
POLITECNICO DI TORINO
Master of Science’s Degree in Biomedical Engineering

Master of Science’s Degree Thesis

A machine learning approach for
spatio-temporal gait analysis based on a

head-mounted inertial sensor

Supervisors

Prof. Andrea CEREATTI

Prof.ssa Gabriella BALESTRA

Prof.ssa Samanta ROSATI

Dott.ssa Francesca SALIS

Candidate

Paolo TASCA

December 2022





Abstract

Gait is fundamental for the person’s mobility, as it is crucial for many activities in
the workplace, domestic environment, and social life. In the last decades, several
studies proved the relevance of instrumented gait analysis for clinical and wellness
applications based on quantitative metrics (e.g., spatio-temporal parameters of gait,
kinematics) to provide deeper insights about individual walking ability, especially
when analyzing gait in free-living conditions, where motor performances can be
assessed. In this sense, magneto-inertial measurement units (MIMUs) represent
the most convenient solution in terms of ease of use and affordability. The most
used locations include trunk/lower back and wrist and have been widely explored.
Conversely, less attention has been given to other sites, such as the head, which
offers the possibility of integrating the MIMU with a wide range of devices, such
as virtual reality (VR) visors, earbuds or sensor fusion devices. However, the
informative content related to gait in signals recorded by head MIMUs (H-MIMUs)
is generally lower than the one retrieved by MIMUs positioned at other body sites.
MIMUs allow the estimation of spatio-temporal parameters (STP), such as the
stride length, the stride time and the stride speed. While temporal parameters
can be directly derived from the inertial signals, the stride speed can hardly be
inferred deterministically from MIMU signals; therefore, the need for machine
learning (MaLe)-based methods that find a mapping between stride features in the
inertial signals and the corresponding stride speed value. The aim of the present
thesis is to design methods for the assessment of STP based on data recorded
from a single H-MIMU. The study focuses on the development of MaLe models
for the analysis of gait on healthy young (HY) subjects both in supervised and
unsupervised conditions. Reference data were collected with the INertial module
with Distance sensors and Pressure insoles (INDIP) multi-sensor system, including
four MIMUs positioned on the lower back, head and feet, pressure insoles and
distance sensors. The data used for constructing and testing the models have been
recorded by the single H-MIMU and acquired indoor in standardized conditions on
11 HY subjects (6 males, 26 ± 3 years) while performing a set of tasks (straight
and round walking at three speeds) according to a precise experimental protocol.
Models were also tested on 2.5 hours free-living recordings from 3 HY subjects (2
males, 22 ± 1 years), to assess their generalization skill on unseen data acquired
in unsupervised conditions. Two models have been optimized to assess STP from
H-MIMU data. A first deep learning (DeLe) classification model determines the
occurrence instants of the gait events (initial and final foot-ground contacts). At
this point, gait events are used to define the strides. Strides are given as input
to a MaLe model that provides an estimate of the stride speed for each input



stride. For gait events detection (GED), two sets of DeLe classification models
were compared: temporal convolutional networks (TCNs) and long-short term
memory (LSTM) networks. For the estimation of the stride speed, two sets of MaLe
regression models were compared: gaussian process regression (GPR) and support
vector machine (SVM). Performance of the head-based method were validated
comparing the results with those provided by the INDIP system. For gait event
detection, TCNs showed better results than LSTM, as they achieved lower mean
absolute error (MAE) values both on the training set (step time MAE = 0,02 ±
0,02 s; stride time MAE: 0,01 ± 0,02 s) and on the standardized test set (step
time MAE = 0,06 ± 0,03 s; stride time MAE: 0,02 ± 0,03 s). For the LSTM
networks, performance on the free-living dataset were significantly lower, while
TCNs maintained a sufficient level of accuracy (84 %). For stride speed estimation,
GPR and SVM provided similar results in terms of predicted values of stride
speed, both showing significantly limited MAE values both on the training set
(GPR: 0.05 m/s; SVM: 0.07 m/s) and the standardized test set (GPR: 0.07 m/s;
SVM: 0.06 m/s). However, the models for the estimation of the stride speed on
free-living data attained much lower performance, as the achieved coefficient of
correlation does not overpass 0.62. Such results suggest that a single H-MIMU
can match the performance of other single and multi-sensor configurations in the
estimation of temporal parameters both in supervised and unsupervised conditions.
A single H-MIMU can also provide reliable values of the stride speed in supervised
conditions; however, applicability to unsupervised walking remains an open issue,
as well as the extension of the methods to gait of pathological subjects.
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Glossary

Machine learning A set of supervised techniques of artificial intelligence that
aim at modelling a phenomenon.

Overfitting A model is said to "overfit the training data" when the features
described by it arise from noise or variance in the specific training data, rather
than the underlying population from which the data were sampled. Overfitting
typically yields to achieve lower accuracy on unseen data [1].

Spatio-temporal parameters Space or/and time-domain variables related to
walking e.g. stride duration, stride length, step duration, etc...

Stereophotogrammetry Stereophotogrammetric devices (also called optoelec-
tronic devices) are marked-based systems devised to track with accuracy the
trajectories of body segments on which the markers are placed, through the
use of IR light and triangulation techniques.

Supervised techniques Methods of AI based on the training of a model through a
labeled dataset i.e. a dataset of predictors with their responses. Unsupervised
techniques are instead trained on non-labeled datasets i.e. a dataset of
only predictors. Supervised techniques are applied in several tasks such as
classification and segmentation, while unsupervised techniques are mainly
used for clustering.
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Chapter 1

Introduction

1.1 Motivation and general introduction
Today, instrumented assessment of gait plays a significant role within the clinical
routine, since the quantitative analysis of gait can provide a number of bio-markers
and parameters that support the evaluation of one’s level of mobility and can
assist clinicians in the shaping of rehabilitation programs [2]. In addition, being
able to analyze and recognize the patterns of physiological/pathological gait can
help to shape new strategies for the control in real-time of actuator systems for
functional electrical stimulation (FES), bio-feedback and treatment of neurological
disorders [3]. Out of the pathological framework, quantitative analysis of gait can
also provide insights related to sport or wellness endeavors, monitor the physical
activity of employees in the workplace and integrate with virtual reality (VR) or
augmented reality (AR) systems for several purposes [4][5].
In the last decades, stereophotogrammetry has emerged as the gold standard
(GS) for gait analysis, as it offers the chance to collect reliable kinematic and
spatio-temporal parameters [6]. However, stereophotogrammetry is intrinsically
constrained to the laboratory settings [7]; as it consists in a set of infra-red
(IR) cameras and markers that require controlled light conditions and calibration
procedures to work properly.
Today, magneto-inertial measurement units (MIMUs) represent a valid alternative
to stereophotogrammetry [2]. A MIMU typically holds three tri-axial inertial
sensors (an accelerometer, a gyroscope and a magnetometer) that are able to track
the position and orientation of the sensor with respect to an internal framework.
As a consequence, besides being compact, inexpensive and having low power
consumption, they can be successfully used as wearable devices in real-life conditions
out of the laboratory settings [7]. In the context of the analysis of human walking,
MIMUs allow for measurement of both the kinematic variables and spatio-temporal
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parameters of gait - even if generally their accuracy does not match the one of
stereophotogrammetry.
In literature, several MIMU-based wearable solutions have been proposed during
the years [8][9]. The most reported configurations include one or more MIMUs
positioned at the level of the feet, shanks or pelvis; however, other body sites are
recently starting to be explored, such as the head [10]. Head MIMUs (H-MIMUs)
have peculiar characteristics in terms of morphology of the recorded signals with
respect to other sensor configurations, since accelerations and angular velocities
at the head during gait are generally more attenuated than other - lower - body
sites [11]. Nevertheless, the deployment of H-MIMUs for industrial, health and
user applications is expected to grow in the next years, as they are particularly
suitable to be integrated with a plethora of devices such as smart glasses, earbuds
or AR/VR systems [12].
Unfortunately, signals recorded by MIMUs - as well as the clinical indicators that are
derived by them - typically show large variability according to age, gender, health
conditions and individual traits [7]. In addition, methods that are developed to deal
with gait data acquired in laboratory settings often fail to achieve sufficient accuracy
when validated outside, as gait data recorded in laboratory settings typically do not
reflect one’s way of walking in free-living conditions [13]. In the last decades, with
the advent of wearable sensors and the technological advancements in the fields of
data transmission and storage, an increase in the number of publications reporting
the use of machine learning (MaLe) and deep learning (DeLe) for the purposes of
gait analysis has occurred [14]. MaLe and DeLe models are completely data-driven;
therefore, they are free from most of the assumptions on the signal’s nature that
prevent "conventional methods"1 from reaching very high performance. MaLe and
DeLe algorithms are able to grasp the complexity of large heterogeneous amounts
of data and use the information contained within it to learn how to infer one or
more responses from multiple predictors [14]. Theoretically, by feeding a model
with a sufficiently large dataset, the full variability of the target data distribution
can be accounted; therefore, the heterogeneity of the data distribution may be
addressed - even across different pathological and/or healthy populations. MaLe
and DeLe architectures and training algorithms should be designed properly for
allowing the trained models to recognize gait patterns and predict the values of
the desired output, such as spatio-temporal parameters. In addition, validation
during training is crucial to prevent overfitting.
Given such complexity and such large number of degrees of freedom in the design
of the algorithms, the validity of clinically suitable methods based on MIMUs for

1Such expression refers to methods based on the analysis of the morphology of the signals in
the time or frequency domains or on bio-mechanical models of the human gait [14].
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estimating spatio-temporal parameters still represents an open question.

1.2 Challenges and objectives
The goal of the present thesis concerns the training and validation of MaLe and
DeLe methods for the estimation of spatio-temporal parameters (STP) in both
laboratory and real-world settings. The algorithms are meant to predict the values
of five different STPs from data recorded by a single H-MIMU (Figure 1.1).
In the following, the most challenging aspects of the thesis work are highlighted:

Figure 1.1: General pipeline of the thesis work. The first part of the work
consisted in the literature review of MIMU-based methods for the estimation of
STP. Then, two experimental protocols have been outlined and used to perform a
set of acquisitions in supervised and unsupervised walking conditions. Eventually,
the algorithms for the estimation of four spatio-temporal parameters have been
developed and tested.

• H-MIMU signals: Signals at the head show strong attenuation and artifacts
related to the head’s nods and gestures that occur during gait [11]. In addition,
as visually inspected, the gait informative content of signals at the head is
significantly lower with respect to lower body sites such as shanks or feet.
Such difficulty is mainly due to the stabilization action performed by the neck
muscles on the upper trunk districts.
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• Heterogeneity of data: Recorded data are acquired in different experimental
conditions (laboratory, free-living) and refer to both straight and round walking
at different speeds and on different grounds.

• Data processing: MaLe and DeLe algorithms need to be fed with data that
have specific input and output formats. In addition, raw data need to be
pre-processed and post-processed to clean outliers, reduce noise, detect and
correct artifacts and validate the results.

• MaLe & DeLe: Besides training the learnable weights of the MaLe and DeLe
models, the architecture and training parameters should be optimized. For
that, stages of fine hyperparameters tuning and cross-validation are generally
required.

At the time of the present study, the body of literature regarding the estimation
of STP from H-MIMU data is relatively small. Then, the choice of investigating
the performance of innovative methods that exploit data completely acquired by a
single H-MIMU is driven by the wish of exploring an aspect of gait analysis that
is still uncharted. Actually, thanks to its proximity to the brain and to the sight
and otolith organs, the head could be employed as an important body hub for the
integration of different devices and technologies such as brain-computer interfaces
(BCIs), AR/VR systems and many others. In addition, recent findings suggest
that upper body acceleration during gait can help to discriminate between gait
patterns of Parkinson and non-Parkinson subjects and between Parkinson fallers
and non-fallers [11]. For all these reasons, the use of the head as a body site for
positioning multi-modal sensors - MIMUs included - is believed to become more
widespread in the future.
The heterogeneity of the training data represents at the same time a strength and a
challenge for the task of estimating spatio-temporal parameters: on one side, a het-
erogeneous dataset is more representative of the effective data distribution; however,
it can yield the algorithm to underfit the training data, especially if the algorithm is
based on the morphological features of the signal in the time or frequency domain.
Instead, heterogeneity and variability of the signals can be more easily addressed by
MaLe and DeLe techniques, as they are able to learn complex non-linear relation-
ships between predictor signals and use them on new predictors to infer the value of
their response. The use of MaLe for gait analysis has been already reported by some
authors; however, its deployment is still limited due to the difficulty of evaluating
the performance of the developed models. The challenge for the present thesis
consists in developing robust methods based on MaLe and DeLe techniques that
are able to predict STP in unsupervised walking conditions. Models are trained
with different dataset combinations - in order to prove their robustness - and tested
on both the training laboratory data and the unseen test data acquired in un-
supervised conditions, in order to assess the extent of their generalization capability.
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1.3 Thesis outline
The thesis is organized as follows:

Chapter 1 (current chapter) gives an introduction of the topic of the thesis and
explains the thesis rationale and general objectives. In the end, the general outline
of the thesis is described.

Chapter 2 describes the features of human gait of healthy subjects and provides
the definition of the basic terminology related to the gait cycle. A general overview
of gait analysis and the most widespread techniques is provided, together with a
detailed description of each of the most common STPs. Eventually, the state of
the art of artificial intelligence (AI) applied to gait analysis is presented.

Chapter 3 provides a short summary about the general functioning of inertial
sensors. Then, it focuses on the description of the experimental setup employed for
acquiring data.

Chapter 4 outlines the experimental protocols observed for the acquisitions.

Chapter 5 describes the construction of the datasets, the data pre-processing
steps and the architectures of the developed MaLe and DeLe models. Then, training,
validation and testing of the models is described in detail.

Chapter 6 displays the results obtained with the implemented models.

Chapter 7 critically discusses the results presented in Chapter 7.

Chapter 8 sums up the main achievements of the thesis and provides an outlook
for future research and perspectives.

Appendices A, B, C, D provide detailed information about the experimental
setup and protocol, the Matlab codes used for defining the architectures of the
models and an extensive background to the MaLe and DeLe techniques employed
in the present work.
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Chapter 2

Gait

The present Chapter provides the reader with the basic notions about gait and
gait analysis, in order to set a terminology and introduce the concepts that will be
discussed in the next Chapters.

2.1 The gait cycle
Walking is the main form of locomotion for healthy adult human beings [13]. In
general, every subject’s way and speed of walking are calibrated to the one’s need
of minimizing the energetic cost of walking [15]; however, gait of healthy subjects
shows recurrent patterns that can help to analyze it.

2.1.1 Basic notions
According to Perry [16], during gait, the human body can be resolved into two
functionally separated units (Figure 2.1).

• The locomotive unit is constituted by the pelvis and the lower limbs. Such
unit includes 11 joints: the timing and the amplitudes of their motion is
controlled by a total amount of 57 muscles. Bone segments of the lower limbs
(pelvis, thigh, shank, foot and fingers) support alternatively the body and drive
its forward progression by acting as levers. After the unloading of one limb,
this rapidly swings forward to provide again support to the body weight. The
locomotive unit fulfils four main functions: a) propulsion; b) vertical stability;
c) absorption of impact at the onset of each step and d) conservation of energy
to reduce the energy cost for muscles. Each of these functions involves a
complex series of interactions between the body mass and the segments of the
lower limbs, that integrate to form a single tri-dimensional motion framework.

7



Gait

(a) The locomotive unit. (b) The passenger unit.

Figure 2.1: The two functional units of gait according to Perry [16].

• The passenger unit - sometimes also referred to as HAT1 - consists in arms,
head and trunk, and it represents around 70% of the body weight. The
passenger unit is in charge of the postural integrity: actually, mechanics of
the healthy gait is so efficient that the functional tasks of the passenger unit
are almost negligible. Still, the alignment of the passenger unit above to the
locomotive unit represents the main determinant of the muscle activity of the
lower limbs. During healthy gait, muscles of the trunk and the neck maintain
the postural alignment neutral, while the swing of the upper limbs - which
involves both passive and active mobilization - seems to affect poorly the
mechanics of gait.

The locomotive unit is in charge of supporting the above passenger unit. However,
the passenger unit has a much more considerable mass with respect to the locomotive
unit; then, the mass ratio between such units is one of the main determinants of
postural stability during gait [16].
Recent studies have demonstrated that stabilization of the head and the upper trunk
is fundamental for maintaining postural control during gait [11]. As a consequence,
accelerations at the head result in a more attenuated and smoothed waveform

1Head, Arms, Trunk [17].
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than signals recorded at the lower limbs. The reason for such stabilization may be
addressed to the need for keeping the vision and vestibular systems stable, as they
are crucial for navigation and planning of adaptive motor strategies [11].

2.1.2 Taxonomy of gait
Given its complex and multi-interactional nature, gait can be studied and analyzed
according to three possible approaches [16]:

• the first one divides the gait cycle according to the reciprocal feet-to-floor
contacts;

• the second one considers the time and distance features of the stride;

• the third one determines the events within the gait cycle and names the
intervals delimited by them as the functional phases of gait.

In the first approach, one limb supports the body while the other advances to the
next support stage; then, the limbs switch role and the body weight is transferred
from one limb to the other while both feet are in touch with the ground. Such series
of events is repeated by every limb alternatively until the destination is reached. A
single sequence of such functions for one limb is commonly referred to as gait cycle.
As a matter of fact, due to its cyclic nature, every event of gait could be considered
as the start or the end of the cycle; however, since the time step at which the
foot-to-ground contact occurs is the easiest to detect, it is usually accepted as the
beginning of the gait cycle. Such event is commonly referred to as heel strike (HS)
or initial contact (IC)2. The gait cycle can be segmented into two periods or phases
- stance and swing [19] - which define the functional partition of the activity of one
lower limb during gait. The stance starts with the IC and is defined as the period
of foot-to-ground contact. The swing starts with the toe off (TO) and refers to the
period during the one the limb is detached from the ground to allow progression
(Figure 2.2).

Within the stance, three intervals can be recognized (Figure 2.3): two stages
of bi-lateral contact of the feet with the ground at the onset and at the end of
the cycle (double support) and one stage of mono-lateral contact of only one foot
with the ground in the central part of the stance (single support). It is important
to stress that, during the double support stages, the body weight is not equally
distributed among the limbs.

2In the gait of healthy subjects, the foot initial contact and final contact can respectively be
referred to as heel strike and toe off ; however, such terminology fails when dealing with gait of
elderly people or pathological subjects (e.g. subjects with clubfoot or Huntington disease), whose
contact and detachment points may differ from the heel or the toes [18].
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(a) During stance, the limb provides
a support basis that moves forward
over the foot.

(b) During swing, the limb advances
towards a useful configuration for
the next load acceptance.

(c) Feet orientation during stance (black) and swing (white).

Figure 2.2: The two main phases of gait according to Perry [16].

The timing of the alternation of stance and swing, single and double support can
vary according to age, pathology or walking speed [20][21]; however, adult healthy
subjects tend to have stance and swing distributed respectively as 60 and 40 %
of the gait cycle (% GC). A single support stage takes around 10 % GC, while
a double support stage takes around 40 % GC. The time duration of the double
support stage is inversely proportional to the walking speed: eventually, when the
speed is sufficient, the double support stage does not occur and gait evolves to
running.
The gait cycle - also referred to as stride - can be considered as the sequence of two
steps (Figure 2.4). A stride begins with the initial contact of one foot and ends
with the next initial contact of the same foot. Hence, if the stride starts with a left
step, it will be ended by a right step [22].
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Figure 2.3: Overview of the single support and double support stages [16]. The
dark bands refer to double support, while the light bands refer to single support.
The stance period includes an initial double support, a single support and a terminal
double support before the swing. The last dark band identify the onset of the next
cycle.

Figure 2.4: Relationship between step and stride.

2.1.3 Phases and sub-phases of gait
According to Perry [16], the gait cycle can be hierarchically divided into periods,
tasks and sub-phases (Figure 2.5). Each sub-phase represents a precise motor
schedule oriented to the accomplishment of a specific functional need. Eventually,
the synergy of the 8 sub-phases allows the achievement of three main functional
tasks - weight acceptance, single support and limb progression.
A stance phase consists of five sub-phases:

11



Gait

F
igure

2.5:
Functionalsub-phases

ofgait
according

to
Perry

[16].

12
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• Initial contact: 0 - 2 % GC.
The initial contact is the first stage of the weight acceptance. During this
phase, the ground reaction force shifts behind the ankle joint and forces a
clockwise rotation of the foot.

• Loading response: 2 - 10 % GC.
During the loading response, the knee performs a flexion to initiate the loading
acceptance. During this phase, the first rocker occurs. The heel hits the
ground, the foot rotates around it, and the ankle joint axis rotates towards
the flat foot position. Contraction of plantar-flexion muscles coordinates this
motion [23].

• Mid stance: 10 - 30 % GC.
During the mid-stance, the second rocker occurs. The tibia rotates around the
ankle joint and goes up and over the talus. The intrinsic muscles of the foot
and tibialis posterior activate to keep a medial longitudinal trajectory [23].

• Terminal stance: 30 - 50 % GC.
During the terminal stance, the third and last rocker occurs, while the performs
a plantar-flexion over a fixed forefoot (at the metatarsophalangeal joints) [23].

• Pre-swing: 50 - 60 % GC.
During the pre-swing phase, the body load is transferred from one foot to the
other. In this interval, both feet touch the ground, hence, the pre-swing phase
is also referred to as double support interval - in contrast to the remaining
single support interval.

The swing phase consists in three sub-phases:

• Initial swing: 60 - 73 % GC.
The initial swing initiates the limb forward progression.

• Mid-swing: 73 - 87 % GC.
During the mid-swing, the knee reaches its maximum flexion, which is func-
tional to raise the foot and avoid stumbling.

• Terminal swing: 87 - 100 % GC.
Pelvis flexion continues due to the leg’s inertia with poor muscular contribution.

The analysis of the sub-phases of gait allows to determine the functional meaning
of the various motions at the joints; moreover, it provides also a tool for correlating
the activities of the single joints to the functional schemes of each limb [16].
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2.2 Gait analysis

2.2.1 Milestones
Walking has always been crucial for the lives of the human beings. Through
the centuries, the cyclic gesture called gait has captivated the minds of scholars,
scientists and philosophers, who dedicated much effort in the attempt of grasping
the functioning of its underlying mechanism [24].
The first comment on the analysis of walking can be tracked to Aristotle (384–322
BCE) [25]; however, the world had to wait until the Renaissance for the spreading of
a real interest towards gait analysis. During this period, the Italian mathematician
Girolamo Cardan (1501 - 1576) - the first one to use complex numbers - studied the
properties of three-dimensional angles, while the French philosopher and scientist
Rene Descartes (1596 - 1650) introduced an orthogonal co-ordinate system for
describing the position of objects in space [26]. The first experiment in gait analysis
was performed by one of the pupils of Galileo Galilei, Giovanni Borelli (1608–1679).
He placed two poles at unspecified distance one from the other and tried to walk
towards them maintaining one pole in front of the other. He noticed that near pole
always seemed to move to the left and right with respect to the far pole, hence, he
found that the head moves in the medial-lateral (ML) direction during walking [27].
Later in the 19th century, the Weber brothers3 - using only a stop watch, measuring
tape and a telescope - observed that cadence and step length depend reliably on
the walking speed [28]. Moreover, they also tried to figure out the pose of the limbs
at 14 different instants in the gait cycle and were the first to draw illustrations
showing frames of the limb segments orientation at these different instants (Figure
2.6).

After that, relevant steps forward in gait analysis were promoted by Marey
(1830–1904) [29], Muybridge (1830–1904) [30], Fischer (1861–1917) [31], Bernstein
(1896–1966), Amar (1879–1935) [32] and Inman [33][34]; who contributed both with
experiments and theorizing and laid the foundations for modern gait analysis.
After the Second World War, electromyogram (EMG) represented the election
technology for performing clinical gait analysis, due to its ease of recording and low
dimensionality with respect to 3-D motion data. Nevertheless, in the 1970s, the two
American surgeons Jacquelin Perry and David Sutherland - both pupils of Inman
and two of the most eminent names in the field of gait analysis- recognized that EMG

3Ernst Heinrich Weber (1795–1878) and Eduard Friedrich Willhelm Weber (1806–1871),
brothers of Willhelm Eduard Weber (1804–1891), Professor of Physics at Gottingen and still
remembered in the eponymous SI unit of magnetic flux.
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Figure 2.6: Configuration of the trunk and lower limbs at 14 instants during the
gait cycle [28].

was not enough. Perry developed instrumented methods for measuring temporal-
spatial parameters [35][36], while Sutherland investigated ways of obtaining three-
dimensional information from cine film [37]. More recently, the engineer Ed Chao
paved the way for the modern use of three-dimensional joint angles [38]. Up to the
1970s, instrumented gait analysis represented a mere research tool and was limited
to few subjects. Experimental setups were lumbering and complex to use, and the
amount of time required for processing prevented data from being presented in
a clinically-appealing format. Gait analysis really became a commons with the
advent of the computer era, which allowed for faster processing of data [24].

2.2.2 General overview
The World Health Organization (WHO) highlighted the importance of the aspects of
the motor function such as activity level and participation in the 2001 International
Classification of Functioning Disability and Health [39]. Gait function is considered
a major determinant for independent motor function; then, the extent of walking
during the day is an indicator for the degree of physical activity [13]. Gait and
balance can be affected by a wide range of diseases, such as heart failure, chronic
obstructive pulmonary disease (COPD), stroke, Parkinson, cerebral palsy (CP)[8],
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osteoarthritis, osteoporosis, diabetes, low vision, etc... so that the treatment of
gait-related disturbances involves several clinical disciplines [40]. Moreover, the gait
disorders have proven to be related to mild cognitive impairment and Alzheimer’s
syndrome [41]. Then, the evaluation of gait function is crucial for monitoring the
recovery or decline of the motor function and to study physical activity patterns
on the long run [13].
Gait analysis is the instrumented measurement of variables related to the human
walking4. The goal of gait analysis is the quantification of factors that control the
functionality of lower limbs. This is functional to detect gait anomalies, identify
postural instabilities and assess clinical interventions and rehabilitation plans [14].
Modern gait analysis can assist the clinical evaluation of the gait of both healthy
and pathological individuals, providing the clinician with quantitative values of
relevant gait-related clinical variables.
In the last years, gait analysis has emerged as an effective tool to the early detection
of neurodegenerative diseases or to monitor their progression [2]. Early diagnosis
of motor and neurodegenerative diseases can anticipate loss of mobility [43] and
limit healthcare-related costs, which represent a significant issue for developing
countries [44].
Out of the pathological framework, gait analysis can be employed also for wellness,
sport training optimization, gaming and entertainment.
Today, gait analysis mainly regards 4 areas of science: kinematics, kinetics, EMG
and engineering mathematics [45].

• Kinematics: Kinematics is the measurement of movement [45] i.e. the
limbs position, orientation and relative angles. Today, the instrumentation
to measure kinematics includes timing systems, velocity-measuring systems,
accelerometers, micro electro-mechanical systems (MEMS) inertial sensors,
optical and IR imaging systems and MOtion CAPture (MOCAP) systems
[46].

• Kinetics: Kinetics aims at measuring the forces acting between the foot
and the ground, which are recorded by an instrumented surface known as
a force platform [45]. By measuring forces, other dynamic quantities can
be derived from the integration of force data with kinematic data, such as
power, energy and torques [46][45]. Modern tools for directly measuring
kinetic bio-mechanical variables include force platforms, strain gauges and
pressure-sensing devices [46].

4Today, the expression "gait assessment" is used similarly to "gait analysis"; however, the
former refers to the whole process of examining a patient’s gait and making suggestions for
treatment, while the latter should be reserved for the technical side of the gait assessment [42].
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• EMG: Muscle forces produced during walking may be indirectly estimated
using EMG. EMG records the electrical activity of a contracting muscle
through surface electrodes placed on the skin over a superficial muscle or
micro-electrodes that penetrate the epymisium and record electrical activity
of more profound muscles. EMG data denote whether a muscle is contracting
or not; moreover, by processing the EMG signal, the relative strength of the
contraction may be estimated [46].

• Engineering mathematics: The transmission of forces and moments at
different joints and the conservation of energy during walking have been object
of study and mathematical modeling since the 1930s [46]. Nowadays, such
branch of gait analysis concerns the use of inverse dynamics to compute joint
moments and powers from the limb motion and/or ground reaction force.

2.2.3 Spatio-temporal parameters
Typically, a distinction is made between local and global gait-related variables.

• Global variables:

– Spatio-temporal parameters
– Average and maximum speeds of the center of mass;
– Consumed metabolic energy;
– Walking endurance time interval;
– Average rate of fall5.

• Local variables

– Of muscles: e.g. s-EMG.
– Of joints and muscle groups: e.g. Joint angles, joint torques and

generated/absorbed power.

Global variables are useful for planning interventions or assessing drugs efficacy,
while local variables are typically employed to create complex models of a specific
joint for orthopedic purposes or for designing prosthetic implants.
In the framework of global gait-related variables, STP play a crucial role in the
quantitative evaluation of the motor function both in research and clinical settings
[9]. STP describe in a quantitative way the main events of gait, and therefore
reflect the ability of the subject to achieve the general requirements of gait i.e. the

5The rate to which a person tends to fall is especially relevant for elderly people.
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weight acceptance, the single limb support and the forward progression of the limb
during the swing phase [47].
The most widely used temporal gait parameters include stride and step time and
cadence; in addition, spatial gait parameters can be defined from the distance
traveled between two consecutive gait events [2]. STP can be estimated indirectly
from spatial and temporal parameters according to various definitions (Table
2.1). The above-mentioned STP can be calculated according to several definitions,
depending on the specific need and application. For instance, the walking speed
(WS) may be defined either as the ratio between the stride length and the stride
time or as the ratio between the traveled distance and the amount of time employed
to walk that distance. STP describe complementary aspects of gait; then - if
combined - they can provide a solid overview of the physio-pathological condition
of one’s gait. Eventually, STP can be employed to diagnose pathological gait and
assess functional outcome after treatments [47]. Distinctive relevance is covered
by the WS, as it correlates with functional ability, balance confidence and has the
potential to predict future health status and functional decline [49].

2.2.4 Instrumented measurements of spatio-temporal pa-
rameters

Modern analysis of gait strongly relies on instrumented tools to extract objective and
reliable measures of locomotion patterns and their variability [2]. Such measures
can contribute to the investigation of gait illnesses and support the design of
targeted rehabilitation programs [50][51]. Regarding STP, they can be estimated
instrumentally through a wide plethora of devices [9]:

• Force platforms

• Instrumented mats

• Foot-switches

• Pressure insoles

• Opto-electronic systems

• MIMUs

Force platforms

Force platforms - otherwise known as force plates - measure reaction forces in
three directions - vertical, anterior-posterior and medial-lateral - and determine
the direction and point of application of the resultant reaction force [48]. Force
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Domain Parameter Unit Description

Time

Stride time [s] Time interval between two consecutive ICs of the same foot.
Step time [s] Time interval between a IC of one foot and the IC of the other.

Cadence [steps/min] or
[strides/min] Number of steps or strides per minute.

Stride frequency [Hz] or
[stride/s] Number of strides per second.

Step frequency [Hz] or
[steps/s] Number of steps per second.

Stance time [s] Time interval between IC and
the next final contact (FC) of the same foot.

Stance duration % GC The stance time as percentage of the gait cycle.

Load time [s] Time interval between IC and
toe strike (ToS) of the same foot.

Load duration % GC Load time as percentage of the gait cycle.
Foot flat time [s] Time interval between ToS and FC of the same foot.

Foot flat duration % GC Foot flat time as percentage of the gait cycle.

Push time [s] Time interval between heel off (HO) and
FC of the same foot.

Push duration % GC Push time as percentage of the gait cycle.
Swing time [s] Time interval between FC and IC of the same foot.

Swing duration % GC Swing time as percentage of the gait cycle.
Double

support time [s] Time interval between an IC
of one foot and the next FC of the other.

Double support
duration % GC Double support time as percentage of the gait cycle.

Single support time [s] Time interval of support on one foot
(corresponding to the swing time of the other).

Single support
duration % GC Single support time as percentage of the gait cycle.

Limp index − The ratio of the stance times of the two feet.
Turn time [s] Time interval of a turn during walking.

Space

Stride length [m] The distance of two consecutive ICs of the same foot.
Normalized
stride length [m/m] Ratio between stride length and height.

Step length [m] The distance of the IC of one foot and the IC of the other.
Normalized
step length [m/m] Ratio between step length and height.

Step width [m] The distance of feet along the ML direction.

Velocity
Walking speed [m/s] The average instantaneous speed of the gait cycle.

Normalized
walking speed [Hz] Ratio between walking speed and height.

Arm swing velocity [m/s] Speed of the arm during forward swing.

Table 2.1: Starting from gait events, several useful STP can be defined [48] in the
time, space and velocity domains. STP values expressed as % GC represent the
value for that parameter expressed as percentage of the time duration of the gait
cycle.
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platforms, which are typically rectangular-shaped and sized between 40 cm and
60 cm (Figure 2.7), can also provide accurate gait temporal parameters such as
foot ICs and FCs [7].

Figure 2.7: Illustration of a force plate [52]. The lines denote the directions of
measurable forces and torques.

Instrumented mats

Instrumented mats - also called instrumented walkways - are platforms that embed
a number of pressure sensors (Figure 2.8). Then, instead of measuring resultant
forces, instrumented mats allow the measurement of the force distributed on a
certain area i.e. pressure [48]. Force platforms and instrumented mats share
the same strengths i.e. the ease of use and the possibility of measuring spatial
parameters as well as the temporal ones. However, they both are expensive, require
much space and can hardly be employed outside of laboratory settings [7].
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Figure 2.8: The GAITRITE system, one of the most widely used instrumented
walkways [53].

Foot-switches

Foot switches are basically force sensing resistors placed under the feet (Figure
2.9). They are wearable and cheap; however, they take longer subject preparation
and provide temporal parameters only [48].

Pressure insoles

Pressure insoles extend the concept of foot switches by using a higher number of
pressure sensors (typically more than 10). By increasing the number of sensors,
pressure insoles allow for a more accurate depiction of the foot-to-ground contact.
Sensors are typically embedded in a flexible plastic substrate to adhere to the
foot shape (Figure 2.10). Pressure insoles provide more detailed information on
the foot-to-ground contact with respect to foot switches, as they can keep track
of the pressures exerted by the foot on the ground during stance instead of just
determining the HS and TO.
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Figure 2.9: Signals originated by a combination of three foot-switches [54].

Opto-electronic systems

Opto-electronic systems - also referred to as optical MOCAP systems or stereopho-
togrammetry - enable the digital tracking of the human motion in tri-dimensional
space (Figure 2.11). The subject’s motion is recorded by a set of visible or IR
light cameras; then, the output - in the shape of 2D digital images - is processed
to obtain 3D trajectories of markers placed on the subject’s body [48]. Optical
motion tracking systems are meant to measure 3D kinematics; however, they can
provide also STP. Due to their accuracy and reliability, stereophotogrammetry
is considered as the GS for gait analysis; nevertheless, optical motion tracking
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Figure 2.10: Illustration of a pressure sensing insole [55].

systems are significantly expensive, can be used only in laboratory settings and
have a limited field of view [7]. As a consequence, results of studies relying on
stereophotogrammetry or instrumented mats for the collection of data often do not
reflect real-life gait [13].

MIMU

The above-mentioned technologies usually fail when gait analysis must be conducted
in real-life conditions outside of the laboratory settings, since they are generally
obtrusive and far from being easy-to-use [22]. Magneto–inertial sensing is an
emerging technology with a growing number of potential applications in the analysis
of the human motion [7]. MIMUs - sensing units hosting tri-axial gyroscope,
accelerometer and magnetometer - are self-contained systems; then, their mode of
operation does not depend on the experimental settings. Although the deployment
of accelerometers for human motion analysis has been suggested since the 1970s,
their usage for purposes related to gait analysis has become widespread only
recently, with several studies reporting their use on trunk, thigh, shank or foot [22].
Inertial sensors are extensively employed in the consumer electronics market, hence,
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Figure 2.11: Illustration of an opto-electronic system [6].

their performance is constantly upgraded while their price decreases; moreover,
the development of MEMS of the last years has paved the way for a wide range
of applications based on MIMUs in the field of the analysis of the human motion
[7]. An alternative to MIMUs is represented by inertial measurement units (IMUs)
(Figure 2.12), which host only an accelerometer and a gyroscope [7].
Body worn accelerometer devices are widespread within the scope of step and stride
counting applications, since they can be used to derive mobility-related metrics
(e.g. total number of steps per day, duration and cadence of locomotion periods).
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Nevertheless, the robust estimation of such parameters in real-life conditions is not
trivial, given the influence of environment (e.g. surface type/slope/stairs, indoor
vs outdoor etc.) and the variability in movement impairments [8].
Generally, inertial sensors are less accurate than laboratory-based technologies

Figure 2.12: A typical full-body configuration of IMUs including IMUs positioned
on the knees, waist and chest (Notch Pioneer Kit, 2021, Notch Interfaces Inc. All
rights reserved).

for the measurements of STP. However, their popularity is due to portability and
unrestricted applicability to almost every environment [14].

2.2.5 Estimating spatio-temporal parameters from inertial
sensors

Until 2003, not many studies had highlighted the relationship between STP and
inertial signals i.e. accelerations and angular velocities [22].
A general trend in gait analysis is to approach sequentially to the challenges of the
estimation of temporal and spatial parameters of gait, given the intrinsic difference
of the domains that they refer to. Typically, gait events and temporal parameters
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are first estimated; then, gait events are exploited to estimate displacements and
eventually spatial parameters. At this point, temporal and spatial parameters are
combined to estimate gait parameters depending on both time and space (e.g. the
walking speed).
With today’s availability of storing and processing large amount of data and the
recent progress in the field of deep supervised computational models, the processing
steps needed to go from signals to gait events to temporal and spatial parameters
may be bypassed and unexplored relationships between inertial signals and STP
may be directly inferred.
In general, methods for estimating the temporal parameters of gait from inertial
signals can be divided into three main categories [56]:

• Peak-detection methods: Methods based on thresholds or peaks identifica-
tion.

• Time-frequency analysis: Methods based on the analysis of the signals in
the time-frequency domain or wavelet decomposition.

• Machine learning: Gait analysis involves a large number of interdependent
parameters that are difficult to interpret due to a vast amount of data and
their inter-relations. To simplify evaluation, the integration of MaLe with
biomechanics is a promising solution.

Methods based on MaLe span over a wide plethora of algorithms such as hidden
markov models (HMMs), support vector machines (SVMs); decision trees (DTs);
artificial neural networks (ANNs), ensemble classifiers and others [14]. Most recently,
thanks to the high computational power that modern computers have at their
disposal, deep learning artificial neural networks have been successfully applied to
the identification of gait events, which is typically the first step for the estimation
of temporal parameters of gait [57].
Similarly, several methods for estimating spatial parameters from inertial signals
have been reported in literature. In general, such methods can be divided into
three main categories [56]:

• Direct integration: Direct integration methods - as their name says - are
based on the direct integration of the linear acceleration signal along the
direction of progress (DoP). Linear acceleration is the second derivative of
linear displacement, hence, the acceleration signal must be integrated two
times to get displacement of the sensor. Although direct integration may seem
a trivial and easy procedure, the acceleration signal is affected by errors that
are enlarged every time that the signal is integrated. Then, countermeasures
based on signal assumptions are typically adopted to try and reduce such
errors (e.g., zero velocity update, direct-reverse integration, etc...).
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• Human gait models and abstraction models: Human gait can be modeled
with proper mathematical expressions that reflect its underlying mechanism.
A common model for the human gait is the inverse pendulum, though other
more sophisticated models can be thought - for instance, the double inverse
pendulum. Such models rely on the relationships that exist between the
anthropometric features and gait parameters. Gait models can be personalized
to fit to one’s gait by introducing suitable parameters; however, the higher
the amount of parameters of the model, the lower its generalizability.

• Machine learning: In the last years, MaLe has emerged as a valid solution
to the problem of estimating spatial parameters. MaLe consists in a set of
techniques that aim at extracting knowledge from data.

In the last decades, many studies have undertaken the non-trivial task of estimating
STP with MIMUs. A widespread methodology consists in exploiting multi-sensor
configurations i.e., multiple MIMUs positioned at different body sites. Panebianco et
al. evaluated the influence of sensor positioning, target variable and computational
approach on the performance of 17 algorithms for the estimation of spatio-temporal
parameters with different sensor configurations including lower back MIMUs (B-
MIMUs), shank-MIMUs and foot MIMUs (F-MIMUs) [9]. Bertoli et al. estimated
STP of Parkinson, mildly cognitively impaired and healthy older adults with
bilateral shank-MIMUs [2]. Salarian et al. developed an ambulatory method for
the estimation of STP using gyroscopes attached to wrists, shanks and thighs [58].
Although multi-sensor configurations have proved to be able to provide accurate
and reliable estimates of STP, wearable solutions based on multiple sensors often
require much time for preparation and lack in usability and comfort [59]. As a
consequence, many studies shifted towards the direction of single-sensor systems.
Galperin et al. evaluated motor severity in patients with falls and Parkinson’s
disease in free-living conditions through a single accelerometer positioned on the
lower back [60]. Jarchi et al. proposed a method for detecting gait events of
subjects that underwent anterior cruciate ligament reconstruction with a single
H-MIMU positioned on the ear [61]. Ionescu et al. detected cadence of children
with cerebral palsy in free-living conditions using a single trunk-fixed accelerometer
[8]. Soltani et al. developed algorithms for walking speed estimation using a single
B-MIMU [62]. Sijobert et al. implemented and validated an algorithm for the
estimation of the stride length of Parkinson adults using a single shank-MIMU [51].
Trojaniello et al. evaluated accuracy, sensitivity and robustness of five different
methods for the estimation of temporal parameters using a single B-MIMU [63].
While conventional methods developed ad hoc for multi-MIMU configurations
typically attain remarkable performance, results achieved through a single-MIMU
approach are generally less accurate.
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2.3 Role of AI in gait studies
Clinicians typically employ gait analysis for diagnosis and therapy selection but
have been tested by highlighted complexities such as volume and non-unique con-
nections between the variables of one’s gait [14].
Actually, human biomechanics of gait encompasses a large amount of interrelated
parameters that are tough to interpret due to a vast amount of data and their
inter-dependencies. Sometimes, clinicians need to take into account at the same
time symptoms of the patient, therapy programs, potential side effects, comorbidity,
previous medical records, and many other elements. To facilitate their evaluation,
the incorporation of AI with biomechanics is a promising solution [14].
As a matter of fact, gait analysis could benefit from AI methods, since these are able
to handle high dimensional, time-varying and complex data [43][64]. AI techniques
are capable of building models that learn automatically from databases, make
accurate predictions, and act "intelligently" [65].
As a subcategory of AI, MaLe methods have been massively employed in various
fields related to healthcare such as medical diagnosis [66][67][68], pattern recogni-
tion [69][70], image processing [71], classification [72][73][74], prediction analysis
[75][76] and monitoring [72][77]; therefore, they can be easily adapted to support
gait studies [14].
In gait analysis, MaLe techniques have been applied to several purposes, such as the
detection of gait disorders [74][78], the prognosis of early intervention for fall-related
risks due to disabilities or aging [65][68][79], the definition of motor recovery tasks
[80][81] and the scheduling of rehabilitation or therapeutic interventions [82].
MaLe models trained to interpret complex relationships can reduce time to diagno-
sis, improve patient monitoring, and assist clinicians in the selection of treatment.
On the other side, such methods generally require computing facilities at the oper-
ation site [14]. MaLe methods operate by analyzing data or images to determine
existing patterns. Moreover, MaLe allows for continuous learning, thus enhancing
the diagnostic outcomes [14].
MaLe techniques need relatively large databases: the more the training data, the
higher the performance of the trained model. However, in the initial stage of its
deployment, gait analysis was confined to laboratory settings, relying mainly on
video-based systems [14]. At that time, the implementation of MaLe methods
was limited by a lack of technological advent in data processing and unmet data
collection and storage capabilities. With the technological advent of vision and
sensor capture systems for gait analysis, an accumulation of a large amount of in-
terdependent parameters occurred, thus the need of developing methods to process
such great amount of temporal and highly complex data [14].
Despite statistical tools are employed extensively in gait analysis, they lack predic-
tive power to generalise on unseen data [14]. Hence, the application of MaLe to
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biomedical gait analysis can represent a valid solution.
Classification and prediction tasks can be approached through a variety of super-
vised and unsupervised techniques of MaLe in the context of vision-based [79][82]
and sensor-based [83][84] systems. In addition, reinforcement learning (RL)6 can
be used to obtain better performance of tracking control in rehabilitation strategies
[85].
One of the main detractors of MaLe is represented by the issue of assessing to what
extent the trained model is able to perform the task on an unknown dataset i.e. its
generalization capabilities [14]. Another relevant aspect of the design of a MaLe
algorithm is represented by the feature extraction/selection phases [74][81], that
have proved to increase computational efficiency by reducing computing intervals
[14].

2.3.1 Overview of AI
With the expression AI, one usually refers to the ensemble of methods and tech-
niques intended to work in synergy with the human beings to strengthen their
decisions or enhance their performance. However, the meaning of the term "AI"
has evolved through the decades, so that its current meaning significantly differs
from the original one.
The term AI was adopted for the first time by a group of researchers in the title
proposal of a 2-months workshop occurred in Dartmouth (Hanover, USA) in 1955
(Summer Research Project on Artificial Intelligence) [86]. In their vision, devel-
oping AI meant dedicating efforts to the implementation of intelligent machines,
eventually capable of replacing the human intelligence. Soon, such purpose turned
out to be unrealistic, due to technological constraints, leading to the so-called
"First Winter of the AI" in the 1970s. Therefore, researchers tried to reshape the
concept of AI towards the development of expert systems, that were supposed
to extract knowledge from human experts and replicate it to assist humans in
solving real-world problems. Still, feeding computers with knowledge was not a
trivial challenge, due to inconsistency of the human thought and to the problem
of codifying human knowledge into a form that was digestible for machines. Such
struggle strongly limited the enforceability of expert systems to real applications,
leading eventually to the Second Winter of the AI in the 1990s. After this failure,
the idea of AI was again redesigned. In the last years of the 20th century, a novel
approach based on the extraction of knowledge from data turned out to be not
only feasible but also effective: the era of MaLe had begun.

6In RL, the model is dynamically fed with training data, thus its performance increases with
time.
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MaLe

Typically, a distinction is made between AI and MaLe. In general, AI is an umbrella
term for a wide set of methods and techniques, of which MaLe can be considered a
subset.
The goal of MaLe is training computational models that are able to perform a
certain task by learning from data.
In gait analysis, MaLe serves to model a biomechanical system T (x) by determining
the relationship between input data f(x) and outputs y(x), despite f(x) being
affected by noise n(t), which requires pre-processing of the input data [14]. The
input data are raw multidimensional arrays of size V × U , where V corresponds to
the number of observations and U represents the data features such as kinematics,
kinetics or neuromuscular signals [14]. The model output consists in the classifica-
tion of gait events, activities or disorders. Typically, evaluation of MaLe models
adopts an iterative approach where the input dataset is divided into a training
set (TRS), test set (TS) and validation set (VS). The model is trained using a
TRS and validated on the VS to prevent overfitting and perform hyperparameters
tuning. Finally, the performance is evaluated on an unseen TS i.e. a dataset not
used in the training phase. When desired accuracy is achieved, the process ends,
otherwise the model hyper-parameters are re-adjusted and the model is re-trained
until a suitable value of accuracy is attained.
As a matter of fact, MaLe appears to be a problem of induction, as the goal is to
exploit the finite training data to find a function able of making predictions for all
the possible input elements [87].
A vast number of input features leads to system complexity; therefore, feature
selection can be done [14].
A crucial step for MaLe is represented by the learning process. The most commonly
used learning techniques include supervised, unsupervised and RL [14] (Table 2.2).

Supervised learning In this type of learning, the input data is an array of
features vectors - also called predictors - associated to their respective response
or label. The aim of training is to assess a function that best maps the relation
between input feature vectors and the corresponding response [14]. Such purpose
is typically referred to as regression, for continuous outputs, or classification, for
discrete outputs [87].
In the framework of gait studies, several supervised algorithms have been explored:

• SVM: SVM has good generalisation capability even for relatively small
datasets. SVM is parameterized by kernels, which allow it to deal with
both linear and nonlinear problems; moreover, it can be used for multi-class
classification as well as binary classification [44][83].
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• ANN: ANNs in the shape of single or multi-layer perceptrons have proved
to be a valid resource for prediction and pattern recognition in gait studies.
Still, explainability of the network response remains as issue, as many times
it acts as a black box [14]. Training of ANNs use different variants of the
back-propagation (BP) algorithm.

• DT: DTs are used to model the highly nonlinear and complex relations between
variables [14]. DTs are typically easily interpretable; however, they usually
fail when the degree of task complexity becomes too critical.

• Random forest (RF): A RF is basically an ensemble of randomised DTs.
Therefore, the predicted output is assigned after a process of voting i.e. the
output with the maximum number of DT votes is chosen [14].

• HMM: HMM models have the peculiarity of maintaining the imposed sequence
of events for the phenomenon that they refer to, hence, they are particularly
suitable to perform tasks of gait phases recognition [88].

• K-nearest neighbours (KNN): The KNN classifier works by calculating
the distance of an object from the representative objects of each class and
assigning that object to the class that is less distant from, according to a
certain distance metric. KNN is extensively used in real-time applications
[69][80], as it is free from implied presumptions about the dataset distribution
[14].

• Fuzzy techniques: Fuzzy techniques find application in gait asymmetry
studies, where linguistic information is expressed in the shape of varying
membership functions rather than numerically [72][89]. However, spreading of
such techniques in gait analysis is being limited by the struggle in defining a
number of linguistic variables and optimal choice of membership functions.

In the gait analysis panorama, supervised techniques of MaLe have been applied to
several tasks such as gait activity detection, gait events detection (GED), disorder
detection, asymmetry detection and neurological studies [14].

Unsupervised learning In unsupervised learning - sometimes referred to with
the term clustering - no labels are provided to the learning algorithm, but rather the
algorithm itself deduces the relationship among several inputs to assess an output
[14]. The vast majority of clustering algorithms identify clusters according to the
distance between all feature vectors. Such methods were less investigated in gait
studies, since the accurate definition of the learning objectives and the handling of
a large amount of feature vectors are challenging [14]. Nevertheless, such techniques
can be employed when the relationship between different observations is not known.
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Typically, unsupervised methods are complemented by dimensionality reduction
methods, especially when the size of the dataset is significant. Unsupervised
methods of MaLe are able of learning separate patterns for particular pathological
conditions, starting from the appropriate selection of distance metrics depending
on the given problem [14].

RL In gait studies, RL is mainly employed with exoskeletons or walking assistive
devices to make those systems interact with a dynamic environment. Actually, in
the context of rehabilitation devices, RL techniques coupled with DeLe proved
to be able of capturing user’s variability and subject-specific needs, resulting in
automation [14].
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DeLe

As MaLe can be seen as a subset of the wider ensemble of methods that goes under
the name of AI, DeLe can be seen as a subset of MaLe itself [90].
DeLe basically extends the concept of neural networks by training "deeper" and
more complex neural network models with a higher number of layers in respect with
MaLe models [90]. The peculiarity of DeLe is the use of significantly larger datasets
in the training phase. Actually, while performance of MaLe neural networks reaches
a plateau even when trained with big datasets, DeLe networks manage to unleash
the complete potential of data: theoretically, if the available training dataset was suf-
ficiently large, the performance of the trained DeLe model would be impeccable [91].

Feature selection and extraction

Dimensionality of data should be taken into account when designing a MaLe
algorithm, as it affects complexity and processing capabilities [14]. Often, input
dataset feature with a high number of predictors; however, some of them may
be poorly relevant, redundant or even detrimental for the target task [90]. To
reduce computational complexity and prevent performance from being lowered by
confounding features, dimensionality reduction techniques are typically adopted
[81]. A distinction is typically made between feature selection and feature extraction
techniques [14].

• Feature selection: Selection of a subset of features from the input data.
Selection can progress forward or backward: in the first case, features are
added iteratively until an optimal vector of features is determined, in the
second case, features are iteratively removed from an initial vector of features,
until an optimal set of features is identified.

• Feature extraction: Mathematical transformation of original features to
derive new ones. When performed "manually", such approach is considered
more "expensive", as all the original features need to be collected anyway [90].
DeLe methods typically employ feature extraction techniques to craft new
low-level features from high level features or raw data, releasing the operator
from the burden of features hand-crafting [91].

In gait analysis, several techniques of dimensionality reduction have been inves-
tigated, such as principal component analysis (PCA) [44], hill climbing [64] and
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discriminate analysis7. However, some classifiers like ANN, deep neural network
(DNN) and convolutional neural network (CNN) automatically select/extract opti-
mum features from the original features set [91].

2.3.2 Machine learning and deep learning applied to gait
analysis

GED, gait activity detection (GAD), gait disorder detection (GDD), gait asymmetry
detection (GAsD) and neurological studies in gait have represented the most
explored application areas of MaLe methods to gait analysis for the last years [14]
(Figure 2.13).
The assessment of STP typically requires the previous identification of the gait

Figure 2.13: Taxonomy of machine learning applications [14].

phases and sub-phases: in literature, such type of study goes under the name of
GED [14].
The detection of the gait phases - swing and stance - relies on the determination
of ICs and FCs (see 2.1.3). Sometimes, sub-phases of gait i.e. loading, push
off, swing and terminal swing are also targeted, as they can provide insight into
individual variations and dynamic assessment of one’s gait [66]. GED can also
support control strategies of rehabilitation robots in order to prevent them from
harming the patients, as well as pivoting FES, real-time orthosis control and gait
rehabilitation [66].
In the last decade, GED has been addressed by a number of authors and research
groups. Souza et al. [69] managed to train a ANN classifier for the recognition of
human body gait parameters, reporting an accuracy superior to 99%. Farah et
al. [66] succeeded in the identification of four gait phases across different walking
conditions employing local sensor signals from thigh and knee with a logistic model
DT. Paulo et al. [65] applied one-class SVM to automatically detect shifts in gait

7linear discriminate analysis (LDA) allow the projection of features from higher dimension
space to lower dimensions [14]. If linear separation of the dataset is not feasible, then non-
discriminate classifiers can be employed, such as quadratic discriminate analysis (QDA), flexible
discriminate analysis (FDA) and FDA [14].
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scheme. Finally, adaptive learning and RL were exploited for adaptive controllers
with hemiplegia patients [85].
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Chapter 3

The INDIP system

In the present Chapter, the basic notions regarding the functioning of inertial
sensors i.e., accelerometers and gyroscopes are provided. Then, the INertial module
with Distance sensors and Pressure insoles (INDIP) system used for data collection
is described in detail.

3.1 Inertial sensors
Inertial sensors can track the motion of an object with respect to an inertial reference
frame [92]. Inertial sensors directly measure inertial signals i.e. accelerations and/or
angular velocities. From such quantities, linear velocities, linear displacements and
angular displacements can be directly determined through subsequent integration.
Inertial sensors are massively employed in many fields (from military to customer
services); as they are generally inexpensive and sufficiently reliable for many
applications. However, inertial sensing technology is also affected by some issues,
such as drift errors and the need for frequent calibration (Table 3.1). As mentioned
in Sub-subsection 2.2.4, inertial sensors - together with magnetometers - are often
embedded within MIMUs.

3.1.1 Accelerometer
Accelerometers measure acceleration along one, two or three sensitivity axis (ac-
celerometers that measure accelerations in all the three directions are commonly
called tri-axial accelerometers).
Accelerometers measure the proper linear acceleration1 ap, which is the vectorial

1Also called g-force or specific force.
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Strengths Drawbacks

• Non-invasiveness

• Low cost

• Low power consumption

• Low encumbrance

• No environmental restrictions
(real-world applicability)

• Multi-parametric measures

• Wearable

• Scaling-up availability

• Industry-ready

• Drift errors

• Instability of measurements

• Low accuracy

• Electromagnetic (electro-magnetic
(EM)) interference

• Affected by temperature and noise

• Require periodic calibration

• Poor displacement estimation

Table 3.1: Strengths and drawbacks of inertial sensors for customers applications.

difference between the coordinate acceleration ac - which is the rate of change of
the velocity of the sensor - and the acceleration of gravity, g⃗:

ap = ac − −→g (3.1)

Then, the output of the accelerometer does not represent the effective acceleration
that the sensor is experiencing, but rather the difference between such acceleration
and the acceleration of gravity. As a consequence, a 1D-accelerometer that is
free-falling with the positive axis parallel to gravity will give 0 m/s2 as output,
while it will give |⃗g| = 9.81 m/s2 when it is stationary.

Principle of functioning

An accelerometer can be modelled as a second order spring-mass-damper system
with proof mass m, elasticity constant k and damping factor b (Figure 3.1).
When a force −−−−→

Fapplied is applied to the system, the proof mass, the spring and the
damper tend to react with forces opposed to the applied force. According to the
Newton’s second law - which states that the algebraic sum of all the forces equals
the inertial force of the proof mass - the vectorial sum of the applied force and the
forces exerted by the spring and by the damper (respectively −−−−→

Fspring and −−−−→
Fdamper)
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Figure 3.1: Dynamic model of a 1D-accelerometer [93].

equals the inertial force acting on the proof mass −−−→
Fmass:

−−−−→
Fapplied + −−−−→

Fspring + −−−−→
Fdamper = −−−→

Fmass (3.2)

Linear displacement x, velocity ẋ and acceleration ẍ of the mass can be explicited by
substituting the definitions of the damping, elastic and inertial forces in Equation
3.2:

Fapplied − kx − bẋ = mẍ (3.3)
The applied force can be also written as the scalar product between the proof mass
and the acceleration of the system ac:

kx + bẋ + mẍ = Fapplied = mac (3.4)

The acceleration ac represents the input to the accelerometer and - in absence
of gravity - it corresponds both to coordinate and proper accelerations. If the
sensitivity axis is parallel to gravity, the gravity acceleration exerts on the mass
a force proportional to the mass itself. Then, the accelerometer will measure the
proper acceleration ap, which incorporates the contribution of gravity:

kx + bẋ + mẍ = m(ac − g) = map (3.5)
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Being Equation 3.4 a second order non-homogeneous differential equation, its
solution can hardly be computed in the time domain, while it is trivial in the
Laplace domain:

kx(s) + bsx(s) + ms2x(s) = F (s) = ma(s) (3.6)

By rearranging the terms of Equation 3.6, the ratio between the output displacement
x(s) and the input acceleration a(s) can be easily derived:

H(s) = x(s)
a(s) = 1

s2 + b

m
s + k

m

= 1
s2 + ω0

Q
s + ω2

0

(3.7)

H(s) is the transfer function of the system, while Q and ω0 correspond respectively
to the quality factor and to the resonance angular frequency:

Q = mω0

b
(3.8) ω0 =

ó
k

m
(3.9)

The transfer function of the accelerometer represents the dynamic sensitivity of the
sensor, whose value changes according to the frequency of the input acceleration.
As it can be easily demonstrated, the sensitivity of the accelerometer H(s) decreases
with the square of frequency from a value H(0) when the input acceleration is
constant to a value of 0 m/s2 when the input frequency approaches infinite. As a
consequence, accelerometers are typically designed to work at frequencies much
lower than their resonance frequency (ω ≪ ω0). H(0) - also referred to as static
sensitivity - is inversely proportional to the square of the resonance frequency
(Equation 3.10).

H(0) = 1
ω2

0
(3.10)

In order to achieve a large sensing bandwidth, a high resonance frequency is needed.
However, this reduces the sensitivity of the device. Therefore, the design of an
accelerometer is usually a compromise between the sensitivity and bandwidth [93].

Technical specifications

In the following, some of the main technical specifications for accelerometers are
listed [56]:

• Sensitivity ( mV/g): Sometimes called scale factor, it is defined - at a given
frequency - as the output voltage signal generated per unit input acceleration
in a given direction:

Sx = Output voltage generated( mV)
Input acceleration along x-axis( g) (3.11)
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If the accelerometer has more than one sensitive axis, Sy and Sz can be defined
as well.

• Cross-axis sensitivity ( mV/g): the output voltage generated due to an
acceleration component orthogonal to a sensitive axis

Sx,ay = Output voltage generated( mV)
Input acceleration along y-axis( g) (3.12)

Sx,az = Output voltage generated( mV)
Input acceleration along z-axis( g) (3.13)

For a tri-axial accelerometer, each axis has two cross-axis sensitivities.

• Bandwidth ( Hz): Range of vibration frequencies to which the accelerom-
eter responds. The bandwidth also determines the frequency at which an
accelerometer provides its readings. Since the range of frequencies created by
the human body motion hardly goes beyond 12 Hz; a bandwidth of 40 Hz to
60 Hz is typically enough for sensing a tilt or human motion.

• Voltage noise density ( µg/Hz0.5): Voltage noise changes with the inverse
square root of the bandwidth: the faster the accelerometer provides readings,
the worse the accuracy. Noise strongly affects the performance of the ac-
celerometers when operating at lower accelerations i.e., with a smaller output
signal.

• Zero-g-voltage ( V): expected voltage at 0 g.

• Dynamic range ( g): Range between the smallest and the largest detectable
amplitudes before incurring in distortion or clipping of the output signal.

Manufacturers of accelerometers generally provide the customer with a datasheet
that includes values and range of tolerance for each of the above mentioned
specifications.

Transduction mechanisms

Several sensing mechanisms can be adopted to convert the proof mass displace-
ment due to the input acceleration into a measurable quantity. According to it,
accelerometers can belong to one of the following classes:

• Piezoresistive: Piezoresistive accelerometers feature with simple design
structure, fabrication process and readout circuits; however, they generally
have low sensitivity, bulky designs and are strongly affected by temperature
[93].
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• Piezoelectric: Piezoelectric accelerometers exploit the property of piezoelec-
tric crystals to generate electric charge in response to a mechanical stress
along a sensitive axis. Piezoelectric accelerometers have the advantages of
being self-powered and providing directly a digital output. In addition, they
generally require a simple interface circuitry. On the other hand, leakage of
piezoelectric materials lowers the performance in DC conditions and the size
of the devices is quite large [93].

• Capacitive: In capacitive accelerometers, the displacement in the proof
mass is first converted to a proportional capacitance change and then into an
amplified voltage signal. Capacitive accelerometers are characterized by high
sensitivity, good DC performance, low noise, low drift and low temperature
sensitivity. On the other hand, they are strongly influenced by EM interference
[93].

• Optical: Optical accelerometers are highly sensitive and mostly immune to
EM interference. However, they struggle to be integrated with the readout
circuitry [93].

• Tunneling: Tunneling accelerometers are highly sensitive and have low foot-
print; nevertheless, they are significantly affected by noise at low frequencies
and require expensive fabrication process [93].

Other less used types of accelerometers exploit resonant and thermal sensing
technologies [93].

3.1.2 Gyroscope
Gyroscopes measure angular velocity along one, two or three sensitivity axis (gy-
roscopes that measure angular velocities in all the three directions are commonly
called tri-axial gyroscopes). Angular velocities measurements are generally ex-
pressed in degrees per second (dps).
In combination with accelerometers, gyroscopes can be employed in several appli-
cations that need an integrated solution for inertial sensing and motion processing
problems [94].

Principle of functioning

Although several types of technologies can be employed for sensing angular velocity,
the most common type of gyroscopes is based on the Coriolis force; hence, they are
called Coriolis vibrating gyroscopes or Vibrating forks gyroscopes. Every time that
an object with mass m rotates and translates respectively at angular rate −→ω and
linear speed −→vt , a force −→

Fc applied to the object is generated - which goes under
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the name of Coriolis force (Equation 3.14).
−→
Fc = −2m−→vt × −→ω (3.14)

Vibrating forks gyroscopes embed a pair of proof masses that oscillate with the
same amplitude, but in opposite directions. At rest, the tines resonate in anti-phase
in the plane of the fork (drive mode). When the sensor is put into rotation, the
tines begin to oscillate also along the orthogonal direction to the plane. Such
oscillation generates a torque that triggers the torsional mode around the gyroscope
stem. Forks can feature with one, two or more tines: the more the tines, the higher
the sensitivity and rejection to common-mode errors (Figure 3.2).

Figure 3.2: From the left, a single, dual and multi-tine configuration of vibrating
forks gyroscopes [94]. Ωt is the input angular velocity, (1) is the drive mode and
(2) is the vibration response due to the Coriolis force.

Technical specifications

In the following, some of the main technical specifications for gyroscopes are listed:
• Input range (dps): The input range represents the range of measurable

values of angular velocity. The limits that define such range delimit the range
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of input values for which the specified performance accuracy is valid. The
amplitude of the input range is typically referred to as full-scale range (FSR).

• Accuracy (%FSR): Also known as linearity error, it represents the average
deviation of the output from a least-squares linear fit of the input-output data.
The definition of accuracy implicitly assumes that the sensor exhibits a linear
input-output behavior - ideally.

• Scale factor ( V/◦ /s): The scale factor represents the ratio between a change
in the output and a change in the input. It is computed as the slope of the
least squares straight line fit to input-output data.

• Resolution (%dps): The smallest detectable input change for inputs greater
than the noise level. Usually, it is evaluated as the minimum input change
that produces a change in output equal to a specified percentage (e.g., 50 %)
of the change in output calculated through the nominal scale factor.

• Drift rate: The share of the gyroscope’s output that is functionally indepen-
dent on the input rotation. The drift rate can be referred to two different
components:

– Systematic: The systematic drift rate is dependent on two contributes:
∗ Bias (dps): The bias - also known as zero rate output - is the average

value of the gyroscope output over a specified time interval when
operating at conditions uncorrelated to the input rotation.

∗ Environment: The environmentally sensitive drift rate expresses the
portion of drift rate that is dependent on temperature, acceleration,
vibration and other quantities.

– Random: The random drift rate is dependent on two contributes:
∗ Angle random walk (◦ /s/h0.5): Angular error increases with time

due to white noise.
∗ Bias instability (◦ /h): Random variation in bias computed over a

specified time interval.

3.2 The INDIP kit
The INDIP is a multi-sensor system designed by Università degli Studi di Sassari.
The INDIP system was originally devised as a system for validating other devices
for gait analysis in the context of a European Project2; therefore, it features with

2Mobilise-D, a project sponsored by the European Union (EU) for the assessment of digital
mobility outcomes.
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high reliability both at hardware and software levels.
The complete INDIP setup includes a number of inertial, pressure and distance
wearable sensor, which can be employed separately or at the same time (Figure
3.3).

• MIMUs: A total amount of 7 MIMUs placed on the head, on the wrists,
on the lower back and on the feet. MIMUs are firmly attached to the body
through velcro bands to prevent any slippery or motion artifact.

• Pressure insoles: Two pressure insoles (one for each foot) to be placed
within each shoe of the participant. Each pressure insole hosts a total amount
of 16 pressure sensors, allowing a fine mapping of the foot-to-ground contact.
Pressure insoles are usually protected by rubber insoles to prevent the sensing
components from being damaged.

• Distance sensors: Two IR distance sensors attached to the shanks via velcro.

The sampling frequency of the INDIP system is 100 Hz. Before every recording,
MIMUs should be previously connected one-by-one via USB to a computer in order
to synchronize their timestamp with the current date: such procedure - performed
through a custom graphic user interface (GUI) developed in Matlab3 - is crucial
to prevent timestamp of data recorded from different sensors to show any delay
with respect to each other. After that, MIMUs are placed on the subject body
and connected via bluetooth low-energy (BLE) to a custom app developed in
Matlab, which allows the user to trigger the acquisition of all the connected sensors.
Once that the acquisition has started, the participant is free to move: the MIMUs
disconnect when the participant walks too far from the computer; however, once
that the sensors have started recording, they continue to record data offline. At the
end of the recording, sensors may be reconnected to the app via BLE to stop the
acquisition and then connected via USB to the GUI to download recorded data.

3.2.1 INDIP MIMU
Each MIMU consists in a printed circuit board (PCB) that hosts the inertial
sensors, transmission modules and electronic circuitry for front-ending and data
storage [95]. The PCB is embedded within a 3-D printed plastic case (Figure 3.4a).
The INDIP system features with 6 MIMUs, positioned on 4 different body spots:

3MATLAB Release 2022b, The MathWorks, Inc., Natick, Massachusetts, United States.
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(a)

(b)

Figure 3.3: (a) Schematic configuration of the INDIP setup on the participant’s
body. (b) A top view of the INDIP setup.

• Head: The H-MIMU is positioned on the left side of the head of the participant
with the y and x axis oriented approximately along the vertical (V) and
anterior-posterior (AP) anatomical axis.

46



3.2 – The INDIP kit

(a) (b)

Figure 3.4: (a) 3-D overview of an INDIP MIMU [95]. (b) Top-view of an INDIP
MIMU. The x and y components lie on the sensor’s plane, while the z-component
points up perpendicularly.

• Lower-back: One MIMU is positioned on the lower back of the participant
(L1-L2) with the y and x axis oriented approximately along the V and ML
anatomical axis.

• Feet: Two MIMUs are positioned on the feet of the participant with the y
and x axis oriented approximately along the V and ML anatomical axis.

• Wrists: Two MIMUs are positioned on the wrists of the participant with the
y axis approximately oriented along the longitudinal axis of the forearm.

The MIMU hosts three main sensing elements, being a tri-axial accelerometer, a
tri-axial gyroscope and a tri-axial magnetometer. All of them feature with selectable
FSR and output data rate (ODR) and with low zero-measurement offset and noise
(Table 3.2). Each MIMU contains a battery that allows it to operate for several
hours, as well as a memory slot for storing acquisition data.

3.2.2 INDIP pressure insoles
The pressure insole includes 16 force sensing resistors leaning on a thin flexible
plastic substrate shaped as a shoe insole [96]. Force sensing resistors are distributed
along the insole length such as 9 for the forefoot, 2 for the midfoot and 5 for the
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TRI-AXIAL ACCELEROMETER
Measurement range Up to ±16 g selectable FSR
Zero-g offset ±40 mg
Rate noise density 1.8 - 3.0 mg (Root Mean Squared (RMS))
Output data rate 1.6 to 6664 Hz

TRI-AXIAL GYROSCOPE
Measurement range Up to ±2000 dps selectable FSR
Zero-rate offset ±1 dps
RMS noise 0.075 dps
Output data rate 1.6 to 6664 Hz

TRI-AXIAL MAGNETOMETER
Measurement range ±50 G
Zero-G offset dynamically cancelled
Rate noise density 3 mG (RMS)
Output data rate 10 to 100 Hz

Table 3.2: Specifications of the sensors of the INDIP MIMU [95],[96].

rearfoot (Figure 3.6a). The pressure insoles do not have any batteries as they are
meant to be connected to their corresponding foot MIMU through wires (Figure
3.6b). ODR of the pressure insoles can span over a range from 0 to 200 Hz.

3.2.3 INDIP distance sensors
The IR-time of flight (ToF) proximity sensor (VL6180X, [97]) provides proximity
estimates in the range of 0 mm to 600 mm. The distance is estimated by measuring
the phase shift between the radiated and the reflected IR waves (Figure 3.7a). The
proximity sensor is encased within a plastic case together with a front-end for
interfacing the inertial module, to which the distance sensor is wired (Figure 3.7b).
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Figure 3.5: Head-MIMU mounted on the head of one participant. Note that the
axis of the sensor are in general rotated with respect to the anatomical axis.
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(a) (b)

Figure 3.6: (a) Top view of one pressure insole. (b) A pressure insole connected
to its corresponding foot MIMU [96].

(a) (b)

Figure 3.7: (a) Features and dimensions ( mm) of a a VL6180X IR-ToF proximity
sensor [97]. (b) Top view of one distance sensor’s internal components. Grey:
VL6180X proximity sensor, Black: connector to the inertial module.
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Data collection

MaLe and DeLe usually require a relevant amount of data for training, validating
and testing the algorithms. On the side of the learning algorithm, abundance of
data is advised to increase generalizability of the trained model, as more data in the
training stage translates into an extended capability to correctly classify or predict
unseen data at the final usage. Validation - which is usually performed in parallel
to training - typically requires a smaller dataset in respect to the one exploited
for learning, as its purpose is not to train the model weather to prevent it from
overfitting the training data. Eventually, some data should be left aside for testing
the model’s capabilities of generalizing on new data at the end of training. The
size of the test set is usually comparable to the one of the validation set; however,
having a model with good performance on a relatively large test set should be
considered a plus.
For the thesis purposes, two sets of acquisitions have been carried out. The first set
of acquisitions - referred to as In-Lab acquisitions or In-Lab dataset - includes gait of
11 subjects recorded in laboratory settings according to a well-defined experimental
protocol. The second set of acquisitions - referred to as Free-Living acquisitions or
Free-Living dataset - includes gait of 3 subjects recorded outside in unsupervised
conditions. The purpose of the In-Lab dataset consists in training, validating and
testing the developed algorithms (see Chapter 5), while the Free-Living dataset
has been used only for testing.
The collected data is intended to train, validate and test a set of MaLe and DeLe
models which are supervised (see Paragraph 2.3.1). Therefore, predictors data
must be labeled i.e., they have to be associated to their respective response, such
as a target class or value. As explained in Chapter 5, the goal of the developed
algorithms will be the estimation of the temporal parameters and stride speed
values from the data recorded from the head-MIMU only; hence, the other sensors of
the INDIP kit are exploited to extract reference values for the temporal parameters
and the stride speed values, through already validated algorithms [96] devised at
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Università degli Studi di Sassari (see Appendix C.3).
In the following, the experimental protocol adopted for the acquisition of the
two datasets will be described in detail. All the subjects involved in the study
have signed an informed consent for the treatment of data recorded during the
acquisition sessions.

4.1 In-lab acquisitions
The first tranche of acquisitions was conducted inside the Dipartimento di Elet-
tronica e Telecomunicazioni (DET) of Politecnico di Torino.

4.1.1 Experimental protocol
Gait of 11 healthy participants (Table 4.1) was recorded through the INDIP system
(Chapter 3) according to a well-defined experimental protocol.

The protocol for each in-lab acquisition is structured in seven Tests performed

Subject Gender
(M/F)

Age
(y.o.)

Height
( cm)

Weight
( kg)

Shoe Size
(EU)

1 M 26 177 63 42
2 F 28 163 55 38
3 F 26 164 56 37,5
4 M 29 185 77 45
5 F 25 165 55 38
6 M 23 179 56 42
7 M 23 179 70 46
8 F 27 170 65 37
9 M 24 178 75 43
10 F 27 165 52 37
11 M 32 183 67 43

Avg. 54% (M) 26,4 173,5 62,8 41,1
Std. - 2,7 8,2 8,7 12,8

Table 4.1: Summary of participants for in-lab acquisitions.

under the supervision of one or two operators. Each test is composed of one to three
repetitions hereinafter called Trials. In the following, the structure and purpose of
each Test is briefly described.

• Static test (Test 1): The Static Test is required to perform a Quality Check
on the sensors performance. Signals recorded during this Test are submitted to
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4.1 – In-lab acquisitions

the INDIP Data Quality Check activities of daily life (ADL)- FISM GUI1 that
processes the signals and checks the presence of any artifacts or misbehaviors
(Figure 4.1).
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Figure 4.1: H-MIMU readings during the static acquisition (Test 1) for patient 2.
A) Accelerometer readings; B) Gyroscope readings; C) Magnetometer readings. The
only non-null acceleration component is the one parallel to gravity (z-component);
moreover, since the MIMU is not undergoing any rotations, the readings of the 3
components of angular velocity are close to zero.

– IMU static test: This test consists in a static acquisition using the 6
INDIP MIMUs. The operator places all the devices on a flat surface and
starts an acquisition of at least 60s, during the one knocking or moving
the sensors should be avoided.

– Pressure insoles static test: This test is used to verify that the pressure
insoles are properly working. An operator records the pressure insole
signals while pressing the individual sensing units one at a time (the order
in which the sensing elements are pressed is not relevant). This must be
performed for both right and left pressure insoles (one acquisition at a
time).

1Matlab GUI developed at Università degli Studi di Sassari for assessing the quality of data
recorded by the INDIP system.
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As already mentioned, data recorded in static conditions during Test 1 are
used for the Quality Check. For the MIMUs, the GUI checks if the inertial
signals have appropriate mean value (equal to zero), accelerometer norm within
the expected range, not-too-high standard deviation, correct FSR or if they
stopped recording during the ongoing acquisition. For the pressure insoles,
the GUI checks if the insole has deteriorated its performance or if it stopped
recording during the ongoing acquisition. After the performing of Test 1, static
data are manually downloaded through the Matlab INDIP GUI, saved into the
Spot Check folder of their respective Participant Folder and submitted to the
INDIP Quality Check GUI (see Section C.2 for more information about the
folder structure). If the quality check underlines any issues with the sensors,
the malfunctioning sensors are replaced and the Quality Check is re-performed,
otherwise, the operator(s) can go on with the other Tests.

• Standing test (Test 2): This is a short static acquisition with the participant
wearing all the INDIP MIMUs, pressure insoles and distance sensors (Figure
4.2). The participant is asked to stand still for at least 10s. Such Test is
required to estimate the MIMUs orientation in the global framework, which
allows to compute the rotation matrix to reorient the MIMUs recordings
during the dynamic acquisitions (Figure 4.3, see A.3).

• Data Personalization (Test 3): Such test is to check the correct placement
of the pressure insoles inside the shoes and to override those sensors that do
not activate properly (Figure 4.4).

– Stand still for at least 10 s;
– Lift up the left foot for at least 5 s (single right support);
– Stand still for at least 5 s (double support);
– Lift up the right foot for 5 s (single left support);
– Stand still for at least 5 s (double support);
– Raise and lower the left arm in the sagittal plane;
– Raise and lower the right arm in the sagittal plane;
– Walk at comfortable speed along a 12 m straight path (Figure 4.9a).

• Slow straight walking (Test 4): The participant is asked to walk along
a 12 m-straight path (Figure 4.9a) at slow speed (Figure 4.5). Such Test is
repeated 3 times (Trials).

• Normal straight walking (Test 5): The participant is asked to walk along
a 12 m-straight path (Figure 4.9a) at comfortable speed (Figure 4.6). Such
Test is repeated 3 times (Trials).
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Figure 4.2: Front view of a participant during the Standing acquisition (Test 2).
During the acquisition, participants are asked to stand still with their arms along
their hips.

• Fast straight walking (Test 6): The participant is asked to walk along
a 12 m-straight path (Figure 4.9a) at fast speed (Figure 4.7). Such Test is
repeated 3 times (Trials).

• Round walking (Test 7): The participant is asked to walk for two rounds
along an approximately 24 m-ring path (Figure 4.9b) at comfortable speed
(Figure 4.8). Such Test is repeated 3 times (Trials). Such test was added to
the experimental protocol to introduce some portions of non-straight walking
in the dataset.

Repeating each Test three times provides a backup solution in case that one Trial
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Figure 4.3: H-MIMU readings during the Standing acquisition (Test 2) for patient
2. A) Accelerometer readings; B) Gyroscope readings; C) Magnetometer readings.
Since the sensor’s axis are not aligned to the anatomical axis (Figure 3.5), the
y-component of acceleration - which is associated to the vertical axis - does not
equal gravity.

results in corrupted or damaged data. At the same time, disposing of three Trials
for the same Test increases the redundancy of the training set. Actually, while
on one side the inclusion of data referring to three different speed ranges and to
non-straight walking increases data variability - promoting the generalization power
of the trained models - on the other side introduces the risk of data underfitting,
as the model is forced to learn to recognize a larger number of patterns.

4.1.2 Data preparation
After the performing of all the Tests, data recorded by each sensor are manually
downloaded through the Matlab INDIP GUI and saved into the Experimental
Protocol folder of their respective Participant Folder (see Section C.2) as text files
(TXT). TXT files are submitted to the INDIP Renaming GUI and automatically
saved as renamed TXT files into the Laboratory folder of their respective Par-
ticipant Folder. Then, renamed TXT files are automatically standardized into
a Matlab structure (data.mat) through a set of predefined Matlab scripts and
functions and saved into the Results folder of their respective Participant Folder.
Eventually, the data.mat structure is given as input to a set of Matlab scripts
and functions developed by Università degli Studi di Sassari for the Mobilise-D
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Figure 4.4: H-MIMU readings during the Data Personalization acquisition (Test 3)
for patient 2. A) Accelerometer readings; B) Gyroscope readings; C) Magnetometer
readings.
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Figure 4.5: H-MIMU readings during the straight walking test at slow speed
(Test 4) for patient 2. A) Accelerometer readings; B) Gyroscope readings; C)
Magnetometer readings.
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Figure 4.6: H-MIMU readings during the straight walking test at comfortable
speed acquisition (Test 5) for patient 2. A) Accelerometer readings; B) Gyroscope
readings; C) Magnetometer readings.
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Figure 4.7: H-MIMU readings during the straight walking test at fast speed
(Test 6) for patient 2. A) Accelerometer readings; B) Gyroscope readings; C)
Magnetometer readings.
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Figure 4.8: H-MIMU readings during the round walking test at comfortable
speed (Test 7) for patient 2. A) Accelerometer readings; B) Gyroscope readings;
C) Magnetometer readings.

project. Such algorithms return a Matlab structure (data.mat) that contains both
the standardized data and the INDIP standard i.e., the GS for the estimation of
STPs such as the stride lengths, the times and speeds (see Section C.3).
At the end of the In-Lab acquisitions, a total amount of about 1 and a half hours
of gait data had been gathered.

4.2 Free-living acquisitions
Besides the in-lab acquisitions, acquisitions in unconstrained conditions of free-
living were performed. While the In-Lab dataset was used to train and validate
models described in Chapter 5, data gathered from this second tranche of acquisi-
tions were used only for testing purposes.

4.2.1 Experimental protocol
Gaits of three healthy young (HY) subjects (Table 4.2) were collected. Each
acquisition consisted of 4 separate recordings.

• Static test (Recording 1): See Section 4.1.

• Standing test (Recording 2): See Section 4.1.
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(a)

(b)

Figure 4.9: (a) Straight path for Tasks 3, 4, 5 and 6. (b) Ring path for Task 7.
The 12 m straight path is marked with two adhesive bands on the floor on both
ends, while the ring path is marked with two cones on both ends. Participants are
asked to start walking approximately two seconds after the acquisition trigger, and
to stand still for approximately two seconds after reaching the end of the path.

ID Gender
(M/F)

Age
(y.o.)

Weight
(kg)

Height
(cm)

Shoe Size
(EU)

13 M 22 70 179 46
14 M 21 84 175 46
15 F 23 52 160 37

Avg. 67% (M) 22,0 68,7 171,3 43,0
Std. - 1,0 16,0 10,0 5,2

Table 4.2: Summary of participants for free-living acquisitions.

• Data personalization (Recording 3): See Section 4.1.

• Free-living recording (Recording 4): Participant are recorded for two
and a half hours while they perform ADL. During the time of the recording,
participants are free to walk, sit, drink and perform any other kind of daily
life activity except from taking elevators and exposing the sensors to water or
unsafe conditions (e.g. high temperatures). Participants are asked to walk
as much as possible and to perform, at least once, each one of the following
activities:
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4.2 – Free-living acquisitions

– Rise from a chair and walk to another room.
– Walk to the kitchen and have a drink.
– Walk up and down a set of stairs.
– Walk outside.
– Walk up and down an inclined path.

4.2.2 Data preparation
Recorded raw data are prepared according to the same procedure applied to the
in-lab dataset (see 4.1.2). At the end of the data preparation phase, a Matlab
structure (data.mat) including recorded raw data and the INDIP standard was
available for each Participant. At the end of the Free-Living acquisitions, a total
amount of about 7 and a half hours of gait data had been gathered.
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Chapter 5

Methods

In the present Chapter, the implementation of the MaLe and DeLe methods is
presented. First, the organizational aspects of the work are outlined; then, the
construction of the datasets is presented. Eventually, the training, validation and
testing stages of the implemented algorithms are described1.

5.1 Overview
As stated in the previous Chapters, the ultimate goal of the thesis work is represented
by the estimation of STPs from the inertial signals recorded by the H-MIMU only.
In particular, the development of the MaLe and DeLe methods has been oriented
towards the accomplishment of two separate - however linked - functional tasks:

• Task 1 - Temporal parameters estimation: First, time steps at which
gait events occur are detected; then, they are used to define 4 gait temporal
parameters (step time, stride time, single support (SS) time and double support
(DS) time).

• Task 2 - Stride speed estimation: Detected ICs are used to segment the
strides. Then, a set of features of the acceleration norm signal during each
stride are used to predict the value of the stride speed.

As a matter of fact, the two tasks are sequential i.e., the output of Task 1 (gait
events) is supposed to be the input to Task 2. Depending on the task, a specific
set of predictors i.e., time-series or features is given as input to a model. In turn,

1In the following Chapters, the term "validation" is used to denote the process of evaluating
the performance of the model at training time to prevent overfitting, while the term "testing"
refers to the assessment of the trained model performance when it is fed with unseen new data.
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the model provides a response i.e., a prediction of the output class or value. As
mentioned in Section 4.2, while for training and validation of the models only In-Lab
data were employed, testing involved both the in-lab dataset and the Free-Living
dataset. Since the models for the estimation of the temporal parameters and
the ones for the estimation of the stride speed are intended to address different
tasks, the datasets used for training them have different features - however both
referring to raw data from the In-Lab dataset. Instead, at prediction, the models
act sequentially to predict first gait events from raw data and secondarily stride
speed from gait events.

5.2 Estimation of the temporal parameters
The first functional task is represented by the estimation of the gait events. Such
task can be divided itself into three main functional sub-tasks.

• SS/DS phase classification

• GED

• Temporal parameters definition

In the following, each of these sub-tasks will be described in detail.

5.2.1 Single/double support phase classification
The first step in the process of estimating temporal parameters is represented by
the sequence-to-sequence (Seq2Seq) classification2 of each time step of the input
time-series as belonging to the SS or DS phase. Actually, once that SS and SS time
intervals are determined, gait events can be identified by exploiting the definition
of single support and double support.
Similarly, gait events could have been determined by classifying input signals as
belonging to the stance or swing phases of one of the two lower limbs; however,
since the recording MIMU is positioned on the head, the dominant component of
acceleration on the head (i.e., the vertical component) reflects both left and right
lower limb activities; therefore, the tediousness of recognizing the swing phase of
only one limb.
For the achievement of such task, two categories of DeLe models have been employed.

2Seq2Seq learning consists in training MaLe or DeLe models to convert sequences from one
domain (e.g., sentences in Italian) to sequences in another domain (e.g. the same sentences
translated to English) [98]. Seq2Seq classification means translating the input sequence into an
output sequence of the same length whose time steps correspond to labels for the input sequence.
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• Long-short term memory (LSTM) neural network: A LSTM network is
a typology of recurrent neural network (RNN) that is able to learn long-term
dependencies between time steps of sequence data. A LSTM network allows
to input sequence data into a network, and make predictions based on the
single time steps of the sequence data [99].

• Temporal convolutional network (TCN): Convolutional neural networks
can result in similar or even better performance with respect to RNN on typical
sequence modeling tasks [100]. Among the benefits of using convolutional
networks, there are better parallelism, better control over the receptive field
size, better control of the memory footprint of the network during training,
and more stable gradients [99]. Just like RNN, convolutional networks can
operate on variable length input sequences and can be used to model Seq2Seq or
sequence-to-one tasks. Among the several types of CNNs, TCN are particularly
suited to be applied to Seq2Seq classification tasks; in addition, they have
already been successfully applied to GED and STP estimation [57].

After defining the architecture of the TCN and LSTM networks (see Sub-subsection
5.2.1), 5 randomly-selected combinations of TRS and VS were employed to train
and validate the models, resulting in 5 couples of TCN and LSTM trained networks.

Sequence modeling

The task for which the models have been trained consists in a Seq2Seq classification
task; therefore, before deepening into the architectures and training algorithms for
the developed models, a preliminary stage to introduce the nature of the sequence
modeling task is recommended [101].
Consider an input sequence x0, ..., xT . The goal of a Seq2Seq task is the prediction
of a corresponding output sequence y0, ..., yT . The underlying hypothesis is that
output at time t only depends on inputs from time 0 to t rather than the future
inputs (Equation 5.1):

ŷ0, ..., ŷ0 = f(x0, ..., xT ) (5.1)

Where ŷt represents the predicted output at time step t and f represents the
function that maps each input to its corresponding output (Equation 5.2):

f : XT +1 −→ Y T +1 (5.2)

The goal of learning in a sequence modeling task consists in finding the function
f that minimizes the expected loss L between the targets y and the predictions
ŷ = f(x) (Equation 5.3).

L(y0, ..., yT ; f(x0, ..., xT )). (5.3)
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Dataset construction

In the following Subsection, the steps carried out for the construction of the dataset
are described.
The sequential data available for training and validating the models consists in the
tri-axial accelerations, angular velocities and magnetic field amplitudes recorded
by the H-MIMU (Figure 4.5) for the 11 participants to the In-Lab acquisitions (see
Table 4.1) walking under four different conditions (see 4.1).
Participants were initially divided into a construction set and a TS. The method
used to perform such division is represented by block sampling, which leaves intact
the integrity of one’s gait data 3. The construction set served to train and validate
the models and it included Participants from 1 to 10 of the In-Lab dataset. The test
set served for testing the trained model and assessing its generalization capabilities,
and it was composed of Participant 11 only. The construction set was further
divided into a TRS - for training the models - and a VS - for preventing data
overfitting during training (Figure 5.2).

Training set

7

Validation set

3
Test set

1

Figure 5.2: The pie chart shows the number of participants for each of the In-Lab
TRS, VS and TS.

3Block sampling - otherwise known as convenience or clustered sampling - consists in sampling
entire subgroups of data (e.g., data from the same center or patient) instead of selecting single
individuals or elements. Other possible sampling methods include random sampling and stratified
sampling.

66



5.2 – Estimation of the temporal parameters

Five couples of training set and validation set have been employed for con-
structing the models. In this way, the robustness of the trained models has been
evaluated4. In addition, data of the 3 Participants to the Free-Living acquisitions
were used to construct a second - much larger - TS. The operations for constructing
the dataset that are described in the next paragraphs were carried out for all the
Trials of the In-Lab dataset and for all the micro walking bout of the Free-Living
dataset (see C).

Data loading As described in Section C.3, the Matlab structure data.mat

stored in the Results folder of the current Participant folder contains the tri-
axial accelerations, angular velocities and magnetic field strength for each MIMU,
together with the INDIP standard. In particular, the accelerations and the angular
velocities were employed for training the models. From these ones, a set of 8
predictors time-series has been derived, as similarly done by Gadaleta et al. [102]:

• V acceleration

• ML acceleration

• AP acceleration

• Acceleration norm (Equation 5.4)

• V angular velocity

• ML angular velocity

• AP angular velocity

• Angular velocity norm (Equation 5.5)

an =
ñ

a2
v + a2

ml + a2
ap (5.4)

ωn =
ñ

ω2
v + ω2

ml + ω2
ap (5.5)

First of all, data.mat is uploaded to the Matlab workspace. In Matlab, predictor
signals are organized as a 2D-array, where each row corresponds to one single time
step and each column corresponds to one predictor.

4A supervised method is generally considered robust when its performance are not significantly
affected by a change in its training data.
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Data checking During the acquisitions, the operators and/or the participant
may commit technical issues linked to wrong sensor positioning or experiments
execution, such as positioning the H-MIMU on the right side instead of the left side,
walking a longer distance or forgetting to stop the acquisition as the participant
reaches the end of the path. These issued have to be recognized and corrected.
Having uploaded the signals, correction of the detected issues is performed through
a Matlab custom function manage_subjects.m (see A.1).

H-MIMU re-orientation The H-MIMU is positioned on the left side of the head
so that the sensor axes (local frame) are approximately parallel to the anatomical
axes (global frame). However, due to the positioning variability, the sensor’s axes
may not perfectly correspond to the anatomical axes (Figure 3.5). Therefore, the
recorded raw signals - which should refer to the anatomical axes - actually refer to
a frame that is slightly rotated with respect to the anatomical one (Figure 4.3).
To prevent data from being affected by such error, the H-MIMU is virtually rotated
with respect to the ideal gravity by applying a rotation matrix to the recorded
raw signals. The applied rotation matrix represents the relationship between the
global and the local frame, and it is computed by processing the accelerations
acquired during the Standing acquisition (Test 2 for the In-Lab dataset, Recording
2 for the Free-Living dataset). The rotation matrix is computed through the
Matlab custom function calc_R.m and is applied to the accelerations and angular
velocities through the Matlab custom function reorient_head.m (see Section
A.3). Once that the H-MIMU is virtually rotated, signals are supposed to refer to
the anatomical global frame (Figure 5.4).
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Figure 5.4: H-MIMU readings during the straight walking acquisition at comfort-
able speed (Test 5) for patient 2. A) Accelerometer readings; B) Gyroscope readings;
C) Magnetometer readings. (a) Raw signals (b) Re-oriented signals. Notice the
difference in the values of V-acc in the first seconds of the Trial between the raw and
the reoriented signals: in the first case, V-acc values deviate from the expected ones
(V-acc = 1 g), while they match the expected value after re-orientation. Moreover,
the magnetic field strength is not affected by the H-MIMU virtual re-orientation,
as the rotation matrix is applied to accelerations and angular velocities only.
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Notice that, as the rotation matrix is computed from data recorded during a
static acquisition, re-orientation fails to correct the effect of any misalignments
that arise during the dynamic acquisitions (Tests 3 to 7).

Gait events from the INDIP standard Once that the H-MIMU has been
virtually re-oriented, the INDIP standard is used as a reference for extracting the
gait events referring to the current signals (see Section C.3). For each Trial, the
time samples of all the left and right ICs and FCs are retrieved from the Matlab
data.mat structure (Figure 5.5).
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Figure 5.5: INDIP gait events for a Trial of straight walking at comfortable speed
performed by Participant 2. The V-acc signal is plotted in black. Some relevant
parameters extracted from the INDIP standard are reported, such as the duration
and length of the continuous walking bout, the average stride length, the average
walking speed and the total number of strides. (a) Full Trial (b) A portion of the
Trial referring to a single stride.
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Labeling Supervised classification methods require a response associated to
predictors, which must be provided in the same format of the expected output. As
mentioned in Subsection 5.2.1, the intended task to be performed by the models is
a Seq2Seq classification task i.e., a classification task that consists in classifying
each sample of the predictors as belonging to the SS phase class or to the DS phase
class. Therefore, the response associated to predictors must be provided as a binary
signal (label) that has the same number of samples of each predictor.
To decide whether a sample belongs to the SS or DS phase class, the information
regarding the occurrence instants of gait events is exploited. In particular, a sample
belongs to the SS phase if it occurs between a FC of one foot and the next IC of
the same foot, while it belongs to the SS phase if it occurs between an IC of one
foot and the next FC of the other foot.
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Figure 5.6: Filtered V-acceleration and label signal for a Trial of straight walking
at comfortable speed performed by Participant 2.

The purpose of the Seq2Seq classification task consists in recognizing the SS
and DS phases within gait. Therefore, only portions of the signal corresponding to
walking must be included in the dataset. To determine such portions, predictors of
each Trial are trimmed between the first and the last IC retrieved by the INDIP
standard, so that eventually the label is a binary time-series, where 0 correspond
to the DS phase class and 1 to the SS phase class (Figure 5.6). Similarly, data of
the Free-Living dataset had to be properly "trimmed". In particular, non-gait and
inclined gait portions of the signals were cut off.
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5.2 – Estimation of the temporal parameters

Moving average filter Predictors are filtered with a 5-points moving average
filter through the Matlab predefined function smooth (Figure 5.7).
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Figure 5.7: Raw and filtered V-acceleration. The effect of the moving average
filter is a mild smoothing of the signals, which deletes rapid variations without
compromising the morphology of the signal.

Such filtering is intended to reduce the effect of high-frequency noise and the
rapid movements of the head which may occur during walking.

Concatenation The steps described in the previous paragraphs are carried out
separately for each Trial of each participant. After the removal of non-gait and
inclined gait portions from the recorded signals, about 40 minutes of effective gait
had remained out of the initial 90 for the In-Lab dataset, while only 4 and a half
hours of Free-Living data remained out of the initial 7 and a half.
Regarding the In-Lab signals, resulting predictors and responses are concatenated
into a single array of 9 columns (1-8: predictors, 9: class) and 231745 rows, each of
them corresponding to a time sample (Table 5.1).
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Timestamp [s] AP-acc V-acc ML-acc accNorm AP-gyr V-gyr ML-gyr gyrNorm Class
0 -0,081 1,115 -0,024 1,119 11,850 -5,390 -22,972 26,998 1

0,01 -0,078 1,139 -0,031 1,143 11,911 -5,951 -21,905 26,286 1
0,02 -0,073 1,164 -0,038 1,168 11,969 -6,503 -20,883 25,637 1
0,03 -0,067 1,189 -0,046 1,194 11,986 -7,039 -19,927 25,049 0
0,04 -0,060 1,214 -0,055 1,218 11,923 -7,553 -19,049 24,519 0
... ... ... ... ... ... ... ... ... ...

2317,43 -0,045 1,252 -0,072 1,257 11,428 -8,530 -17,534 23,592 0
2317,44 -0,037 1,263 -0,080 1,268 10,972 -9,010 -16,874 23,183 0

Table 5.1: Input array of concatenated predictors and responses. The dataset is
composed of a total amount of 231745 data points. Since the value of the sampling
frequency is 100 Hz, the dataset comprises approximately 39 minutes (2318 s) of
walking.

Once that data of all the participants have been processed and concatenated,
the resulting dataset is block-sampled into a TRS, a VS and a TS, as described
in Sub-subsection 5.2.1. At the end of the dataset construction process, a total
amount of 3754 strides were segmented from the In-Lab dataset. Of those, 3426
belong to the construction set, while the remaining 328 to the TS (Table 5.2).
Regarding the Free-Living TS, a total amount of 26558 strides were segmented at
the end of the dataset construction process.

Total Construction set
(TRS/VS≈ 70/30%) Test set

Number of strides 3754 3426 328

Table 5.2: Summary table reporting the number of segmented strides for the
In-Lab dataset. Regarding the construction set, 7 patients out of the total 10
were randomly assigned to the TRS for each TRS/VS combination; therefore,
approximately 70% of the strides were assigned to the TRS, while data referring to
the remaining strides ended in the VS.

Network architectures

In the following Sub-subsection, a brief introduction on the architectures of DeLe
and MaLe models for Seq2Seq classification is provided. Then, the architectures of
the two models developed for the SS/DS phases classification will be described in
detail. For a refresher on DeLe architectures, see Appendix D. The Matlab code
used for defining the architecture of the networks is available in Appendix B.

Long-short term memory (LSTM) network The Seq2Seq classification task
for the recognition of the SS and DS phases was initially addressed by developing
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a LSTM RNN.
In the present work, the input is represented by a sequence of size 8 (the number
of predictors). The LSTM layer has 200 hidden units (hidden size = 200), and
gives the full sequence as output. The LSTM layer is followed by a fully connected
layer (FCL), a softmax layer and a classification layer (Figure 5.8).

Figure 5.8: Layer graph illustrating the architecture of the developed LSTM
network. The information flows from the top of the graph to its bottom. For a
deeper explanation of each of the nodes of the graph, see Subsection D.3.2. The
hidden size of the LSTM layer is 200, while the size of the FCL is 2.

In the following, the layers of the network will be described in detail.

• Sequence input layer: The sequence input layer inputs sequence data to
the network.

– Input size: 8. The sequence input layer inputs 8 sequences to the network
(see Paragraph 5.2.1.

– Minimum sequence length of input data: 1. Since the LSTM network can
process input sequences of every length, such value does not affect the
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network performance. Instead, a CNN would require input sequences to
have at least as many samples as the size of the filters for convolution.

• LSTM layer: The core component of an LSTM network is represented by
the LSTM layer. In the following, a description of the hyperparameters and
learnable parameters for the trained LSTM layer - together with their final
values - is provided5.

– Hyperparameters:
∗ Input size: 8.
∗ Hidden size: 200. The hidden size i.e., the number of hidden units

corresponds to the quantity of information remembered between time
steps i.e., the hidden state. Such amount of information can refer to
all previous time steps, no matter the sequence length. A large hidden
size increases the risk of overfitting; then, its value typically ranges
from a few dozen to a few thousand [99].

∗ State activation function: Hyperbolic tangent (tanh). Activation
function to update the cell and hidden state.

∗ Gate activation function: Sigmoid. Activation function to apply to
the gates.

– Learnable parameters:
∗ Input weights size: 800 x 8.
∗ Recurrent weights size: 800 x 200.
∗ Bias size: 800.

– Weights and bias initialization methods:
∗ Input weights: Glorot initializer6. The Glorot initialization method

independently samples from a uniform distribution with mean µ and
variance ν given as follow [103]:

µ = 0 ν = 2
InS + 4HS

Where InS and HS denote the input size and the hidden size, respec-
tively.

5In the field of MaLe and DeLe, learnable parameters are those parameters that are automati-
cally adjusted during training i.e., weights and bias. Hyperparameters are those parameters of
the model/algorithm that are set at the beginning of training. Hyperparameters are not adjusted
during training; however, they can be automatically or manually optimized during the tuning
phase to improve the model’s performance.

6Also known as Xavier initializer [99].
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∗ Recurrent weights: Orthogonal initializer. The orthogonal initializa-
tion method initializes the recurrent weights R with Q, the orthogonal
matrix resulting from the QR decomposition of Z = QR for a random
matrix Z sampled from a unit normal distribution [104].

∗ Bias: "Unit-forget-gate" initializer. The "unit-forget-gate" ini-
tialization method initializes the bias of the forget gate with ones and
the remaining biases with zeros.

• FCL: A FCL multiplies the layer input by a weight matrix W and then adds a
bias vector b. All the neurons in a FCL are connected to all the neurons in the
previous layer. If the FCL is fed with a sequence - as it happens in an LSTM
network - then the FCL works separately on each time step. For instance, if
the size of the array X given as input to the FCL is D × N × S, then the
FCL outputs an array Z of size O × N × S, where O is the output size for the
FCL. At time step t, the output Z corresponds to the entry WXt + b, where
Xt represents time step t of X.

– Output size: 2. The number of classes for the Seq2Seq classification task
determines the output size of the FCL.

– Weights and bias initialization methods:
∗ Input weights: Glorot initializer. See the weights and bias initial-

ization methods item for the LSTM layer.
∗ Bias: "Zeros" initializer. The "zero" initialization method initializes

the bias of the FCL with zeros.

• Softmax layer: The final FCL is typically followed by a softmax layer
and then a classification layer. A softmax layer applies a softmax function -
otherwise known as normalized exponential - to the layer input [105]:

yr(x) = ear(x)qk
j=1 ear(x)

Where:

0 ≤ yr ≤ 1
kØ

j=1
yj = 1

• Classification layer: A classification layer calculates the cross-entropy loss
(CEL) for classification tasks with mutually exclusive classes. The layer
determines the number of classes from the output size of the previous layer,
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which is typically represented by a softmax layer. For instance, to enter the
number of classes K of the network for the target task, a FCL with output
size K and a softmax layer should be inserted before the classification layer.
During training, output values from the softmax function are processed using
the CEL function for a 1-of-K coding scheme to assign every input to one of
the K mutually exclusive classes [105]:

CEL = − 1
N

NØ
n=1

KØ
i=1

witni ln yni

Where N is the number of samples, K is the number of classes, wi is the
weight for class i, tni is the indicator that the nth sample belongs to the ith
class, and yni is the output for sample n for class i, which in this case, is
the value from the softmax function. As a matter of fact, yni represents the
probability that the network associates the nth input with class i.

Temporal Convolutional Network (TCN) In addition to the LSTM network,
a TCN network has been developed to compare performance.
In the present work, the input is represented by a sequence of size 8 (the number
of predictors), as for the LSTM network. The network is composed by a TCN core
of 4 residual blocks followed by a FCL, a softmax layer and a classification layer.

Figure 5.9: Layer graph illustrating the architecture of the developed TCN. The
information flows from the top of the graph to its bottom. For a deeper explanation
of each of the nodes of the graph, see Subsection D.4.4.
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In the following, the layers and the hyperparameters values specified for defining
the architecture of the TCN are presented (Figure 5.9).

• TCN layer: The core of the developed network is represented by 4 residual
blocks, each of them containing two sets of dilated causal convolution layers
with the same dilation factor, followed by weight normalization, rectified linear
unit (ReLu) activation function and spatial dropout layers (Figure 5.9). See
Subsection D.4.4 for further information about the architecture of residual
blocks.

– Number of residual blocks: 4.
– Dilation base: 2. Specifying a dilation base of 2 means that the dilation

factor of each block is twice the dilation factor of the previous block (the
first residual block has dilation factor equal to 1).

– Number of filters: 64. The number of filters corresponds to the number
of kernel vectors used for the 1D convolution.

– Filter size: 5. The kernels are mono-dimensional vectors of weights of
size 5

– Dropout factor : 0.005. During training, the dropout layer randomly sets
input elements to zero with probability equal to the dropout factor. Such
operation has proved to change the underlying network architecture from
one iteration to the other, eventually helping to prevent overfitting [106],
[107]. A higher dropout factor yields to more elements being dropped
during training. During prediction, the output of the dropout layer is
equal to its input.

• FCL: Same settings of the LSTM network.

• Softmax layer: Same settings of the LSTM network.

• Classification layer: Same settings of the LSTM network.

Training and validation

In the following Sub-subsection, training and validation of the developed models will
be described in detail. As described in Sub-subsection 5.2.1, the training stage of
each model architecture was repeated 5 times with 5 different combinations of TRS
and VS to evaluate the robustness of the model. For each TRS/VS combination, a
random hold-out validation scheme was observed; meaning that 7 of the 10 subjects
in the construction set were randomly assigned to the TRS, while data from the
remaining 3 subjects were used to construct the VS. Therefore, a total number
of 10 DeLe models were trained and validated - 5 TCNs and 5 LSTM networks
(Figure 5.10).
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Training
In the present work, the TCN and the LSTM networks have been trained according
to the following training options.

• Solver (learning rule): Adaptive moment estimation (ADAM). The
ADAM solver, similarly to other BP algorithms such as the root mean square
propagation (RMSProp), attempts to enhance network training by adopting
learning rates that differ by parameter and is able to automatically adapt to
the loss optimization function [99]. The ADAM solver keeps an element-wise
moving average of both the parameter gradients (m) and their squared values
(v):

ml = β1ml−1 + (1 − β1)∇E(θl)
vl = β2vl−1 + (1 − β2)∇[E(θl)]2

Where l is the iteration number, θ is the parameter vector, ∇E(θ) is the loss
function and β1 and β2 are respectively the gradient and squared gradient
decay factors. Then, the network parameters are updated accordingly to the
computed moving averages [108]:

θl+1 = θl − αml√
vl + ϵ

Where α is the learning rate and ϵ is the denominator offset. In the following,
the parameters values for the ADAM algorithm employed for training the
LSTM network are listed:

– Gradient decay factor (β1): 0.9.
– Squared gradient decay factor (β2): 0.999. Such value corresponds to an

averaging length of 1000 parameters updates.
– Denominator offset (ϵ): 1.5e − 10. Such parameter avoids division by

zero in the network parameter updates.
– Learning rate (α): 0.001. Such value is a trade off between the need for a

short training time (achieved with high learning rates) and stability and
optimization of the results (high learning rates can result in sub-optimal
outcomes or provoke divergence). The learning rate is not dropped during
training.

• Number of epochs: 60. Maximum number of epochs to use for training. An
epoch is the complete passage of the training algorithm over the whole training
set. An epoch comprises several iterations: an iteration represents one step
taken into the gradient descent algorithm towards the minimization of the
loss function using a mini-batch of training set examples [99].
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• Mini-batch size: A mini-batch is a subset of the training set that is used to
compute the gradient of the loss function and update the parameters. The
sizes of the mini-bacthes for the LSTM and TCN networks were set to 128
and 1, respectively.

• Shuffle: Never. Since the input predictors that are fed to the model are
time-series, shuffling should be avoided to prevent time-dependencies between
samples at different time steps to be lost.

• L2 regularization coefficient: 0.0001. L2 regularization consists in adding a
weight regularization term - otherwise known as weight decay - to the the loss
function E(θ) to reduce overfitting [105][109]. The regularized loss function
ER(θ) takes the following form:

ER(θ) = E(θ) + λΩ(w)

Where w is the weight vector, λ is the regularization coefficient and Ω(w) is
the energy density of the weight vector:

Ω(w) = 1
2wT w

• Gradient clipping: Yes. Exponentially increasing gradients denote an unstable
training that can diverge within relatively few iterations. Such "gradient
explosion" is typically accompanied by a training loss that either diverges
or converges. Gradient clipping helps avoid gradient explosion by making
training stable at higher learning rates and even when outliers are present
[110]. Gradient clipping allows faster training and does not usually affect
accuracy.

– Gradient threshold: 2.
– Gradient threshold method: L2 norm. If the L2 norm of the gradient of

a trainable parameter is higher than the gradient threshold, the gradient
is scaled to match the L2 norm to the gradient threshold.

• Sequence options: LSTM networks accept input sequences with varying lengths.
During training, passed sequences are padded, truncated, or split so that all
the sequences in every mini-batch have the same length.

– Sequence length: Sequences in each mini-batch are padded to the length
of the longest sequence. This strategy does not throw away any data;
however, it can bring noise to the network.
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– Padding direction: Right. The sequences in the mini-batch start at the
same time step and are padded at their end. Such strategy is convenient
when training sequence-to-sequence networks, as padding in the first time
steps may affect the prediction for the earlier time steps.

– Padding value: 0. Sequences are zero-padded.

Figure 5.10: Training plot for the first trained LSTM network. Values of TRS
accuracy on the TRS (blue) and VS (dotted black) for each training epoch are
shown.

Validation
As mentioned in Sub-subsection 5.2.1, for each TRS/VS combination, data of 3
randomly selected patients have been employed to validate the networks during
training, in order to prevent overfitting.
In the following, the adopted validation settings are described.

• Validation frequency: 50. The validation frequency is the number of iterations
between evaluations of validation metrics.

• Validation patience: Infinite. Validation patience represents the number of
times that the loss value on the validation set can be larger than or equal to
the previously smallest loss before that the network training is stopped.

5.2.2 Gait events detection
The second step in the process of estimating temporal parameters is represented
by GED. Actually, once that gait data are segmented into the SS and DS phases,
information related to the phases’ onset and end can be leveraged to extract the
gait events.
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Edge detection

As described in Subsection 2.2.3, the SS and DS phases are delimited by specific
gait events (Table 2.1):

• SS phase: portion of the gait cycle comprised between a FC of one foot and
the next IC of the opposite foot.

• DS phase: portion of the gait cycle comprised between an IC of one foot and
the next FC of the opposite foot.

Such definitions can be exploited to predict the time steps at which gait events occur
from the SS/DS label response predicted by the models. Since the predicted label
signal is a sequence of zeros and ones, edges of the signal can be detected by simple
differentiation. Since the label is a binary sequence of zeros and ones, differential
results in a sequence of ones and minus ones, which correspond respectively to
falling and rising edges in the predicted response label. i.e., ICs and FCs (Figure
5.11).
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Figure 5.11: A portion of the predicted response label and the corresponding
differentiated label. The differentiation operation has been carried out through
the use of the Matlab built-in function diff. Notice that, as diff subtracts each
element of a signal from the next one, the edges of the predicted response label are
predicted one sample before the effective transition i.e., the diff function shifts
the edges to the left by one time step.

Such operation is performed for both the predicted and the target response
signals, so that a comparison between the target and predicted gait events becomes
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possible.

Pairing of gait events

In general, time steps at which a predicted gait event occurs may differ from
the time step of the corresponding target gait event. For computing most of the
performance metrics (see Section 5.4), predicted gait events must be unequivocally
paired to target gait events. To achieve such coupling, an empirical algorithm
has been adopted. Consider the ith gait event predicted by the INDIP standard
ICINDIPi

and the jth gait event predicted by the H-MIMU ICH−MIMUj
:

Figure 5.12: Schematic illustration of the method for determining the correspon-
dence between predicted and target gait events. Notice that, for each gait event
predicted by the GS, only one missed event is possible, while multiple extra events
can occur.

1. A time neighborhood centered around ICINDIPi
is considered. For most of the

gait events, the neighborhood spans from half the distance between ICINDIPi

and ICINDIPi−1 to half the distance between ICINDIPi
and ICINDIPi+1 (Figure

5.12). A reasonable interval of 0.2 s before and after the first and last gait
events of the sequence is considered for the first and the last INDIP standard
gait events of the sequence, respectively.

2. gait event predicted by the INDIP standard ICH−MIMUj
is associated to gait

event predicted by the INDIP standard ICINDIPi
if it falls in the defined

neighborhood.

• If no H-MIMU events fall within the defined neighborhood, a missed event
is counted.

• If multiple H-MIMU events fall within the defined neighborhood, the
closest to the INDIP standard gait event is associated to it, while the
others are counted as extra events.
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A Matlab custom function COMPARISON_MIMU_SP.m is employed to perform such
association. COMPARISON_MIMU_SP.m returns two vectors of the same lengths
containing time steps at which coupled gait events occur. Missed events are
reported as not a number (NaN) to preserve the left/right foot alternation.
COMPARISON_MIMU_SP.m also returns the time steps at which extra and missed
events predicted by the H-MIMU occur.

5.2.3 Temporal parameters definition
After detection and pairing of correspondent gait events (Figure 5.13), temporal
parameters can be estimated.
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Figure 5.13: Comparison between predicted and target gait events plotted on
the V-acc signal. accV : V-acc; ICH−MIMU , FCH−MIMU : ICs and FCs predicted
by the H-MIMU, respectively; ICINDIP , FCINDIP : ICs and FCs predicted by the
INDIP standard, respectively. Notice the presence of missed events.

Time steps at which gait events occur are leveraged to define the following
temporal parameters:

• Stride time: Given an IC occurring at a generic time step, the time duration
of the stride starting at that time step is given as follows:

Stride time = ICi − ICi−2 [s]

Where ICi denotes the ith IC.
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• Step time: Given an IC occurring at a generic time step, the time duration
of the step starting at that time step is given as follows:

Step time = ICi − ICi−1 [s]

Where ICi denotes the ith IC.

• SS phase time: Given a FC followed by an IC occurring at two generic time
steps, the time duration of the SS phase starting at the time step of the FC is
given as follows:

SS time = ICi − FCi [s]
Where ICi and FCi denote the ith IC and FC, respectively.

• DS phase time: Given a IC followed by a FC occurring at two generic time
steps, the time duration of the DS phase starting at the time step of the IC is
given as follows:

DS time = FCi − ICi [s]
Where ICi and FCi denote the ith IC and FC, respectively.

Notice that no distinction is made between left and right strides/steps, as the
purpose of GED consists in the identification of gait events regardless of their side7.
See Table 2.1 for a more detailed description of the aforementioned parameters.

5.3 Estimation of the stride speed
The second main block of the work consists in the algorithms for the estimation of
the stride speed. At prediction, such algorithms are intended to be fed with strides
segmented through detected gait events and predict the average WS for each stride
- otherwise known as stride speed (see Table 2.1). At training, gait events retrieved
from the INDIP standard are exploited for segmenting the strides that constitute
the algorithm’s construction set instead.
Five different MaLe regression methods have been trained to predict the value of
the stride speed from a set of features referred to segmented strides:

• gaussian process regression (GPR): Four GPR algorithms based on
different kernels (exponential, matern 5/2, rational quadratic, quadratic expo-
nential) trained for predicting the stride speed value from a set of predictors

7While some sensors configurations intrinsically provide information about the corresponding
side to detected gait events (e.g., shanks, feet), H-MIMUs do not provide such information, as
the morphology of the H-MIMU signal is scarcely affected by bio-mechanical changes in the ML
direction. However, the task of side determination can be addressed in a second moment.
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derived from the tri-axial acceleration norm. GPR models are characterized
by hard interpretability [99]. An approach based on a GPR model for the
estimation of the stride speed from H-MIMU data has already been proposed
by Zihajehzadeh et al. [12].

• Linear SVM: a SVM algorithm based on a linear kernel trained for predicting
the stride speed value from a set of predictors derived from the tri-axial
acceleration norm. Linear SVMs are characterized by easy interpretability
[99].

All the five MaLe models have been trained and validated with the Matlab
Regression Learner application. In the next Subsections, every step to the
development of the models is described - from the construction of the dataset to
the training and validation of models.

5.3.1 Dataset construction
The same data from the In-Lab dataset used to train and validate the DeLe models
are employed to train and validate the MaLe models for the prediction of the stride
speed.
Raw inertial data are combined to the gait events retrieved from the INDIP standard
to segment the gait cycles within the signals i.e., to extract portions of the signal
belonging to the same gait cycle. Then, segmented signals are processed to compute
a set of 136 features in the time and frequency domains (Figure 5.14).

Data loading

As described in Section C.3, the Matlab structure data.mat stored in the Results
folder of the current Participant folder (see Subsection 4.1.2) contains the tri-axial
accelerations, angular velocities and magnetic field strength for each MIMU, to-
gether with the INDIP standard.
In particular, V-, AP- and ML-accelerations of each Trial - together with anthropo-
metric data of the respective subject - are employed to derive the predictors used
to train the MaLe models.
For each subject, data.mat is uploaded to the Matlab workspace. Then, a custom
Matlab function retrieve_path_info.m is called to read the Operator Table
associated to each subject (see Section C.2) and extract the following information
about the subject’s anthropometry:

• Height (cm)

• Weight (kg)
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Height and weight are used as raw predictors by the MaLe models. Since height
and weight can affect one’s way of walking, the morphology of the underlying
inertial signals and eventually the value of the WS can reflect their influence.

Correction of the acquisition artifacts

See page 68.

H-MIMU re-orientation

See page 68.

Stride segmentation

For each Trial, left and right ICs are retrieved from the INDIP standard and used
to determine the end and the beginning of each stride, defined as the time interval
between an IC of one foot and the next IC of the same foot (Figure 5.15).

Figure 5.15: A portion of the acceleration norm signal (Participant 2, Test 7,
Trial 2) segmented into three left strides and three right strides.

At the end of the stride segmentation process, a total amount of 4154 strides
is segmented from the In-Lab acquisitions. Of those, 366 are given to the TS
(Participant 11), while the remaining 3788 constitute the construction set.
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Low-pass filtering

For each stride, the acceleration norm signal is calculated from the tri-axial acceler-
ation over the stride duration (Equation 5.4) through the Matlab built-in function
vecnorm.
Since changes in the H-MIMU acceleration norm during regular gait typically in-
volve frequencies lower than 5 Hz, the acceleration norm is filtered with a low-pass
filter to prevent high frequency noise from corrupting the signal. To avoid altering
the informative content of the signal in the pass band, it is filtered with a digital
infinite impulse response (IIR) Butterworth filter8 designed in order to comply to
the following constraints:

• Pass band: 0 to 5 Hz.

• Stop band: 5 to 10 Hz.

• Pass band ripple: 3 dB.

• Stop band attenuation: 60 dB

The filter hyperparameters were optimized through the Matlab built-in function
buttord in order to find the lowest order Butterworth filter that complied to
the required constraints [111]. As a result, a Butterworth low-pass filter with the
following characteristics was implemented (Figure 5.16):

8Butterworth filters show a magnitude response which is maximally flat in the pass band and
monotonic overall. On the other hand, Butterworth filters have a decreased roll-off steepness.
Other filters (e.g., elliptic and Chebyshev filters) typically achieve steeper roll-off for a given filter
order.
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Figure 5.16: Magnitude and phase Bode diagrams referring to the Butterworth
digital filter for the acceleration norm. As required, the stop band goes from 5 Hz to
10 Hz with less than 3 dB attenuation in the pass-band and an attained attenuation
of 60 dB at the end of the stop band.

• Order: 4.

• Cut-off frequency: 5.14 Hz.

The transfer function coefficients of the filter are computed through the Matlab
built-in function butter, while the signals are filtered through the Matlab built-in
function filtfilt9 (Figure 5.17).

9filtfilt carries out a zero-phase digital filtering by processing the input signal in both
the forward and reverse directions [99].
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Figure 5.17: Raw and filtered acceleration norm signals accnorm over a stride.
x-coordinate is reported as % GC.

Low-pass filtering is a quasi-mandatory step when dealing with human accel-
erations, as basically every conscious or unconscious gesture affects the values
and morphology of the acceleration signal. Filtering is particularly relevant for
accelerations recorded by H-MIMUs, as during gait the head is subject to nods and
rotations that are uncorrelated to the biomechanics of walking.

Stride features

For each stride, filtered acceleration norm accnorm is used to derive a set of 136
features in the time and frequency domains, as proposed by Zihajehzadeh et al.
[12]. Median, mode, signal magnitude area (SMA), energy, zero-crossing rate and
mean absolute value (MAV) are computed in the time domain, while magnitudes
of 128 fast Fourier transform (FFT) coefficients are computed in the frequency
domain (Table 5.3).
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Domain Parameter Unit Definition

Time
(6)

Median g m (see Equation 5.6).
Mode g Most repeated value of accnorm

SMA g
qN

i=1|(accnorm)i|
Energy g2 qN

i=1(accnorm)2
i

Zero-crossing rate - Number of times that accnorm crosses the average value-level.
MAV g 1

N

qN
i=1|(accnorm)i|

Frequency
(128) FFT coefficients g Y (k), k = [1, 128] (see Equation 5.7)

Anthropometric
(2)

Weight kg Participant’s weight.
Height m Participant’s height.

Table 5.3: Predictors used by the MaLe models to predict the stride speed value
for each stride. accnorm: samples of the acceleration norm for the current stride; N :
number of samples of accnorm; m: median; Y (k): FFT coefficients. The Matlab
built-in functions median; mode; mean; sum, abs, zerocrossrate, fft - or a
combination of them - were employed to compute the time and frequency domains
features.

m =


(accnorm)N+1

2
, if N is odd

(accnorm) N
2

+(accnorm) N
2 +1

2 , otherwise
(5.6)

Y (k) =
-----

NØ
i=1

(accnorm)ie
−2πi

N
−(i−1)(k−1)

----- (5.7)

Such features are assumed to be predictors for the stride speed. In Matlab,
predictors are organized within a 2D-array, where each row corresponds to one
single stride and each column corresponds to one feature of the respective stride.
In addition to the time and frequency domains features, weight and height are
added to the predictors array as additional anthropometric features.

Labeling

Supervised regression methods require a response associated to predictors, which
must be provided in the same format of the expected output.
As mentioned in Subsection 5.3, the intended task to be performed by the models
is a regression task i.e., the developed MaLe models are supposed to infer the value
of the stride speed from the predictors associated to each stride. Therefore, the
response associated to predictors must be provided as a vector of scalar values
that has the same number of rows of the predictors array. The ith element of
the aforementioned vector represents the true stride speed value of the ith stride
expressed in m/s.
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True stride speed values for each stride are retrieved form the INDIP standard and
used to construct the label vector, which contains the response values of the stride
speed that represent the target for the MaLe methods.

5.3.2 Stride speed prediction
Once that the dataset has been created, a regression model is used to predict the
value of stride speed for each of the strides included in the construction set. Based
on the same procedure followed for the DeLe networks for the estimation of the
temporal parameters, a set of MaLe models with different settings is trained, in
order to determine the optimal set of hyperparameters. As mentioned in Section
5.3, four GPR models and one SVM are trained and tested. Each one of the models
receives as input a set of 136 predictors related to the stride features in the time
and frequency domains (see 5.3.1). As output, the model returns the value of stride
speed associated with the input stride.

Gaussian Process Regression (GPR)

Four GPR models are trained to infer the value of the stride speed from the
computed stride features. GPR models are a class of non-parametric probabilistic
models that model the response with a probability distribution over a space of
functions [99]. See Section D.1 for further details about the theoretical notions
behind the implementation of GPR models.

GPR general settings In the following, the design choices for the training and
validation of the developed GPR models are presented.

• Basis function: Constant. The basis function defines the form of the prior
mean function of the GPR model [99]. For the present models, a constant
basis function represented by a vector of ones is chosen.

• σ0:
std(y)√

2
, where std(y) denotes the standard deviation of the target

response. σ0 represents the initial value for the noise standard deviation of
the Gaussian process model [99]. After that σ0 is set, it is optimized during
training.

• Normalization: Standard. Predictor data are standardized i.e., normalized
with respect to their mean and standard deviation, so that the standardized
predictor has mean 0 and unit standard deviation. Standardizing cancels
the dependence on arbitrary scales in the predictors and improves overall
performance [99].
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5.3 – Estimation of the stride speed

• Fit method: Subset of data elements approximation. Method to estimate
parameters of the GPR model [99].

• Optimizer : Quasi-Newton optimizer. Optimization method used to es-
timate the model’s parameters. The quasi-Newton optimizer consists in a
dense, symmetric rank-1-based, quasi-Newton approximation to the Hessian
[99] [112].

• Validation: 5-folds cross-validation. Data is randomly partitioned into 5
sets. At each fold, one set is used as TS and the remaining k − 1 sets are used
as TRS. Eventually, the performance of the k trained models are aggregated
to provide a summary of the model’s skill.

Kernel functions To find the optimal architecture of the GPR model for the
stride speed prediction task, four GPR models with different kernel functions have
been trained and evaluated:

• Exponential

• Squared exponential

• Matern 5/2

• Rational quadratic

As described in Subsection D.1.3, all the kernel functions are defined by two pa-
rameters, respectively the length scale σl and the signal standard deviation σf .
In addition, the rational quadratic kernel is also defined by the scale-mixture
parameter α. The initial values of the kernel parameters θ are set at the beginning
of training (Equation 5.8) and then optimized during the training process.

σl = mean(std(x)) = 0,1618
σf = std(y)/2 = 0,2139
α = 1, (Only for rational quadratic).

(5.8)

Where X represents the predictor matrix, y represents the target response vector
and mean and std are respectively the mean and standard deviation operators.
Notice that the correlation length scale is the same for all the predictors.

Support Vector Machine (SVM)

Besides the GPR models, one linear SVM regression model is developed - here-
inafter referred to as linear support vector regression (SVR) model. SVR models
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are a class of non-parametric MaLe models that aim at finding the best function
that at the same time fits the training data and observe a set of pre-defined con-
straints regarding the prediction errors [99][113]. Linear SVR has an easy level of
interpretability; however, it can have low flexibility and can yield to underfitting
in certain applications. See Section D.2 for further details about the theoretical
notions behind the implementation of SVR models.
In the following, the general settings for the training and validation of the developed
SVR model are presented.

• Box constraint: 0,2412. The box constraint is calculated as iqr(y)

1.349 , which
is an estimate of the standard deviation of the target response variable Y [99].
iqr denotes the interquartile range operator.

• Kernel function: Linear. The kernel function defines the transformation
applied to the data before the SVM is trained. The linear kernel function has
the following form:

G(xj, xk) = x′
jxk (5.9)

The kernel function is employed to derive the Gram matrix 10.

• Kernel scale: 2,8951. Value of kernel scale has been determined though
a heuristic procedure that used subsampling [99]. All observations of the
predictor matrix X are divided by the value of the kernel scale. Then,
the appropriate kernel norm is applied to compute the Gram matrix. The
kernel scale determines the scale of the predictors on which the kernel varies
significantly [99]. A smaller kernel scale allows for a more flexible model.

• ϵ: 0,02412. Half the width of the ϵ-insensitive band (see Section D.2). The
value is calculated as iqr(y)

13.49 , which is an estimate of a tenth of the standard
deviation of the response variable Y . Prediction errors that fall in the ϵ-
insensitive band are treated as equal to zero. A smaller value of ϵ allows more
flexibility. [99].

• Normalization: Standard. See Sub-subsection 5.3.2.

• Solver : sequential minimal optmization (SMO). Optimization routine.

• Validation: 5-folds cross-validation. See Sub-subsection 5.3.2.

10The Gram matrix associated to a set of n vectors {x1, ..., xn; xj ∈ Rp} consists in an n × n
matrix with element (j, k) corresponding to G(xj , xk) =< Φ(xj), Φ(xk) >, an inner product of
the transformed predictors through the kernel function Φ [99].
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• Maximum number of iterations: 1 × 106.

• Gap tolerance: 1 × 10−3. Feasibility gap tolerance to stop the SMO. The
SMO stopped after 16015 iterations at a gap value of 8.335,3 × 10−4.

The gap tolerance was achieved before reaching the maximum number of iterations.
As a result, the feasibility gap convergence criterion forced the SMO algorithm to
stop.

5.4 Testing methodology and metrics
In the following Section, the methodology used for testing the developed MaLe and
DeLe models and the metrics used to measure their performance are presented. All
the models were tested both on the full In-lab and Free-living datasets.

5.4.1 Temporal parameters
Hereinafter, the expressions TRS, VS and TS will be used to address respectively
the training, validation and test sets to perform the GED task. The expression
Free-living TS will refer instead to the data collected in free-living conditions not
used for training the models.
The 10 DeLe models allow to achieve three different tasks:

1. Gait phase classification: Prediction of the gait phase at a given time step.

2. Gait events detection: Prediction of the time steps at which the ICs and
the FCs occur.

3. Temporal parameters prediction: The model predicts the value of four
different temporal parameters (see Table 2.1):

• Stride time
• Step time
• SS time
• DS time

The three tasks are sequential, meaning that the output of classification is post-
processed to obtain the time steps of gait events and the values of the temporal
parameters, as described in Subsections 5.2.2 and 5.2.3.
In the following, the evaluation metrics employed for quantifying the performance
of the models in the achievement of each one of the above-mentioned tasks are
described.
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Gait phases

Once trained, the DeLe classification models are used for prediction over the
training and validation data and over the unseen test data.
As mentioned in Sub-subsection 5.2.1, data from Participant 11 were not included
in neither the TRS nor the VS; and instead it constituted the In-lab TS. Similarly,
data recorded in free-living conditions from Participants 13, 14 and 15 were left
aside from training and used for testing purposes only.
At prediction, the raw output of the models has the same format of the target
response used for training i.e., it is a 1D sequence of ones and zeroes corresponding
to the SS phase and DS phase, respectively (Figure 5.18).
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Figure 5.18: Visual comparison between the target response signal (blue) and
the predicted response signal (red). The smoothed V-acc (black) shows how the
labels correspond to the underlying inertial signals. The current example refers to
a Trial belonging to the TRS and predicted by a LSTM model.

Confusion matrix Since the SS/DS phase classification task is binary, a 2 × 2
confusion matrix (CM) is computed every time that a model is tested on a TRS,
VS or TS. CMs - otherwise called contingency matrices or error matrices [114] -
represent a powerful tool for visualizing the outcome of classification altogether,
specially in the case of binary classification tasks. Each column of the matrix
contains the instances in an actual class while each row contains the instances in
a predicted class, or vice versa – use of both variants has been reported by the
literature [115]. In binary classification tasks - and specially in the field of health
data analysis - class labeled by 0 is commonly referred to as "negative", while the
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other one is generally referred to as "positive". In binary tasks, a CM is an array of
4 elements, each of them referring to a different type of instance (Figure 5.19).

• True negative (TN): Instance of class 0 correctly classified in class 0.

• False positive (FP): Instance of class 0 mis-classified in class 1.

• False negative (FN): Instance of class 1 mis-classified in class 0.

• True positive (TP): Instance of class 1 correctly classified in class 1.

Figure 5.19: Illustration to show how TPs, TNs, FPs and FNs are disposed
within a CM. Blue: correctly classified instances; red: mis-classified instances.

Since the SS and DS phase classes are respectively labeled by 1 and 0, the SS phase
class is referred to as "positive", while the DS phase class is referred to as "negative"
(Figure 5.20).
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Figure 5.20: Example of a CM for the SS/DS binary classification task showing
the absolute values of the number of TPs, TNs, FPs and FNs. The sum of the
elements in the CM adds up to the total number of observations.

Therefore, for the present work, the above-mentioned terms take on the following
meaning:

• TN: A sample of the DS phase class correctly classified in the DS phase class.

• FP: A sample of the DS phase class mis-classified in the SS phase class.

• FN: A sample of the SS phase class mis-classified in the DS phase class.

• TP: A sample of the SS phase class correctly classified in the SS phase class.

Since the number of tested models is 10 and the number of tested datasets is 4
(TRS, VS, in-lab TS, Free-living TS), a total amount of 40 CMs has been printed
out.
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Evaluation metrics A 2 × 2 CM allows for the calculation of several useful
evaluation metrics that allow to quantify the performance of a classifier. In the
following, the adopted evaluation metrics are listed and described:

• TP: The absolute number of TPs.

• TN: The absolute number of TNs.

• Number of trues (T): The absolute number of correctly classified samples:

T = TP + TN

• Accuracy: It measures the percentage of correctly classified instances with
respect to the total number of predictions:

Accuracy(%) = 100 × TP + TN

TP + TN + FP + FN

The accuracy is arguably the most comprehensive and robust indicator for
quantifying the performance of a classifier.

• Sensitivity: Otherwise known as true positive rate (TPR), it measures the
percentage of correctly classified class 1 instances with respect to the total
amount of instances in class 1:

Sensitivity(%) = 100 × TP

TP + FN

• Specificity: Otherwise known as true negative rate (TNR), it measures the
percentage of correctly classified class 0 instances with respect to the total
amount of instances in class 0:

Specificity(%) = 100 × TN

TN + FP

• Positive predictive value (PPV): Otherwise known as precision, it measures
what percentage is truly positive out of all the positive predicted:

PPV (%) = 100 × TP

TP + FP

• Negative predictive value (NPV): Otherwise known as recall, it measures
what percentage is truly negative out of all the negative predicted:

NPV (%) = 100 × TN

TN + FN
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• F1-score (%): While accuracy is the arithmetic mean of sensitivity and
specificity, the F1-score represents the harmonic mean of sensitivity and PPV:

F1 = 2 Sensitivity PPV

Sensitivity + PPV

Such metrics have been computed for each CM; therefore, 40 sets of evaluation
metrics have been collected.

Gait events detection

As described in Subsection 5.2.2, the output of classification is exploited to detect
the time steps at which the gait events (ICs and FCs) occur.
Once that the gait events are detected for each dataset, the following error metrics
are computed:

• Extra ICs: The absolute number of times that the model has predicted an
IC not associated with a target IC. The number of extra ICs can also be
referred to the number of ICs predicted by the GS (the INDIP standard) and
expressed as percentage:

% extra ICs = 100 × extra ICs
ICsINDIP

(5.10)

• Missed ICs: The absolute number of times that the model has missed to
predict an IC. The number of missed ICs can also be referred to the number of
ICs predicted by the GS (the INDIP standard) and expressed as percentage:

% missed ICs = 100 × missed ICs
ICsINDIP

(5.11)

• Extra FCs: The absolute number of times that the model has predicted
an FC not associated to a target FC. The number of extra FCs can also be
referred to the number of FCs predicted by the GS (the INDIP standard) and
expressed as percentage:

% extra FCs = 100 × extra FCs
FCsINDIP

(5.12)

• Missed FCs: The absolute number of times that the model has missed to
predict a FC. The number of missed FCs can also be referred to the number of
FCs predicted by the GS (the INDIP standard) and expressed as percentage:

% missed FCs = 100 × missed FCs
FCsINDIP

(5.13)
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• Mean absolute error (MAE): The average unsigned time delay of the
predicted gait event with respect to the target gait event:

MAE (s) = 1
N

NØ
i=1

|yi − ŷi| (5.14)

Where y and ŷ denote respectively the target and predicted gait events and
N is the total number of predicted events.

• Mean error (ME): The average signed time delay of the predicted gait event
with respect to the target gait event:

ME (s) = 1
N

NØ
i=1

(yi − ŷi) (5.15)

MAE and ME are computed for both type of gait events (ICs and FCs). Since
there are 10 tested models and 4 tested datasets, 40 sets of error metrics have been
evaluated.

Temporal parameters

As described in Subsection 5.2.3, detected gait events are exploited to predict the
step time, the stride time and the SS and DS times, whose values are compared to
their GS correspondents by means of the following error metrics:

• MAE: The average unsigned difference between the values of the predicted
and target parameter:

MAE (s) = 1
N

NØ
i=1

---Ti − T̂i

--- (5.16)

Where Ti and T̂i denote respectively the target and predicted values of the
parameter and N is the total number of the parameter’s values. For the SS
and DS times, %MAE is calculated as well:

MAE (%) = 1
N

NØ
i=1

-----(Tphase)i − (T̂phase)i

(Tstride)i

----- (5.17)

Where (Tphase)i and (T̂phase)i denote respectively the target and predicted
values of the gait phase time, (Tstride)i denotes the GS stride time value and
N is the total number of strides.
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• ME: The average signed difference between the values of the predicted and
target parameter:

ME (s) = 1
N

NØ
i=1

(Ti − T̂i) (5.18)

For the SS and DS times, %ME is calculated as well:

ME (%) = 1
N

NØ
i=1

(Tphase)i − (T̂phase)i

(Tstride)i

(5.19)

MAE and ME are computed for all the four types of gait events. Since SS time and
DS time are typically expressed as % GC, %MAE and %ME for the SS and DS
times are computed as well. Since there are 10 tested models and 4 tested datasets,
40 sets of error metrics have been evaluated.

5.4.2 Stride speed
Testing machine learning models on strides segmented by the INDIP
standard

At the end of training, the performance of the MaLe models are tested on the
strides of the In-Lab construction set and test set segmented by the INDIP standard
(see Subsection 5.3.1). Such validation does not evaluates the performance of the
whole GED/stride speed estimation pipeline; however, it provides an immediate
feedback about the performance of the developed models without the influence
of DeLe-based GED, which is addressed in a second moment (see Sub-subsection
5.4.2).
As described in Sub-subsection 5.3.2, performance of the trained MaLe models at
training time is evaluated via 5-folds cross-validation. First, the results of regression
on each In-Lab dataset for each of the trained regression models are used to produce
three types of plots, which give an immediate visual feedback about the general
outcome of regression:

• Response plot: predicted and true response are plotted versus the record
number. This type of plot was drawn only for the results of the models on
the stride speed construction set.

• Predicted VS actual response: predicted stride speed is plotted against the
actual, true stride speed. An ideal regression model should be characterized
by a predicted response that is perfectly equal to the true response, so that
all the points lie on a diagonal line. The vertical distance from the line to
any point represents the error of the prediction for that point. A model with
good performance has limited errors, which means that the predictions are
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scattered symmetrically close to the line [99]. This type of plot was drawn for
the results of the models on both the stride speed construction set and TS.

• Residual plot: Prediction residuals are plotted versus the true response. In
general, a model with good performance shows residuals distributed nearly
symmetrically around the zero-level [99]. This type of plot was drawn for the
results of the models on both the stride speed construction set and TS.

Then, the agreement between the two set of measurements is quantified by the
following set of error metrics. In particular, the predicted stride speed values
yH−MIMU are compared to the target stride speed values yINDIP provided by the
INDIP standard:

• MAE: Mean unsigned difference between the N predicted stride speed values
yINDIP and the N corresponding target stride speed values yINDIP :

MAE (m/s) = 1
N

NØ
i=1

|yINDIP − yH−MIMU | (5.20)

• Mean squared error (MSE): Mean squared difference between the N
predicted stride speed values yINDIP and the N corresponding target stride
speed values yINDIP :

MSE (m2/s2) = 1
N

NØ
i=1

(yINDIP − yH−MIMU)2 (5.21)

• Root mean squared error (RMSE): Root mean square difference between
the N predicted stride speed values yINDIP and the N corresponding target
stride speed values yINDIP :

RMSE (m/s) = 1
N

NØ
i=1

ñ
(yINDIP − yH−MIMU)2 (5.22)

• Coefficient of determination (R2): R2 is a statistical metric used to
represent the share of the variance for a dependent variable explained by an
independent variable or variables in a regression model:

R2 = 1
N

NØ
i=1

(yINDIP − yH−MIMU)2

(yINDIP − ȳH−MIMU)2 (5.23)

Where ȳH−MIMU represents the mean of the predicted stride speed values
for the given dataset. R2 is based on the hypothesis that every independent
predictor in the model helps to explain variance for the dependent variable.
R2 ranges between 0 and 1.

In addition, the training time in seconds and the prediction speed (obj/s) are
reported as well.
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Testing machine learning models on strides segmented by deep learning
models

As explained in 5.3.2, the output of the DeLe classification model becomes the input
to the MaLe regression model. In particular, the output of GED (Subsection 5.2.2)
is used to segment the strides within the acceleration norm signal and compute a
set of 136 stride predictors that are used by the MaLe models to infer the value of
the stride speed for each input stride vector (see Sub-subsection 5.3.1 and Section
5.3.2).
Since there are ten DeLe models for GED, five MaLe models for stride speed
prediction and four datasets, a total amount of two hundreds model - dataset
combinations have been tested. For each one of them, a the same error metrics
described in Sub-subsection 5.4.2 are computed. In addition, the following metrics
are computed as well:

• Mean absolute percentage error (MAPE): Mean unsigned difference
between the N predicted stride speed values yINDIP and the N corresponding
target stride speed values yINDIP expressed as percentage of yINDIP :

MAPE = 1
N

NØ
i=1

|yINDIP − yH−MIMU |
yINDIP

(5.24)

The MAPE scales the variable units as percentage units; therefore facilitating
its interpretability [116]. The MAPE ranges between 0 and 1.

• Adjusted ρ2: Adjusted R2 (adR2) is used to represent the share of variance
for a dependent variable explained by only those independent variables that
really explain the dependent variable. If any variables that do not help in
predicting the dependent variable are introduced, the value of adR2 decreases.

adR2 = 1 − (1 − R2)(N − 1)
(N − p − 1) (5.25)

Where p is the number of independent predictors. adR2 ranges between 0 and
1.

• Pearson correlation index (ρ): The Pearson correlation index between two
random variables measures their linear dependence [99]:

ρ = 1
N − 1

NØ
i=1

3
yINDIP − ȳINDIP

σINDIP

4A
yH−MIMU − ȳH−MIMU

σH−MIMU

B
(5.26)

Where ȳH−MIMU and ȳINDIP respectively represents the mean of the predicted
and target stride speed values for the given dataset. σH−MIMU and σINDIP

respectively represents the standard deviations of the predicted and target
stride speed values for the given dataset. ρ ranges between 0 and 1.
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Results

In the present Chapter, the results of the testing stage are presented (see Section
5.4).

6.1 Temporal parameters
As described in Section 5.4, the first task to be evaluated is the GED and the
successive estimation of the temporal parameters. As mentioned in Section 5.2,
the task aimed at estimating the temporal parameters can be further divided into
three functional sub-tasks (SS/DS classification, GED, definition of the temporal
parameters).
In this Section, the errors and general performance for each one of the three
functional sub-tasks are presented. First, the results obtained on the In-Lab
dataset are presented; then, results on the Free-Living dataset are shown as well.

6.1.1 In-Lab dataset
As described in Section 5.4, each one of the trained DeLe models is applied to its
respective In-Lab TRS, VS and TS. Since there are 10 trained models - 5 TCNs
and 5 LSTM networks - and 3 In-Lab datasets, 30 summaries of results have been
drafted. The summary of results of a DeLe model includes the classification metrics,
the number of missed and extra events, the time error between predicted and target
gait events and the error in the estimation of the temporal parameters.

LSTM networks

Five LSTM networks were trained to classify each time step of the predictor signals
in the SS or DS phase. Then, the output of the five classifiers was processed to
define the gait events and the values of four temporal parameters.
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Classification metrics Table 6.1 shows the performance of classification for
each of the 5 trained LSTM networks on each In-Lab dataset.

Classification metrics - LSTM
Rep. Set Acc. (%) Sens. (%) Spec. (%) PPV (%) NPV (%) F1 (%)

1
TRS 86,98 94,45 66,95 88,45 81,81 91,35
VS 80,44 91,37 53,22 82,94 71,24 86,95
TS 69,74 87,47 39,28 71,24 64,57 78,52

2
TRS 89,73 94,50 76,84 91,68 83,80 93,07
VS 79,05 85,77 62,59 84,89 64,21 85,33
TS 69,61 81,37 49,40 73,43 60,66 77,20

3
TRS 90,62 94,96 78,81 92,41 85,19 93,67
VS 79,59 89,15 56,54 83,19 68,36 86,06
TS 70,23 87,88 39,88 71,54 65,69 78,87

4
TRS 89,51 94,06 76,91 91,87 82,35 92,95
VS 78,42 91,09 49,23 80,52 70,58 85,48
TS 71,72 85,25 48,45 73,98 65,64 79,22

5
TRS 87,57 95,38 67,12 88,37 84,73 91,74
VS 81,40 91,55 54,72 84,16 71,13 87,70
TS 69,50 87,60 38,37 70,96 64,29 78,41

Table 6.1: Values of the adopted classification metrics for the binary SS/DS
classification task obtained by each LSTM model on the In-Lab dataset. Each row
of the Table refers to the performance achieved by the model (column 1) on the
corresponding In-Lab dataset (column 2). Rep.: Repetition; Acc.: Accuracy; Sens.:
Sensitivity; Spec.: Specificity.

For each model, the values of each metric over the three datasets are aggregated
to derive the average and standard deviation values.
The average values are used to draw a bar diagram that allows a faster comparison
between the performance of the different models, while the values of the standard
deviation are used to superimpose error bars to each data series (Figure 6.1).
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Figure 6.1: Bar diagram that summarizes the classification performance of the
LSTM models on the In-Lab dataset. Each group of bars denotes the values of the
corresponding metric for each of the 5 models. For each bar, the average values are
plotted as mean ± standard deviation of the In-Lab TRS, VS and TS. The present
graph was designed on Microsoft®Excel®.

Similarly, for each model, average values of each metric are used to draw line
plots (Figure 6.2) and radar plots (Figure 6.3). Plots referred to different models
are overlapped to highlight differences in the metrics values.
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Figure 6.2: Lines plot that summarizes the classification performance of the
LSTM models on the In-Lab dataset. Each line represents a model, while each
point of the line represents the value of the corresponding metric on the x-axis for
that model. The present graph was designed on Microsoft®Excel®.
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Figure 6.3: Radar plot that summarizes the classification performance of the
LSTM models on the In-Lab dataset. Each polygon represents a model, while each
point of the polygon represents the value of the corresponding metric on the outer
hexagon. The present graph was designed on Microsoft®Excel®.

GED errors Table 6.2 shows the absolute and relative numbers of extra and
missed events for each of the five trained LSTM networks on each In-Lab dataset.
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Missed/extra events - LSTM
Repetition SET extra IC missed IC extra FC missed FC

1
TRS 92 (3,79 %) 278 (11,44 %) 94 (3,87 %) 280 (11,52 %)
VS 71 (7,10 %) 162 (16,20 %) 71 (7,10 %) 162 (16,20 %)
TS 21 (6,36 %) 98 (29,70 %) 20 (6,06 %) 97 (29,39 %)

2
TRS 81 (3,36 %) 170 (7,05 %) 80 (3,32 %) 170 (7,05 %)
VS 54 (5,30 %) 99 (9,72 %) 56 (5,50 %) 102 (10,02 %)
TS 12 (3,64 %) 68 (20,61 %) 14 (4,24 %) 72 (21,82 %)

3
TRS 63 (2,60 %) 157 (6,48 %) 60 (2,48 %) 156 (6,44 %)
VS 57 (5,65 %) 123 (12,20 %) 61 (6,05 %) 127 (12,60 %)
TS 13 (3,94 %) 88 (26,67 %) 12 (3,64 %) 87 (26,36 %)

4
TRS 79 (3,23 %) 193 (7,88 %) 79 (3,23 %) 194 (7,92 %)
VS 56 (5,70 %) 180 (18,33 %) 61 (6,21 %) 184 (18,74 %)
TS 18 (5,45 %) 79 (23,94 %) 14 (4,24 %) 75 (22,73 %)

5
TRS 84 (3,54 %) 277 (11,66 %) 82 (3,45 %) 274 (11,54 %)
VS 43 (4,08 %) 166 (15,73 %) 43 (4,08 %) 168 (15,92 %)
TS 12 (3,64 %) 116 (35,15 %) 14 (4,24 %) 119 (36,06 %)

Table 6.2: Number of missed and extra gait events (FCs and ICs) on the In-
Lab TRS, VS and TS for each LSTM model. In parentheses, the percentage of
misclassified events is reported i.e., the ratio between the number of extra/missed
events and the total number of events detected by the INDIP standard (see Sub-
subsection 5.4.1).

Next, the time errors between the target events and the detected events are
computed in terms of MAE and ME (Table 6.3).
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LSTM ICs FCs
Repetition SET MAE (s) ME (s) MAE (s) ME (s)

1
TRS 0,03±0,04 0,01±0,05 0,04±0,04 0,00±0,06
VS 0,05±0,06 0,03±0,07 0,06±0,05 0,01±0,07
TS 0,08±0,07 0,04±0,09 0,08±0,07 0,01±0,11

2
TRS 0,02±0,03 0,00±0,04 0,03±0,03 0,00±0,05
VS 0,05±0,06 0,03±0,07 0,07±0,06 0,04±0,08
TS 0,09±0,07 0,05±0,10 0,08±0,07 0,04±0,10

3
TRS 0,02±0,03 0,00±0,04 0,03±0,03 0,00±0,04
VS 0,06±0,06 0,02±0,08 0,06±0,07 0,01±0,09
TS 0,08±0,07 0,05±0,10 0,08±0,06 0,00±0,10

4
TRS 0,03±0,03 0,00±0,04 0,03±0,03 0,00±0,05
VS 0,06±0,06 0,02±0,09 0,07±0,07 0,00±0,09
TS 0,07±0,06 0,03±0,09 0,08±0,06 0,01±0,10

5
TRS 0,03±0,04 0,01±0,04 0,04±0,04 -0,01±0,06
VS 0,05±0,06 0,01±0,07 0,06±0,06 0,01±0,08
TS 0,08±0,07 0,05±0,09 0,08±0,06 0,02±0,09

Table 6.3: Time error between the time steps at which predicted and target
gait events occur obtained by each LSTM model on the In-Lab dataset. Results
obtained for each LSTM net on the In-Lab dataset are expressed in terms of mean
± standard deviation. Unsigned residuals are considered for MAE, while signed
residuals are considered for ME (see Sub-subsection 5.4.1).

Errors on the temporal parameters Table 6.4 shows the values of MAE and
ME in the estimation of the step and stride times.
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LSTM Step time errors Stride time errors
Repetition SET MAE (s) ME (s) MAE (s) ME (s)

1
TRS 0,04±0,05 0,00±0,07 0,04±0,05 0,00±0,07
VS 0,06±0,06 0,00±0,09 0,05±0,06 0,00±0,08
TS 0,11±0,09 0,00±0,14 0,09±0,09 0,00±0,12

2
TRS 0,03±0,04 0,00±0,05 0,04±0,04 0,00±0,06
VS 0,06±0,07 0,00±0,09 0,06±0,08 0,00±0,10
TS 0,11±0,09 0,00±0,14 0,10±0,08 0,00±0,13

3
TRS 0,03±0,04 0,00±0,05 0,03±0,04 0,00±0,05
VS 0,07±0,09 0,00±0,11 0,06±0,08 0,00±0,10
TS 0,10±0,09 0,00±0,14 0,10±0,09 0,00±0,13

4
TRS 0,04±0,04 0,00±0,05 0,04±0,04 0,00±0,06
VS 0,07±0,08 0,00±0,11 0,06±0,08 0,00±0,10
TS 0,10±0,08 -0,01±0,13 0,09±0,08 0,00±0,12

5
TRS 0,04±0,05 0,00±0,06 0,04±0,04 0,00±0,06
VS 0,06±0,07 0,00±0,09 0,06±0,07 0,00±0,09
TS 0,10±0,10 0,01±0,14 0,08±0,09 -0,01±0,12

Table 6.4: Time errors between target and predicted step and stride times obtained
by each LSTM model on the In-Lab dataset. Results obtained for each LSTM
net on the In-Lab dataset are expressed in terms of mean ± standard deviation.
Unsigned residuals are considered for MAE, while signed residuals are considered
for ME (see Sub-subsection 5.4.1).

Similarly, Tables 6.5 and 6.6 show the absolute and relative errors in the
estimation of the SS and DS times.
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DS time errors - LSTM
Repetition SET MAE (s) ME (s)

1
TRS 0,04±0,04 (6,94±6,21 %) 0,01±0,06 (1,90±9,12 %)
VS 0,06±0,06 (9,41±8,24 %) 0,02±0,08 (2,62±12,23 %)
TS 0,07±0,06 (12,28±10,21 %) 0,04±0,09 (5,39±15,05 %)

2
TRS 0,04±0,03 (5,93±5,48 %) 0,00±0,05 (0,26±8,07 %)
VS 0,05±0,05 (8,72±7,84 %) -0,01±0,08 (-1,96±11,56 %)
TS 0,07±0,06 (11,85±10,62 %) 0,01±0,09 (2,27±15,76 %)

3
TRS 0,03±0,03 (5,29±4,98 %) 0,00±0,05 (0,26±7,26 %)
VS 0,06±0,05 (9,60±7,75 %) 0,01±0,08 (1,64±12,24 %)
TS 0,08±0,07 (13,39±11,14 %) 0,04±0,09 (6,97±15,98 %)

4
TRS 0,04±0,04 (5,94±5,40 %) 0,00±0,05 (-0,29±8,02 %)
VS 0,06±0,06 (9,71±8,19 %) 0,03±0,08 (4,72±11,80 %)
TS 0,07±0,06 (11,44±9,92 %) 0,03±0,08 (4,45±14,49 %)

5
TRS 0,04±0,04 (6,68±5,89 %) 0,02±0,05 (2,78±8,46 %)
VS 0,05±0,05 (8,70±7,78 %) 0,01±0,07 (1,84±11,53 %)
TS 0,08±0,07 (13,89±11,63 %) 0,04±0,10 (6,28±17,01 %)

Table 6.5: Time errors between target and predicted DS times obtained by each
LSTM model on the In-Lab dataset. Results obtained for each LSTM net on the
In-Lab dataset are expressed in terms of mean ± standard deviation. Unsigned
residuals are considered for MAE, while signed residuals are considered for ME (see
Sub-subsection 5.4.1). Values between parentheses denote the error with respect to
the target stride time.
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SS time errors - LSTM
Repetition SET MAE (s) ME (s)

1
TRS 0,05±0,06 (7,59±8,45 %) -0,01±0,07 (-1,42±11,28 %)
VS 0,06±0,07 (9,86±9,40 %) -0,01±0,09 (-1,89±13,49 %)
TS 0,12±0,11 (19,80±17,39 %) -0,04±0,15 (-7,77±25,22 %)

2
TRS 0,04±0,05 (6,37±7,00 %) 0,00±0,06 (0,04±9,47 %)
VS 0,07±0,07 (10,35±9,72 %) 0,01±0,10 (1,99±14,07 %)
TS 0,11±0,08 (18,44±15,50 %) -0,01±0,13 (-3,57±23,85 %)

3
TRS 0,04±0,04 (5,71±6,40 %) 0,00±0,05 (-0,25±8,57 %)
VS 0,08±0,09 (11,78±11,94 %) -0,01±0,12 (-1,41±16,72 %)
TS 0,11±0,09 (19,91±18,54 %) -0,05±0,14 (-8,93±25,73 %)

4
TRS 0,04±0,05 (6,25±6,76 %) 0,00±0,06 (0,38±9,20 %)
VS 0,08±0,09 (11,47±13,02 %) -0,02±0,12 (-3,35±17,03 %)
TS 0,11±0,09 (19,91±15,76 %) -0,03±0,14 (-6,37±24,61 %)

5
TRS 0,05±0,05 (7,34±7,76 %) -0,02±0,07 (-2,39±10,42 %)
VS 0,06±0,08 (9,86±11,35 %) -0,01±0,10 (-1,41±14,97 %)
TS 0,10±0,08 (16,83±14,16 %) -0,03±0,12 (-6,42±21,08 %)

Table 6.6: Time errors between target and predicted SS times obtained by each
LSTM model on the In-Lab dataset. Results obtained for each LSTM net on the
In-Lab dataset are expressed in terms of mean ± standard deviation. Unsigned
residuals are considered for MAE, while signed residuals are considered for ME (see
Sub-subsection 5.4.1). Values between parentheses denote the error with respect to
the stride time.

TCN

Based on the same procedure followed for the LSTM networks, five TCNs were
trained to classify each time step of the predictor signals in the SS or DS phase.
Then, the output of the five classifiers was processed to define the gait events and
the values of four temporal parameters.

Classification metrics Table 6.7 shows the performance of classification for
each of the five trained TCNs on each In-Lab dataset.
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Classification metrics - TCN networks
Rep. SET Acc. (%) Sens. (%) Spec. (%) PPV (%) NPV (%) F1 (%)

1
TRS 93,45 96,28 85,88 94,81 89,59 95,54
VS 92,05 96,26 81,57 92,86 89,76 94,53
TS 86,49 94,90 72,05 85,37 89,15 89,88

2
TRS 92,75 97,19 80,77 93,17 91,42 95,14
VS 91,14 97,38 75,85 90,81 92,19 93,98
TS 83,65 96,19 62,11 81,36 90,45 88,15

3
TRS 92,92 96,75 82,53 93,77 90,33 95,24
VS 91,56 96,85 78,81 91,68 91,20 94,19
TS 85,74 95,63 68,75 84,03 90,14 89,45

4
TRS 92,89 96,07 84,07 94,36 88,53 95,21
VS 91,29 98,35 75,03 90,07 95,18 94,03
TS 87,55 96,95 71,39 85,35 93,17 90,78

5
TRS 92,46 95,18 85,34 94,44 87,13 94,81
VS 90,95 94,03 82,86 93,52 84,08 93,77
TS 84,48 90,81 73,58 85,53 82,33 88,09

Table 6.7: Values of the adopted classification metrics for the binary SS/DS
classification task obtained by the TCN models. Each row of the Table refers to
the performance achieved by the model (column 1) on the corresponding In-Lab
dataset (column 2). Rep.: Repetition; Acc.: Accuracy; Sens.: Sensitivity; Spec.:
Specificity.

For each model, the values of each metric over the three datasets are aggregated
to derive the average and standard deviation values.
The average values are used to draw a bar diagram that allows a faster comparison
between the performance of the different models, while the values of the standard
deviation are used to superimpose error bars to each data series (Figure 6.4).
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Figure 6.4: Bar diagram to summarize the classification performance of the
TCN models on the In-Lab dataset. Each group of bars denotes the values of the
corresponding metric for each of the 5 models. For each bar, the average values are
plotted as mean ± standard deviation of the In-Lab TRS, VS and TS. The present
graph was designed on Microsoft®Excel®.

Similarly, for each model, average values of each metric are used to draw line
plots (Figure 6.5) and radar plots (Figure 6.6). Plots referred to different models
are overlapped to highlight differences in the metrics values.
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Figure 6.5: Lines plot that summarizes the classification performance of each
TCNs model on the In-Lab dataset. Each line represents a model, while each point
of the line represents the value of the corresponding metric on the x-axis for that
model. The present graph was designed on Microsoft®Excel®.
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Figure 6.6: Radar plot that summarizes the classification performance of each
TCNs model on the In-Lab dataset. Each polygon represents a model, while each
point of the polygon represents the value of the corresponding metric on the outer
hexagon. The present graph was designed on Microsoft®Excel®.

GED errors Table 6.8 shows the absolute and relative numbers of extra and
missed events for each of the five trained TCNs on each In-Lab dataset.
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Missed/extra events - TCN
Repetition SET extra IC missed IC extra FC missed FC

1
TRS 61 (2,51 %) 4 (0,16 %) 60 (2,47 %) 4 (0,16 %)
VS 33 (3,30 %) 6 (0,60 %) 34 (3,40 %) 6 (0,60 %)
TS 6 (1,82 %) 0 (0,00 %) 6 (1,82 %) 0 (0,00 %)

2
TRS 61 (2,53 %) 6 (0,25 %) 60 (2,49 %) 6 (0,25 %)
VS 15 (1,47 %) 1 (0,10 %) 14 (1,38 %) 1 (0,10 %)
TS 5 (1,52 %) 2 (0,61 %) 5 (1,52 %) 2 (0,61 %)

3
TRS 68 (2,81 %) 9 (0,37 %) 68 (2,81 %) 9 (0,37 %)
VS 16 (1,59 %) 0 (0,00 %) 15 (1,49 %) 0 (0,00 %)
TS 4 (1,21 %) 1 (0,30 %) 4 (1,21 %) 1 (0,30 %)

4
TRS 74 (3,02 %) 7 (0,29 %) 74 (3,02 %) 7 (0,29 %)
VS 32 (3,26 %) 1 (0,10 %) 34 (3,46 %) 1 (0,10 %)
TS 6 (1,82 %) 0 (0,00 %) 6 (1,82 %) 0 (0,00 %)

5
TRS 62 (2,61 %) 4 (0,17 %) 61 (2,57 %) 4 (0,17 %)
VS 30 (2,84 %) 9 (0,85 %) 30 (2,84 %) 9 (0,85 %)
TS 3 (0,91 %) 0 (0,00 %) 3 (0,91 %) 0 (0,00 %)

Table 6.8: Number of missed and extra gait events (FCs and ICs) on the In-Lab
TRS, VS and TS for each TCN model. In parentheses, the percentage of misclassified
events is reported i.e., the ratio between the number of extra/missed events and
the total number of events detected by the INDIP standard (see Sub-subsection
5.4.1).

Next, the time errors between the target events and the detected events are
computed in terms of MAE and ME (Table 6.9).
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TCN ICs FCs
Repetition SET MAE (s) ME (s) MAE (s) ME (s)

1
TRS 0,02±0,02 0,00±0,02 0,02±0,02 0,00±0,03
VS 0,01±0,01 0,00±0,02 0,03±0,02 -0,02±0,04
TS 0,05±0,04 0,05±0,04 0,03±0,02 0,01±0,04

2
TRS 0,02±0,02 0,01±0,02 0,02±0,02 -0,01±0,03
VS 0,02±0,02 0,02±0,02 0,03±0,03 -0,02±0,04
TS 0,07±0,04 0,07±0,04 0,03±0,02 0,00±0,04

3
TRS 0,02±0,02 0,01±0,02 0,03±0,02 -0,01±0,03
VS 0,02±0,02 0,02±0,02 0,03±0,03 -0,01±0,04
TS 0,06±0,04 0,05±0,04 0,03±0,02 0,00±0,04

4
TRS 0,02±0,02 0,00±0,02 0,02±0,02 -0,01±0,03
VS 0,02±0,02 0,01±0,02 0,04±0,03 -0,03±0,03
TS 0,05±0,04 0,05±0,04 0,02±0,02 -0,01±0,03

5
TRS 0,02±0,01 0,01±0,02 0,03±0,03 0,00±0,04
VS 0,02±0,02 0,01±0,02 0,03±0,02 0,01±0,04
TS 0,05±0,04 0,05±0,04 0,04±0,02 0,03±0,04

Table 6.9: Time error between the time steps at which predicted and target gait
events occur obtained by each TCN model on the In-Lab dataset. Results obtained
for each TCN net on the In-Lab dataset are expressed in terms of mean ± standard
deviation. Unsigned residuals are considered for MAE, while signed residuals are
considered for ME (see Sub-subsection 5.4.1).

Errors on the temporal parameters Table 6.10 shows the values of MAE and
ME in the estimation of the step and stride times.
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TCN Step time errors Stride time errors
Repetition SET MAE (s) ME (s) MAE (s) ME (s)

1
TRS 0,02±0,02 0,00±0,03 0,01±0,02 0,00±0,02
VS 0,02±0,02 0,00±0,02 0,01±0,02 0,00±0,02
TS 0,06±0,03 0,00±0,07 0,02±0,03 0,00±0,03

2
TRS 0,02±0,02 0,00±0,03 0,02±0,02 0,00±0,02
VS 0,02±0,02 0,00±0,02 0,01±0,01 0,00±0,02
TS 0,06±0,03 0,00±0,07 0,03±0,03 0,00±0,04

3
TRS 0,02±0,02 0,00±0,02 0,01±0,02 0,00±0,02
VS 0,02±0,02 0,00±0,03 0,01±0,02 0,00±0,02
TS 0,06±0,03 0,00±0,07 0,02±0,03 0,00±0,03

4
TRS 0,02±0,02 0,00±0,03 0,02±0,02 0,00±0,02
VS 0,02±0,02 0,00±0,02 0,01±0,02 0,00±0,02
TS 0,06±0,03 0,00±0,07 0,02±0,03 0,00±0,04

5
TRS 0,02±0,02 0,00±0,02 0,01±0,02 0,00±0,02
VS 0,02±0,02 0,00±0,03 0,02±0,02 0,00±0,02
TS 0,06±0,03 0,00±0,07 0,02±0,03 0,00±0,04

Table 6.10: Time errors between target and predicted step and stride times
obtained by each TCN model on the In-Lab dataset. Results obtained for each
TCN net on the In-Lab dataset are expressed in terms of mean ± standard deviation.
Unsigned residuals are considered for MAE, while signed residuals are considered
for ME (see Sub-subsection 5.4.1).

Similarly, Tables 6.11 and 6.12 show the absolute and relative errors in the
estimation of the SS and DS times.
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SS time errors - TCN
Repetition SET MAE (s) ME (s)

1
TRS 0,03±0,03 (4,78±4,59 %) -0,01±0,04 (-1,10±6,54 %)
VS 0,03±0,03 (4,87±3,63 %) -0,02±0,04 (-2,43±5,57 %)
TS 0,05±0,04 (9,34±8,72 %) -0,04±0,05 (-8,14±9,86 %)

2
TRS 0,04±0,04 (5,51±5,08 %) -0,02±0,05 (-2,91±6,91 %)
VS 0,04±0,04 (6,36±5,05 %) -0,03±0,05 (-4,73±6,61 %)
TS 0,07±0,05 (13,34±10,96 %) -0,07±0,06 (-12,60±11,80 %)

3
TRS 0,03±0,03 (5,16±4,50 %) -0,02±0,04 (-2,25±6,47 %)
VS 0,04±0,04 (6,02±5,50 %) -0,03±0,05 (-3,58±7,33 %)
TS 0,06±0,05 (10,40±9,99 %) -0,05±0,05 (-9,75±10,63 %)

4
TRS 0,03±0,03 (4,73±4,79 %) -0,01±0,04 (-1,36±6,59 %)
VS 0,05±0,03 (7,09±3,89 %) -0,04±0,03 (-6,94±4,16 %)
TS 0,06±0,05 (11,18±11,04 %) -0,05±0,06 (-10,29±11,87 %)

5
TRS 0,03±0,03 (5,46±4,80 %) -0,01±0,05 (-0,40±7,26 %)
VS 0,04±0,03 (5,67±4,88 %) 0,00±0,05 (0,42±7,47 %)
TS 0,05±0,04 (8,37±7,97 %) -0,02±0,06 (-4,72±10,56 %)

Table 6.11: Time errors between target and predicted SS times obtained by each
TCN model on the In-Lab dataset. Results obtained for each TCN net on the
In-Lab dataset are expressed in terms of mean ± standard deviation. Unsigned
residuals are considered for MAE, while signed residuals are considered for ME (see
Sub-subsection 5.4.1). Values between parentheses denote the error with respect to
the stride time.
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DS time errors - TCN
Repetition SET MAE (s) ME (s)

1
TRS 0,03±0,03 (4,62±4,05 %) 0,01±0,04 (0,99±6,06 %)
VS 0,03±0,03 (4,99±3,89 %) 0,02±0,04 (2,38±5,86 %)
TS 0,06±0,04 (9,07±6,08 %) 0,04±0,05 (6,61±8,70 %)

2
TRS 0,03±0,04 (5,33±4,65 %) 0,02±0,04 (2,83±6,48 %)
VS 0,04±0,04 (6,35±4,73 %) 0,03±0,05 (4,63±6,42 %)
TS 0,08±0,05 (12,23±6,94 %) 0,07±0,06 (11,02±8,73 %)

3
TRS 0,03±0,03 (5,06±4,25 %) 0,02±0,04 (2,17±6,24 %)
VS 0,04±0,04 (5,96±4,86 %) 0,03±0,05 (3,42±6,88 %)
TS 0,06±0,04 (10,20±6,41 %) 0,05±0,06 (8,17±8,86 %)

4
TRS 0,03±0,03 (4,43±4,32 %) 0,01±0,04 (1,27±6,06 %)
VS 0,04±0,03 (6,93±3,45 %) 0,04±0,03 (6,86±3,60 %)
TS 0,06±0,04 (9,52±5,56 %) 0,05±0,04 (8,73±6,73 %)

5
TRS 0,03±0,03 (5,32±4,41 %) 0,01±0,04 (0,31±6,91 %)
VS 0,04±0,04 (5,60±4,81 %) 0,00±0,05 (-0,41±7,37 %)
TS 0,05±0,04 (7,35±5,16 %) 0,02±0,05 (3,13±8,43 %)

Table 6.12: Time errors between target and predicted DS times obtained by each
TCN model on the In-Lab dataset. Results obtained for each TCN net on the
In-Lab dataset are expressed in terms of mean ± standard deviation. Unsigned
residuals are considered for MAE, while signed residuals are considered for ME (see
Sub-subsection 5.4.1). Values between parentheses denote the error with respect to
the stride time.

6.1.2 Free-Living dataset
As described in Section 5.4, each one of the trained DeLe models is applied to the
Free-Living TS. Since there are ten trained models - five TCNs and five LSTM
networks - and one Free-Living TS, ten summaries of results have been drafted.

Classification metrics Table 6.13 shows the performance of classification for
each of the ten trained DNNs on the Free-Living TS.
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Classification metrics
NET Acc. (%) Sens. (%) Spec. (%) PPV (%) NPV (%) F1 (%)

LSTM1 71,23 89,39 27,26 74,85 51,47 81,47
LSTM2 72,44 89,26 31,72 75,99 54,94 82,09
LSTM3 71,62 88,56 30,59 75,55 52,48 81,54
LSTM4 72,26 86,77 37,12 76,97 53,67 81,57
LSTM5 71,55 90,55 25,53 74,65 52,74 81,83
TCN1 84,06 93,28 61,73 85,51 79,14 89,23
TCN2 82,79 92,99 58,10 84,31 77,38 88,44
TCN3 82,43 91,92 59,43 84,58 75,24 88,10
TCN4 84,05 93,52 61,11 85,35 79,56 89,25
TCN5 80,76 88,41 62,24 85,01 68,93 86,68

Table 6.13: Values of the adopted classification metrics for the binary SS/DS
classification task obtained by each DNN on the Free-Living dataset. Each row
of the Table refers to the performance achieved by the model (column 1) on the
Free-Living TS. Acc.: Accuracy; Sens.: Sensitivity; Spec.: Specificity.

Values of the classification metrics are used to draw bar diagrams that allows a
faster comparison between the performance of the different TCN (Figure 6.7) and
LSTM models (Figure 6.8).

GED errors Table 6.14 shows the absolute and relative numbers of extra and
missed events for each of the ten trained DNNs on the Free-Living dataset.
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Figure 6.7: Bar diagram that summarizes the classification performance of the
TCN models on the Free-Living test set. Each group of bars denotes the values of
the corresponding metric for each of the five LSTM models. The present graph
was designed on Microsoft®Excel®.

Missed/extra events
NET extra IC missed IC extra FC missed FC

LSTM1 4225 (15,47 %) 8001 (29,30 %) 4368 (16,00 %) 8111 (29,70 %)
LSTM2 3962 (14,51 %) 7618 (27,90 %) 4033 (14,77 %) 7668 (28,08 %)
LSTM3 3815 (13,97 %) 7504 (27,48 %) 3923 (14,37 %) 7596 (27,82 %)
LSTM4 4455 (16,31 %) 6358 (23,28 %) 4544 (16,64 %) 6392 (23,41 %)
LSTM5 3736 (13,68 %) 9300 (34,06 %) 3889 (14,24 %) 9400 (34,42 %)
TCN1 550 (2,01 %) 300 (1,10 %) 540 (1,98 %) 287 (1,05 %)
TCN2 806 (2,95 %) 218 (0,80 %) 819 (3,00 %) 208 (0,76 %)
TCN3 635 (2,33 %) 252 (0,92 %) 630 (2,31 %) 238 (0,87 %)
TCN4 572 (2,09 %) 244 (0,89 %) 556 (2,04 %) 223 (0,82 %)
TCN5 694 (2,54 %) 213 (0,78 %) 688 (2,52 %) 202 (0,74 %)

Table 6.14: Number of missed and extra gait events (FCs and ICs) on the Free-
Living dataset for each DNN. In parentheses, the percentage of misclassified events
is reported i.e., the ratio between the number of extra/missed events and the total
number of events (see Sub-subsection 5.4.1).
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Figure 6.8: Bar diagram that summarizes the classification performance of the
LSTM models on the Free-Living test set. Each group of bars denotes the values
of the corresponding metric for each of the five LSTM models. The present graph
was designed on Microsoft®Excel®.

Next, the time errors between the target events and the detected events are
computed in terms of MAE and ME (Table 6.15).
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ICs FCs
NET MAE (s) ME (s) MAE (s) ME (s)

LSTM1 0,09±0,08 0,04±0,11 0,08±0,08 0,00±0,11
LSTM2 0,08±0,08 0,04±0,10 0,07±0,07 0,00±0,10
LSTM3 0,08±0,08 0,04±0,11 0,08±0,07 0,01±0,11
LSTM4 0,08±0,08 0,03±0,10 0,07±0,07 0,00±0,10
LSTM5 0,09±0,08 0,04±0,11 0,08±0,08 0,00±0,11
TCN1 0,05±0,04 0,05±0,04 0,04±0,04 0,02±0,05
TCN2 0,06±0,04 0,05±0,05 0,04±0,04 0,02±0,05
TCN3 0,05±0,05 0,05±0,05 0,04±0,04 0,02±0,05
TCN4 0,05±0,04 0,05±0,04 0,04±0,04 0,01±0,05
TCN5 0,05±0,04 0,05±0,05 0,05±0,05 0,04±0,06

Table 6.15: Time error between the time steps at which predicted and target
gait events occur obtained by each DNN on the Free-Living dataset. Each pair of
values (mean ± standard deviation) denotes the result of a model (column 1) on
the Free-Living dataset. Unsigned residuals are considered for MAE, while signed
residuals are considered for ME (see Sub-subsection 5.4.1).

Errors on the temporal parameters Table 6.16 shows the values of MAE and
ME in the estimation of the step and stride times.
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Step time errors Stride time errors
NET MAE (s) ME (s) MAE (s) ME (s)

LSTM1 0,11±0,11 0,00±0,16 0,10±0,11 0,00±0,15
LSTM2 0,10±0,11 0,00±0,15 0,09±0,10 0,00±0,14
LSTM3 0,10±0,11 0,00±0,15 0,10±0,11 0,00±0,14
LSTM4 0,10±0,11 0,00±0,15 0,09±0,10 0,00±0,14
LSTM5 0,11±0,12 0,00±0,16 0,10±0,11 0,00±0,15
TCN1 0,04±0,05 0,00±0,06 0,02±0,04 0,00±0,05
TCN2 0,04±0,05 0,00±0,06 0,02±0,04 0,00±0,05
TCN3 0,04±0,05 0,00±0,07 0,02±0,05 0,00±0,06
TCN4 0,04±0,05 0,00±0,06 0,02±0,04 0,00±0,05
TCN5 0,04±0,05 0,00±0,06 0,02±0,04 0,00±0,05

Table 6.16: Time errors between target and predicted step and stride times
obtained by each DNN on the Free-Living dataset. Results obtained for each net
on the Free-Living dataset are expressed in terms of mean ± standard deviation.
Unsigned residuals are considered for MAE, while signed residuals are considered
for ME (see Sub-subsection 5.4.1).

Similarly, Tables 6.17 and 6.18 show the absolute and relative errors in the
estimation of the SS and DS times.
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DS time errors
NET MAE (s) ME (s)

LSTM1 0,09±0,07 (14,58±10,43 %) 0,05±0,10 (8,20±15,94 %)
LSTM2 0,08±0,08 (13,14±10,20 %) 0,04±0,10 (6,29±15,40 %)
LSTM3 0,08±0,08 (13,67±10,53 %) 0,04±0,10 (6,48±16,00 %)
LSTM4 0,08±0,08 (13,54±10,92 %) 0,03±0,11 (4,74±16,74 %)
LSTM5 0,08±0,08 (14,37±10,78 %) 0,05±0,11 (8,41±15,87 %)
TCN1 0,05±0,05 (7,63±6,46 %) 0,03±0,06 (4,82±8,76 %)
TCN2 0,05±0,05 (8,00±6,82 %) 0,04±0,06 (5,78±8,78 %)
TCN3 0,05±0,05 (8,02±6,55 %) 0,03±0,07 (4,53±9,31 %)
TCN4 0,05±0,05 (7,68±6,40 %) 0,03±0,06 (5,29±8,49 %)
TCN5 0,05±0,05 (8,15±6,35 %) 0,01±0,07 (1,18±10,26 %)

Table 6.17: Time errors between target and predicted DS times obtained by each
DNN on the Free-Living dataset. Results obtained for each net on the Free-Living
dataset are expressed in terms of mean ± standard deviation. Unsigned residuals
are considered for MAE, while signed residuals are considered for ME (see Sub-
subsection 5.4.1). Values between parentheses denote the error with respect to the
stride time.
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SS time errors
NET MAE (s) ME (s)

LSTM1 0,12±0,12 (20,31±17,89 %) -0,03±0,16 (-6,43±26,29 %)
LSTM2 0,11±0,11 (18,53±16,76 %) -0,03±0,15 (-5,07±24,46 %)
LSTM3 0,11±0,11 (18,88±17,54 %) -0,03±0,15 (-5,00±25,28 %)
LSTM4 0,11±0,11 (17,99±16,57 %) -0,02±0,15 (-3,97±24,13 %)
LSTM5 0,12±0,12 (20,00±17,77 %) -0,03±0,16 (-5,73±26,13 %)
TCN1 0,05±0,05 (8,38±8,34 %) -0,03±0,06 (-5,26±10,58 %)
TCN2 0,05±0,06 (9,13±8,86 %) -0,04±0,07 (-6,21±11,11 %)
TCN3 0,05±0,06 (8,95±9,05 %) -0,03±0,07 (-4,98±11,71 %)
TCN4 0,05±0,06 (9,34±9,06 %) -0,03±0,07 (-5,81±11,65 %)
TCN5 0,05±0,05 (9,05±8,36 %) -0,01±0,07 (-1,65±12,21 %)

Table 6.18: Time errors between target and predicted SS times obtained by each
DNN on the Free-Living dataset. Results obtained for each net on the Free-Living
dataset are expressed in terms of mean ± standard deviation. Unsigned residuals
are considered for MAE, while signed residuals are considered for ME (see Sub-
subsection 5.4.1). Values between parentheses denote the error with respect to the
stride time.

6.2 Stride speed
The second task to be evaluated is the estimation of the stride speed. In particular,
a set of MaLe models were employed: four GPR models and one linear SVM.
In this Section, the errors and general performance for the developed models are
presented. First, the models are evaluated on the strides of the In-Lab dataset
segmented by the INDIP standard; then, the models are evaluated on the strides
from the In-Lab and Free-Living datasets segmented by the DeLe models.

6.2.1 In-Lab dataset
First, results obtained on the In-Lab dataset are presented including both the
results on the strides segmented by the INDIP standard and by TCN 1.

Strides segmented by the INDIP standard

Table 6.19 summarizes the performance in the estimation of the stride speed
achieved by the MaLe models on the strides segmented by the INDIP standard.
As anticipated in Sub-subsection 5.4.2, five plots were drawn to visually represent
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6.2 – Stride speed

Model
type Kernel SET RMSE

( m/s) R2 MSE
( m2/s2)

MAE
( m/s)

Prediction
sp. (obj/s)

Training
time (s)

GPR
Exp CS 0,07 0,95 0,00 0,05 4500 590,96TS 0,07 0,93 0,01 0,01

Rat CS 0,07 0,95 0,00 0,05 3100 700,2TS 0,08 0,92 0,01 0,06

Exp2 CS 0,07 0,95 0,00 0,05 4800 197,31TS 0,08 0,90 0,01 0,06

5/2 CS 0,07 0,95 0,00 0,05 4500 228,38TS 0,08 0,91 0,01 0,06

SVM Linear CS 0,09 0,91 0,01 0,07 6200 25,87TS 0,09 0,90 0,01 0,06

Table 6.19: Values of the error metrics for each MaLe model. Predictors used
for regression were derived from the strides of the In-Lab dataset segmented by
the INDIP standard. CS : Construction set (Participants 1-10); TS: Test set
(Participant 11); Prediction sp.: Prediction speed; Exp: exponential kernel; Rat:
rational quadratic kernel; Exp2: squared exponential; 5/2 : Matern 5/2.

the achieved results of regression for each model. Since the five MaLe models have
similar performance, only the five plots referring to the exponential GPR model
are presented for the sake of simplicity.
Figure 6.9 shows the response plot referring to the results of regression for the
exponential GPR model on the strides of the construction set segmented by the
INDIP standard.
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Figure 6.9: Plot of the target response and of the response estimated by the
exponential GPR model for the estimation of the stride speed on the In-Lab
construction set. Predicted and actual stride speeds are plotted versus the stride
number. Similar plots have been drawn for the other GPR and SVM models as
well.

Figure 6.10 shows the actual versus predicted responses of regression for the
exponential GPR model on the strides of the construction set segmented by the
INDIP standard.
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Figure 6.10: Plot of the actual responses versus responses predicted by the
exponential GPR model for the estimation of the stride speed. Predicted stride
speed is plotted versus the actual speed of the strides of the construction set
segmented by the INDIP standard. The black line represents the ideal mapping
between predicted and target response. Similar plots have been drawn for the other
GPR and SVM models as well.

Figure 6.11 shows the residuals of regression achieved by the exponential GPR
model on the strides of the construction set segmented by the INDIP standard.
Figure 6.12 shows the actual versus predicted responses of regression for the
exponential GPR model on the strides of the TS segmented by the INDIP standard.
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Figure 6.11: Plot of the residuals of regression achieved by the exponential GPR
model for the estimation of the stride speed. The stride speed residuals are plotted
versus the true value of the stride speed for the strides of the In-Lab construction
set segmented by the INDIP standard. Similar plots have been drawn for the other
GPR and SVM models as well.
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Figure 6.12: Plot of the actual responses versus responses predicted by the
exponential GPR model for the estimation of the stride speed. Predicted stride
speed is plotted versus the actual speed of the strides of the TS segmented by the
INDIP standard. The black line represents the ideal mapping between predicted
and target response. Similar plots have been drawn for the other GPR and SVM
models as well.

Figure 6.13 shows the residuals of regression achieved by the exponential GPR
model on the strides of the TS segmented by the INDIP standard.
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Figure 6.13: Plot of the residuals of regression achieved by the exponential GPR
model for the estimation of the stride speed. The stride speed residuals are plotted
versus the true value of the stride speed for the strides of the In-Lab TS segmented
by the INDIP standard. Similar plots have been drawn for the other GPR and
SVM models as well.

Strides segmented by TCN 1

Given its superior performance (see Chapter 7), the first TCN model (TCN 1) was
chosen as the best candidate for the segmentation of strides functional to the stride
speed estimation. Table 6.20 summarizes the performance for the estimation of the
stride speed achieved by the MaLe models. The models are tested on the strides of
the In-Lab dataset segmented by TCN 1.

6.2.2 Strides from the Free-Living temporal parameters
dataset

Table 6.21 summarizes the performance for the estimation of the stride speed
achieved by the MaLe models. The models are tested on the strides of the Free-
Living dataset segmented by TCN 1.
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6.2 – Stride speed

Model
type Kernel SET MAE

( m/s)
MSE

( m2/s2)
RMSE
( m/s) MAPE R2 adR2 ρ

GPR
Exp CS 0,05 0,00 0,07 0,05 0,95 0,89 0,97

TS 0,07 0,01 0,08 0,06 0,90 0,70 0,97

Rat CS 0,05 0,00 0,07 0,05 0,94 0,89 0,97
TS 0,07 0,01 0,09 0,07 0,89 0,66 0,97

Exp2 CS 0,05 0,01 0,07 0,05 0,94 0,88 0,97
TS 0,08 0,01 0,10 0,07 0,88 0,63 0,97

5/2 CS 0,05 0,01 0,07 0,05 0,94 0,89 0,97
TS 0,08 0,01 0,10 0,07 0,88 0,63 0,97

SVM Linear CS 0,07 0,01 0,09 0,07 0,91 0,82 0,95
TS 0,06 0,01 0,08 0,05 0,92 0,74 0,97

Table 6.20: Values of the error metrics for each MaLe model. Predictors used
for regression were derived from the strides of the In-Lab dataset segmented using
TCN 1. CS : Construction set (Participants 1-10); TS: Test set (Participant 11);
Exp: exponential kernel; Rat: rational quadratic kernel; Exp2: squared exponential;
5/2 : Matern 5/2.

Type of
model Kernel MAE

( m/s)
MSE

( m2/s2)
RMSE
( m/s) MAPE R2 adR2 ρ

GPR

Exp 0,10 0,02 0,13 0,09 0,61 0,36 0,80
Rat 0,10 0,02 0,13 0,09 0,62 0,38 0,80

Exp2 0,12 0,02 0,16 0,11 0,48 0,22 0,74
Matern 0,12 0,02 0,15 0,10 0,53 0,27 0,77

SVM Linear 0,11 0,02 0,14 0,10 0,56 0,31 0,79

Table 6.21: Values of the error metrics for each MaLe model. Predictors used for
regression were derived from the strides of the Free-Living dataset segmented using
TCN 1. Exp: exponential kernel; Rat: rational quadratic kernel; Exp2: squared
exponential; 5/2 : Matern 5/2.
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Chapter 7

Discussion

The current study aimed at validating a MaLe approach to the estimation of STP
from a single MIMU attached to the left side of the head. Data from the H-MIMU
were used for training several DNNs to detect gait events from walking Trials
performed by HY subjects. Eleven Participants walked along a 12 m indoor path at
three different self-selected walking speeds. Furthermore, other three Participants
walked both indoor and outdoor for 2.5-hour sessions unsupervised. The gait
events predicted by the networks were compared with those detected by a common
reference method, i.e., the INDIP system. Then, a set of relevant stride-specific
temporal parameters were derived. In addition, a set of models of MaLe was trained
to infer the value of the stride speed from the acceleration signal of the segmented
strides.

7.1 Temporal parameter estimation
First, the DeLe models for the assessment of temporal parameters were evaluated.
To assess the robustness of the proposed architectures, five models with different
TRS/VS combinations were trained for each type of architecture.

7.1.1 Performance on the In-Lab dataset
Initially, the models were tested on the In-Lab TRS and VS used for training, and
on the In-Lab TS. Such test aimed at assessing the performance of the models on
data equal (or similar) to the ones used for training.

Performance of LSTM networks

At the beginning, a set of five LSTM networks were trained to assess general
suitability of the LSTM architecture to the task and evaluate its robustness.
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A first measure for the models performance was provided by the classification
metrics (Table 6.1). For all the LSTM networks, accuracy was significantly high on
the TRS (min: 87.0 %, max: 90.6 %), while - as expected - lower values of accuracy
were achieved when the models were tested on unseen data of the TS. In addition,
sensitivity attained much higher percentages than specificity (max. sensitivity on
the TRS: 95.4 %, max. specificity on the TRS: 78.9 %), meaning that the LSTM
models tend to oversegment the SS phase with respect to the DS phase.
The average accuracy was best for model 3 (LSTM 3); however, all the 5 LSTM
models showed similar average values of accuracy (see Figure 6.1), confirming that
DeLe approach is relatively immune to variations of the dataset, as long as the
dataset size is not reduced. The average sensitivity value for model 3 (LSTM 3)
was lower than the other models; however, LSTM 3 reached a higher average value
of specificity, resulting in a more balanced performance.
In general, the performance achieved by all the five LSTM models were quite similar,
suggesting that the LSTM architecture is robust enough i.e., its performance does
not depend much on the data used for training.
The number of extra and missed gait events is a direct consequence of the clas-
sification output, as instants at which gait events occur are retrieved by simply
differentiating the predicted response signal. Results presented in Table 6.2 show
that overall the LSTM networks lead to a higher number of missed events with
respect to extra events, meaning that the LSTM networks struggle to catch all the
events detected by the INDIP standard. In general, the rate of mis-classification for
ICs is comparable to that obtained for FCs; therefore, the model tends to commit
similar mis-classification errors on both types of events. LSTM 5 showed a lower
number of extra events both for FCs and ICs with respect to the other LSTM
models while the best performance regarding missed events were achieved by LSTM
2.
Another relevant aspect regarding the models’ performance for GED was repre-
sented by the time errors between the predicted and target occurring time steps
of gait events (Table 6.3). Such deviations were computed after that target and
predicted gait events were matched (see Sub-subsection 5.2.2); therefore, they refer
only to matched gait events. As it can be observed from Table 6.3, average time
errors were extremely small (0.02 s to 0.10 s for MAE, −0.01 s to 0.05 s for ME
across all LSTM models), suggesting that LSTM networks tend to detect a gait
event within a range of ±0.1 s (10 samples) around the occurring of the true gait
event. For most of the LSTM models, ME values showed a positive bias, meaning
that the models tend to detect gait events in advance with respect to true gait
events. In general, errors for FCs were comparable with errors for ICs. Notice how
ME values are slightly lower than MAE, as signed errors tend to annihilate with
each other.
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7.1 – Temporal parameter estimation

At this point, errors in the estimation of step, stride, SS and DS times were com-
puted. Those errors directly derive from the time deviations between predicted
and true gait events. Since the definition of temporal parameters relies upon
two separate gait events, errors in the estimation of the time duration for that
parameter will reflect errors referring to both the events, leading to greater errors.
In general, errors on the step and on the stride times were comparable and lower
than 150 m s (Table 6.4). Similar values were obtained for the estimation of the
SS and DS phases time duration (Tables 6.6 and 6.5). For the LSTM models,
standard deviations for the errors referring to temporal parameters identified quite
large ranges, suggesting that the error in the estimation of temporal parameters
is not consistent. Notice that, while the sign of ME for the SS time was negative
for most of the models, it was positive for DS times, meaning that the outcome of
classification yields to overestimate the SS with respect to the DS.

Performance of TCNs

Beyond the five LSTM networks, five TCNs were trained as well to assess if an
approach based on dilated causal 1D convolutions could bring any advantages with
respect to RNNs.
A first measure for the models’ performance was provided by the classification
metrics (Table 6.7). For all the TCN networks, the values of accuracy were slightly
higher than the ones achieved by corresponding LSTM networks trained on the
same In-Lab dataset. Over the TRS, all the TCNs attained levels of accuracy higher
than 92.4 %, with encouraging performance on the TS as well (≥ 83.7 % for all the
TCNs). In addition, TCNs showed much more balanced performance with respect
to LSTM networks. Especially, as visually shown in Figure 6.4, TCN 1 achieved
the best trade-off between accuracy ((90.7 ± 3.7) %), sensitivity ((95.8 ± 0.8) %)
and specificity ((79.83 ± 7.0) %) over the three In-Lab datasets. Also TCN 5 has
balanced sensitivity and accuracy; however, it reached lower levels of accuracy and
F1-score than TCN 1 (Figures 6.5 and 6.6). Even if TCNs seem to show more
balanced performance on the SS/DS classification task, the models were still more
sensitive to the SS class rather than to the DS class.
In general, the performance achieved by all the five TCN models were quite similar,
suggesting that the TCN architecture is robust enough i.e., its performance does
not depend much on the data used for training.
Regarding the task of GED, the number of extra and missed events were remarkably
lower than the ones achieved by the LSTM networks (Table 6.8). The average
percentage of missed FCs and ICs was 0.25 %, meaning that the TCN models
correctly detect gait events in the majority of cases. Still, the TCN models strive
to detect more events than the ones that are actually present, as the number of
extra events was in general slightly higher than the one of missed events. For most
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of the models, the numbers of missed and extra events on the In-Lab TS were
comparable to or even lower than the corresponding numbers on the In-Lab TRS,
suggesting that TCNs have good generalization skill.
The values of time deviation between the associated predicted and true gait events
achieved by the TCNs were extremely low and balanced between FCs and ICs,
meaning that the prediction error on the time step at which gait events occur
hardly exceeds a couple of hundredths of a second (Table 6.9). The signs of ME for
the FCs and the ICs had opposite sign. In particular, models tend to detect ICs in
advance and FCs late, meaning that most of the ICs are shifted in a direction and
most of the FCs are shifted in the opposite direction.
As a direct consequence of the limited errors on the estimation of gait events, errors
on the time duration of step times and stride times were also low with respect to
LSTM models (Table 6.10).
Similarly to LSTM networks, the SS and DS times represent the temporal pa-
rameters with the greater errors, and for which the errors on the In-Lab TS are
much higher than the ones on the TRS and VS (Tables 6.11 and 6.12). Such
difference may be due to the fact that the estimation of the SS and DS time
requires the knowledge of the time instants at which both FCs and ICs occur, while
the step and stride time only depend on the ICs. Since ICs and FCs are shifted in
opposite directions, the duration of a SS or DS phase has a higher probability to
be shrunk or stretched, therefore the greater errors in the estimation of the SS and
DS times. However, values of standard deviation are much more limited than the
ones observed with LSTM networks.

7.1.2 Performance on the Free-Living dataset
Typically, methods validated only on supervised walking sessions struggle to achieve
the same performance when applied to unsupervised outdoor walking [13]. There-
fore, models were tested also on data from the Free-Living dataset, in order to
assess the extent to what the developed methods are able to perform when applied
to unsupervised walking.

Performance of LSTM networks

As shown in Table 6.13, classification accuracy for all the LSTM models on the
Free-Living dataset did not exceed 72 %. Similarly to the In-Lab dataset, sensitivity
values are significantly higher than specificity values, meaning that the performance
of the LSTM models is strongly unbalanced in favor of the SS class. This trend is
confirmed by the bar diagram in Figure 6.8, which clearly shows how specificity
values did not match the corresponding sensitivity values. All the models showed
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similar values of classification metrics; however, LSTM 4 showed a more balanced
performance, as it reached lower sensitivity and higher specificity than the other
LSTM models.
The performance of the LSTM models also get worse on the side of the detection
of gait events. Once again, the number of missed events was considerably higher
than the number of extra events; moreover, for data recorded during walking in
free-living conditions, both numbers of extra and missed events were remarkably
greater than the previous case of standardized walking.
Regarding the time errors between predicted and true gait events, a slight increase
in the MAE (from 0.07 s to 0.09 s across all LSTM models) and ME (from 0.00 s
to 0.04 s across all LSTM models) was observed for data recorded in free-living
conditions. The main issue is probably represented by the increase in the average
standard deviation of errors (up to 0.11 s across all LSTM models), which is an
indicator of the greater variability of data contained in the Free-Living dataset.
Concerning step and stride times, MAE values seemed to be significantly higher
than ME values, which instead were near to zero (Tables 6.16, 6.18, 6.17). Thus,
the number of times that the LSTM models tend to overestimate step and stride
times is averagely equal to the number of times that step and stride times are
underestimated. Nevertheless, the increased variability in the morphology and
characteristics of the predictors belonging to the Free-Living dataset yield to lower
performance and greater errors, as denoted by the increased standard deviation
values.
Similarly, SS and DS times attained greater errors than on the In-Lab dataset (from
0.08 s to 0.12 s for MAE, from −0.03 s to 0.05 s for ME across all LSTM models).
Again, while the sign of ME for the SS time was negative for most of the models, it
was positive for DS times, meaning that the predictions made by the models yield
to overestimate the SS with respect to the DS.

Performance of TCNs

Once that TCNs were tested on the In-Lab dataset, their performance were
evaluated on the Free-Living dataset.
TCN 1 confirmed to have the best trade-off between accuracy (84.1 %), sensitivity
(93.3 %) and specificity (61.73 %) also for the Free-Living dataset (Figure 6.7)
compared to LSTM models. Moreover, similarly to what observed for the In-Lab
dataset, levels of accuracy achieved by the TCNs on the Free-Living dataset were
consistently higher than the ones achieved by LSTM networks (Table 6.13).
As shown by Tables 6.2) and 6.3, TCNs seem to have performance on the Free-
Living dataset similar to one on the In-Lab dataset, both in terms of missed and
extra events (from 1.98 % to 3.00 % for extra events, from 0.74 % to 1.10 % for
missed events across all TCN models) and time deviations (from 0.04 s to 0.05 s for
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MAE, from 0.01 s to 0.05 s for ME across all TCN models).
As shown in Tables 6.16, 6.17 and 6.18, the MAE values in the estimation of the
temporal parameters were much reduced with respect to the ones committed by the
LSTM models either in terms of step times (0.04 s), stride times (0.02 s), SS times
(0.05 s) and DS times (0.05 s). Furthermore, errors obtained for the Free-Living
dataset did not differ substantially from the ones obtained on the In-Lab dataset,
suggesting that the trained TCN models do not overfit data and instead are able
to generalize on unseen data with greater variability.

7.2 Stride speed estimation
The ultimate goal of the project was represented by the estimation of the stride
speed. Actually, this parameter is a strong indicator of mobility and general
wellness of the individual. While values of temporal parameters can be inferred
from the inertial signals relatively easily, the estimation of the stride speed requires
information regarding the space domain. Therefore, conventional methods for
stride speed estimation generally exploit time integration of inertial time series
- despite it being potentially affected from significant errors - or biomechanical
models of gait that account to the anthropometric features of the individual. The
challenge for the present study was to find a method for retrieving the value of the
stride speed without any signal integration or assumption on walking by a set of
MaLe regression models, in order to avoid the tedious task of estimating spatial
parameters.

7.2.1 Results on the strides segmented by the INDIP stan-
dard

Table 6.19 shows the performance of the trained GPR and SVR models on the strides
of the In-Lab dataset segmented by the INDIP standard. All the GPR models
showed high performance in terms of errors (MAE < 0.06 m/s) and correlation
coefficient (R2 > 0.90). Performance achieved by the linear SVM regression model
were also good; however SVR resulted in larger errors than the GPR models, as
the process covariance was more hardly parameterized through a linear kernel. On
the other hand, the SVR model required much less time for training (25.87 s). The
prediction speeds of all the regression models were comparable and of the order of
thousands of objects per second.
As shown in Figures 6.10 and 6.12, observations of the predicted vs actual response
plot for the exponential GPR model were scattered symmetrically around the ideal
line, both for the In-Lab construction set and the TS, suggesting that the model
fits well the data distribution. In addition, residuals of regression were mainly
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contained within a narrow range of ±0.2 m/s (Figures 6.11 and 6.13) - except for
some outliers.

7.2.2 Results on the strides segmented by TCN 1
Results achieved by the MaLe regression models on the strides of the In-Lab dataset
segmented by TCN 1 strongly resembled to the ones achieved on strides segmented
by the INDIP standard (Table 6.20).
Instead, a dramatic decay was observed when the models were tested on the strides
of the Free-Living dataset segmented by TCN 1 (Table 6.21). While the increase in
the value of errors is not drastic (MAE: 0.010 m/s - 0.012 m/s), a severe decrease in
correlation between the predictors and response was observed (R2 <0.62, ρ < 0.80),
suggesting that the models manage to explain only a small portion of the process
variance. Notice that the values of adR2 in Tables 6.20 and 6.21 are definitely
smaller than the corresponding R2, meaning that many of the employed features
poorly contribute to the result of regression.

7.3 General considerations
The observations made in the previous Sections yield to some general considerations
about the performance and limits of the developed models.
Regarding the detection of gait events, TCN models have shown better performance
overall than the LSTM models. For the classification task on the In-Lab dataset,
TCNs outperformed LSTM networks in terms of average accuracy (TCN: 90.66 %,
LSTM: 79.88 %), sensitivity (TCN: 95.81 %, LSTM: 90.13 %) and specificity (TCN:
79.82 %, LSTM: 59.18 %). In addition, the TCN classifiers showed values of sen-
sitivity and specificity that are more balanced with respect to LSTM networks,
resulting in more balanced errors.
Concerning the detection of gait events, time deviations between the predicted and
target gait events of the In-Lab dataset ranges between 0.02 s and 0.08 s. Such
results match the performance achieved by Hwang et al. [117] in the H-MIMU-based
GED task through peak detection methods and Galadeta et al. [102] in the GED
task based on B-MIMU and F-MIMUs through TCNs.
As previously discussed, both LSTM and TCN seem to be more sensitive to SS
rather than DS. As mentioned in Subsection 2.1.2, a phase of SS takes around
80 % GC, while a phase of DS takes around 20 % GC. As a consequence, the SS
class is overly represented in the TRS with respect to the DS class, resulting in
models that are better at recognizing SS rather than DS. To virtually reduce such
unbalance, one could think to increase the number of DS time steps in the TRS by
performing data augmentation or by performing a stratified sampling instead of
block sampling. However, such approaches inevitably alter the natural sequence
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of events happening at walking time. To prevent the ratio between SS and DS to
be altered, one could instead think of applying weights during training in order to
increase the relevance of the less represented class, in this case DS.
As expected, the performance of both the LSTM and TCN models show a dete-
rioration at prediction time on unseen data belonging to the Free-Living dataset.
However, while classification accuracy of the LSTM networks drops under 75 %,
TCNs maintain levels of accuracy around 85 %, suggesting a good generalization
skill of the TCN models.
On the side of the estimation of the stride speed, all the regression models achieved
similar performance on the strides of the In-Lab dataset, attaining small errors
(MAE: 0.01 m/s - 0.07 m/s) and high correlation (R2: 0.90 - 0.95). Among all
the trained MaLe models, the exponential GPR showed slightly more consistent
performance with respect to other regression models. Nevertheless, correlation
coefficient severely decreases (R2 < 0.6) when regression models are asked to predict
the stride speed from unseen data of the Free-Living dataset, suggesting that MaLe
models only explain a small portion of the variance of the process. Such lack of
generalization probably depends on the increased variability of gait in free-living
conditions, which implies that the signals recorded in standardized conditions
significantly differ from the ones recorded in free-living conditions. Actually, during
every-day life, one performs a number of gestures and activities during walking
that involve the head, such as looking at the traffic lights, or answering the phone.
Moreover, gait alternates with other activities typical of daily life in which the
contribute of head segment can significantly vary. Such gestures reflect on the
head acceleration signal and behave as confounding factors for models that try to
extract knowledge from the head signals, eventually decreasing their performance.
Then, to improve the performance of regression models in the estimation of the
stride speed, the TRS should be expanded by including data referred to gait in
free-living conditions.
Some of the issues of the developed models for both GED and stride speed esti-
mation could be addressed through hyperparameters optimization. Being one of
the "first tries" in the direction of the assessment of STP with a single H-MIMU,
the present work did not focus on a sensitivity study of hyperparameters; however,
hyperparameters tuning is generally a required step to assess the full potential of
an algorithm [14].
Training outcomes may benefit from a more thoughtful approach to data partition.
In the present work, data have been randomly divided into TRS, VS and TS; how-
ever, stratification with unsupervised methods such as k-fold or dendrograms may
help to craft datasets that evenly represent all the clusters of the data distribution.
Finally, techniques of dimensionality reduction should be sought to exclude predic-
tors that do not concur to - or even hinder - the outcome of prediction [14].
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Chapter 8

Conclusions

8.1 General results
The approach proposed in the present thesis is based on the use of MaLe and DeLe
techniques to predict the values of several STP from data recorded by a single
H-MIMU in supervised and unsupervised conditions.
The models have been developed with data acquired through the INDIP system, a
reliable multi-sensor system - to which the H-MIMU belongs. Data recorded by the
H-MIMU were used to extract the predictors, while data recorded by the remaining
sensors of the INDIP system were used to define the GS values of the target STP.
The output of the thesis work is represented by a set of DeLe and MaLe models
that are supposed to work sequentially i.e., the output of the DeLe model for GED
represents the input to the MaLe model for the stride speed estimation. When
used together, they define a complete pipeline for the estimation of spatio-temporal
parameters from inertial raw data (see Section 5.1).
The methods have been validated on a number of HY subjects acquired in different
walking conditions, included walking at fast and slow speeds and walking outside
in a free-living environment. Results showed that the STP estimation errors are
consistent with those highlighted by other similar studies that exploit other single
or multi-sensor configurations of MIMUs [12][102]. The models achieved good
performance for all the analyzed walking speeds. In addition, the methods showed
robust performance when trained on different data, suggesting that the proposed
architectures are appropriate to the requested tasks.
Since most of the related studies exploit one or more MIMUs positioned at lower
body sites (shanks, feet, pelvis, etc...) [96], [8], an approach based on signals
recorded at the head may be considered an innovation in the field, and it is believed
to pave the way for further research regarding the exploitation of H-MIMUs for
gait analysis.
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8.2 Future directions and related research
Magnetic-inertial sensors are able to track the human motion with a degree of
repeatability and accuracy that matches the one of stereophotogrammetry. In
addition, magneto-inertial sensing technology is suitable to be employed during
daily life and prolonged observation time. Inertial sensors are typically encased in
units of few cubic millimeters or less, therefore, they may be integrated in rigid or
flexible electronic substrates to enable continuous and non-invasive data collection.
With regard to this, the proposed methods - which are based on the data recorded
by a single H-MIMU and validated on real-world data - seem to be an option for
trying and answer the question on "how do we walk during daily life?", which still
represents a limit for lab-based technologies such as stereophotogrammetry and
FSRs.
The large number of publications concerning the deployment of MaLe in gait
analysis [14] suggests that it represents a valid resource for automatic gait phases
detection, which is required in the rehabilitation sector - from FES to diagnosis to
therapy planning. As suggested by the achieved results, MaLe can be successfully
exploited to determine gait spatio-temporal parameters from raw inertial data
recorded at the head. The task can be facilitated by the use of DeLe, which allows
automatic crafting of features and pruning of the pre-processing pipeline.
The proposed methods represent a remarkable starting point for the use of H-
MIMUs and MaLe for the estimation of spatio-temporal parameters. However,
some issues will need to be addressed in the future.

Validation and optimization of the proposed algorithms on a larger
sample of subjects The validity of H-MIMU-based methods for the estimation
of spatio-temporal parameters was proven in the present work on a number of
HY subjects. The extension of the developed algorithms to other age groups and
walking conditions represents the next step for assessing the range of applicability
of the proposed methods. In addition, validation of H-MIMU-based methods on
pathological gait is still an open issue.

Explainability of machine learning and deep learning MaLe methods
manage to achieve excellent performance for the requested task; however, their
results are often hardly explainable, as the computation of the output is the product
of a series of convolutions and transformations that profoundly change the layout
of data, eventually preventing human operators to grasp the "reasoning" behind the
obtained results. Such issue is even more relevant in the case of DeLe, for which a
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larger number of transformations is applied to data and the model appears as a
"black-box". In the clinical field, the difficulty in understanding the results of AI can
prevent a method or device from being adopted, eventually limiting its deployment.
Efforts have been made recently to implement explainable MaLe techniques [118],
with the purpose of providing a pronounced descriptive approach to algorithms as
well as additional information to users, therefore improving data insights.

Development of a shared codebase for machine learning Often, data-
driven methods lack in reproducibility due to diversity and complexity of current
approaches. Different hyperparameter choices, discrepancies between programming
languages and the lack of a publicly available codebase all represent significant
barriers to the validation of methods developed by other fellow researchers. In the
recent years, several studies have tried to develop shared resources and libraries that
different research groups can employ and that allow for faster and more consistent
comparison between obtained results (e.g., the DANCE Python library to support
DeLe models for the analysis of single-cell gene expression at scale [119]). However,
such resources have not been yet implemented for the purposes of the analysis
of the human motion; therefore, a systematic benchmarking procedure is today
required to fully evaluate methods.

In the future, the performing of more rigorous trials to validate accuracy of
MaLe methods and the implementation of real-time MaLe-based techniques should
be addressed.
Efforts should be dedicated towards feature engineering that exploits domain knowl-
edge. Actually, gait analysis differs from other disciplines due to its non-stationary,
temporal and complex nature. Therefore, the task of quantifying the underlying
biomechanics in learning models is not trivial [14]. Despite such inconvenience, the
challenging job of feature engineering is overcome by DeLe, which allows automatic
crafting of features.
Eventually, other factors should be taken into account for the design of MaLe
methods applied to gait analysis, such as the training and testing of algorithms on
pathological populations, the exploitation of transfer learning and the overcoming
of the black-box nature of MaLe models, since it often hinders the comprehension
of the relationship between MaLe outputs and the underlying gait phenomenon
and ultimately prevents AI from being accepted and adopted as a tool in clinical
applications.
The success of MaLe techniques of the recent years is due to its capacity of providing
accurate, robust and fast classification by extracting simple features from highly
temporal and nonlinear gait data [14]. The variability, instinctive, flexibility and
adaptability of such dynamic approaches put them ahead of conventional methods
that rely on thresholding or observational algorithms [14]. Moreover, MaLe eases
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the walking assessment by introducing a more objective approach to gait analysis
with respect to observational methods.
Nevertheless, until now, predictive models have been scarcely employed as diagnos-
tics tool. More exhaustive research is needed before exploiting MIMUs and MaLe
methods as a standardized clinical diagnostic tool [14]; however - once deployed -
they will bring benefits for people’s health and quality of life.
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Appendix A

Useful Matlab functions

In the present Chapter, some of the Matlab custom functions employed to process
data are presented.

A.1 manage_subjects.m

manage_subjects.m performs a correction of the experimental issues. As de-
scribed at page 68, some errors may arise while performing the acquisitions. Once
that all the acquisitions were completed, signals of each Participant were carefully
examined in order to detect possible problems and try to correct them.
In the following, detected issues are presented:

• Participant 7: Sensors did not stop recording immediately at the end of the
round walking (RW) Test. Then, the last 40 s of all the 3 Trials of the RW
Test were cut off.

• Participant 9: The H-MIMU was erroneously positioned on the left side
instead of the right side of the head. Then, the sign of the AP and ML
acceleration and angular velocity is changed to virtually reorient the H-MIMU.

manage_subjects.m was personally written by the candidate.

A.2 retrieve_path_info.m

retrieve_path_info.m reads the Operator Table of the Participant and writes
their personal and anthropometric features (name, date of birth, height, weight,
dominant hand, shoe size) to a Matlab struct variable.
retrieve_path_info.m was personally written by the candidate.
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A.3 calc_R.m, reorient_head.m

The function calc_R.m compares the tri-axial acceleration recorded by the H-
MIMU during the Standing Test to the expected acceleration ([0g0]). Then, it
computes the angle difference between the expected and measured gravity vectors
and use it to create a rotation axis. The identified axis is then exploited to get the
orientation of the H-MIMU through quaternions algebra and eventually its final
orientation expressed in quaternions is converted to a rotation matrix R.
R is passed as input to reorient_head.m and is applied through linear algebra to
all the measured accelerations of the various Trials to virtually rotate the H-MIMU.
Both calc_R.m and reorient_head.m were developed at Università degli Studi
di Sassari.

A.4 main_synch_head_validation.m

main_synch_head_validation.m is used to standardize data from the In-Lab
and Free-Living acquisitions. Standardization in this case means reading the TXT
files in the Laboratory or Free-living folder of each Participant into the Matlab
workspace (see Section C.2), applying the stored calibration matrices to each sensor
to correct calibration error and writing the output of calibration into an organized
Matlab struct (see Section C.3). Both main_synch_head_validation.m were
developed at Università degli Studi di Sassari.

A.5 INDIP algorithms for the spatio-temporal
parameters estimation

As mentioned in Section C.3, the standardized Matlab struct data.mat is given
as input to a set of algorithms for the estimation of gait STP. Such algorithms,
developed at Università degli Studi di Sassari, exploit data from the B-MIMU,
F-MIMUs and pressure insoles to obtain STP of gait in conditions of regular,
inclined and non-straight walking [96]. The INDIP algorithms have been developed
by Università degli Studi di Sassari to represent a standard for algorithms based
on a lower number of sensors; then, in the present thesis, they are assumed as the
GS for the estimation of STP.
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Matlab code for the network
architectures

B.1 Long-short term memory network

1 % Def ine the LSTM a r c h i t e c t u r e
2 numFeatures = 8 ;
3 numHiddenUnits = 200 ;
4 numClasses = 2 ;
5 % network a r c h i t e c t u r e
6 l a y e r s = [
7 sequenceInputLayer ( numFeatures )
8 l stmLayer ( numHiddenUnits , ' OutputMode ' , ' sequence ' )
9 fu l lyConnectedLayer ( numClasses )

10 softmaxLayer
11 c l a s s i f i c a t i o n L a y e r ] ;
12 % t r a i n i n g opt ions
13 opt ions = tra in ingOpt ions ( 'adam ' , . . .
14 'MaxEpochs ' , 60 , . . .
15 ' GradientThreshold ' , 2 , . . .
16 ' Verbose ' , 0 , . . .
17 ' S h u f f l e ' , ' never ' , . . .
18 ' Val idat ionData ' , va l idat ion_data , . . .
19 ' Plot s ' , ' t r a in ing −prog r e s s ' ) ;
20 %% t r a i n i n g
21 [ net , i n f o ] = trainNetwork ( XTrain , YTrain , l aye r s , opt ions ) ;
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B.2 Temporal convolutional network

1 %% D e f i n i z i o n e r e t e TCN
2 % https : // it .mathworks.com / help / deep l ea rn ing /ug/ sequence−to−...

sequence−c l a s s i f i c a t i o n −using −1−d−convo lu t i on s .h tml
3 numFeatures = s i z e ( XTrain {1} ,1) ; % 8
4 numClasses = 2 ;
5 % network a r c h i t e c t u r e
6 numFilters = 64 ;
7 f i l t e r S i z e = 5 ;
8 dropoutFactor = 0 .005 ;
9 numBlocks = 4 ;

10

11 l a y e r = sequenceInputLayer ( numFeatures , Normal izat ion=" r e s c a l e −...
symmetric " ,Name=" input " ) ;

12 l graph = layerGraph ( l a y e r ) ;
13

14 outputName = layer.Name ;
15

16 f o r i = 1 : numBlocks
17 d i l a t i o n F a c t o r = 2^( i −1) ;
18

19 l a y e r s = [
20 convolut ion1dLayer ( f i l t e r S i z e , numFilters , D i l a t i onFac to r...

=di l a t i onFac to r , Padding=" causa l " ,Name="conv1_"+ i )
21 l ayerNormal i zat ionLayer
22 spat ia lDropoutLayer ( dropoutFactor )
23 convolut ion1dLayer ( f i l t e r S i z e , numFilters , D i l a t i onFac to r...

=di l a t i onFac to r , Padding=" causa l " )
24 l ayerNormal i zat ionLayer
25 re luLayer
26 spat ia lDropoutLayer ( dropoutFactor )
27 addi t ionLayer (2 ,Name="add_"+ i ) ] ;
28

29 % Add and connect l a y e r s .
30 l graph = addLayers ( lgraph , l a y e r s ) ;
31 l graph = connectLayers ( lgraph , outputName , " conv1_"+ i ) ;
32

33 % Skip connec t i on .
34 i f i == 1
35 % Inc lude convo lut ion in f i r s t sk ip connec t i on .
36 l a y e r = convolut ion1dLayer (1 , numFilters ,Name="convSkip...

" ) ;
37

38 l graph = addLayers ( lgraph , l a y e r ) ;
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39 l graph = connectLayers ( lgraph , outputName , " convSkip " ) ;
40 l graph = connectLayers ( lgraph , " convSkip " , " add_" + i + ...

"/ in2 " ) ;
41 e l s e
42 l graph = connectLayers ( lgraph , outputName , " add_" + i + ...

"/ in2 " ) ;
43 end
44

45 % Update l a y e r output name.
46 outputName = "add_" + i ;
47 end
48

49 l a y e r s = [
50 fu l lyConnectedLayer ( numClasses ,Name=" f c " )
51 softmaxLayer
52 c l a s s i f i c a t i o n L a y e r ] ;
53 l graph = addLayers ( lgraph , l a y e r s ) ;
54 l graph = connectLayers ( lgraph , outputName , " f c " ) ;
55 % t r a i n i n g opt ions
56 opt ions = tra in ingOpt ions ( " adam" , . . .
57 MaxEpochs=60, . . .
58 miniBatchSize =1, . . .
59 Plot s =" t ra in ing −prog r e s s " , . . .
60 Verbose=0, . . .
61 Val idat ionData = val idat ion_data ) ;
62 %NB remember to s p e c i f y v a l i d a t i o n data
63 %% t r a i n i n g
64 net = trainNetwork ( XTrain , YTrain , lgraph , opt ions ) ;

B.3 Custom spatial dropout layer

1

2 c l a s s d e f spat ia lDropoutLayer < n n e t . l a y e r . L a y e r & ...
nne t . l aye r .Fo rmat tab l e

3 % Example custom s p a t i a l dropout l a y e r .
4

5 p r o p e r t i e s
6 DropoutFactor
7 end
8

9 methods
10 f unc t i on l a y e r = spat ia lDropoutLayer ( dropoutFactor ,...

NameValueArgs )
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11 % l a y e r = spat ia lDropoutLayer c r e a t e s a s p a t i a l ...
dropout l a y e r

12 % with dropout f a c t o r 0 . 02 ;
13 %
14 % l a y e r = spat ia lDropoutLayer ( dropoutProb ) c r e a t e s ...

a s p a t i a l
15 % dropout l a y e r with the s p e c i f i e d p r o b a b i l i t y .
16 %
17 % l a y e r = spat ia lDropoutLayer (__,Name=name) a l s o ...

s p e c i f i e s the
18 % l a y e r name us ing any o f the prev ious syn taxe s .
19

20 % Parse input arguments.
21 arguments
22 dropoutFactor = 0 .02 ;
23 NameValueArgs.Name = " "
24 end
25 name = NameValueArgs.Name ;
26

27 % Set l a y e r p r o p e r t i e s .
28 layer.Name = name ;
29 l a y e r . D e s c r i p t i o n = " S p a t i a l dropout with f a c t o r " ...

+ dropoutFactor ;
30 l ayer .Type = " S p a t i a l Dropout " ;
31 l ayer .DropoutFactor = dropoutFactor ;
32 end
33

34 f unc t i on Z = p r e d i c t ( layer , X)
35 % Forward input data through the l a y e r at ...

p r e d i c t i o n time and
36 % output the r e s u l t .
37 %
38 % Inputs :
39 % l a y e r − Layer to forward propagate ...

through
40 % X − Input data
41 % Output :
42 % Z − Output o f l a y e r forward func t i on
43

44 % At p r e d i c t i o n time , the output i s unchanged.
45 Z = X;
46 end
47

48 f unc t i on Z = forward ( layer , X)
49 % Forward input data through the l a y e r at t r a i n i n g
50 % time and output the r e s u l t and a memory v a l u e .
51 %
52 % Inputs :
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53 % l a y e r − Layer to forward propagate ...
through

54 % X − Input data
55 % Output :
56 % Z − Output o f l a y e r forward func t i on
57

58 dropoutFactor = layer .DropoutFactor ;
59

60 % Mask d imens ions .
61 fmt = dims (X) ;
62 maskSize = s i z e (X) ;
63 maskSize ( ismember ( fmt , 'ST ' ) ) = 1 ;
64

65 % Create mask.
66 dropoutSca leFactor = s i n g l e (1 − dropoutFactor ) ;
67 dropoutMask = ( rand ( maskSize , ' l i k e ' ,X) > ...

dropoutFactor ) / dropoutSca leFactor ;
68

69 % Dropout.
70 Z = X . ∗ dropoutMask ;
71 end
72 end
73 end
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Appendix C

INDIP data structure

In the present Chapter, information regarding how recorded data are systematically
stored and organized is given.

C.1 Operator Table
Every time that an acquisition session takes place, the operator(s) are asked to
fill the Operator Table for the session. This table is an Excel sheet that contains
the Participant’s personal and anthropometric information, information on the
employed sensors, any technical problems and annotations:

• Date of the session (DD/MM/YYYY)

• ID of the acquisition center

• Name

• Date of birth (DD/MM/YYYY)

• Gender (M/F)

• Height ( cm)

• Weight ( kg)

• Shoe size (EU)

• Waist width ( cm)

• Dominant hand (L/R)

• List of sensors: The Operator Table includes the IDs of the all employed
sensors, plus the IDs of sensors eventually substituted during the acquisitions.
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• Annotations: For each Test/Recording, the operator is asked to report any
issues regarding misbehavior of the sensors or non-adherence to the protocol.

During the acquisition (or right at the end of it), the Operator Table is filled in
with all the required information and - eventually - any other relevant annotation.
The Operator Table must be named after the Participant’s ID and saved in the
Mobility Test or ADL Test subfolders as described in Section C.2.

C.2 Participant folder
As mentioned in Chapter 3, at the end of each acquisition, recorded data stored in
each INDIP MIMU has to be properly downloaded to the Participant’s folder.
To ease navigation and automated function of the INDIP software and GUIs, the
Participant folder must observe a predefined structure (Figure C.1). First, the

Figure C.1: Skeleton of the Participant folder.

Participant’s Main Folder named after the Participant’s number is created. The ID
number for each Participant is chosen randomly. Then, two sub-folders are created:

• Mobility Test: Such folder is created if the Participant has performed the
In-Lab acquisitions, otherwise not.

• ADL Test: Such folder is created if the Participant has performed the Free-
Living acquisitions, otherwise not.

For the present study, no Participants have both the Mobility Test and the ADL
Test folders i.e., the Participants included in the In-Lab dataset differ from the
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ones included in the Free-Living dataset.
Once that the Mobility Test and the ADL Test folders are created, they are filled
with the Operator Table (see Section C.1) and with other two sub-folders:

• Spot Check: The Spot Check folder contains data for the Quality Check
(Test/Recording 1). Data contained in the Spot Check folder are saved as
TXT data and manually renamed with the convention "pppp-INDIP#xxx-
Static01-ddmmyyyy", where "pppp" denotes the 4 digits ID of the Participant
(e.g., "0001") and "xxx" denotes the three digits ID of the INDIP MIMU (e.g.,
"096"). Since the Static Test involves 6 MIMUs and 2 pressure insoles, the
Spot Check folder contains a total amount of 8 TXT files.

• Experimental Protocol: The Experimental Protocol folder contains data of
the other Tests/Recordings (Tests 2-7, Recordings 2-4). Data contained in
the Experimental Protocol folder are saved as TXT data with the convention
"INDIP#xxx_DD-MM-YYYY_hhmmss". Since each session requires 14 Trials
and involves a total amount of 6 MIMUs, the Experimental Protocol folder
contains a total amount of 84 TXT files.

For the INDIP algorithms to function, TXT files in the Experimental Protocol
folder have to be renamed according to the same convention adopted by the
Spot Check folder. Given the high amount of files in the Experimental Protocol
folder, such renaming is performed through a Matlab Renaming GUI designed
at Università degli Studi di Sassari. Renamed files of the Experimental Proto-
col folder are saved to the Laboratory folder, which contains also TXT files of
the Spot Check folder and the Operator Table (Figure C.2). Eventually, TXT
files are standardized to return the Matlab struct variable data.mat through
the Matlab custom functions main_synch_head_validation_INDOOR.m and
main_synch_head_validation_OUTOOR.m, respectively if the files refer to the
Mobility Test or ADL Test folder. Such functions have been developed at Univer-
sità degli Studi di Sassari. data.mat is saved to the Standardized or Free-living
sub-folder if data refers to the In-Lab or Free-Living acquisitions, respectively (see
Section C.3). Once that the standardized data.mat is saved to the Standardized
folder, a set of algorithms developed at Università degli Studi di Sassari1 are
employed to extract a set of STP and return another Matlab struct - still called
data.mat - that contains raw data as well as the reference values for the estimated
STP i.e., the INDIP standard (see C.3). The resulting Matlab struct is saved to
the subfolder Results of the Mobility Test/ADL Test folder (Figure C.3).

1Such algorithms have been devised by Università degli Studi di Sassari to validate methods
for the estimation of STP in the framework of the EU project MobiliseD; therefore, they are
highly reliable and can be used as a GS for the purposes of the present thesis.
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Figure C.2: Skeleton of the Participant folder including the Laboratory folder.

(a) Content of the Mobility Test folder. (b) Content of the ADL Test folder.

Figure C.3: Content of the Mobility test/ADL Test folder at the end of data
standardization.
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C.3 INDIP standard
In the present Section, the structure of data.mat is described in detail.
data.mat is a Matlab 1×1 struct with a number of fields and sub-fields. Consider
to request the access to the accelerations recorded by the H-MIMU during Trial 1
of Test1 of the In-Lab acquisitions. To perform such request, one should type the
following Matlab command:

1 data.TimeMeasure1.Test1.Trial1.SU_INDIP.Head.Acc

The resulting output is an N × 3 Matlab double array of tri-axial accelerations
values, where N is the number of recorded time steps. Notice that, to access data
of a MIMU, the number of the Test, the number of the Trial and the position of
the MIMU have to be specified. Similarly, to access head accelerations recorded by
the H-MIMU during Recording 4 of the Free-Living acquisitions, one should use
the following Matlab command:

1 data.TimeMeasure1.Recording4.SU_INDIP.Head.Acc

Once that data.mat is filled with the reference values of the STP estimated
through the INDIP algorithms, it will contain a number of STP (see Table 2.1):

• Start ( s): first IC of the Trial.

• End: last IC of the Trial.

• Stride frequency ( Hz)

• Cadence ( Hz)

• Duration ( s): defined as End − Start.

• Length ( m): walked length during the Trial.

• Walking speed ( m/s): defined as Length
Duration

• Average stride length ( m): sum of the stride lengths divided by the number
of strides.

• Number of strides: occurring during the Trial.
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• Initial contacts ( s): Vector containing all the ICs for the Trial.

• Final contacts ( s): Vector containing all the FCs for the Trial.

• Stride times ( s)

• Stride lengths ( m)

• Stride speeds ( m/s)

• Stance times ( s)

• Swing times ( s)

• Stance lengths ( m)

• Swing lengths ( m)

• Stance speeds ( m/s)

• Swing speeds ( m/s)

• SS times ( s)

• DS times ( s)

• Step times ( s)

A substantial difference exists between the INDIP standard of the Matlab
struct data.mat of the In-Lab and Free-Living acquisitions. In the In-Lab
version of data.mat, each Trial is associated to a single set of STP. Instead, in the
Free-Living version of data.mat, each Recording has a certain number of micro
walking bouts, each of them associated to a different set of STP. A micro walking
bout is defined as a walking period composed of at least two strides - inclined
walking excluded. Then, the INDIP standard for the Free-Living acquisitions only
refers to those portions of gait during the ones the Participant is effectively walking
regularly.
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Appendix D

Notions on machine learning
and deep learning

In the following Chapter, the MaLe and DeLe techniques and models employed for
the thesis purposes are described in detail. Most of the information reported in
this Chapter refers to the Matlab documentation [99] and topic-related scientific
papers and websites [87][100][107][106][101][120][121][122][123].

D.1 Gaussian Process Regression (GPR)
Gaussian processes provide a practical probabilistic approach to learning based on
kernels [87]. In the next Section, the mathematical notions behind the implementa-
tion of GPR models are introduced.

D.1.1 Linear regression models
Consider a training set:

(xi, yi); i = 1, 2, ..., n

Where xi is the ith set of d real predictors and yi represents the ith real target.
The purpose of a generic regression model is to predict the value of the response
variable ynew of an input vector of predictors xnew.
A linear regression model is characterized by the following form:

y = xT β + ϵ (D.1)

Where ϵ is the prediction error characterized by a Gaussian distribution that has
mean of 0 and variance σ2. The error variance σ2 and the coefficients β are derived
from the training data, typically through the least square errors (LSE) algorithm
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or one of its variants.

D.1.2 GPR models
GPR models are a class of non-parametric kernel-based probabilistic models [87].
A GPR model introduces latent variables f(xi) from a Gaussian process (Equation
D.2) and explicit basis functions h to explain the response:

f(xi); i = 1,2, ..., n (D.2)

The covariance function of the latent variables captures the smoothness of the
response, while basis functions project the input predictors x into a p-dimensional
feature space. A Gaussian process is defined as a set of random variables that
have a joint Gaussian distribution when taken in any finite number. Consider a
Gaussian process:

{f(x), x ∈ Rd} (D.3)

Given a set of n observations {x1, x2, ..., xn}, the joint distribution of the random
variables {f(x1)(x2), ..., f(xn)} is Gaussian. If {f(x), x ∈ Rd} is a Gaussian process,
then it is fully described by its mean m(x) and its covariance function k(x, x′)
(Equation D.4).E(f(x)) = m(x)

Cov(f(x), f(x′)) = E({f(x) − m(x)}{f(xi) − m(x′)}) = k(x, x′)
(D.4)

Given a Gaussian process that has mean equal to 0 and covariance k(x, x′), a GPR
is defined as follows:

h(x)T β + f(x) (D.5)

Where f(x) is a function of the process, h(x) represents a set of basis functions that
transform the original feature vector x ∈ Rd into a new feature vector h(x) ∈ Rp

and β is a p × 1 vector of basis function coefficients.
GPR models are probabilistic, meaning that an instance of response y can be
modeled as follows:

P (yi|f(xi), xi) ∼ N(yi|h(x)T β + f(x), σ2) (D.6)

Notice that the latent variable f(xi) introduced for each observation xi makes the
GPR model non-parametric. In vector form, this model is equivalent to. Equation
D.6 can also be expressed in terms of vectors and matrices:

P (y|f, X) ∼ N(y|Hβ + f, σ2I) (D.7)
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Where X is a matrix of observations, y is the vector of responses, H is a matrix of
basis functions coefficients, f are the functions of the Gaussian process and I is
the identity matrix (Equation D.8).

X =


xT

1
xT

2
...

xT
n

 y =


y1
y2
...

yn

 H =


h(xT

1 )
h(xT

2 )
...

h(xT
n )

 f =


f(x1)
f(x2)

...
f(xn)

 (D.8)

The latent variables f(x1), f(x2), . . . , f(xn) in the GPR model have a Gaussian
joint distribution with mean of 0 and covariance expressed by the matrix K(X, X).
Notice that K(X, X) has the same form of the linear regression case (Equation
D.9).

K(X, X) =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

... ... ... ...
k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (D.9)

During training, the basis function coefficients β, the noise variance σ2 and the
kernel function hyperparameters θ of the GPR model are estimated. Since GPR
models are probabilistic, confidence intervals can be computed by the trained model
at prediction time.

D.1.3 GPR kernels
In general, elements with similar predictor values x are expected to have close
target response values y. In a Gaussian process, such similarity is expressed by the
covariance function [87]. The covariance function denotes the covariance between
the two latent variables f(xi) and f(xj) i.e., how the response at one input xi is
affected by responses at other inputs xj /=i, j = 1, 2, . . . , n (both xi and xj are d × 1
observations vectors).
The covariance function k(xi, xj) can be defined by various kernel functions [99].
The kernel parameters contained in vector θ allow to parameterize the covariance
function, hence, it can be expressed as k(xi, xj|θ) to explicitly denote the dependence
on θ.
For most of the standard kernel functions, θ is based on the signal standard
deviation σf and the characteristic length scale σl, which briefly define the minimal
distance between the input values xi and xj for which their responses can be
considered uncorrelated. σf and σl are supposed to be greater than 0, so that the
unconstrained parametrization vector θ can be expressed as follows:

θ1 = log σl θ2 = log σf (D.10)
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Covariance functions that implement automatic relevance determination (ARD)
can also have a separate length scale for each predictor {σm, m = 1, 2, . . . , d} [124].
In such case, the unconstrained parametrization θ becomes as follows:

θm = log σm θd + 1 = log σf m = 1, 2, . . . , d. (D.11)

The most common covariance functions (kernels) for each predictor xi are defined
as follows:

Squared exponential kernel One of the most commonly employed covariance
functions:

k (xi, xj | θ) = σ2
f exp

C
−1

2
(xi − xj)T (xi − xj)

σ2
l

D
(D.12)

Where σf denotes the standard deviation of the signal and σl denotes the charac-
teristic scale length.
The ARD squared exponential kernel is defined as follows:

k (xi, xj | θ) = σ2
f exp

C
−1

2

dØ
m=1

(xim − xjm)2

σ2
m

D
(D.13)

Exponential kernel
k (xi, xj | θ) = σ2

f exp
3

− r

σl

4
(D.14)

Where σl denotes the characteristic scale length and r denotes the Euclidean
distance between xi and xj (Equation D.15).

r =
ñ

(xi − xj)T (xi − xj) (D.15)

The ARD exponential kernel is defined as follows:

k (xi, xj | θ) = σ2
f exp(−r) (D.16)

Where r is defined as follows:

r =

öõõô dØ
m=1

(xim − xjm)2

σ2
m

(D.17)

Matern 3/2 kernel

k (xi, xj | θ) = σ2
f (1 +

√
3r

σl

) exp(−
√

3r

σl

) (D.18)
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Where σl denotes the characteristic scale length and r denotes the Euclidean
distance between xi and xj (Equation D.15).
The ARD Matern 3/2 kernel is defined as follows:

k(xi, xj | θ) = σ2
f (1 +

√
3r) exp(−

√
3r) (D.19)

See Equation D.17 for the definition of r.

Matern 5/2 kernel

k (xi, xj) = σ2
f

A
1 +

√
5r

σl

+ 5r2

3σ2
l

B
exp

A
−

√
5r

σl

B
(D.20)

Where σl denotes the characteristic scale length and r denotes the Euclidean
distance between xi and xj (Equation D.15).
The ARD Matern 5/2 kernel is defined as follows:

k(xi, xj | θ) = σ2
f (1 +

√
5r + 5

3r2) exp(−
√

5r) (D.21)

See Equation D.17 for the definition of r.

Rational quadratic kernel

k (xi, xj | θ) = σ2
f

A
1 + r2

2ασ2
l

B−α

(D.22)

Where σl denotes the characteristic scale length, α is a scale-mixture parameter
(αgeq0), r denotes the Euclidean distance between xi and xj (Equation D.15).
The ARD rational quadratic kernel is defined as follows:

k (xi, xj | θ) = σ2
f

A
1 + 1

2α

dØ
m=1

(xim − xjm)2

σ2
m

B−α

(D.23)

D.2 Support Vector Machine (SVM) regression
SVMs are a class of MaLe tools used for classification and regression. SVMs have
been proposed for the first time by Vladimir Vapnik and his research group in 1992
[125]. Thereafter, the method has gained popularity and today it is systematically
employed for solving tasks in a number of field areas.
SVM regression - otherwise known as SVR - relies on kernel functions; therefore, it
is considered a non-parametric technique. SVR offers the flexibility to define the
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extent to which a prediction error is tolerable and allows to find an appropriate
line (or hyperplane if there are more than one dimension) to fit the training data
[113]. One of the most widely used SVRs is the linear epsilon-insensitive SVM
(ϵ-SVM) regression, also referred to as L1 loss [99]. In ϵ-SVM regression, the
training set includes predictor variables and target response values. The goal of
ϵ-SVM regression consists in finding a function f(x) that deviates from yn by no
greater value than ϵ for each element of the training set x, and contemporaneously
is as flat1 as possible [99].

D.2.1 Linear SVM regression - primal form
Consider a training set of N multivariate observations xn with observed target
response values yn. The linear function that is supposed to perform the mapping
from xn to yn has the following form:

f(x) = x′β + b (D.24)

For ϵ-SVM, f(x) has to be maximally flat; at the same time, all residuals must be
lower than the quantity ϵ (Equation D.25).

∀n : |yn − (x′
nβ + b)| ≤ ϵ (D.25)

For f(x) to be flat, the norm J of the coefficients vector β must be minimized
(Equation D.26).

J(β) = 1
2ββ′ (D.26)

There is the possibility that no f(x) exists to fulfill such conditions for all points.
Then, slack variables ξn and ξ∗

n can be introduced for each point to deal with
unfeasible constraints (Equation D.27).

J(β) = 1
2ββ′ + C

NØ
n=1

(ξn + ξn∗) (D.27)

The slack variables allow regression residuals to exist up to the values of ξn and ξ∗
n,

yet still satisfy the required conditions (Equation D.28).
∀n : |yn − (x′

nβ + b)| ≤ ϵ + ξn

∀n : |(x′
nβ + b) − yn| ≤ ϵ + ξ∗

n

∀n : ξn ≥ 0
∀n : ξ∗

n ≥ 0

(D.28)

1A function is flat is all of its derivatives vanish at a given point [126].
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The constant C in Equation D.27 is the box constraint. It is a scalar value greater
than zero that controls the penalty imposed on observations that fall outside the
ϵ margin and aids to avoid overfitting. C defines the compromise between the
flatness of f(x) and the extent up to which residuals greater than ϵ are accepted
[99]. As C increases, the range of tolerance for errors greater than ϵ becomes larger.
As C tends to 0, the range of tolerance approaches 0 and Equation D.27 collapses
into Equation D.26 [113].
The linear ϵ-SVM loss function overrides errors in the range [−ϵ, ϵ] by squashing
them to zero. The loss function value is derived from the distance between observed
value y and the ϵ boundary (Equation D.29).

Lϵ =

0 if: |y − f(x)| ≤ 0
|y − f(x)| − ϵ otherwise

(D.29)

D.2.2 Linear SVM regression - dual form
The optimization problem described in Subsection D.2.1 can be solved more easily
in its Lagrange dual formulation - from a computational point of view - as it allows
for a lower bound to the solution of the primal problem. The optimal values of the
primal and dual problems can not be equal - their difference is commonly referred
to as the “duality gap” - however, if the problem is convex and satisfies a constraint
qualification condition, the value of the optimal solution to the primal problem
corresponds to the solution of the dual problem [99].
The dual formula is obtained by using the primal form for constructing a Lagrangian
function with non-negative multipliers αn and α∗

n for each observation xn (Equation
D.30).

L(α) = 1
2

NØ
i=1

NØ
j=1

(αi − α∗
i )
1
αj − α∗

j

2
x′

ixj +ε
NØ

i=1
(αi + α∗

i )+
NØ

i=1
yi (α∗

i − αi) (D.30)

The dual formula is subject to the following constraints:
qN

n=1(αn − α∗
n) = 0

∀n : 0 ≤ αn ≤ C

∀n : 0 ≤ α∗
n ≤ C

(D.31)

The coefficients vector β can be portrayed as a linear combination of the training
observations (Equation D.32).

β =
NØ

n=1
(αn − α∗

n)xn (D.32)
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Therefore, the function used to infer new values is dependent only on the support
vectors (Equation D.33):

f(x) =
NØ

n=1
(αn − α∗

n)xn + b (D.33)

To obtain optimal solutions, the Karush-Kuhn-Tucker complementarity conditions
are required as optimization constraints. For linear SVM regression, such conditions
take the following form:

∀n : αn (ε + ξn − yn + xn
′β + b) = 0

∀n : α∗
n (ε + ξ∗

n + yn − x′
nβ − b) = 0

∀n : ξn (C − αn) = 0
∀n : ξ∗

n (C − α∗
n) = 0.

(D.34)

Conditions in Equation D.34 define that all observations completely inside the ϵ
range have Lagrange multipliers αn = 0 and α∗

n = 0. If one of them is instead
different from zero, then the corresponding observation is referred to as a support
vector [99].

D.2.3 Solver algorithms for SVR
The SVR minimization problem can be expressed and solved using traditional
quadratic programming techniques. Though, since the Gram matrix could be
too large to be stored in memory, quadratic programming algorithms have a high
computational cost. On the other hand, exploiting a decomposition method may
accelerate the computation and prevent memory from running out.
Decomposition methods - sometimes referred to as "chunking and working set
methods" - work by dividing all observations into two non-overlapping sets: the
working set and the remaining set. Only the observations in the working set are
changed in each iteration. Therefore, only some columns of the Gram matrix are
stored in each iteration, reducing the overall amount of memory required.
SMO is the most common algorithm for solving SVM minimization problems [127].
SMO is based on a series of two-point optimizations. In each iteration, according
to a selection rule based on second-order information, two points are chosen to
constitute the working set. After that, the Lagrange multipliers for the selected
working set are solved analytically [128][129].
In SVR, the update of the gradient vector ∇L for the active set occurs after each
iteration. The decomposed equation for the gradient vector is of the following form:

(∇L)n =
I qN

i=1 (αi − α∗
i ) G (xi, xn) + ε − yn, n ≤ N

−qN
i=1 (αi − α∗

i ) G (xi, xn) + ε + yn, n > N
(D.35)
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The SMO algorithm computes the gradient vector iteratively until the specified
convergence criterion is achieved. The convergence criterion can be represented by
a number of conditions [99]:

• Feasibility gap: The feasibility gap is expressed as follows:

δ = J(β) + L(α)
J(β) + 1 (D.36)

Where J(β) denotes the primal target and L(α) denotes the dual target. At
the end of each iteration, the feasibility gap is evaluated. If the feasibility
gap is less than a specified value; then, the convergence criterion is met and a
solution is returned.

• Gradient difference: At the end of each iteration, the gradient vector ∇L is
evaluated. If the difference in gradient vector values for the current iteration
and the previous iteration is less than a specified value; then, the convergence
criterion is met and a solution is returned.

• Largest Karush-Kuhn-Tucker (KKT) violation: At the end of each iteration,
the KKT violation for all the values of the Lagrangian multipliers is evaluated.
If the largest violation is less than a specified value; then, the convergence
criterion is met and a solution is returned.

D.3 Long-short term memory (LSTM) network
architecture

In the next Section, the basic notions for understanding the description of the
LSTM architecture presented in Sub-subsection 5.2.1 are introduced.

D.3.1 Recurrent Neural Network (RNN)
A RNN is a DeLe network structure that exploits information of the past to enhance
the performance of the network on current and future inputs. RNNs use a looping
structure to store past information in a hidden state, so that the network can keep
track of the past samples of the input time-series when it is predicting a sample at
the current time step (Figure D.1).
The looping structure represents a sort of memory that allows RNNs to capture

the information wrapped in the input sequence itself, while feed-forward nets
typically fail to do it [120]. The ability of RNNs to find “long-term dependencies”
i.e., correlations between events separated by many moments is basically a way to
share weights over time, as an event downstream in time is affected by one or more
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Figure D.1: Unrolling a single cell of a RNN to show how information moves
through the network for a data sequence. Inputs are fed to the hidden state of the
cell to produce the output, and the hidden state is passed to the next time step.
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events that came before [130].
The process of conveying memory forward can be described mathematically (Equa-
tion D.37)

ht = Φ(Wxt + Uht) (D.37)

The hidden state at time step t ht is a function of the input at the same time
step xt combined to a weight matrix W and added to the hidden state of the
previous time step ht−1 combined to its own hidden-state-to-hidden-state matrix U ,
otherwise known as a transition matrix [130]. The weight arrays are basically filters
that control the importance of the present input and the past hidden state in the
determination of the hidden unit output. During training, the error generated by
weights is backpropagated and used to adjust their values until error is sufficiently
low. The combination of the weighted input and hidden state is fed to the function
Φ – typically a tanh or a logistic sigmoid function (Equation D.38) – which allows
to condense values in a very large or very small range into a logistic space and
making gradients digestible for backpropagation (Figure D.2).

tanh x = sinh x

cosh x
= e2x − 1

e2x + 1 σ(x) = (1 + e−x)−1 (D.38)

Due to such characteristics, RNNs are well suited for addressing a number of
problems that involve sequential data of varying length:

• Signal classification: Automatic classification of signals can decrease the
manual time needed for large datasets or enable classification in real time.
Raw signals can be submitted to deep networks or pre-processed to focus on
some relevant signal features.

• Natural language processing

• Video analysis

However, basic RNNs struggle to learn longer-term dependencies. Multiplying a
number for a factor slightly larger than 1 has almost no effect if the multiplication
happens few times, while it causes the number to diverge if the multiplication is
repeated many times. Similarly, if the multiplication factor is slightly lower than 1
and it is applied over and over, the number is pushed to 0.
The information flowing through RNN networks goes through many steps of
multiplication; then, gradients - which are basically derivatives - are susceptible
to "vanishing" or "exploding" i.e., the network weights either shrink or increase
excessively.
The gradient denotes the change in all weights with regard to a variation of the
error. If the gradient explodes, it can be truncated or "squashed" through the
sigmoid or tanh function; however, the vanishing gradient problem can not be
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Figure D.2: Diagram for illustrating the functioning of a RNN. The vertical
lines of nodes (hidden units) can be seen as feed-forward networks, whose output
is forwarded to the next unit. Inputs x are filtered through the weights w and
combined to the previous hidden state to compute the activation of the hidden layer
a. The result of such operation is transformed by the function Φ and eventually
passed to the next unit through the transition matrix whihj .
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solved as easily, since the gradients become too small for computers to work with.
If the gradient is not knowable, the direction of decreasing error is not known and
weights can not be adjusted, eventually stopping the network learning.

D.3.2 LSTM networks
LSTMs are able to overcome the obstacle of gradient vanishing/explosion by
leveraging additional gates to control the flow of information from hidden cell
to the output and the next hidden state, limiting the storing of information for
relevant data only. Due to the "decision making" capacity of the network, LSTMs
are able to learn relationships over more than 1000 time steps.
The state of a LSTM layer is determined by the hidden state - otherwise known
as the output state - and the cell state. The hidden state at time step t carries
the output of the LSTM layer for this time step, while the cell state carries the
information learned from the previous time steps. At every time step, the layer adds
or removes information from the cell state according to the control exerted by gates.
Such gates improves the capabilities of the LSTM to learn long-term relationships in

Figure D.3: The LSTM architecture has more gates to control information flow
with respect to RNN. xt: input, ht: hidden state, ct: Cell state, ft: forget gate, g:
memory cell, i: input gate, o: output gate.

the data; therefore, they are a widely implemented type of RNN. The architecture
of a LSTM layer typically features with some fundamental elements [131] (Figure
D.3):

• Input gate i: i controls the level of cell state update. The weights and biases
to the input gate determine the extent to which a new value flows into the
cell.
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• Forget gate f : f controls the level of cell state reset (forget). The weights
and biases to the forget gate determine the extent to which a value remains in
the cell.

• Memory cell g: Also known as cell candidate, g adds information to the cell
state.

• Output gate o: o controls the level of cell state added to hidden state. The
weights and biases to the output gate determine the extent to which the value
in the cell is used to compute the output activation of the LSTM block.

A LSTM network features with a set of learnable weights: the input weights W ,
the recurrent weights R and the bias b. The matrices W , R, and b bind the input
weights, the recurrent weights, and the bias of each component of the LSTM layer
(Equation D.39 ).

W =


Wi

Wf

Wg

Wo

 R =


Ri

Rf

Rg

Ro

 b =


bi

bf

bg

bo

 (D.39)

Where i, f , g and o denote the input gate, the forget gate, the cell candidate and
the output gate, respectively.
At time t, the cell state ct and the hidden state ht depend on the values of the
layer components and on the state activation function σc (Equation D.40)2.

ct = ft ⊙ ct + it ⊙ gt ht = ot ⊙ σc(ct) (D.40)

The values of the layer components at time step t are given as follows:

it = σg(Wixt + Riht−1 + bi)
ft = σg(Wfxt + Rfht−1 + bf )
gt = σg(Wgxt + Rght−1 + bg)
ot = σg(Woxt + Roht−1 + bo)

Where σg represents the gate activation function.

2The symbol ⊙ refers to the Hadamard product (element-wise product of vectors).
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D.4 Temporal Convolutional Network (TCN) ar-
chitecture

In the last decades, the task of sequence modeling in the framework of DeLe has
been widely approached through RNN architectures, such as LSTM networks.
However, recent studies [101] suggest that LSTM networks are obsolete, and that
CNN architectures should be accounted as one of the main candidates for sequence
modeling and classification. As demonstrated by Bai et al. [101], CNNs can attain
better performance than RNNs in many tasks without the deficiencies of recurrent
models, such as the exploding/vanishing gradient problem or the lack of memory
retention. In addition, using a CNN instead of a RNN can lead to performance
enhancements, as it enables multiple computation of outputs in parallel.
In particular, among the several types of convolutional networks, the TCN architec-
ture emerged as the primary candidate for Seq2Seq classification tasks. A TCN is
based on dilated, causal 1D convolutional layers having the same input and output
lengths (see D.4.1 for a refresher on the 1D convolution operation).
TCNs rely on two principles [101]:

• The TCN returns an output that has the same length as the input.

• The prediction at time t is only influenced by the previous inputs i.e., there is
no information leakage from the future into the past.

To achieve the first aspect, the TCN employs a 1D fully convolutional network
(FCN) architecture3 [123]. To accomplish the second point, the TCN employs
causal convolutions i.e., convolutions where an output at time t is convoluted only
with elements from time t and earlier in the previous layer. To reach a long effective
history size, the network must be very deep or filters must be very large. Neither
of these two accomplishments was feasible when the methods were first introduced;
however, today such features can be met thanks to the technological advancements
in the computational field. Nevertheless, TCNs usually have a larger memory
footprint during inference with respect to RNNs, as the entire input sequence is
required to calculate the output sample at the next time step [101].
The architecture of a TCN includes many blocks, layers and elements (Figure D.4)
that will be discussed and presented in the next Section.

3In a FCN, each hidden layer is the same length as the input layer. Zero vectors of length
(kernel size-1) is padded to keep the length of subsequent layers the same.
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Figure D.4: Complete architecture of a TCN [101] [121].
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D.4.1 1D Convolution
1D convolution represents the operation at the basis of CNNs. To visualize convo-
lution, let’s consider one single 1D convolutional layer that takes an input tensor
of shape (batch_size, input_length, nr_input_channels) and returns an output
tensor of shape (batch_size, input_length, nr_output_channels)4, representing
a batch of multivariate input and output sequences [121]. Then, let’s consider a
kernel of size kernel_size5.
Let’s focus on one single element of the batch (the same operations are applied
to each element in the batch) and let’s consider initially the univariate case, for
simplicity:

nr_input_channels = nr_output_channels = 1

Such case corresponds to mapping a 1D input tensor to a 1D output tensor.
To calculate one element of the output of 1D convolution, a sub-sequence of consec-
utive elements of length kernel_size of the input is required. To obtain the output,
the dot product of the sub-sequence of the input and a kernel vector of learned
weights of the same length is calculated (Figure D.5). Such process is repeated for
every element of the input sequence by shifting the sub-sequence window by one
element to the right (Figure D.6). Notice that zero-padding at the beginning and
the end of the input sequence is needed to ensure that the output sequence has the
same length of the input sequence.
In the multivariate case (nr_input_channels > 1), the process described
above is repeated for each input channel with a different kernel and the re-
sulting nr_input_channels intermediate output vectors are summed. Such op-
eration is equivalent to performing a 2D convolution with an input tensor of
shape (input_size, nr_input_channels) and a kernel of shape (kernel_size,
nr_input_channels). Since the sub-sequence window moves along a single axis
only, it can be still considered 1D; however, a 2D kernel matrix is applied at
every step (Figure D.7). If nr_output_channels is also larger than 1, the above
procedure is just replicated for each output channel with a different kernel ma-
trix. The output vectors are then piled up to create an output tensor of shape
(input_length, nr_output_channels). The number of kernel weights equals to
kernel_size × nr_input_channels × nr_output_channels.

4Notice that in the case of TCNs, since every layer is of the same input and output length, just
the third dimension of the input and output tensors differs [101]. If the input tensor consists in just
one sequence (nr_input_channels = 1, univariate case), the sizes of the input and the output
tensor will be both equal to one. In the more general multivariate case, nr_input_channels and
nr_output_channels might be different.

5A kernel is basically a vector whose values are the multiplication factors i.e., the weights that
are applied to the input elements values.
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Figure D.5: The illustration unrolls the functioning of 1D convolution for a 1D
tensor [121]. In this example, the kernel size is 3.

Figure D.6: Two consecutive output elements and their respective input sub-
sequences convoluted by a kernel of size 3 [121]. To simplify the visualization, the
dot product with the kernel vector is not shown anymore; however, it takes place
for every output element with the same kernel weights.
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Figure D.7: 1D convolution with a multivariate tensor and a kernel vector is
equivalent to a 2D convolution with a kernel matrix [121]. In this case, kernel_size
equals to 3 and nr_input_channels equals to 2.
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D.4.2 Causal convolution
As mentioned in 5.2.1, causal convolutions represent the operations at the core of
a TCN. Given a causal convolutional layer, for every i in [0, . . . , input_length − 1],
the ith element of the output channel only depends on the elements of the input
sequence with indices from 0 to i i.e., it depends only on the previous input elements.
To ensure convolution to be causal, zero padding can be applied only on the left
side of the input tensor (Figure D.8). However, causal convolutions can only trace

Figure D.8: Left-zero padding allows 1D causal convolution [121]. In this example,
a kernel of size 3 is convoluted with an input tensor of length 4; therefore, 2 zeros
must be appended to the left side of the input tensor to observe the causality
condition.

back the input history with size linear, limiting the applicability of the causal
convolution to sequence tasks with less deep history. Actually, we might want the
output of a sequence forecasting model to depend on all previous entries in the
input i.e., all entries occurring at a time step equal or previous to the current one
[121]. Such quality is accomplished when the receptive field i.e., the set of entries of
the original input that determine an individual entry of the output, has size equal
to input_length6. A simple 1D convolutional network - either causal or non-causal

6Such condition is called full history coverage.
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- with n layers and a kernel of size k has a receptive field of size r (Equation D.41):

r = 1 + n(k − 1) (D.41)

For instance, if we have a kernel of size 3, the 5th element in the output will depend
on elements 3, 4 and 5 of the input. As multiple layers are stacked on top of each
other, the receptive filed is expanded according to Equation D.41. Referring to the
previous example, by stacking two layers with kernel of size 3, a receptive field of
size 5 is achieved i.e., the 5th element in the output will be depending on elements
from 1 to 5 in the input (Figure D.9). Notice that, given a fixed size of the kernel

Figure D.9: Schematic illustration of the receptive field for a 2-layers convolutional
network with kernels of size 3. The last sample of the output layer depends on the
last 5 samples of the input layer.

k, the number of layers n required for full history coverage increases linearly to the
length l of the input tensor (Equation D.42):

n = l − 1
k − 1 (D.42)

As a consequence, networks based on simple causal convolutional layers become
rapidly very deep, resulting in models with a vast amount of learnable parameters
i.e., a large number of kernel weights. In addition, a great number of layers has
been correlated to degradation issues related to the loss function gradient [121].
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D.4.3 Dilated convolution
Dilation allows to increase the size of the receptive field of the convolutional network
without the need of too many layers. Dilating a convolutional layer means increasing
the distance between the elements of the input sequence that are employed to
compute the dot product that results in one entry of the output sequence. In
general, a d-dilated layer with a kernel of size k has a receptive field that spreads
across a length of 1+d(k−1) [121]. A simple convolutional layer could be considered
as a 1-dilated layer, since the sub-sequence convolution window is composed by
adjacent elements of the input sequence [121]. If d is fixed, the number of layers

Figure D.10: The illustration displays an example of a 2-dilated layer with an
input of length 4 [121]. Given a kernel of size 3, a 2-dilated convolutional layer has
a receptive field of size 5, while a simple convolutional layer (1-dilated layer) would
have a receptive field that spreads over a length of the same size of the kernel (3).
Pink: zero padding; Orange: original input sequence.

needed to fully cover the length of the input tensor will still be linear to the input
length. To avoid such inconvenience once for all, the value of d can be increased
exponentially layer by layer. Such operation is performed by specifying a constant
dilation base denoted by the integer b, which determines the value of the dilation
factor d at the ith layer (Equation D.43).

d = bi (D.43)

In such way, full input coverage can be achieved more easily (Figure D.11). In
general, every layer adds a value of d(k − 1) to the current receptive field width,
where d is computed according to Equation D.43. As a consequence, the size of
the receptive field w of a TCN with exponential dilation of base b, kernel size k
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Figure D.11: The illustration shows a network with an input of length 10, a kernel
of size 3 and a dilation base of 2 [121]. As a result of such hyperparameters, the
network consists in 3 dilated convolutional layers that achieve full input coverage.
For keeping the visualization simple, only the inputs that influence the last value of
the output are shown. Similarly, only zero-padding entries that are needed for the
last output value are displayed. Notice that, given the hyperparameters described
above, full receptive field coverage could be maintained for lengths of the input up
to 15. Pink: zero padding; Blue: original input sequence.
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and number of layers n can be computed according to Equation D.44 [121].

w = 1 +
n−1Ø
i=0

(k − 1)bi = 1 + (k − 1)bn − 1
b − 1 (D.44)

Still, according to the values b and k, the resulting receptive field may have "holes",
meaning that there are entries in the input sequence that the output value does not
depend on i.e., some elements of the input sequence are ignored when the output
is computed (Figure D.12). To fix such issue, two strategies may be adopted:

Figure D.12: The illustration shows the influence of the elements of the input
sequence in the determination of the last output element for a network with dilation
base of 3 and kernel size of 2 [121]. Elements in red represent holes in the receptive
field.

1. Increase the size of the kernel.

2. Decrease the dilation base.

In general, one could easily demonstrate that, for a receptive field to have no holes,
the kernel size k has to be greater than or equal to the dilation base b. To achieve
full history coverage, the width of the receptive field w must overpass the input
length l. Combining the condition w > l to Equation D.41, the following inequality
involving b, k, d and l is holds:

1 +
n−1Ø
i=0

(k − 1)bi = 1 + (k − 1)bn − 1
b − 1 ≥ l (D.45)
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Solving Equation D.45 for n, the minimum number of required layers can be
determined (Equation D.46).

n = logb

(l − 1)(b − 1)
(k − 1) + 1 (D.46)

Notice that the number of layers is not anymore linear in the length of the input,
but rather logarithmic. Such improvement allows to reduce the number of required
layers for achieving full receptive field coverage.
Eventually, if the number of layers below the current layer is i; then, the number
of zero-padding entries p for the current layer to have full field coverage can be
computed as follows [121]:

p = bi(k − 1) (D.47)

D.4.4 Residual blocks
Recently, Bai et al. [101] introduced the use of residual blocks [122] for TCNs. A
residual block is composed by 2 layers with the same dilation factor and a residual
connection (Figure D.13). The output of the two convolutional layers within the
residual block is added to the input of the residual block itself. The result is fed
as input to the next residual block. For all inner blocks of the network except
from the first and the last one, the widths of the input and output are the same
- namely num_filters. 1x1 convolution is typically used to adjust the widths of
the residual tensors at the first and last residual blocks, as they may have different
input and output channel widths [121].
Such variation affects the minimum amount of required layers for full history
coverage. Appending a new residual block to a TCN extends the receptive field
twice more than when appending a basic causal dilated layer, since it incorporates
2 such layers (Equation D.48).

w = 1 +
n−1Ø
i=0

2(k − 1)bi = 1 + 2(k − 1)bn − 1
b − 1 (D.48)

Where r is the size of the receptive field, b is the dilation base, k is the kernel size
(k ≥ b) and n is the number of residual blocks for achieving a full history coverage.
Then, the minimum number of residual blocks n for full history coverage of an
input sequence of length l can be computed (Equation D.49).

n = logb

(l − 1)(b − 1)
2(k − 1) + 1 (D.49)

D.4.5 Activation, Normalization, Regularization
Residual blocks include some additional elements (Figure D.14):
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Figure D.13: Illustration of a residual block of a TCN with kernel of size 3 and
dilation factor of 2 [121].
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Figure D.14: Complete architecture of a residual block [101]. Notice that, at
the last layer, the second ReLu is not present to allow the final output to display
negative values as well [121].
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• Activation functions: Activation functions are typically stacked on top
of the convolutional layers to add non-linearities. Usually, ReLu activation
functions are added to the residual blocks after both convolutional layers.

• Normalization: Normalization of the input of the hidden layers prevents the
exploding gradient problems. Therefore, weight normalization is implemented
at every convolutional layer.

• Regularization: Rregularization is introduced via dropout after every convo-
lutional layer in every residual block to prevent overfitting.

D.5 Training algorithms
In the following Section, a brief introduction on training algorithms used for DeLe
and MaLe neural networks is provided.
Generally, shallow and deep feed-forward neural networks are trained through
BP. The BP learning algorithm moves backward from the final error through the
outputs, weights and inputs of each hidden layer of the network. The algorithm
assigns weights liability for a share of the error by computing their partial
derivatives or the relationship between their rates of change. Those derivatives are
then used by the gradient descent learning rule - otherwise known as solver- to
adjust the weights in the direction of decreasing error.
On the other hand, RNNs typically rely on back-propagation through time (BPTT).
Such algorithm extends the concept of BP to the time dimension, by expressing an
ordered set of calculations that link one time step to the next one. When input
sequences are relatively long, an approximation of BPTT called truncated BPTT is
preferred to full BPTT, as full BPTT’s computational cost per parameter update
increases significantly over the time steps. On the other hand, with BPTT the
gradient can not flow back to the full sequence, so the network struggles to learn
much long-term dependencies [130].
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