students participate in a variety of educational activities, such as
reading, writing, watching video lectures, taking online exams, and attending online
meetings. Participants in these educational activities indicate various levels of
engagement, such as boredom, confusion, and frustration [3]. To give feedback
to both instructors and students, online educators must precisely and efficiently
detect their online learners’ involvement status. For example, the teacher can adapt
and make lectures more interesting by asking questions to non-interacting students
to enhance their engagement. Since students in e-learning environments do not
speak most of the time, engagement detection algorithms could be used to extract
valuable information from solely visual input [4]. Such an operation is non-trivial
and subjective because annotators can perceive varying levels of engagement from
the same input video. Although e-learning has numerous advantages [5] it also
has several disadvantages when compared to traditional face-to-face education. An
example is an often reduced interaction between professors and students.

As a result, new e-learning platforms [6] enable the integration of novel tech-
nologies to determine various features such as attention level [7], heart rate [8],
emotional state [9], gaze tracking, and head pose [10]. Among these behavioral
modalities, estimating the level of attention of the students is particularly interesting
for e-learning platforms [11].

This information could be used, for example, to: i) adapt dynamically to the
environment and content [12] based on the attention level of the user, and ii)

1

Introduction

improve the educational materials and resources with a posterior analysis of the
e-learning sessions, e.g. detecting the most appropriate types of contents for a
specific student and adapting the general information to them [13].

On the other hand, since the ’70s, several studies have analyzed the relationship
between the eye blink rate and the cognitive activity of the person such as the
attention level [14] [15]. These studies suggest that lower eye blink rates can be
associated with high attention periods while higher eye blink rates are related to
lower attention levels. Consequently, eye blink detection can be a very useful tool
to estimate the students’ attention level and for improving e-learning platforms.
Furthermore, eye blink detection can be used for fraud/cheating/lies detection as
the eye blink rate decreases when cognitive demand increases [16].

There are two types of eye blink detection methods:

• Image-based approaches: in this case, the methods classify each individual
frame as open, closed, or the degree of eye closure [17] [18].

• Video-based: these methods take into account the temporal information
collected from the full sequence of frames [19] [20].

1.2 What is Engagement in E-Learning Environ-
ments?

Engagement is one of the qualitative measures in the learning process [21]. During
learning it assumes a three-dimensional structure [22] including:

1. behavioral engagement such as staying on task.

2. emotional engagement such as boredom.

3. cognitive engagement such as focused attention [21].

All of these variables are crucial in determining levels of engagement. Three promi-
nent approaches for measuring student engagement are self-reports, observational
checklists, and automated assessments [21]. Both self-reports and observational
checklists are still quite basic and unsuitable for real-time learning systems. En-
gagement may now be measured automatically through affective computing by
detecting students’ emotions. Smart systems for detecting students’ emotions have
been developed in the topic of affective computing. Some academics emphasize the
importance of monitoring students’ emotions and how these might be identified
as a reflection of student participation [21]. Automated measurements are based
on physiological and neurological sensor readings such as electroencephalography
(EEG), heart rate, and so on [23]. They can also rely on computer vision techniques

2

Introduction

such as facial expressions, gaze tracking, blinking, and so on. Based on our findings,
there will be chances to improve the accuracy of engagement measurements when
we employ more than one feature. Due to this reason, we suggest a new approach
that requires inexpensive equipment, works in real-time, and is based on established
technologies. It is based on the detection of the following features:

1. Gaze tracking.

2. Blinking frequency.

3. Facial expressions.

1.3 Our Idea
As mentioned earlier, facial expressions, blinking frequency, and gaze tracking
are key elements in determining whether or not a student is interested in the
remote learning topic. Therefore, in this thesis, we mainly focused on these
features. In terms of facial expression detection, a Convolutional Neural Network
(CNN) is used to recognize eight emotions that are now regarded as uniform across
cultures: anger, contempt, disgust, fear, happiness, neutrality, sadness, surprise.
The proposal consists of a system capable of accepting students’ videos as input or
a real-time stream via webcam and detecting their facial expressions, measuring
their blinking frequency, and tracking their gaze. Based on these analyses, it can
assess whether the student is engaged or distracted.

This study aims to improve the work made in [24] by including a gaze tracking
and eye blink detection to evaluate if they are essential factors for detecting whether
the student attending the remote lecture is focused or distracted.

1.4 Thesis Structure
The thesis is organized as follows:

• In Chapter 2 we will review the various techniques to face detection, landmark
detection, and blink detection, and then we introduce the frameworks we
discovered for gaze tracking and blink detection.

• In Chapter 3 we will talk about the recorded sample videos for testing and
the output of the frameworks.

• In Chapter 4 we will talk about the Facial Emotion Detector and Action
Units (AU).

3

Introduction

• In Chapter 5 we will briefly review Engagement and our system outcomes
on the long recorded videos.

• In Chapter 6 we will wrap up the work and discuss possible future develop-
ments.

4

Chapter 2

Extracting Features

2.1 Introduction
In this chapter, we will first discuss various approaches to Face Detection in Section
2.2, followed by Facial Landmarks Detectors in Section 2.6. Then we’ll look into
Blink Detection in Section 2.7, and ultimately at Studied Frameworks in Section
2.8 that handle both gaze tracking and blinking.

In particular, during this thesis, 4 models have been implemented from the
software available in the literature:

• OpenFace in Section 2.8.1.

• Gaze Controller Keyboard in Section 2.8.7.

• Eye Position Estimator with MediaPipe in Section 2.8.8.

• Gaze Tracking in Section 2.8.9.

2.2 Face Detection
Face detection is a subset of computer vision technologies that enables computers
to recognize and locate human faces in images or video streams. This is the first
and most essential stage in most computer vision applications that involve a face.
An excellent facial detector is a necessary starting point for numerous activities
involving the face, such as facial landmark detection, gender classification, atten-
dance, crowd analysis, face tracking, and face recognition. In our study, we need
to focus on landmark detection.

5

Extracting Features

2.2.1 Challenges for Face Detection
Occlusion, lighting, skin color, posture, facial expression, sunglasses, wearing masks,
and other factors can hinder the performance of a Face Detector. Since the students
in our study are in a constrained environment and in front of the laptop, we
evaluated a few of these obstacles in our recorded videos for detecting the face,
such as whether the student is wearing glasses and is in a low-light environment.

Figure 2.1: Timeline of the evolution of face detection algorithms. Figure from
[25]

2.3 Classical Algorithms of Face Detection

2.3.1 Haar Cascade
In 2001, researchers Paul Viola and Michael Jones introduced the ViolaJones face
detector [26], one of the first significant breakthroughs in this field. By utilizing the
line or edge-detection features proposed in the ViolaJones detector, Haar Cascades
provided a breakthrough in facial detection. Though it considerably improved
detection speed and accuracy, it had limitations and failed when required to detect
faces in noisy images.

There have been numerous advancements over the years. The Haar Cascade
method uses for both face detection and eye detection. The classifier analyzes the
pixel intensities and attempts to detect numerous specified features in the image.
It can be certain that an object exists if it finds a sufficient number of matches
for a certain region. Using OpenCV’s Cascade Classifier function, we can easily
import the available Haar Cascade Classifier XML files.
For more information, check the Haar-cascade Detection in OpenCV documentation.
[27].

6

Extracting Features

(a) Haar Cascade features (b) Detecting face features

Figure 2.2: Haar Cascade Classifier. Figure from [27]

2.3.2 Dlib-HOG
Dlib is a popular Face Detector that combines the standard Histogram of Gradients
(HoG) feature with a linear classifier model, an image pyramid, and a sliding
window detection approach. Dlib employs five HOG filters: front-facing, left-facing,
right-facing, front-facing but rotated left, and front-facing but rotated right.

Figure 2.3: Dlib-HOG. Figure from [25]

2.4 Face Detectors Based on Deep Learning

2.4.1 SSD
Single Shot MultiBox Detector [28] name reveals most of the details about the
model. It finds the object in a single pass through the input image, as opposed
to other models that traverse the image numerous times to produce an output

7

Extracting Features

detection.

The Backbone model is a feature map extractor that is pre-trained image
classification. The SSD head is made up of stacked convolutional layers and is
inserted to the top of the backbone model. This produces the result in the form of
bounding boxes over the objects. The numerous items in the image are detected
by these convolutional layers.

Figure 2.4: Structure of SSD. Figure from [25]

2.4.2 MTCNN

MTCNN, or Multi-Task Cascaded Convolutional Neural Network. This widely
used model, published in 2016, is made up of neural networks linked in a cascade
pattern.[29]

The proposed MTCNN architecture is made up of three CNN phases. The
first step, P-Net (Proposal Network), uses a shallow CNN to generate candidate
windows quickly. The windows are then refined in the R-Net (Refine Network)
stage by rejecting several non-face bounding boxes using a more complicated CNN.
Finally, the O-Net (Output Network) stage refines the result with a more robust
CNN and outputs five facial landmark positions.[29]

2.4.3 Dual Shot Face Detector

Dual Shot Face Detector is an innovative Face Detection technique that addresses
the three primary areas of Facial Detection: Improved feature learning, progres-
sive loss design, and anchor assign-based data augmentation are all examples of
improvements.[30]

8

Extracting Features

Figure 2.5: MTCNN. Figure from [25]

Figure 2.6: Dual Shot Face Detector. Figure from [30]

2.4.4 RetinaFace

RetinaFace is a practical single-stage state-of-the-art face detector that is part of
the InsightFace project from DeepnInsight, which is also credited with other top
Face-Recognition techniques such as ArcFace, SubCenter ArcFace, PartialFC, and
other facial applications.[31]

9

Extracting Features

2.4.5 MediaPipe
Face Detection by MediaPipe is an ultrafast face detection system with 6 land-
marks and multi-face support. It is built on BlazeFace [32], a lightweight and
high-performance face detector designed specifically for mobile GPU inference.

Because of super-realtime performance of the detector, it can be used in any
live viewfinder experience that requires an accurate facial region of interest as
an input for other task-specific models like 3D facial keypoint estimation (e.g.,
MediaPipe Face Mesh), facial features or expression classification, and face region
segmentation.[33]

Figure 2.7: Machine learning solutions by MediaPipe. Figure from [33]

2.4.6 YuNet
Traditionally, OpenCV was equipped with face detectors such as Haar cascades and
HOG detectors, which performed well for frontal faces but failed in other situations.
This difficulty was solved in the most current release of OpenCV (4.5.4 Oct 2021),
which included a face detection model called YuNet.

It is a face detector based on CNN. It is a lightweight and quick model. It may
be installed on nearly any device with a model size of less than one megabyte. It
uses MobileNet as its backbone and has a total of 85000 parameters. [34]

10

Extracting Features

2.5 Performance Comparison of Face Detectors
2.5.1 Average Precision (AP)
A measure called Average Precision is used to assess the efficacy of object detection
and localization algorithms (AP). Choosing a confidence value for your application
can be hard and subjective. The area under the PR curve defines Average precision,
an important performance metric that tries to reduce the dependency on selecting
a single confidence threshold value. AP transforms the PR Curve to a single scalar
value. When both precision and recall are high, the average precision is high; when
one is poor, the average precision is low across a variety of confidence threshold
values. AP has a value between 0 and 1 [35].

AveragePrecision(AP) =
1Ú

r=0

p(r)dr

Figure 2.8: The area under the Precision-Recall curve is defined as the average
precision.
The tables below 2.1 2.2 compare all of the previous Face-Detection models
in terms of Average Precision (AP) and inference speed in Frames Per Second (FPS).

System Configuration:

• Processor: Intel(R) Xeon(R) CPU.

• Operating speed: 2.20 GHz.

• Total RAM: 12.69 GB.

The authors used the Tesla P100-16GB GPU on the Google Colab.[25]

2.6 Facial Landmarks
Facial landmarks are used to identify and portray prominent facial features such
as the eyes, brows, nose, mouth, and jawline. The challenge of detecting facial
landmarks is a sub task of the shape prediction. A shape predictor attempts to
localize important areas of interest across an input image and normally a ROI
(Region Of Interest) that specifies the object of interest.

11

Extracting Features

Model FPS(Colab GPU) FPS(Colab CPU)
Haar cascade – 19.95

Dlib – 33.92
SSD 19.90 15.58

MTCNN 2.11 1.81
MediaPipe 323.63 225.34

RetinaFace Resnet50 72.24 1.43
RetinaFace MobilenetV1 69.50 28.89
Dual Shot Face Detector 18.89 0.22

YuNet – 49.43

Table 2.1: Comparison of the models, based on FPS. Data from [25]

Model AP@0.5
SSD 0.931

MTCNN 0.915
MediaPipe 0.743

RetinaFace Resnet50 0.994
RetinaFace MobilenetV1 0.994
Dual Shot Face Detector 0.989

YuNet 0.994

Table 2.2: Comparison of the models, based on average precision at IoU threshold
of 0.5. Data from [25]

Our goal is to detect important facial features on the face using shape prediction
methods. Detecting facial landmarks is a two-step process:

• Step 1: Localize the face in the image.

• Step 2: Detect the key facial structures on the face ROI.

Face detection Step1 : can be achieved through one of the methods explained before.
We could use OpenCV’s built-in Haar cascades. We might apply a pre-trained
HOG + Linear SVM object detector specifically for face detection. Alternatively,
we might even use deep learning-based algorithms for face localization. In any case,
what matters is that we extract the face bounding box (i.e., the (x, y)-coordinates of
the face in the image). Given the face region, we can then apply Step 2: detecting
key facial structures in the face region, that in our case is the eyes.

12

Extracting Features

2.6.1 Dlib’s Facial Landmark Detector
Dlib is a modern C++ toolkit that contains machine learning techniques and tools
for developing complex C++ software to deal with real-world challenges [36]. The
facial landmark detector in the Dlib package is an implementation of this work:
one-millisecond face alignment with an ensemble of regression trees [37].
This method starts by using:

1. A training set of labeled face landmarks on an image. These images are
manually labeled, with particular (x, y)-coordinates of regions surrounding
each face component specified.

2. Priors, or more specifically, the probability of the distance between pairs of
input pixels.

Given this training data, an ensemble of regression trees is trained to estimate
the facial landmark positions directly from the pixel intensities (i.e., no “feature
extraction” is taking place). As a result, a facial landmark detector with high-
quality predictions can be utilized to detect facial landmarks in real-time; see this
as an example 2.9.

Figure 2.9: Output of Dlib’s face landmarks on the images of HELEN dataset.
Figure from [37].

2.6.2 Understanding Dlib’s Facial Landmark Detector
The pre-trained facial landmark detector in the Dlib package estimates the position
of 68 coordinates that match to facial structures on the face. These indexes of the
68 coordinates can be visualized in Figure 2.10.
These annotations are part of the 68-point iBUG 300-W dataset, which was used
to train the Dlib facial landmark predictor. Other face landmark detectors exist,
such as the 194-point model that can be trained on the HELEN dataset. The same
Dlib framework may be used to train the shape predictor on the input training

13

Extracting Features

Figure 2.10: The 68-face landmark coordinates from the iBUG 300-W dataset
are graphically represented.

data regardless of the dataset - helpful if you need to train your face landmark
detectors or your shape predictor. Dlib’s 68-point facial landmark detector tends
to be the most popular in computer vision due to its speed and reliability.

2.7 Blink Detection
2.7.1 Understanding the Eye Aspect Ratio
As previously stated, facial landmark detection can be used to locate important
facial regions such as the eyes, brows, nose, ears, and mouth. This also suggests
that by knowing the indexes of specific facial regions, we can extract certain facial
structures. We are only interested in two sets of face components for blink detection:
the eyes. Each eye is represented by six (x, y)-coordinates, starting at the left
corner of the eye (as if looking at the person) and moving clockwise around the
rest of the region. These coordinates have a relation between width and height.
Where p1,...,p6 are 2D facial landmark locations.[38]

EAR = ||p2 − p6|| + ||p3 − p5||
2||p1 − p4||

This equation’s numerator computes the distance between vertical eye landmarks. In
contrast, the denominator computes the distance between horizontal eye landmarks,
with the denominator correctly weighted because there is only one set of horizontal
points but two sets of vertical points.
The eye aspect ratio (EAR) is about constant while the eye is open but rapidly
drops to zero when the eye blinks. We can skip image processing procedures by

14

Extracting Features

employing this simple equation and only rely on the ratio of ocular landmark
distances to determine if a person is blinking.

2.7.2 Real-Time Eye Blink Detection using Facial Land-
marks

The eye blink is a fast closing and reopening of a human eye. Each individual has
a little bit different pattern of blinks. The pattern differs in the speed of closing
and opening, the degree of squeezing the eye, and the blink duration. The eye
blink lasts approximately 100-400 ms.

We use state-of-the-art facial landmark detectors to localize the eyes and eyelid
contours. We derive the eye aspect ratio (EAR) from the landmarks detected in
the image to estimate the eye-opening state. Since the per-frame EAR may not
necessarily recognize the eye blinks correctly, a classifier that considers a larger
temporal window of a frame is trained.

Each video frame has its eye landmarks recognized. The eye aspect ratio (EAR) is
computed as the eye’s height-to-width ratio. where p1,..., p6 are the two-dimensional
landmark locations indicated in the figure 2.11. The EAR is mostly constant when
an eye is open and gets close to zero while closing an eye.

Figure 2.11: For multiple video sequence frames, the eye aspect ratio EAR is
plotted. There is only one blink. Figure from [38]

2.8 Studied Frameworks
2.8.1 Model 1: OpenFace
OpenFace 2.0 is a tool for computer vision and machine learning researchers, the
affective computing community, and anyone interested in developing interactive

15

Extracting Features

apps based on facial behavior analysis. OpenFace 2.0 is an update of the OpenFace
toolbox that can identify more accurate facial landmarks, estimate head
posture, recognize facial activity units, and estimate eye gaze [39].

This tool is capable of real-time performance and can run from a simple webcam
without any specialist hardware. Finally, the source code for training and running
models is freely available for research purposes.

Figure 2.12: OpenFace 2.0 implements modern facial behavior analysis algorithms,
including facial landmark detection, head pose tracking, eye gaze, and facial action
unit recognition. Figure from [39]

2.8.2 OpenFace Pipeline
This section describes the fundamental technologies that OpenFace 2.0 use for
facial behavior analysis. It uses Convolutional Experts Constrained Local Model
(CE-CLM) [40] for facial landmark detection and tracking. Example landmark
detections can be seen in Figure 2.14.

16

Extracting Features

Figure 2.13: The OpenFace 2.0 facial behavior analysis pipeline includes landmark
detection, head posture estimation, eye gaze estimation, and recognition of facial
action units. All these systems’ outputs (shown in green) can be saved to disk or
transmitted in real-time via the network. Figure from [39]

OpenFace 2.0 novelties: C++ implementation of CE-CLM in OpenFace 2.0
includes several speed optimizations that enable real-time performance. These
include deep model simplification, multiple innovative hypotheses, and sparse
response map computation.

Figure 2.14: Example landmark detection from OpenFace 2.0. It is possible to
notice its capability to deal with profile faces and occlusions. Figure from [39]

2.8.3 Eye gaze Estimation in OpenFace

To estimate eye gaze, OpenFace2 uses a Constrained Local Neural Field (CLNF)
landmark detector [41] to detect eyelids, iris, and the pupil. For training the
landmark detector, it used the SynthesEyes training dataset [42]. It uses the
detected pupil and eye location to compute each eye’s gaze vector individually.

17

Extracting Features

2.8.4 Facial Expression Recognition in OpenFace
OpenFace 2.0 detects facial expressions by measuring the intensity and presence of
facial action units (AU). It employs an approach based on a recent AU identification
framework developed by Baltrusaitis et al. [43] which employs linear kernel Support
Vector Machines. OpenFace 2.0 includes a direct implementation with a few
changes that allow it to operate better on natural video sequences by employing
person-specific normalization and prediction correction. While this may appear to
be a simple and out-of-date model for AU recognition at first glance, the OpenFace
experiment shows that it is competitive, even compared to newer deep learning
algorithms, while maintaining a significant speed advantage. Facial expression
recognition models are trained on various datasets where the AU labels overlap. As
a result, OpenFace 2.0 recognizes the AUs listed 2.15. For our research, we need to
read the AU45 value when the eyes blink.

2.8.5 OpenFace Interface
OpenFace 2.0 is an easy-to-use toolbox for the analysis of facial behavior. There
are two main ways of using OpenFace 2.0: Graphical User Interface (for Microsoft
Windows) and command line (for Microsoft Windows, Ubuntu, and Apple macOS).
As the source code is available, it is also possible to integrate it into any C++, C,
or Matlab-based project.

To make the system easier to use, they provide sample Matlab scripts demonstrating
how to extract, save, read and visualize each behavior. It can operate on real-
time data video feeds from a webcam, recorded video files, image sequences, and
individual images. It is possible to save the outputs of the processed data as CSV
files in case of facial landmarks, shape parameters, head pose, action units, and
gaze vectors.[39] Check out the GitHub repository of the project for details on how
to install, compile, and use it[44].

2.8.6 OpenFace Code Layout
The OpenFace software layout is described in this section.

• Libraries:

– Local: The actual section of code that contains the relevant computer
vision algorithms.

– CppInterop: Wrappers around C++ code for C sharp bindings.
– LandmarkDetector: The CE-CLM, CLNF, and CLM algorithms together

with face tracking code.

18

Extracting Features

Figure 2.15: List of AUs in OpenFace 2.0. It predicts the intensity and presence
of all AUs, except for AU28, for which only presence predictions are made. Figure
from [39]

– FaceAnalyser: Facial Action Unit detection and some useful code for
extracting features for facial analysis.

– GazeAnalyser: Code for extracting eye gaze.
– Utilities: Utility code for image and video reading, result recording, result

visualization, and rotation and image manipulation.
– 3rdParty: A place for 3rd party libraries.
– CameraEnumerator: Useful utility for listing and naming connected

webcams
– OpenCV3.4: Prepackaged OpenCV 3.4 library that is used extensively

internally to provide support for basic computer vision functionality.

19

Extracting Features

Figure 2.16: OpenFaceOffline running an analysis

– dlib: A header only dlib library (includes the face detector used for
in-the-wild images).

– OpenBLAS: Prepackaged OpenBLAS code for fast matrix multiplication

• Executable: The runner and executables that show how to use the libraries
for facial expression and head pose tracking.

– FeatureExtraction: Main workhorse executable for sequences; extracting
all supported features from faces: landmarks, AUs, head pose, gaze,
similarity normalized faces and HOG features.

– FaceLandmarkImg: Extraction of all supported features from faces: land-
marks, AUs, head pose, gaze, similarity normalized faces, and HOG
features.

– FaceLandmarkVid: Running single-person landmark detection and gaze
extraction on videos on disk or from a webcam.

– FaceLandmarkVidMulti: Tracking multiple faces in sequences and extract-
ing their features (from a webcam, video file, or image sequence).

– releases: Scripts for packaging the Windows binaries into a release.

• GUI: the Windows GUI executables

– HeadPose live: Tracking and recording head pose.
– OpenFaceDemo: Nice visualization of OpenFace results from a webcam.

20

Extracting Features

– OpenFaceOffline: GUI for processing videos, image sequences, collections
of images, and webcam feeds, same functionality as that of FeatureEx-
traction.

The screenshots of the GUI are shown below; for our experiment, we utilized the
OpenFaceOffline executable, which has all of the functionality we require, such as
preserving the analysis results and supporting the import of recorded videos.

Figure 2.17: OpenFace in Visual studio 2017

Figure 2.18: Head pose live

21

Extracting Features

Figure 2.19: OpenFace demo

2.8.7 Model 2: Gaze Controlled Keyboard
This project Gaze Controlled Keyboard is a part of this project: [45] written
in Python, which aims to create a virtual keyboard that can be controlled by eye
tracking and blinking. The Opencv, Numpy, and Dlib libraries are used for face
detection and eye localization in real-time camera frames.

We used part 4 to track the eye gazing to the right, left, center, and blinking.
We stored the output of each frame in a CSV file for later study. Using the face
landmarks detection approach, we can find 68 specific landmarks of the face. To
each point, a specific index is assigned. We need two detect the two eyes separately:

• Left eye points: (36, 37, 38, 39, 40, 41)

• Right eye points: (42, 43, 44, 45, 46, 47)

An eye is blinking when:

• The eyelid is closed.

• We can not see the eyeball anymore.

• The bottom and upper eyelashes connect.

Also, remember that all these activities must occur in a short period (a blink of an
eye takes around 0.3 to 0.4 seconds); otherwise, the eye is just closed.

22

Extracting Features

Figure 2.20: The facial landmarks
for detecting the eyes through Dlib.
Figure from [45]

Figure 2.21: Lines for de-
tecting open and closed eyes.
Figure from [45]

2.8.8 Model 3: Eyes Position Estimator with MediaPipe
This project Eyes Position Estimator Mediapipe [46] used the MediaPipe
python library for detecting facial landmarks. It works through below steps:

1. Detecting facial landmarks with MediaPipe.

2. Identifying eye Landmarks.

3. Draw eyes, eyebrows, lips, and a face oval.

4. Recognizing the blinks.

5. Counting blinks.

6. Extracting eyeballs from the frame using masking techniques.

7. Thresholding eyes to distinguish between black and white pixels.

8. Separate each eye into three pieces (right piece, centerpiece, and left piece).

9. Counting and determining the position of black pixels.

23

Extracting Features

Figure 2.22: Screenshot of Eyes Position Estimator with MediaPipe

2.8.9 Model 4: Gaze Tracking
Gaze tracking [47] is a webcam-based eye-tracking system. It provides the precise
position of the pupils as well as the gaze direction, in real-time. It used NumPy,
OpenCV, and Dlib libraries. Except for OpenFace, we have added the option to
save the output to a CSV file for all the models we have chosen.

Figure 2.23: Screenshot of Gaze Tracking

The algorithm is simple and operates in the following steps:
• Separate the eyes from the rest of the face. This is accomplished by capturing

24

Extracting Features

certain facial landmarks with shape predictor 68 face landmarks.dat;
The process is performed using the eye.py file.

• Detect the iris using pupil.py contours.

• Use gazetracking.py to estimate the gaze position by measuring the iris
coordinates.

These steps are used to isolate the eyeballs:

• Removing any noise by slightly blurring the image.

• Backlights are being eliminated from the image by degrading it.

• Binarize the image such that only black and white pixels remain (no grayscale).

• Determine the centroid by detecting the contour (the pupil position).

However, a threshold value should be applied when binarizing the image to
distinguish between white and black pixels. This value varies greatly depending on
the people and webcams (about 10 to 75). Pupil detection can be very accurate if
the value is correct or wildly inaccurate if the value is incorrect. To avoid specifying
a threshold, an automatic calibration method is implemented to determine the
appropriate threshold value for the user/webcam.

The author of GazeTracking conducted some research and discovered that the iris
is always around 48 percent of the eye’s surface in all people (when they are looking
at the center). Threshold levels for binarizing images might vary significantly from
person to person, while iris diameters are generally stable.
The following is how automated calibration works:

• The frames are sent to the Calibration class during the first 20 frames.

• Determine iris sizes by binarizing the frame with different threshold values
ranging from 5 to 100.

• The value that generates the closest iris size to 48 percent is stored for each
frame.

• After evaluating the first 20 frames, the final threshold value is the average of
the best 20 values [47].

In the next chapter, the outcome of the models for recorded videos will be discussed.

25

Extracting Features

Figure 2.24: Steps of eye isolation in GazeTracking. Figure from [47]

Figure 2.25: Impact of thresholding for detecting eyes. Figure from [47]

26

Chapter 3

Test and Result of Models

This chapter discusses the recorded sample videos for testing in Section 3.1 and
annotation of the ground truth in Section 3.1.2, followed by the outputs of the
frameworks in Section 3.2 and lastly, the selected frameworks in Section 3.3.

3.1 Recorded Sample Videos
The reliability of the selected frameworks was tested under four conditions in a
constrained environment:

• Daylight environment.

• Low light environment.

• When the subject is wearing glasses.

• When the subject blinks more frequently.

Figure 3.5 represents these conditions. The ground truth was created by annotating
manually, for each frame, the expected values in terms of eye-gazing and eye-
blinking. Each value was written in a CSV file to calculate how accurate the
selected frameworks are.

3.1.1 Data Logging
The log files generated by each one of the benchmarks contain information about
the frame number within the analyzed video, timestamp, blinking state, and looking
direction. Table 3.1 shows the corresponding state value for blinking and looking.
These columns contain the output of the outputs of the framework, while others
were added to allow us to compare the result of the frameworks to each other.
Follows a numerical description of the content of the CSV file:

27

Test and Result of Models

• Numerical value:

– 0 if the person is looking to the center.
– 1 if the person is looking to the right.
– 2 if the person is looking to the left.
– -1 if the person is blinking.

• Blinking accuracy: it compares if the value is equal to the ground truth (true)
or not (false).

• Looking accuracy: it compares if the value is equal to the ground truth (true)
or not (false).

Figure 3.1 shows the excel file with all these columns.

Looking state Value
blink -1
center 0
right 1
left 2

Table 3.1: Video frames annotations of the CSV files

Figure 3.1: The output of all models with ground truth for calculating accuracy

3.1.2 Ground Truth Annotation
We extracted the frames of videos by using a Python script and we recorded the
corresponding value for the gaze and blink state in the CSV by viewing each frame
by hand. In our study we only considered looking left, center, and right as poses,
Figure shows 3.6.

28

Test and Result of Models

Figure 3.2: Daylight Figure 3.3: With glasses Figure 3.4: Low light

Figure 3.5: The recorded videos in three different conditions

(a) Looking Center (b) Looking Left

(c) Looking Right (d) Blinking

Figure 3.6: Considered states for eyes and looking

3.1.3 Processing Data in Excel
We used some formulas to unify the output of the models in Excel.

• IF is used for mapping the value of gaze-angle-x column to three labels:
center, right, and left. The threshold values are the following: Center <=0
and >=-0.05, Right <=-0.2, and Left >=0.05.

• IFS is used for mapping the categorical values of looking to numerical. The
values for Center, Right, and Left are 0, 1, 2.

• CountIF is used to count the number of correct predictions in comparison to
ground truth.

29

Test and Result of Models

3.2 Frameworks Outputs
3.2.1 Classification Accuracy
Accuracy simply evaluates how often the classifier predicts accurately. It is defined
as the proportion of correct forecasts to total predictions.

Accuracy = TP + TN
TP + TN + FP + FN

3.2.2 Frameworks Accuracy
This section reports the accuracy of the models in four different conditions.

(a) Frequent blinking (b) Light environment with glasses

(c) Light environment (d) Dark environment with glasses

Figure 3.7: Accuracy of frameworks for gaze tracking and blinking

3.2.3 OpenFace Output Format
The OpenFace output file includes columns for gaze direction values, landmark
locations in 2D, head pose, and rigid and non-rigid shape parameters; the details
of each column can be found in the OpenFace GitHub repository [44]. Starting

30

Test and Result of Models

from its output file, for our purpose, we only considered the following columns:
frame, timestamp, gaze_angle_x, AU45c

Figure 3.8: Value of gaze-angle-x column(looking right, left, center) in OpenFace
for frequent blinking video

Figure 3.9: OpenFace output for gaze-angle-x versus ground truth

Figure 3.10: GazeTracking output for looking versus ground truth

31

Test and Result of Models

3.2.4 Basic
• frame The number of the frame.

• timestamp The timer of video being processed in seconds (in case of sequences).

• face_id The face id (in case of multiple faces)

• confidence How confident is the tracker in current landmark detection

• success Is the track successful (is there a face in the frame, or did the model
track it well)

3.2.5 Gaze Related
• gaze_0_x, gaze_0_y, gaze_0_z Direction of eye gazing (normalized) vector

in world coordinates for eye 0; eye 0 is the image’s leftmost eye.

• gaze_1_x, gaze_1_y, gaze_1_z Direction of eye gazing (normalized) vector
in world coordinates for eye 1; eye 1 is the image’s rightmost eye.

• gaze_angle_x, gaze_angle_y The average of two eyes’ gaze directions in
radians in world coordinates. It is a transformation of the gaze vectors into a
more user-friendly format. As illustrated in Figure 3.8, when a person looks
left-right, the gaze_angle_x changes (from positive to negative).

If the person is looking up-down this will result in change of gaze_angle_y
(moving from negative to positive), if the person is looking straight ahead
both of the angles will be close to 0 (within measurement error).

• eye_lmk_x_0, eye_lmk_x_1,...eye_lmk_x55, eye_lmk_y_1,...
eye_lmk_y_55 location of 2D eye region landmarks in pixels.
This graphic 3.11 shows the landmark index.

• eye_lmk_X_0, eye_lmk_X_1,...eye_lmk_X55, eye_lmk_Y_0,...
eye_lmk_Z_55 location of 3D eye region landmarks in millimeters.
This graphic 3.11 shows the landmark index.

3.2.6 Action Units
• The system can detect the intensity (from 0 to 5) of 17 AUs:

AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r
AU12_r, AU14_r, AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r
AU45_r

32

Test and Result of Models

Figure 3.11: Eye landmarks. Figure from [44]

• And the presence (0 absent, 1 present) of 18 AUs:
AU01_c, AU02_c, AU04_c, AU05_c, AU06_c, AU07_c, AU09_c, AU10_c,
AU12_c, AU14_c, AU15_c, AU17_c, AU20_c, AU23_c, AU25_c, AU26_c,
AU28_c, AU45_c

We need to value AU45_c, which detects the blink, for our requirement.

Figure 3.12: CSV output of OpenFace

3.3 Selected Frameworks
We need a framework that is very good at detecting facial landmarks even when
the face is not in front of the screen, as well as having a decent average accuracy
for gaze tracking and blinking and running quickly and smoothly for long recorded
videos. Based on our results in Section 3.2.2, we chose OpenFace and Gaze
tracking as our basic frameworks for going forward and using them for integrating
with an emotion detector in C++ and Python language to have our required system
to detect student engagement.
The following are the reasons why we chose OpenFace:

• A more accurate facial landmark detection system.

33

Test and Result of Models

• Accurately tracking gaze and eye.

• Complete output for our analysis or future works, in terms of head position,
facial expression, and other detailed outputs of video.

• Real-time performance without the need for a GPU.

The following are the reasons why we chose GazeTracking:

• High accuracy for gaze tracking and blink detection as compared to other
projects

• Simple to integrate with Emotion Detector.

34

Chapter 4

Emotion Detector Model

In this chapter, we will learn about Facial Expression in Section 4.1, the selection
of Neural Networks for Emotion Detectors in Section 4.2, and later the possibility
of doing emotion detection by AUs in Section 4.3.2, and finally in Section 4.4 the
integration of the selected models from the previous chapter with the Emotion
detector.

4.1 Facial Emotion Recognition
Facial Emotion Recognition (FER) is a technique that assesses emotions from
various sources, including images and videos. It is part of a technology family
known as affective computing, a multidisciplinary field of study that uses Artificial
Intelligence technology to recognize and analyze human emotions and affective
states.

Facial expressions are nonverbal means of communication that reveal human
emotions. Decoding such emotional expressions has been a research interest
for decades, not just in psychology (Ekman and Friesen 2003 [48]) but also in
Human-Computer Interaction (Abdat et al. 2011 [49]).

FER can also be used with biometric identification. Its accuracy can be improved
by technology that analyzes many sorts of sources such as voice, text, health data
from sensors, or blood flow patterns inferred from images. Potential applications
for FER include a wide range of applications, some of which are given below in
groupings.

• Provision of personalized services.

• Customer behavior analysis and advertising.

35

Emotion Detector Model

• Healthcare.

• Crime detection.

• Monitoring student attention.

4.1.1 State of the Art
As humans, we are instinctively able to determine the emotions that our fellows
are feeling. It is well known that facial expressions are a fundamental part of this
social ability. In the 1970s, the American psychologist Paul Ekman scientifically
studied this phenomenon. In 1972 [50], he published the list of the six primal
emotions shared among all human groups, independently from their culture: anger,
disgust, fear, happiness, sadness, and surprise. In the following years, he and other
researchers added to this list other emotions.
For our purposes, we studied only eight basic emotions: the six proposed in 1972,
plus contempt and neutrality. Ekman also developed the Facial Action Coding
System (FACS) [51].

Facial expressions are made possible by facial muscles, which can be moved
individually or in groups. These groups of muscular movements are called Action
Units (AUs). As a result, facial expressions can be classified using a weighted
evaluation of those AUs. These evaluations make it possible to determine facial
expressions more objectively. However, the same emotion can be shown with
different groups of AUs to make things even more complex. Thus, there is
significant intraclass variation. If the considered facial expression is labeled by
analyzing the AUs, the picture is marked as FACS encoded [52].

Furthermore, facial expressions can be posed or spontaneous: while the latter is
more common to see in everyday life, the former is a more caricatural, exaggerated
version of the same. Various scientists have worked on this topic over the years;
hence, nowadays, many pictures of posed and spontaneous facial expressions,
organized in databases, are available in the literature [52].

4.2 Choice of the Neural Network for Facial Ex-
pressions

To perform our task, we searched for some of the best neural networks explicitly
created for facial expressions recognition; our choice is the model used in this paper:
Automatic Emotion Recognition for the Calibration of Autonomous
Driving Functions [52]. They chose the most suitable neural network proposed in

36

Emotion Detector Model

this paper: [53] Physiological Inspired Deep Neural Networks for Emotion
Recognition. The chosen neural network is trained using single databases and
database ensembles. The layers of this neural network are shown 4.5. In this [52]
work they used the following databases:

• The Extended Cohn-Kanade (CK+) database contains 593 sequences from
123 subjects depicted in each of the eight emotional states. Each sequence
begins in a neutral condition and progresses to the peak of the considered
emotion. FACS codes are assigned to 327 of the 593 sequences. [54] [55]

• The Facial Expression Recognition 2013 (FER2013) Database [56] is composed
of 35,887 pictures of 48 × 48 pixels retrieved from the Internet. Since the
original labeling method has demonstrated itself erroneously in some cases, a
newer set of annotations named FER+ [57] was released in 2016. It contains
labels for 35,488 images since the remaining 399 do not represent human faces
and adds contempt for emotion.

• The Japanese Female Facial Expression (JAFFE) collection [58] contains
213 grayscale photographs of 10 Japanese women performing posed facial
expressions. 60 Japanese volunteers assessed each image on six emotional
descriptors.

• The Multimedia Understanding Group (MUG) database [59] contains photos
of 86 models posing six emotions: anger, disgust, fear, happiness, sadness, and
surprise. The images of this database are taken inside a photographic studio,
thus in controlled illumination conditions.

• The Radboud Faces Database (RaFD) [60] is a collection of photos of 67
models, posing all eight emotional states considered in this paper. Each
picture was taken from five different angles simultaneously.

• SFEW 2.0 (static facial expression in the wild) collection is made up of frames
from various movies representing people in seven different emotional states:
anger, disgust, fear, happiness, neutrality, sadness, and surprise. They decided
to use only 1694 labeled aligned images.[61]

• The FACES database has 2052 photos of 171 people. They performed each
facial expression twice: anger, contempt, fear, happiness, neutrality, and
sadness. The actors are further separated into three age groups.[62]

37

Emotion Detector Model

4.2.1 Neural Networks Training
For the training of the chosen neural network, they [52] chose the following databases
to be able to compare the results of the implementations with those obtained by
the author of neural network [53]:

• CK+

• FER2013

FEDC frequently uses the following two database ensembles:

• Ensemble 1 is made up of all the labeled photos from all of the FEDC-supported
databases;

• Ensemble 2, composed of all the posed facial expressions images from the
databases CK+, FACES, JAFFE, MUG, and RaFD.

Table 4.1 indicates the number of pictures for each emotion in the chosen databases.

Emotion Ensemble 1 Ensemble 2 CK+ FER2013
Anger 4328 981 45 4953 3111a

Contempt 788 572 18 0 216a

Disgust 1340 1022 59 547 248a

Fear 1887 950 25 5121 819a

Happiness 10,676 1089 69 8989 9355a

Neutrality 14,196 1070 123 6198 12,906a

Sadness 5524 953 28 6077 4371a

Surprise 5254 656 83 4002 4462a

Table 4.1: Available pictures for each emotion in the chosen databases [52]
aFER+ annotations

4.3 Facial Action Coding System
The Facial Action Coding System (FACS) categorizes human facial actions based
on how they appear on the face. FACS can code practically any physically possible
facial expression, breaking it down into the individual Action Units (AU) that
formed the emotion. It is a commonly used criterion for objectively describing
facial expressions.[44] You can learn more about FACS and AUs here [63]

38

Emotion Detector Model

Figure 4.1: AUs. Figure from[63]

4.3.1 Intensity and Presence of AUs in OpenFace
As we mentioned in this Section 2.8.4, the OpenFace can detect the AUs; it can be
described in two ways:

• Presence: If AU is visible in the face (for example, AU01-c).

• Intensity: On a 5-point scale, how intense is the AU (from minimum to
maximum).

OpenFace provides both of these scores. For the presence of AU01, the column
AU01-c in the output file would encode zero as not present and one as present. The
intensity of AU01 would be represented in the output file by the column AU01-r,
which would have values ranging from 0 (not present), 1 (present at minimal
intensity), and 5 (present at highest intensity), with continuous values in between.
Because the intensity and presence predictors were trained independently and on
slightly different datasets, their predictions may not always be equivalent. For
more information, check out the datasets used to train the model.[44]

4.3.2 Can AUs be used to detect facial emotions?
One of our concerns was whether we could map the AUs to certain facial emotions.
Because OpenFace provides this output for each frame. OpenFace does not predict
basic emotions from AUs since the mapping is more complex than the Wikipedia
website says [63]. Emotional expression is very contextual, and the same expression
might mean many things depending on the situation, culture, age, and other factors
of the person displaying it.

39

Emotion Detector Model

Figure 4.2: Presence and intensity of AUs Detected by OpenFace

4.4 Integrated System
For running the selected neural network for our purpose, we used a utility code:
Real-time Facial Emotion Detection using deep learning in Python [64].
The project used OpenCV and Tensorflow libraries. We integrate this project with
the GazeTracking framework that we discussed before in Section 2.8.9; a screenshot
of this application is 4.3, and it works according to this 4.4 and the below steps:

• The Haar cascade approach is used to recognize faces in each frame of the
webcam feed.

• The portion of the image containing the face is scaled to 48x48 and fed into
the CNN.

• The network generates a list of softmax scores for each of the eight emotion
classes.

40

Emotion Detector Model

• The emotion with the highest score is shown on the screen.

• Each frame’s emotion is recorded in a CSV file.

Figure 4.3: The emotion and gaze direction of the subject are displayed by the
GazeTracking application.

Figure 4.4: Structure of the Emotion Detector code. Figure from [64]

41

Emotion Detector Model

4.4.1 Result of Emotion Detector
These graphs 4.6 show the results of the emotion detector on the example videos.
Neutrality is the most prominent emotion because the subject does not have any
interactions with anyone.

4.4.2 Integrating Emotion Detector model with OpenFace
As said in this section 2.8.4, OpenFace can detect AUs; nevertheless, it is difficult
to reach a correct label for facial emotion based on those AUs; hence we add the
feature of real-time emotion detection to OpenFace. Since OpenFace is written
in C++, we require C++ code to infer the trained model for detecting emotions;
with the help of this utility code [65], We added this feature to only detect facial
emotions in live webcam and save the results in a CSV file. Figure 4.7 shows it.

42

Emotion Detector Model

Figure 4.5: Visualization of the Tensorflow model for detecting facial expression
by the Netron app

43

Emotion Detector Model

(a) sample 1 (b) sample 2

(c) sample 3 (d) sample 4

Figure 4.6: Frequency of Emotions in four sample recorded videos

Figure 4.7: Live webcam facial emotion detector in OpenFace

44

Chapter 5

Detecting Engagement

Our experiment in this chapter is in the subsequent work for improving this article:
A Novel Redundant Validation IoT System for Affective Learning Based
on Facial Expressions and Biological Signals [24], by adding gaze tracking
and blinking features. Starting with the solution described in the previous paper,
the goal is to determine whether or not the gaze value and blinking are effective
for determining the level of student attention in remote lecture. This figure 5.1
depicts the workflow of their proposed analysis approach.

Figure 5.1: The workflow of the studied approach. Figure from [24]

5.1 Engagement in Remote Lectures
The activity of teaching necessitates constantly examining oneself and guessing
independently whether or not the topics are being explained properly. Such abilities
are typically improved by observation of classroom reactions to various approaches
and lecture content. In small classrooms, this task may be easy, but in large
classrooms with lots of learners, it may be challenging. Large classrooms can also

45

Detecting Engagement

make it difficult for students to interact with teachers and for lessons to be seen
and heard [66].
In our experiment, facial expression recognition and eye state (gaze tracking and
blinking) are employed as primary sources, while the physiological data analysis,
since it requires students to wear a smartwatch, is used as a validation tool when
available. We will go over recorded videos in detail in the Experiment section 5.3.

5.2 Improvements towards an Attention Detec-
tion Algorithm

This section explains the steps done toward a physiologically based Attention
Detection algorithm. As in the proposal of the paper [24], physiological data were
collected using a set of commercial smartwatches (Garmin Venu Sq) that send data
through Bluetooth Low Energy (BLE) to a set of smartphones at a sampling rate
of 1 Hz. The information gathered is kept in a text file. The acquired datasets
include HR and HRV. The algorithm was created entirely in MATLAB; before
executing it, each patient goes through a two-level calibration phase focusing on
estimating thresholds for emotional stage detection:

• Based on their information, which are age, gender, weight, and height.

• From their initial condition estimation.

The algorithm may undertake a behavioral analysis in real-time during the lecture.
This includes observing the HR and HRV for N samples, which is defined as Window
Size in the following (WS).
Only a few of the emotional stages described are used from this observation window:
SDNN, RMSS, and SDSD. It is possible to generate an output every second by
sliding the window with a set initial delay.
It is possible to raise the Grade of Attention by comparing the punctual value of
the three parameters with the one obtained during the calibration phase (GA).
Similarly to the classification of attention levels, GA is compared to a Threshold
(Tp), which is computed as:

Tp = 3
2 × WS

Where 3 is the total number of emotional stages calculated. Thus, two levels from
physiological reactions (AAp) were acquired and stored in an Attention Array. In
terms of neural network classification, if the grade of attention is greater than Tp,
the window is labeled Attention otherwise Distraction.

46

Detecting Engagement

5.3 Experiment
For this section, we have three recorded videos of students who attended a pre-
recorded lecture for 50 minutes, and their faces are recorded during the whole
lecture. They were also given smartwatches to track their physiological reactions.
Furthermore, because there was no professor present, an application was utilized
to randomly question students whether they were focusing on the lecture or not.
The source code of this application is available for interested readers on GitHub
under the MIT license [66].

5.3.1 Application to Measure the Response Time
The application, called Reaction Time Tool, was built with Microsoft.NET 6 frame-
work and C sharp programming language. The Windows Presentation Foundation
(WPF) environment was used to create the Human-Machine Interface (HMI).
The software consists of two primary windows: the first appears at program launch
and asks volunteers where they want to keep the log file, and the second displays a
blinking hourglass to inform the user that the application is functioning properly.
A message window appears at predefined moments to the volunteers, asking if they
are paying attention to the lecture.
The user can respond Yes or No depending on their level of attention. This window
cannot be closed without an answer. When the message window appears, the
application makes a sound to get the user’s attention. This sound was designed to
be distinct from the sounds frequently made by operating system message windows.
When the window is displayed, the application records the timestamp of the event
in the log file, while, when it is closed, a second event is saved alongside the
answer provided by the volunteers. Furthermore, to make data analysis easier, the
application computes the time between the display of the window and the user
response. This application, of course, does not run on a real-time system, but on a
standard personal computer. The purposes of this application are twofold:

1. It asks the students if they are paying attention to the lecture.

2. It records the reaction time of the student [24].

5.3.2 Our choice for Software
During our experiment, we discovered that OpenFace has superior performance
for processing videos and generating output, thus we conducted the complete
experiment with this software.
The recorded videos are passed into OpenFaceOffline, where the facial emotions are

47

Detecting Engagement

detected using the Emotion Detector static library that we integrated to OpenFace;
the results are saved as a CSV file.

5.3.3 Standard Deviation
The Standard Deviation is commonly used to compute the spread and variation
of a set of data values. It is related to variance in that it offers the measure of
deviation, whereas variance provides the squared value. Its formula is the following:

s =

öõõô 1
N − 1

NØ
i=1

(xi − x)2

where x1, x2, x3.....xN are observed values in sample data, x is the mean value of
observations and N is the number of sample observations.
A low value shows that the data in a set are less split apart from their mean
average values, whereas a high value indicates that the data in a set are more
spread out from their mean average values. The standard deviation, unlike
variance, is represented in the same units as the data. The Statistics package in
Python includes a function called stdev() that can be used to compute it from a
subset of data rather than the entire population [67].

5.4 Experimental Results

5.4.1 Gaze Tracking
We computed the standard deviation of the gaze-angle-x for rows with times-
tamps ranging from 10 to 20 minutes. As previously stated in Section 3.2.3, the
gaze-angle-x value specifies whether the subject is looking to the right, left, or
center of the screen.
For the first run of the standard deviation function, receive the current row value
of gaze with the next batch rows (in our code, we set the batch size to 3000 rows),
and the result will be placed in another column. These operations will be repeated
for each subsequent row until the entire set is reached.

The ground truth from biological data is illustrated in Figure 5.10b, shows the
level of attention where 4 denotes a high level of focus and 0 implies no focus. As
seen in Figure 5.10b, the sum of standard deviation of three samples is consistent
with the ground truth.

48

Detecting Engagement

(a) Sample 1

(b) Sample 2

(c) Sample 3

Figure 5.2: Running the OpenFace on the three recorded videos
49

Detecting Engagement

(a) Sum of standard deviation of three student’s
gaze during 10 minutes following the remote lec-
ture

(b) The Ground truth of engagement

Figure 5.3: From the charts displayed, it is possible to notice that (a) is aligned
with the ground truth of engagement (b)

As shown in Figure 5.3a, the total of standard deviations for three students’ gaze
values are aligned with the right plot, which depicts the ground truth, confirming
that gaze value is a significant component in detecting the level of engagement.

5.4.2 Facial Emotion
After running the emotion detector model on the three samples, the most significant
facial emotion in all of them is Neutral. These charts 5.8a demonstrate the
frequency of emotions for 10 minutes of recording samples.

5.4.3 Data Processing Tools
We used Google Colaboratory environment to import the CSV files as data frames
as we have huge files with many rows. We used Matplotlib and Pandas libraries of
Python to plot the results.

50

Detecting Engagement

Figure 5.4: Python code for computing the standard deviation on an input column

51

Detecting Engagement

Figure 5.5: standard deviation for gaze value in sample video 1

Figure 5.6: standard deviation for gaze value in sample video 2

52

Detecting Engagement

Figure 5.7: standard deviation for gaze value in sample video 3

(a) Sample 1 (b) Sample 2

(c) Sample 3

Figure 5.8: Frequency of facial emotions in three samples; The dominant emotion
is Neutral.

53

Detecting Engagement

(a) Sample 1 (b) Sample 2

(c) Sample 3

Figure 5.9: Standard deviation of Blinking for three samples

(a) Sum of standard deviation of three student’s
blinking during 10 minutes following the remote
lecture

(b) The Ground truth of engagement

Figure 5.10: The sum of standard deviations for blinking in comparison to the
ground truth

54

Chapter 6

Conclusions

6.1 Conclusions
This research aims to improve this article [24] by incorporating a gaze tracking
function and eye blink detection to determine whether the student attending the
remote lecture is focused or distracted. In this work, we used the ground truths
provided in the aforementioned paper and, by analyzing the gaze value of three
students for 10 minutes, we discovered that the gaze value is compatible with the
ground truth, and thus we can confirm that it is an important factor in detecting
the level of engagement.
In our work, we evaluate different applications for tracking the eye and detecting
the blink, as well as detecting the facial expression, which provides us with the
output for analysis. Since most facial analysis tools are not free and open source,
else they could be free but inaccurate and lack the performance we require for our
video processing. We chose the OpenFace software that meets our needs in this
study.

6.2 Future Works
A lot of work has been done throughout the thesis, but it can be improved further.
Following are some suggestions for future works.

• More accurate face detectors could be used. Furthermore, the neural network
responsible for recognizing facial expressions could be improved by studying
new models, using state-of-the-art datasets, and doing a thorough search for
hyperparameters.

• Examining other features that OpenFace provides as output, such as head
pose and looking up/down.

55

Conclusions

• Finally, student engagement detection can be improved by using other features
or data sources such as activity recognition and head pose estimation.

56

Bibliography

[1] Peijin Chen. «Research on sharing economy and e-learning in the era of
“Internet plus”». In: 2018 2nd International Conference on Education Science
and Economic Management (ICESEM 2018). Atlantis Press. 2018, pp. 751–
754 (cit. on p. 1).

[2] Bin Zhu, Xinjie Lan, Xin Guo, Kenneth E. Barner, and Charles Boncelet.
«Multi-Rate Attention Based GRU Model for Engagement Prediction». In:
Proceedings of the 2020 International Conference on Multimodal Interaction.
ICMI ’20. Virtual Event, Netherlands: Association for Computing Machinery,
2020, pp. 841–848. isbn: 9781450375818. doi: 10.1145/3382507.3417965.
url: https://doi.org/10.1145/3382507.3417965 (cit. on p. 1).

[3] Abhay Gupta, Arjun D’Cunha, Kamal Awasthi, and Vineeth Balasubramanian.
«Daisee: Towards user engagement recognition in the wild». In: arXiv preprint
arXiv:1609.01885 (2016) (cit. on p. 1).

[4] Jianming Wu, Bo Yang, Yanan Wang, and Gen Hattori. «Advanced multi-
instance learning method with multi-features engineering and conservative
optimization for engagement intensity prediction». In: Proceedings of the
2020 International Conference on Multimodal Interaction. 2020, pp. 777–783
(cit. on p. 1).

[5] James Bowers and Poonam Kumar. «Students’ perceptions of teaching and
social presence: A comparative analysis of face-to-face and online learning
environments». In: International Journal of Web-Based Learning and Teaching
Technologies (IJWLTT) 10.1 (2015), pp. 27–44 (cit. on p. 1).

[6] Javier Hernandez-Ortega, Roberto Daza, Aythami Morales, Julian Fierrez,
and Javier Ortega-Garcia. «edBB: Biometrics and behavior for assessing
remote education». In: arXiv preprint arXiv:1912.04786 (2019) (cit. on p. 1).

[7] Roberto Daza, Aythami Morales, Julian Fierrez, and Ruben Tolosana.
«MEBAL: A multimodal database for eye blink detection and attention level
estimation». In: Companion Publication of the 2020 International Conference
on Multimodal Interaction. 2020, pp. 32–36 (cit. on p. 1).

57

https://doi.org/10.1145/3382507.3417965
https://doi.org/10.1145/3382507.3417965

BIBLIOGRAPHY

[8] Javier Hernandez-Ortega, Julian Fierrez, Aythami Morales, and David Diaz.
«A comparative evaluation of heart rate estimation methods using face videos».
In: 2020 IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC). IEEE. 2020, pp. 1438–1443 (cit. on p. 1).

[9] Liping Shen, Minjuan Wang, and Ruimin Shen. «Affective e-learning: Using
“emotional” data to improve learning in pervasive learning environment». In:
Journal of Educational Technology & Society 12.2 (2009), pp. 176–189 (cit. on
p. 1).

[10] Stylianos Asteriadis, Paraskevi Tzouveli, Kostas Karpouzis, and Stefanos
Kollias. «Estimation of behavioral user state based on eye gaze and head
pose—application in an e-learning environment». In: Multimedia Tools and
Applications 41.3 (2009), pp. 469–493 (cit. on p. 1).

[11] Shimeng Peng, Lujie Chen, Chufan Gao, and Richard Jiarui Tong. «Predicting
students’ attention level with interpretable facial and head dynamic features
in an online tutoring system (Student Abstract)». In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 10. 2020, pp. 13895–13896 (cit.
on p. 1).

[12] Michele Nappi, Stefano Ricciardi, Massimo Tistarelli, et al. «Context aware-
ness in biometric systems and methods: State of the art and future scenarios».
In: IMAGE AND VISION COMPUTING 76 (2018), pp. 27–36 (cit. on p. 1).

[13] Julian Fierrez-Aguilar, Daniel Garcia-Romero, Javier Ortega-Garcia, and
Joaquin Gonzalez-Rodriguez. «Adapted user-dependent multimodal biometric
authentication exploiting general information». In: Pattern Recognition Letters
26.16 (2005), pp. 2628–2639 (cit. on p. 2).

[14] Janice Bagley and Leon Manelis. «Effect of awareness on an indicator of
cognitive load». In: Perceptual and Motor Skills 49.2 (1979), pp. 591–594
(cit. on p. 2).

[15] Morris K Holland and Gerald Tarlow. «Blinking and mental load». In: Psy-
chological Reports 31.1 (1972), pp. 119–127 (cit. on p. 2).

[16] Samantha Mann, Aldert Vrij, and Ray Bull. «Suspects, lies, and videotape:
An analysis of authentic high-stake liars». In: Law and human behavior 26.3
(2002), pp. 365–376 (cit. on p. 2).

[17] Essa R Anas, Pedro Henriquez, and Bogdan J Matuszewski. «Online eye status
detection in the wild with convolutional neural networks». In: International
Conference on Computer Vision Theory and Applications. Vol. 7. SciTePress.
2017, pp. 88–95 (cit. on p. 2).

58

BIBLIOGRAPHY

[18] Beatriz Remeseiro, Alba Fernández, and Madalena Lira. «Automatic eye blink
detection using consumer web cameras». In: International Work-Conference
on Artificial Neural Networks. Springer. 2015, pp. 103–114 (cit. on p. 2).

[19] Tereza Soukupova and Jan Cech. «Eye blink detection using facial landmarks».
In: 21st computer vision winter workshop, Rimske Toplice, Slovenia. 2016
(cit. on p. 2).

[20] Guilei Hu, Yang Xiao, Zhiguo Cao, Lubin Meng, Zhiwen Fang, Joey Tianyi
Zhou, and Junsong Yuan. «Towards real-time eyeblink detection in the
wild: Dataset, theory and practices». In: IEEE Transactions on Information
Forensics and Security 15 (2019), pp. 2194–2208 (cit. on p. 2).

[21] Minsu Jang et al. «Building an automated engagement recognizer based
on video analysis». In: Proceedings of the 2014 ACM/IEEE international
conference on Human-robot interaction. 2014, pp. 182–183 (cit. on p. 2).

[22] Hamed Monkaresi, Nigel Bosch, Rafael A Calvo, and Sidney K D’Mello.
«Automated detection of engagement using video-based estimation of facial
expressions and heart rate». In: IEEE Transactions on Affective Computing
8.1 (2016), pp. 15–28 (cit. on p. 2).

[23] Jacob Whitehill, Zewelanji Serpell, Yi-Ching Lin, Aysha Foster, and Javier
R Movellan. «The faces of engagement: Automatic recognition of student
engagementfrom facial expressions». In: IEEE Transactions on Affective
Computing 5.1 (2014), pp. 86–98 (cit. on p. 2).

[24] Antonio Costantino Marceddu et al. «A Novel Redundant Validation IoT
System for Affective Learning Based on Facial Expressions and Biological
Signals». In: Sensors 22.7 (2022), p. 2773 (cit. on pp. 3, 45–47, 55).

[25] Varun. What is Face Detection? – The Ultimate Guide for 2022. https:
//learnopencv.com/what- is- face- detection- the- ultimate- guide
(cit. on pp. 6–9, 11, 12).

[26] Paul Viola and Michael Jones. «Rapid object detection using a boosted
cascade of simple features». In: Proceedings of the 2001 IEEE computer
society conference on computer vision and pattern recognition. CVPR 2001.
Vol. 1. Ieee. 2001, pp. I–I (cit. on p. 6).

[27] OpenCv. Cascade Classifier. https://docs.opencv.org/3.4/db/d28/
tutorial_cascade_classifier.html (cit. on pp. 6, 7).

[28] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. «Ssd: Single shot multibox detector».
In: European conference on computer vision. Springer. 2016, pp. 21–37 (cit. on
p. 7).

59

https://learnopencv.com/what-is-face-detection-the-ultimate-guide
https://learnopencv.com/what-is-face-detection-the-ultimate-guide
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html

BIBLIOGRAPHY

[29] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. «Joint face
detection and alignment using multitask cascaded convolutional networks».
In: IEEE signal processing letters 23.10 (2016), pp. 1499–1503 (cit. on p. 8).

[30] Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun Qian, Jian Yang,
Chengjie Wang, Jilin Li, and Feiyue Huang. «DSFD: dual shot face detector».
In: (2019), pp. 5060–5069 (cit. on pp. 8, 9).

[31] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos
Zafeiriou. «Retinaface: Single-shot multi-level face localisation in the wild».
In: (2020), pp. 5203–5212 (cit. on p. 9).

[32] Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov, Karthik Raveendran,
and Matthias Grundmann. «Blazeface: Sub-millisecond neural face detection
on mobile gpus». In: arXiv preprint arXiv:1907.05047 (2019) (cit. on p. 10).

[33] MediaPipe. MediaPipe Face Detection. https://google.github.io/mediap
ipe/solutions/face_detection.html (cit. on p. 10).

[34] Yuantao Feng, Shiqi Yu, Hanyang Peng, Yan-Ran Li, and Jianguo Zhang.
«Detect Faces Efficiently: A Survey and Evaluations». In: IEEE Transactions
on Biometrics, Behavior, and Identity Science 4.1 (2021), pp. 1–18 (cit. on
p. 10).

[35] Aqeel Anwar. What is Average Precision in Object Detection & Localization
Algorithms and how to calculate it? https://towardsdatascience.com/
what- is- average- precision- in- object- detection- localization-
algorithms-and-how-to-calculate-it-3f330efe697b (cit. on p. 11).

[36] Dlib. Dlib. http://dlib.net (cit. on p. 13).
[37] Vahid Kazemi and Josephine Sullivan. «One millisecond face alignment with

an ensemble of regression trees». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014, pp. 1867–1874 (cit. on p. 13).

[38] Jan Cech and Tereza Soukupova. «Real-time eye blink detection using facial
landmarks». In: Cent. Mach. Perception, Dep. Cybern. Fac. Electr. Eng.
Czech Tech. Univ. Prague (2016), pp. 1–8 (cit. on pp. 14, 15).

[39] Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency.
«Openface 2.0: Facial behavior analysis toolkit». In: 2018 13th IEEE interna-
tional conference on automatic face & gesture recognition (FG 2018). IEEE.
2018, pp. 59–66 (cit. on pp. 16–19).

[40] Amir Zadeh, Yao Chong Lim, Tadas Baltrusaitis, and Louis-Philippe Morency.
«Convolutional experts constrained local model for 3d facial landmark detec-
tion». In: Proceedings of the IEEE International Conference on Computer
Vision Workshops. 2017, pp. 2519–2528 (cit. on p. 16).

60

https://google.github.io/mediapipe/solutions/face_detection.html
https://google.github.io/mediapipe/solutions/face_detection.html
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b
http://dlib.net

BIBLIOGRAPHY

[41] Tadas Baltrusaitis, Peter Robinson, and Louis-Philippe Morency. «Con-
strained local neural fields for robust facial landmark detection in the wild».
In: Proceedings of the IEEE international conference on computer vision
workshops. 2013, pp. 354–361 (cit. on p. 17).

[42] Erroll Wood, Tadas Baltrusaitis, Xucong Zhang, Yusuke Sugano, Peter Robin-
son, and Andreas Bulling. «Rendering of eyes for eye-shape registration and
gaze estimation». In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 3756–3764 (cit. on p. 17).

[43] Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson. «Cross-dataset
learning and person-specific normalisation for automatic action unit detec-
tion». In: 2015 11th IEEE International Conference and Workshops on Auto-
matic Face and Gesture Recognition (FG). Vol. 6. IEEE. 2015, pp. 1–6 (cit. on
p. 18).

[44] Tadas Baltrusaitis. OpenFaceGithub. https://github.com/TadasBaltrusa
itis/OpenFace (cit. on pp. 18, 30, 33, 38, 39).

[45] Sergio Canu. GazeControlledKeyboard. https://pysource.com/category/
tutorials/gaze-controlled-keyboard/ (cit. on pp. 22, 23).

[46] Asadullah Dal. Eyes Position Estimator Mediapipe. https://github.com/
Asadullah-Dal17/Eyes-Position-Estimator-Mediapipe (cit. on p. 23).

[47] Antoine Lamé. GazeTracking. https://github.com/antoinelame/GazeTra
cking (cit. on pp. 24–26).

[48] Paul Ekman and Wallace V Friesen. Unmasking the face: A guide to recognizing
emotions from facial clues. Vol. 10. Ishk, 2003 (cit. on p. 35).

[49] Faiza Abdat, Choubeila Maaoui, and Alain Pruski. «Human-computer inter-
action using emotion recognition from facial expression». In: 2011 UKSim
5th European Symposium on Computer Modeling and Simulation. IEEE. 2011,
pp. 196–201 (cit. on p. 35).

[50] Paul Ekman. «Basic emotions». In: Handbook of cognition and emotion 98.45-
60 (1999), p. 16 (cit. on p. 36).

[51] Paul Ekman and Wallace V Friesen. «Facial action coding system». In:
Environmental Psychology & Nonverbal Behavior (1978) (cit. on p. 36).

[52] Jacopo Sini, Antonio Costantino Marceddu, and Massimo Violante. «Au-
tomatic Emotion Recognition for the Calibration of Autonomous Driving
Functions». In: Electronics 9.3 (2020). issn: 2079-9292. doi: 10 . 3390 /
electronics9030518. url: https://www.mdpi.com/2079-9292/9/3/518
(cit. on pp. 36–38).

61

https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/TadasBaltrusaitis/OpenFace
https://pysource.com/category/tutorials/gaze-controlled-keyboard/
https://pysource.com/category/tutorials/gaze-controlled-keyboard/
https://github.com/Asadullah-Dal17/Eyes-Position-Estimator-Mediapipe
https://github.com/Asadullah-Dal17/Eyes-Position-Estimator-Mediapipe
https://github.com/antoinelame/GazeTracking
https://github.com/antoinelame/GazeTracking
https://doi.org/10.3390/electronics9030518
https://doi.org/10.3390/electronics9030518
https://www.mdpi.com/2079-9292/9/3/518

BIBLIOGRAPHY

[53] Pedro M Ferreira, Filipe Marques, Jaime S Cardoso, and Ana Rebelo. «Phys-
iological inspired deep neural networks for emotion recognition». In: IEEE
Access 6 (2018), pp. 53930–53943 (cit. on pp. 37, 38).

[54] Takeo Kanade, Jeffrey F Cohn, and Yingli Tian. «Comprehensive database
for facial expression analysis». In: Proceedings fourth IEEE international
conference on automatic face and gesture recognition (cat. No. PR00580).
IEEE. 2000, pp. 46–53 (cit. on p. 37).

[55] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar,
and Iain Matthews. «The extended cohn-kanade dataset (ck+): A complete
dataset for action unit and emotion-specified expression». In: 2010 ieee com-
puter society conference on computer vision and pattern recognition-workshops.
IEEE. 2010, pp. 94–101 (cit. on p. 37).

[56] Ian J. Goodfellow et al. «Challenges in representation learning: A report on
three machine learning contests». In: Neural Networks 64 (2015). Special
Issue on “Deep Learning of Representations”, pp. 59–63. issn: 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2014.09.005. url: https:
//www.sciencedirect.com/science/article/pii/S0893608014002159
(cit. on p. 37).

[57] Emad Barsoum, Cha Zhang, Cristian Canton Ferrer, and Zhengyou Zhang.
«Training deep networks for facial expression recognition with crowd-sourced
label distribution». In: Proceedings of the 18th ACM International Conference
on Multimodal Interaction. 2016, pp. 279–283 (cit. on p. 37).

[58] Michael J Lyons, Shigeru Akamatsu, Miyuki Kamachi, Jiro Gyoba, and Julien
Budynek. «The Japanese female facial expression (JAFFE) database». In:
Proceedings of third international conference on automatic face and gesture
recognition. 1998, pp. 14–16 (cit. on p. 37).

[59] Niki Aifanti, Christos Papachristou, and Anastasios Delopoulos. «The MUG
facial expression database». In: 11th International Workshop on Image Anal-
ysis for Multimedia Interactive Services WIAMIS 10. IEEE. 2010, pp. 1–4
(cit. on p. 37).

[60] Oliver Langner, Ron Dotsch, Gijsbert Bijlstra, Daniel HJ Wigboldus, Skyler
T Hawk, and AD Van Knippenberg. «Presentation and validation of the
Radboud Faces Database». In: Cognition and emotion 24.8 (2010), pp. 1377–
1388 (cit. on p. 37).

[61] Abhinav Dhall, Roland Goecke, Simon Lucey, and Tom Gedeon. «Static
facial expression analysis in tough conditions: Data, evaluation protocol and
benchmark». In: 2011 IEEE international conference on computer vision
workshops (ICCV workshops). IEEE. 2011, pp. 2106–2112 (cit. on p. 37).

62

https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.005
https://www.sciencedirect.com/science/article/pii/S0893608014002159
https://www.sciencedirect.com/science/article/pii/S0893608014002159

BIBLIOGRAPHY

[62] Natalie C Ebner, Michaela Riediger, and Ulman Lindenberger. «FACES—A
database of facial expressions in young, middle-aged, and older women and
men: Development and validation». In: Behavior research methods 42.1 (2010),
pp. 351–362 (cit. on p. 37).

[63] Wikipedia. Facial Action CodingSystem. https://en.wikipedia.org/wiki/
Facial_Action_Coding_System (cit. on pp. 38, 39).

[64] Atul Balaji. Real-time Facial Emotion Detection using deep learning. https:
//github.com/atulapra/Emotion-detection (cit. on pp. 40, 41).

[65] Stephen Welch Martin Cheung. An application that detects facial emotion in
real-time using Keras/Tensorflow and OpenCV in C++. https://github.
com/martycheung/CppND-Facial-Emotion-Recognition (cit. on p. 42).

[66] Jacopo Sini. MDPI-Sensors—IOT-Education-ReactionTimeTool. https://
github.com/JacopoSini/MDPI-Sensors---IOT-Education-ReactionTim
eTool (cit. on pp. 46, 47).

[67] stdev. stdev. https : / / www . geeksforgeeks . org / python - statistics -
stdev/ (cit. on p. 48).

63

https://en.wikipedia.org/wiki/Facial_Action_Coding_System
https://en.wikipedia.org/wiki/Facial_Action_Coding_System
https://github.com/atulapra/Emotion-detection
https://github.com/atulapra/Emotion-detection
https://github.com/martycheung/CppND-Facial-Emotion-Recognition
https://github.com/martycheung/CppND-Facial-Emotion-Recognition
https://github.com/JacopoSini/MDPI-Sensors---IOT-Education-ReactionTimeTool
https://github.com/JacopoSini/MDPI-Sensors---IOT-Education-ReactionTimeTool
https://github.com/JacopoSini/MDPI-Sensors---IOT-Education-ReactionTimeTool
https://www.geeksforgeeks.org/python-statistics-stdev/
https://www.geeksforgeeks.org/python-statistics-stdev/

	List of Tables
	List of Figures
	Introduction
	Background
	What is Engagement in E-Learning Environments?
	Our Idea
	Thesis Structure

	Extracting Features
	Introduction
	Face Detection
	Challenges for Face Detection

	Classical Algorithms of Face Detection
	Haar Cascade
	Dlib-HOG

	Face Detectors Based on Deep Learning
	SSD
	MTCNN
	Dual Shot Face Detector
	RetinaFace
	MediaPipe
	YuNet

	Performance Comparison of Face Detectors
	Average Precision (AP)

	Facial Landmarks
	Dlib’s Facial Landmark Detector
	Understanding Dlib’s Facial Landmark Detector

	Blink Detection
	Understanding the Eye Aspect Ratio
	Real-Time Eye Blink Detection Using Facial Landmarks

	Studied Frameworks
	Model 1: OpenFace
	OpenFace Pipeline
	Eye Gaze Estimation in OpenFace
	Facial Expression Recognition in OpenFace
	OpenFace Interface
	OpenFace Code Layout
	Model 2: Gaze Controlled Keyboard
	Model 3: Eyes Position Estimator with MediaPipe
	Model 4: Gaze Tracking

	Test and Result of Models
	Recorded Sample Videos
	Data Logging
	Ground Truth Annotation
	Processing Data in Excel

	Frameworks Outputs
	Classification Accuracy
	Frameworks Accuracy
	OpenFace Output Format
	Basic
	Gaze Related
	Action Units

	Selected Frameworks

	Emotion Detector Model
	Facial Emotion Recognition
	State of the Art

	Choice of the Neural Network for Facial Expressions
	Neural Networks Training

	Facial Action Coding System
	Intensity and Presence of AUs in OpenFace
	Can AUs be used to detect facial emotions?

	Integrated System
	Result of Emotion Detector
	Integrating Emotion Detector model with OpenFace

	Detecting Engagement
	Engagement in Remote Lectures
	Improvements towards an Attention Detection Algorithm
	Experiment
	Application to Measure the Response Time
	Our choice for Software
	Standard Deviation

	Experimental Results
	Gaze Tracking
	Facial Emotion
	Data Processing Tools

	Conclusions
	Conclusions
	Future Works

	Bibliography

