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Abstract 
 
In the last few years, the interest in Moon exploration has grown significantly among several space 
agencies, both at institutional and commercial levels. Lunar expeditions will offer new opportunities 
for scientific discovery, economic benefits, and a multitude of other different disciplines, with the 
goal of the human return to the Moon as the first step toward deep space exploration. 
This growing trend has motivated research on various systems which could increase the robustness 
of the navigation infrastructures and capabilities, aiming to the creation of an autonomous navigation 
system. 
 
Nonetheless, the Earth-based techniques currently adopted for navigation in cislunar space are not 
able to cover all the needs for future missions, both in term of service accessibility and performance. 
Global Navigation Satellite Systems (GNSS) are currently used in space missions, and recent studies 
have shown relatively good performances also for satellites in GEO and HEO, demonstrating its 
applicability for a wide range of space missions. Despite this, the number of satellites foreseen in a 
lunar service is much smaller compared to the Earth-based GNSS, and precise data concerning the 
position of a user will become of vital importance for positioning over Moon surface. 
 
Because of these reasons, different complementary technologies and studies are ongoing worldwide 
to define infrastructures able to support Lunar missions in term of navigation services. In particular, 
it is of interest to determine a useful algorithm for the estimation of Position, Velocity and Time 
(PVT) considering the limited available resources, in order to improve and optimize the achievable 
navigation accuracy, toward the realization of an autonomous navigation systems capable of real-
time and near real-time absolute positioning. 
 
The purpose of this thesis is to provide an assessment of the performance achievable with different 
suitable positioning algorithms for Lunar PVT estimation, and compare them with the aim of allowing 
users to perform a positioning over the Moon surface using a limited number of navigation signals 
broadcasted by a dedicated Lunar Navigation System. 
In particular, starting from the current state of art, the most used techniques of Least Squares (LS) 
and Extended Kalman Filter (EKF) have been analyzed and their performance and capabilities have 
been compared over both static and dynamic (landing) user. Accordingly, the Sensor Fusion (SF) 
technique have been implemented, taking into account the additional measurement of an altimeter. 
The outcomes of this work aim to combine the best features of each technique in order to define a 
unique tool that could perform a PVT estimation with the best possible performance and accuracy. 
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1. Introduction 

1.1. Moon Exploration 
In the recent days, several space agencies are renewing the interest for Lunar exploration, which 
involves both the public and private sectors, and will offer new opportunities for a multitude of 
disciplines from planetary geology to astronomy and astrobiology. Of course, this renewing interest 
aim to the human return to the Moon, with the goal, among the others, of creation of lunar bases 
toward deep space expeditions like Mars. 
 

 
Figure 1.1: The Global Exploration Roadmap by ISECG (Source: [1]) 

This growing trend in the number of missions to the Moon is creating demand for various research 
on system which could increase the robustness of navigation architectures and improve their 
autonomous operation capabilities. 
In the past, lunar expeditions have almost entirely relied on measurements from Earth and 
infrastructures used in terrestrial missions. The benefits of these relay infrastructures were also 
demonstrated by the recent far-side lunar mission, like for example the landing of the Chinese 
Chang’E 4 mission (focused on relaying telemetry to ground rather than providing an independent 
orbit determination and navigation solution).  
Moreover, Global Navigation Satellite Systems (GNSS) are currently used in space missions, not 
only as a navigation sensor but also as a science instrument. Although their use has been generally 
limited to orbits below the GNSS constellations, recent studies have shown that GNSS-based 
navigation for Geostationary Orbit (GEO) and Highly Elliptical Orbit (HEO) missions is feasible and 
with relatively good performances, demonstrating its applicability to a wide range of space missions. 
Therefore, these studies show that GNSS signals from Earth can be received at the Moon’s altitude, 

effectively providing support for orbit determination and landing operations on the near side. 
However, the Earth-based techniques currently adopted for navigation with satellites in cislunar space 
are not able to cover all the needs for future exploration, both in terms of service performance (i.e., 
need to land within 100 m of a predetermined location on the lunar surface) and accessibility. In fact, 
these technologies alone do not support far-side operations (the South Pole and the far side are not 
always accessible by Earth-based ground stations) and will not reach the accuracy required by the 
Global Exploration Roadmap Critical Technology Needs (ISECG) (Figure 1.1).  
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These problems are caused by the critical conditions of lunar environment, where the coverage is 
limited and the signals are weaker. Furthermore, for future missions, precise data concerning the 
position of rovers on the Moon surface will become of vital importance, and an autonomous 
navigation system capable of real-time absolute positioning on the Moon will be crucial for the future 
of the lunar exploration.  
 
The topic has been widely discussed in the literature since the 1970s when Farquhar described how 
satellites in Earth-Moon libration points could be used to support satellite navigation in cislunar space. 
Other works have gone further in this argument, assessing different lunar navigation infrastructures 
based on Earth-Moon Lagrange point orbiters providing one-way Doppler measurements together 
with Earth GPS signals showing results better than 1 km for positioning and 5 cm/s for velocity in 
cislunar space [2]. 
 
For all these reasons, several space agencies have proposed dedicated systems to address these 
problems and provide navigation services to future lunar missions. 
The Russian satellite maker, Information Satellite Systems (ISS) JSC, proposed a concept that 
envisions the deployment of a full constellation of 24 satellites around the Moon between 2036 and 
2040; in the US, Lockheed Martin has proposed Parsec; JAXA (Japan Aerospace Exploration 
Agency) has recently launched a study which will consider possible lunar positioning satellite 
systems; China recently announced that its space agency (CNSA) is planning to set up a satellite 
constellation around the Moon to provide navigation services. On top of these initiatives, NASA has 
proposed the LunaNet framework to enable interoperability among different lunar navigation service 
providers [3]. 
In this context, the European Space Agency (ESA) has proposed a concept called Moonlight that aims 
to provide navigation services to institutional and commercial lunar missions. The ESA’s vision 

represented by the Moonlight initiative is to foster the creation and development of dedicated lunar 
navigation services, to be delivered by private partners. These services will support the next 
generation of institutional and private lunar exploration missions, including enhancing the 
performance of those missions currently under definition and creating new possibilities [2]. 
 
 

1.2. PVT estimation 
The determination of the user PVT is one of the most important issues of satellite-based navigation 
systems. PVT is an acronym that stands for Position (Latitude, Longitude, Height), Velocity (North, 
East, Up) and precise Time (in Universal Time Coordinated UTC). 
GNSS receivers determine the user position, velocity, and precise time (PVT) by processing the 
signals broadcasted by satellites. Since the satellites are always in motion, the receiver has to 
continuously acquire and track the signals from the satellites in view, in order to compute an 
uninterrupted solution, as desired in most applications. Any navigation solution provided by a GNSS 
receiver is based on the computation of its distance to a set of satellites: this means measuring the 
propagation time it takes for an incoming signal transmitted by a satellite at a known location to reach 
a user receiver at the speed of light, according to local clocks of satellite and receiver. Multiplying 
this time interval by the speed of light in the vacuum (299 792 458 m/s), the time difference is 
transformed into a very rough estimate of the emitter-to-receiver distance, called Pseudorange: 

𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑔𝑒 = 𝑃𝑅 = 𝑐 ∙ 𝑑𝑡 
 
This value is not the true range between satellite and user, since it has to be corrected taking into 
account a number of phenomena and errors. Furthermore, measuring different pseoduranges from 
signals broadcast from multiple satellites, the receiver position can be determined more precisely. 
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Figure 1.2: General concept of PVT determination (Source: Navipedia [4]) 

Of course, there are many complications. The major one is that the receiver is using its own clock to 
tag the received time, often supplied by a very inexpensive crystal oscillator. The speed of light is 
about 3 ∙ 108 meter per second, thus very small errors in the receiver's clock can cause large range 
errors. This is solved by including the time bias of the receiver clock in the set of unknowns. 
Therefore, there are 4 unknowns at each time step where a solution is computed: 3 for position and 1 
for time. This is why the minimum number of satellites in view for the determination of a solution is 
four and also why the receiver can provide such good time: at each timeline, usually once per second, 
a new estimate of accurate time (GPS time) is generated in every receiver.  
As already said, the location of the satellites is needed to determine the PVT. The signal that allows 
to know location, velocity, and clock state of the satellite is the message data, which provides a series 
of numbers that are used in a fixed set of equations (a model). 
The information is divided into two pieces: the Broadcast Ephemeris (BCE) and the Almanac. The 
BCE provides information on the satellite position and velocity, which is very accurate and stays that 
way for a day or so. The information about the bias of the satellites onboard clock is provided too, 
but, since the atomic clock of the satellites wanders a few nanoseconds per day, the inaccuracy in the 
clock parameters in the BCE are a major error source. It takes a maximum of 3 minutes tracking to 
get the ephemeris from a satellite, so this data repeats every 3 minutes, and they cannot be used for 
generating a solution until the BCE is completely received.  
The Almanac is a lower accuracy set of numbers is provided for all the satellites in orbit, in order to 
help receivers plan satellite tracking and acquire satellites signals. This data cycles more slowly and 
takes 12.5 minutes to repeat. Usually, all satellites broadcast the same almanac and among other 
parameters, there are the values needed to convert the GPS Time used by the satellites to Universal 
Time Coordinated (UTC) [5]. 
 
As said before, to estimate the position of a user, the state vector consists of 4 unknowns variables: 

𝑢 = [𝑥 , 𝑦 , 𝑧 , 𝑐𝑑𝑡] 
 
The positioning problem is generally stated as: 

𝑦 = ℎ(𝑢) + 𝑛 
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where y is the measurement vector (that is, the observables obtained from the GNSS signals of a set 
of m satellites), h(u) is the function that relates states with measurements, and n models measurement 
noise. Depending on the models, assumptions, available measurements, and the availability of a 
priori or externally provided information, many positioning strategies and algorithms can be used [6]. 
One of these positioning modes is the Single Positioning Mode, in which the vector of unknown states 
is defined as: 

𝑢 = (𝑟𝑟
𝑇 , 𝑐 ⋅ 𝑑𝑡𝑟)

𝑇 
 
where rr is the receiver’s antenna position in an Earth-Centered Earth-Fixed (ECEF) coordinate 
system (in meters), c is the speed of light, and dtr is the receiver clock bias (in seconds). 
The measurement vector is defined as: 

𝑦 = (𝑃𝑟(1), 𝑃𝑟(2), … , 𝑃𝑟(𝑚))
𝑇
 

 
Where Pr(s) is the pseudorange measurement of the s satellite, that can be expressed as:  

𝑃𝑟(𝑠) = 𝜌𝑟
(𝑠) + 𝑐(𝑑𝑡𝑟(𝑡𝑟) − 𝑑𝑇

(𝑠)(𝑡(𝑠))) + 𝐼𝑟
(𝑠) + 𝑇𝑟

(𝑠) + 𝜖𝑃 
 
where: 

- Pr(s) is the pseudorange measurement (in meters) 
- ρr(s) is the true range from the satellite’s to the receiver’s antenna (in meters) 
- c is the speed of light (in m/s) 
- dtr is the receiver clock offset from GNSS time (in seconds) 
- tr is the signal reception time (in seconds) 
- dT(s) is the satellite clock offset from GNSS time (in seconds) 
- t(s) is the signal transmission time (in seconds) 
- Ir(s) is the ionospheric delay (in meters) 
- Tr(s) is the tropospheric delay (in meters) 
- ϵP models measurement noise, including satellite orbital errors, receiver’s and satellite’s 

instrumental delays, effects of multipath propagation, thermal noise and others (in meters). 
 
Instead, considering Precise Point Positioning mode, the state vector to be estimated is defined as: 

𝑥 = (𝑟𝑟
𝑇 , 𝑣𝑟

𝑇 , 𝑐 ⋅ 𝑑𝑡𝑟 ,  𝑍𝑟 ,  𝐺𝑁𝑟 ,  𝐺𝐸𝑟 ,  𝐵𝐿𝐶
𝑇)
𝑇
 

 
Where:  

- 𝑍𝑟 is the Zenith Total Delay (ZTD) 
- 𝐺𝑁𝑟 and 𝐺𝐸𝑟 are the north and east components of tropospheric gradients  
- 𝐵𝐿𝐶 = (𝐵𝑟,𝐿𝐶

(1), 𝐵𝑟,𝐿𝐶
(2), … , 𝐵𝑟,𝐿𝐶

(𝑚)) is the ionosphere‐free linear combination (in m). 
 
Besides from these introductive definitions, the PVT estimation can be computed with the 
implementation of many positioning algorithms, which could follow similar procedures, but 
demonstrate several variants and differences both in the implementation and the performance. 
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1.3. Purpose and Development of the work 
The main goal of this thesis is to provide an assessment of the performance achievable with different 
suitable positioning techniques for Lunar PVT estimation, considering both a static user on Moon 
surface and a dynamic user landing on predetermined point on the Moon.  
The final objective is to combine the best features of each algorithm and define a unique tool able to 
perform PVT estimation with the best possible accuracy. 
Chapter 2 presents the current state of the art of the positioning method used for several application 
on Earth with GNSS constellation, but also introducing some of the studies done for lunar 
applications. Therefore, the most used and common positioning algorithms are introduced: Least 
Squares estimation, Kalman Filter and Sensor Fusion technique. 
The third chapter focuses on the lunar environment, showing the typical case studies for the PVT 
estimation on the Moon and pointing out the differences with respect to the terrestrial environment. 
In chapter 4, the emphasis is on the implementation of the various techniques covered. First, the 
constellation considered and the input data are described. Subsequently, the formulations 
implemented considering each positioning technique are explained. Finally, the script produced based 
on these formulations are validated considering input data referred to an Earth constellation. 
Finally, in chapter 5, the results obtained with the implementation of the different algorithms 
presented are discussed. The analysis focuses on the outcomes achieved with each one of them in the 
different scenario considered, so that their performance and capabilities can be evaluated. Afterwards, 
these results are compared, with the aim of showing the main differences and highlighting the 
algorithms that provide the best performance, in order to combine the best features of each technique 
and define a unique tool to perform the PVT estimation with the best possible performance and 
accuracy. 
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2. State of Art of GNSS positioning method 

2.1. Least Squares 
The Least Squares (LS) method is one of the oldest and most widely used statistical tools for linear 
models and its theoretical properties have been extensively studied in the past [7]. 
Least Squares is a batch estimation technique used to find a model that closely represents a collection 
of data and allows for the optimal determination of values or states within a system. This estimation 
technique can be applied to both linear and nonlinear system and is utilized in many different 
applications. 
Many real-world applications often contain an assortment of sensors that can be used to determine 
various parameters of interest in the system. These parameters of interest are typically referred to as 
states and can be anything needing to be tracked in a system, such as the position of a spacecraft or 
the level of saltwater in an aquarium tank. 
Each of the states in a system are stored in a vector known as the state vector, x. The assortment of 
sensors in a system is used to provide insight into what is actually happening in the system and how 
the system is changing over time. Each sensor yields a measurement which is stored in a vector known 
as the measurement vector, ỹ. However, these measurements often only provide information about a 
state indirectly and often require some type of conversion before being compared to the state vector. 
The measurement model matrix, H, describes this relationship between the measured values and the 
state values and is used to map the state vector, x, into the measurement vector, ỹ, as shown in the 
equation, which also takes into account any noise, ν, in the measurement. 

�̃� = 𝐻 ∙ 𝑥 + 𝜈 
 
Ideally, when estimating a particular state, the error between the true value and the estimated value 
of the state should be minimized. However, in a real-world system, the true value of a state is never 
actually known due to various error sources, such as measurement errors and modeling errors. As a 
result, linear Least Squares seeks to minimize the residual error, i.e., the error between the actual 
measurements, ỹ, and the measurements predicted from the model/estimated value of the state, x̂. In 
this case, the optimal estimate of the state vector for a particular system is found as [8]: 

�̂� = (𝐻𝑇  𝐻)−1 𝐻𝑇 �̃� 
 
Despite this, the main focus of the Least Squares method is to find estimation parameters, x̂, such that 
a model h(x) has the best fit on measurements y. 
The residuals are defined as the difference between observation data and model function: 

𝑟𝑖⃗⃗ = 𝑦 − ℎ⃗ (𝑥 ) 
 
Therefore, the goal is to find x, such that the sum of the squares of the residuals is minimized [9]. 

𝑆 =∑𝑟𝑖
2

𝑛

𝑖=1
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2.1.1. Weighted Least Squares 
The linear Least Squares solution determines the optimal estimate for each of the estimated state 
values by minimizing the residual error while weighing each of the measurements equally. However, 
many applications utilize numerous sensors that have varying performance specifications and 
uncertainties, so that weighing each measurement equally is not as useful. 
A technique known as Weighted Least Squares (WLS) adds an appropriate weight to each 
measurement to account for the uncertainty in each of the measurements. The linear least squares 
solution then becomes: 

�̂� = (𝐻𝑇 𝑊 𝐻)−1 𝐻𝑇 𝑊�̃� 
 
where W is a symmetric, positive-definite matrix that contains the appropriate weights for each 
measurement. While any user-defined weights can be used in W, usually this matrix is set equal to 
the inverse of the measurement covariance matrix, R, yields optimal results.  

�̂� = (𝐻𝑇 𝑅−1 𝐻)−1𝐻𝑇 𝑅−1 �̃� 
 
Note that in this case, the (𝐻𝑇 𝑅−1 𝐻)−1 term in the Weighted Least Squares solution is then equal 
to the state covariance matrix, 𝑃 = (𝐻𝑇 𝑅−1 𝐻)−1 [8]. 
 
 

2.1.2. Least Squares variants 
 

2.1.2.1. Non-Linear LS 
While linear Least Squares can be used in various applications, some systems cannot be described by 
a linear model. For these nonlinear systems, the linear Least Squares can be extended to a nonlinear 
Least Squares solution, also known as the Gaussian Least Squares Differential Correction (GLSDC). 
Rather than directly solving for a closed form solution of the model with respect to the parameters, 
an iterative approach is taken by linearization of h around an initial value x0, in order to estimate an 
updated parameter 𝑥𝑘+1 = 𝑥𝑘 + ∆𝑥. 
The nonlinear Least Squares estimation process uses a model of the form: 

�̃� = ℎ(𝑥) 
 
where h(x) represents the equations of a nonlinear system. 
An optimal estimate for a nonlinear system can then be found by iterating the nonlinear least squares 
solution, until convergence is achieved observing the values in x: 

�̂�𝑘+1 = �̂�𝑘 + (𝐻𝑘
𝑇 𝐻𝑘)

−1 𝐻𝑘
𝑇 (�̃� − ℎ(�̂�𝑘)) 

Where the H matrix is known as the Jacobian matrix, defined with the partial derivatives of the 
modeled measurements with respect to the estimation parameters. 

𝐻𝑘 =
𝛿ℎ(𝑥)

𝛿�̂�𝑘
 

 
Weighted versions of this calculation follow the same formulation as the linear case: the weight 
matrix, W ideally is the inverted covariance matrix of the observations Qz-1, but in reality, the inverse 
of estimated variances is used, as the actual observation covariances are not available during real-
time navigation. 
Though this iterative process requires more computation than the linear Least Squares estimation 
process, nonlinear Least Squares provide the advantage of optimizing a wide range of real-world 
systems [8]. 
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2.1.2.2. Least Absolute Deviation (LAD) 
Despite its many superior properties, the Least Squares estimate can be sensitive to outliers and, 
therefore, non-robust. Its performance, in terms of accuracy and statistical inferences, may be 
compromised when the errors are large and heterogeneous. In fact, the traditional LS estimator is 
rather sensitive to large noises, resulting in large estimation errors, due to the Gaussian error 
assumption. When outliers occur, the Least Squares estimation scheme may not be a good choice 
because the LS estimator minimizes the mean squared error of the observations. In order to perform 
robust positioning estimation, other criteria may be employed. The common alternatives might be L1 

(Least Absolute Deviation, LAD) or L (MiniMax, MM) estimators. 
These are known as two of the most robust estimators, and LAD in particular is also known to be able 
to produce approximately the maximum-likelihood estimation. As compared to the Least Squares, 
the LAD method is less sensitive to outliers and produces more robust estimates. In cases when the 
maximum-likelihood estimator is obtained by minimizing the mean absolute deviation, rather than 
the mean square deviation, it can perform more effective estimation. Even if the desired signals are 
corrupted by unknown errors, it tends to be impervious to unexpected large errors. Due to 
developments in theoretical and computational aspects, the LAD method has become increasingly 
popular, with many applications in econometrics and biomedical studies, among many others. 
Moreover, different studies demonstrate that LAD approach shows a much better multipath resistance 
capability compared to the Least Squares method. However, LAD approach possesses more benefits 
when more satellites are in view and/or less satellite signals are corrupted by multipath. This is due 
to the fact that a larger number of multipath-corrupted signals will mislead the correct information, 
resulting in performance degradation [7]. 
 

2.1.2.3. Autocovariance Least Squares (ALS) 
This algorithm is formulated to take into account the time-varying system dynamics and measurement 
matrices. The intrinsic feature of this algorithm is the account for the time correlation between 
measurement residuals, which exists due to the ambiguity of the measurement noise-covariance 
matrix, that is not known a priori.  
Three approaches are commonly used for setting the covariance matrix of the GPS measurements: 

- The first and the most common approach is to set the measurement covariance matrix as a 
predefined equally weighted diagonal matrix. 

- Another approach is to set the GPS measurement covariance based on the elevation angle of 
the satellite. 

- The third approach is to weight the GPS measurements based on the signal-to-noise ratio 
(SNR) or the carrier-to-noise power density ratio C/N0. 

The last two methods, while giving a better gauge of the measurement quality, do not directly estimate 
the measurement covariance from the sampled measurements. For the second approach, neither the 
receiver quality nor adverse environments such as interference or jamming will affect the chosen 
measurement weighting. For the third approach, GPS manufacturers are not obliged to provide these 
values. Added to this fact is the lack of standards between GPS manufacturers in providing the SNR 
and the C/N0. In addition, it is unclear how the SNR or the C/N0 will be able to differentiate between 
the measurement and its noise without the feedback of the receiver dynamics measured by the inertial 
measurement unit (IMU). Therefore, it is seen that proposing a method to estimate the GPS 
measurement noise-covariance matrix from the sampled GPS measurements with the aid of the IMU-
measured receiver dynamics is essential for high-integrity operation of GPS- dependent systems [10]. 
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2.2. Kalman Filter 
The Kalman Filter, also known as linear quadratic estimation (LQE), is one of the most important 
and common estimation algorithms. The filter is named after Rudolf E. Kálmán, who published his 
famous paper describing a recursive solution to the discrete-data linear filtering problem in 1960. 
This algorithm uses a series of measurements observed over time, including statistical noise and other 
inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those 
based on a single measurement alone, by estimating a joint probability distribution over the variables 
for each timeframe [4]. 
 
As it will be discussed in detail in chapter 4, the Kalman Filter works by a two-phase process. The 
first one is the prediction phase, in which the filter produces estimates of the current state variables, 
along with their uncertainties. Once the next measurement (including its errors) is observed, the 
estimates are updated using a weighted average, with more weight needed to obtain greater certainty. 
The algorithm is recursive, and it can operate in real time, using only present input measurements and 
the state calculated previously with its uncertainty, so that no additional past information is required. 
There are different variants of the Kalman Filter: one of the most important is the Extended Kalman 
Filter (EKF), which was developed for nonlinear applications such as navigation. Basically, it makes 
the nonlinear system linear around the current estimate of the Kalman Filter. This technique will be 
discussed more in detail also in chapter 4. 
Another modified version is the Unscented Kalman Filter (UKF), which is much more 
computationally intensive, but more accurate because it does not attempt the linearization of a 
nonlinear system. The main idea of this filter is that it is easier to perform a nonlinear transformation 
on a single point than a probability function and that it is possible to find a group of single points in 
state space whose sample probability density function approximates the true probability density 
function of the state vector. During the time update portion of the filter, twice as many sigma points 
as the length of the measurement vector are chosen, so that all together they have the same mean and 
covariance of x. The known nonlinear function is applied to each sigma point and the resulting 
transformed vectors are used to get a good estimate of the true mean and covariance. Hence, the 
procedure involves the calculation of the sigma points, and the time updated state vector and 
covariance matrix based on the sigma points. The subsequent steps are the calculation of the estimated 
measurements from the sigma points, the measurement covariance matrix, the measurement-state 
cross-covariance matrix, and finally the definition of the Kalman gain and the post measurement 
outputs [11]. 
 

2.2.1. Kalman Filter Issues 
Two primary concerns emerge from the use of the Kalman Filter: the numerical precision of the filter 
and the filter’s robustness for nonlinear systems or measurements. These problems arise since the 
error covariance matrix is updated directly and the covariance measurement update equation involves 
a subtraction of two positive definite matrices, which when performed with finite precision can 
represent potential numerical problems. These numerical inconveniences may lead to loss of accuracy 
and to the violation of the positive definiteness of the covariance matrix, principally for ill-
conditioned problems, often leading also in divergence [12]. 
In addition, Kalman gain is estimated in the gain loop but acts as error correction feedback in the 
estimation loop. As long as the gain is accurate, this feedback into the estimation loop should correct 
for errors in the state estimate that are caused from roundoff, noise and a priori estimation errors. 
However, no such feedback exists in the gain loop, so that any errors, such as from computer roundoff, 
can accumulate and go unchecked in the computation of the state variance-covariance. Furthermore, 
there are about twice as many computer roundoff operations in the gain loop, compared to the 
estimation loop of the Kalman filter. 

https://en.wikipedia.org/wiki/Statistical_noise
https://en.wikipedia.org/wiki/Joint_probability_distribution
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The main procedure used to overcome the issues of the Kalman Filter is the factorization of the 
covariance matrix, an operation almost as old as the filter itself. There are several factorization 
methods to stabilize the filter [13], factoring the variance-covariance matrix of states into: 

- Products 
o Triangularization (QR decomposition) 

▪ Givens rotations 
▪ Householder transformation 

o Gram-Schmidt orthonormalization 
- Square Root and UD filters 

o Carlson-Schmidt algorithm 
▪ Cholesky factors 

o Bierman-Thornton algorithm 
▪ Modified Cholesky factors 

- Others 
 
 

2.2.2. Kalman Filter variants 
In this section, some of the variants mentioned before to overcome Kalman Filter issues are presented, 
with a brief introduction of the main points of interest, without dwelling on them. 
 

2.2.2.1. Square Root Filters 
In general, square root filters are more numerically stable than the conventional Kalman filter. First, 
the condition number for the square root of a covariance matrix is the square root of the condition 
number of the covariance matrix. Hence, these kinds of filters benefit both the numerical stability 
inherent in the square root filter and the robustness of the partial update while operating directly on 
the square root representation of the uncertainty. In fact, a low condition number is always desirable, 
mainly for the cases where the computer word length is limited (as in embedded systems), or when 
the filtering problem is poorly conditioned. Although these types of formulations are numerically 
more robust, it is at the cost of increasing the computational effort. Nevertheless, the number of extra 
computations can still be reasonable which allows the filter to be used in many applications.  
The SR filter is mainly a covariance reformulation of the standard Kalman equations, and thus it is 
still a linear filter. Similar to what is done with a traditional filter, the square root KF can be applied 
in nonlinear systems through a linearized model. That is, the square root formulation does not enhance 
a filter’s ability in addressing nonlinearity, it simply improves numerical conditioning [12]. 
In the estimation field, square root filtering refers to utilize a square root factorized representation of 
the error covariance matrix for purposes of propagation and correction of the estimation error. The 
goal of reformulating filters using such “square roots” or factorizations, is to increase the precision 

of the filter itself. By operating on the square root of the error covariance, the filter lowers the 
condition number of the uncertainty matrix, which is then less prone to numerical issues because 
fewer significant figures are required during the arithmetic operations.  
The definition for the square root of a matrix is based on the idea of finding a matrix S that satisfies 
P = SST, where S will be referred to as the square root of the error covariance matrix P. Specifically, 
S is a lower triangular matrix, and ST its transposed. Importantly, the product SST is naturally 
symmetric and positive semidefinite, regardless of the value of the lower triangular matrix S.  
This means that numerical difficulties that could cause the covariance matrix P to become 
nonsymmetric or singular, cannot affect the product SST, thus preserving the theoretical properties of 
the covariance matrix P (within the machine precision). Also, as for scalars, the square root S is not 
unique, so there may be several solutions. One very well-known method to compute the matrix S is 
the Cholesky decomposition, which requires that the matrix to be factorized is positive definite and 
symmetric (this holds for P) and directly outputs the matrix S that will be triangular. 
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2.2.2.2. Potter Square Root Filters 
The first square root filter development is due to Potter who developed in 1963 an algorithm for the 
limited case of uncorrelated scalar observations with no process noise. This filter was used in the 
Lunar Excursion Module (LEM) for the Apollo Program [14]. 
The main driver at the time was numerical precision, as computer words were only 8 bits long. 
Replacing the covariance by a square root matrix S, such as P = SST, reduces the spread of the 
elements of P bringing them closer to 1, doubling the numerical precision of the stored variable. 
At the time, the Apollo Kalman filter was designed without any process noise, because computations 
required for inclusion of the process noise required too many computations. A very desirable by-
product of this factorization is that the symmetry and semi-positive definiteness of the covariance are 
insured by construction and does not need to be checked or enforced to correct for numerical and 
round-off errors. It should be noted that this Apollo factorization was not a triangular square root 
matrix [15]. 
 

2.2.2.3. Bierman-Thornton UD Factorization 
This is another more elegant formulation where the covariance matrix P is replaced by two factors: a 
diagonal matrix D and an upper triangular matrix U with ones on the main diagonal, such that 

𝑃 = 𝑈𝐷𝑈𝑇   →   [

𝑝11 𝑝21 𝑝31
𝑝12 𝑝22 𝑝32
𝑝13 𝑝23 𝑝33

] = [
1 𝑢12 𝑢13
0 1 𝑢23
0 0 1

] [

𝑑11 0 0
0 𝑑22 0
0 0 𝑑33

] [
1 𝑢12 𝑢13
0 1 𝑢23
0 0 1

]

𝑇

 

 
The state variance-covariance matrix is never explicitly computed since the UDUT factors are always 
propagated in each computational step through the filter instead of the variance-covariance matrix 
itself. More importantly, this factorization improves the computational stability and efficiency of 
large navigation filters, especially in situations prone to roundoff error, large a priori errors and 
asymmetry of the state variance-covariance matrix, which may all lead to filter divergence. This is 
possible because UDU factorization ensures symmetry of the covariance matrix by construction, and 
it requires a trivial check and correction to ensure semi-positive definiteness (it suffices to enforce 
that the diagonal elements of D remain non-negative). The UDU is classified as a square root filter, 
but technically, the formulation is free from square root operations, making it computationally 
cheaper, and for these reasons it has endured as one of the preferred practical implementations of 
Kalman filters in aerospace applications [15]. 
The UD filter is only capable of incorporating scalar observations, meaning that the observations 
must be uncorrelated for the solution to be rigorous. GNSS double-differenced phase observations 
are inherently mathematically correlated, which suggests why a UD carrier-phase float filter has not 
been reported in previous literature. This limitation can be overcome by diagonalizing the observation 
covariance matrix, thus decorrelating the components of the matrix. Although not initially intuitive, 
forming arbitrary linear combinations of the observations will not affect the integer nature of the 
estimated ambiguities provided we continue to estimate ambiguities corresponding to the original 
double-differences [13]. 
 

2.2.2.4. Partial-Update Schmidt Kalman Filter 
The Partial-Update Schmidt Kalman Filter (PSKF or Partial-Update Filter for short) is a recent 
technique that is useful in accommodating measurement updates in nonlinear systems with mildly 
observable states.  
The Partial-Update Schmidt Kalman filter is a straight-forward modification of the Extended Kalman 
Filter that effectively increases the range of uncertainties and associated nonlinearities that a filter 
can tolerate (compared to the EKF or Schmidt filter) while still producing accurate state estimates 
with appropriate co-variance bounds.  
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This form of the Kalman filter inherits the benefits of the Partial-Update formulation and combines 
them with the numerical robustness of the square root form. The result is a filter of higher numerical 
precision and increased tolerance to nonlinearities and uncertainty level with minimal additional 
computational burden [12]. 
 

2.2.2.5. Least-Squares AMBiguity Decorrelation Adjustment 
Since UDU Bierman filter provides only a float solution, to solve for the integer ambiguities other 
algorithms will need to be used, such as LAMBDA (Least-Squares AMBiguity Decorrelation 
Adjustment). The resulting unit triangular matrix from the square root filter can be directly used into 
LAMBDA since the first step in this procedure is to decorrelate the double differenced ambiguities 
before the actual integer estimate of ambiguities is done. The decorrelation requires that the variance-
covariance matrix of the ambiguity states be broken down into LDLT (or equivalently UDUT factors, 
which the Bierman-Thornton algorithm does). The overall process of going from a float solution to a 
fixed solution is resultantly more efficient. Furthermore, factorization of the variance-covariance 
matrix of the ambiguity states is only done once and the UD factors are propagated through the filter. 
The factorization only happens again if the ambiguity states change. This contrasts with LAMBDA, 
where factorization of the ambiguity states happens at every epoch regardless of changes in the 
ambiguity states or not. This further exemplifies the computational benefit and efficiency of the 
Bierman-Thornton method [13].  
 

2.2.2.6. V-A Square Root Algorithms 
These are new discrete-time (continuous/discrete and discrete/discrete) square root algorithms, which 
utilizes the spectral decomposition of the covariance matrix: V is the matrix whose columns are the 
eigenvectors of the covariance and A is the diagonal matrix of its eigenvalues. The new algorithms 
employ singular value decomposition (SVD), for which there exist today efficient and stable 
algorithms. 
From a computational viewpoint, the new algorithms are more complex than other SR procedures that 
exist today, because of the reliance upon the SVD technique (as opposed to more efficient orthogonal 
transformations, on which other SR algorithms are based). Nevertheless, the new algorithms may be 
of great importance in certain applications, e.g., where loss of accuracy due to harsh numeric is 
expected, or where continuous monitoring of the eigen factors is necessary in order to reveal 
singularities as they occur and to identify those state subsets that are nearly dependent. It is believed 
that as the SVD is becoming today a tool of primary importance in control theory, further research 
will eventually lead to the development of new SVD algorithms of higher efficiency, to the benefit of 
the new V-A filters. Moreover, with the rapid emergence of Very Large-Scale Integration (VLSI), 
new parallel computing structures have been introduced for efficient, real-time implementation of 
matrix arithmetic algorithms such as Cholesky decomposition, eigenvalue decomposition etc. 
The new update algorithm is free of explicit equations, a fact that may be advantageous in certain 
implementations, and it was shown to be numerically stable. The stability stems from the fact that it 
is based on the orthogonal Householder and Givens transformations, which are famous for their 
numerical stability and accuracy.  
 

2.2.2.7. Hybrid type filters 
These kinds of filters utilize alternately the covariance mode (in the time update stage) and the 
information mode (in the measurement update stage). Thus, because of the operation in both modes, 
the new filters possess the advantages of the covariance and information filters. These advantages are 
the ability to cope with the case of infinite initial covariance (no initial information), the efficiency 
of the covariance formulation in processing time updates and the efficiency of the information 
formulation in processing measurement updates. Moreover, because of the duality between the 
discrete time update of the covariance factors and the discrete measurement update of the information 
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matrix factors, the fact that the V-A filter operates in both modes implies algorithmic equivalence 
between the procedures used in the two stages of the filter. This equivalence introduces a saving 
factor in the implementation of the filter, because both stages use the same algorithm. This fact is also 
valuable for its simplification of the error analyses of specific implementations. 
The conventional Kalman Filter cannot handle this relatively large initial covariance because of an 
algorithmic singularity, while using the V-A SR filter such initialization problems are not encountered, 
since the covariance factors are updated independently of the gain, and the gain itself can, this time, 
be computed using the a posteriori factors [16]. 
 
 

2.3. Sensor Fusion 
The Sensor Fusion technique is a method that combines data from different sources of information in 
order to achieve better performance than can be achieved when each source of information is used 
alone.  
The design of systems based on sensor fusion methods requires the availability of complementary 
sensors in order that the disadvantages of each sensor are overcome by the advantages of the others. 
There are different applications of this technique, like air navigation, with several aerial vehicles 
which use various sensors usually noisy and biased, so that their combination can give optimized 
results [17]. Another interesting application of sensor fusion methods is motion tracking, since several 
sensor technologies are available, but none of them taken alone can give the best performances. This 
is true especially when motion is to be tracked without restrictions in space and time, and cost and 
compliance issues tend to restrict the range of potential candidates for applications like human motion 
tracking in biomedicine and healthcare [18]. 
 
The implementation of this work will consider the application of the Sensor Fusion technique 
combining the performances of an Extended Kalman Filter and the additional measurement given by 
an altimeter. The functioning of a laser altimetry (or laser ranging) works on the basic time-of-flight 
(TOF) principle. A pulse of laser energy is emitted, it reflects off a target surface, and the receiver 
(which could be the same that emitted the laser) detects the reflected energy. The time between pulse 
emission (start) and pulse reception (stop) provides a measure of the target distance, or range (R), 
based on the speed of light (c), through the simple relation [19]: 
 

𝑅 = 𝑐 ∆𝑡 2⁄  
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3. PVT determination in Lunar Environment 

3.1. Typical Use Cases 

3.1.1. User orbiting around the Moon 
The first typical use case in lunar environment is of course the determination of the PVT of a user 
that is orbiting around the Moon, following a specific trajectory previously determined. Nevertheless, 
in this work this case will not be taken into consideration, since it is not of interest for the analysis 
done and the algorithms developed. 

 
 

3.1.2. Static User 
The first scenario that will be analyzed in this study consider a static user, situated in a specific 
position on the lunar surface: this point is considered to be the South Pole of the Moon. As it will be 
deepened in the next chapter, the PVT estimation is achieved through the signals of four satellites in 
view, which is the least number of satellites needed for the determination of the user position. As it 
will be discussed, all four satellites need to be in view of the user, in order to allow to determine its 
position. Hence, if following their orbits around the Moon, one or more satellites are no longer in 
visibility of the user, the PVT estimation cannot be computed anymore, given the absence of sufficient 
inputs for the implementation of the positioning algorithms. 
 

 
Figure 3.1: Static User configuration 

 
The simulated configuration is depicted in Figure 3.1, but it can also be noticed the reference 
system considered for the analysis: it is the equivalent of the ECEF system on Earth, since its origin 
is in the center of the Moon and the z axis is directed toward the North Pole. 
 
 



 

 
 29 

3.1.3. Dynamic User 
The second scenario that will be discussed consider a user no longer on the lunar surface, but it is 
now in motion and following a defined trajectory. This trajectory includes a first phase in which the 
user is orbiting around the Moon, but then it starts approaching the lunar surface and finally a 
descending phase to land on a predetermined point, specifically the South Pole. Even in this scenario, 
the determination of the PVT of the user over time is provided through four satellites in view, which 
also follow a specific orbit around the Moon. 
An approximation of the trajectory followed by the user is depicted in Figure 3.2. As for the static 
user case, also for this scenario the reference system considered has its origin in the center of the 
Moon, as shown in the figure. 
 

 
Figure 3.2: Dynamic User configuration 

Landing on the Moon has been successfully performed since the initial phase of lunar exploration, 
both with human and robotic missions. However, recent failures have shown that landing on the 
Earth’s natural satellite is actually not an easy task.  
Despite this, recent studies on NASA’s Jet Propulsion Laboratory lander vision system have 
demonstrated landing accuracies down to 40 meters and the also the latest landing on Mars has proven 
the level of reliability of this system [2]. 
This means that in theory the requirements expressed as part of the Global Exploration Roadmap 
Critical Technology Needs (ISECG) could be met with current state-of-the-art visual-based 
navigation technology such as the one used for the recent Mars landing. Though, a detailed 
assessment of the specific features and image quality of the lunar landing areas would still need to be 
performed. These also means a relatively expensive cost and heavy equipment dedicated to the 
landing phase, which is only partially reusable after touch down [2]. 
  
 

3.2. Differences with respect to Earth environment 

3.2.1. Earth and Moon Applications  
 

3.2.1.1. Earth 
Nowadays, Kalman Filter technique is used in numerous and various applications on Earth, such as 
target tracking (Radar), location and navigation systems, control systems and computer graphics [20]. 
For example, calibration, alignment, and error correction of complex inertial navigation systems are 
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done with the implementation of Kalman filtering. Real-time online applications can include missile 
defense, estimation, and prediction of reentry vehicle (RV) position, while offline applications 
include estimation and correction of radar errors such as azimuth bias, elevation bias, and survey 
(base location) errors. Finally, space applications of these techniques comprehend estimation of the 
trajectories of thousands of Earth satellites and space debris, as well as augmentation systems and 
also every GNSS receiver uses an EKF to estimate its own position and velocity, and to synchronize 
the receiver clock with GPS time [21]. 
 

3.2.1.2. Moon 
In lunar environment, the most important and known expedition that envisaged the implementation 
of the Kalman Filter technique is of course the APOLLO program. Nonetheless, other missions have 
demonstrated the likelihood of lunar positioning and also landing, as the Chinese Chang’E 4 

expedition [22]. However, this mission (as almost every lunar mission in the past) has almost entirely 
relied on direct-to-Earth (DTE) ranging radiometric measurements for navigation, rather than 
providing an independent orbit determination and navigation solution. 
Different studies have already shown that GNSS signals from Earth can effectively provide support 
for orbit determination and landing operations on Moon, but this technology alone does not support 
far-side operations and will not reach the accuracy required by the Global Exploration Roadmap 
Critical Technology Needs (ISECG). This topic has been widely discussed in the literature since the 
1970s, with various papers describing how satellites in Earth-Moon Lagrangian points could be used 
to support satellite navigation in cislunar space. 
To address these problems and provide navigation services to future lunar missions, in recent years 
several space agencies have proposed dedicated systems. 
In particular, the Russian satellite maker, Information Satellite Systems (ISS) JSC, proposed a full 
constellation of 24 satellites around the Moon, while NASA has proposed LunaNET.  
In this context, the European Space Agency (ESA) has proposed a concept called Moonlight that aims 
to provide communication and navigation services that will support the next generation of 
institutional and commercial lunar exploration missions, including enhancing the performance of 
those missions currently under definition and creating new possibilities [2]. 
 
 

3.2.2. Adaptation of the algorithms 
In order to implement the positioning techniques, the differences between Earth and Moon must be 
considered, so that the algorithms need to be modified depending on the application environment. In 
this section the differences in the implementation will be described, while in the next chapter the 
simulation environment considered for the lunar application will be discussed more in-depth, together 
with formulations and implementation of the different positioning algorithms. 
 

3.2.2.1. Earth 
Considering Earth environment, the first step of the implementation is the check on the satellites in 
view at each observational epoch. In fact, as already discussed, in order to compute the user position, 
a minimum of four satellites in view is needed, otherwise the solution cannot be determined by the 
positioning algorithms. 
This check is based on consideration on the elevation angle of the satellites: taking into account the 
line-of-sight vectors between the satellites and the user, the elevation angle of each satellite will be 
calculated. This will lead to the exclusion of the satellites which elevation angle is lower than 5 
degrees, since they could invalidate to solution due to their relative position with respect to the user. 
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Given rsat and ruser the geocentric positions of the satellite and the user, respectively, the Line-Of-
Sight vector is defined as:  

𝐿𝑂�̂� =
𝑟𝑠𝑎𝑡 − 𝑟𝑢𝑠𝑒𝑟
‖𝑟𝑠𝑎𝑡 − 𝑟𝑢𝑠𝑒𝑟‖

 

 
From the given coordinates of the user, latitude  and longitude  can 
be determined and used for the calculation of the unit vector û of the 
ENU reference system, through the rotation matrix from ECEF to 
ENU [Appendix B.2 of ESA GNSS Book [23]]: 

�̂� = [cos 𝜆 cos 𝜑 , sin 𝜆 cos 𝜑 , sin𝜑] 
 
So that, as shown in Figure 3.3, the elevation angle is computed as: 

𝐸 = asin(𝐿𝑂�̂� ∙ �̂�) 
 
Given this value for each satellite, the ones that result in elevation lower than 5 degrees will not be 
considered in the algorithm implementation.  
 
Once this check has been done, the measurements considered in Earth application are the 
pseudoranges of the satellites in view. Given the coordinates and clock of each satellite [xi, yi, zi, ti] 
and the coordinates of the user [xu, yu, zu], the pseudorange expression is: 

𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑔𝑒 = 𝜌𝑖 = √(𝑥𝑖 − 𝑥𝑢)
2 + (𝑦𝑖 − 𝑦𝑢)

2 + (𝑧𝑖 − 𝑧𝑢)
2 − 𝑐 ∙ 𝑡𝑖  

 
This measurement needs to be corrected taking into account various sources of errors, which can be 
referred either to the satellites or the receiver. 
Considering satellites errors, each one will show: 

- Satellite orbital error: this is given by the ephemeris parameters contained in the navigation 
message. In fact, these ephemeris data are broadcasted by the satellites with specific time 
intervals, so that the receiver calculates the satellite position through an estimation using a 
curve fit to predict the satellite orbit, which leads to residual errors relative to the actual orbit. 
It is estimated that they can result in up to  2.5 meters of position error [24]. In this work, 
this error will be modeled as an Additive White Gaussian Noise (AWGN) with zero mean and 
standard deviation defined, which is considered to be 10 meters [25]. 
 

- Satellite clock error: in the downlink data broadcasted by each satellite, they also provide the 
user and estimate of the offset between their clock and the receiver one. To obtain a more 
accurate position, the receiver needs to compensate this error, since this drift can lead to 
dramatic range errors in receiver measurements. In fact, clock errors in seconds are then 
multiplied by the speed of light, so that for example 20 nanoseconds of error results in 6 meters 
of position error. Satellite clock error model will be based on the theory of Stochastic 
Differential Equations (SDE): 

𝜎𝑐𝑙𝑘 = 𝜎0 +√𝜎12 ∙ 𝑡 ∙ Δ +
𝜎22 ∙ (𝑡 ∙ Δ)3

3
 

 
  

Where the parameters are defined considering an application with Caesium HP clock [25], 
showed in Table 3.1. 

Figure 3.3: ENU coordinates and 
Elevation angle (Source: ESA 

GNSS Book [23]) 
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Table 3.1: Clock error parameters 

t = observational epoch in seconds (update 
interval: this value is set to zero every 12 hours)  = time difference between two epochs 

0 = 10-10 1 = 9.486  10-12 2 = 1.643  10-17 
 

- Sagnac Effect: this consists of a relativistic error caused by the rotation of the Earth during 
the time of signal transmission between the satellite and the receiver. Ephemeris parameters 
provide information about the satellites position expressed in Earth-Centered Earth-Fixed 
(ECEF) frame at signal transmission time, but during signal transit time the Earth rotates, so 
that the signal reception time is not the same of the transmission one (Figure 3.4). 

 

 
Figure 3.4: Sagnac effect 

For each satellite, defined the observational epoch in seconds (Tobs) and the pseudorange 
corresponding to that epoch (i), given the speed of light c, the implementation of the Sagnac 
effect is given by the following procedure: 

1. 𝑇𝑆 =  𝑇𝑜𝑏𝑠 −
𝜌𝑖

𝑐
 

2. 𝑑𝑡𝑟 = 𝑟 ∙ 𝑣

𝑐2
 , where the numerator is the scalar product between the position vector of the 

satellites r=[xi,yi,zi] and the velocity vector v=[vxi,vyi,vzi] determined by derivation. 

3. 𝑑𝑅𝑂𝑇 = 𝑇𝑜𝑏𝑠 − (𝑇𝑆 − 𝑑𝑡𝑟) 

4. 𝜑 = 𝜔𝐸 ∙ 𝑑𝑅𝑂𝑇 , where E is the Earth rotation velocity  

5. 𝑀𝑆𝐴𝐺𝑁𝐴𝐶 = [
cos 𝜑 sin𝜑 0
−sin𝜑 cos 𝜑 0
0 0 1

] 

6. [
𝑥𝑖
𝑦𝑖
𝑧𝑖
]

𝑁𝐸𝑊

= 𝑀𝑆𝐴𝐺𝑁𝐴𝐶 ∙ [

𝑥𝑖
𝑦𝑖
𝑧𝑖
] , which are the coordinates of the satellite corrected with the 

implementation of the Sagnac effect. 
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Regarding the user errors, the main error to consider is the Multipath error. Usually, the received 
signals is in direct line-of-sight (LOS) between satellite and receiver, but it arrives with one or more 
delayed echoes due to the reflection of the original signals depending on the surrounding environment 
and the relative satellite-receiver motion (Figure 3.5). On Earth, this delay can be caused by buildings 
or other objects, but also natural elements can cause this reflection, so that this effect has an impact 
also on lunar applications. These multipath errors can cause the receiver to calculate an incorrect 
position, up to pseudorange errors of 100 meters 
in the most severe conditions [26]. The 
implementation of the multipath error is obtained 
from Brenner’s Multipath Model [25]: 

𝜎𝑀𝑃 = 𝑎 + 𝑏 ∙ 𝑒
𝑐∙𝐸𝐿 

Where: 
- a = 0.1633 
- b = 1.1846 
- c = -0.0511 
- EL = elevation angle 

 
Moreover, another noise that must be taken into account is the Receiver error: this noise is a complex 
error generated at the receiver’s side while measuring satellite signals. It covers different spectrum of 
noise types, including microwave radiations and it is present due to system components such as 
antennas, cables or amplifiers [26]. For the applications of this work, the receiver error will be 
modelled in the same way as previously defined for the satellite orbital error, which is an AWGN 
with zero mean and standard deviation of 10 meters. 
 
Finally, in Earth environment one of the most important errors is given by the effect of the 
atmosphere. Among these atmospheric effects, the main correction to implement is the one that 
concerns the Ionospheric effect. The ionosphere is a dispersive medium located primarily in the region 
of the atmosphere between about 60 km and 1,000 km above the Earth’s surface [27]. Within this 
region, as its name implies, there is a partially ionized medium due to Extreme UltraViolet (EUV) 
rays in the solar radiation and the incidence of charged particles. The propagation speed of GNSS 
electromagnetic signals in the ionosphere depends on its electron density, which is typically driven 
by two main processes. During the day, the Sun’s radiation ionizes neutral atoms to produce free 

electrons and ions. During the night, the recombination process prevails, where free electrons are 
recombined with ions to produce neutral particles, which leads to a reduction in the electron density 
[23]. In fact, these free electrons influence electromagnetic wave propagation, including GNSS 
satellite signal broadcasts. 
In order to correct this ionospheric delay, specific models 
need to be implemented. The one used in this paper is known 
as Klobuchar Model, initially developed for GPS, and 
usually used because of the simple structure and the 
convenience in calculations. This model is based on 
empirical approach, and it is estimated to reduce the 
ionospheric errors by about 50% worldwide [23]. As shown 
in Figure 3.6, the assumption assumes that the vertical 
ionospheric delay can be approximated by half a cosine 
function of the local time during daytime, whose amplitude 
and period are given as a function of the eight parameters 
broadcast in the GPS navigation message, and by a constant 
level during night-time (about 5 ns) [27]. 

Figure 3.5: Multipath error (Source: ESA GNSS Book [23]) 

Figure 3.6: Ionospheric delay approximation 
(Source: ESA GNSS [23]) 
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The Klobuchar model employs geomagnetic latitude on Ionosphere Pierce Point (IPP). As shown in 
Figure 3.7, it is assumed that the electron content is concentrated in a thin layer at 350 km in height 
(GPS), so that IPP is defined as the point where the line of sight that connects the GPS satellite to the 
signal reception point (slant delay in red in the figure) meets the single vertical layer (in blue). Since 
the change of IPP is affected by seasons and the geomagnetic field and closely related with the sunspot 
activity, it is varied following the solar activity in the period of 11 years [28]. 
 

 
Figure 3.7: Ionospheric Pierce Point (Source: ESA GNSS Book [23]) 

To implement this correction, the input data for calculation of Klobuchar ionospheric delay are: 
- Elevation angle EL and Azimuth AZ of the observed satellite (radians) 
- Geodetic latitude  and longitude  (radians) 
- Klobuchar coefficients  ,  
- GPS time (seconds) 

Klobuchar coefficients, as already said, can be found in the navigation data, while GPS time is 
determined from the observational epoch, using the classic conversion from Gregorian date 
(discussed more in depth in appendix A.1). As for the other terms, one of the possible solutions is the 
application of the Bowring iterative method (Appendix C and [29]), which allows to determine 
latitude, longitude and altitude given the spatial coordinates, and then determine EL and AZ using 
trigonometric equations. Nevertheless, the solution implemented in this paper exploits the potential 
of MATLAB and its functions: given the coordinates of the user in the ECEF reference system, the 
function ecef2lla allows to determine the geodetic coordinates Latitude, Longitude and Altitude; 
moreover, the function ecef2aer coverts point locations from geocentric ECEF coordinates to local 
spherical coordinates Elevation and Azimuth given the coordinates of the satellite, latitude and 
longitude of the user and the reference ellipsoid. Now that all the input data are defined, the Klobuchar 
procedure can be applied, as explained in ESA GNSS Book Vol. I [23]: 
 

1. Earth-centered angle:   𝜓 =
𝜋

2
− 𝐸𝐿 − arcsin (

𝑅𝐸

𝑅𝐸+ℎ
cos 𝐸𝐿) 

Where RE =6378 km and h=350 km 
 

2. Latitude of the IPP:  𝜙𝐼𝑃𝑃 = arcsin(sin𝜑 sin𝜓 + cos 𝜑 sin𝜓 cos 𝐴𝑍) 
 

3. Longitude of the IPP:  𝜆𝐼𝑃𝑃 = 𝜆 +
𝜓sin𝐴𝑍

cos𝜙𝐼𝑃𝑃
 

 
4. Geomagnetic latitude of the IPP: 

given coordinates of geomagnetic pole  𝜙𝑝 = 78.3° , 𝜆𝑝 = 291 
𝜙𝑚 = arcsin(sin𝜙𝐼𝑃𝑃 sin 𝜙𝑝 + cos𝜙𝐼𝑃𝑃 cos 𝜙𝑝 cos(𝜆𝐼𝑃𝑃 − 𝜆𝑝)) 
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5. Local time at the IPP:   𝑡 = 43200 

𝜆𝐼𝑃𝑃

𝜋
+ 𝑡𝐺𝑃𝑆 

Where 0 ≤ 𝑡 ≤ 86400. Therefore: 𝑖𝑓 𝑡 ≥ 86400, 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 86400;  𝑖𝑓 𝑡 < 0, 𝑎𝑑𝑑 86400. 
 

6. Amplitude of the ionospheric delay: 

𝑄 =∑𝛼𝑛 (
𝜙𝑚
𝜋
)
𝑛

 

3

𝑛=0

          𝑖𝑓 𝑄 < 0 , 𝑡ℎ𝑒𝑛 𝑄 = 0 

 
7. Period of the ionospheric delay: 

𝑃 =∑𝛽𝑛 (
𝜙𝑚
𝜋
)
𝑛

 

3

𝑛=0

          𝑖𝑓 𝑃 < 72000 , 𝑡ℎ𝑒𝑛 𝑃 = 72000 

 
8. Phase of the ionospheric delay:   𝑋 =

2𝜋 (𝑡−50400)

𝑃
 

 

9. Slant Factor (Ionospheric mapping function):  𝐹 = [1 − (
𝑅𝐸

𝑅𝐸+ℎ
cos 𝐸𝐿)

2
]
−
1

2
 

 
10. Compute the ionospheric time delay: 

𝑑𝐼 = {
[5 ∙ 10−9 + 𝑄 cos 𝑋] × 𝐹, |𝑋| < 𝜋/2

5 ∙ 10−9 ×  𝐹, |𝑋| ≥ 𝜋/2
 

 
The result dI (in seconds) is then multiplied by the speed of light c to give a measure in meters that is 
the actual ionospheric correction added to the calculation of pseudorange. 
 
 

3.2.2.2. Moon 
The considerations made in the previous section for the terrestrial environment are in part applicable 
also for lunar implementation, but there are some differences to take into account. 
In this analysis, the check on the satellites in view is also important, even more than before since the 
in lunar environment the number of signals is considerable reduced, so that the possibility of blackout 
in the solution due to the absence of the minimum number of satellites in view is very high.  
 
Considering the static user scenario, the procedure is the same already explained before for Earth 
environment, which takes into account the elevation of the satellites with respect to the user position.  
 
Instead, for the dynamic user scenario, since the user is no longer on lunar surface, satellites elevation 
considerations lose their meaning. Hence, in this case the check to be done is that the user position is 
at each epoch below the satellites: given the position of the satellites [xi, yi, zi] and the user [xu, yu, zu] 
referred to the center of the Moon, this means assuring that the norm of user position is lower than 
the norm of the satellites: 
 

𝑛𝑜𝑟𝑚([

𝑥𝑢
𝑦𝑢
𝑧𝑢
]) < 𝑛𝑜𝑟𝑚([

𝑥𝑖
𝑦𝑖
𝑧𝑖
])                    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖 
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Once this check is done, one of the differences about lunar environment is that the pseudorange 
measurements are not provided by the input data, so that these values are replaced by the calculation 
of the Slant Range between each satellite and user position. If the coordinates of each satellite are 
defined as [xi, yi, zi] and the coordinates of the user are [xu, yu, zu], the Slant Range is computed as: 
 

𝑆𝑙𝑎𝑛𝑡 𝑅𝑎𝑛𝑔𝑒 = 𝑆𝑅𝑖 = √(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2 
 
As for the pseudorange, this expression must consider difference sources of errors. 
The first observation that can be done is that, in lunar environment, atmospheric effects are not 
present, so that the ionospheric effect discussed before does not intervene in slant range calculation. 
 
Concerning satellite’s side, the errors to consider are the same introduced for Earth environment:  

- Satellite orbital error 
- Satellite clock error 
- Sagnac effect. 

 
As for the user noises, multipath error will be implemented in the static user scenario, while of course 
it is not considered in dynamic user case, since it will be not in proximity of lunar surface. Receiver 
error, instead, will be implemented in both cases. 
 
 
As already said, these errors are added to the pseudoranges/slant ranges expressions. However, simply 
adding this correction will consider that the measurement errors are implemented only in the direction 
of the line-of-sight between satellite and receiver, as depicted on the left in Figure 3.8. To be more 
accurate in the implementation of these errors, it will be considered the concept of sphere of 
uncertainty: as shown on the right in Figure 3.8, this means that the errors are applied considering a 
sphere centered in the satellites and one on the user. The radii of these spheres will correspond to the 
sum of the errors on each of them, which means orbital and clock errors on satellites and 
multipath/receiver errors on user. 
 

 
Figure 3.8: Application of errors on satellite and user without (left) and with (right) sphere of uncertainty 

In appendix B, an example of the effect of the application of these errors is described considering 
either the implementation of each of them alone or in combination with each other. 
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4. Simulation Environment 

4.1. Navigation system and inputs 
The simulation environment considered in this work obviously takes into account all the difficulties 
described about lunar navigation. Therefore, the number of satellites in view will be reduced 
compared to Earth application, but also the signals will be weaker, and the input information will be 
lower than before. 
The constellation used for the implementation of the positioning algorithms considers four satellites 
in view orbiting around the Moon, which is the minimum number needed to estimate the position of 
the user. This means that not only the amount of information is limited to the bare minimum, but also 
that the margin of error is minimal, since even a single failure no longer allows the positioning 
algorithm to work. 
The input data provided are referred to four satellites following an Elliptical Lunar Frozen Orbit 
(ELFO). This category of frozen orbit provides greater coverage of lunar poles, since the satellite 
altitude remains constant over a long period of time at the same point in each orbit. The changes in 
inclination, position of the apsis of the orbit and eccentricity are minimized by the choice of the initial 
values, so that the perturbations are canceled out. This results in long-term stable orbit that minimizes 
the use of station-keeping propellant [4]. 
The constellation provided has been optimized in order to achieve high availability and minimize the 
Horizontal Dilution of Precision (that will be discussed later) at the South Pole. 
 
For the application of the Sensor Fusion technique, an altimeter measurement is considered in 
addition to the four satellites in view. This sensor is considered to be inside the user, and it is activated 
when the user position is approximately 10 km away from Moon surface. 
Given this additional measurement, one of the test cases that will be discussed, will consider the 
exclusion of one of the four satellites for the entire analysis and the substitution of the slant range 
measurement of this satellite with the altimeter reading. 
 
For the validation of the codes, the input data has been taken from terrestrial satellites of the MOSE 
station, situated in Rome. The reason is that Earth environment is more controlled and known, since 
the number of input data is higher and the functioning of the algorithms has already been analyzed 
for different scopes, so that the reliability of the scripts produced can be verified.  
For this scenario, the input data are contained into two important files: 

- The Receiver Independent Exchange Format (RINEX): this is a file format for storing data 
from satellite navigation systems, which can provide Observation data file or Navigation data 
file. From the observation data, the input extracted will be the number of satellites in view and 
the pseudorange (in meters) of each satellite for each observation period (given as Gregorian 
date). The navigation data, instead, contain the Klobuchar coefficients described before, 
needed for the implementation of the ionospheric correction. The file provided contain 1 day 
data with observation every 30 seconds. 

- The Extended Standard Product 3 Orbit Format (SP3): this is a file format containing other 
orbital information necessary for the implementation of the algorithm. In particular, from this 
file, the input data considered are the satellites coordinates (in kilometers) and clocks (in 
microseconds). The update rate of this data is 5 minutes, so they are not aligned with the 
RINEX data, then an interpolation will be needed to have all the information useful at the 
same epoch of observation (Lagrange interpolation is deepened in appendix A.2). 
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After the Earth validation analysis has been performed, the lunar data of the constellation described 
before will be considered. The input data are provided from four text files (one for each satellite) 
which contain the observation time (UTC), the positions (in km) and the velocities (in km/sec) of the 
satellites. For the dynamic user scenario, the lander characteristics are also provided with another text 
file in the same configuration just described for the satellites. 
The data referred to the static user case are updated every minute, while for the dynamic user case 
the update rate is 1 second. 
 
 

4.2. Implementation in MATLAB of PVT algorithms 

4.2.1. Least Squares 
Least squares estimation is a technique used to find a model that closely represents a collection of 
data and allows for the optimal determination of values or states within a system [8]. There are various 
parameters of interest in the system, which are typically referred to as states. To determine these 
parameters, an assortment of sensor is used, in order to provide information about what is actually 
happening in the system and how is changing over time. 
In the analysis of this work, the measurements in input are the pseudorange  of the satellites, while 
the states to be determined are the position coordinates and time of the user (x,y,z,t). The positioning 
problem is solved by linearizing the pseudorange observation equations, so that the first step is to 
define the actual observation as the sum of the modelled one plus an error: 

𝜌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝜌𝑚𝑜𝑑𝑒𝑙 + 𝑛𝑜𝑖𝑠𝑒 = 𝜌(𝑥, 𝑦, 𝑧, 𝑡) + 𝜈 
 
Then, the Taylor’s theorem is applied to the model, ignoring the second and higher order terms 

𝜌(𝑥, 𝑦, 𝑧, 𝑡) =  𝜌(𝑥0, 𝑦0, 𝑧0, 𝑡0) + (𝑥 − 𝑥0)
𝜕𝜌

𝜕𝑥
+ (𝑦 − 𝑦0)

𝜕𝜌

𝜕𝑦
+ (𝑧 − 𝑧0)

𝜕𝜌

𝜕𝑧
+ (𝑡 − 𝑡0)

𝜕𝜌

𝜕𝑡

= 𝜌𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 + ∆𝑥 
𝜕𝜌

𝜕𝑥
+ ∆𝑦 

𝜕𝜌

𝜕𝑦
+ ∆𝑧 

𝜕𝜌

𝜕𝑧
+ ∆𝑡 

𝜕𝜌

𝜕𝑡
 

 
The residual observation is defined as the difference between the actual observation and the computed 
one: 

∆𝜌 = 𝜌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝜌𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 = ∆𝑥 
𝜕𝜌

𝜕𝑥
+ ∆𝑦 

𝜕𝜌

𝜕𝑦
+ ∆𝑧 

𝜕𝜌

𝜕𝑧
+ ∆𝑡 

𝜕𝜌

𝜕𝑡
+ 𝜈 

 
Which can be written in matrix form: 

∆𝜌 = [
𝜕𝜌

𝜕𝑥

𝜕𝜌

𝜕𝑦

𝜕𝜌

𝜕𝑧

𝜕𝜌

𝜕𝑡
] ∙ [

∆𝑥
∆𝑦
∆𝑧
∆𝑡

] +  𝜈 

 
This equation is valid for each satellite in view, so that considering m satellites this become a system 
of m equations in matrix form: 
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[
 
 
 
∆𝜌1

∆𝜌2

⋮
∆𝜌𝑚]

 
 
 
=

[
 
 
 
 
 
 
 
𝜕𝜌1

𝜕𝑥

𝜕𝜌1

𝜕𝑦

𝜕𝜌1

𝜕𝑧

𝜕𝜌1

𝜕𝑡

𝜕𝜌2

𝜕𝑥

𝜕𝜌2

𝜕𝑦

𝜕𝜌2

𝜕𝑧

𝜕𝜌2

𝜕𝑡
⋮ ⋮ ⋮ ⋮

𝜕𝜌𝑚

𝜕𝑥

𝜕𝜌𝑚

𝜕𝑦

𝜕𝜌𝑚

𝜕𝑧

𝜕𝜌𝑚

𝜕𝑡 ]
 
 
 
 
 
 
 

∙ [

∆𝑥
∆𝑦
∆𝑧
∆𝑡

] + [

𝜈1

𝜈2

⋮
𝜈𝑚

] 

 
Defining the state vector u = [x, y, z, t]’, the measurement vector  = [1, 2, …, m]’, 
the measurement noise  = [1, 2, …, m]’ and the Measurement Model Matrix H that represents the 
relationship between the measured values and the state values, the “linearized observation equations” 

can be written as: 
∆𝝆 = 𝑯 ∙ 𝒖 + 𝝂 

 

4.2.1.1. Case of analysis 
Considering the case of analysis discussed in this work, the input data considered are the coordinates 
of the satellites (xi, yi, zi), the offset of the receiver clock from system time (ti) and the pseudoranges 
of the satellites (i). Assuming the first approximation ustart=[xu, yu, zu]’ and tstart=tu the first step is 
the calculation of the geometric range for each satellite i: 

𝑟𝑖 = √(𝑥𝑖 − 𝑥𝑢)
2 + (𝑦𝑖 − 𝑦𝑢)

2 + (𝑧𝑖 − 𝑧𝑢)
2 

 

Then, the approximation is set û = ustart, so the pseudorange approximation is: 

𝜌�̂� = √(𝑥𝑖 − �̂�𝑢)2 + (𝑦𝑖 − �̂�𝑢)2 + (𝑧𝑖 − �̂�𝑢)2 + 𝑐 ∙ 𝑡𝑖 
 
and the measurement model matrix H is determined: 

𝐻 = 

[
 
 
 
 
𝑎𝑥1 𝑎𝑦1 𝑎𝑧1 1

⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑖 𝑎𝑦𝑖 𝑎𝑧𝑖 ⋮

⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛 𝑎𝑦𝑛 𝑎𝑧𝑛 1]

 
 
 
 

 

 
Where axi, ayi and azi denote the direction cosines of the unit vector pointing from the approximate 
user position to the ith satellite, and they are defined as: 
 

𝑎𝑥𝑖 = −
𝑥𝑖 − �̂�𝑢
𝑟𝑖

; 𝑎𝑦𝑖 = −
𝑦𝑖 − �̂�𝑢
𝑟𝑖

; 𝑎𝑧𝑖 = −
𝑧𝑖 − �̂�𝑢
𝑟𝑖

 

 
Finally, considering matrix form, the displacements can be computed as: 
 

�̂� − 𝜌 = ∆𝜌 = 𝐻 ∙ ∆𝑢 

∆𝒖 = 𝑯−𝟏 ∙ ∆𝝆 = [∆𝑥𝑢, ∆𝑦𝑢, ∆𝑧𝑢, −𝑐∆𝑡𝑢]′ 
 
 

And then the final result of interest: 

𝒖 = 𝒖𝒔𝒕𝒂𝒓𝒕 + ∆𝒖(𝟏: 𝟑) 

𝑡 = ∆𝑢(4) 
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The vector u calculated is considered as the new approximation ustart, and the whole procedure is 
reiterated. This is valid until the difference between the position at the step k+1 and k, so that the 
norm of the vector u(1:3) is lower than a decided tolerance, which in this analysis is considered to 
be 10-4. Otherwise, the cycles can be stopped when the number of iterations exceed a certain value 
(which can be 50), but this is less accurate, since the tolerance method ensures that the position 
update has reached the desired level of accuracy.  
In MATLAB implementation, it is important to remember to clear the values at the end of each 
iteration and epoch, in order to avoid errors due to the dimension of matrices that can change 
according to the number of satellites in view in each epoch. 
 
In chapter 3 the difference in the implementation of the positioning algorithms on Earth or Lunar 
environment have been introduced. Obviously, those corrections need to be taken into account in 
Least Squares implementation: in terrestrial environment, the formula described before are 
implemented after the check of the satellites in visibility and the Lagrange interpolation. Moreover, 
the input data of the satellites in visibility must consider the Sagnac effect, while in the pseudorange 
approximation equation there will be an additional term given by the Ionospheric correction. 
In lunar environment, the check to be done is that all the four satellites are in view, otherwise the 
algorithm cannot be computed. Pseudorange values are not given in input, so that the pseudorange 
equation is simply substituted by the Slant Range calculation. Of course, ionospheric correction is 
not present, but the slant range equation will have an additional term that contains the application of 
the errors introduced: satellite positioning, clock and multipath/receiver errors. 
 

4.2.2. Kalman Filter 
The Kalman Filter is a recursive method, which means that the estimate of the state vector is refined 
with each new input measurement and without the need to store the past measurements. This 
algorithm provides an efficient computational means to estimate the state of a dynamical system, in 
a way that minimizes the mean of the squared error. 
Within the Kalman Filter implementation there are two different parts to describe: the process model 
and the measurement model. The process equations describe how the state is updated, while the 
measurement equations produce the measurement vector as a matrix times the state vector. 
The initializations to be considered in this case regards the state vector ustart = [xu, yu, zu, tu]T and the 
error covariance matrix Pstart. Starting from these values, the predict state is: 

𝑢𝑘′ = 𝐹 ∙ 𝑢𝑘−1 + 𝜈 

𝑃𝑘′ = 𝐹  𝑃𝑘−1  𝐹
𝑇 + 𝑄 

Where: 
- 𝑢𝑘′ is the predicted state vector at the epoch of analysis 
- 𝑢𝑘−1 is the state vector at time k-1, i.e., the result obtained at the previous step (at the first 

epoch it is the initialization ustart)  
- 𝐹 = State transition matrix (deals with time steps & constant velocity) 
- 𝑄 = State error autocovariance matrix (deals with uncertainty) 
- 𝜈 = Noise 

The state error autocovariance matrix Q is a n x n matrix, where n is the length of the state vector, 
while the measurement error auto covariance matrix R is a m x m matrix, where m is the length of 
the measurement vector (in this case it means the number of satellites in view, since the 
measurements are the respective pseudoranges). Both matrices are defined as the expected value of 
the respective noise (state and measurement noise): 

𝑄 = 𝐸[𝜈 𝜈𝑇]    𝑅 = 𝐸[𝜔 𝜔𝑇] 
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Given these matrixes, the Kalman Gain can be computed: 

𝐾 = 𝑃𝑘′ 𝐻
𝑇 ∙ (𝐻 𝑃𝑘′ 𝐻

𝑇 + 𝑅)−1 
 
This is of course one of the most important parameters of the filter, which defines the relative 
importance given to the measurement and the current state estimation. Generally, a gain closer to 
one places more weight to the most recent measurements, resulting in a jumpy estimated trajectory, 
since the system fits faster. Instead, with a gain close to zero the system pays more attention to the 
predictions and will smooth out noise but decrease responsiveness. 
Once defined the Kalman gain and the measurement model matrix H, the measurement vector 
zmeas_k and the measurement update equations can be computed: 

𝑧𝑚𝑒𝑎𝑠_𝑘 = 𝐻 ∙ 𝑢𝑘−1 
 

𝑢𝑘 = 𝑢𝑘′ + 𝐾 ∙ (𝑧𝑚𝑒𝑎𝑠_𝑘 −𝐻 𝑢𝑘
′ ) 

𝑃𝑘 = 𝑃𝑘′ − 𝐾 𝐻 𝑃𝑘′ 

These values are then considered as the new approximation for the subsequent step of analysis, in 
which the same procedure is repeated. 
 

4.2.2.1. Extended Kalman Filter 
The procedure described before considers a linear problem. The Extended Kalman Filter can 
overcome this issue by extending the functioning of the Kalman filter to the case of nonlinear 
problems. This method aims to linearize the problem, substituting the state transition matrix and the 
measurement model matrix with functions of the state vector. This means, in matrix form, that these 
parameters become Jacobian Matrices. 

𝐹 → 𝑓(𝑢) → 𝐹𝑗
𝐻 → ℎ(𝑢) → 𝐻𝑗

} → 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠 

 
Considering the matrix H, the linearization is computed with the first order Taylor expansion, which 
tries to predict the behaviour of a linear function taking into account a starting point, in this case the 
mean value: 

ℎ(𝑢) = ℎ(𝜇) +
𝜕ℎ(𝑢)

𝜕𝑢
(𝑥 − 𝜇) 

- ℎ(𝜇) = evaluation of nonlinear function in the mean value  

- 𝜕ℎ(𝑢)

𝜕𝑢
 = extrapolate a line around  

Stating that m is the length of the measurement vector zk and n the length of the state vector uk, the 
Jacobian Matrix H is defined paying attention to the fact that in this case the partial derivates must be 
used: 

𝐻𝑗 =

[
 
 
 
 
 
 
 
𝜕ℎ1
𝜕𝑢1

𝜕ℎ1
𝜕𝑢2

⋯
𝜕ℎ1
𝜕𝑢𝑛

𝜕ℎ2
𝜕𝑢1

𝜕ℎ2
𝜕𝑢2

⋯
𝜕ℎ2
𝜕𝑢𝑛

⋮ ⋮ ⋱ ⋮
𝜕ℎ𝑚
𝜕𝑢1

𝜕ℎ𝑚
𝜕𝑢2

⋯
𝜕ℎ𝑚
𝜕𝑢𝑛 ]
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The definition of the State Transition Matrix F can change depending on the model used to analyze 
user’s characteristics. In the following section, a dynamic model will be described: this can be 
considered as a nearly constant velocity or nearly constant acceleration model for example. Another 
consideration could be the static model, which is of course a variation of the dynamic model not 
considering velocity or acceleration values, but only position. 
 

4.2.2.2. Case of analysis 
Starting from same data of Least Square application, the Extended Kalman Filter allows to also 
determine velocity or acceleration components depending on the dynamic model considered. 
In this analysis, the model considered is Nearly Constant Velocity, but the same reasonings will be 
valid for other dynamic models that can be implemented. 
The state vector will now also include velocity components in addition to position: 

𝒖 = [𝑥  𝑥 ̇  𝑦  𝑦 ̇  𝑧  �̇�  𝑐∆𝑡  𝑐∆𝑡̇ ]
𝑇
 

 
The state equations consider the acceleration as the noise of the model: 

𝑢′ = 𝐹 ∙ 𝑢 +  𝜈 →  

{
 
 
 
 

 
 
 
 

𝑥′ = 𝑥 + �̇�∆𝑡 + 𝜈𝑥
�̇�′ = �̇� + 𝜈�̇�

𝑦′ = 𝑦 + �̇�∆𝑡 + 𝜈𝑦
�̇�′ = �̇� + 𝜈�̇�

𝑧′ = 𝑧 + �̇�∆𝑡 + 𝜈𝑧
�̇�′ = �̇� + 𝜈�̇�

𝑐∆𝑡′ = 𝑐∆𝑡 + 𝑐∆𝑡̇ ∆𝑡 + 𝜈𝑐∆𝑡
𝑐∆𝑡̇ ′ = 𝑐∆𝑡̇ + 𝜈𝑐∆𝑡̇

 

 
Where u’ is the state vector at the step k+1, u is the state vector at the step k defined before, t is the 
time step between the two epochs and  is the state noise that consider acceleration as perturbation 
of the model (it will be deepened shortly). 
The State Transition Matrix can be easily derived from these equations. To simplify, considering only 
the x component, the state vector is of two elements [𝑥 �̇�]𝑇: 

𝑢𝑥
′ = 𝐹𝑠𝑢𝑏 ∙ 𝑢𝑥 → {

𝑥′ = 𝑥 + �̇�∆𝑡
�̇�′ = �̇�

   →  𝐹𝑠𝑢𝑏 = [
1 ∆𝑡
0 1

] 
 
Replicating the same procedure for the other components, the State Transition Matrix F is the 8x8 
matrix defined as: 

𝐹 = [

𝐹𝑠𝑢𝑏 0 0 0
0 𝐹𝑠𝑢𝑏 0 0
0 0 𝐹𝑠𝑢𝑏 0
0 0 0 𝐹𝑠𝑢𝑏

] 

 
As already defined for the Least Squares technique, the measurements are given by the pseudoranges 
of the satellites (in lunar environment the pseudoranges are substituted by the Slant Ranges, but the 
reasoning and the result of this analysis is the same): 

𝜌𝑖 = √(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2 − 𝑐 𝑡𝑖 + 𝑒𝑟𝑟𝑜𝑟𝑠 
 
Starting from this equation, the direction cosines of the measurement model matrix H can be 
computed considering the partial derivates: 
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𝜕𝜌𝑖

𝜕𝑥
=

−(𝑥𝑖−𝑥𝑢)

√(𝒙𝒊−𝒙𝒖)𝟐+(𝒚𝒊−𝒚𝒖)𝟐+(𝒛𝒊−𝒛𝒖)𝟐
  𝜕𝜌𝑖

𝜕𝑦
=

−(𝑦𝑖−𝑦𝑢)

√(𝒙𝒊−𝒙𝒖)𝟐+(𝒚𝒊−𝒚𝒖)𝟐+(𝒛𝒊−𝒛𝒖)𝟐
 

𝜕𝜌𝑖

𝜕𝑧
=

−(𝑧𝑖−𝑧𝑢)

√(𝒙𝒊−𝒙𝒖)𝟐+(𝒚𝒊−𝒚𝒖)𝟐+(𝒛𝒊−𝒛𝒖)𝟐
  

𝜕𝜌𝑖

𝜕(𝑐𝑑𝑡)
= −1 

Hence: 

𝐻 =

[
 
 
 
 𝜕𝜌1
𝜕𝑥
⋮

𝜕𝜌𝑚
𝜕𝑥

  
0
⋮
0
  

𝜕𝜌1
𝜕𝑦
⋮

𝜕𝜌𝑚
𝜕𝑦

  
0
⋮
0
  

𝜕𝜌1
𝜕𝑧
⋮

𝜕𝜌𝑚
𝜕𝑧

  
0
⋮
0
   
−1
⋮
−1
  
0
⋮
0
]
 
 
 
 

 

 
The error autocovariance matrices (already introduced) needs to be determined too.  
The State Error Autocovariance Matrix Q, as already said, is defined as the expected value of the 
state noise: 𝑄 = 𝐸[𝜈 𝜈𝑇] 
Considering the noise vector, it is possible to separate the first six elements regarding the noise on 
position and velocity, and the last two which relate clock and clock drift. 
Taking into account the part that relates to position and velocity, the noise on the model is considered 
to be the acceleration, so that: 
 

𝝂 =

[
 
 
 
 
 
𝜈𝑥
𝜈�̇�
𝜈𝑦
𝜈�̇�
𝜈𝑧
𝜈�̇� ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 𝑎𝑥 ∙

∆𝑡2

2
𝑎𝑥 ∙ ∆𝑡

𝑎𝑦 ∙
∆𝑡2

2
𝑎𝑦 ∙ ∆𝑡

𝑎𝑧 ∙
∆𝑡2

2
𝑎𝑧 ∙ ∆𝑡 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
∆𝑡2

2
0 0

∆𝑡 0 0

0
∆𝑡2

2
0

0 ∆𝑡 0

0 0
∆𝑡2

2
0 0 ∆𝑡 ]

 
 
 
 
 
 
 
 

∙ [

𝑎𝑥
𝑎𝑦
𝑎𝑧
] = 𝐺 ∙ 𝑎 

 
 
Where the Matrix G has been introduced. Therefore, the submatrix Qxyz will be: 
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𝑄𝑥𝑦𝑧 = 𝐸[𝜈 𝜈𝑇] = 𝐸[𝐺 𝑎 𝑎𝑇𝐺𝑇] = 𝐺 𝐸[𝑎 𝑎𝑇] 𝐺𝑇

=

[
 
 
 
 
 
 
 
 
∆𝑡2

2
0 0

∆𝑡 0 0

0
∆𝑡2

2
0

0 ∆𝑡 0

0 0
∆𝑡2

2
0 0 ∆𝑡 ]

 
 
 
 
 
 
 
 

∙ [

𝜎𝑎𝑥
2 0 0

0 𝜎𝑎𝑦
2 0

0 0 𝜎𝑎𝑧
2

] ∙

[
 
 
 
 
 
 
∆𝑡2

2
∆𝑡 0 0 0 0

0 0
∆𝑡2

2
∆𝑡 0 0

0 0 0 0
∆𝑡2

2
∆𝑡]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
∆𝑡4

4
 𝜎𝑎𝑥

2
∆𝑡3

2
 𝜎𝑎𝑥

2 0 0 0 0

∆𝑡3

2
 𝜎𝑎𝑥

2 ∆𝑡2 𝜎𝑎𝑥
2 0 0 0 0

0 0
∆𝑡4

4
 𝜎𝑎𝑦

2
∆𝑡3

2
 𝜎𝑎𝑦

2 0 0

0 0
∆𝑡3

2
 𝜎𝑎𝑦

2 ∆𝑡2 𝜎𝑎𝑦
2 0 0

0 0 0 0
∆𝑡4

4
 𝜎𝑎𝑧

2
∆𝑡3

2
 𝜎𝑎𝑧

2

0 0 0 0
∆𝑡3

2
 𝜎𝑎𝑧

2 ∆𝑡2 𝜎𝑎𝑧
2
]
 
 
 
 
 
 
 
 
 
 
 
 

 

 
As it can be seen, Qxyz is a block matrix and can therefore be written more compactly as follows: 

𝑄𝑠𝑢𝑏_𝑖 =

[
 
 
 
∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

 
 
 

∙ 𝜎𝑎𝑖
2      𝑤𝑖𝑡ℎ 𝑖 = 𝑥, 𝑦, 𝑧         →          𝑄𝑥𝑦𝑧 = [

𝑄𝑠𝑢𝑏_𝑥 0 0

0 𝑄𝑠𝑢𝑏_𝑦 0

0 0 𝑄𝑠𝑢𝑏_𝑧

] 

 
 
The same result can be obtained with the consequent different method. Recalling the model of the 
state, considering acceleration as noise, it is possible to define the matrix Fa (that corresponds to the 
state transition matrix of the constant acceleration model) and the matrix Qa which include the noise 
only on the acceleration term: 
 

𝐹𝑎 = [
1 ∆𝑡

∆𝑡2

2
0 1 ∆𝑡
0 0 1

]        𝑄𝑎 = [
0 0 0
0 0 0
0 0 1

] ∙ 𝜎𝑠
2 

 
 
And the matrix product is defined: 
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𝐹𝑎 ∙ 𝑄𝑎 ∙ 𝐹𝑎
𝑇 = [

1 ∆𝑡
∆𝑡2

2
0 1 ∆𝑡
0 0 1

] ∙ [
0 0 0
0 0 0
0 0 1

] ∙ [

1 0 0
∆𝑡 1 0
∆𝑡2

2
∆𝑡 1

] ∙ 𝜎𝑠
2

= [
0 0

∆𝑡2

2
0 0 ∆𝑡
0 0 1

] ∙ [

1 0 0
∆𝑡 1 0
∆𝑡2

2
∆𝑡 1

] ∙ 𝜎𝑠
2 =

[
 
 
 
 
 
 
∆𝑡4

4

∆𝑡3

2

∆𝑡2

2
∆𝑡3

2
∆𝑡2 ∆𝑡

∆𝑡2

2
∆𝑡 1 ]

 
 
 
 
 
 

∙ 𝜎𝑠
2 

The submatrix Qsub_i considers only position and velocity components, which are the elements of the 
first two columns and rows. This leads to the same solution obtained with the previous method. 
 
The previous result is valid considering a Discrete noise model, which means that the noise is different 
in each time period but constant in that time period. Instead, if it is assumed that the noise changes 
continuously over time, it is necessary to consider a Continuous noise model, in which the Q matrix 
is obtained integrating the one obtained in the Discrete model: 

𝑄𝑥𝑦𝑧_𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 = ∫ 𝐹 ∙ 𝑄𝑥𝑦𝑧_𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ∙ 𝐹
𝑇

∆𝑡

0

 𝑑𝑡 = ∫

[
 
 
 
∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

 
 
 

∙ 𝜎𝑎𝑖
2 𝑑𝑡 =  

[
 
 
 
∆𝑡5

20

∆𝑡4

8
∆𝑡4

8

∆𝑡3

3 ]
 
 
 

∙ 𝜎𝑎𝑖
2

∆𝑡

0

 

 
Considering the clock part, the Qclock matrix is defined dividing the noise in two parts: one related to 
the clock state variable, which is governed by the white noise spectral density leading to random walk 
velocity error (t); the other related to clock drift, which consider the white noise spectral density 
leading to random walk clock frequency error plus the white noise clock drift (dt) [30]. The latter 
correlation is defined by a matrix Qdt which is the same calculated in discrete model for the 
components (Qsub_i), while in the matrix Qt the only element different from zero is the first one. 

𝑄𝑐𝑙𝑜𝑐𝑘 = 𝑄𝑡 + 𝑄𝑑𝑡 = [
1 0
0 0

] ∙ 𝜎𝑡
2 +

[
 
 
 
∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

 
 
 

∙ 𝜎𝑑𝑡
2 =

[
 
 
 𝜎𝑡

2 +
∆𝑡4

4
 𝜎𝑑𝑡

2
∆𝑡3

2
 𝜎𝑑𝑡

2

∆𝑡3

2
 𝜎𝑑𝑡

2 ∆𝑡2 𝜎𝑑𝑡
2
]
 
 
 

 

 
As before, the continuous model is obtained integrating the previous matrix: 

𝑄𝑐𝑙𝑜𝑐𝑘_𝑐𝑜𝑛 = ∫

[
 
 
 𝜎𝑡

2 +
∆𝑡4

4
 𝜎𝑑𝑡

2
∆𝑡3

2
 𝜎𝑑𝑡

2

∆𝑡3

2
 𝜎𝑑𝑡

2 ∆𝑡2 𝜎𝑑𝑡
2
]
 
 
 

 𝑑𝑡 =  

[
 
 
 ∆𝑡 𝜎𝑡

2 +
∆𝑡5

20
 𝜎𝑑𝑡

2
∆𝑡4

8
 𝜎𝑑𝑡

2

∆𝑡4

8
 𝜎𝑑𝑡

2
∆𝑡3

3
 𝜎𝑑𝑡

2
]
 
 
 ∆𝑡

0

 

 
There is no clear rule that specify the choice of a discrete model over a continuous one, or vice 
versa. Generally, discrete model is more recommended when t is very small, otherwise when t is 
large continuous noise model is more accurate. In this work, both models will be implemented to 
see the differences that they can provide [20]. 
Finally, the other matrix to be determined is the Measurement error autocovariance matrix R, which 
has already been defined as the expected value of the measurement noise. 
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In this analysis, this matrix is simply assumed to be diagonal with equal variance r2, which means 
that all measurements are assumed to be statistically uncorrelated, which is reasonable. 

𝑅 = 𝐸[𝜔 𝜔𝑇] = [
𝜎𝑅1

2

⋱
𝜎𝑅𝑚

2
] 

 
As already said, the explained procedure can be done analogously for the Nearly Constant 
Acceleration model, considering the changes necessary to adapt the formulation to that case. 
Regardless of the choice of model, one of the most important issues in the implementation of the 
Extended Kalman Filter is the selection of the right values for the process noise and measurement 
variances, i.e., the values of ai, t, dt and r. This process is called Tuning and it is defined to be an 
art more of a science, because there are not tabular values, but they usually come from a process of 
trial and error, so it needs engineering practice and experience (see appendix D). 
Taking for example the radar world, the  depends on the target characteristics and model 
completeness. For maneuvering targets, like airplanes, the  shall be quite large, while for non-
maneuvering targets, like rockets,  can be smaller. Moreover, if the model includes environmental 
influences like air drag, the degree of the process noise randomness is smaller and vice versa [20]. 
 
 

4.2.3. Sensor Fusion 
The Sensor Fusion technique combines data from different sensors in order to reach better 
performance than can be achieved when each source of information is used alone. In this work, the 
Extended Kalman Filter is considered with the support of an additional measurement, given by an 
altimeter. This reasoning is obviously valid only considering a dynamic user scenario, in which the 
distance from the lunar surface can be determined. In particular, altimeter reading is available when 
the user is less than 10 km away from the surface of the Moon [31] [32]. 
In this case, the errors implementation on satellites considers only satellites positioning errors, since 
clock error is not present anymore because the measurements are two-way. Multipath error is not 
present of course because the user is orbiting around the Moon (or landing), but a receiver error must 
be considered (implemented as a random error with gaussian distribution). 
 

 
Figure 4.1: 3D animation of the Slant Range of the user (blue) and the Intersection with lunar surface (red) over time 
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Regarding the altimeter measurement, the first implementation will be made with the hypothesis that 
the altimeter reading is purely vertical, directed toward the center of the Moon. Figure 4.1 shows in 
blue the Slant Range of the user over time, calculated with the coordinates given in input in the 
observation file. Instead, the red points highlight the intersection between these values of slant ranges 
and the surface of the Moon. The hypothesis considers that the additional measurement at each epoch 
is given by the distance between the user position and the intersection with the Moon determined at 
that epoch, which can be calculated simply by subtracting the radius of the Moon from the slant range 
of the user. This means that this measurement is directed toward the center of the Moon, i.e., along 
the Up direction of the ENU reference system. This assumption is of course incorrect, since it does 
not consider the attitude of the lander: in fact, following its trajectory, the lander does not aim 
perfectly to the center of the Moon at each epoch, but its attitude over time makes that the 
measurement is not absolutely vertical. 
 

 
Figure 4.2: Altimeter measurement with and without error 

The implementation of this correction is depicted in Figure 4.2, considering a single instant. As 
before, the blue line represents the slant range of the user and the red point the intersection with the 
lunar surface. The yellow span represents the error of the 
altimeter reading due to the attitude of the lander: this span is 
calculated considering an error on the nadir direction 
comprised in a 1.3° cone [32], as shown in Figure 4.3. 
Given this cone, the span error in meters on the lunar surface 
can be easily calculated using the sine theorem and simple 
geometric definitions.  
Once this span error is defined (depicted in yellow in Figure 
4.2), the lander can aim to any point on the perimeter of this 
surface (depicted in green), thus the more realistic altimeter 
reading will be the distance between this point and the user 
position at that epoch (cyan line in figure). 
 
 

4.2.3.1. Algorithm implementation 
The first step of the implementation is the determination of the altimeter measurement. Considering 
the first hypothesis (that the measurement perfectly vertical), this reading is obtained by the difference 
between the user position and the radius of the Moon. Therefore, for each epoch, the Extended 
Kalman Filter algorithm is implemented and the user position at that epoch is calculated: after that, 

Figure 4.3: Altimeter cone error 
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subtracting the radius of the Moon to the position calculated the hypothetical altimeter measurement 
is determined: 

𝐸𝐾𝐹 →  𝑢𝑎𝑝𝑝   →   𝑎𝑙𝑡𝑚𝑒𝑎𝑠 = 𝑛𝑜𝑟𝑚(𝑢𝑎𝑝𝑝) − 𝑟𝑀𝑜𝑜𝑛 
 
If this distance is lower than ten kilometers, the altimeter is effective, so that the Sensor Fusion 
technique can be considered and then the Extended Kalman Filter is reimplemented with the 
modification needed. 
First, the intersection between the slant range of the user and the lunar surface needs to be determined. 
This is basically done considering a system of equations that include the equation of the line through 
the two points c=[xc, yc, zc]=[0, 0, 0] and uapp=[xapp, yapp, zapp], and the equation of the sphere with 
center c=[xc, yc, zc]=[0, 0, 0] and radius equal to rMoon: 

{
 
 

 
 

𝑥 − 𝑥𝑐
𝑥𝑎𝑝𝑝 − 𝑥𝑐

=
𝑦 − 𝑦𝑐
𝑦𝑎𝑝𝑝 − 𝑦𝑐

𝑦 − 𝑦𝑐
𝑦𝑎𝑝𝑝 − 𝑦𝑐

=
𝑧 − 𝑧𝑐
𝑧𝑎𝑝𝑝 − 𝑧𝑐

(𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)

2 + (𝑧 − 𝑧𝑐)
2 = 𝑟𝑚𝑜𝑜𝑛

2

 

 
For the first hypothesis, this is the point on the surface where the lander is aiming, so that it will be 
used in the following calculations. Instead, considering the correction due to the attitude of the user, 
the error explained before needs to be implemented to produce the more realistic measurement. 
Since there is an additional measurement, the only variables that change in the implementation of the 
Extended Kalman Filter are the ones that depend on the number of measurement m. These variables 
are the measurement model matrix H (m x n matrix), the measurement error autocovariance matrix R 
(m x m matrix) and the measurement vector zmeas (m x 1 vector). 
 
In order to determine the additional row of the measurement model matrix, the altimeter measurement 
needs to be expressed in function of the three coordinates, as done for the pseudorange in the previous 
sections. Stating that the approximation of the filter is uapp as before and the calculated point on the 
Moon surface (where the altimeter aims) is uL=[xL, yL, zL], the expression of the altimeter reading is: 

𝑎𝑙𝑡𝑚𝑒𝑎𝑠 = √(𝑥𝑎𝑝𝑝 − 𝑥𝐿)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝐿)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝐿)

2
 

 
So that the partial derivates can be computed: 

𝜕𝑎𝑙𝑡

𝜕𝑥
= −

𝑥𝑎𝑝𝑝−𝑥𝐿

𝑎𝑙𝑡𝑚𝑒𝑎𝑠
   𝜕𝑎𝑙𝑡

𝜕𝑦
= −

𝑦𝑎𝑝𝑝−𝑦𝐿

𝑎𝑙𝑡𝑚𝑒𝑎𝑠
   𝜕𝑎𝑙𝑡

𝜕𝑧
= −

𝑧𝑎𝑝𝑝−𝑧𝐿

𝑎𝑙𝑡𝑚𝑒𝑎𝑠
 

 
Hence, the additional row of the measurement model matrix is: 

𝐻𝑎𝑙𝑡 = [
𝜕𝑎𝑙𝑡𝑚𝑒𝑎𝑠
𝜕𝑥

 0 0  
𝜕𝑎𝑙𝑡𝑚𝑒𝑎𝑠
𝜕𝑦

 0 0  
𝜕𝑎𝑙𝑡𝑚𝑒𝑎𝑠
𝜕𝑧

 0 0  0 0 0] 

 

→ 𝐻 = [
𝐻𝐸𝐾𝐹
𝐻𝑎𝑙𝑡

] 

 
There is another possibility to obtain the same result. As already said, the altimeter provides in output 
a measurement which is referred to an ENU reference system. In the first hypothesis the only 
component is the Up direction, whilst East and North are null since it has been considered a perfectly 
vertical measurement. Instead, taking into account the attitude of the lander, the measurement will 
also have East and North components. 
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In any case, it is possible to determine the Latitude  and Longitude  of the position of the user using 
Bowring technique (Appendix C and [29]) and use these parameters to determine the rotation matrix 
to switch the measurement from ENU coordinates to XYZ reference system with the origin in the 
center of the Moon. These matrices allow to express the ENU coordinates in function of x, y and z: 

𝑎𝑙𝑡𝑚𝑒𝑎𝑠 = √𝐸2 + 𝑁2 + 𝑈2 
 

[
𝐸
𝑁
𝑈
] = 𝑅1 [

𝜋

2
− 𝜑]𝑅3 [

𝜋

2
+ 𝜆] ∙ [

∆𝑥
∆𝑦
∆𝑧
] = [

− sin 𝜆 cos 𝜆 0
− cos 𝜆 sin 𝜑 − sin 𝜆 sin 𝜑 cos 𝜑
cos 𝜆 cos 𝜑 sin 𝜆 cos 𝜑 sin 𝜑

] ∙ [
∆𝑥
∆𝑦
∆𝑧
] 

Where: 
𝑥 = 𝑥𝑎𝑝𝑝 − 𝑥𝐿 𝑦 = 𝑦𝑎𝑝𝑝 − 𝑦𝐿 𝑧 = 𝑧𝑎𝑝𝑝 − 𝑧𝐿 

 
Hence, the matrix product yields: 

{

𝐸 =  −sin 𝜆 ∙ ∆𝑥 + cos 𝜆 ∙ Δ𝑦
𝑁 = − cos 𝜆 sin𝜑 ∙ ∆𝑥 − sin 𝜆 sin 𝜑 ∙ Δ𝑦 + cos 𝜑 ∙ ∆𝑧
𝑈 = cos 𝜆 cos 𝜑 ∙ ∆𝑥 + sin 𝜆 cos 𝜑 ∙ Δ𝑦 + sin 𝜑 ∙ Δ𝑧

 

 
And the partial derivates are computed as: 

𝜕𝑎𝑙𝑡

𝜕𝑥
=
− 𝐸 ∙ sin 𝜆 − 𝑁 ∙ cos 𝜆 sin 𝜑 + 𝑈 ∙ cos 𝜆 cos 𝜑

√𝐸2 +𝑁2 + 𝑈2
 

𝜕𝑎𝑙𝑡

𝜕𝑦
=
𝐸 ∙ cos 𝜆 − 𝑁 ∙ sin 𝜆 sin 𝜑 + 𝑈 ∙ sin 𝜆 cos 𝜑

√𝐸2 +𝑁2 + 𝑈2
 

𝜕𝑎𝑙𝑡

𝜕𝑧
=
𝑁 ∙ cos 𝜑 + 𝑈 ∙ sin 𝜑

√𝐸2 +𝑁2 + 𝑈2
 

 
And again, the measurement model matrix H is defined as before. 
 
The measurement vector zmeas also will have an additional row, which will be defined simply as the 
difference between the altimeter measurement calculated with the approximated position and the 
measurement calculated with the reference position: 
 

𝑧𝑚𝑒𝑎𝑠 = [
𝑧𝐸𝐾𝐹
𝑧𝑎𝑙𝑡

] = [
𝑧𝐸𝐾𝐹

𝑎𝑙𝑡𝑢 −  𝑎𝑙𝑡𝑚𝑒𝑎𝑠
] 

 
Where altmeas is defined as before and altu is computed in the same way given the reference position 
of the user uuser=[xu, yu, zu]: 

𝑎𝑙𝑡𝑢 = √(𝑥𝑢 − 𝑥𝐿)2 + (𝑦𝑢 − 𝑦𝐿)2 + (𝑧𝑢 − 𝑧𝐿)2 
 
Finally, the measurement error autocovariance matrix R will have an additional row and column, with 
the only non-zero element always on the diagonal of the matrix: 
 

𝑅 = [
𝑅𝐸𝐾𝐹 0

0 𝜎𝑅
2] 
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4.3. Performance Analysis Tool 
In the previous paragraphs, the different positioning algorithms has been introduced with the 
explanation of their implementations, formulas and errors applications. In order to validate the scripts 
produced, in this paragraph they will be tested with the use of Earth input data. This choice has been 
done because the Earth scenario is known and can be managed with relative ease. In fact, terrestrial 
results obtainable with the techniques analyzed are known in literature and already applied in other 
contexts, which means that it can be easier to compare the results obtained in this work and to verify 
their reliability. Furthermore, as already discussed, in lunar environment the number of satellites in 
view is reduced and signals are weaker. Considering Earth environment, instead, the number of 
constellations usable (hence the number of satellites in view) is higher, so that the functioning of the 
algorithms can be determined more accurately. 
These data are referred to a GPS constellation orbiting around the Earth, with the number of satellites 
in view that can vary at each epoch of observation, up to a maximum of 32 satellites. 
The results will be referred to the implementation of the Least Squares algorithm and the Extended 
Kalman Filter with either a static or a dynamic model. They will show the main outcomes obtained 
with the implementation of these algorithms, in order to obtain some information about their 
reliability considering the performance and differences already present in literature regarding these 
techniques. 
 

4.3.1. Least Squares 
First algorithm introduced in paragraph 4.2 is the Least Squares technique, which results will be 
reported in this section. It is important to underline that the initial approximation of the user position 
considered in this work is the center of the Earth, ustart = [0, 0, 0] (considering ECEF reference 
system), but it can be demonstrated that the results would not be different considering a different 
initialization. 
The first important outcome to discuss is the Positioning Error, that represents the deviation of the 
output of the Least Squares from the reference position, giving information about the accuracy of the 
estimation obtained with this technique. Considering for each observational epoch uref =[xref, yref, zref] 
as the reference position retrieved from the observation file and uapp=[xapp, yapp, zapp] as the 
approximated position calculated by the algorithm at that specific epoch, the Positioning Error can be 
computed as: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑟𝑒𝑓)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑟𝑒𝑓)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝑟𝑒𝑓)

2
 

 
In Figure 4.4 the Positioning Error is represented with blue circles, while the x axis represents the 
time of analysis which shows solution every 30 seconds, since the input data provide satellites 
characteristics every 30 seconds, so that each epoch corresponds to 30 seconds of analysis. In the 
figure, the number of satellites in view at each epoch is reported in red line, with the respective scale 
on the right of the graph. 
 



 

 
 51 

 
Figure 4.4: Positioning error (blue) and Number of satellites in visibility (red) for LS implementation 

The figure shows that the number of satellites in view can change during the analysis between a 
minimum of 7 satellites and a maximum of 13, which of course gives always the coverage needed to 
estimate the position of the user. The positioning error demonstrates a trend of the solution a little 
scattered over time, with levels of accuracy that hardly go over 25 meters or below 5 meters of error. 
These values are in line with expectations, giving a first confirmation of the reliability of the Least 
Squares implementation. 
 
Another important result to discuss is the Dilution of Precision (DOP): as shown in Figure 4.5, the 
way the user sees the satellites can affect the positioning estimation. On the left the figure shows that, 
due to measurement errors, the true range of each satellite is affected by a measurement noise ε, 
determining an uncertainty region in the position estimation. The size and the shape of this region 
can vary depending on the relative positions of user and satellite, as highlighted in the 2D illustration 
on the right. In fact, even with the same measurement error variation, the orange regions highlight 
that geometry a) gives considerably less error than in geometry b), so that the latter will be considered 
to have a larger Dilution of Precision. This effect will lead, for comparable measurement errors, to 
larger errors in the computed position for geometry b). 
 

 
Figure 4.5: DOP (Source: ESA GNSS Book [23]) 

This effect is called indeed Dilution of Precision, and it is represented by different parameters, 
reported in Figure 4.6. These parameters are defined as geometry factors useful the characterize the 
accuracy of various components of the position/time solution, since they relate user position and 
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time bias errors to those of the pseudorange. The determination of these parameters is given from 
the definition of the matrix D, obtained starting from the Measurement Matrix H, already discussed 
in section 4.2.1: 

𝐷 = (𝐻𝑇 𝐻)−1 = [

𝐷11 𝐷12 𝐷13 𝐷14
𝐷21 𝐷22 𝐷23 𝐷24
𝐷31 𝐷32 𝐷33 𝐷34
𝐷41 𝐷42 𝐷43 𝐷44

] 

 
D is a 4 x 4 matrix, since H is n x 4, where n is the number of satellites in view. Starting from this 
matrix, the following parameters are defined: 
 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑃𝐷𝑂𝑃 = √𝐷11 +𝐷22 +𝐷33  
𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝐻𝐷𝑂𝑃 = √𝐷11 +𝐷22  

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑉𝐷𝑂𝑃 = √𝐷33  
𝑇𝑖𝑚𝑒 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝐷𝑂𝑃 = √𝐷44  

 

 
Figure 4.6: Trend of different Dilution of Precision (DOPs) 

In Figure 4.6 on the x axis the Time of Week of each epoch is reported: this value is determined 
through the conversion from the Gregorian date given in the input file for each observational epoch 
to GPS time, as explained in Appendix A.1. The first observational epoch is January 1st 2020, at which 
corresponds a TOW equal to 518400 seconds: after this value the subsequent ones will be spaced of 
30 seconds each as explained before. 
The figure shows that the values of DOP parameters vary between 0.5 and 2.5, which can be 
considered acceptable results, since in literature the thresholds in GPS performance standards are 
chosen to be lower than 6 [27]. If the DOPs exceed this value, the GNSS could be considered 
unavailable. Moreover, it can be said that there is a slight correlation between DOPs values and the 
number of visible satellites: often (but not always) DOPs values are lower (which means better 
accuracy) when more satellites are visible, as it can be seen for example about halfway through the 
solution in Figure 4.6 where DOPs values are higher corresponding to less satellites in view as shown 
in Figure 4.4. This can be easily explained, as more satellites in view can give more measurements 
to the user and can provide more easily a better geometric configuration, which clearly leads to better 
accuracy.  
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Figure 4.7: Positioning Error for LS implementation with or without Ionospheric correction 

Finally, a secondary result concerns the application of the ionospheric effect (introduced in section 
4.2.1) on the solution. In Figure 4.7 the blue line represents the solution with the implementation of 
the ionospheric correction (same result shown in Figure 4.4), while the red line represents the solution 
that consider the ionospheric effect. As it can be seen, this effect can lead to errors not quite large, 
with difference of few meters. 
This correction will not play an important role on the Moon since this effect is not present in the lunar 
environment. However, the terrestrial analysis allows to highlight the impact of this effect on the 
solution and to confirm the reliability of the implemented tool. 
 
 

4.3.2. Extended Kalman Filter 
As explained in section 4.2.2, the Extended Kalman Filter can produce different outcomes depending 
on the model considered to approximate user position over time. In this section the results will 
consider the implementation at first of a static positioning model and then a dynamic model, precisely 
Nearly Constant Velocity model. In both cases, the initial approximation is not the center of the Earth 
as for the Least Squares, but it is considered to be the outcome obtained after three iterations of the 
LS itself. The effect of this consideration will be clear observing the results. 
 

4.3.2.1. Static Filter 
The static model considers that the user is in a fixed position over time, so that the prediction of the 
user position and velocity at the instant k+1 are the same determined at the instant k. 
 

Static Model  →  {

𝑥′ = 𝑥
𝑦′ = 𝑦
𝑧′ = 𝑧

𝑐∆𝑡′ = 𝑐∆𝑡

  →  𝐹𝑠𝑡𝑎𝑡𝑖𝑐 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

 
As for the Least Squares, the main result to analyze is the Positioning Error, depicted in Figure 4.8 
as blue circles. The figure also shows in red the number of satellites in view, with the respective scale 
on the right, while the abscissa axis corresponds to the time of analysis with each epoch separated by 
30 seconds from the next one (as already explained for LS). 
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Figure 4.8: Positioning Error (blue) and Number of satellites in visibility (red) for EKF with static model 

As before, the number of satellites in visibility varies between a minimum of 7 satellites and a 
maximum of 13, giving the coverage needed during the analysis. 
Regarding the Positioning Error, as expected the figure brings to light the different evolution of the 
EKF solution, which converges over time to the final results, as opposed to the LS solution which 
was more scattered during the whole simulation time. In fact, in the first epochs of analysis there is a 
peak of about 10 meters, but shortly after that the filter converges and settles around values lower 
than 4 meters. This obviously demonstrates great accuracy of the Extended Kalman Filter compared 
to the Least Squares results, which is in line with the expectations. 
As said before, the filter initialization considers three iterations of LS instead of the center of the 
Earth as first approximation. In the latter case, the results would be the same shows in Figure 4.8, 
with the only difference that the EKF would take a little longer to converge, since the initial position 
estimation would be a lot far from the reference one. In any case, this would not affect the analysis 
that demonstrates the better accuracy of the results obtained. 
 

 
Figure 4.9: Positioning Error for EKF static model implementation with or without Ionospheric correction  
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As for section 4.3.1, Figure 4.9 shows the comparison between the results obtained with the 
implementation of the ionospheric correction (blue circles, same as Figure 4.8) and the results 
considering instead the ionospheric effect (red circles). Once again, the abscissa axis represents the 
Time of Week of each epoch. 
The difference between the two solution is clearer than in the Least Squares analysis. If the correction 
is not implemented, the errors in the estimation reach values higher than 20 meters in the first epochs 
and then converges to values around 15 meters, which means almost four times more than the results 
obtained with the implementation of the correction. 
As said before, this will not play an important role for lunar implementation, but it is helpful to verify 
the reliability of the script produced also for the Extended Kalman Filter. 
 
 

4.3.2.2. Dynamic Filter 
As mentioned before, the results will now be referred to the implementation of the Extended Kalman 
Filter considering a dynamic model. In particular, it will consider the Nearly Constant Velocity model 
explained in the section 4.2.2. 
 

 
Figure 4.10: Positioning Error (blue) and Number of satellites in visibility (red) for EKF with NCV model  

The outcomes analyzed will be the same as before. Figure 4.10 represents the Positioning Error (blue 
circles) and the number of satellites in visibility (red line), with the time of analysis on the abscissa. 
Once again, during the whole simulation there are at least 6 satellites in visibility, giving the needed 
coverage. As for the Positioning Error, the figure shows the same trend as for the static model, with 
peaks at the beginning of the analysis and convergence shortly after few epochs. Despite this, with 
the NCV model, at the beginning the errors are of almost 30 meters and then the filter converges to 
values around 22 meters, which is higher compared to the previous results. 
Moreover, the filter takes longer to converge with respect to the static model, reaching better values 
after almost 3 hours, but then increasing back and settles around 22 meters. 
This is expectable, since the position to estimate is referred to a static user, which is in a fixed position 
on Earth that is the reference value reported in the observation file in input. The nearly constant 
velocity model, instead, considers that the user is in motion over time, so that the filter will need more 
time to estimate the position, but also the correct velocity of the user which in reality will be static in 
the same position and without velocity components. 
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As mentioned in section 4.2.2, the results obtained highly depend on parameters injected in the filter. 
In fact, the tuning of these parameters is one of the most challenging phase of the validation of the 
filter, and this will be even more clear in lunar implementation (also demonstrated in appendix D). 
Once again, ionospheric effect will not be considered in lunar implementation, but as for the other 
cases this implementation allows to verify the reliability of the Extended Kalman Filter also for the 
dynamic model. 
 

 
Figure 4.11: Positioning Error for EKF with NCV model implementation with or without Ionospheric correction  

Figure 4.11 highlights once again the difference between the implementation of the Extended 
Kalman Filter with NCV model with (blue circles) and without (red circles) the ionospheric 
correction, with the Time of Week on the abscissa. 
The difference is smaller than the previous case, but as before the presence of this effect leads to 
error values higher than 30 meters in the beginning of the simulation and then converges to values 
around 25 meters, which means 3 meters more than with the application of the ionospheric 
correction. 
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5. Analysis of Results 

5.1. Static User 
Results in this paragraph are referred to the implementation of the different algorithms described in 
the previous chapter considering a static user. As shown in section 3.1, the hypothesis is that the user 
is inert in a fixed position, that has been considered the South Pole of the Moon. Therefore, this will 
be the reference position which, considering a coordinate system with its origin in the center of the 
Moon, will correspond to the coordinates [0, 0, -rMoon]. In order to determine the 3D position of the 
user, at least 4 satellites are needed to be in view: hence, based on the elevation of each satellite, a 
check has been done to assure that the four satellites of the constellation considered are in visibility 
during the analysis. Therefore, the results will show some interruptions in the calculation, referred to 
the epochs in which one or more satellites are no longer in view and the algorithm cannot find a 
solution, since the number of variables is lower than the unknows to be determined. Therefore, when 
there is this “blackout” of signals, the algorithm cannot consider anymore the approximation of the 
previous epoch and it will need to be reinitialized with the initial hypothesis. 
The x axis of the figures will indicate the time of analysis: the input data are provided every minute, 
hence during the simulation each observation epoch corresponds to one minute of analysis. 
 

5.1.1. Least Squares 
In this section, the main results obtained with the implementation of the Least Squares technique will 
be presented. The initialization considered in this analysis is that the first approximation of user 
position is [0,0,0]. The first analysis will be focused on the results obtained on the Horizontal plane, 
i.e., the x and y coordinates, while in the second part the results will be referred to the Vertical plane, 
i.e., the z coordinate. The three directions are referred to the reference system defined in section 3.1, 
with its origin in the center of the Moon. Since the user is a static configuration situated on the South 
Pole, in this scenario the horizontal and vertical planes with respect to the user position are the same 
of the reference system considered. 
Both analyses will show the comparison between the implementation of the algorithm considering 
the absence or the presence of the errors described in section 3.2 (satellite positioning, clock and 
multipath errors). 
In Figure 5.1.1, the blue circles represent the Horizontal Error, while the green circles represent the 
Horizontal Dilution of Precision, considering the implementation without any errors in the 
measurements. HDOP definition has already been analyzed in chapter 4.3, while Horizontal Error is 
defined as the difference between the user position determined with the algorithm and the reference 
position considering the horizontal plane, i.e., x and y coordinates. Defining user=[xu , yu , zu] as the 
reference position (South Pole) and uapp=[xapp , yapp , zapp] as the calculated position (approximation) 
with LS, the Horizontal Error is computed as: 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑢)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑢)

2
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Figure 5.1.1: Horizontal error and HDOP without errors implementation 

 
Figure 5.1.2: Horizontal Error and HDOP with errors implementation 

Of course, not considering the errors (Figure 5.1.1), the results are much more accurate, since the 
delta from reference position is on the order of 10-9 meters. Instead, it is of interest to observe the 
values that consider errors implementation (Figure 5.1.2), since they are closer to reality and show a 
deviation from the reference position that varies from 0 to 30 meters, which gives a first analysis of 
LS performances on the Horizontal plane. Another value that provides additional information about 
the performances of the algorithm is the Horizontal 95th percentile: the corresponding value P 
indicates that the probability that a random value X of the solution is equal or less than this value P 
is of the 95%. This is valid also for all the other percentiles, like the 50th and 99th percentiles reported 
in Figure 5.1.2, which indicates a value of the 95th percentile of about 20 meters. 
As for the HDOP, it can be seen that they reach relatively acceptable values between 1 and 2 and, as 
before, show absence of solution when there is a “blackout” of signals. Despite this, it is evident that 
there are peaks throughout the solution which make them reach values over 5: it is plausible that this 
is due to the constellation of satellites considered, which most likely periodically reaches during the 
analysis a critical configuration for the determination of user’s position. In fact, it can be noticed that 
even in the Horizontal Error there are peaks of the solution at the same instants of the HDOP ones. 
Excluding those peaks, the values of the HDOP are similar either with or without errors 
implementation. 
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Analogously, Figure 5.1.3 and Figure 5.1.4 shows the results obtained considering the Vertical Error 
(blue circles) and VDOP (green circles). As before, VDOP has already been analyzed, while Vertical 
Error is determined in the same way as done for the horizontal one, but now considering the vertical 
plane, i.e., z component: 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 = √(𝑧𝑎𝑝𝑝 − 𝑧𝑢)
2
 

 

 
Figure 5.1.3: Vertical error and VDOP without errors implementation 

 
Figure 5.1.4: Vertical error and VDOP with errors implementation 

Also for the vertical plane, the values without errors implementation are more accurate, but it can be 
seen that they are less accurate with respect to the horizontal ones. Without errors (Figure 5.1.3), 
vertical delta values are about one order higher than horizontal ones, while considering errors 
application (Figure 5.1.4) values of vertical errors are more than four times higher. As well as for the 
horizontal values, VDOP shows peaks throughout the solution due to the configuration of the 
satellites in view, but this time the peaks reach values much higher than the HDOP ones. 
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These results prove the better accuracy of the Least Squares on the horizontal plane compared to the 
vertical direction, demonstrating also by the values of the Dilution of Precisions, which are worse for 
the VDOP than the HDOP. 
 

 
Figure 5.1.5: 3D Position Error for LS implementation over static user 

Figure 5.1.5 provide a more general view of the results obtained, depicting the 3D Position Error. It 
is defined in the same way as done for horizontal and vertical errors, but considering all three 
components: 

3𝐷 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑢)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑢)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝑢)

2
 

 
In this sense, this result can be considered as the combination of horizontal and vertical error. In fact, 
as the figure shows, the trend of the solution is the same, and the values reached by the errors are in 
line with the ones observed for the two planes described before. 
 

 
Figure 5.1.6: Effect of the errors implementation on the Slant Range of each satellite 
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To better understand the effect of the implementation of the errors in the simulation, considering the 
four satellites in view, Figure 5.1.6 shows the effect of these errors on the Slant Range measure of 
each satellite. Since the user is not considered in these measurements, the effect taken into account 
here are satellite positioning and clock errors. Nevertheless, these calculations are done in the same 
epochs of the solutions obtained before, so that they will show the same interruptions in the analysis.  
It can be easily seen that the effect of the errors can have an impact on the results, since it can make 
the values of Slant Range to draw aside from the real one even of 20 meters, which is in any case a 
relative value compared to the Slant Range values that are of the order of 107 meters. 
 

5.1.2. Static Kalman Filter 
The following results will now focus on the implementation of the Extended Kalman Filter technique 
with a Static Model of motion. Similarly to Least Squares results, the figures will show the 
comparison of the results obtained with and without errors implementation. 
The Figure 5.1.7 shows the trend of the solution, which is different from the LS results, since the 
Extended Kalman Filter functioning brings to light the convergence of the solution over time, 
differently from the LS which at each epoch consider different iterations to converge to the solution 
at that specific epoch. The initialization in this case is no longer [0,0,0], but it is considered to be the 
result obtained after two iterations of the Least Squares technique. This is because, as said before, the 
EKF shows convergence over time, so that in the first phases of the analysis the results will be less 
accurate, but after very few epochs the filter immediately converges to more accurate values. This is 
valid every time there is a blackout of signals (i.e., when one or more satellites are not in view for 
more subsequent epochs), where the filter is again reinitialized with two iterations of LS, but shortly 
after that immediately converges again. As shown in Figure 5.1.7, in the first epochs both horizontal 
and vertical errors reach values slightly higher than the LS ones, but then after very few epochs 
(Figure 5.1.8) they both converge to errors of order of 10-9 meters and oscillate around these values 
for the time of analysis in which the satellites are in view. 
 

 
Figure 5.1.7: Trend of the EKF results with static model without errors implementation 
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Figure 5.1.8: Zoom of the EKF results with static model without errors implementation 

Considering errors implementation, the results of course are worse, but better if compared to Least 
Squares. In particular, excluding the transitory parts as before and focusing on the phases in which 
the filter converges, the Figure 5.1.9 shows that the values of error obtained are less than 15 meters, 
both for horizontal and vertical error. In the figure the values of the percentiles are also reported: 
considering the horizontal error, the 95th percentile is about 10 meters, which means half the value 
obtained with the LS. The other percentile values are also better, demonstrating that the Extended 
Kalman Filter proves to be much more accurate than the Least Squares technique, both in term of 
higher convergence rate of the solution and deviation of the results from the reference values. 
 

 
Figure 5.1.9: Zoom of the EKF results with static model with errors implementation 

 
As for the Least Squares, Figure 5.1.10 shows the 3D Position Errors to give a more general view of 
the errors obtained with the implementation of the Extended Kalman Filter with static model. As 
expected, the figure corresponds to a combination of the horizontal and vertical errors, showing the 
same trend and similar values of error. 
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Figure 5.1.10: 3D Position Error for EKF with static model over static user 

 
5.1.3. Dynamic Kalman Filter 

As described in chapter 4, the Extended Kalman Filter can be implemented also with a dynamic model 
of motion. Precisely, in this section the results considering a nearly constant velocity model will be 
analyzed, again comparing the presence or absence of errors in the implementation. 
Regarding the results obtained without errors, the trend (Figure 5.1.11) is the same as the static filter: 
every time there are no sufficient satellites in view for subsequent epochs, the filter is reinitialized 
with two LS iterations and so there is a transient with higher values, but shortly after that the filter 
immediately converges to more accurate values. 
However, these results show some differences with respect to the ones obtained with the static filter: 
excluding the transient, Figure 5.1.12 highlights that the values of both the horizontal and vertical 
errors oscillate around 0.1 meters and, when the filter converges totally, they reach at most values of 
10-5 meters (compared to 10-9 of the static filter). Moreover, the solution with a dynamic model 
converges more slowly, and this is reasonable because in this case the filter requires more time to 
estimate also the correct velocity of the user. 

 

 
Figure 5.1.11: Trend of EKF results with dynamic model without errors implementation 
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Figure 5.1.12: Zoom of EKF results with dynamic model without errors implementation 

 
Considering errors application (Figure 5.1.13), the results are of course worse, but comparable to the 
ones obtained with the static filter and therefore better than the Least Squares results.  
This is clearer observing the percentile values reported in Figure 5.1.9 for the static filter and Figure 
5.1.13 for the dynamic filter and summarized in Table 5.1: in fact, these values show slightly lower 
50th and 95th percentiles for the dynamic filter, but higher in the case of the 99th percentile. This 
outcome confirms what said before, i.e., that the EKF with dynamic model can reach very accurate 
results as for the static model, but the convergence rate of the solution is slower compared to the EKF 
implemented with the static model. 
 

 
Figure 5.1.13: Zoom of EKF results with dynamic model with errors implementation 
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Table 5.1: Comparison of the percentile values of Horizontal error for EKF solutions 

 Static EKF Dynamic EKF 
50th percentile [meters] 4.8594 2.4729 
95th percentile [meters] 10.1401 7.2472 
99th percentile [meters] 11.8501 17.2183 

 
Finally, also for the dynamic filter, Figure 5.1.14 shows the 3D Position Error, which again combines 
horizontal and vertical error. 
 

 
Figure 5.1.14: 3D Position Error for EKF with dynamic model over static user 

These results give a first comparison of the two techniques analyzed: it has been demonstrated that 
the Extended Kalman Filter has better performances with respect to the Least Squares solution in 
term of accuracy of the position estimation of the user. In the static user scenario, this is true especially 
if the model applicated to the filter is a static model. This makes sense, since the user is not moving 
on Moon surface, and so the static model is the most accurate to estimate its position. 
 
 

5.2. Dynamic User 
In this paragraph, the second scenario of analysis presented in section 3.1 will be analyzed, i.e., the 
implementation of positioning algorithms considering a dynamic user. As already introduced, the user 
is not in a fixed position, but in motion around the Moon, following a precise trajectory directed to 
the South Pole, where it will land. In the static user scenario, the consideration of the satellite in 
visibility were made based on elevation of each one of them with respect to the South Pole. With a 
dynamic user, this consideration can’t be done anymore, so that the check to do to assure the 
feasibility of the analysis is to verify that the user is at each epoch below all four satellites, so that it 
can receive the signals necessary for the calculation of the Slant Range. 
Unlike the static user scenario, in the case of dynamic user the results without errors implementation 
will not be considered, since it has already been demonstrated the effect of the errors: obviously, not 
considering them, the outcomes are better, but they don’t reflect reality, so it is more noteworthy to 

observe more representative results that consider the effects of these errors. 
As already mentioned, in this configuration the multipath error will be no longer considered, hence 
the errors taken into account will be satellite positioning, clock error and receiver error. 
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The x axis will indicate again the time of analysis, but this time the input data contains measurement 
with time difference of one second, so that each observation epoch corresponds to one second of the 
simulation time. 
Considering this test case, the implementation of the Extended Kalman Filter with a static model is 
not really worth mentioning, since the scenario considers a dynamic user, in motion around the Moon 
and approaching lunar surface. The static model considers a user in a fixed position, so that the results 
would be practically meaningless. 
 
For this application scenario, an important observation must be made: similar to the static user case, 
the reference system considered is again centered in the center of the Moon (as also introduced in 
section 3.1). However, since in the previous case the user is situated on the South Pole, it has been 
already said that the horizontal and vertical plane of the user correspond to the ones of the reference 
system. This reasoning is no longer valid considering a dynamic user, since during its orbit around 
the Moon, the local planes are obviously different from the reference ones. Despite this, given the 
configuration of the trajectory followed by the user (see figure in section 3.1), in the last phases of 
the analysis, and in particular in the landing phase, the user is almost aligned with the z direction of 
the reference system, while x and y components are negligible. This means that in the final phases of 
the phases the local system again corresponds to the reference one, as for the static user analysis. 
These reasonings will be clearer observing the results obtained, especially considering the three 
components in the landing phase. 
 
 

5.2.1. Least Squares 
Fist results analyzed will be again the ones of Least Square implementation.  
One of the most relevant results in this analysis is the 3D Position Error, represented in Figure 5.2.1. 
Its definition has already been explained in section 5.1.1: the reference position user=[xu , yu , zu] 
now is not a fixed value (as it was the South Pole of the Moon for the static user scenario), but it is 
an input data that of course change every second, giving the measurement position of the user during 
the simulation. The approximate position uapp=[xapp , yapp , zapp] is again the position computed with 
the positioning algorithm considered. The 3D error is then computed as: 

3𝐷 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑢)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑢)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝑢)

2
 

 

 
Figure 5.2.1: 3D position errors of LS implementation over dynamic user 
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Compared to the static user scenario, the trend is now more scattered and shows a slight convergence 
over time, and there are no interruptions throughout the simulation, showing that the user is always 
below the four satellites of the constellation given in the input data.  
At the beginning of the simulation, the deviation from the reference position is on the order of hundred 
meters, then converging over time and reaching in the final phases values around 50 meters or less. 
In order to provide an idea of the distribution of the values, the percentile values are reported in the 
figure, showing for the 95th percentile a value of about 155 meters. Allegedly, these errors are too 
much high to provide an accurate estimation, demonstrating the weakness of the Least Squares in this 
scenario. 
 
As mentioned before, it is of interest to analyze the error in the estimation highlighting the differences 
among the single components x, y and z. These values can be easily computed as for the 3D error, 
considering the absolute value of the difference between approximated and reference values:  

𝑥𝑒𝑟𝑟𝑜𝑟 = |𝑥𝑎𝑝𝑝 − 𝑥𝑢| 

𝑦𝑒𝑟𝑟𝑜𝑟 = |𝑦𝑎𝑝𝑝 − 𝑦𝑢| 

𝑧𝑒𝑟𝑟𝑜𝑟 = |𝑧𝑎𝑝𝑝 − 𝑧𝑢| 
 
Figure 5.2.2 displays the same trend of the 3D error for all three components, with a slight difference 
for the y coordinate, which is more distributed. The figure shows how the values of error on x and y 
components are overall more than five times less than the ones on z component: for all the simulation 
time, x and y errors are less than 50 meters reaching values below 20 meters in the final phases (y 
error is below 20 meters for almost all the time of analysis). Instead, z error reaches values around 
hundreds meters and then converges to values at most around 35 meters. 
This analysis demonstrates that the main problem of the Least Squares estimation is the z component, 
showing instead better accuracy on the other two directions. This consideration is in part as expected, 
at least for what concerns the y component: the better accuracy on the y direction can be explained 
by the fact that the trajectory followed by the user in its approach to the lunar surface is almost 
exclusively in the x-z plane, while the y component of the motion is always very little compared to 
the other two. This consideration will be deepened in the next paragraphs. 
 

 
Figure 5.2.2: Position Components Errors for LS implementation with dynamic user 
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Another important result is the Cumulative Distribution Function of the 3D position error values, 
depicted in Figure 5.2.3. The CDF is a function that describes the probability distribution of a variable 
(the error values in this case). The CDF of the 3D position error calculated at a value P of the solution 
is the probability that the elements of the error vector will take a value less than or equal to that value 
P. The more the curve is flattened towards the y-axis, the more it has a positive meaning, indicating 
a better distribution of the values over simulation time. 
In this case, the curve is not very flattened because as already seen the values are scattered and the 
convergence rate of the solution is not very high. This is also confirmed by the values of the 50th, 95th 
and 99th percentile (red point-lines), which are the same calculated and reported in Figure 5.2.1. In 
fact, the 99th percentile is almost more than 6 times the 50th one, showing again that the distribution 
of results is very scattered. 
 

 
Figure 5.2.3: CDF plot of the 3D position error values for LS solution 

Finally, in Figure 5.2.4, the velocity and acceleration profiles are reported. Cyan and green circles 
represent respectively user velocity and acceleration: these are the reference values, given the velocity 
of the user from the input data and acceleration calculated with the differential of the same velocity 
values known. Magenta and yellow circles, instead, represent the approximated velocity and 
acceleration. Since the LS algorithm does not include velocity and acceleration calculation, the 
approximated values are calculated with the differential of the approximated position determined by 
the algorithm. Given the user approximated position components at each epoch xapp , yapp and zapp, 
velocity and acceleration are computed as: 
 

𝑣𝑒𝑙𝑎𝑝𝑝 = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2   𝑎𝑐𝑐𝑎𝑝𝑝 =

𝜕𝑣𝑒𝑙𝑎𝑝𝑝

𝜕𝑡
 

 
Where  𝑣𝑥 =

𝜕𝑥𝑎𝑝𝑝

𝜕𝑡
  ,  𝑣𝑦 =

𝜕𝑦𝑎𝑝𝑝

𝜕𝑡
  and  𝑣𝑧 =

𝜕𝑧𝑎𝑝𝑝

𝜕𝑡
. 

Reference profiles, instead, are defined starting from the reference velocity vuser=[vxu , vyu , vzu] 
reported in the input observation file: 
 

𝑣𝑒𝑙𝑢 = √𝑣𝑥𝑢2 + 𝑣𝑦𝑢2 + 𝑣𝑧𝑢2   𝑎𝑐𝑐𝑢 =
𝜕𝑣𝑒𝑙𝑢

𝜕𝑡
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Figure 5.2.4: Velocity and Acceleration profiles for LS analysis  

User velocity (cyan circles) is around 1500 m/s for almost all the simulation time, until the final 
phases in which suddenly decreases toward zero: this descending phase of course corresponds to the 
landing of the user on the Moon surface. User acceleration (green circles) seems to be null for all the 
simulation, but it will be clearer in the following paragraphs that in reality there are some variations 
in acceleration values. 
Velocity approximation (magenta circles) demonstrates to reach values that oscillate around the user 
reference, with fluctuations less than 500 meters per second until the descending phase in which the 
approximation is more accurate and closer to the user velocity (errors are about 50 meters per 
seconds). The approximation on acceleration (yellow circles) follows more or less the same 
reasoning, showing fluctuation of about 500 m/s2 especially in the first phases of simulation, until the 
descending phase in which they are reduced to about 100 meters per seconds square. 
 
There is another important consideration: Figure 5.2.4 shows a step in the velocity profile after about 
3400 seconds (precisely at epoch 3431), in which the velocity suddenly decreases of about 70 m/s 
(from 1570 to 1500 m/s). Parallelly, at this epoch corresponds an anomaly in the acceleration trend, 
as the value of acceleration is about -65 m/s2, while the trend is always around zero. This anomaly is 
present in input data, so that it can be considered as a maneuver to adjust the lander attitude during 
its trajectory around the Moon. This maneuver causes some modification in the results, which are 
more evident in the Extended Kalman Filter solution as it will be seen later. 
 
 

5.2.2. Dynamic Kalman Filter 
Implementation of a dynamic model for the Extended Kalman Filter can provide different results 
based on the model considered. In the following section, two different model will be analyzed: Nearly 
Constant Velocity Model (NCV) and Nearly Constant Acceleration Model (NCA). 
 

5.2.2.1. Nearly Constant Velocity Model 
The first model implemented is the constant velocity model, already introduced in section 4.2.2. 
Considering a dynamic model, the 3D position errors (Figure 5.2.5) shows that the trend of the 
solution is similar to what was obtained in the static user case. There is, in fact, a transitory part at 
the beginning of the analysis in which the solution reaches high values of error, but this is true just 
for very few epochs after which the filter immediately converges to much better values. 
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Differently from the static user scenario, in this case there are no blackout of signals during the 
simulation (as already mentioned for LS), so that the solution continues to converge for all the time 
of analysis, giving much better results. Since this trend is common for all the results obtained in this 
analysis, to better analyze the outcomes, the following figures will show a zoom of the solution, 
focusing on the second part of the analysis, therefore excluding the transient at the beginning.  
 

 
Figure 5.2.5: Trend of 3D position errors for EKF with constant velocity model  

As shown in Figure 5.2.6, 3D positions errors reach values lower than 50 meters after very few epochs 
and remain so oscillating more or less between 0 and 30 meters. In LS solution, the results obtained 
in the final phases were not too much worse (the errors were about 50 meters), but the main difference 
to be seen is that the Extended Kalman Filter converges much earlier, reaching better accuracy already 
after very few seconds of simulation. This result is confirmed by observing the value of the 95th 
percentile, which is now about 39 meters, a value almost four time lower than that obtained with LS 
(about 155 meters), confirming the higher convergence velocity of the EKF. 
 

 
Figure 5.2.6: Zoom of 3D position errors (excluding transient) for EKF with constant velocity model 
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Although not very clearly, in the figure it can also be seen the effect of the anomaly in the velocity 
and acceleration profiles, already described in the previous paragraphs. In fact, the sudden change in 
the acceleration value cause a glitch in the functioning of the filter, which produces a peak of about 
80 meters (visible around epoch 3431), but immediately after that, the filter recovers and converges 
again to the previous values. 
The Table 5.2 summarizes the value of the percentile considering the transitory (as in Figure 5.2.5) 
or not considering the transitory (as in Figure 5.2.6). This comparison underlines once again the 
strength of the dynamic EKF, since both the 50th and 95th percentile are under 40 meters. Of course, 
the main difference is the 99th percentile, which has higher value considering the transitory, but 
excluding it the result reach a value around 49 meters, given a much better accuracy with respect to 
the results seen for the Least Squares. 
 

Table 5.2: Comparison of the percentile values of 3D position error of EKF solution 

 WITH Transitory WITOUTH Transitory 
50th percentile [meters] 20.3249 20.7694 
95th percentile [meters] 40.0472 38.8269 
99th percentile [meters] 67.4309 48.8804 

 
Implementing a dynamic model, the Extended Kalman Filter is able to also determine the velocity 
components of the user, so that a comparison with the reference value can be made. Therefore, 
analogously to what done for the position, considering vuser=[vxu , vyu , vzu] the reference velocity of 
the user reported in the input observation file and vapp=[vxapp , vyapp , vzapp] the approximated velocity 
calculated with the filter, the 3D velocity error can be computed as: 

3𝐷 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐸𝑟𝑟𝑜𝑟 = √(𝑣𝑥𝑎𝑝𝑝 − 𝑣𝑥𝑢)
2
+ (𝑣𝑦𝑎𝑝𝑝 − 𝑣𝑦𝑢)

2
+ (𝑣𝑧𝑎𝑝𝑝 − 𝑣𝑧𝑢)

2
 

 

 
Figure 5.2.7: 3D velocity errors (excluding transient) for EKF with constant velocity model  

As already said, the trend of the 3D velocity error (Figure 5.2.7) is the similar to the position one, 
since it reaches better accuracy after the transitory. In line with the result obtained for the position, 
the errors of the velocity estimation compared to the reference values show an oscillation around 
values lower than 30 m/s. Also in this graph, the peak at epoch 3431 is visible, and corresponds for 
the velocity to a glitch that reach a value of about 55 meters per second. 
 



 

 
 72 

The same considerations are valid for errors on each component: position errors component by 
component has already been introduced in LS analysis, while the velocity error can be defined in a 
similar way, considering user velocity vuser=[vxu , vyu , vzu] as the reference velocity reported in the 
input observation file and the approximated velocity vapp=[vxapp , vyapp , vzapp] the one calculated with 
the filter: 

𝑣𝑥𝑒𝑟𝑟𝑜𝑟 = | 𝑣𝑥𝑎𝑝𝑝 − 𝑣𝑥𝑢 | 

𝑣𝑦𝑒𝑟𝑟𝑜𝑟 = | 𝑦𝑎𝑝𝑝 − 𝑣𝑦𝑢 | 

𝑣𝑧𝑒𝑟𝑟𝑜𝑟 = | 𝑣𝑧𝑎𝑝𝑝 − 𝑣𝑧𝑢 | 

 

 
Figure 5.2.8: Position components errors (excluding transient) for EKF with constant velocity model 

  

 
Figure 5.2.9: Velocity components errors (excluding transient) for EKF with constant velocity model  
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Differently from what already seen previously, implementing the EKF with dynamic model, the 
difference among the three component is not so evident. Indeed, the oscillations of the position errors 
on each component (Figure 5.2.8) are more or less equivalent, around the same values approximately 
between 0 and 30 meters, or in any case hardly above 40 meters. As for the velocity components error 
(Figure 5.2.9) the estimations are even more accurate, since deviations from the reference values are 
hardly above 20 m/s. This means that the dynamic model is able to better manage the position and 
speed of the user along all three directions of motion, unlike what was observed for the Least Squares 
implementation, which was more performing on x and y components with respect to the z direction. 
 

 
Figure 5.2.10: CDF plot of the 3D position error values for EKF with constant velocity model 

Figure 5.2.10 shows the Cumulative Distribution Function of the 3D position errors for the EKF 
solution with constant velocity model. As it can easily be seen, the graph is much more flattened, 
which has a positive meaning, since it indicates greater accuracy in the results throughout the analysis 
time. In fact, the values of the 50th, 95th and 99th percentile are confused with each other, since the 
vertical lines that intercept the graph at these points (displayed in red point-line strokes in the previous 
paragraphs) are all crushed close to the y-axis. In any case, as already shown in Table 5.2, all these 
values are below the 50 meters not considering the transitory part at the beginning. 
 
Finally, also for the dynamic model, the velocity and acceleration profile are analyzed. As before, in 
Figure 5.2.11 cyan and green circles represent the reference values, while magenta and yellow circles 
represent the approximated values determined with the Extended Kalman Filter algorithm. 
Since the model applicated is nearly constant velocity, in this case velocity approximation are 
calculated by the algorithm, while acceleration approximations are determined as already introduced 
for the Least Squares: 

𝑎𝑐𝑐𝑎𝑝𝑝 =
𝜕𝑣𝑒𝑙𝑎𝑝𝑝
𝜕𝑡

 
 
Excluding the transient at the beginning, the velocity approximation is really accurate compared to 
the previous results of Least Squares. In fact, the deviation from the reference values is not above 20 
m/s for almost all the time of analysis, until the descending phase where the difference is even lower, 
of just few meters per seconds. 
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On the contrary, the approximate acceleration is not so accurate, reaching oscillation up to 20 m/s2 
for all the analysis, even though these values are way better than the ones obtained with the previous 
techniques. This is because the model considered is a nearly constant velocity model, which 
inevitably leads to more realistic results considering the velocity approximation, but not for the 
acceleration approximation. 
Therefore, the filter analysis still needs another additional step to reach more accurate results, 
implementing a constant acceleration model. 
 

 
Figure 5.2.11: Velocity and Acceleration profiles for EKF with constant velocity model 

The acceleration profile in Figure 5.2.11 allows to make an observation that the other figures in 
previous paragraphs made not so clear: in the final phases of the simulation (around epoch 3660) 
there is a step in the profile (green circles) which brings the acceleration from values near zero to a 
value about -5 m/s2 and then growing back to about -3 m/s2 near the end of the analysis. It is easily 
deductible that this step corresponds to the maneuver made by the user to land on the Moon surface. 
In fact, as it can be seen from the velocity profile, starting from the same epoch of the acceleration 
step (epoch 3660), the velocity of the user suddenly decreases from about 1500 m/s toward 0. Until 
this maneuver, the user is in motion with a model of motion that is almost the same of the constant 
velocity model, since the acceleration is almost zero. Actually, the acceleration is not zero, but shows 
values of the order of 10-5 m/s2 until the first maneuver after 3431 seconds (already discussed in the 
previous paragraphs), after which acceleration increases to values around 10-2 m/s2. In any case, once 
the lander starts the descending phase, the values of acceleration are not so negligible and velocity 
starts to decrease very rapidly, so that the constant velocity model cannot accurately simulate user 
movement. 
This consideration will be even more clear analyzing the results obtained with the implementation of 
the Extended Kalman Filter with constant acceleration model. 
 

5.2.2.2. Nearly Constant Acceleration Model 
The second model implemented in this analysis is the constant acceleration model (NCA). 
Similarly to the nearly constant velocity model, being NCA also a dynamic model, the trend is similar 
to the case of the static user, as shown in Figure 5.2.12. Excluding the transient at the beginning, the 
EKF converges very rapidly to very accurate values, so that, as done for the NCV model, also for this 
scenario the analysis of results will be carried out without considering the initial transient.  
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Figure 5.2.12: Trend of 3D position errors for EKF with constant acceleration model  

The solution displayed in Figure 5.2.13 converges again very rapidly to values more accurate than 
those of the constant velocity model, given that the errors are hardly above 25 meters (in Figure 5.2.7 
errors reached also values of 50 meters). The high convergence rate is confirmed also in this analysis 
by the percentile values represented in figure, showing a 95th percentile value of about 23 meters, 
which means almost half the value of the NCV model (40 meters). 
 

 
Figure 5.2.13: Zoom of 3D position errors (excluding transient) for EKF with constant acceleration model  

In this case, Figure 5.2.13 shows more clearly the effect of the maneuver made about halfway through 
the simulation. In fact, the peak of the 3D position error reaches almost values of 100 meters for few 
seconds, which is just 10 meters more than before, but the difference is clearer since the convergence 
values of this model are lower than the NCV model. Once again, after this peak, the filter immediately 
recovers and converges again to the previous values. 
Moreover, in this case the glitch related to the maneuver made at the beginning of the descent on 
lunar surface is also clearly visible, corresponding to a peak of about 60 meters error. 
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The Table 5.3 compares the values of the percentiles already reported in Figure 5.2.12 and Figure 
5.2.13. First of all, it can be noticed that all the values are lower compared to the respectively values 
obtained with the constant velocity model (recalled in yellow in the table): excluding the transitory 
part there is a difference of almost 15 meters both for 95th and 99th percentiles. For the latter, the value 
obtained in the current test case is about 33 meters (compared to the almost 49 of the previous test 
case). Moreover, it can be seen that the value of 50th and 95th percentiles change very little whether 
or not the transient is considered, especially the 50th percentile which is practically the same.  

 
Table 5.3: Comparison of the percentile values of 3D position error of EKF with constant acceleration model 

 WITH Transitory WITHOUT Transitory NCV without 
transient 

50th percentile [meters] 13.668 13.6685 20.7694 
95th percentile [meters] 24.1557 23.3912 38.8269 
99th percentile [meters] 74.2007 33.0376 48.8804 

 
These values demonstrated the greater accuracy of the nearly constant acceleration model, since the 
convergence rate is higher than the nearly constant velocity model, thus giving overall more accurate 
results in less time. 
These considerations are confirmed also seeing the 3D velocity error (Figure 5.2.14), computed as 
already shown in the NCV model case. 
 

 
Figure 5.2.14: 3D velocity error (excluding transient) for EKF with constant acceleration model  

The 3D velocity error emphasizes the greater accuracy of the nearly constant acceleration model, 
since the errors in velocity calculation are way lower than obtained before, oscillating between values 
lower than 8 m/s (compared to the 30 m/s of the constant velocity model). Given these lower values, 
the peak at epoch 3431, which has again a value of about 65 m/s, is much more visible. Same 
reasoning is valid for the glitch related to the descending maneuver, corresponding to an error in 
velocity estimation of about 20 m/s. 
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Figure 5.2.15: Position components errors (excluding transient) for EKF with constant velocity model  

 
Figure 5.2.16: Velocity components errors (excluding transient) for EKF with constant velocity model  

Focusing on the single components, as for the NCV model, the difference among the three direction 
is negligible, since all three position errors (Figure 5.2.15) oscillate around values lower than 20 m, 
again more accurate than the previous case where the errors often exceed 30 meters. 
The same results are pointed out in Figure 5.2.16, where velocity components errors do not exceed 5 
m/s, four times lower than the nearly constant velocity model errors. 
An important consideration can be made observing both figures: the maneuver done halfway through 
the simulation has an impact on the x component (which reaches errors of about 67 m on position and 
25 m/s on velocity) and on the z component (which reaches errors of even 130 m and 60 m/s). Instead, 
it has no effect on the y component, which does not have a glitch at that epoch. Focusing on the final 
phase, the maneuver done to start the descent to lunar surface has a major impact only on x 
component, giving errors of about 60 meters on position and 20 m/s on velocity. 
This analysis allows to deduce that the maneuver done to settle the attitude of the user at epoch 3431 
involves a modification of direction on the x-z plane, while the maneuver done to start the descend to 
the Moon surface involves mainly x component. This was in part predictable, at least for what 
concerns the y component, since it has already been seen that the orbit is almost entirely on the x-z 
plane, while the y direction variations are almost negligible compared to the other directions. 
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Figure 5.2.17: CDF plot of the 3D position error values for EKF with constant acceleration model 

The Cumulative Distribution Function of the 3D position errors (Figure 5.2.17), is also in this case 
more flattened, giving the greater accuracy of the solution. Also, the three percentile values analyzed 
can’t be represented, since are crashed toward the y axis, having values under 40 meters (as already 
discussed before). 

Finally, Figure 5.2.18 highlights once again the velocity and acceleration profiles, with the cyan and 
green circles representing the references and magenta and yellow ones representing the 
approximations. Excluding the transient, the accuracy in velocity approximation is more accurate 
than before, giving deviations from the reference lower than 5 m/s, until the descending phase in 
which the difference is even lower (about 2 or 3 m/s). 
As expected, the acceleration approximation is more accurate, since in the nearly constant 
acceleration model the components of acceleration are calculated in the algorithm. The values of the 
approximation oscillate between -0.5 and -2 m/s2 (with respect to the reference values around zero), 
both before and after the peak in the middle of the solution, that reaches about -6 m/s2. Focusing on 
the final phase, corresponding to the beginning of the landing, the approximation follows the same 
trend as the reference profile: the step in the approximated acceleration profile reaches -5.5 m/s2 
(compared to the -4.5 m/s2 of the user profile) and then gradually increases together with the reference 
values, with deviations of only 0.5 m/s2. 
 

 
Figure 5.2.18: Velocity and Acceleration profiles for EKF with constant acceleration model 
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These results demonstrated that the Extended Kalman Filter implemented with a Nearly Constant 
Acceleration model provides the best performances in terms of accuracy for the scenario of a dynamic 
user landing to the Moon surface. This has been proven both by the lowest error values obtained 
comparing the filter calculations to the reference values of position and velocity, but also observing 
the velocity and acceleration profiles that differ very little from the reference ones. 
 
 

5.2.3. Sensor Fusion 
Since the Extended Kalman Filter with nearly constant acceleration model has demonstrated to be the 
best performing algorithm, in this section the Sensor Fusion technique will be implemented 
considering this model with the additional measurement of the altimeter. 
This measurement is activated when user position is approximately 10 km far from Moon surface, so 
the trend of the solution is the same until this distance is reached. For this reason, the analysis will 
focus on the last part of the results, in order to highlight the differences between the Extended Kalman 
Filter performances with or without the altimeter measurement. 
 

5.2.3.1. Pure vertical altimeter measurement 
As already explained in section 4.2.3, the first approximation is that the measurement given by the 
altimeter is purely vertical directed toward the center of the Moon, which is not a realistic case, but 
gives a first information about the performances of the Sensor Fusion technique. 
 

 
Figure 5.2.19: Comparison of 3D position errors (when altimeter is active) for EKF and SF  

Figure 5.2.19 shows the comparison between the values of the 3D position errors obtained by the 
EKF with constant acceleration model (green circles) and the values obtained by the SF technique 
with the altimeter measurement (orange circles).  
There is a small difference between the two cases, but the SF technique produces slightly better 
results, given lower values overall with respect to the EKF ones. In fact, the EKF solution also reaches 
error values above 25 meters and not lower than 10 meters, while with the SF the maximum peak is 
at 20 meters, but in general the results fluctuate around values less than 10 meters, reaching also 
values below 5 meters. 
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The boxes in Figure 5.2.19 and the Table 5.4 summarize the percentile values excluding the transient 
for the EKF solution and considering only the final epochs when the altimeter measurement is 
activated for the SF solution. These values confirm the previous observation: all three percentile 
values are lower in SF case, with differences of about 5 or 6 meters, except for the 99th percentile, 
which is more than 11 meters smaller, showing that the SF values are more flattened and distributed 
over the time of analysis. 

 
Table 5.4: Comparison of percentile values for 3D position errors of EKF and SF 

 EKF SF 
50th percentile [meters] 13.6685 8.7552 
95th percentile [meters] 23.3912 17.799 
99th percentile [meters] 33.0376 21.1107 

 
The 3D velocity error comparison generates similar results, shown in Figure 5.2.20. Nonetheless, the 
difference between the two cases is even less clear considering velocity errors: EKF values oscillates 
between 2 and 5 m/s with peaks slightly above 7 m/s, while SF values are just few units lower, 
fluctuating between 1 and 4 m/s with peaks of 6 m/s. 
 

 
Figure 5.2.20: Comparison of 3D velocity errors (when altimeter is active) for EKF and SF  

The Figures 5.2.21 and 5.2.22 emphasize the previous analysis, showing the errors on each 
component both for position and velocity. Once again, the difference between the two solutions is 
more evident by observing position errors rather than velocity errors. 
Among the three directions, the z component seems to be the only one on which the altimeter has a 
significant effect. This is partly true, but it is important to underline that the measurement of the 
altimeter has an impact on all three components: this is because the altimeter reading is a vertical 
measure pointing on lunar surface and precisely it is directed toward the Up direction considering 
ENU coordinates (East, North, Up). This means that the measurement will affect not only the z 
component, but also x and y, since the XYZ reference system origin is the center of the Moon, so that 
each direction will have an UP direction if considered in the ENU system. Nevertheless, as observed 
before, the error is more blunted along the z component: this is because, in the final phase of the 
landing, the direction followed by the user is almost perpendicular to the moon surface and the lander 
is approaching the South Pole, so that Up direction is almost aligned with the z direction, and therefore 
altimeter error will be much more limited (close to zero). 
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Figure 5.2.21: Comparison of position components errors (when altimeter is active) for EKF and SF  

 
Figure 5.2.22: Comparison of velocity components errors (when altimeter is active) for EKF and SF  

 
5.2.3.2. Error on altimeter measurement 

In order to realize a more realistic analysis, it is necessary to consider an error on the altimeter 
measure. In fact, as already introduced in section 4.2.3, the attitude of the user must be considered so 
that the direction of the altimeter measurement is not absolutely vertical, i.e., perpendicular directed 
to the Moon surface along the Up direction of the ENU reference system. 
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Figure 5.2.23: Comparison of 3D position errors (when altimeter is active) for EKF and SF  

 
Figure 5.2.24: Comparison of 3D velocity errors (when altimeter is active) for EKF and SF  

Observing the 3D position error (Figure 5.2.23) and 3D velocity error (Figure 5.2.24), it can be 
noticed that the effect of the error on the altimeter reading does not significantly affect the results. In 
fact, the errors oscillate between the same values as before and the difference to be seen is almost 
negligible, both for position and velocity graphs. The values of the percentiles allow to highlight this 
very slight difference, as shown in Table 5.5: implementing the altimeter error, the percentiles are 
slightly worse (as expected), being just a few meters higher than the values obtained previously. The 
only exception is the 99th percentile, which are almost the same given a difference of the order of 
centimeters. 

 
Table 5.5: Comparison of percentile values for 3D position errors of SF with and without altimeter error 

 SF without altimeter error SF with altimeter error 
50th percentile [meters] 8.7552 9.8806 
95th percentile [meters] 17.799 20.5975 
99th percentile [meters] 21.1107 21.6045 
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Figures 5.2.25 and 5.2.26 represent once again the position components errors and velocity 
components errors respectively. As for the previous case, the effect of the additional altimeter 
measurement is more evident on the position components errors rather than on the velocity 
components, and again has a greater impact on the z component than on the x and y directions.  
The difference between these errors and those obtained with the measurement of the purely vertical 
altimeter is minimal, thus demonstrating a good accuracy on single components also in this case. 
 

 
Figure 5.2.25: Comparison of position components errors (when altimeter is active) for EKF and SF 

 

 
Figure 5.2.26: Comparison of velocity components errors (when altimeter is active) for EKF and SF  

In the previous section it has been demonstrated that the additional measurement of the altimeter 
provides more accurate results, but that measurement was not realistic since it didn’t consider the 

attitude of the lander. In this section, though, it has been proven that, even considering a more realistic 
measure that takes into account the user's attitude during landing, the results are still optimal and 
more accurate than those obtained with the Extended Kalman Filter alone.  
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5.2.3.3. Exclusion of a satellite 

In this section another an interesting simulation of a possible case in lunar environment will be 
considered. It has already been said that the user needs at least four satellites to estimate his position 
(and velocity and acceleration). The altimeter measurement gives an additional reference to the user, 
which allows the filter to determine more accurately the characteristics needed. To evaluate the effect 
of this measure and compare it to the information that each satellite gives to the user, it is possible to 
substitute the altimeter reading to a satellite Slant Range, instead of adding it to the Slant Range 
measurements of the four satellites in visibility. Therefore, instead of having four satellites plus 
altimeter reading, now the positioning algorithm will receive input data from three satellites in view 
and the altimeter measurement in substitution of the fourth. This simulation is of course valid in the 
last phases of the analysis, since it is only in the landing phase that the altimeter measurement is 
present (below 10 km from Moon). 
 

 
Figure 5.2.27: Comparison of 3D position errors with substitution of each satellite with the altimeter 

 

 
Figure 5.2.28: Comparison of position components errors with substitution of each satellite with the altimeter 
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The Figure 5.2.27 and 5.2.28 show the 3D position errors and the position components errors, 
comparing the results obtained removing each satellite and substituting with the altimeter reading. 
The outcomes are very similar in each case considered. There is a slight difference regarding the 
result obtained with the exclusion of satellite 2: the error values obtained in this case show a peak of 
about 60 meters, when the trend of all errors is hardly exceeds the 25 meters. This is evident in the 
single components, especially in the z direction, where the peak reaches almost 40 meters, 
compared to the standard values that are below 10 meters. 
Moreover, this consideration is confirmed by the percentile values shown in the Figure 5.2.29, 
which highlights the higher values of the percentiles for this second case, especially the 99th 
percentile that is almost doubled with respect to the other cases. 
 

 
Figure 5.2.29: Comparison of CDF of 3D position errors with substitution of each satellite with the altimeter 

Aside from the comments made before, these results determine an important consideration for lunar 
navigation: the analysis made before has considered that one satellite was unavailable for all the 
simulation time, and these outcomes demonstrated that the altimeter measurement can successfully 
substitute a satellite not in view. Taking for the example the results obtained with the static user, it 
has been seen that there were blackouts in the solution, in which the user cannot determine its 
position, since there were not enough input data to compute the positioning algorithms. In the 
scenario just analyzed, this would not have been a problem, since in the epochs in which one 
satellite is not in view, the altimeter could compensate its absence, increasing the availability of the 
solution. This result is very important considering lunar environment: considering Earth 
environment, there are a lot of constellations that can give information to the user even in case of 
failures. In lunar environment, there are not a lot of signals available, so that in case of a failure or 
unavailability of a satellite, this can cause serious problem for the determination of the user position 
and velocity over time. The additional measurement of the altimeter gives a great aid, covering for 
these problems that could present during an expedition. As for the altimeter, this is obviously true 
only for the landing phase, when the user is 10 km far from the Moon surface and the measurement 
is activated. However, this reasoning can be expanded to any sensor that can be part of the user 
characteristics, giving the possibility to cover satellites failure or unavailability also during orbiting 
around the Moon.  
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5.3. Comparison of results 
Considering the results shown in the previous chapters, the following figures will highlight the 
comparison of the performances that each algorithm can achieve under the assumption considered in 
this work. In order to produce more consistent results, a Montecarlo simulation based on 1000 
iterations has been carried out, considering then the root mean squares of the results obtained. 
 
The Figure 5.3.1 shows the comparison of the 3D position errors obtained with the implementation 
of the different methodologies analyzed. Similarly as defined in the previous paragraphs, considering 
the reference position user=[xu, yu, zu] and the approximate calculated position uapp=[xapp, yapp, zapp], 
the 3D error has been computed as: 

3𝐷 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑢)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑢)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝑢)

2
 

 
In particular, the blue circles represent the results achieved by the Least Squares, the green ones are 
referred to the Extended Kalman Filter, and finally the orange markers show the results obtained with 
the Sensor Fusion technique with the altimeter measurement. Also, the red vertical line indicates the 
instant of time from which the additional measurement of the altimeter is activated (i.e., when user 
position is below 10 km from lunar surface). 
 

 
Figure 5.3.1: Comparison of 3D position error trend for the different algorithms 

These results confirm the analysis made in the previous paragraphs: the Least Squares technique 
demonstrate more scattered errors and slightly convergence to less accurate values. Instead, the 
Extended Kalman Filter results confirm once again better performances, both in term of accuracy 
since the error values are way lower than those obtained with LS, but also in term of high convergence 
rate since, after the transient at the beginning, the filter immediately converges after very few seconds. 
As already mentioned, the input data contain two anomalies, which have been discussed considering 
the velocity and acceleration profiles of the user: the first one is after about 3430 seconds and it has 
been consider a maneuver to adjust the attitude of the lander orbiting around the Moon, while the 
second one is almost at the end of the analysis and corresponds to the initial maneuver done to start 
the landing to lunar surface. These maneuvers cause a glitch in the estimations, but this is not very 
evident in the Least Squares analysis given the more scattered and high values of errors. It is quite 
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evident, instead, considering the Extended Kalman Filter results: since the errors are much lower, the 
peaks are more visible, reaching values more than 3 times higher due to the first maneuver and almost 
doubled for the second one. 
Obviously, the trend of the 3D position error (Figure 5.3.1) is the same for the EKF with or without 
the altimeter measurement, because the additional measurement is not present in the analysis until 
the user is approximately 10 km far from Moon surface (red line in the figure). Instead, the difference 
is evident in Figure 5.3.2, which focus on the last part of the analysis, i.e., the final part of the landing 
phase when the altimeter measurement is activated. 
 

 
Figure 5.3.2: Comparison of 3D position error considering last phases (when altimeter is active) 

This figure confirms the even more accurate results considering the additional measurement of the 
altimeter, which error values are lower than those of the Extended Kalman Filter alone. 
This consideration is even more clear observing the percentile values (50th percentile, 95th percentile 
and 99th percentile), summarized in the three boxes reported in Figure 5.3.1 and in Table 5.6, where 
the Sensor Fusion technique (EKF + Altimeter) shows the lowest values.  

 
Table 5.6: Comparison of percentile values for the different algorithms 

 Least Squares Extended Kalman 
Filter 

Extended Kalman 
Filter + Altimeter 

50 Percentile [meters] 40.56 13.7964 12.8418 

95 Percentile [meters] 159.7673 23.2364 22.5883 

99 Percentile [meters] 225.9473 120.1627 115.0514 
 
These values are also visible in Figure 5.3.3, which represent the comparison of the Cumulative 
Distribution Function of the 3D position error of each algorithm. As already discussed, the curves are 
crushed on y-axis and the difference is not very clear, so the figure shows a zoom on the initial values. 
Once again, the CDF of the Extended Kalman Filter and Sensor Fusion are more flattened, which 
means higher convergence rate to more accurate values. 
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Figure 5.3.3: Comparison of CDF of 3D position errors for each algorithm 

To highlight the differences between the solution before and after the activation of the altimeter 
measurement, the CDF plot and percentile values are analyzed in both cases. 
Figure 5.3.4 shows the CDF of the 3D position errors for each technique before the activation of the 
measurement and Table 5.7 compares the percentile values as before. 
 

 
Figure 5.3.4: Comparison of CDF of 3D position errors for each algorithm before altimeter activation 

As expected, the results are similar to those obtained considering the whole simulation, since the 
altimeter is activated only in the last part of the analysis when the user is landing. In fact, EKF and 
SF percentile values are almost the same (as already said for the trend of the error) and they are 
lower than the values obtained with the LS technique. 
 

Table 5.7: Comparison of percentile values for each algorithm before altimeter activation 

 Least Squares Extended Kalman 
Filter 

Extended Kalman 
Filter + Altimeter 

50 Percentile [meters] 41.0715 13.7538 13.1763 

95 Percentile [meters] 160.3238 23.2909 22.7518 

99 Percentile [meters] 226.1575 121.3540 120.5595 
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Figure 5.3.5, instead, shows the CDF of the 3D position errors for each technique in the last phases, 
i.e., when the altimeter measurement is activated, while the Table 5.8 compares the percentile values 
as before. The trend is similar, but of course there are much lower values of analysis with respect of 
the rest of the simulation. These results confirm that in the landing phase the SF technique shows the 
best performances, since the CDF curve is the nearest to the y-axis and as a consequence the value of 
the percentiles are lower than the ones obtained with the EKF alone. 
 

 
Figure 5.3.5: Comparison of CDF of 3D position errors for each algorithm after altimeter activation 

  

Table 5.8: Comparison of percentile values for each algorithm after altimeter activation 

 Least Squares Extended Kalman 
Filter 

Extended Kalman 
Filter + Altimeter 

50 Percentile [meters] 21.4062 15.2151 11.3712 

95 Percentile [meters] 49.7758 22.5102 17.5984 

99 Percentile [meters] 57.7915 24.4353 19.6354 
 
The reasonings made before are also confirmed in the Figure 5.3.6, depicting the position errors 
component by component. Color markers are the same as for the 3D position errors, and as before 
the difference in the accuracy between EKF and EKF + Altimeter is more evident in Figure 5.3.7, 
depicting the final phase of the landing. 
As already discussed, the measurement of the altimeter has an impact on all three components, since 
the altimeter reading is a vertical measurement directed is directed toward the Up direction, thus 
affecting not only the z component, but also x and y. Nevertheless, once again the error is more blunted 
along the z component because during the landing the direction followed by the user is almost 
perpendicular to the Moon surface, so that Up and z directions are almost aligned. 
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Figure 5.3.6: Position components error trend 

 

 
Figure 5.3.7: Position components error considering last phases 

 
To conclude the analysis, Figure 5.3.8 and Figure 5.3.9 show the comparison between the true 
trajectory of the user and the approximation values obtained with the different techniques, on the 
horizontal and vertical plane respectively. The figures are focused on the last 30 seconds of the 
simulation to better highlights the differences among the different algorithms. 
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Figure 5.3.8: Comparison between horizontal trajectories of user and the different algorithms 

  

 
Figure 5.3.9: Comparison between vertical trajectories of user and the different algorithms  

 
 
 
These results are consistent, since it has been proven the better performances of the Extended Kalman 
Filter compared with the Least Squares technique, especially with the additional measurement of the 
altimeter. This is in line with expectations, as the Kalman Filter analysis that can be found in literature 
on Earth applications almost always show better results compared to Least Squares. The comparison 
of the outcomes obtained in this paragraph has demonstrated that this is valid also in Lunar 
environment, which is an important result. In fact, the Earth-based techniques currently adopted for 
navigation with satellites around the Moon are not able to cover all the needs for future missions, and 
this is because the number of satellites foreseen in a lunar service is much smaller, but also due to the 
weaker signals and limited coverage in lunar environment. 
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Moreover, the additional altimeter measurement makes the filter even more precise, and that makes 
perfectly sense since this is the functioning and objective of the Sensor Fusion technique: additional 
measurement gives more references to the user, which then has the ability to determine its position 
and velocity more accurately. 
Finally, even if errors implementation in measurement readings leads to slightly worse results, the 
overall consistency is not affected, confirming that the Sensor Fusion technique shows better 
performances, and the additional measurement of an altimeter provides an added value in the landing 
phase on lunar surface. 
 
 
Despite the positive outcomes achieved, both 3D positions and velocity errors has shown that there 
is still an error at the end of the analysis, giving that the approximated position and velocity of the 
user calculated with the positioning algorithm are not the expected ones at the end of the landing 
(position should be South Pole = [0, 0, -rMoon] and velocity should be zero). 
In fact, the analyses done in this work are not 100% perfect, because there are other errors and 
considerations to be taken into account. Nevertheless, the results can be considered acceptable for 
this phase of study, demonstrating the reliability of the positioning algorithms analyzed and giving a 
first comparison of the performances achievable with each of them. 
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6. Conclusion & Future Works 
This thesis aims to provide an assessment of the performance achievable with different suitable 
positioning algorithms for Lunar PVT estimation, with the goal of allowing users to perform a 
positioning over the Moon surface using a limited number of navigation signals broadcasted by a 
dedicated lunar navigation system. Combining the best features of each technique, it can be defined 
a unique tool that could perform a PVT estimation with the best possible performance and accuracy. 
Firstly, the most used positioning techniques of Least Squares and Extended Kalman Filter have been 
presented, discussing the current state of the art and their applications. Afterwards, the Sensor Fusion 
technique has been described, considering the additional measurement of an altimeter. 
Focusing on lunar environment, the main differences with Earth applications have been presented, 
together with the case of studies that consider both a static user in a fixed position on lunar surface 
and a dynamic user orbiting around the Moon and approaching it to land on a specific point.  
Subsequently, the simulated navigation system considered for the implementation has been presented, 
describing the constellation of satellites and the input data provided for the analysis, but also the 
formulations behind the implementation of each positioning algorithm. 
 
The analysis of the results shows that generally the Extended Kalman Filter (EKF) provides better 
performance in comparison with the Least Squares (LS) estimation, in line with expectations, since 
on Earth application KF almost always performs better than LS. However, the analysis carried out in 
this work demonstrates that this reasoning is also valid considering a dedicate lunar navigation 
system. This is an important result, given that the Earth-based techniques currently adopted for 
navigation with satellites around the Moon are not able to cover all the needs for future missions, 
because of the smaller number of satellites foreseen in a lunar service, the weaker signals, and the 
limited coverage in lunar environment. The analysis of this thesis demonstrates that a dedicated lunar 
service, which do not rely on Earth measurements, can successfully provide information to the user 
in order to perform the PVT estimation. 
Moreover, the implementation of the Sensor Fusion (SF) technique with the aid of the additional 
measurement of an altimeter shows even better performance, providing an added value especially in 
the landing phase on lunar surface. This is the basic functioning of the SF technique: additional 
measurement gives more references to the user, which then has the ability to determine its 
characteristics more accurately.  
Finally, Sensor Fusion technique shows another important advantage: one of the simulations carried 
out in this work demonstrates that the additional altimeter reading can successfully substitute the 
measurement of a satellite not in view. This a very important outcome for lunar implementations. 
Considering Earth applications, several constellations can give a great amount of information to the 
user. In lunar environment, instead, the coverage is limited and in case of a failure or unavailability 
of a satellite, this can cause serious problems for the determination of the user PVT over time. The 
Sensor Fusion technique provide the aid of an additional measurement, so that in the epochs in which 
one satellite cannot provide information to the user, this additional measurement can compensate its 
absence, increasing the availability of the solution. 
 
 
Despite the positive outcomes achieved, the results analyzed still show an error at the end of the 
analysis, giving that the approximated position and velocity of the user calculated with the positioning 
algorithms are not the expected ones at the end of the landing (position should be South Pole of the 
Moon and velocity should be zero). 
To improve the analysis proposed, as introduced in the state of the art, there are several variants of 
positioning techniques that can be implemented for the lunar PVT estimation, so that the results could 
be compared, and observe if one of these variants can perform better. 
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In addition, besides from the ones introduced in this thesis, there are other sources of errors that can 
be taken into account in the implementation of the algorithms. 
Moreover, the Sensor Fusion technique has been implemented considering the additional 
measurement of an altimeter, but of course the functioning of this algorithm is valid also with other 
sensors that could give more information to the user so that it can reach even better performance.  
One of the most interesting sensors that could be analyzed is the Inertial Measurement Unit (IMU), 
which is a device that typically consist of gyroscopes and accelerometers.  
 
 
Despite these considerations, the outcomes discussed in this thesis can be considered acceptable for 
this phase of study. The results demonstrate the reliability of the positioning algorithms analyzed and 
give a comparison of the performances achievable with each of them, so that the lunar PVT estimation 
can be performed with the best possible accuracy.  



 

 
 95 

Appendices 

Appendix A: Earth Validation 
Following data extraction, some issues had to be resolved to make the code more easily interpretable 
and to achieve consistent and acceptable results. 

A.1. GPS Time 
A first thing to do is the conversion of the single epochs, provided as dates of the Gregorian calendar, 
into GPS time, which is a continuous time scale defined by the GPS Control Segment based on a set 
of atomic clocks at the Monitor Stations and onboard the satellites. The system transmits the number 
of weeks since January 6th, 1980, and the number of seconds since the beginning of the current week. 
Table A.1 shows the steps followed in the conversion (example date: January 2nd , 2021, at 06:22:43):  
 

Table A.1: Conversion Gregorian date to GPS 

DATE 𝒅𝒅/𝒎𝒎/𝒂𝒂𝒂𝒂 –  𝒉𝒉:𝒎𝒊𝒏: 𝒔𝒆𝒄 𝟎𝟏/𝟎𝟐/𝟐𝟎𝟐𝟏 –  𝟎𝟔: 𝟐𝟐: 𝟒𝟑 
1a: Years from 1980 𝑎𝑎𝑎𝑎 –  1980 =  𝒚𝒚 2021 –  1980 =  𝟒𝟏 

1b: Conversion to days 𝑦𝑦 ∙ 365 =  𝒅𝒀𝑬𝑨𝑹𝑺 41 ∙ 365 =  𝟏𝟒𝟗𝟔𝟓 

1c: Add days from January 6th (𝑛. 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝐽𝑎𝑛 
𝑡𝑜 𝑚𝑚) +  𝑑𝑑 –  6 =  𝒅𝑫𝑨𝒀𝑺 

𝑀𝑜𝑛𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝐽𝑎𝑛 𝑡𝑜 𝐽𝑎𝑛 =  0 
2 − 6 = −𝟒 

1d: Add one day for each lap 
year (year divisible by 4 but not 
by 100, unless divisible by 400) 

𝒅𝑳𝑨𝑷 

𝐿𝑎𝑝 𝑦𝑒𝑎𝑟𝑠 𝑓𝑟𝑜𝑚 1980 𝑡𝑜 2021 
=  𝟏𝟏 

(‘80 –  ’84 –  ’88 –  ‘92 –  ’96 –  ’00 
–  ’04 –  ‘08 –  ’12 –  ’16 –  ’20) 

1. TOTAL DAYS from 
January 6th, 1980 

𝑑𝑌𝐸𝐴𝑅𝑆  +  𝑑𝐷𝐴𝑌𝑆  +  𝑑𝐿𝐴𝑃 
=  𝒕𝒐𝒕. 𝒅𝒂𝒚𝒔 

14965 –  4 + 11 
=  𝟏𝟒 𝟗𝟕𝟐 𝒅𝒂𝒚𝒔 

2a: Total number of seconds 𝑡𝑜𝑡. 𝑑𝑎𝑦𝑠 ∙ 86400
𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑑𝑎𝑦
 

=  𝒕𝒐𝒕. 𝒔𝒆𝒄 

14972 ∙ 86400 
=  𝟏 𝟐𝟗𝟑 𝟓𝟖𝟎 𝟖𝟎𝟎 𝒔𝒆𝒄 

2b: Total number of weeks 
𝑡𝑜𝑡. 𝑠𝑒𝑐

604800
= 𝒕𝒐𝒕.𝒘𝒆𝒆𝒌𝒔 

1 293 580 800

604800
 

=  𝟐𝟏𝟑𝟖.𝟖𝟓𝟕𝟏𝟒 𝒘𝒆𝒆𝒌𝒔 
2. The integer part of tot. weeks (which we call WEEKS) 

represents the first part of the final result, while for the second 
part it is necessary to work on the decimal part (which we call xdec) 

𝑾𝑬𝑬𝑲𝑺 =  𝟐𝟏𝟑𝟖 

3a: Days into weeks 𝑥𝑑𝑒𝑐 ∙ 7
𝑑𝑎𝑦𝑠

𝑤𝑒𝑒𝑘𝑠
 =  𝒙𝒅𝒂𝒚𝒔 0.85714 ∙ 7 =  𝟔 𝒅𝒂𝒚𝒔 

3b: Number of seconds into 
weeks 𝑥𝑑𝑎𝑦𝑠 ∙ 86400

𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑑𝑎𝑦𝑠
= 𝒙𝒔𝒆𝒄 6 ∙ 86400 =  𝟓𝟏𝟖 𝟒𝟎𝟎 𝒔𝒆𝒄 

3c: Seconds from 00:00:00 ℎℎ ∙ 3600 + min ∙ 60 +  𝑠𝑒𝑐 
= 𝒚𝒔𝒆𝒄 

6 ∙ 3600 +  22 ∙ 60 +  43 
=  𝟐𝟐 𝟗𝟔𝟑 𝒔𝒆𝒄 

3: SECONDS = second part of 
the final result (added to the 
first part obtained in step 2) 

𝑥𝑠𝑒𝑐 + 𝑦𝑠𝑒𝑐 = 𝑺𝑬𝑪𝑶𝑵𝑫𝑺 518400 + 22963 = 541363 𝑠𝑒𝑐 
(𝑺𝑬𝑪𝑶𝑵𝑫𝑺 =  𝟓𝟒𝟏 𝟑𝟔𝟑) 
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FINAL RESULT WEEKS. SECONDS 𝟐𝟏𝟑𝟖.𝟓𝟒𝟏𝟑𝟔𝟑 
 
The weeks are transmitted with a 10-bit encoding: this means that the number of weeks spent are 
reset every 1024 weeks (about 19.6 years). 
 
 

A.2. Lagrange Interpolation 
Another very important step that was required to implement the Least Squares algorithm, was the 
Lagrange interpolation. 
This process was necessary because the observation periods present in the SP3 file (and therefore also 
the respective data for each satellite) were reported at intervals of 5 minutes from each other, while 
in the RINEX file the observation epochs were at intervals of 30 seconds from each other. Therefore, 
it was necessary to interpolate the data coming from the SP3 file in such a way as to obtain all the 
data necessary for the implementation of the Least Squares, at intervals of 30 seconds. To accurately 
implement the interpolation, one must consider a certain number of values before and after the current 
value, in order to have a sample of values around the current value to make the interpolation. 
The implementation of the function that performed the Lagrange interpolation has raised several 
problems to be solved so that the final results were accurate and correct: the most challenging ones 
were the times alignment and the verification that for each current value there were a chosen number 
of previous and subsequent values (ten in total), otherwise the interpolation at that point could not 
have taken place (or it could but with less accuracy since there are less values to interpolate). 
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Appendix B: Effect of errors 
In chapter 3, the different sources of errors that influence the pseudorange/slant range measurements 
have been discussed, with the implementation of the model and formula associated.  
The following figures show the effect of these errors considered alone or in combination with each 
other, considering the implementation of the Extended Kalman Filter over a static user. 
 

Single Errors effect

 
Figure B.1: Effect of the different errors alone 

 
Errors Combinations effect 

 
Figure B.2: Effect of the errors in combination with each other 
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Appendix C: Bowring iterative method 
In order to determine the curvilinear coordinates (Latitude , Longitude  and Height h) starting from 
the cartesian coordinates (x,y,z), numerous solution have been devised, both closed-form and iterative. 
A popular and highly convergent iterative method was introduced by B.R. Bowring in 1976 [29] 
based on Newton method.  
The procedure of this iterative method is described here, showing its fundamental steps. 
 
Input data: 

- [𝑥, 𝑦, 𝑧]  are user coordinates 
- 𝑎  is the semimajor axis of the reference ellipsoid 
- 𝑏  is the semiminor axis of the reference ellipsoid 

- 𝑒 = √1 −
𝑏2

𝑎2
  is the eccentricity of the reference ellipsoid 

- 𝑒′ = √
𝑎2

𝑏2
− 1 =

𝑎

𝑏
𝑒  is second the eccentricity of the reference ellipsoid 

 
Procedure: 

𝑝 = √𝑥2 + 𝑦2 
 

tan 𝑢 = (
𝑧

𝑝
) (
𝑎

𝑏
) 

 
Iteration Loop 

cos2 𝑢 =
1

1 + tan2 𝑢
 

 
sin2 𝑢 = 1 − cos2 𝑢 

 

tan𝜑 =
𝑧 + 𝑒′2  𝑏 sin3 𝑢

𝑝 − 𝑒2  𝑎 cos3 𝑢
 

 

tan 𝑢 = (
𝑏

𝑎
) tan𝜑 

 
Until tan u converges, then 
𝑁 =

𝑎

√1 − 𝑒2 sin2 𝜑
 

 

ℎ = {

𝑝

cos 𝜑
− 𝑁, 𝜑 ≠ 90°

𝑧

sin 𝜑
− 𝑁 + 𝑒2𝑁, 𝜑 ≠ 0

 

 

𝜆 =

{
 
 

 
 arctan (

𝑦

𝑥
) , 𝑥 ≥ 0

180° + arctan (
𝑦

𝑥
) , 𝑥 < 0 𝑎𝑛𝑑 𝑦 ≥ 0

−180° + arctan (
𝑦

𝑥
) , 𝑥 < 0 𝑎𝑛𝑑 𝑦 < 0
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Appendix D: Tuning of EKF parameters 
In the implementation of the Extended Kalman Filter technique, the tuning of the parameters of the 
state error autocovariance matrix Q and the measurement error autocovariance matrix R is an issue 
of fundamental importance. 
Depending on the values assigned to the xyz, t, dt of the matrix Q and R of the matrix R, the 
solution modified, given that the filter gives more weight to the model considered or the measurement 
given in input. The more the values assigned to these parameters is lower, the more the filter gives 
much weight to the matrix associated. 
The following figures show the modification of the results considering the application of the errors 
on the implementation of the Extended Kalman Filter with a dynamic model over a static user 
scenario. This scenario has been considered to give an impression of the effect of the tuning on the 
solution, but of course the reasoning is valid for other applications. In some cases, the effect could be 
even more impacting on the solution, showing that this procedure is of fundamental importance in 
the implementation of the Extended Kalman Filter algorithm. 
 

Tuning of xyz  
 

 

Figure D.1: Tuning of position parameters 
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Tuning of t and dt   
 

 

Figure D.2: Tuning of clock parameters 

 
 

Tuning of R  
 

 

Figure D.3: Tuning of measurement parameters 

 
  



 

 
 101 

References 
 

[1]  (ISECG), International Space Exploration Coordinate Group, "The Global Exploration 
Roadmap," NASA, 2018. 

[2]  A. Grenier, P. Giordano, L. Bucci, A. Cropp, P. Zoccarato, R. Swinden and J. Ventura-
Traveset, "Positioning and Velocity Performance Levels for a Lunar Lander using a Dedicated 
Lunar Communication and Navigation System," Institute of Navigation, 2022. 

[3]  T. F. Melman, P. Zoccarato, C. Orgel, R. Swinden, P. Giordano and J. Ventura-Traveset, 
"LCNS Positioning of a Lunar Surface Rover Using a DEM-Based Altitude Constraint," 
MDPI, Basel, Switzerland, 2022. 

[4]  ESA, "Navipedia," 12 January 2012. [Online]. Available: 
https://gssc.esa.int/navipedia/index.php/Main_Page. 

[5]  J. R. Clynch, "The GLOBAL POSITIONING SYSTEM," 5 February 2003. [Online]. 
Available: https://www.oc.nps.edu/oc2902w/gps/gpsoview.htm. 

[6]  GNSS-SDR, "PVT," 2020. [Online]. Available: https://gnss-sdr.org/docs/sp-blocks/pvt/. 
[7]  D. J. Jwo, M. H. Hsieh and Y. C. Lee, "GPS navigation solution using the iterative least 

absolute deviation approach," Scientia Iranica, Teheran, Iran, 2015. 
[8]  Vector Nav, "Least Squares, Weighted Least Squares and NonLinear Least Squares," 2008. 

[Online]. Available: https://www.vectornav.com/resources/inertial-navigation-primer/math-
fundamentals/math-leastsquares. 

[9]  M. A. Griffioen, "Assessment of Lunar Positioning Accuracy with PECMEO Navigation 
Satellites," Delft University of Technology, Delft, 2020. 

[10]  M. F. Abdel-Hafez, "The Autocovariance Least-Squares Technique for GPS Measurement 
Noise Estimation," IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010. 

[11]  K. Lemon and B. W. Welch, "Comparison of Nonlinear Filtering Techniques for Lunar 
Surface Roving Navigation," NASA, 2008. 

[12]  H. J. Ramos, K. M. Brink and J. E. Hurtado, "Square Root Partial-Update Kalman Filter," in 
22nd International Conference on Information Fusion, Ottawa, Canada, 2019.  

[13]  D. S. Chiu and K. P. O'Keefe, "Bierman-Thornton UD Filtering for Double-Differenced 
Carrier Phase Estimation Accounting for Full Mathematical Correlation," in ION NTM, San 
Diego, CA, 2008.  

[14]  G. H. Born, "Potter Square Root Filter," ASEN 5070, 2002. 
[15]  C. D'Souza and R. Zanetti, "Information Formulation of the UDU Kalman Filter". 
[16]  Y. Oshman and I. Y. Bar-Itzhack, "Square Root Filtering via Covariance and Information 

Eigenfactors," International Federation of Automatic Control, Great Britain, 1986. 
[17]  M. A. Bashir, F. M. Malik, Z. A. Akbar and M. Uzair, "Kalman Filter Based Sensor Fusion 

for Altitude Estimation of Aerial Vehicle," IOP Conference Series: Material Science and 
Engineering, Rawalpindi, Pakistan, 2020. 

[18]  A. M. Sabatini and V. Genovese, "A Sensor Fusion Method for Tracking Vertical Velocity 
and Height Based on Inertial and Barometric Altimeter Measurements," MPDI, 24 July 2014.  

[19]  J. R. Bruzzi, K. Strohbehn, B. G. Boone, S. Kerem, R. S. Layman and M. W. Noble, "A 
Compact Laser Altimeter for Spacecraft Landing Applications," Johns Hopkins APL 
Technical Digest, 2012. 

[20]  T. Lacey, Tutorial: The Kalman Filter, Massachusetts Institute of Technology.  



 

 
 102 

[21]  M. S. Grewal and A. P. Andrews, "Applications of Kalman Filtering in Aerospace 1960 to the 
Present," 2010. 

[22]  H. Yong, H. XiaoGong, L. PeiJia, C. JianFeng, J. DongRong, Z. WeiMin and F. Min, "Precise 
positioning of the Chang’E-3 lunar lander using a kinematic statistical method," Chinese 
Science Bulletin, Shangai-Beijing, China, 2012. 

[23]  J. Sanz Subirana, J. M. Juan Zornoza and M. Hernàndez-Pajares, ESA GNSS DATA 
PROCESSING, Vol.I: Fundamentals and Algorithms, 2013.  

[24]  Hexagon, "Novatel," 1978. [Online]. Available: https://novatel.com/an-introduction-to-
gnss/chapter-4-gnsserror-sources/error-sources. 

[25]  G. Sirbu and M. Leonardi, Performance evaluation of a satellite navigation system for lunar 
exploration, Roma, 2020.  

[26]  M. Karaim, M. Elsheikh and A. Noureldin, "GNSS Error Sources," 6 April 2018. [Online]. 
Available: https://www.intechopen.com/books/6540. 

[27]  E. D. Kaplan and C. J. Hegarty, Understanding GPS/GNSS: Principles and Applications, 
Artech House, 2017.  

[28]  C.-M. Lee and K.-D. Park, "Generation of Klobuchar Ionospheric Error Model Coefficients 
Using Fourier Series and Accuracy Analysis," Journal of Astronomy and Space Sciences, 
Incheon, Korea, 2011. 

[29]  R. M. Toms, "An Improved Algorithm for Geocentric to Geodetic Coordinate Conversion," 
Lawrence Livermore National Laboratory, Orlando, FL, 1996. 

[30]  M. Wickert and C. Siddappa, "Exploring the Extended Kalman Filter for GPS Positioning 
Using Simulated User and Satellite Track Data," 2018. 

[31]  Corning Museum of Glass, "Reflections on Apollo," 15 October 2019. [Online]. Available: 
https://blog.cmog.org/2019/10/15/reflections-on-apollo/. 

[32]  V. Rosmorduc, J. Benveniste, E. Bronner, S. Dinardo, O. Lauret, C. Maheu, M. Milagro, N. 
Picot, A. Ambrozio, R. Escolà, A. Garcia-Mondejar, E. Schrama, M. Restano and M. Terra-
Homem, "Radar Altimetry Tutorial - brat," ESA - CNES, 2018. 

[33]  G. Sirbu and M. Leonardi, Analisi preliminare e valutaione delle prestazioni di un sistema di 
posizionamento per la navigazione lunare, Roma, 2021.  

[34]  IGS and RTCM-SC104, The Receiver Indipendent Exchange Format (RINEX), 2018.  
[35]  S. Hilla, N. G. Survey, N. O. Service and NOAA, The Extended Standard Product 3 Orbit 

Format (SP3-d), 2016.  
[36]  J. Sanz Subirana, J. M. Juan Zornoza and M. Hernàndez-Pajares, ESA GNSS DATA 

PROCESSING, Vol.II: Laboratory Exercises, 2013.  
[37]  J. J. Parker, F. Dovis, B. Anderson, L. Ansalone, B. Ashman, F. H. Bauer, G. D'Amore, C. 

Facchinetti, S. Fantinato, G. Impresario, S. A. McKim, E. Miotti, J. J. Miller and M. 
Musmeci, "The Lunar GNSS Receiver Experiment (LuGRE)," 2022. 

[38]  E. S. J. Muller and P. M. Kachmar, "The Apollo rendezvous navigation filter theory, 
description and performance," in APOLLO: Guidance, Navigation and Control, Cambridge, 
Massachusetts, MIT Charles Stark Draper Laboratory, 1970, p. 70. 

[39]  Aerospace America, "Honoring a legacy algorithm," September 2016. [Online]. Available: 
https://aerospaceamerica.aiaa.org/departments/honoring-a-legacy-algorithm/. 

[40]  P. Lynch, "Kalman filters have applications from moon to motorway," The Irish Times, 22 
June 2021. [Online]. Available: https://www.irishtimes.com/news/science/kalman-filters-
have-applications-from-moon-to-motorway-1.4600269. 



 

 
 103 

[41]  A. Becker, "The Kalman Filter Tutorial," [Online]. Available: 
https://www.kalmanfilter.net/default.aspx. 

[42]  Vector Nav, "Getting up to speed with Kalman Filter," 2008. [Online]. Available: 
https://www.vectornav.com/resources/inertial-navigation-primer/math-fundamentals/math-
kalman. 

[43]  Y. Laamari, B. Athamena and K. Chafaa, "Particle swarm optimization of an extended 
Kalman filter for speed and rotor flux estimation of an induction motor drive," 2015. 

[44]  P. W. Sarunic, "Development of GPS Receiver Kalman Filter Algorithms for Stationary, 
Low-Dynamics, and High-Dynamics Applications," Australian Government, Department of 
Defence, DTS-Group-TR-3260, Edinburgh, South Australia, 2016. 

[45]  C. A. Greenhall, R. Boudjemaa and J. Davis, "The Development of a Kalman Filter Clock 
Predictor," National Physical Laboratory, Pasadena, CA, 2005. 

[46]  L. A. Breakiron, "A Kalman Filter for Atomic Clocks and Timescales," U.S. Naval 
Observatory, Washington, DC, 2001. 

[47]  I. Reid, "Discrete-time Kalman filter," Hilary Term, 2001. 
[48]  A. K. N., G. Sasibhushana Rao and C. Suresh, "Extended Kalman Filter for GPS 

ReceiverPosition Estimation," 2018. 
[49]  R. G. Brown and P. Y. Hwang, "Introduction to Random Signals and Applied Kalman 

Filtering, IV ed.," John Wiley & Son, Inc., Hoboken, NJ, 2012. 
[50]  S. Bhattacharyya, D. L. Mute and D. Gebre-Egziabher, "Kalman Filter-Based Reliable GNSS 

Positioning for Aircraft Navigation," 2019. 
[51]  M. F. Rodrìguez, "A Kalman Filter application for GNSS error correction in Intelligent 

Vehicles," Leganés, 2020. 
[52]  R. Serrano, "Extended Kalman Filters for Dummies," 18 August 2017. [Online]. Available: 

https://medium.com/@serrano_223/extended-kalman-filters-for-dummies-4168c68e2117. 
[53]  Aceinna OpenIMU Developer Manual, "EKF Algorithms," Aceinna Inc Revision, 2018. 

[Online]. Available: https://openimu.readthedocs.io/en/latest/algorithms.html. 
[54]  L. A. McGee and S. F. Schmidt, "Discovery of the Kalman Filter as a Practical Tool for 

Aerospace and Industry," NASA, California, 1985. 
[55]  A. Hooshmand, J. V. Mohammadpour, H. Malki and R. S. Provence, "Distributed Extended 

Kalman Filtering for Reliable Navigation on Lunar Surface," American Institute of 
Aeronautics and Astronautics, Inc., Portland, Oregon, 2011. 

[56]  S. University, Lecture 9 - The Extended Kalman filter, 2008.  
[57]  S. J. Julier and J. K. Uhlmann, "A New Extension of the Kalman Filter to Nonlinear 

Systems," The Robotics Research Group, Department of Engineering Science, Oxford, OX, 
1997. 

[58]  M. S. Grewal and A. P. Andrews, "Kalman Filtering: Theory and Practice Using MATLAB, II 
Ed.," John Wiley & Sons, Inc., 2001. 

[59]  M. I. Ribeiro, "Kalman and Extended Kalman Filters: Concept, Derivation and Properties," 
Instituto Superior Te ́cnico, Lisboa, 2004. 

[60]  G. Welch and G. Bishop, "An Introduction to the Kalman Filter," Department of Computer 
Science, UNC-Chapel Hill, 2001. 

[61]  B. Esme, "Kalman Filter For Dummies," Bilgin's Blog, March 2009. [Online]. Available: 
http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies#. 



 

 
 104 

[62]  StackExchange, "How to initialize error covariance matrix in Extended Kalman Filter, Q," 
June 2009. [Online]. Available: https://math.stackexchange.com/questions/3242936/how-to-
initialize-error-covariance-matrix-in-extended-kalman-filter-q. 

[63]  C. Zucca and P. Tavella, "A mathematical model for the atomic clock error in case of jumps," 
Turin, 2015. 

[64]  L. Galleani, L. Sacerdote, P. Tavella and C. Zucca, "A mathematical model for the atomic 
clock error," Institute of Physics Publishing, Metrologia, Turin, IT, 2003. 

[65]  H. Li, X. Liao, B. Li and L. Yang, "Modeling of the GPS satellite clock error and its 
performance evaluation in precise point positioning," Advances in Space Research, Shangai, 
China, 2018. 

[66]  B. Bidikar, G. S. Rao, L. Ganesh and S. M. Kumar, "Satellite Clock Error and Orbital 
Solution Error Estimation for Precise Navigation Applications," Department of Science and 
Technology, New Delhi, India, 2013. 

[67]  G. Blewitt, "Basics of the GPS Technique: Observation Equations," Department of 
Geomatics, University of Newcastle, Newcastle, UK, 1997. 

[68]  BCS, "Inside GNSS (Global Navigation Satellite Systems Engineering, Policy, and Design)," 
2018. [Online]. Available: https://insidegnss.com. 

[69]  UAV Navigation, "Global Navigation Satellite System (GNSS)," [Online]. Available: 
https://www.uavnavigation.com/support/kb/general/inertial-navigation-system-and-
estimation/global-navigation-satellite-system-gnss. 

[70]  T. A. Ely and A. H. Chau, "Radar Altimetry and Velocimetry for Inertial Navigation: A Lunar 
Landing Example," Advances in Astronautcal Sciences, 2011. 

[71]  GISGeography, "How GPS Receivers Work – Trilateration vs Triangulation," 2019. [Online]. 
Available: https://gisgeography.com/trilateration-triangulation-gps/. 

[72]  I. Sarras, G. Gerakios, A. Diamandis, A. I. Dounis and G. P. Syrcos, "Static Single Point 
Positioning Using The Extended Kalman Filter," World Academy of Science, Engineering 
and Technology 37, 2010. 

[73]  J. Sheppard, "What sensors do you need to land on the moon?," SensorTips, 6 April 2022. 
[Online]. Available: https://www.sensortips.com/featured/what-sensors-you-need-to-land-on-
moon-faq/. 

[74]  F. Amzajerdian, G. D. Hines, L. B. Petway, B. W. Barnes, D. F. Pierrottet and J. M. Carson 
III, "Development of Navigation Doppler Lidar for Future Landing Mission," NASA.gov, 
2016. 

[75]  G. Vingione, "Radar Altimeter General Waveform Model and Its Application to Cassini 
Mission," Department of Aerospace and Mechanical Engineering, Second University of 
Naples, Aversa, Italy, 2007. 

[76]  D. F. Pierrottet, F. Amzajerdian and B. Barnes, "A long distance Laser Altimeter for terrain 
relative navigation and spacecraft landing," AIAA Guidance, Navitgation, and Control 
Conference, Toronto, 2014. 

 
 
 


	List of Figures
	List of Tables
	Acronyms
	1. Introduction
	1.1. Moon Exploration
	1.2. PVT estimation
	1.3. Purpose and Development of the work

	2. State of Art of GNSS positioning method
	2.1. Least Squares
	2.1.1. Weighted Least Squares
	2.1.2. Least Squares variants

	2.2. Kalman Filter
	2.2.1. Kalman Filter Issues
	2.2.2. Kalman Filter variants

	2.3. Sensor Fusion

	3. PVT determination in Lunar Environment
	3.1. Typical Use Cases
	3.1.1. User orbiting around the Moon
	3.1.2. Static User
	3.1.3. Dynamic User

	3.2. Differences with respect to Earth environment
	3.2.1. Earth and Moon Applications
	3.2.2. Adaptation of the algorithms


	4. Simulation Environment
	4.1. Navigation system and inputs
	4.2. Implementation in MATLAB of PVT algorithms
	4.2.1. Least Squares
	4.2.2. Kalman Filter
	4.2.3. Sensor Fusion

	4.3. Performance Analysis Tool
	4.3.1. Least Squares
	4.3.2. Extended Kalman Filter


	5. Analysis of Results
	5.1. Static User
	5.1.1. Least Squares
	5.1.2. Static Kalman Filter
	5.1.3. Dynamic Kalman Filter

	5.2. Dynamic User
	5.2.1. Least Squares
	5.2.2. Dynamic Kalman Filter
	5.2.3. Sensor Fusion

	5.3. Comparison of results

	6. Conclusion & Future Works
	Appendices
	Appendix A: Earth Validation
	A.1. GPS Time
	A.2. Lagrange Interpolation

	Appendix B: Effect of errors
	Appendix C: Bowring iterative method
	Appendix D: Tuning of EKF parameters

	References

