

Polytechnic University of Turin

Master’s Degree in Aerospace Engineering –
Space Orientation

Graduation session December 2022

Comparison of the performance
achievable with different positioning
techniques for lunar PVT estimation

Host structure:
Thales Alenia Space
Via Saccomuro 24, Rome

Candidate:
Francesco Ungaro

Company Tutor:
Massimo Eleuteri
Ileana Milani
Mattia Carosi

Candidate ID:
S280220

Academic Supervisor:
Prof. Fabio Dovis

A.Y. 2021/2022

 2

 3

Abstract

In the last few years, the interest in Moon exploration has grown significantly among several space
agencies, both at institutional and commercial levels. Lunar expeditions will offer new opportunities
for scientific discovery, economic benefits, and a multitude of other different disciplines, with the
goal of the human return to the Moon as the first step toward deep space exploration.
This growing trend has motivated research on various systems which could increase the robustness
of the navigation infrastructures and capabilities, aiming to the creation of an autonomous navigation
system.

Nonetheless, the Earth-based techniques currently adopted for navigation in cislunar space are not
able to cover all the needs for future missions, both in term of service accessibility and performance.
Global Navigation Satellite Systems (GNSS) are currently used in space missions, and recent studies
have shown relatively good performances also for satellites in GEO and HEO, demonstrating its
applicability for a wide range of space missions. Despite this, the number of satellites foreseen in a
lunar service is much smaller compared to the Earth-based GNSS, and precise data concerning the
position of a user will become of vital importance for positioning over Moon surface.

Because of these reasons, different complementary technologies and studies are ongoing worldwide
to define infrastructures able to support Lunar missions in term of navigation services. In particular,
it is of interest to determine a useful algorithm for the estimation of Position, Velocity and Time
(PVT) considering the limited available resources, in order to improve and optimize the achievable
navigation accuracy, toward the realization of an autonomous navigation systems capable of real-
time and near real-time absolute positioning.

The purpose of this thesis is to provide an assessment of the performance achievable with different
suitable positioning algorithms for Lunar PVT estimation, and compare them with the aim of allowing
users to perform a positioning over the Moon surface using a limited number of navigation signals
broadcasted by a dedicated Lunar Navigation System.
In particular, starting from the current state of art, the most used techniques of Least Squares (LS)
and Extended Kalman Filter (EKF) have been analyzed and their performance and capabilities have
been compared over both static and dynamic (landing) user. Accordingly, the Sensor Fusion (SF)
technique have been implemented, taking into account the additional measurement of an altimeter.
The outcomes of this work aim to combine the best features of each technique in order to define a
unique tool that could perform a PVT estimation with the best possible performance and accuracy.

 4

Acknowledgments

I would like to thank my company tutor and supervisors Massimo Eleuteri, Ileana Milani and Mattia
Carosi for their fundamental help in the development of this work. Their constant presence, assistance
and encouragement during this experience have been essential to the achievement of this goal. I
cannot imagine a better support.

I wish to thank my academic supervisor from Politecnico di Torino, prof. Fabio Dovis, for making
himself available and to oversee the thesis development.

I am very grateful to Thales Alenia Space for this extraordinary experience, giving me the opportunity
to deal with a high-level work environment.

 5

To my family
My Mother, My Father, My Brother

My Everything

 6

Table of Content

List of Figures .. 8

List of Tables ... 11

Acronyms .. 12

1. Introduction ... 15

1.1. Moon Exploration .. 15

1.2. PVT estimation .. 16

1.3. Purpose and Development of the work ... 19

2. State of Art of GNSS positioning method .. 20

2.1. Least Squares ... 20
2.1.1. Weighted Least Squares ... 21
2.1.2. Least Squares variants .. 21

2.2. Kalman Filter ... 23
2.2.1. Kalman Filter Issues .. 23
2.2.2. Kalman Filter variants... 24

2.3. Sensor Fusion... 27

3. PVT determination in Lunar Environment ... 28

3.1. Typical Use Cases ... 28
3.1.1. User orbiting around the Moon ... 28
3.1.2. Static User .. 28
3.1.3. Dynamic User ... 29

3.2. Differences with respect to Earth environment ... 29
3.2.1. Earth and Moon Applications... 29
3.2.2. Adaptation of the algorithms ... 30

4. Simulation Environment ... 37

4.1. Navigation system and inputs... 37

4.2. Implementation in MATLAB of PVT algorithms.. 38
4.2.1. Least Squares.. 38
4.2.2. Kalman Filter .. 40
4.2.3. Sensor Fusion ... 46

4.3. Performance Analysis Tool ... 50
4.3.1. Least Squares.. 50
4.3.2. Extended Kalman Filter .. 53

5. Analysis of Results ... 57

5.1. Static User ... 57
5.1.1. Least Squares.. 57
5.1.2. Static Kalman Filter .. 61
5.1.3. Dynamic Kalman Filter ... 63

 7

5.2. Dynamic User... 65
5.2.1. Least Squares.. 66
5.2.2. Dynamic Kalman Filter ... 69
5.2.3. Sensor Fusion ... 79

5.3. Comparison of results .. 86

6. Conclusion & Future Works .. 93

Appendices.. 95

Appendix A: Earth Validation.. 95
A.1. GPS Time.. 95
A.2. Lagrange Interpolation .. 96

Appendix B: Effect of errors .. 97

Appendix C: Bowring iterative method ... 98

Appendix D: Tuning of EKF parameters ... 99

References ...101

 8

List of Figures
Figure 1.1: The Global Exploration Roadmap by ISECG (Soruce: [1]) .. 15
Figure 1.2: General concept of PVT determination (Source: Navipedia [4]) 17

Figure 3.1: Static User configuration ... 28
Figure 3.2: Dynamic User configuration ... 29
Figure 3.3: ENU coordinates and Elevation angle (Source: ESA GNSS Book [23]) 31
Figure 3.4: Sagnac effect ... 32
Figure 3.5: Multipath error (Source: ESA GNSS Book [23]).. 33
Figure 3.6: Ionospheric delay approximation (Source: ESA GNSS [23]) ... 33
Figure 3.7: Ionospheric Pierce Point (Source: ESA GNSS Book [23]) ... 34
Figure 3.8: Application of errors on satellite and user without (left) and with (right) sphere of
uncertainty .. 36

Figure 4.1: 3D animation of the Slant Range of the user (blue) and the Intersection with lunar
surface (red) over time ... 46
Figure 4.2: Altimeter measurement with and without error... 47
Figure 4.3: Altimeter cone error .. 47
Figure 4.4: Positioning error (blue) and Number of satellites in visibility (red) for LS
implementation... 51
Figure 4.5: DOP (Source: ESA GNSS Book [23]) .. 51
Figure 4.6: Trend of different Dilution of Precision (DOPs) ... 52
Figure 4.7: Positioning Error for LS implementation with or without Ionospheric correction 53
Figure 4.8: Positioning Error (blue) and Number of satellites in visibility (red) for EKF with static
model .. 54
Figure 4.9: Positioning Error for EKF static model implementation with or without Ionospheric
correction ... 54
Figure 4.10: Positioning Error (blue) and Number of satellites in visibility (red) for EKF with NCV
model .. 55
Figure 4. 11: Positioning Error for EKF with NCV model implementation with or without
Ionospheric correction.. 56

Figure 5.1.1: Horizontal error and HDOP without errors implementation .. 58
Figure 5.1.2: Horizontal Error and HDOP with errors implementation .. 58
Figure 5.1.3: Vertical error and VDOP without errors implementation .. 59
Figure 5.1.4: Vertical error and VDOP with errors implementation ... 59
Figure 5.1.5: 3D Position Error for LS implementation over static user ... 60
Figure 5.1.6: Effect of the errors implementation on the Slant Range of each satellite 60
Figure 5.1.7: Trend of the EKF results with static model without errors implementation 61
Figure 5.1.8: Zoom of the EKF results with static model without errors implementation 62
Figure 5.1.9: Zoom of the EKF results with static model with errors implementation 62
Figure 5.1.10: 3D Position Error for EKF with static model over static user 63
Figure 5.1.11: Trend of EKF results with dynamic model without errors implementation 63
Figure 5.1.12: Zoom of EKF results with dynamic model without errors implementation 64
Figure 5.1.13: Zoom of EKF results with dynamic model with errors implementation 64
Figure 5.1.14: 3D Position Error for EKF with dynamic model over static user 65

file://///Users/francescoungaro/Desktop/Universita%cc%80/Tirocinio:Tesi/Tesi/Scrittura/Thesis.docx%23_Toc120876530
file://///Users/francescoungaro/Desktop/Universita%cc%80/Tirocinio:Tesi/Tesi/Scrittura/Thesis.docx%23_Toc120876532
file://///Users/francescoungaro/Desktop/Universita%cc%80/Tirocinio:Tesi/Tesi/Scrittura/Thesis.docx%23_Toc120876533
file://///Users/francescoungaro/Desktop/Universita%cc%80/Tirocinio:Tesi/Tesi/Scrittura/Thesis.docx%23_Toc120876540

 9

Figure 5.2.1: 3D position errors of LS implementation over dynamic user 66
Figure 5.2.2: Position Components Errors for LS implementation with dynamic user 67
Figure 5.2.3: CDF plot of the 3D position error values for LS solution .. 68
Figure 5.2.4: Velocity and Acceleration profiles for LS analysis .. 69
Figure 5.2.5: Trend of 3D position errors for EKF with constant velocity model............................. 70
Figure 5.2.6: Zoom of 3D position errors (excluding transient) for EKF with constant velocity
model .. 70
Figure 5.2.7: 3D velocity errors (excluding transient) for EKF with constant velocity model 71
Figure 5.2.8: Position components errors (excluding transient) for EKF with constant velocity
model .. 72
Figure 5.2.9: Velocity components errors (excluding transient) for EKF with constant velocity
model .. 72
Figure 5.2.10: CDF plot of the 3D position error values for EKF with constant velocity model 73
Figure 5.2.11: Velocity and Acceleration profiles for EKF with constant velocity model 74
Figure 5.2.12: Trend of 3D position errors for EKF with constant acceleration model 75
Figure 5.2.13: Zoom of 3D position errors (excluding transient) for EKF with constant acceleration
model .. 75
Figure 5.2.14: 3D velocity errors (excluding transient) for EKF with constant acceleration model . 76
Figure 5.2.15: Position components errors (excluding transient) for EKF with constant velocity
model .. 77
Figure 5.2.16: Velocity components errors (excluding transient) for EKF with constant velocity
model .. 77
Figure 5.2.17: CDF plot of the 3D position error values for EKF with constant acceleration model78
Figure 5.2.18: Velocity and Acceleration profiles for EKF with constant acceleration model 78
Figure 5.2.19: Comparison of 3D position errors (when altimeter is active) for EKF and SF 79
Figure 5.2.20: Comparison of 3D velocity errors (when altimeter is active) for EKF and SF 80
Figure 5.2.21: Comparison of position components errors (when altimeter is active) for EKF and SF
 .. 81
Figure 5.2.22: Comparison of velocity components errors (when altimeter is active) for EKF and SF
 .. 81
Figure 5.2.23: Comparison of 3D position errors (when altimeter is active) for EKF and SF 82
Figure 5.2.24: Comparison of 3D velocity errors (when altimeter is active) for EKF and SF 82
Figure 5.2.25: Comparison of position components errors (when altimeter is active) for EKF and SF
 .. 83
Figure 5.2.26: Comparison of velocity components errors (when altimeter is active) for EKF and SF
 .. 83
Figure 5.2.27: Comparison of 3D position errors with substitution of each satellite with the
altimeter ... 84
Figure 5.2.28: Comparison of position components errors with substitution of each satellite with the
altimeter ... 84
Figure 5.2.29: Comparison of CDF of 3D position errors with substitution of each satellite with the
altimeter ... 85

Figure 5.3.1: Comparison of 3D position error trend for the different algorithms 86
Figure 5.3.2: Comparison of 3D position error considering last phases (when altimeter is active) .. 87
Figure 5.3.3: Comparison of CDF of 3D position errors for each algorithm 88
Figure 5.3.4: Comparison of CDF of 3D position errors for each algorithm before altimeter
activation .. 88

 10

Figure 5.3.5: Comparison of CDF of 3D position errors for each algorithm after altimeter activation
 .. 89
Figure 5.3.6: Position components error trend ... 90
Figure 5.3.7: Position components error considering last phases .. 90
Figure 5.3.8: Comparison between horizontal trajectories of user and the different algorithms 91
Figure 5.3.9: Comparison between vertical trajectories of user and the different algorithms 91

Figure B.1: Effect of the different errors alone .. 97
Figure B.2: Effect of the errors in combination with each other ... 97

Figure D.1: Tuning of position parameters .. 99
Figure D.2: Tuning of clock parameters .. 100
Figure D.3: Tuning of measurement parameters ... 100

 11

List of Tables
Table 3.1: Clock error parameters.. 32

Table 5.1: Comparison of the percentile values of Horizontal error for EKF solutions 65
Table 5.2: Comparison of the percentile values of 3D position error of EKF solution 71
Table 5.3: Comparison of the percentile values of 3D position error of EKF with constant
acceleration model ... 76
Table 5.4: Comparison of percentile values for 3D position errors of EKF and SF 80
Table 5.5: Comparison of percentile values for 3D position errors of SF with and without altimeter
error .. 82
Table 5.6: Comparison of percentile values for the different algorithms .. 87
Table 5.7: Comparison of percentile values for each algorithm before altimeter activation 88
Table 5.8: Comparison of percentile values for each algorithm after altimeter activation 89

Table A.1: Conversion Gregorian date to GPS .. 95

 12

Acronyms
ALS Auto-variance Least Squares
AWGN Additive White Gaussian Noise
BCE Broadcast Ephemeris
CDF Cumulative Distribution Function
CNSA China National Space Administration
DOP Dilution of Precision
DTE Direct-to-Earth
ECEF Earth Centered Earth Fixed
EKF Extended Kalman Filter
ELFO Elliptical Lunar Frozen Orbit
ESA European Space Agency
EUV Extreme Ultra-Violet
GEO Geostationary Orbit
GLSDC Gaussian Least Squares Differential Correction
GNSS Global Navigation Satellite System
GPS Global Positioning System
HDOP Horizontal Dilution of Precision
HEO Highly Elliptical Orbit
IMU Inertial Measurement Unit
IPP Ionosphere Pierce Point
ISECG International Space Exploration Coordination Group
ISS Information Satellite System
JAXA Japan Aerospace Exploration Agency
KF Kalman Filter
LAD Least Absolute Deviation
LAMBDA Least-Squares AMBiguity Decorrelation Adjustment
LEM Lunar Excursion Module
LOS Line of Sight
LQE Linear Quadratic Estimation
LS Least Squares
MM MiniMax
NASA National Aeronautics Space Administration
NCA Nearly Constant Acceleration
NCV Nearly Constant Velocity
PDOP Position Dilution of Precision
PPP Precise Point Positioning
PR Pseudorange
PSKF Partial-Update Schmidt Kalman Filter
PVT Position, Velocity, Time
RINEX Receiver Independent Exchange Format
RV Reentry Vehicle
SDE Stochastic Differential Equations
SF Sensor Fusion
SNR Signal-to-Noise Ratio
SP3 Standard Product 3 Orbit Format
SPP Single Point Positioning

 13

SR Slant Range
SRF Square Root Filter
SVD Singular Value Decomposition
TDOP Time Dilution of Precision
TOF Time Of Flight
TOW Time of Week
UKF Unscented Kalman Filter
UTC Universal Time Coordinate
VDOP Vertical Dilution of Precision
VLSI Very Large-Scale Integration
WLS Weighted Least Squares
ZTD Zenith Total Delay

 14

 15

1. Introduction

1.1. Moon Exploration
In the recent days, several space agencies are renewing the interest for Lunar exploration, which
involves both the public and private sectors, and will offer new opportunities for a multitude of
disciplines from planetary geology to astronomy and astrobiology. Of course, this renewing interest
aim to the human return to the Moon, with the goal, among the others, of creation of lunar bases
toward deep space expeditions like Mars.

Figure 1.1: The Global Exploration Roadmap by ISECG (Source: [1])

This growing trend in the number of missions to the Moon is creating demand for various research
on system which could increase the robustness of navigation architectures and improve their
autonomous operation capabilities.
In the past, lunar expeditions have almost entirely relied on measurements from Earth and
infrastructures used in terrestrial missions. The benefits of these relay infrastructures were also
demonstrated by the recent far-side lunar mission, like for example the landing of the Chinese
Chang’E 4 mission (focused on relaying telemetry to ground rather than providing an independent
orbit determination and navigation solution).
Moreover, Global Navigation Satellite Systems (GNSS) are currently used in space missions, not
only as a navigation sensor but also as a science instrument. Although their use has been generally
limited to orbits below the GNSS constellations, recent studies have shown that GNSS-based
navigation for Geostationary Orbit (GEO) and Highly Elliptical Orbit (HEO) missions is feasible and
with relatively good performances, demonstrating its applicability to a wide range of space missions.
Therefore, these studies show that GNSS signals from Earth can be received at the Moon’s altitude,

effectively providing support for orbit determination and landing operations on the near side.
However, the Earth-based techniques currently adopted for navigation with satellites in cislunar space
are not able to cover all the needs for future exploration, both in terms of service performance (i.e.,
need to land within 100 m of a predetermined location on the lunar surface) and accessibility. In fact,
these technologies alone do not support far-side operations (the South Pole and the far side are not
always accessible by Earth-based ground stations) and will not reach the accuracy required by the
Global Exploration Roadmap Critical Technology Needs (ISECG) (Figure 1.1).

 16

These problems are caused by the critical conditions of lunar environment, where the coverage is
limited and the signals are weaker. Furthermore, for future missions, precise data concerning the
position of rovers on the Moon surface will become of vital importance, and an autonomous
navigation system capable of real-time absolute positioning on the Moon will be crucial for the future
of the lunar exploration.

The topic has been widely discussed in the literature since the 1970s when Farquhar described how
satellites in Earth-Moon libration points could be used to support satellite navigation in cislunar space.
Other works have gone further in this argument, assessing different lunar navigation infrastructures
based on Earth-Moon Lagrange point orbiters providing one-way Doppler measurements together
with Earth GPS signals showing results better than 1 km for positioning and 5 cm/s for velocity in
cislunar space [2].

For all these reasons, several space agencies have proposed dedicated systems to address these
problems and provide navigation services to future lunar missions.
The Russian satellite maker, Information Satellite Systems (ISS) JSC, proposed a concept that
envisions the deployment of a full constellation of 24 satellites around the Moon between 2036 and
2040; in the US, Lockheed Martin has proposed Parsec; JAXA (Japan Aerospace Exploration
Agency) has recently launched a study which will consider possible lunar positioning satellite
systems; China recently announced that its space agency (CNSA) is planning to set up a satellite
constellation around the Moon to provide navigation services. On top of these initiatives, NASA has
proposed the LunaNet framework to enable interoperability among different lunar navigation service
providers [3].
In this context, the European Space Agency (ESA) has proposed a concept called Moonlight that aims
to provide navigation services to institutional and commercial lunar missions. The ESA’s vision

represented by the Moonlight initiative is to foster the creation and development of dedicated lunar
navigation services, to be delivered by private partners. These services will support the next
generation of institutional and private lunar exploration missions, including enhancing the
performance of those missions currently under definition and creating new possibilities [2].

1.2. PVT estimation
The determination of the user PVT is one of the most important issues of satellite-based navigation
systems. PVT is an acronym that stands for Position (Latitude, Longitude, Height), Velocity (North,
East, Up) and precise Time (in Universal Time Coordinated UTC).
GNSS receivers determine the user position, velocity, and precise time (PVT) by processing the
signals broadcasted by satellites. Since the satellites are always in motion, the receiver has to
continuously acquire and track the signals from the satellites in view, in order to compute an
uninterrupted solution, as desired in most applications. Any navigation solution provided by a GNSS
receiver is based on the computation of its distance to a set of satellites: this means measuring the
propagation time it takes for an incoming signal transmitted by a satellite at a known location to reach
a user receiver at the speed of light, according to local clocks of satellite and receiver. Multiplying
this time interval by the speed of light in the vacuum (299 792 458 m/s), the time difference is
transformed into a very rough estimate of the emitter-to-receiver distance, called Pseudorange:

𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑔𝑒 = 𝑃𝑅 = 𝑐 ∙ 𝑑𝑡

This value is not the true range between satellite and user, since it has to be corrected taking into
account a number of phenomena and errors. Furthermore, measuring different pseoduranges from
signals broadcast from multiple satellites, the receiver position can be determined more precisely.

 17

Figure 1.2: General concept of PVT determination (Source: Navipedia [4])

Of course, there are many complications. The major one is that the receiver is using its own clock to
tag the received time, often supplied by a very inexpensive crystal oscillator. The speed of light is
about 3 ∙ 108 meter per second, thus very small errors in the receiver's clock can cause large range
errors. This is solved by including the time bias of the receiver clock in the set of unknowns.
Therefore, there are 4 unknowns at each time step where a solution is computed: 3 for position and 1
for time. This is why the minimum number of satellites in view for the determination of a solution is
four and also why the receiver can provide such good time: at each timeline, usually once per second,
a new estimate of accurate time (GPS time) is generated in every receiver.
As already said, the location of the satellites is needed to determine the PVT. The signal that allows
to know location, velocity, and clock state of the satellite is the message data, which provides a series
of numbers that are used in a fixed set of equations (a model).
The information is divided into two pieces: the Broadcast Ephemeris (BCE) and the Almanac. The
BCE provides information on the satellite position and velocity, which is very accurate and stays that
way for a day or so. The information about the bias of the satellites onboard clock is provided too,
but, since the atomic clock of the satellites wanders a few nanoseconds per day, the inaccuracy in the
clock parameters in the BCE are a major error source. It takes a maximum of 3 minutes tracking to
get the ephemeris from a satellite, so this data repeats every 3 minutes, and they cannot be used for
generating a solution until the BCE is completely received.
The Almanac is a lower accuracy set of numbers is provided for all the satellites in orbit, in order to
help receivers plan satellite tracking and acquire satellites signals. This data cycles more slowly and
takes 12.5 minutes to repeat. Usually, all satellites broadcast the same almanac and among other
parameters, there are the values needed to convert the GPS Time used by the satellites to Universal
Time Coordinated (UTC) [5].

As said before, to estimate the position of a user, the state vector consists of 4 unknowns variables:

𝑢 = [𝑥 , 𝑦 , 𝑧 , 𝑐𝑑𝑡]

The positioning problem is generally stated as:

𝑦 = ℎ(𝑢) + 𝑛

 18

where y is the measurement vector (that is, the observables obtained from the GNSS signals of a set
of m satellites), h(u) is the function that relates states with measurements, and n models measurement
noise. Depending on the models, assumptions, available measurements, and the availability of a
priori or externally provided information, many positioning strategies and algorithms can be used [6].
One of these positioning modes is the Single Positioning Mode, in which the vector of unknown states
is defined as:

𝑢 = (𝑟𝑟
𝑇 , 𝑐 ⋅ 𝑑𝑡𝑟)

𝑇

where rr is the receiver’s antenna position in an Earth-Centered Earth-Fixed (ECEF) coordinate
system (in meters), c is the speed of light, and dtr is the receiver clock bias (in seconds).
The measurement vector is defined as:

𝑦 = (𝑃𝑟(1), 𝑃𝑟(2), … , 𝑃𝑟(𝑚))
𝑇

Where Pr(s) is the pseudorange measurement of the s satellite, that can be expressed as:

𝑃𝑟(𝑠) = 𝜌𝑟
(𝑠) + 𝑐(𝑑𝑡𝑟(𝑡𝑟) − 𝑑𝑇

(𝑠)(𝑡(𝑠))) + 𝐼𝑟
(𝑠) + 𝑇𝑟

(𝑠) + 𝜖𝑃

where:

- Pr(s) is the pseudorange measurement (in meters)
- ρr(s) is the true range from the satellite’s to the receiver’s antenna (in meters)
- c is the speed of light (in m/s)
- dtr is the receiver clock offset from GNSS time (in seconds)
- tr is the signal reception time (in seconds)
- dT(s) is the satellite clock offset from GNSS time (in seconds)
- t(s) is the signal transmission time (in seconds)
- Ir(s) is the ionospheric delay (in meters)
- Tr(s) is the tropospheric delay (in meters)
- ϵP models measurement noise, including satellite orbital errors, receiver’s and satellite’s

instrumental delays, effects of multipath propagation, thermal noise and others (in meters).

Instead, considering Precise Point Positioning mode, the state vector to be estimated is defined as:

𝑥 = (𝑟𝑟
𝑇 , 𝑣𝑟

𝑇 , 𝑐 ⋅ 𝑑𝑡𝑟 , 𝑍𝑟 , 𝐺𝑁𝑟 , 𝐺𝐸𝑟 , 𝐵𝐿𝐶
𝑇)
𝑇

Where:

- 𝑍𝑟 is the Zenith Total Delay (ZTD)
- 𝐺𝑁𝑟 and 𝐺𝐸𝑟 are the north and east components of tropospheric gradients
- 𝐵𝐿𝐶 = (𝐵𝑟,𝐿𝐶

(1), 𝐵𝑟,𝐿𝐶
(2), … , 𝐵𝑟,𝐿𝐶

(𝑚)) is the ionosphere‐free linear combination (in m).

Besides from these introductive definitions, the PVT estimation can be computed with the
implementation of many positioning algorithms, which could follow similar procedures, but
demonstrate several variants and differences both in the implementation and the performance.

 19

1.3. Purpose and Development of the work
The main goal of this thesis is to provide an assessment of the performance achievable with different
suitable positioning techniques for Lunar PVT estimation, considering both a static user on Moon
surface and a dynamic user landing on predetermined point on the Moon.
The final objective is to combine the best features of each algorithm and define a unique tool able to
perform PVT estimation with the best possible accuracy.
Chapter 2 presents the current state of the art of the positioning method used for several application
on Earth with GNSS constellation, but also introducing some of the studies done for lunar
applications. Therefore, the most used and common positioning algorithms are introduced: Least
Squares estimation, Kalman Filter and Sensor Fusion technique.
The third chapter focuses on the lunar environment, showing the typical case studies for the PVT
estimation on the Moon and pointing out the differences with respect to the terrestrial environment.
In chapter 4, the emphasis is on the implementation of the various techniques covered. First, the
constellation considered and the input data are described. Subsequently, the formulations
implemented considering each positioning technique are explained. Finally, the script produced based
on these formulations are validated considering input data referred to an Earth constellation.
Finally, in chapter 5, the results obtained with the implementation of the different algorithms
presented are discussed. The analysis focuses on the outcomes achieved with each one of them in the
different scenario considered, so that their performance and capabilities can be evaluated. Afterwards,
these results are compared, with the aim of showing the main differences and highlighting the
algorithms that provide the best performance, in order to combine the best features of each technique
and define a unique tool to perform the PVT estimation with the best possible performance and
accuracy.

 20

2. State of Art of GNSS positioning method

2.1. Least Squares
The Least Squares (LS) method is one of the oldest and most widely used statistical tools for linear
models and its theoretical properties have been extensively studied in the past [7].
Least Squares is a batch estimation technique used to find a model that closely represents a collection
of data and allows for the optimal determination of values or states within a system. This estimation
technique can be applied to both linear and nonlinear system and is utilized in many different
applications.
Many real-world applications often contain an assortment of sensors that can be used to determine
various parameters of interest in the system. These parameters of interest are typically referred to as
states and can be anything needing to be tracked in a system, such as the position of a spacecraft or
the level of saltwater in an aquarium tank.
Each of the states in a system are stored in a vector known as the state vector, x. The assortment of
sensors in a system is used to provide insight into what is actually happening in the system and how
the system is changing over time. Each sensor yields a measurement which is stored in a vector known
as the measurement vector, ỹ. However, these measurements often only provide information about a
state indirectly and often require some type of conversion before being compared to the state vector.
The measurement model matrix, H, describes this relationship between the measured values and the
state values and is used to map the state vector, x, into the measurement vector, ỹ, as shown in the
equation, which also takes into account any noise, ν, in the measurement.

�̃� = 𝐻 ∙ 𝑥 + 𝜈

Ideally, when estimating a particular state, the error between the true value and the estimated value
of the state should be minimized. However, in a real-world system, the true value of a state is never
actually known due to various error sources, such as measurement errors and modeling errors. As a
result, linear Least Squares seeks to minimize the residual error, i.e., the error between the actual
measurements, ỹ, and the measurements predicted from the model/estimated value of the state, x̂. In
this case, the optimal estimate of the state vector for a particular system is found as [8]:

�̂� = (𝐻𝑇 𝐻)−1 𝐻𝑇 �̃�

Despite this, the main focus of the Least Squares method is to find estimation parameters, x̂, such that
a model h(x) has the best fit on measurements y.
The residuals are defined as the difference between observation data and model function:

𝑟𝑖⃗⃗ = 𝑦 − ℎ⃗ (𝑥)

Therefore, the goal is to find x, such that the sum of the squares of the residuals is minimized [9].

𝑆 =∑𝑟𝑖
2

𝑛

𝑖=1

 21

2.1.1. Weighted Least Squares
The linear Least Squares solution determines the optimal estimate for each of the estimated state
values by minimizing the residual error while weighing each of the measurements equally. However,
many applications utilize numerous sensors that have varying performance specifications and
uncertainties, so that weighing each measurement equally is not as useful.
A technique known as Weighted Least Squares (WLS) adds an appropriate weight to each
measurement to account for the uncertainty in each of the measurements. The linear least squares
solution then becomes:

�̂� = (𝐻𝑇 𝑊 𝐻)−1 𝐻𝑇 𝑊�̃�

where W is a symmetric, positive-definite matrix that contains the appropriate weights for each
measurement. While any user-defined weights can be used in W, usually this matrix is set equal to
the inverse of the measurement covariance matrix, R, yields optimal results.

�̂� = (𝐻𝑇 𝑅−1 𝐻)−1𝐻𝑇 𝑅−1 �̃�

Note that in this case, the (𝐻𝑇 𝑅−1 𝐻)−1 term in the Weighted Least Squares solution is then equal
to the state covariance matrix, 𝑃 = (𝐻𝑇 𝑅−1 𝐻)−1 [8].

2.1.2. Least Squares variants

2.1.2.1. Non-Linear LS
While linear Least Squares can be used in various applications, some systems cannot be described by
a linear model. For these nonlinear systems, the linear Least Squares can be extended to a nonlinear
Least Squares solution, also known as the Gaussian Least Squares Differential Correction (GLSDC).
Rather than directly solving for a closed form solution of the model with respect to the parameters,
an iterative approach is taken by linearization of h around an initial value x0, in order to estimate an
updated parameter 𝑥𝑘+1 = 𝑥𝑘 + ∆𝑥.
The nonlinear Least Squares estimation process uses a model of the form:

�̃� = ℎ(𝑥)

where h(x) represents the equations of a nonlinear system.
An optimal estimate for a nonlinear system can then be found by iterating the nonlinear least squares
solution, until convergence is achieved observing the values in x:

�̂�𝑘+1 = �̂�𝑘 + (𝐻𝑘
𝑇 𝐻𝑘)

−1 𝐻𝑘
𝑇 (�̃� − ℎ(�̂�𝑘))

Where the H matrix is known as the Jacobian matrix, defined with the partial derivatives of the
modeled measurements with respect to the estimation parameters.

𝐻𝑘 =
𝛿ℎ(𝑥)

𝛿�̂�𝑘

Weighted versions of this calculation follow the same formulation as the linear case: the weight
matrix, W ideally is the inverted covariance matrix of the observations Qz-1, but in reality, the inverse
of estimated variances is used, as the actual observation covariances are not available during real-
time navigation.
Though this iterative process requires more computation than the linear Least Squares estimation
process, nonlinear Least Squares provide the advantage of optimizing a wide range of real-world
systems [8].

 22

2.1.2.2. Least Absolute Deviation (LAD)
Despite its many superior properties, the Least Squares estimate can be sensitive to outliers and,
therefore, non-robust. Its performance, in terms of accuracy and statistical inferences, may be
compromised when the errors are large and heterogeneous. In fact, the traditional LS estimator is
rather sensitive to large noises, resulting in large estimation errors, due to the Gaussian error
assumption. When outliers occur, the Least Squares estimation scheme may not be a good choice
because the LS estimator minimizes the mean squared error of the observations. In order to perform
robust positioning estimation, other criteria may be employed. The common alternatives might be L1

(Least Absolute Deviation, LAD) or L (MiniMax, MM) estimators.
These are known as two of the most robust estimators, and LAD in particular is also known to be able
to produce approximately the maximum-likelihood estimation. As compared to the Least Squares,
the LAD method is less sensitive to outliers and produces more robust estimates. In cases when the
maximum-likelihood estimator is obtained by minimizing the mean absolute deviation, rather than
the mean square deviation, it can perform more effective estimation. Even if the desired signals are
corrupted by unknown errors, it tends to be impervious to unexpected large errors. Due to
developments in theoretical and computational aspects, the LAD method has become increasingly
popular, with many applications in econometrics and biomedical studies, among many others.
Moreover, different studies demonstrate that LAD approach shows a much better multipath resistance
capability compared to the Least Squares method. However, LAD approach possesses more benefits
when more satellites are in view and/or less satellite signals are corrupted by multipath. This is due
to the fact that a larger number of multipath-corrupted signals will mislead the correct information,
resulting in performance degradation [7].

2.1.2.3. Autocovariance Least Squares (ALS)
This algorithm is formulated to take into account the time-varying system dynamics and measurement
matrices. The intrinsic feature of this algorithm is the account for the time correlation between
measurement residuals, which exists due to the ambiguity of the measurement noise-covariance
matrix, that is not known a priori.
Three approaches are commonly used for setting the covariance matrix of the GPS measurements:

- The first and the most common approach is to set the measurement covariance matrix as a
predefined equally weighted diagonal matrix.

- Another approach is to set the GPS measurement covariance based on the elevation angle of
the satellite.

- The third approach is to weight the GPS measurements based on the signal-to-noise ratio
(SNR) or the carrier-to-noise power density ratio C/N0.

The last two methods, while giving a better gauge of the measurement quality, do not directly estimate
the measurement covariance from the sampled measurements. For the second approach, neither the
receiver quality nor adverse environments such as interference or jamming will affect the chosen
measurement weighting. For the third approach, GPS manufacturers are not obliged to provide these
values. Added to this fact is the lack of standards between GPS manufacturers in providing the SNR
and the C/N0. In addition, it is unclear how the SNR or the C/N0 will be able to differentiate between
the measurement and its noise without the feedback of the receiver dynamics measured by the inertial
measurement unit (IMU). Therefore, it is seen that proposing a method to estimate the GPS
measurement noise-covariance matrix from the sampled GPS measurements with the aid of the IMU-
measured receiver dynamics is essential for high-integrity operation of GPS- dependent systems [10].

 23

2.2. Kalman Filter
The Kalman Filter, also known as linear quadratic estimation (LQE), is one of the most important
and common estimation algorithms. The filter is named after Rudolf E. Kálmán, who published his
famous paper describing a recursive solution to the discrete-data linear filtering problem in 1960.
This algorithm uses a series of measurements observed over time, including statistical noise and other
inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those
based on a single measurement alone, by estimating a joint probability distribution over the variables
for each timeframe [4].

As it will be discussed in detail in chapter 4, the Kalman Filter works by a two-phase process. The
first one is the prediction phase, in which the filter produces estimates of the current state variables,
along with their uncertainties. Once the next measurement (including its errors) is observed, the
estimates are updated using a weighted average, with more weight needed to obtain greater certainty.
The algorithm is recursive, and it can operate in real time, using only present input measurements and
the state calculated previously with its uncertainty, so that no additional past information is required.
There are different variants of the Kalman Filter: one of the most important is the Extended Kalman
Filter (EKF), which was developed for nonlinear applications such as navigation. Basically, it makes
the nonlinear system linear around the current estimate of the Kalman Filter. This technique will be
discussed more in detail also in chapter 4.
Another modified version is the Unscented Kalman Filter (UKF), which is much more
computationally intensive, but more accurate because it does not attempt the linearization of a
nonlinear system. The main idea of this filter is that it is easier to perform a nonlinear transformation
on a single point than a probability function and that it is possible to find a group of single points in
state space whose sample probability density function approximates the true probability density
function of the state vector. During the time update portion of the filter, twice as many sigma points
as the length of the measurement vector are chosen, so that all together they have the same mean and
covariance of x. The known nonlinear function is applied to each sigma point and the resulting
transformed vectors are used to get a good estimate of the true mean and covariance. Hence, the
procedure involves the calculation of the sigma points, and the time updated state vector and
covariance matrix based on the sigma points. The subsequent steps are the calculation of the estimated
measurements from the sigma points, the measurement covariance matrix, the measurement-state
cross-covariance matrix, and finally the definition of the Kalman gain and the post measurement
outputs [11].

2.2.1. Kalman Filter Issues
Two primary concerns emerge from the use of the Kalman Filter: the numerical precision of the filter
and the filter’s robustness for nonlinear systems or measurements. These problems arise since the
error covariance matrix is updated directly and the covariance measurement update equation involves
a subtraction of two positive definite matrices, which when performed with finite precision can
represent potential numerical problems. These numerical inconveniences may lead to loss of accuracy
and to the violation of the positive definiteness of the covariance matrix, principally for ill-
conditioned problems, often leading also in divergence [12].
In addition, Kalman gain is estimated in the gain loop but acts as error correction feedback in the
estimation loop. As long as the gain is accurate, this feedback into the estimation loop should correct
for errors in the state estimate that are caused from roundoff, noise and a priori estimation errors.
However, no such feedback exists in the gain loop, so that any errors, such as from computer roundoff,
can accumulate and go unchecked in the computation of the state variance-covariance. Furthermore,
there are about twice as many computer roundoff operations in the gain loop, compared to the
estimation loop of the Kalman filter.

https://en.wikipedia.org/wiki/Statistical_noise
https://en.wikipedia.org/wiki/Joint_probability_distribution

 24

The main procedure used to overcome the issues of the Kalman Filter is the factorization of the
covariance matrix, an operation almost as old as the filter itself. There are several factorization
methods to stabilize the filter [13], factoring the variance-covariance matrix of states into:

- Products
o Triangularization (QR decomposition)

▪ Givens rotations
▪ Householder transformation

o Gram-Schmidt orthonormalization
- Square Root and UD filters

o Carlson-Schmidt algorithm
▪ Cholesky factors

o Bierman-Thornton algorithm
▪ Modified Cholesky factors

- Others

2.2.2. Kalman Filter variants
In this section, some of the variants mentioned before to overcome Kalman Filter issues are presented,
with a brief introduction of the main points of interest, without dwelling on them.

2.2.2.1. Square Root Filters
In general, square root filters are more numerically stable than the conventional Kalman filter. First,
the condition number for the square root of a covariance matrix is the square root of the condition
number of the covariance matrix. Hence, these kinds of filters benefit both the numerical stability
inherent in the square root filter and the robustness of the partial update while operating directly on
the square root representation of the uncertainty. In fact, a low condition number is always desirable,
mainly for the cases where the computer word length is limited (as in embedded systems), or when
the filtering problem is poorly conditioned. Although these types of formulations are numerically
more robust, it is at the cost of increasing the computational effort. Nevertheless, the number of extra
computations can still be reasonable which allows the filter to be used in many applications.
The SR filter is mainly a covariance reformulation of the standard Kalman equations, and thus it is
still a linear filter. Similar to what is done with a traditional filter, the square root KF can be applied
in nonlinear systems through a linearized model. That is, the square root formulation does not enhance
a filter’s ability in addressing nonlinearity, it simply improves numerical conditioning [12].
In the estimation field, square root filtering refers to utilize a square root factorized representation of
the error covariance matrix for purposes of propagation and correction of the estimation error. The
goal of reformulating filters using such “square roots” or factorizations, is to increase the precision

of the filter itself. By operating on the square root of the error covariance, the filter lowers the
condition number of the uncertainty matrix, which is then less prone to numerical issues because
fewer significant figures are required during the arithmetic operations.
The definition for the square root of a matrix is based on the idea of finding a matrix S that satisfies
P = SST, where S will be referred to as the square root of the error covariance matrix P. Specifically,
S is a lower triangular matrix, and ST its transposed. Importantly, the product SST is naturally
symmetric and positive semidefinite, regardless of the value of the lower triangular matrix S.
This means that numerical difficulties that could cause the covariance matrix P to become
nonsymmetric or singular, cannot affect the product SST, thus preserving the theoretical properties of
the covariance matrix P (within the machine precision). Also, as for scalars, the square root S is not
unique, so there may be several solutions. One very well-known method to compute the matrix S is
the Cholesky decomposition, which requires that the matrix to be factorized is positive definite and
symmetric (this holds for P) and directly outputs the matrix S that will be triangular.

 25

2.2.2.2. Potter Square Root Filters
The first square root filter development is due to Potter who developed in 1963 an algorithm for the
limited case of uncorrelated scalar observations with no process noise. This filter was used in the
Lunar Excursion Module (LEM) for the Apollo Program [14].
The main driver at the time was numerical precision, as computer words were only 8 bits long.
Replacing the covariance by a square root matrix S, such as P = SST, reduces the spread of the
elements of P bringing them closer to 1, doubling the numerical precision of the stored variable.
At the time, the Apollo Kalman filter was designed without any process noise, because computations
required for inclusion of the process noise required too many computations. A very desirable by-
product of this factorization is that the symmetry and semi-positive definiteness of the covariance are
insured by construction and does not need to be checked or enforced to correct for numerical and
round-off errors. It should be noted that this Apollo factorization was not a triangular square root
matrix [15].

2.2.2.3. Bierman-Thornton UD Factorization
This is another more elegant formulation where the covariance matrix P is replaced by two factors: a
diagonal matrix D and an upper triangular matrix U with ones on the main diagonal, such that

𝑃 = 𝑈𝐷𝑈𝑇 → [

𝑝11 𝑝21 𝑝31
𝑝12 𝑝22 𝑝32
𝑝13 𝑝23 𝑝33

] = [
1 𝑢12 𝑢13
0 1 𝑢23
0 0 1

] [

𝑑11 0 0
0 𝑑22 0
0 0 𝑑33

] [
1 𝑢12 𝑢13
0 1 𝑢23
0 0 1

]

𝑇

The state variance-covariance matrix is never explicitly computed since the UDUT factors are always
propagated in each computational step through the filter instead of the variance-covariance matrix
itself. More importantly, this factorization improves the computational stability and efficiency of
large navigation filters, especially in situations prone to roundoff error, large a priori errors and
asymmetry of the state variance-covariance matrix, which may all lead to filter divergence. This is
possible because UDU factorization ensures symmetry of the covariance matrix by construction, and
it requires a trivial check and correction to ensure semi-positive definiteness (it suffices to enforce
that the diagonal elements of D remain non-negative). The UDU is classified as a square root filter,
but technically, the formulation is free from square root operations, making it computationally
cheaper, and for these reasons it has endured as one of the preferred practical implementations of
Kalman filters in aerospace applications [15].
The UD filter is only capable of incorporating scalar observations, meaning that the observations
must be uncorrelated for the solution to be rigorous. GNSS double-differenced phase observations
are inherently mathematically correlated, which suggests why a UD carrier-phase float filter has not
been reported in previous literature. This limitation can be overcome by diagonalizing the observation
covariance matrix, thus decorrelating the components of the matrix. Although not initially intuitive,
forming arbitrary linear combinations of the observations will not affect the integer nature of the
estimated ambiguities provided we continue to estimate ambiguities corresponding to the original
double-differences [13].

2.2.2.4. Partial-Update Schmidt Kalman Filter
The Partial-Update Schmidt Kalman Filter (PSKF or Partial-Update Filter for short) is a recent
technique that is useful in accommodating measurement updates in nonlinear systems with mildly
observable states.
The Partial-Update Schmidt Kalman filter is a straight-forward modification of the Extended Kalman
Filter that effectively increases the range of uncertainties and associated nonlinearities that a filter
can tolerate (compared to the EKF or Schmidt filter) while still producing accurate state estimates
with appropriate co-variance bounds.

 26

This form of the Kalman filter inherits the benefits of the Partial-Update formulation and combines
them with the numerical robustness of the square root form. The result is a filter of higher numerical
precision and increased tolerance to nonlinearities and uncertainty level with minimal additional
computational burden [12].

2.2.2.5. Least-Squares AMBiguity Decorrelation Adjustment
Since UDU Bierman filter provides only a float solution, to solve for the integer ambiguities other
algorithms will need to be used, such as LAMBDA (Least-Squares AMBiguity Decorrelation
Adjustment). The resulting unit triangular matrix from the square root filter can be directly used into
LAMBDA since the first step in this procedure is to decorrelate the double differenced ambiguities
before the actual integer estimate of ambiguities is done. The decorrelation requires that the variance-
covariance matrix of the ambiguity states be broken down into LDLT (or equivalently UDUT factors,
which the Bierman-Thornton algorithm does). The overall process of going from a float solution to a
fixed solution is resultantly more efficient. Furthermore, factorization of the variance-covariance
matrix of the ambiguity states is only done once and the UD factors are propagated through the filter.
The factorization only happens again if the ambiguity states change. This contrasts with LAMBDA,
where factorization of the ambiguity states happens at every epoch regardless of changes in the
ambiguity states or not. This further exemplifies the computational benefit and efficiency of the
Bierman-Thornton method [13].

2.2.2.6. V-A Square Root Algorithms
These are new discrete-time (continuous/discrete and discrete/discrete) square root algorithms, which
utilizes the spectral decomposition of the covariance matrix: V is the matrix whose columns are the
eigenvectors of the covariance and A is the diagonal matrix of its eigenvalues. The new algorithms
employ singular value decomposition (SVD), for which there exist today efficient and stable
algorithms.
From a computational viewpoint, the new algorithms are more complex than other SR procedures that
exist today, because of the reliance upon the SVD technique (as opposed to more efficient orthogonal
transformations, on which other SR algorithms are based). Nevertheless, the new algorithms may be
of great importance in certain applications, e.g., where loss of accuracy due to harsh numeric is
expected, or where continuous monitoring of the eigen factors is necessary in order to reveal
singularities as they occur and to identify those state subsets that are nearly dependent. It is believed
that as the SVD is becoming today a tool of primary importance in control theory, further research
will eventually lead to the development of new SVD algorithms of higher efficiency, to the benefit of
the new V-A filters. Moreover, with the rapid emergence of Very Large-Scale Integration (VLSI),
new parallel computing structures have been introduced for efficient, real-time implementation of
matrix arithmetic algorithms such as Cholesky decomposition, eigenvalue decomposition etc.
The new update algorithm is free of explicit equations, a fact that may be advantageous in certain
implementations, and it was shown to be numerically stable. The stability stems from the fact that it
is based on the orthogonal Householder and Givens transformations, which are famous for their
numerical stability and accuracy.

2.2.2.7. Hybrid type filters
These kinds of filters utilize alternately the covariance mode (in the time update stage) and the
information mode (in the measurement update stage). Thus, because of the operation in both modes,
the new filters possess the advantages of the covariance and information filters. These advantages are
the ability to cope with the case of infinite initial covariance (no initial information), the efficiency
of the covariance formulation in processing time updates and the efficiency of the information
formulation in processing measurement updates. Moreover, because of the duality between the
discrete time update of the covariance factors and the discrete measurement update of the information

 27

matrix factors, the fact that the V-A filter operates in both modes implies algorithmic equivalence
between the procedures used in the two stages of the filter. This equivalence introduces a saving
factor in the implementation of the filter, because both stages use the same algorithm. This fact is also
valuable for its simplification of the error analyses of specific implementations.
The conventional Kalman Filter cannot handle this relatively large initial covariance because of an
algorithmic singularity, while using the V-A SR filter such initialization problems are not encountered,
since the covariance factors are updated independently of the gain, and the gain itself can, this time,
be computed using the a posteriori factors [16].

2.3. Sensor Fusion
The Sensor Fusion technique is a method that combines data from different sources of information in
order to achieve better performance than can be achieved when each source of information is used
alone.
The design of systems based on sensor fusion methods requires the availability of complementary
sensors in order that the disadvantages of each sensor are overcome by the advantages of the others.
There are different applications of this technique, like air navigation, with several aerial vehicles
which use various sensors usually noisy and biased, so that their combination can give optimized
results [17]. Another interesting application of sensor fusion methods is motion tracking, since several
sensor technologies are available, but none of them taken alone can give the best performances. This
is true especially when motion is to be tracked without restrictions in space and time, and cost and
compliance issues tend to restrict the range of potential candidates for applications like human motion
tracking in biomedicine and healthcare [18].

The implementation of this work will consider the application of the Sensor Fusion technique
combining the performances of an Extended Kalman Filter and the additional measurement given by
an altimeter. The functioning of a laser altimetry (or laser ranging) works on the basic time-of-flight
(TOF) principle. A pulse of laser energy is emitted, it reflects off a target surface, and the receiver
(which could be the same that emitted the laser) detects the reflected energy. The time between pulse
emission (start) and pulse reception (stop) provides a measure of the target distance, or range (R),
based on the speed of light (c), through the simple relation [19]:

𝑅 = 𝑐 ∆𝑡 2⁄

 28

3. PVT determination in Lunar Environment

3.1. Typical Use Cases

3.1.1. User orbiting around the Moon
The first typical use case in lunar environment is of course the determination of the PVT of a user
that is orbiting around the Moon, following a specific trajectory previously determined. Nevertheless,
in this work this case will not be taken into consideration, since it is not of interest for the analysis
done and the algorithms developed.

3.1.2. Static User
The first scenario that will be analyzed in this study consider a static user, situated in a specific
position on the lunar surface: this point is considered to be the South Pole of the Moon. As it will be
deepened in the next chapter, the PVT estimation is achieved through the signals of four satellites in
view, which is the least number of satellites needed for the determination of the user position. As it
will be discussed, all four satellites need to be in view of the user, in order to allow to determine its
position. Hence, if following their orbits around the Moon, one or more satellites are no longer in
visibility of the user, the PVT estimation cannot be computed anymore, given the absence of sufficient
inputs for the implementation of the positioning algorithms.

Figure 3.1: Static User configuration

The simulated configuration is depicted in Figure 3.1, but it can also be noticed the reference
system considered for the analysis: it is the equivalent of the ECEF system on Earth, since its origin
is in the center of the Moon and the z axis is directed toward the North Pole.

 29

3.1.3. Dynamic User
The second scenario that will be discussed consider a user no longer on the lunar surface, but it is
now in motion and following a defined trajectory. This trajectory includes a first phase in which the
user is orbiting around the Moon, but then it starts approaching the lunar surface and finally a
descending phase to land on a predetermined point, specifically the South Pole. Even in this scenario,
the determination of the PVT of the user over time is provided through four satellites in view, which
also follow a specific orbit around the Moon.
An approximation of the trajectory followed by the user is depicted in Figure 3.2. As for the static
user case, also for this scenario the reference system considered has its origin in the center of the
Moon, as shown in the figure.

Figure 3.2: Dynamic User configuration

Landing on the Moon has been successfully performed since the initial phase of lunar exploration,
both with human and robotic missions. However, recent failures have shown that landing on the
Earth’s natural satellite is actually not an easy task.
Despite this, recent studies on NASA’s Jet Propulsion Laboratory lander vision system have
demonstrated landing accuracies down to 40 meters and the also the latest landing on Mars has proven
the level of reliability of this system [2].
This means that in theory the requirements expressed as part of the Global Exploration Roadmap
Critical Technology Needs (ISECG) could be met with current state-of-the-art visual-based
navigation technology such as the one used for the recent Mars landing. Though, a detailed
assessment of the specific features and image quality of the lunar landing areas would still need to be
performed. These also means a relatively expensive cost and heavy equipment dedicated to the
landing phase, which is only partially reusable after touch down [2].

3.2. Differences with respect to Earth environment

3.2.1. Earth and Moon Applications

3.2.1.1. Earth
Nowadays, Kalman Filter technique is used in numerous and various applications on Earth, such as
target tracking (Radar), location and navigation systems, control systems and computer graphics [20].
For example, calibration, alignment, and error correction of complex inertial navigation systems are

 30

done with the implementation of Kalman filtering. Real-time online applications can include missile
defense, estimation, and prediction of reentry vehicle (RV) position, while offline applications
include estimation and correction of radar errors such as azimuth bias, elevation bias, and survey
(base location) errors. Finally, space applications of these techniques comprehend estimation of the
trajectories of thousands of Earth satellites and space debris, as well as augmentation systems and
also every GNSS receiver uses an EKF to estimate its own position and velocity, and to synchronize
the receiver clock with GPS time [21].

3.2.1.2. Moon
In lunar environment, the most important and known expedition that envisaged the implementation
of the Kalman Filter technique is of course the APOLLO program. Nonetheless, other missions have
demonstrated the likelihood of lunar positioning and also landing, as the Chinese Chang’E 4

expedition [22]. However, this mission (as almost every lunar mission in the past) has almost entirely
relied on direct-to-Earth (DTE) ranging radiometric measurements for navigation, rather than
providing an independent orbit determination and navigation solution.
Different studies have already shown that GNSS signals from Earth can effectively provide support
for orbit determination and landing operations on Moon, but this technology alone does not support
far-side operations and will not reach the accuracy required by the Global Exploration Roadmap
Critical Technology Needs (ISECG). This topic has been widely discussed in the literature since the
1970s, with various papers describing how satellites in Earth-Moon Lagrangian points could be used
to support satellite navigation in cislunar space.
To address these problems and provide navigation services to future lunar missions, in recent years
several space agencies have proposed dedicated systems.
In particular, the Russian satellite maker, Information Satellite Systems (ISS) JSC, proposed a full
constellation of 24 satellites around the Moon, while NASA has proposed LunaNET.
In this context, the European Space Agency (ESA) has proposed a concept called Moonlight that aims
to provide communication and navigation services that will support the next generation of
institutional and commercial lunar exploration missions, including enhancing the performance of
those missions currently under definition and creating new possibilities [2].

3.2.2. Adaptation of the algorithms
In order to implement the positioning techniques, the differences between Earth and Moon must be
considered, so that the algorithms need to be modified depending on the application environment. In
this section the differences in the implementation will be described, while in the next chapter the
simulation environment considered for the lunar application will be discussed more in-depth, together
with formulations and implementation of the different positioning algorithms.

3.2.2.1. Earth
Considering Earth environment, the first step of the implementation is the check on the satellites in
view at each observational epoch. In fact, as already discussed, in order to compute the user position,
a minimum of four satellites in view is needed, otherwise the solution cannot be determined by the
positioning algorithms.
This check is based on consideration on the elevation angle of the satellites: taking into account the
line-of-sight vectors between the satellites and the user, the elevation angle of each satellite will be
calculated. This will lead to the exclusion of the satellites which elevation angle is lower than 5
degrees, since they could invalidate to solution due to their relative position with respect to the user.

 31

Given rsat and ruser the geocentric positions of the satellite and the user, respectively, the Line-Of-
Sight vector is defined as:

𝐿𝑂�̂� =
𝑟𝑠𝑎𝑡 − 𝑟𝑢𝑠𝑒𝑟
‖𝑟𝑠𝑎𝑡 − 𝑟𝑢𝑠𝑒𝑟‖

From the given coordinates of the user, latitude and longitude can
be determined and used for the calculation of the unit vector û of the
ENU reference system, through the rotation matrix from ECEF to
ENU [Appendix B.2 of ESA GNSS Book [23]]:

�̂� = [cos 𝜆 cos 𝜑 , sin 𝜆 cos 𝜑 , sin𝜑]

So that, as shown in Figure 3.3, the elevation angle is computed as:

𝐸 = asin(𝐿𝑂�̂� ∙ �̂�)

Given this value for each satellite, the ones that result in elevation lower than 5 degrees will not be
considered in the algorithm implementation.

Once this check has been done, the measurements considered in Earth application are the
pseudoranges of the satellites in view. Given the coordinates and clock of each satellite [xi, yi, zi, ti]
and the coordinates of the user [xu, yu, zu], the pseudorange expression is:

𝑃𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑔𝑒 = 𝜌𝑖 = √(𝑥𝑖 − 𝑥𝑢)
2 + (𝑦𝑖 − 𝑦𝑢)

2 + (𝑧𝑖 − 𝑧𝑢)
2 − 𝑐 ∙ 𝑡𝑖

This measurement needs to be corrected taking into account various sources of errors, which can be
referred either to the satellites or the receiver.
Considering satellites errors, each one will show:

- Satellite orbital error: this is given by the ephemeris parameters contained in the navigation
message. In fact, these ephemeris data are broadcasted by the satellites with specific time
intervals, so that the receiver calculates the satellite position through an estimation using a
curve fit to predict the satellite orbit, which leads to residual errors relative to the actual orbit.
It is estimated that they can result in up to 2.5 meters of position error [24]. In this work,
this error will be modeled as an Additive White Gaussian Noise (AWGN) with zero mean and
standard deviation defined, which is considered to be 10 meters [25].

- Satellite clock error: in the downlink data broadcasted by each satellite, they also provide the
user and estimate of the offset between their clock and the receiver one. To obtain a more
accurate position, the receiver needs to compensate this error, since this drift can lead to
dramatic range errors in receiver measurements. In fact, clock errors in seconds are then
multiplied by the speed of light, so that for example 20 nanoseconds of error results in 6 meters
of position error. Satellite clock error model will be based on the theory of Stochastic
Differential Equations (SDE):

𝜎𝑐𝑙𝑘 = 𝜎0 +√𝜎12 ∙ 𝑡 ∙ Δ +
𝜎22 ∙ (𝑡 ∙ Δ)3

3

Where the parameters are defined considering an application with Caesium HP clock [25],
showed in Table 3.1.

Figure 3.3: ENU coordinates and
Elevation angle (Source: ESA

GNSS Book [23])

 32

Table 3.1: Clock error parameters

t = observational epoch in seconds (update
interval: this value is set to zero every 12 hours) = time difference between two epochs

0 = 10-10 1 = 9.486 10-12 2 = 1.643 10-17

- Sagnac Effect: this consists of a relativistic error caused by the rotation of the Earth during
the time of signal transmission between the satellite and the receiver. Ephemeris parameters
provide information about the satellites position expressed in Earth-Centered Earth-Fixed
(ECEF) frame at signal transmission time, but during signal transit time the Earth rotates, so
that the signal reception time is not the same of the transmission one (Figure 3.4).

Figure 3.4: Sagnac effect

For each satellite, defined the observational epoch in seconds (Tobs) and the pseudorange
corresponding to that epoch (i), given the speed of light c, the implementation of the Sagnac
effect is given by the following procedure:

1. 𝑇𝑆 = 𝑇𝑜𝑏𝑠 −
𝜌𝑖

𝑐

2. 𝑑𝑡𝑟 = 𝑟 ∙ 𝑣

𝑐2
 , where the numerator is the scalar product between the position vector of the

satellites r=[xi,yi,zi] and the velocity vector v=[vxi,vyi,vzi] determined by derivation.

3. 𝑑𝑅𝑂𝑇 = 𝑇𝑜𝑏𝑠 − (𝑇𝑆 − 𝑑𝑡𝑟)

4. 𝜑 = 𝜔𝐸 ∙ 𝑑𝑅𝑂𝑇 , where E is the Earth rotation velocity

5. 𝑀𝑆𝐴𝐺𝑁𝐴𝐶 = [
cos 𝜑 sin𝜑 0
−sin𝜑 cos 𝜑 0
0 0 1

]

6. [
𝑥𝑖
𝑦𝑖
𝑧𝑖
]

𝑁𝐸𝑊

= 𝑀𝑆𝐴𝐺𝑁𝐴𝐶 ∙ [

𝑥𝑖
𝑦𝑖
𝑧𝑖
] , which are the coordinates of the satellite corrected with the

implementation of the Sagnac effect.

 33

Regarding the user errors, the main error to consider is the Multipath error. Usually, the received
signals is in direct line-of-sight (LOS) between satellite and receiver, but it arrives with one or more
delayed echoes due to the reflection of the original signals depending on the surrounding environment
and the relative satellite-receiver motion (Figure 3.5). On Earth, this delay can be caused by buildings
or other objects, but also natural elements can cause this reflection, so that this effect has an impact
also on lunar applications. These multipath errors can cause the receiver to calculate an incorrect
position, up to pseudorange errors of 100 meters
in the most severe conditions [26]. The
implementation of the multipath error is obtained
from Brenner’s Multipath Model [25]:

𝜎𝑀𝑃 = 𝑎 + 𝑏 ∙ 𝑒
𝑐∙𝐸𝐿

Where:
- a = 0.1633
- b = 1.1846
- c = -0.0511
- EL = elevation angle

Moreover, another noise that must be taken into account is the Receiver error: this noise is a complex
error generated at the receiver’s side while measuring satellite signals. It covers different spectrum of
noise types, including microwave radiations and it is present due to system components such as
antennas, cables or amplifiers [26]. For the applications of this work, the receiver error will be
modelled in the same way as previously defined for the satellite orbital error, which is an AWGN
with zero mean and standard deviation of 10 meters.

Finally, in Earth environment one of the most important errors is given by the effect of the
atmosphere. Among these atmospheric effects, the main correction to implement is the one that
concerns the Ionospheric effect. The ionosphere is a dispersive medium located primarily in the region
of the atmosphere between about 60 km and 1,000 km above the Earth’s surface [27]. Within this
region, as its name implies, there is a partially ionized medium due to Extreme UltraViolet (EUV)
rays in the solar radiation and the incidence of charged particles. The propagation speed of GNSS
electromagnetic signals in the ionosphere depends on its electron density, which is typically driven
by two main processes. During the day, the Sun’s radiation ionizes neutral atoms to produce free

electrons and ions. During the night, the recombination process prevails, where free electrons are
recombined with ions to produce neutral particles, which leads to a reduction in the electron density
[23]. In fact, these free electrons influence electromagnetic wave propagation, including GNSS
satellite signal broadcasts.
In order to correct this ionospheric delay, specific models
need to be implemented. The one used in this paper is known
as Klobuchar Model, initially developed for GPS, and
usually used because of the simple structure and the
convenience in calculations. This model is based on
empirical approach, and it is estimated to reduce the
ionospheric errors by about 50% worldwide [23]. As shown
in Figure 3.6, the assumption assumes that the vertical
ionospheric delay can be approximated by half a cosine
function of the local time during daytime, whose amplitude
and period are given as a function of the eight parameters
broadcast in the GPS navigation message, and by a constant
level during night-time (about 5 ns) [27].

Figure 3.5: Multipath error (Source: ESA GNSS Book [23])

Figure 3.6: Ionospheric delay approximation
(Source: ESA GNSS [23])

 34

The Klobuchar model employs geomagnetic latitude on Ionosphere Pierce Point (IPP). As shown in
Figure 3.7, it is assumed that the electron content is concentrated in a thin layer at 350 km in height
(GPS), so that IPP is defined as the point where the line of sight that connects the GPS satellite to the
signal reception point (slant delay in red in the figure) meets the single vertical layer (in blue). Since
the change of IPP is affected by seasons and the geomagnetic field and closely related with the sunspot
activity, it is varied following the solar activity in the period of 11 years [28].

Figure 3.7: Ionospheric Pierce Point (Source: ESA GNSS Book [23])

To implement this correction, the input data for calculation of Klobuchar ionospheric delay are:
- Elevation angle EL and Azimuth AZ of the observed satellite (radians)
- Geodetic latitude and longitude (radians)
- Klobuchar coefficients ,
- GPS time (seconds)

Klobuchar coefficients, as already said, can be found in the navigation data, while GPS time is
determined from the observational epoch, using the classic conversion from Gregorian date
(discussed more in depth in appendix A.1). As for the other terms, one of the possible solutions is the
application of the Bowring iterative method (Appendix C and [29]), which allows to determine
latitude, longitude and altitude given the spatial coordinates, and then determine EL and AZ using
trigonometric equations. Nevertheless, the solution implemented in this paper exploits the potential
of MATLAB and its functions: given the coordinates of the user in the ECEF reference system, the
function ecef2lla allows to determine the geodetic coordinates Latitude, Longitude and Altitude;
moreover, the function ecef2aer coverts point locations from geocentric ECEF coordinates to local
spherical coordinates Elevation and Azimuth given the coordinates of the satellite, latitude and
longitude of the user and the reference ellipsoid. Now that all the input data are defined, the Klobuchar
procedure can be applied, as explained in ESA GNSS Book Vol. I [23]:

1. Earth-centered angle: 𝜓 =
𝜋

2
− 𝐸𝐿 − arcsin (

𝑅𝐸

𝑅𝐸+ℎ
cos 𝐸𝐿)

Where RE =6378 km and h=350 km

2. Latitude of the IPP: 𝜙𝐼𝑃𝑃 = arcsin(sin𝜑 sin𝜓 + cos 𝜑 sin𝜓 cos 𝐴𝑍)

3. Longitude of the IPP: 𝜆𝐼𝑃𝑃 = 𝜆 +
𝜓sin𝐴𝑍

cos𝜙𝐼𝑃𝑃

4. Geomagnetic latitude of the IPP:

given coordinates of geomagnetic pole 𝜙𝑝 = 78.3° , 𝜆𝑝 = 291
𝜙𝑚 = arcsin(sin𝜙𝐼𝑃𝑃 sin 𝜙𝑝 + cos𝜙𝐼𝑃𝑃 cos 𝜙𝑝 cos(𝜆𝐼𝑃𝑃 − 𝜆𝑝))

 35

5. Local time at the IPP: 𝑡 = 43200

𝜆𝐼𝑃𝑃

𝜋
+ 𝑡𝐺𝑃𝑆

Where 0 ≤ 𝑡 ≤ 86400. Therefore: 𝑖𝑓 𝑡 ≥ 86400, 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 86400; 𝑖𝑓 𝑡 < 0, 𝑎𝑑𝑑 86400.

6. Amplitude of the ionospheric delay:

𝑄 =∑𝛼𝑛 (
𝜙𝑚
𝜋
)
𝑛

3

𝑛=0

 𝑖𝑓 𝑄 < 0 , 𝑡ℎ𝑒𝑛 𝑄 = 0

7. Period of the ionospheric delay:

𝑃 =∑𝛽𝑛 (
𝜙𝑚
𝜋
)
𝑛

3

𝑛=0

 𝑖𝑓 𝑃 < 72000 , 𝑡ℎ𝑒𝑛 𝑃 = 72000

8. Phase of the ionospheric delay: 𝑋 =

2𝜋 (𝑡−50400)

𝑃

9. Slant Factor (Ionospheric mapping function): 𝐹 = [1 − (
𝑅𝐸

𝑅𝐸+ℎ
cos 𝐸𝐿)

2
]
−
1

2

10. Compute the ionospheric time delay:

𝑑𝐼 = {
[5 ∙ 10−9 + 𝑄 cos 𝑋] × 𝐹, |𝑋| < 𝜋/2

5 ∙ 10−9 × 𝐹, |𝑋| ≥ 𝜋/2

The result dI (in seconds) is then multiplied by the speed of light c to give a measure in meters that is
the actual ionospheric correction added to the calculation of pseudorange.

3.2.2.2. Moon
The considerations made in the previous section for the terrestrial environment are in part applicable
also for lunar implementation, but there are some differences to take into account.
In this analysis, the check on the satellites in view is also important, even more than before since the
in lunar environment the number of signals is considerable reduced, so that the possibility of blackout
in the solution due to the absence of the minimum number of satellites in view is very high.

Considering the static user scenario, the procedure is the same already explained before for Earth
environment, which takes into account the elevation of the satellites with respect to the user position.

Instead, for the dynamic user scenario, since the user is no longer on lunar surface, satellites elevation
considerations lose their meaning. Hence, in this case the check to be done is that the user position is
at each epoch below the satellites: given the position of the satellites [xi, yi, zi] and the user [xu, yu, zu]
referred to the center of the Moon, this means assuring that the norm of user position is lower than
the norm of the satellites:

𝑛𝑜𝑟𝑚([

𝑥𝑢
𝑦𝑢
𝑧𝑢
]) < 𝑛𝑜𝑟𝑚([

𝑥𝑖
𝑦𝑖
𝑧𝑖
]) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖

 36

Once this check is done, one of the differences about lunar environment is that the pseudorange
measurements are not provided by the input data, so that these values are replaced by the calculation
of the Slant Range between each satellite and user position. If the coordinates of each satellite are
defined as [xi, yi, zi] and the coordinates of the user are [xu, yu, zu], the Slant Range is computed as:

𝑆𝑙𝑎𝑛𝑡 𝑅𝑎𝑛𝑔𝑒 = 𝑆𝑅𝑖 = √(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2

As for the pseudorange, this expression must consider difference sources of errors.
The first observation that can be done is that, in lunar environment, atmospheric effects are not
present, so that the ionospheric effect discussed before does not intervene in slant range calculation.

Concerning satellite’s side, the errors to consider are the same introduced for Earth environment:

- Satellite orbital error
- Satellite clock error
- Sagnac effect.

As for the user noises, multipath error will be implemented in the static user scenario, while of course
it is not considered in dynamic user case, since it will be not in proximity of lunar surface. Receiver
error, instead, will be implemented in both cases.

As already said, these errors are added to the pseudoranges/slant ranges expressions. However, simply
adding this correction will consider that the measurement errors are implemented only in the direction
of the line-of-sight between satellite and receiver, as depicted on the left in Figure 3.8. To be more
accurate in the implementation of these errors, it will be considered the concept of sphere of
uncertainty: as shown on the right in Figure 3.8, this means that the errors are applied considering a
sphere centered in the satellites and one on the user. The radii of these spheres will correspond to the
sum of the errors on each of them, which means orbital and clock errors on satellites and
multipath/receiver errors on user.

Figure 3.8: Application of errors on satellite and user without (left) and with (right) sphere of uncertainty

In appendix B, an example of the effect of the application of these errors is described considering
either the implementation of each of them alone or in combination with each other.

 37

4. Simulation Environment

4.1. Navigation system and inputs
The simulation environment considered in this work obviously takes into account all the difficulties
described about lunar navigation. Therefore, the number of satellites in view will be reduced
compared to Earth application, but also the signals will be weaker, and the input information will be
lower than before.
The constellation used for the implementation of the positioning algorithms considers four satellites
in view orbiting around the Moon, which is the minimum number needed to estimate the position of
the user. This means that not only the amount of information is limited to the bare minimum, but also
that the margin of error is minimal, since even a single failure no longer allows the positioning
algorithm to work.
The input data provided are referred to four satellites following an Elliptical Lunar Frozen Orbit
(ELFO). This category of frozen orbit provides greater coverage of lunar poles, since the satellite
altitude remains constant over a long period of time at the same point in each orbit. The changes in
inclination, position of the apsis of the orbit and eccentricity are minimized by the choice of the initial
values, so that the perturbations are canceled out. This results in long-term stable orbit that minimizes
the use of station-keeping propellant [4].
The constellation provided has been optimized in order to achieve high availability and minimize the
Horizontal Dilution of Precision (that will be discussed later) at the South Pole.

For the application of the Sensor Fusion technique, an altimeter measurement is considered in
addition to the four satellites in view. This sensor is considered to be inside the user, and it is activated
when the user position is approximately 10 km away from Moon surface.
Given this additional measurement, one of the test cases that will be discussed, will consider the
exclusion of one of the four satellites for the entire analysis and the substitution of the slant range
measurement of this satellite with the altimeter reading.

For the validation of the codes, the input data has been taken from terrestrial satellites of the MOSE
station, situated in Rome. The reason is that Earth environment is more controlled and known, since
the number of input data is higher and the functioning of the algorithms has already been analyzed
for different scopes, so that the reliability of the scripts produced can be verified.
For this scenario, the input data are contained into two important files:

- The Receiver Independent Exchange Format (RINEX): this is a file format for storing data
from satellite navigation systems, which can provide Observation data file or Navigation data
file. From the observation data, the input extracted will be the number of satellites in view and
the pseudorange (in meters) of each satellite for each observation period (given as Gregorian
date). The navigation data, instead, contain the Klobuchar coefficients described before,
needed for the implementation of the ionospheric correction. The file provided contain 1 day
data with observation every 30 seconds.

- The Extended Standard Product 3 Orbit Format (SP3): this is a file format containing other
orbital information necessary for the implementation of the algorithm. In particular, from this
file, the input data considered are the satellites coordinates (in kilometers) and clocks (in
microseconds). The update rate of this data is 5 minutes, so they are not aligned with the
RINEX data, then an interpolation will be needed to have all the information useful at the
same epoch of observation (Lagrange interpolation is deepened in appendix A.2).

 38

After the Earth validation analysis has been performed, the lunar data of the constellation described
before will be considered. The input data are provided from four text files (one for each satellite)
which contain the observation time (UTC), the positions (in km) and the velocities (in km/sec) of the
satellites. For the dynamic user scenario, the lander characteristics are also provided with another text
file in the same configuration just described for the satellites.
The data referred to the static user case are updated every minute, while for the dynamic user case
the update rate is 1 second.

4.2. Implementation in MATLAB of PVT algorithms

4.2.1. Least Squares
Least squares estimation is a technique used to find a model that closely represents a collection of
data and allows for the optimal determination of values or states within a system [8]. There are various
parameters of interest in the system, which are typically referred to as states. To determine these
parameters, an assortment of sensor is used, in order to provide information about what is actually
happening in the system and how is changing over time.
In the analysis of this work, the measurements in input are the pseudorange of the satellites, while
the states to be determined are the position coordinates and time of the user (x,y,z,t). The positioning
problem is solved by linearizing the pseudorange observation equations, so that the first step is to
define the actual observation as the sum of the modelled one plus an error:

𝜌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝜌𝑚𝑜𝑑𝑒𝑙 + 𝑛𝑜𝑖𝑠𝑒 = 𝜌(𝑥, 𝑦, 𝑧, 𝑡) + 𝜈

Then, the Taylor’s theorem is applied to the model, ignoring the second and higher order terms

𝜌(𝑥, 𝑦, 𝑧, 𝑡) = 𝜌(𝑥0, 𝑦0, 𝑧0, 𝑡0) + (𝑥 − 𝑥0)
𝜕𝜌

𝜕𝑥
+ (𝑦 − 𝑦0)

𝜕𝜌

𝜕𝑦
+ (𝑧 − 𝑧0)

𝜕𝜌

𝜕𝑧
+ (𝑡 − 𝑡0)

𝜕𝜌

𝜕𝑡

= 𝜌𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 + ∆𝑥
𝜕𝜌

𝜕𝑥
+ ∆𝑦

𝜕𝜌

𝜕𝑦
+ ∆𝑧

𝜕𝜌

𝜕𝑧
+ ∆𝑡

𝜕𝜌

𝜕𝑡

The residual observation is defined as the difference between the actual observation and the computed
one:

∆𝜌 = 𝜌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝜌𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 = ∆𝑥
𝜕𝜌

𝜕𝑥
+ ∆𝑦

𝜕𝜌

𝜕𝑦
+ ∆𝑧

𝜕𝜌

𝜕𝑧
+ ∆𝑡

𝜕𝜌

𝜕𝑡
+ 𝜈

Which can be written in matrix form:

∆𝜌 = [
𝜕𝜌

𝜕𝑥

𝜕𝜌

𝜕𝑦

𝜕𝜌

𝜕𝑧

𝜕𝜌

𝜕𝑡
] ∙ [

∆𝑥
∆𝑦
∆𝑧
∆𝑡

] + 𝜈

This equation is valid for each satellite in view, so that considering m satellites this become a system
of m equations in matrix form:

 39

[

∆𝜌1

∆𝜌2

⋮
∆𝜌𝑚]

=

[

𝜕𝜌1

𝜕𝑥

𝜕𝜌1

𝜕𝑦

𝜕𝜌1

𝜕𝑧

𝜕𝜌1

𝜕𝑡

𝜕𝜌2

𝜕𝑥

𝜕𝜌2

𝜕𝑦

𝜕𝜌2

𝜕𝑧

𝜕𝜌2

𝜕𝑡
⋮ ⋮ ⋮ ⋮

𝜕𝜌𝑚

𝜕𝑥

𝜕𝜌𝑚

𝜕𝑦

𝜕𝜌𝑚

𝜕𝑧

𝜕𝜌𝑚

𝜕𝑡]

∙ [

∆𝑥
∆𝑦
∆𝑧
∆𝑡

] + [

𝜈1

𝜈2

⋮
𝜈𝑚

]

Defining the state vector u = [x, y, z, t]’, the measurement vector = [1, 2, …, m]’,
the measurement noise = [1, 2, …, m]’ and the Measurement Model Matrix H that represents the
relationship between the measured values and the state values, the “linearized observation equations”

can be written as:
∆𝝆 = 𝑯 ∙ 𝒖 + 𝝂

4.2.1.1. Case of analysis
Considering the case of analysis discussed in this work, the input data considered are the coordinates
of the satellites (xi, yi, zi), the offset of the receiver clock from system time (ti) and the pseudoranges
of the satellites (i). Assuming the first approximation ustart=[xu, yu, zu]’ and tstart=tu the first step is
the calculation of the geometric range for each satellite i:

𝑟𝑖 = √(𝑥𝑖 − 𝑥𝑢)
2 + (𝑦𝑖 − 𝑦𝑢)

2 + (𝑧𝑖 − 𝑧𝑢)
2

Then, the approximation is set û = ustart, so the pseudorange approximation is:

𝜌�̂� = √(𝑥𝑖 − �̂�𝑢)2 + (𝑦𝑖 − �̂�𝑢)2 + (𝑧𝑖 − �̂�𝑢)2 + 𝑐 ∙ 𝑡𝑖

and the measurement model matrix H is determined:

𝐻 =

[

𝑎𝑥1 𝑎𝑦1 𝑎𝑧1 1

⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑖 𝑎𝑦𝑖 𝑎𝑧𝑖 ⋮

⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛 𝑎𝑦𝑛 𝑎𝑧𝑛 1]

Where axi, ayi and azi denote the direction cosines of the unit vector pointing from the approximate
user position to the ith satellite, and they are defined as:

𝑎𝑥𝑖 = −
𝑥𝑖 − �̂�𝑢
𝑟𝑖

; 𝑎𝑦𝑖 = −
𝑦𝑖 − �̂�𝑢
𝑟𝑖

; 𝑎𝑧𝑖 = −
𝑧𝑖 − �̂�𝑢
𝑟𝑖

Finally, considering matrix form, the displacements can be computed as:

�̂� − 𝜌 = ∆𝜌 = 𝐻 ∙ ∆𝑢

∆𝒖 = 𝑯−𝟏 ∙ ∆𝝆 = [∆𝑥𝑢, ∆𝑦𝑢, ∆𝑧𝑢, −𝑐∆𝑡𝑢]′

And then the final result of interest:

𝒖 = 𝒖𝒔𝒕𝒂𝒓𝒕 + ∆𝒖(𝟏: 𝟑)

𝑡 = ∆𝑢(4)

 40

The vector u calculated is considered as the new approximation ustart, and the whole procedure is
reiterated. This is valid until the difference between the position at the step k+1 and k, so that the
norm of the vector u(1:3) is lower than a decided tolerance, which in this analysis is considered to
be 10-4. Otherwise, the cycles can be stopped when the number of iterations exceed a certain value
(which can be 50), but this is less accurate, since the tolerance method ensures that the position
update has reached the desired level of accuracy.
In MATLAB implementation, it is important to remember to clear the values at the end of each
iteration and epoch, in order to avoid errors due to the dimension of matrices that can change
according to the number of satellites in view in each epoch.

In chapter 3 the difference in the implementation of the positioning algorithms on Earth or Lunar
environment have been introduced. Obviously, those corrections need to be taken into account in
Least Squares implementation: in terrestrial environment, the formula described before are
implemented after the check of the satellites in visibility and the Lagrange interpolation. Moreover,
the input data of the satellites in visibility must consider the Sagnac effect, while in the pseudorange
approximation equation there will be an additional term given by the Ionospheric correction.
In lunar environment, the check to be done is that all the four satellites are in view, otherwise the
algorithm cannot be computed. Pseudorange values are not given in input, so that the pseudorange
equation is simply substituted by the Slant Range calculation. Of course, ionospheric correction is
not present, but the slant range equation will have an additional term that contains the application of
the errors introduced: satellite positioning, clock and multipath/receiver errors.

4.2.2. Kalman Filter
The Kalman Filter is a recursive method, which means that the estimate of the state vector is refined
with each new input measurement and without the need to store the past measurements. This
algorithm provides an efficient computational means to estimate the state of a dynamical system, in
a way that minimizes the mean of the squared error.
Within the Kalman Filter implementation there are two different parts to describe: the process model
and the measurement model. The process equations describe how the state is updated, while the
measurement equations produce the measurement vector as a matrix times the state vector.
The initializations to be considered in this case regards the state vector ustart = [xu, yu, zu, tu]T and the
error covariance matrix Pstart. Starting from these values, the predict state is:

𝑢𝑘′ = 𝐹 ∙ 𝑢𝑘−1 + 𝜈

𝑃𝑘′ = 𝐹 𝑃𝑘−1 𝐹
𝑇 + 𝑄

Where:
- 𝑢𝑘′ is the predicted state vector at the epoch of analysis
- 𝑢𝑘−1 is the state vector at time k-1, i.e., the result obtained at the previous step (at the first

epoch it is the initialization ustart)
- 𝐹 = State transition matrix (deals with time steps & constant velocity)
- 𝑄 = State error autocovariance matrix (deals with uncertainty)
- 𝜈 = Noise

The state error autocovariance matrix Q is a n x n matrix, where n is the length of the state vector,
while the measurement error auto covariance matrix R is a m x m matrix, where m is the length of
the measurement vector (in this case it means the number of satellites in view, since the
measurements are the respective pseudoranges). Both matrices are defined as the expected value of
the respective noise (state and measurement noise):

𝑄 = 𝐸[𝜈 𝜈𝑇] 𝑅 = 𝐸[𝜔 𝜔𝑇]

 41

Given these matrixes, the Kalman Gain can be computed:

𝐾 = 𝑃𝑘′ 𝐻
𝑇 ∙ (𝐻 𝑃𝑘′ 𝐻

𝑇 + 𝑅)−1

This is of course one of the most important parameters of the filter, which defines the relative
importance given to the measurement and the current state estimation. Generally, a gain closer to
one places more weight to the most recent measurements, resulting in a jumpy estimated trajectory,
since the system fits faster. Instead, with a gain close to zero the system pays more attention to the
predictions and will smooth out noise but decrease responsiveness.
Once defined the Kalman gain and the measurement model matrix H, the measurement vector
zmeas_k and the measurement update equations can be computed:

𝑧𝑚𝑒𝑎𝑠_𝑘 = 𝐻 ∙ 𝑢𝑘−1

𝑢𝑘 = 𝑢𝑘′ + 𝐾 ∙ (𝑧𝑚𝑒𝑎𝑠_𝑘 −𝐻 𝑢𝑘
′)

𝑃𝑘 = 𝑃𝑘′ − 𝐾 𝐻 𝑃𝑘′

These values are then considered as the new approximation for the subsequent step of analysis, in
which the same procedure is repeated.

4.2.2.1. Extended Kalman Filter
The procedure described before considers a linear problem. The Extended Kalman Filter can
overcome this issue by extending the functioning of the Kalman filter to the case of nonlinear
problems. This method aims to linearize the problem, substituting the state transition matrix and the
measurement model matrix with functions of the state vector. This means, in matrix form, that these
parameters become Jacobian Matrices.

𝐹 → 𝑓(𝑢) → 𝐹𝑗
𝐻 → ℎ(𝑢) → 𝐻𝑗

} → 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠

Considering the matrix H, the linearization is computed with the first order Taylor expansion, which
tries to predict the behaviour of a linear function taking into account a starting point, in this case the
mean value:

ℎ(𝑢) = ℎ(𝜇) +
𝜕ℎ(𝑢)

𝜕𝑢
(𝑥 − 𝜇)

- ℎ(𝜇) = evaluation of nonlinear function in the mean value

- 𝜕ℎ(𝑢)

𝜕𝑢
 = extrapolate a line around

Stating that m is the length of the measurement vector zk and n the length of the state vector uk, the
Jacobian Matrix H is defined paying attention to the fact that in this case the partial derivates must be
used:

𝐻𝑗 =

[

𝜕ℎ1
𝜕𝑢1

𝜕ℎ1
𝜕𝑢2

⋯
𝜕ℎ1
𝜕𝑢𝑛

𝜕ℎ2
𝜕𝑢1

𝜕ℎ2
𝜕𝑢2

⋯
𝜕ℎ2
𝜕𝑢𝑛

⋮ ⋮ ⋱ ⋮
𝜕ℎ𝑚
𝜕𝑢1

𝜕ℎ𝑚
𝜕𝑢2

⋯
𝜕ℎ𝑚
𝜕𝑢𝑛]

 42

The definition of the State Transition Matrix F can change depending on the model used to analyze
user’s characteristics. In the following section, a dynamic model will be described: this can be
considered as a nearly constant velocity or nearly constant acceleration model for example. Another
consideration could be the static model, which is of course a variation of the dynamic model not
considering velocity or acceleration values, but only position.

4.2.2.2. Case of analysis
Starting from same data of Least Square application, the Extended Kalman Filter allows to also
determine velocity or acceleration components depending on the dynamic model considered.
In this analysis, the model considered is Nearly Constant Velocity, but the same reasonings will be
valid for other dynamic models that can be implemented.
The state vector will now also include velocity components in addition to position:

𝒖 = [𝑥 𝑥 ̇ 𝑦 𝑦 ̇ 𝑧 �̇� 𝑐∆𝑡 𝑐∆𝑡̇]
𝑇

The state equations consider the acceleration as the noise of the model:

𝑢′ = 𝐹 ∙ 𝑢 + 𝜈 →

{

𝑥′ = 𝑥 + �̇�∆𝑡 + 𝜈𝑥
�̇�′ = �̇� + 𝜈�̇�

𝑦′ = 𝑦 + �̇�∆𝑡 + 𝜈𝑦
�̇�′ = �̇� + 𝜈�̇�

𝑧′ = 𝑧 + �̇�∆𝑡 + 𝜈𝑧
�̇�′ = �̇� + 𝜈�̇�

𝑐∆𝑡′ = 𝑐∆𝑡 + 𝑐∆𝑡̇ ∆𝑡 + 𝜈𝑐∆𝑡
𝑐∆𝑡̇ ′ = 𝑐∆𝑡̇ + 𝜈𝑐∆𝑡̇

Where u’ is the state vector at the step k+1, u is the state vector at the step k defined before, t is the
time step between the two epochs and is the state noise that consider acceleration as perturbation
of the model (it will be deepened shortly).
The State Transition Matrix can be easily derived from these equations. To simplify, considering only
the x component, the state vector is of two elements [𝑥 �̇�]𝑇:

𝑢𝑥
′ = 𝐹𝑠𝑢𝑏 ∙ 𝑢𝑥 → {

𝑥′ = 𝑥 + �̇�∆𝑡
�̇�′ = �̇�

 → 𝐹𝑠𝑢𝑏 = [
1 ∆𝑡
0 1

]

Replicating the same procedure for the other components, the State Transition Matrix F is the 8x8
matrix defined as:

𝐹 = [

𝐹𝑠𝑢𝑏 0 0 0
0 𝐹𝑠𝑢𝑏 0 0
0 0 𝐹𝑠𝑢𝑏 0
0 0 0 𝐹𝑠𝑢𝑏

]

As already defined for the Least Squares technique, the measurements are given by the pseudoranges
of the satellites (in lunar environment the pseudoranges are substituted by the Slant Ranges, but the
reasoning and the result of this analysis is the same):

𝜌𝑖 = √(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2 − 𝑐 𝑡𝑖 + 𝑒𝑟𝑟𝑜𝑟𝑠

Starting from this equation, the direction cosines of the measurement model matrix H can be
computed considering the partial derivates:

 43

𝜕𝜌𝑖

𝜕𝑥
=

−(𝑥𝑖−𝑥𝑢)

√(𝒙𝒊−𝒙𝒖)𝟐+(𝒚𝒊−𝒚𝒖)𝟐+(𝒛𝒊−𝒛𝒖)𝟐
 𝜕𝜌𝑖

𝜕𝑦
=

−(𝑦𝑖−𝑦𝑢)

√(𝒙𝒊−𝒙𝒖)𝟐+(𝒚𝒊−𝒚𝒖)𝟐+(𝒛𝒊−𝒛𝒖)𝟐

𝜕𝜌𝑖

𝜕𝑧
=

−(𝑧𝑖−𝑧𝑢)

√(𝒙𝒊−𝒙𝒖)𝟐+(𝒚𝒊−𝒚𝒖)𝟐+(𝒛𝒊−𝒛𝒖)𝟐

𝜕𝜌𝑖

𝜕(𝑐𝑑𝑡)
= −1

Hence:

𝐻 =

[

 𝜕𝜌1
𝜕𝑥
⋮

𝜕𝜌𝑚
𝜕𝑥

0
⋮
0

𝜕𝜌1
𝜕𝑦
⋮

𝜕𝜌𝑚
𝜕𝑦

0
⋮
0

𝜕𝜌1
𝜕𝑧
⋮

𝜕𝜌𝑚
𝜕𝑧

0
⋮
0

−1
⋮
−1

0
⋮
0
]

The error autocovariance matrices (already introduced) needs to be determined too.
The State Error Autocovariance Matrix Q, as already said, is defined as the expected value of the
state noise: 𝑄 = 𝐸[𝜈 𝜈𝑇]
Considering the noise vector, it is possible to separate the first six elements regarding the noise on
position and velocity, and the last two which relate clock and clock drift.
Taking into account the part that relates to position and velocity, the noise on the model is considered
to be the acceleration, so that:

𝝂 =

[

𝜈𝑥
𝜈�̇�
𝜈𝑦
𝜈�̇�
𝜈𝑧
𝜈�̇�]

=

[

 𝑎𝑥 ∙

∆𝑡2

2
𝑎𝑥 ∙ ∆𝑡

𝑎𝑦 ∙
∆𝑡2

2
𝑎𝑦 ∙ ∆𝑡

𝑎𝑧 ∙
∆𝑡2

2
𝑎𝑧 ∙ ∆𝑡]

=

[

∆𝑡2

2
0 0

∆𝑡 0 0

0
∆𝑡2

2
0

0 ∆𝑡 0

0 0
∆𝑡2

2
0 0 ∆𝑡]

∙ [

𝑎𝑥
𝑎𝑦
𝑎𝑧
] = 𝐺 ∙ 𝑎

Where the Matrix G has been introduced. Therefore, the submatrix Qxyz will be:

 44

𝑄𝑥𝑦𝑧 = 𝐸[𝜈 𝜈𝑇] = 𝐸[𝐺 𝑎 𝑎𝑇𝐺𝑇] = 𝐺 𝐸[𝑎 𝑎𝑇] 𝐺𝑇

=

[

∆𝑡2

2
0 0

∆𝑡 0 0

0
∆𝑡2

2
0

0 ∆𝑡 0

0 0
∆𝑡2

2
0 0 ∆𝑡]

∙ [

𝜎𝑎𝑥
2 0 0

0 𝜎𝑎𝑦
2 0

0 0 𝜎𝑎𝑧
2

] ∙

[

∆𝑡2

2
∆𝑡 0 0 0 0

0 0
∆𝑡2

2
∆𝑡 0 0

0 0 0 0
∆𝑡2

2
∆𝑡]

=

[

∆𝑡4

4
 𝜎𝑎𝑥

2
∆𝑡3

2
 𝜎𝑎𝑥

2 0 0 0 0

∆𝑡3

2
 𝜎𝑎𝑥

2 ∆𝑡2 𝜎𝑎𝑥
2 0 0 0 0

0 0
∆𝑡4

4
 𝜎𝑎𝑦

2
∆𝑡3

2
 𝜎𝑎𝑦

2 0 0

0 0
∆𝑡3

2
 𝜎𝑎𝑦

2 ∆𝑡2 𝜎𝑎𝑦
2 0 0

0 0 0 0
∆𝑡4

4
 𝜎𝑎𝑧

2
∆𝑡3

2
 𝜎𝑎𝑧

2

0 0 0 0
∆𝑡3

2
 𝜎𝑎𝑧

2 ∆𝑡2 𝜎𝑎𝑧
2
]

As it can be seen, Qxyz is a block matrix and can therefore be written more compactly as follows:

𝑄𝑠𝑢𝑏_𝑖 =

[

∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

∙ 𝜎𝑎𝑖
2 𝑤𝑖𝑡ℎ 𝑖 = 𝑥, 𝑦, 𝑧 → 𝑄𝑥𝑦𝑧 = [

𝑄𝑠𝑢𝑏_𝑥 0 0

0 𝑄𝑠𝑢𝑏_𝑦 0

0 0 𝑄𝑠𝑢𝑏_𝑧

]

The same result can be obtained with the consequent different method. Recalling the model of the
state, considering acceleration as noise, it is possible to define the matrix Fa (that corresponds to the
state transition matrix of the constant acceleration model) and the matrix Qa which include the noise
only on the acceleration term:

𝐹𝑎 = [
1 ∆𝑡

∆𝑡2

2
0 1 ∆𝑡
0 0 1

] 𝑄𝑎 = [
0 0 0
0 0 0
0 0 1

] ∙ 𝜎𝑠
2

And the matrix product is defined:

 45

𝐹𝑎 ∙ 𝑄𝑎 ∙ 𝐹𝑎
𝑇 = [

1 ∆𝑡
∆𝑡2

2
0 1 ∆𝑡
0 0 1

] ∙ [
0 0 0
0 0 0
0 0 1

] ∙ [

1 0 0
∆𝑡 1 0
∆𝑡2

2
∆𝑡 1

] ∙ 𝜎𝑠
2

= [
0 0

∆𝑡2

2
0 0 ∆𝑡
0 0 1

] ∙ [

1 0 0
∆𝑡 1 0
∆𝑡2

2
∆𝑡 1

] ∙ 𝜎𝑠
2 =

[

∆𝑡4

4

∆𝑡3

2

∆𝑡2

2
∆𝑡3

2
∆𝑡2 ∆𝑡

∆𝑡2

2
∆𝑡 1]

∙ 𝜎𝑠
2

The submatrix Qsub_i considers only position and velocity components, which are the elements of the
first two columns and rows. This leads to the same solution obtained with the previous method.

The previous result is valid considering a Discrete noise model, which means that the noise is different
in each time period but constant in that time period. Instead, if it is assumed that the noise changes
continuously over time, it is necessary to consider a Continuous noise model, in which the Q matrix
is obtained integrating the one obtained in the Discrete model:

𝑄𝑥𝑦𝑧_𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 = ∫ 𝐹 ∙ 𝑄𝑥𝑦𝑧_𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ∙ 𝐹
𝑇

∆𝑡

0

 𝑑𝑡 = ∫

[

∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

∙ 𝜎𝑎𝑖
2 𝑑𝑡 =

[

∆𝑡5

20

∆𝑡4

8
∆𝑡4

8

∆𝑡3

3]

∙ 𝜎𝑎𝑖
2

∆𝑡

0

Considering the clock part, the Qclock matrix is defined dividing the noise in two parts: one related to
the clock state variable, which is governed by the white noise spectral density leading to random walk
velocity error (t); the other related to clock drift, which consider the white noise spectral density
leading to random walk clock frequency error plus the white noise clock drift (dt) [30]. The latter
correlation is defined by a matrix Qdt which is the same calculated in discrete model for the
components (Qsub_i), while in the matrix Qt the only element different from zero is the first one.

𝑄𝑐𝑙𝑜𝑐𝑘 = 𝑄𝑡 + 𝑄𝑑𝑡 = [
1 0
0 0

] ∙ 𝜎𝑡
2 +

[

∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

∙ 𝜎𝑑𝑡
2 =

[

 𝜎𝑡

2 +
∆𝑡4

4
 𝜎𝑑𝑡

2
∆𝑡3

2
 𝜎𝑑𝑡

2

∆𝑡3

2
 𝜎𝑑𝑡

2 ∆𝑡2 𝜎𝑑𝑡
2
]

As before, the continuous model is obtained integrating the previous matrix:

𝑄𝑐𝑙𝑜𝑐𝑘_𝑐𝑜𝑛 = ∫

[

 𝜎𝑡

2 +
∆𝑡4

4
 𝜎𝑑𝑡

2
∆𝑡3

2
 𝜎𝑑𝑡

2

∆𝑡3

2
 𝜎𝑑𝑡

2 ∆𝑡2 𝜎𝑑𝑡
2
]

 𝑑𝑡 =

[

 ∆𝑡 𝜎𝑡

2 +
∆𝑡5

20
 𝜎𝑑𝑡

2
∆𝑡4

8
 𝜎𝑑𝑡

2

∆𝑡4

8
 𝜎𝑑𝑡

2
∆𝑡3

3
 𝜎𝑑𝑡

2
]

 ∆𝑡

0

There is no clear rule that specify the choice of a discrete model over a continuous one, or vice
versa. Generally, discrete model is more recommended when t is very small, otherwise when t is
large continuous noise model is more accurate. In this work, both models will be implemented to
see the differences that they can provide [20].
Finally, the other matrix to be determined is the Measurement error autocovariance matrix R, which
has already been defined as the expected value of the measurement noise.

 46

In this analysis, this matrix is simply assumed to be diagonal with equal variance r2, which means
that all measurements are assumed to be statistically uncorrelated, which is reasonable.

𝑅 = 𝐸[𝜔 𝜔𝑇] = [
𝜎𝑅1

2

⋱
𝜎𝑅𝑚

2
]

As already said, the explained procedure can be done analogously for the Nearly Constant
Acceleration model, considering the changes necessary to adapt the formulation to that case.
Regardless of the choice of model, one of the most important issues in the implementation of the
Extended Kalman Filter is the selection of the right values for the process noise and measurement
variances, i.e., the values of ai, t, dt and r. This process is called Tuning and it is defined to be an
art more of a science, because there are not tabular values, but they usually come from a process of
trial and error, so it needs engineering practice and experience (see appendix D).
Taking for example the radar world, the depends on the target characteristics and model
completeness. For maneuvering targets, like airplanes, the shall be quite large, while for non-
maneuvering targets, like rockets, can be smaller. Moreover, if the model includes environmental
influences like air drag, the degree of the process noise randomness is smaller and vice versa [20].

4.2.3. Sensor Fusion
The Sensor Fusion technique combines data from different sensors in order to reach better
performance than can be achieved when each source of information is used alone. In this work, the
Extended Kalman Filter is considered with the support of an additional measurement, given by an
altimeter. This reasoning is obviously valid only considering a dynamic user scenario, in which the
distance from the lunar surface can be determined. In particular, altimeter reading is available when
the user is less than 10 km away from the surface of the Moon [31] [32].
In this case, the errors implementation on satellites considers only satellites positioning errors, since
clock error is not present anymore because the measurements are two-way. Multipath error is not
present of course because the user is orbiting around the Moon (or landing), but a receiver error must
be considered (implemented as a random error with gaussian distribution).

Figure 4.1: 3D animation of the Slant Range of the user (blue) and the Intersection with lunar surface (red) over time

 47

Regarding the altimeter measurement, the first implementation will be made with the hypothesis that
the altimeter reading is purely vertical, directed toward the center of the Moon. Figure 4.1 shows in
blue the Slant Range of the user over time, calculated with the coordinates given in input in the
observation file. Instead, the red points highlight the intersection between these values of slant ranges
and the surface of the Moon. The hypothesis considers that the additional measurement at each epoch
is given by the distance between the user position and the intersection with the Moon determined at
that epoch, which can be calculated simply by subtracting the radius of the Moon from the slant range
of the user. This means that this measurement is directed toward the center of the Moon, i.e., along
the Up direction of the ENU reference system. This assumption is of course incorrect, since it does
not consider the attitude of the lander: in fact, following its trajectory, the lander does not aim
perfectly to the center of the Moon at each epoch, but its attitude over time makes that the
measurement is not absolutely vertical.

Figure 4.2: Altimeter measurement with and without error

The implementation of this correction is depicted in Figure 4.2, considering a single instant. As
before, the blue line represents the slant range of the user and the red point the intersection with the
lunar surface. The yellow span represents the error of the
altimeter reading due to the attitude of the lander: this span is
calculated considering an error on the nadir direction
comprised in a 1.3° cone [32], as shown in Figure 4.3.
Given this cone, the span error in meters on the lunar surface
can be easily calculated using the sine theorem and simple
geometric definitions.
Once this span error is defined (depicted in yellow in Figure
4.2), the lander can aim to any point on the perimeter of this
surface (depicted in green), thus the more realistic altimeter
reading will be the distance between this point and the user
position at that epoch (cyan line in figure).

4.2.3.1. Algorithm implementation
The first step of the implementation is the determination of the altimeter measurement. Considering
the first hypothesis (that the measurement perfectly vertical), this reading is obtained by the difference
between the user position and the radius of the Moon. Therefore, for each epoch, the Extended
Kalman Filter algorithm is implemented and the user position at that epoch is calculated: after that,

Figure 4.3: Altimeter cone error

 48

subtracting the radius of the Moon to the position calculated the hypothetical altimeter measurement
is determined:

𝐸𝐾𝐹 → 𝑢𝑎𝑝𝑝 → 𝑎𝑙𝑡𝑚𝑒𝑎𝑠 = 𝑛𝑜𝑟𝑚(𝑢𝑎𝑝𝑝) − 𝑟𝑀𝑜𝑜𝑛

If this distance is lower than ten kilometers, the altimeter is effective, so that the Sensor Fusion
technique can be considered and then the Extended Kalman Filter is reimplemented with the
modification needed.
First, the intersection between the slant range of the user and the lunar surface needs to be determined.
This is basically done considering a system of equations that include the equation of the line through
the two points c=[xc, yc, zc]=[0, 0, 0] and uapp=[xapp, yapp, zapp], and the equation of the sphere with
center c=[xc, yc, zc]=[0, 0, 0] and radius equal to rMoon:

{

𝑥 − 𝑥𝑐
𝑥𝑎𝑝𝑝 − 𝑥𝑐

=
𝑦 − 𝑦𝑐
𝑦𝑎𝑝𝑝 − 𝑦𝑐

𝑦 − 𝑦𝑐
𝑦𝑎𝑝𝑝 − 𝑦𝑐

=
𝑧 − 𝑧𝑐
𝑧𝑎𝑝𝑝 − 𝑧𝑐

(𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)

2 + (𝑧 − 𝑧𝑐)
2 = 𝑟𝑚𝑜𝑜𝑛

2

For the first hypothesis, this is the point on the surface where the lander is aiming, so that it will be
used in the following calculations. Instead, considering the correction due to the attitude of the user,
the error explained before needs to be implemented to produce the more realistic measurement.
Since there is an additional measurement, the only variables that change in the implementation of the
Extended Kalman Filter are the ones that depend on the number of measurement m. These variables
are the measurement model matrix H (m x n matrix), the measurement error autocovariance matrix R
(m x m matrix) and the measurement vector zmeas (m x 1 vector).

In order to determine the additional row of the measurement model matrix, the altimeter measurement
needs to be expressed in function of the three coordinates, as done for the pseudorange in the previous
sections. Stating that the approximation of the filter is uapp as before and the calculated point on the
Moon surface (where the altimeter aims) is uL=[xL, yL, zL], the expression of the altimeter reading is:

𝑎𝑙𝑡𝑚𝑒𝑎𝑠 = √(𝑥𝑎𝑝𝑝 − 𝑥𝐿)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝐿)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝐿)

2

So that the partial derivates can be computed:

𝜕𝑎𝑙𝑡

𝜕𝑥
= −

𝑥𝑎𝑝𝑝−𝑥𝐿

𝑎𝑙𝑡𝑚𝑒𝑎𝑠
 𝜕𝑎𝑙𝑡

𝜕𝑦
= −

𝑦𝑎𝑝𝑝−𝑦𝐿

𝑎𝑙𝑡𝑚𝑒𝑎𝑠
 𝜕𝑎𝑙𝑡

𝜕𝑧
= −

𝑧𝑎𝑝𝑝−𝑧𝐿

𝑎𝑙𝑡𝑚𝑒𝑎𝑠

Hence, the additional row of the measurement model matrix is:

𝐻𝑎𝑙𝑡 = [
𝜕𝑎𝑙𝑡𝑚𝑒𝑎𝑠
𝜕𝑥

 0 0
𝜕𝑎𝑙𝑡𝑚𝑒𝑎𝑠
𝜕𝑦

 0 0
𝜕𝑎𝑙𝑡𝑚𝑒𝑎𝑠
𝜕𝑧

 0 0 0 0 0]

→ 𝐻 = [
𝐻𝐸𝐾𝐹
𝐻𝑎𝑙𝑡

]

There is another possibility to obtain the same result. As already said, the altimeter provides in output
a measurement which is referred to an ENU reference system. In the first hypothesis the only
component is the Up direction, whilst East and North are null since it has been considered a perfectly
vertical measurement. Instead, taking into account the attitude of the lander, the measurement will
also have East and North components.

 49

In any case, it is possible to determine the Latitude and Longitude of the position of the user using
Bowring technique (Appendix C and [29]) and use these parameters to determine the rotation matrix
to switch the measurement from ENU coordinates to XYZ reference system with the origin in the
center of the Moon. These matrices allow to express the ENU coordinates in function of x, y and z:

𝑎𝑙𝑡𝑚𝑒𝑎𝑠 = √𝐸2 + 𝑁2 + 𝑈2

[
𝐸
𝑁
𝑈
] = 𝑅1 [

𝜋

2
− 𝜑]𝑅3 [

𝜋

2
+ 𝜆] ∙ [

∆𝑥
∆𝑦
∆𝑧
] = [

− sin 𝜆 cos 𝜆 0
− cos 𝜆 sin 𝜑 − sin 𝜆 sin 𝜑 cos 𝜑
cos 𝜆 cos 𝜑 sin 𝜆 cos 𝜑 sin 𝜑

] ∙ [
∆𝑥
∆𝑦
∆𝑧
]

Where:
𝑥 = 𝑥𝑎𝑝𝑝 − 𝑥𝐿 𝑦 = 𝑦𝑎𝑝𝑝 − 𝑦𝐿 𝑧 = 𝑧𝑎𝑝𝑝 − 𝑧𝐿

Hence, the matrix product yields:

{

𝐸 = −sin 𝜆 ∙ ∆𝑥 + cos 𝜆 ∙ Δ𝑦
𝑁 = − cos 𝜆 sin𝜑 ∙ ∆𝑥 − sin 𝜆 sin 𝜑 ∙ Δ𝑦 + cos 𝜑 ∙ ∆𝑧
𝑈 = cos 𝜆 cos 𝜑 ∙ ∆𝑥 + sin 𝜆 cos 𝜑 ∙ Δ𝑦 + sin 𝜑 ∙ Δ𝑧

And the partial derivates are computed as:

𝜕𝑎𝑙𝑡

𝜕𝑥
=
− 𝐸 ∙ sin 𝜆 − 𝑁 ∙ cos 𝜆 sin 𝜑 + 𝑈 ∙ cos 𝜆 cos 𝜑

√𝐸2 +𝑁2 + 𝑈2

𝜕𝑎𝑙𝑡

𝜕𝑦
=
𝐸 ∙ cos 𝜆 − 𝑁 ∙ sin 𝜆 sin 𝜑 + 𝑈 ∙ sin 𝜆 cos 𝜑

√𝐸2 +𝑁2 + 𝑈2

𝜕𝑎𝑙𝑡

𝜕𝑧
=
𝑁 ∙ cos 𝜑 + 𝑈 ∙ sin 𝜑

√𝐸2 +𝑁2 + 𝑈2

And again, the measurement model matrix H is defined as before.

The measurement vector zmeas also will have an additional row, which will be defined simply as the
difference between the altimeter measurement calculated with the approximated position and the
measurement calculated with the reference position:

𝑧𝑚𝑒𝑎𝑠 = [
𝑧𝐸𝐾𝐹
𝑧𝑎𝑙𝑡

] = [
𝑧𝐸𝐾𝐹

𝑎𝑙𝑡𝑢 − 𝑎𝑙𝑡𝑚𝑒𝑎𝑠
]

Where altmeas is defined as before and altu is computed in the same way given the reference position
of the user uuser=[xu, yu, zu]:

𝑎𝑙𝑡𝑢 = √(𝑥𝑢 − 𝑥𝐿)2 + (𝑦𝑢 − 𝑦𝐿)2 + (𝑧𝑢 − 𝑧𝐿)2

Finally, the measurement error autocovariance matrix R will have an additional row and column, with
the only non-zero element always on the diagonal of the matrix:

𝑅 = [
𝑅𝐸𝐾𝐹 0

0 𝜎𝑅
2]

 50

4.3. Performance Analysis Tool
In the previous paragraphs, the different positioning algorithms has been introduced with the
explanation of their implementations, formulas and errors applications. In order to validate the scripts
produced, in this paragraph they will be tested with the use of Earth input data. This choice has been
done because the Earth scenario is known and can be managed with relative ease. In fact, terrestrial
results obtainable with the techniques analyzed are known in literature and already applied in other
contexts, which means that it can be easier to compare the results obtained in this work and to verify
their reliability. Furthermore, as already discussed, in lunar environment the number of satellites in
view is reduced and signals are weaker. Considering Earth environment, instead, the number of
constellations usable (hence the number of satellites in view) is higher, so that the functioning of the
algorithms can be determined more accurately.
These data are referred to a GPS constellation orbiting around the Earth, with the number of satellites
in view that can vary at each epoch of observation, up to a maximum of 32 satellites.
The results will be referred to the implementation of the Least Squares algorithm and the Extended
Kalman Filter with either a static or a dynamic model. They will show the main outcomes obtained
with the implementation of these algorithms, in order to obtain some information about their
reliability considering the performance and differences already present in literature regarding these
techniques.

4.3.1. Least Squares
First algorithm introduced in paragraph 4.2 is the Least Squares technique, which results will be
reported in this section. It is important to underline that the initial approximation of the user position
considered in this work is the center of the Earth, ustart = [0, 0, 0] (considering ECEF reference
system), but it can be demonstrated that the results would not be different considering a different
initialization.
The first important outcome to discuss is the Positioning Error, that represents the deviation of the
output of the Least Squares from the reference position, giving information about the accuracy of the
estimation obtained with this technique. Considering for each observational epoch uref =[xref, yref, zref]
as the reference position retrieved from the observation file and uapp=[xapp, yapp, zapp] as the
approximated position calculated by the algorithm at that specific epoch, the Positioning Error can be
computed as:

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑟𝑒𝑓)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑟𝑒𝑓)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝑟𝑒𝑓)

2

In Figure 4.4 the Positioning Error is represented with blue circles, while the x axis represents the
time of analysis which shows solution every 30 seconds, since the input data provide satellites
characteristics every 30 seconds, so that each epoch corresponds to 30 seconds of analysis. In the
figure, the number of satellites in view at each epoch is reported in red line, with the respective scale
on the right of the graph.

 51

Figure 4.4: Positioning error (blue) and Number of satellites in visibility (red) for LS implementation

The figure shows that the number of satellites in view can change during the analysis between a
minimum of 7 satellites and a maximum of 13, which of course gives always the coverage needed to
estimate the position of the user. The positioning error demonstrates a trend of the solution a little
scattered over time, with levels of accuracy that hardly go over 25 meters or below 5 meters of error.
These values are in line with expectations, giving a first confirmation of the reliability of the Least
Squares implementation.

Another important result to discuss is the Dilution of Precision (DOP): as shown in Figure 4.5, the
way the user sees the satellites can affect the positioning estimation. On the left the figure shows that,
due to measurement errors, the true range of each satellite is affected by a measurement noise ε,
determining an uncertainty region in the position estimation. The size and the shape of this region
can vary depending on the relative positions of user and satellite, as highlighted in the 2D illustration
on the right. In fact, even with the same measurement error variation, the orange regions highlight
that geometry a) gives considerably less error than in geometry b), so that the latter will be considered
to have a larger Dilution of Precision. This effect will lead, for comparable measurement errors, to
larger errors in the computed position for geometry b).

Figure 4.5: DOP (Source: ESA GNSS Book [23])

This effect is called indeed Dilution of Precision, and it is represented by different parameters,
reported in Figure 4.6. These parameters are defined as geometry factors useful the characterize the
accuracy of various components of the position/time solution, since they relate user position and

 52

time bias errors to those of the pseudorange. The determination of these parameters is given from
the definition of the matrix D, obtained starting from the Measurement Matrix H, already discussed
in section 4.2.1:

𝐷 = (𝐻𝑇 𝐻)−1 = [

𝐷11 𝐷12 𝐷13 𝐷14
𝐷21 𝐷22 𝐷23 𝐷24
𝐷31 𝐷32 𝐷33 𝐷34
𝐷41 𝐷42 𝐷43 𝐷44

]

D is a 4 x 4 matrix, since H is n x 4, where n is the number of satellites in view. Starting from this
matrix, the following parameters are defined:

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝐷𝑂𝑃 = √𝐷11 +𝐷22 +𝐷33
𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐻𝐷𝑂𝑃 = √𝐷11 +𝐷22

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑉𝐷𝑂𝑃 = √𝐷33
𝑇𝑖𝑚𝑒 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝐷𝑂𝑃 = √𝐷44

Figure 4.6: Trend of different Dilution of Precision (DOPs)

In Figure 4.6 on the x axis the Time of Week of each epoch is reported: this value is determined
through the conversion from the Gregorian date given in the input file for each observational epoch
to GPS time, as explained in Appendix A.1. The first observational epoch is January 1st 2020, at which
corresponds a TOW equal to 518400 seconds: after this value the subsequent ones will be spaced of
30 seconds each as explained before.
The figure shows that the values of DOP parameters vary between 0.5 and 2.5, which can be
considered acceptable results, since in literature the thresholds in GPS performance standards are
chosen to be lower than 6 [27]. If the DOPs exceed this value, the GNSS could be considered
unavailable. Moreover, it can be said that there is a slight correlation between DOPs values and the
number of visible satellites: often (but not always) DOPs values are lower (which means better
accuracy) when more satellites are visible, as it can be seen for example about halfway through the
solution in Figure 4.6 where DOPs values are higher corresponding to less satellites in view as shown
in Figure 4.4. This can be easily explained, as more satellites in view can give more measurements
to the user and can provide more easily a better geometric configuration, which clearly leads to better
accuracy.

 53

Figure 4.7: Positioning Error for LS implementation with or without Ionospheric correction

Finally, a secondary result concerns the application of the ionospheric effect (introduced in section
4.2.1) on the solution. In Figure 4.7 the blue line represents the solution with the implementation of
the ionospheric correction (same result shown in Figure 4.4), while the red line represents the solution
that consider the ionospheric effect. As it can be seen, this effect can lead to errors not quite large,
with difference of few meters.
This correction will not play an important role on the Moon since this effect is not present in the lunar
environment. However, the terrestrial analysis allows to highlight the impact of this effect on the
solution and to confirm the reliability of the implemented tool.

4.3.2. Extended Kalman Filter
As explained in section 4.2.2, the Extended Kalman Filter can produce different outcomes depending
on the model considered to approximate user position over time. In this section the results will
consider the implementation at first of a static positioning model and then a dynamic model, precisely
Nearly Constant Velocity model. In both cases, the initial approximation is not the center of the Earth
as for the Least Squares, but it is considered to be the outcome obtained after three iterations of the
LS itself. The effect of this consideration will be clear observing the results.

4.3.2.1. Static Filter
The static model considers that the user is in a fixed position over time, so that the prediction of the
user position and velocity at the instant k+1 are the same determined at the instant k.

Static Model → {

𝑥′ = 𝑥
𝑦′ = 𝑦
𝑧′ = 𝑧

𝑐∆𝑡′ = 𝑐∆𝑡

 → 𝐹𝑠𝑡𝑎𝑡𝑖𝑐 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

As for the Least Squares, the main result to analyze is the Positioning Error, depicted in Figure 4.8
as blue circles. The figure also shows in red the number of satellites in view, with the respective scale
on the right, while the abscissa axis corresponds to the time of analysis with each epoch separated by
30 seconds from the next one (as already explained for LS).

 54

Figure 4.8: Positioning Error (blue) and Number of satellites in visibility (red) for EKF with static model

As before, the number of satellites in visibility varies between a minimum of 7 satellites and a
maximum of 13, giving the coverage needed during the analysis.
Regarding the Positioning Error, as expected the figure brings to light the different evolution of the
EKF solution, which converges over time to the final results, as opposed to the LS solution which
was more scattered during the whole simulation time. In fact, in the first epochs of analysis there is a
peak of about 10 meters, but shortly after that the filter converges and settles around values lower
than 4 meters. This obviously demonstrates great accuracy of the Extended Kalman Filter compared
to the Least Squares results, which is in line with the expectations.
As said before, the filter initialization considers three iterations of LS instead of the center of the
Earth as first approximation. In the latter case, the results would be the same shows in Figure 4.8,
with the only difference that the EKF would take a little longer to converge, since the initial position
estimation would be a lot far from the reference one. In any case, this would not affect the analysis
that demonstrates the better accuracy of the results obtained.

Figure 4.9: Positioning Error for EKF static model implementation with or without Ionospheric correction

 55

As for section 4.3.1, Figure 4.9 shows the comparison between the results obtained with the
implementation of the ionospheric correction (blue circles, same as Figure 4.8) and the results
considering instead the ionospheric effect (red circles). Once again, the abscissa axis represents the
Time of Week of each epoch.
The difference between the two solution is clearer than in the Least Squares analysis. If the correction
is not implemented, the errors in the estimation reach values higher than 20 meters in the first epochs
and then converges to values around 15 meters, which means almost four times more than the results
obtained with the implementation of the correction.
As said before, this will not play an important role for lunar implementation, but it is helpful to verify
the reliability of the script produced also for the Extended Kalman Filter.

4.3.2.2. Dynamic Filter
As mentioned before, the results will now be referred to the implementation of the Extended Kalman
Filter considering a dynamic model. In particular, it will consider the Nearly Constant Velocity model
explained in the section 4.2.2.

Figure 4.10: Positioning Error (blue) and Number of satellites in visibility (red) for EKF with NCV model

The outcomes analyzed will be the same as before. Figure 4.10 represents the Positioning Error (blue
circles) and the number of satellites in visibility (red line), with the time of analysis on the abscissa.
Once again, during the whole simulation there are at least 6 satellites in visibility, giving the needed
coverage. As for the Positioning Error, the figure shows the same trend as for the static model, with
peaks at the beginning of the analysis and convergence shortly after few epochs. Despite this, with
the NCV model, at the beginning the errors are of almost 30 meters and then the filter converges to
values around 22 meters, which is higher compared to the previous results.
Moreover, the filter takes longer to converge with respect to the static model, reaching better values
after almost 3 hours, but then increasing back and settles around 22 meters.
This is expectable, since the position to estimate is referred to a static user, which is in a fixed position
on Earth that is the reference value reported in the observation file in input. The nearly constant
velocity model, instead, considers that the user is in motion over time, so that the filter will need more
time to estimate the position, but also the correct velocity of the user which in reality will be static in
the same position and without velocity components.

 56

As mentioned in section 4.2.2, the results obtained highly depend on parameters injected in the filter.
In fact, the tuning of these parameters is one of the most challenging phase of the validation of the
filter, and this will be even more clear in lunar implementation (also demonstrated in appendix D).
Once again, ionospheric effect will not be considered in lunar implementation, but as for the other
cases this implementation allows to verify the reliability of the Extended Kalman Filter also for the
dynamic model.

Figure 4.11: Positioning Error for EKF with NCV model implementation with or without Ionospheric correction

Figure 4.11 highlights once again the difference between the implementation of the Extended
Kalman Filter with NCV model with (blue circles) and without (red circles) the ionospheric
correction, with the Time of Week on the abscissa.
The difference is smaller than the previous case, but as before the presence of this effect leads to
error values higher than 30 meters in the beginning of the simulation and then converges to values
around 25 meters, which means 3 meters more than with the application of the ionospheric
correction.

 57

5. Analysis of Results

5.1. Static User
Results in this paragraph are referred to the implementation of the different algorithms described in
the previous chapter considering a static user. As shown in section 3.1, the hypothesis is that the user
is inert in a fixed position, that has been considered the South Pole of the Moon. Therefore, this will
be the reference position which, considering a coordinate system with its origin in the center of the
Moon, will correspond to the coordinates [0, 0, -rMoon]. In order to determine the 3D position of the
user, at least 4 satellites are needed to be in view: hence, based on the elevation of each satellite, a
check has been done to assure that the four satellites of the constellation considered are in visibility
during the analysis. Therefore, the results will show some interruptions in the calculation, referred to
the epochs in which one or more satellites are no longer in view and the algorithm cannot find a
solution, since the number of variables is lower than the unknows to be determined. Therefore, when
there is this “blackout” of signals, the algorithm cannot consider anymore the approximation of the
previous epoch and it will need to be reinitialized with the initial hypothesis.
The x axis of the figures will indicate the time of analysis: the input data are provided every minute,
hence during the simulation each observation epoch corresponds to one minute of analysis.

5.1.1. Least Squares
In this section, the main results obtained with the implementation of the Least Squares technique will
be presented. The initialization considered in this analysis is that the first approximation of user
position is [0,0,0]. The first analysis will be focused on the results obtained on the Horizontal plane,
i.e., the x and y coordinates, while in the second part the results will be referred to the Vertical plane,
i.e., the z coordinate. The three directions are referred to the reference system defined in section 3.1,
with its origin in the center of the Moon. Since the user is a static configuration situated on the South
Pole, in this scenario the horizontal and vertical planes with respect to the user position are the same
of the reference system considered.
Both analyses will show the comparison between the implementation of the algorithm considering
the absence or the presence of the errors described in section 3.2 (satellite positioning, clock and
multipath errors).
In Figure 5.1.1, the blue circles represent the Horizontal Error, while the green circles represent the
Horizontal Dilution of Precision, considering the implementation without any errors in the
measurements. HDOP definition has already been analyzed in chapter 4.3, while Horizontal Error is
defined as the difference between the user position determined with the algorithm and the reference
position considering the horizontal plane, i.e., x and y coordinates. Defining user=[xu , yu , zu] as the
reference position (South Pole) and uapp=[xapp , yapp , zapp] as the calculated position (approximation)
with LS, the Horizontal Error is computed as:

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑢)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑢)

2

 58

Figure 5.1.1: Horizontal error and HDOP without errors implementation

Figure 5.1.2: Horizontal Error and HDOP with errors implementation

Of course, not considering the errors (Figure 5.1.1), the results are much more accurate, since the
delta from reference position is on the order of 10-9 meters. Instead, it is of interest to observe the
values that consider errors implementation (Figure 5.1.2), since they are closer to reality and show a
deviation from the reference position that varies from 0 to 30 meters, which gives a first analysis of
LS performances on the Horizontal plane. Another value that provides additional information about
the performances of the algorithm is the Horizontal 95th percentile: the corresponding value P
indicates that the probability that a random value X of the solution is equal or less than this value P
is of the 95%. This is valid also for all the other percentiles, like the 50th and 99th percentiles reported
in Figure 5.1.2, which indicates a value of the 95th percentile of about 20 meters.
As for the HDOP, it can be seen that they reach relatively acceptable values between 1 and 2 and, as
before, show absence of solution when there is a “blackout” of signals. Despite this, it is evident that
there are peaks throughout the solution which make them reach values over 5: it is plausible that this
is due to the constellation of satellites considered, which most likely periodically reaches during the
analysis a critical configuration for the determination of user’s position. In fact, it can be noticed that
even in the Horizontal Error there are peaks of the solution at the same instants of the HDOP ones.
Excluding those peaks, the values of the HDOP are similar either with or without errors
implementation.

 59

Analogously, Figure 5.1.3 and Figure 5.1.4 shows the results obtained considering the Vertical Error
(blue circles) and VDOP (green circles). As before, VDOP has already been analyzed, while Vertical
Error is determined in the same way as done for the horizontal one, but now considering the vertical
plane, i.e., z component:

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 = √(𝑧𝑎𝑝𝑝 − 𝑧𝑢)
2

Figure 5.1.3: Vertical error and VDOP without errors implementation

Figure 5.1.4: Vertical error and VDOP with errors implementation

Also for the vertical plane, the values without errors implementation are more accurate, but it can be
seen that they are less accurate with respect to the horizontal ones. Without errors (Figure 5.1.3),
vertical delta values are about one order higher than horizontal ones, while considering errors
application (Figure 5.1.4) values of vertical errors are more than four times higher. As well as for the
horizontal values, VDOP shows peaks throughout the solution due to the configuration of the
satellites in view, but this time the peaks reach values much higher than the HDOP ones.

 60

These results prove the better accuracy of the Least Squares on the horizontal plane compared to the
vertical direction, demonstrating also by the values of the Dilution of Precisions, which are worse for
the VDOP than the HDOP.

Figure 5.1.5: 3D Position Error for LS implementation over static user

Figure 5.1.5 provide a more general view of the results obtained, depicting the 3D Position Error. It
is defined in the same way as done for horizontal and vertical errors, but considering all three
components:

3𝐷 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑢)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑢)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝑢)

2

In this sense, this result can be considered as the combination of horizontal and vertical error. In fact,
as the figure shows, the trend of the solution is the same, and the values reached by the errors are in
line with the ones observed for the two planes described before.

Figure 5.1.6: Effect of the errors implementation on the Slant Range of each satellite

 61

To better understand the effect of the implementation of the errors in the simulation, considering the
four satellites in view, Figure 5.1.6 shows the effect of these errors on the Slant Range measure of
each satellite. Since the user is not considered in these measurements, the effect taken into account
here are satellite positioning and clock errors. Nevertheless, these calculations are done in the same
epochs of the solutions obtained before, so that they will show the same interruptions in the analysis.
It can be easily seen that the effect of the errors can have an impact on the results, since it can make
the values of Slant Range to draw aside from the real one even of 20 meters, which is in any case a
relative value compared to the Slant Range values that are of the order of 107 meters.

5.1.2. Static Kalman Filter
The following results will now focus on the implementation of the Extended Kalman Filter technique
with a Static Model of motion. Similarly to Least Squares results, the figures will show the
comparison of the results obtained with and without errors implementation.
The Figure 5.1.7 shows the trend of the solution, which is different from the LS results, since the
Extended Kalman Filter functioning brings to light the convergence of the solution over time,
differently from the LS which at each epoch consider different iterations to converge to the solution
at that specific epoch. The initialization in this case is no longer [0,0,0], but it is considered to be the
result obtained after two iterations of the Least Squares technique. This is because, as said before, the
EKF shows convergence over time, so that in the first phases of the analysis the results will be less
accurate, but after very few epochs the filter immediately converges to more accurate values. This is
valid every time there is a blackout of signals (i.e., when one or more satellites are not in view for
more subsequent epochs), where the filter is again reinitialized with two iterations of LS, but shortly
after that immediately converges again. As shown in Figure 5.1.7, in the first epochs both horizontal
and vertical errors reach values slightly higher than the LS ones, but then after very few epochs
(Figure 5.1.8) they both converge to errors of order of 10-9 meters and oscillate around these values
for the time of analysis in which the satellites are in view.

Figure 5.1.7: Trend of the EKF results with static model without errors implementation

 62

Figure 5.1.8: Zoom of the EKF results with static model without errors implementation

Considering errors implementation, the results of course are worse, but better if compared to Least
Squares. In particular, excluding the transitory parts as before and focusing on the phases in which
the filter converges, the Figure 5.1.9 shows that the values of error obtained are less than 15 meters,
both for horizontal and vertical error. In the figure the values of the percentiles are also reported:
considering the horizontal error, the 95th percentile is about 10 meters, which means half the value
obtained with the LS. The other percentile values are also better, demonstrating that the Extended
Kalman Filter proves to be much more accurate than the Least Squares technique, both in term of
higher convergence rate of the solution and deviation of the results from the reference values.

Figure 5.1.9: Zoom of the EKF results with static model with errors implementation

As for the Least Squares, Figure 5.1.10 shows the 3D Position Errors to give a more general view of
the errors obtained with the implementation of the Extended Kalman Filter with static model. As
expected, the figure corresponds to a combination of the horizontal and vertical errors, showing the
same trend and similar values of error.

 63

Figure 5.1.10: 3D Position Error for EKF with static model over static user

5.1.3. Dynamic Kalman Filter

As described in chapter 4, the Extended Kalman Filter can be implemented also with a dynamic model
of motion. Precisely, in this section the results considering a nearly constant velocity model will be
analyzed, again comparing the presence or absence of errors in the implementation.
Regarding the results obtained without errors, the trend (Figure 5.1.11) is the same as the static filter:
every time there are no sufficient satellites in view for subsequent epochs, the filter is reinitialized
with two LS iterations and so there is a transient with higher values, but shortly after that the filter
immediately converges to more accurate values.
However, these results show some differences with respect to the ones obtained with the static filter:
excluding the transient, Figure 5.1.12 highlights that the values of both the horizontal and vertical
errors oscillate around 0.1 meters and, when the filter converges totally, they reach at most values of
10-5 meters (compared to 10-9 of the static filter). Moreover, the solution with a dynamic model
converges more slowly, and this is reasonable because in this case the filter requires more time to
estimate also the correct velocity of the user.

Figure 5.1.11: Trend of EKF results with dynamic model without errors implementation

 64

Figure 5.1.12: Zoom of EKF results with dynamic model without errors implementation

Considering errors application (Figure 5.1.13), the results are of course worse, but comparable to the
ones obtained with the static filter and therefore better than the Least Squares results.
This is clearer observing the percentile values reported in Figure 5.1.9 for the static filter and Figure
5.1.13 for the dynamic filter and summarized in Table 5.1: in fact, these values show slightly lower
50th and 95th percentiles for the dynamic filter, but higher in the case of the 99th percentile. This
outcome confirms what said before, i.e., that the EKF with dynamic model can reach very accurate
results as for the static model, but the convergence rate of the solution is slower compared to the EKF
implemented with the static model.

Figure 5.1.13: Zoom of EKF results with dynamic model with errors implementation

 65

Table 5.1: Comparison of the percentile values of Horizontal error for EKF solutions

 Static EKF Dynamic EKF
50th percentile [meters] 4.8594 2.4729
95th percentile [meters] 10.1401 7.2472
99th percentile [meters] 11.8501 17.2183

Finally, also for the dynamic filter, Figure 5.1.14 shows the 3D Position Error, which again combines
horizontal and vertical error.

Figure 5.1.14: 3D Position Error for EKF with dynamic model over static user

These results give a first comparison of the two techniques analyzed: it has been demonstrated that
the Extended Kalman Filter has better performances with respect to the Least Squares solution in
term of accuracy of the position estimation of the user. In the static user scenario, this is true especially
if the model applicated to the filter is a static model. This makes sense, since the user is not moving
on Moon surface, and so the static model is the most accurate to estimate its position.

5.2. Dynamic User
In this paragraph, the second scenario of analysis presented in section 3.1 will be analyzed, i.e., the
implementation of positioning algorithms considering a dynamic user. As already introduced, the user
is not in a fixed position, but in motion around the Moon, following a precise trajectory directed to
the South Pole, where it will land. In the static user scenario, the consideration of the satellite in
visibility were made based on elevation of each one of them with respect to the South Pole. With a
dynamic user, this consideration can’t be done anymore, so that the check to do to assure the
feasibility of the analysis is to verify that the user is at each epoch below all four satellites, so that it
can receive the signals necessary for the calculation of the Slant Range.
Unlike the static user scenario, in the case of dynamic user the results without errors implementation
will not be considered, since it has already been demonstrated the effect of the errors: obviously, not
considering them, the outcomes are better, but they don’t reflect reality, so it is more noteworthy to

observe more representative results that consider the effects of these errors.
As already mentioned, in this configuration the multipath error will be no longer considered, hence
the errors taken into account will be satellite positioning, clock error and receiver error.

 66

The x axis will indicate again the time of analysis, but this time the input data contains measurement
with time difference of one second, so that each observation epoch corresponds to one second of the
simulation time.
Considering this test case, the implementation of the Extended Kalman Filter with a static model is
not really worth mentioning, since the scenario considers a dynamic user, in motion around the Moon
and approaching lunar surface. The static model considers a user in a fixed position, so that the results
would be practically meaningless.

For this application scenario, an important observation must be made: similar to the static user case,
the reference system considered is again centered in the center of the Moon (as also introduced in
section 3.1). However, since in the previous case the user is situated on the South Pole, it has been
already said that the horizontal and vertical plane of the user correspond to the ones of the reference
system. This reasoning is no longer valid considering a dynamic user, since during its orbit around
the Moon, the local planes are obviously different from the reference ones. Despite this, given the
configuration of the trajectory followed by the user (see figure in section 3.1), in the last phases of
the analysis, and in particular in the landing phase, the user is almost aligned with the z direction of
the reference system, while x and y components are negligible. This means that in the final phases of
the phases the local system again corresponds to the reference one, as for the static user analysis.
These reasonings will be clearer observing the results obtained, especially considering the three
components in the landing phase.

5.2.1. Least Squares
Fist results analyzed will be again the ones of Least Square implementation.
One of the most relevant results in this analysis is the 3D Position Error, represented in Figure 5.2.1.
Its definition has already been explained in section 5.1.1: the reference position user=[xu , yu , zu]
now is not a fixed value (as it was the South Pole of the Moon for the static user scenario), but it is
an input data that of course change every second, giving the measurement position of the user during
the simulation. The approximate position uapp=[xapp , yapp , zapp] is again the position computed with
the positioning algorithm considered. The 3D error is then computed as:

3𝐷 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑢)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑢)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝑢)

2

Figure 5.2.1: 3D position errors of LS implementation over dynamic user

 67

Compared to the static user scenario, the trend is now more scattered and shows a slight convergence
over time, and there are no interruptions throughout the simulation, showing that the user is always
below the four satellites of the constellation given in the input data.
At the beginning of the simulation, the deviation from the reference position is on the order of hundred
meters, then converging over time and reaching in the final phases values around 50 meters or less.
In order to provide an idea of the distribution of the values, the percentile values are reported in the
figure, showing for the 95th percentile a value of about 155 meters. Allegedly, these errors are too
much high to provide an accurate estimation, demonstrating the weakness of the Least Squares in this
scenario.

As mentioned before, it is of interest to analyze the error in the estimation highlighting the differences
among the single components x, y and z. These values can be easily computed as for the 3D error,
considering the absolute value of the difference between approximated and reference values:

𝑥𝑒𝑟𝑟𝑜𝑟 = |𝑥𝑎𝑝𝑝 − 𝑥𝑢|

𝑦𝑒𝑟𝑟𝑜𝑟 = |𝑦𝑎𝑝𝑝 − 𝑦𝑢|

𝑧𝑒𝑟𝑟𝑜𝑟 = |𝑧𝑎𝑝𝑝 − 𝑧𝑢|

Figure 5.2.2 displays the same trend of the 3D error for all three components, with a slight difference
for the y coordinate, which is more distributed. The figure shows how the values of error on x and y
components are overall more than five times less than the ones on z component: for all the simulation
time, x and y errors are less than 50 meters reaching values below 20 meters in the final phases (y
error is below 20 meters for almost all the time of analysis). Instead, z error reaches values around
hundreds meters and then converges to values at most around 35 meters.
This analysis demonstrates that the main problem of the Least Squares estimation is the z component,
showing instead better accuracy on the other two directions. This consideration is in part as expected,
at least for what concerns the y component: the better accuracy on the y direction can be explained
by the fact that the trajectory followed by the user in its approach to the lunar surface is almost
exclusively in the x-z plane, while the y component of the motion is always very little compared to
the other two. This consideration will be deepened in the next paragraphs.

Figure 5.2.2: Position Components Errors for LS implementation with dynamic user

 68

Another important result is the Cumulative Distribution Function of the 3D position error values,
depicted in Figure 5.2.3. The CDF is a function that describes the probability distribution of a variable
(the error values in this case). The CDF of the 3D position error calculated at a value P of the solution
is the probability that the elements of the error vector will take a value less than or equal to that value
P. The more the curve is flattened towards the y-axis, the more it has a positive meaning, indicating
a better distribution of the values over simulation time.
In this case, the curve is not very flattened because as already seen the values are scattered and the
convergence rate of the solution is not very high. This is also confirmed by the values of the 50th, 95th
and 99th percentile (red point-lines), which are the same calculated and reported in Figure 5.2.1. In
fact, the 99th percentile is almost more than 6 times the 50th one, showing again that the distribution
of results is very scattered.

Figure 5.2.3: CDF plot of the 3D position error values for LS solution

Finally, in Figure 5.2.4, the velocity and acceleration profiles are reported. Cyan and green circles
represent respectively user velocity and acceleration: these are the reference values, given the velocity
of the user from the input data and acceleration calculated with the differential of the same velocity
values known. Magenta and yellow circles, instead, represent the approximated velocity and
acceleration. Since the LS algorithm does not include velocity and acceleration calculation, the
approximated values are calculated with the differential of the approximated position determined by
the algorithm. Given the user approximated position components at each epoch xapp , yapp and zapp,
velocity and acceleration are computed as:

𝑣𝑒𝑙𝑎𝑝𝑝 = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 𝑎𝑐𝑐𝑎𝑝𝑝 =

𝜕𝑣𝑒𝑙𝑎𝑝𝑝

𝜕𝑡

Where 𝑣𝑥 =

𝜕𝑥𝑎𝑝𝑝

𝜕𝑡
 , 𝑣𝑦 =

𝜕𝑦𝑎𝑝𝑝

𝜕𝑡
 and 𝑣𝑧 =

𝜕𝑧𝑎𝑝𝑝

𝜕𝑡
.

Reference profiles, instead, are defined starting from the reference velocity vuser=[vxu , vyu , vzu]
reported in the input observation file:

𝑣𝑒𝑙𝑢 = √𝑣𝑥𝑢2 + 𝑣𝑦𝑢2 + 𝑣𝑧𝑢2 𝑎𝑐𝑐𝑢 =
𝜕𝑣𝑒𝑙𝑢

𝜕𝑡

 69

Figure 5.2.4: Velocity and Acceleration profiles for LS analysis

User velocity (cyan circles) is around 1500 m/s for almost all the simulation time, until the final
phases in which suddenly decreases toward zero: this descending phase of course corresponds to the
landing of the user on the Moon surface. User acceleration (green circles) seems to be null for all the
simulation, but it will be clearer in the following paragraphs that in reality there are some variations
in acceleration values.
Velocity approximation (magenta circles) demonstrates to reach values that oscillate around the user
reference, with fluctuations less than 500 meters per second until the descending phase in which the
approximation is more accurate and closer to the user velocity (errors are about 50 meters per
seconds). The approximation on acceleration (yellow circles) follows more or less the same
reasoning, showing fluctuation of about 500 m/s2 especially in the first phases of simulation, until the
descending phase in which they are reduced to about 100 meters per seconds square.

There is another important consideration: Figure 5.2.4 shows a step in the velocity profile after about
3400 seconds (precisely at epoch 3431), in which the velocity suddenly decreases of about 70 m/s
(from 1570 to 1500 m/s). Parallelly, at this epoch corresponds an anomaly in the acceleration trend,
as the value of acceleration is about -65 m/s2, while the trend is always around zero. This anomaly is
present in input data, so that it can be considered as a maneuver to adjust the lander attitude during
its trajectory around the Moon. This maneuver causes some modification in the results, which are
more evident in the Extended Kalman Filter solution as it will be seen later.

5.2.2. Dynamic Kalman Filter
Implementation of a dynamic model for the Extended Kalman Filter can provide different results
based on the model considered. In the following section, two different model will be analyzed: Nearly
Constant Velocity Model (NCV) and Nearly Constant Acceleration Model (NCA).

5.2.2.1. Nearly Constant Velocity Model
The first model implemented is the constant velocity model, already introduced in section 4.2.2.
Considering a dynamic model, the 3D position errors (Figure 5.2.5) shows that the trend of the
solution is similar to what was obtained in the static user case. There is, in fact, a transitory part at
the beginning of the analysis in which the solution reaches high values of error, but this is true just
for very few epochs after which the filter immediately converges to much better values.

 70

Differently from the static user scenario, in this case there are no blackout of signals during the
simulation (as already mentioned for LS), so that the solution continues to converge for all the time
of analysis, giving much better results. Since this trend is common for all the results obtained in this
analysis, to better analyze the outcomes, the following figures will show a zoom of the solution,
focusing on the second part of the analysis, therefore excluding the transient at the beginning.

Figure 5.2.5: Trend of 3D position errors for EKF with constant velocity model

As shown in Figure 5.2.6, 3D positions errors reach values lower than 50 meters after very few epochs
and remain so oscillating more or less between 0 and 30 meters. In LS solution, the results obtained
in the final phases were not too much worse (the errors were about 50 meters), but the main difference
to be seen is that the Extended Kalman Filter converges much earlier, reaching better accuracy already
after very few seconds of simulation. This result is confirmed by observing the value of the 95th
percentile, which is now about 39 meters, a value almost four time lower than that obtained with LS
(about 155 meters), confirming the higher convergence velocity of the EKF.

Figure 5.2.6: Zoom of 3D position errors (excluding transient) for EKF with constant velocity model

 71

Although not very clearly, in the figure it can also be seen the effect of the anomaly in the velocity
and acceleration profiles, already described in the previous paragraphs. In fact, the sudden change in
the acceleration value cause a glitch in the functioning of the filter, which produces a peak of about
80 meters (visible around epoch 3431), but immediately after that, the filter recovers and converges
again to the previous values.
The Table 5.2 summarizes the value of the percentile considering the transitory (as in Figure 5.2.5)
or not considering the transitory (as in Figure 5.2.6). This comparison underlines once again the
strength of the dynamic EKF, since both the 50th and 95th percentile are under 40 meters. Of course,
the main difference is the 99th percentile, which has higher value considering the transitory, but
excluding it the result reach a value around 49 meters, given a much better accuracy with respect to
the results seen for the Least Squares.

Table 5.2: Comparison of the percentile values of 3D position error of EKF solution

 WITH Transitory WITOUTH Transitory
50th percentile [meters] 20.3249 20.7694
95th percentile [meters] 40.0472 38.8269
99th percentile [meters] 67.4309 48.8804

Implementing a dynamic model, the Extended Kalman Filter is able to also determine the velocity
components of the user, so that a comparison with the reference value can be made. Therefore,
analogously to what done for the position, considering vuser=[vxu , vyu , vzu] the reference velocity of
the user reported in the input observation file and vapp=[vxapp , vyapp , vzapp] the approximated velocity
calculated with the filter, the 3D velocity error can be computed as:

3𝐷 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐸𝑟𝑟𝑜𝑟 = √(𝑣𝑥𝑎𝑝𝑝 − 𝑣𝑥𝑢)
2
+ (𝑣𝑦𝑎𝑝𝑝 − 𝑣𝑦𝑢)

2
+ (𝑣𝑧𝑎𝑝𝑝 − 𝑣𝑧𝑢)

2

Figure 5.2.7: 3D velocity errors (excluding transient) for EKF with constant velocity model

As already said, the trend of the 3D velocity error (Figure 5.2.7) is the similar to the position one,
since it reaches better accuracy after the transitory. In line with the result obtained for the position,
the errors of the velocity estimation compared to the reference values show an oscillation around
values lower than 30 m/s. Also in this graph, the peak at epoch 3431 is visible, and corresponds for
the velocity to a glitch that reach a value of about 55 meters per second.

 72

The same considerations are valid for errors on each component: position errors component by
component has already been introduced in LS analysis, while the velocity error can be defined in a
similar way, considering user velocity vuser=[vxu , vyu , vzu] as the reference velocity reported in the
input observation file and the approximated velocity vapp=[vxapp , vyapp , vzapp] the one calculated with
the filter:

𝑣𝑥𝑒𝑟𝑟𝑜𝑟 = | 𝑣𝑥𝑎𝑝𝑝 − 𝑣𝑥𝑢 |

𝑣𝑦𝑒𝑟𝑟𝑜𝑟 = | 𝑦𝑎𝑝𝑝 − 𝑣𝑦𝑢 |

𝑣𝑧𝑒𝑟𝑟𝑜𝑟 = | 𝑣𝑧𝑎𝑝𝑝 − 𝑣𝑧𝑢 |

Figure 5.2.8: Position components errors (excluding transient) for EKF with constant velocity model

Figure 5.2.9: Velocity components errors (excluding transient) for EKF with constant velocity model

 73

Differently from what already seen previously, implementing the EKF with dynamic model, the
difference among the three component is not so evident. Indeed, the oscillations of the position errors
on each component (Figure 5.2.8) are more or less equivalent, around the same values approximately
between 0 and 30 meters, or in any case hardly above 40 meters. As for the velocity components error
(Figure 5.2.9) the estimations are even more accurate, since deviations from the reference values are
hardly above 20 m/s. This means that the dynamic model is able to better manage the position and
speed of the user along all three directions of motion, unlike what was observed for the Least Squares
implementation, which was more performing on x and y components with respect to the z direction.

Figure 5.2.10: CDF plot of the 3D position error values for EKF with constant velocity model

Figure 5.2.10 shows the Cumulative Distribution Function of the 3D position errors for the EKF
solution with constant velocity model. As it can easily be seen, the graph is much more flattened,
which has a positive meaning, since it indicates greater accuracy in the results throughout the analysis
time. In fact, the values of the 50th, 95th and 99th percentile are confused with each other, since the
vertical lines that intercept the graph at these points (displayed in red point-line strokes in the previous
paragraphs) are all crushed close to the y-axis. In any case, as already shown in Table 5.2, all these
values are below the 50 meters not considering the transitory part at the beginning.

Finally, also for the dynamic model, the velocity and acceleration profile are analyzed. As before, in
Figure 5.2.11 cyan and green circles represent the reference values, while magenta and yellow circles
represent the approximated values determined with the Extended Kalman Filter algorithm.
Since the model applicated is nearly constant velocity, in this case velocity approximation are
calculated by the algorithm, while acceleration approximations are determined as already introduced
for the Least Squares:

𝑎𝑐𝑐𝑎𝑝𝑝 =
𝜕𝑣𝑒𝑙𝑎𝑝𝑝
𝜕𝑡

Excluding the transient at the beginning, the velocity approximation is really accurate compared to
the previous results of Least Squares. In fact, the deviation from the reference values is not above 20
m/s for almost all the time of analysis, until the descending phase where the difference is even lower,
of just few meters per seconds.

 74

On the contrary, the approximate acceleration is not so accurate, reaching oscillation up to 20 m/s2
for all the analysis, even though these values are way better than the ones obtained with the previous
techniques. This is because the model considered is a nearly constant velocity model, which
inevitably leads to more realistic results considering the velocity approximation, but not for the
acceleration approximation.
Therefore, the filter analysis still needs another additional step to reach more accurate results,
implementing a constant acceleration model.

Figure 5.2.11: Velocity and Acceleration profiles for EKF with constant velocity model

The acceleration profile in Figure 5.2.11 allows to make an observation that the other figures in
previous paragraphs made not so clear: in the final phases of the simulation (around epoch 3660)
there is a step in the profile (green circles) which brings the acceleration from values near zero to a
value about -5 m/s2 and then growing back to about -3 m/s2 near the end of the analysis. It is easily
deductible that this step corresponds to the maneuver made by the user to land on the Moon surface.
In fact, as it can be seen from the velocity profile, starting from the same epoch of the acceleration
step (epoch 3660), the velocity of the user suddenly decreases from about 1500 m/s toward 0. Until
this maneuver, the user is in motion with a model of motion that is almost the same of the constant
velocity model, since the acceleration is almost zero. Actually, the acceleration is not zero, but shows
values of the order of 10-5 m/s2 until the first maneuver after 3431 seconds (already discussed in the
previous paragraphs), after which acceleration increases to values around 10-2 m/s2. In any case, once
the lander starts the descending phase, the values of acceleration are not so negligible and velocity
starts to decrease very rapidly, so that the constant velocity model cannot accurately simulate user
movement.
This consideration will be even more clear analyzing the results obtained with the implementation of
the Extended Kalman Filter with constant acceleration model.

5.2.2.2. Nearly Constant Acceleration Model
The second model implemented in this analysis is the constant acceleration model (NCA).
Similarly to the nearly constant velocity model, being NCA also a dynamic model, the trend is similar
to the case of the static user, as shown in Figure 5.2.12. Excluding the transient at the beginning, the
EKF converges very rapidly to very accurate values, so that, as done for the NCV model, also for this
scenario the analysis of results will be carried out without considering the initial transient.

 75

Figure 5.2.12: Trend of 3D position errors for EKF with constant acceleration model

The solution displayed in Figure 5.2.13 converges again very rapidly to values more accurate than
those of the constant velocity model, given that the errors are hardly above 25 meters (in Figure 5.2.7
errors reached also values of 50 meters). The high convergence rate is confirmed also in this analysis
by the percentile values represented in figure, showing a 95th percentile value of about 23 meters,
which means almost half the value of the NCV model (40 meters).

Figure 5.2.13: Zoom of 3D position errors (excluding transient) for EKF with constant acceleration model

In this case, Figure 5.2.13 shows more clearly the effect of the maneuver made about halfway through
the simulation. In fact, the peak of the 3D position error reaches almost values of 100 meters for few
seconds, which is just 10 meters more than before, but the difference is clearer since the convergence
values of this model are lower than the NCV model. Once again, after this peak, the filter immediately
recovers and converges again to the previous values.
Moreover, in this case the glitch related to the maneuver made at the beginning of the descent on
lunar surface is also clearly visible, corresponding to a peak of about 60 meters error.

 76

The Table 5.3 compares the values of the percentiles already reported in Figure 5.2.12 and Figure
5.2.13. First of all, it can be noticed that all the values are lower compared to the respectively values
obtained with the constant velocity model (recalled in yellow in the table): excluding the transitory
part there is a difference of almost 15 meters both for 95th and 99th percentiles. For the latter, the value
obtained in the current test case is about 33 meters (compared to the almost 49 of the previous test
case). Moreover, it can be seen that the value of 50th and 95th percentiles change very little whether
or not the transient is considered, especially the 50th percentile which is practically the same.

Table 5.3: Comparison of the percentile values of 3D position error of EKF with constant acceleration model

 WITH Transitory WITHOUT Transitory NCV without
transient

50th percentile [meters] 13.668 13.6685 20.7694
95th percentile [meters] 24.1557 23.3912 38.8269
99th percentile [meters] 74.2007 33.0376 48.8804

These values demonstrated the greater accuracy of the nearly constant acceleration model, since the
convergence rate is higher than the nearly constant velocity model, thus giving overall more accurate
results in less time.
These considerations are confirmed also seeing the 3D velocity error (Figure 5.2.14), computed as
already shown in the NCV model case.

Figure 5.2.14: 3D velocity error (excluding transient) for EKF with constant acceleration model

The 3D velocity error emphasizes the greater accuracy of the nearly constant acceleration model,
since the errors in velocity calculation are way lower than obtained before, oscillating between values
lower than 8 m/s (compared to the 30 m/s of the constant velocity model). Given these lower values,
the peak at epoch 3431, which has again a value of about 65 m/s, is much more visible. Same
reasoning is valid for the glitch related to the descending maneuver, corresponding to an error in
velocity estimation of about 20 m/s.

 77

Figure 5.2.15: Position components errors (excluding transient) for EKF with constant velocity model

Figure 5.2.16: Velocity components errors (excluding transient) for EKF with constant velocity model

Focusing on the single components, as for the NCV model, the difference among the three direction
is negligible, since all three position errors (Figure 5.2.15) oscillate around values lower than 20 m,
again more accurate than the previous case where the errors often exceed 30 meters.
The same results are pointed out in Figure 5.2.16, where velocity components errors do not exceed 5
m/s, four times lower than the nearly constant velocity model errors.
An important consideration can be made observing both figures: the maneuver done halfway through
the simulation has an impact on the x component (which reaches errors of about 67 m on position and
25 m/s on velocity) and on the z component (which reaches errors of even 130 m and 60 m/s). Instead,
it has no effect on the y component, which does not have a glitch at that epoch. Focusing on the final
phase, the maneuver done to start the descent to lunar surface has a major impact only on x
component, giving errors of about 60 meters on position and 20 m/s on velocity.
This analysis allows to deduce that the maneuver done to settle the attitude of the user at epoch 3431
involves a modification of direction on the x-z plane, while the maneuver done to start the descend to
the Moon surface involves mainly x component. This was in part predictable, at least for what
concerns the y component, since it has already been seen that the orbit is almost entirely on the x-z
plane, while the y direction variations are almost negligible compared to the other directions.

 78

Figure 5.2.17: CDF plot of the 3D position error values for EKF with constant acceleration model

The Cumulative Distribution Function of the 3D position errors (Figure 5.2.17), is also in this case
more flattened, giving the greater accuracy of the solution. Also, the three percentile values analyzed
can’t be represented, since are crashed toward the y axis, having values under 40 meters (as already
discussed before).

Finally, Figure 5.2.18 highlights once again the velocity and acceleration profiles, with the cyan and
green circles representing the references and magenta and yellow ones representing the
approximations. Excluding the transient, the accuracy in velocity approximation is more accurate
than before, giving deviations from the reference lower than 5 m/s, until the descending phase in
which the difference is even lower (about 2 or 3 m/s).
As expected, the acceleration approximation is more accurate, since in the nearly constant
acceleration model the components of acceleration are calculated in the algorithm. The values of the
approximation oscillate between -0.5 and -2 m/s2 (with respect to the reference values around zero),
both before and after the peak in the middle of the solution, that reaches about -6 m/s2. Focusing on
the final phase, corresponding to the beginning of the landing, the approximation follows the same
trend as the reference profile: the step in the approximated acceleration profile reaches -5.5 m/s2
(compared to the -4.5 m/s2 of the user profile) and then gradually increases together with the reference
values, with deviations of only 0.5 m/s2.

Figure 5.2.18: Velocity and Acceleration profiles for EKF with constant acceleration model

 79

These results demonstrated that the Extended Kalman Filter implemented with a Nearly Constant
Acceleration model provides the best performances in terms of accuracy for the scenario of a dynamic
user landing to the Moon surface. This has been proven both by the lowest error values obtained
comparing the filter calculations to the reference values of position and velocity, but also observing
the velocity and acceleration profiles that differ very little from the reference ones.

5.2.3. Sensor Fusion
Since the Extended Kalman Filter with nearly constant acceleration model has demonstrated to be the
best performing algorithm, in this section the Sensor Fusion technique will be implemented
considering this model with the additional measurement of the altimeter.
This measurement is activated when user position is approximately 10 km far from Moon surface, so
the trend of the solution is the same until this distance is reached. For this reason, the analysis will
focus on the last part of the results, in order to highlight the differences between the Extended Kalman
Filter performances with or without the altimeter measurement.

5.2.3.1. Pure vertical altimeter measurement
As already explained in section 4.2.3, the first approximation is that the measurement given by the
altimeter is purely vertical directed toward the center of the Moon, which is not a realistic case, but
gives a first information about the performances of the Sensor Fusion technique.

Figure 5.2.19: Comparison of 3D position errors (when altimeter is active) for EKF and SF

Figure 5.2.19 shows the comparison between the values of the 3D position errors obtained by the
EKF with constant acceleration model (green circles) and the values obtained by the SF technique
with the altimeter measurement (orange circles).
There is a small difference between the two cases, but the SF technique produces slightly better
results, given lower values overall with respect to the EKF ones. In fact, the EKF solution also reaches
error values above 25 meters and not lower than 10 meters, while with the SF the maximum peak is
at 20 meters, but in general the results fluctuate around values less than 10 meters, reaching also
values below 5 meters.

 80

The boxes in Figure 5.2.19 and the Table 5.4 summarize the percentile values excluding the transient
for the EKF solution and considering only the final epochs when the altimeter measurement is
activated for the SF solution. These values confirm the previous observation: all three percentile
values are lower in SF case, with differences of about 5 or 6 meters, except for the 99th percentile,
which is more than 11 meters smaller, showing that the SF values are more flattened and distributed
over the time of analysis.

Table 5.4: Comparison of percentile values for 3D position errors of EKF and SF

 EKF SF
50th percentile [meters] 13.6685 8.7552
95th percentile [meters] 23.3912 17.799
99th percentile [meters] 33.0376 21.1107

The 3D velocity error comparison generates similar results, shown in Figure 5.2.20. Nonetheless, the
difference between the two cases is even less clear considering velocity errors: EKF values oscillates
between 2 and 5 m/s with peaks slightly above 7 m/s, while SF values are just few units lower,
fluctuating between 1 and 4 m/s with peaks of 6 m/s.

Figure 5.2.20: Comparison of 3D velocity errors (when altimeter is active) for EKF and SF

The Figures 5.2.21 and 5.2.22 emphasize the previous analysis, showing the errors on each
component both for position and velocity. Once again, the difference between the two solutions is
more evident by observing position errors rather than velocity errors.
Among the three directions, the z component seems to be the only one on which the altimeter has a
significant effect. This is partly true, but it is important to underline that the measurement of the
altimeter has an impact on all three components: this is because the altimeter reading is a vertical
measure pointing on lunar surface and precisely it is directed toward the Up direction considering
ENU coordinates (East, North, Up). This means that the measurement will affect not only the z
component, but also x and y, since the XYZ reference system origin is the center of the Moon, so that
each direction will have an UP direction if considered in the ENU system. Nevertheless, as observed
before, the error is more blunted along the z component: this is because, in the final phase of the
landing, the direction followed by the user is almost perpendicular to the moon surface and the lander
is approaching the South Pole, so that Up direction is almost aligned with the z direction, and therefore
altimeter error will be much more limited (close to zero).

 81

Figure 5.2.21: Comparison of position components errors (when altimeter is active) for EKF and SF

Figure 5.2.22: Comparison of velocity components errors (when altimeter is active) for EKF and SF

5.2.3.2. Error on altimeter measurement

In order to realize a more realistic analysis, it is necessary to consider an error on the altimeter
measure. In fact, as already introduced in section 4.2.3, the attitude of the user must be considered so
that the direction of the altimeter measurement is not absolutely vertical, i.e., perpendicular directed
to the Moon surface along the Up direction of the ENU reference system.

 82

Figure 5.2.23: Comparison of 3D position errors (when altimeter is active) for EKF and SF

Figure 5.2.24: Comparison of 3D velocity errors (when altimeter is active) for EKF and SF

Observing the 3D position error (Figure 5.2.23) and 3D velocity error (Figure 5.2.24), it can be
noticed that the effect of the error on the altimeter reading does not significantly affect the results. In
fact, the errors oscillate between the same values as before and the difference to be seen is almost
negligible, both for position and velocity graphs. The values of the percentiles allow to highlight this
very slight difference, as shown in Table 5.5: implementing the altimeter error, the percentiles are
slightly worse (as expected), being just a few meters higher than the values obtained previously. The
only exception is the 99th percentile, which are almost the same given a difference of the order of
centimeters.

Table 5.5: Comparison of percentile values for 3D position errors of SF with and without altimeter error

 SF without altimeter error SF with altimeter error
50th percentile [meters] 8.7552 9.8806
95th percentile [meters] 17.799 20.5975
99th percentile [meters] 21.1107 21.6045

 83

Figures 5.2.25 and 5.2.26 represent once again the position components errors and velocity
components errors respectively. As for the previous case, the effect of the additional altimeter
measurement is more evident on the position components errors rather than on the velocity
components, and again has a greater impact on the z component than on the x and y directions.
The difference between these errors and those obtained with the measurement of the purely vertical
altimeter is minimal, thus demonstrating a good accuracy on single components also in this case.

Figure 5.2.25: Comparison of position components errors (when altimeter is active) for EKF and SF

Figure 5.2.26: Comparison of velocity components errors (when altimeter is active) for EKF and SF

In the previous section it has been demonstrated that the additional measurement of the altimeter
provides more accurate results, but that measurement was not realistic since it didn’t consider the

attitude of the lander. In this section, though, it has been proven that, even considering a more realistic
measure that takes into account the user's attitude during landing, the results are still optimal and
more accurate than those obtained with the Extended Kalman Filter alone.

 84

5.2.3.3. Exclusion of a satellite

In this section another an interesting simulation of a possible case in lunar environment will be
considered. It has already been said that the user needs at least four satellites to estimate his position
(and velocity and acceleration). The altimeter measurement gives an additional reference to the user,
which allows the filter to determine more accurately the characteristics needed. To evaluate the effect
of this measure and compare it to the information that each satellite gives to the user, it is possible to
substitute the altimeter reading to a satellite Slant Range, instead of adding it to the Slant Range
measurements of the four satellites in visibility. Therefore, instead of having four satellites plus
altimeter reading, now the positioning algorithm will receive input data from three satellites in view
and the altimeter measurement in substitution of the fourth. This simulation is of course valid in the
last phases of the analysis, since it is only in the landing phase that the altimeter measurement is
present (below 10 km from Moon).

Figure 5.2.27: Comparison of 3D position errors with substitution of each satellite with the altimeter

Figure 5.2.28: Comparison of position components errors with substitution of each satellite with the altimeter

 85

The Figure 5.2.27 and 5.2.28 show the 3D position errors and the position components errors,
comparing the results obtained removing each satellite and substituting with the altimeter reading.
The outcomes are very similar in each case considered. There is a slight difference regarding the
result obtained with the exclusion of satellite 2: the error values obtained in this case show a peak of
about 60 meters, when the trend of all errors is hardly exceeds the 25 meters. This is evident in the
single components, especially in the z direction, where the peak reaches almost 40 meters,
compared to the standard values that are below 10 meters.
Moreover, this consideration is confirmed by the percentile values shown in the Figure 5.2.29,
which highlights the higher values of the percentiles for this second case, especially the 99th
percentile that is almost doubled with respect to the other cases.

Figure 5.2.29: Comparison of CDF of 3D position errors with substitution of each satellite with the altimeter

Aside from the comments made before, these results determine an important consideration for lunar
navigation: the analysis made before has considered that one satellite was unavailable for all the
simulation time, and these outcomes demonstrated that the altimeter measurement can successfully
substitute a satellite not in view. Taking for the example the results obtained with the static user, it
has been seen that there were blackouts in the solution, in which the user cannot determine its
position, since there were not enough input data to compute the positioning algorithms. In the
scenario just analyzed, this would not have been a problem, since in the epochs in which one
satellite is not in view, the altimeter could compensate its absence, increasing the availability of the
solution. This result is very important considering lunar environment: considering Earth
environment, there are a lot of constellations that can give information to the user even in case of
failures. In lunar environment, there are not a lot of signals available, so that in case of a failure or
unavailability of a satellite, this can cause serious problem for the determination of the user position
and velocity over time. The additional measurement of the altimeter gives a great aid, covering for
these problems that could present during an expedition. As for the altimeter, this is obviously true
only for the landing phase, when the user is 10 km far from the Moon surface and the measurement
is activated. However, this reasoning can be expanded to any sensor that can be part of the user
characteristics, giving the possibility to cover satellites failure or unavailability also during orbiting
around the Moon.

 86

5.3. Comparison of results
Considering the results shown in the previous chapters, the following figures will highlight the
comparison of the performances that each algorithm can achieve under the assumption considered in
this work. In order to produce more consistent results, a Montecarlo simulation based on 1000
iterations has been carried out, considering then the root mean squares of the results obtained.

The Figure 5.3.1 shows the comparison of the 3D position errors obtained with the implementation
of the different methodologies analyzed. Similarly as defined in the previous paragraphs, considering
the reference position user=[xu, yu, zu] and the approximate calculated position uapp=[xapp, yapp, zapp],
the 3D error has been computed as:

3𝐷 𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑎𝑝𝑝 − 𝑥𝑢)
2
+ (𝑦𝑎𝑝𝑝 − 𝑦𝑢)

2
+ (𝑧𝑎𝑝𝑝 − 𝑧𝑢)

2

In particular, the blue circles represent the results achieved by the Least Squares, the green ones are
referred to the Extended Kalman Filter, and finally the orange markers show the results obtained with
the Sensor Fusion technique with the altimeter measurement. Also, the red vertical line indicates the
instant of time from which the additional measurement of the altimeter is activated (i.e., when user
position is below 10 km from lunar surface).

Figure 5.3.1: Comparison of 3D position error trend for the different algorithms

These results confirm the analysis made in the previous paragraphs: the Least Squares technique
demonstrate more scattered errors and slightly convergence to less accurate values. Instead, the
Extended Kalman Filter results confirm once again better performances, both in term of accuracy
since the error values are way lower than those obtained with LS, but also in term of high convergence
rate since, after the transient at the beginning, the filter immediately converges after very few seconds.
As already mentioned, the input data contain two anomalies, which have been discussed considering
the velocity and acceleration profiles of the user: the first one is after about 3430 seconds and it has
been consider a maneuver to adjust the attitude of the lander orbiting around the Moon, while the
second one is almost at the end of the analysis and corresponds to the initial maneuver done to start
the landing to lunar surface. These maneuvers cause a glitch in the estimations, but this is not very
evident in the Least Squares analysis given the more scattered and high values of errors. It is quite

 87

evident, instead, considering the Extended Kalman Filter results: since the errors are much lower, the
peaks are more visible, reaching values more than 3 times higher due to the first maneuver and almost
doubled for the second one.
Obviously, the trend of the 3D position error (Figure 5.3.1) is the same for the EKF with or without
the altimeter measurement, because the additional measurement is not present in the analysis until
the user is approximately 10 km far from Moon surface (red line in the figure). Instead, the difference
is evident in Figure 5.3.2, which focus on the last part of the analysis, i.e., the final part of the landing
phase when the altimeter measurement is activated.

Figure 5.3.2: Comparison of 3D position error considering last phases (when altimeter is active)

This figure confirms the even more accurate results considering the additional measurement of the
altimeter, which error values are lower than those of the Extended Kalman Filter alone.
This consideration is even more clear observing the percentile values (50th percentile, 95th percentile
and 99th percentile), summarized in the three boxes reported in Figure 5.3.1 and in Table 5.6, where
the Sensor Fusion technique (EKF + Altimeter) shows the lowest values.

Table 5.6: Comparison of percentile values for the different algorithms

 Least Squares Extended Kalman
Filter

Extended Kalman
Filter + Altimeter

50 Percentile [meters] 40.56 13.7964 12.8418

95 Percentile [meters] 159.7673 23.2364 22.5883

99 Percentile [meters] 225.9473 120.1627 115.0514

These values are also visible in Figure 5.3.3, which represent the comparison of the Cumulative
Distribution Function of the 3D position error of each algorithm. As already discussed, the curves are
crushed on y-axis and the difference is not very clear, so the figure shows a zoom on the initial values.
Once again, the CDF of the Extended Kalman Filter and Sensor Fusion are more flattened, which
means higher convergence rate to more accurate values.

 88

Figure 5.3.3: Comparison of CDF of 3D position errors for each algorithm

To highlight the differences between the solution before and after the activation of the altimeter
measurement, the CDF plot and percentile values are analyzed in both cases.
Figure 5.3.4 shows the CDF of the 3D position errors for each technique before the activation of the
measurement and Table 5.7 compares the percentile values as before.

Figure 5.3.4: Comparison of CDF of 3D position errors for each algorithm before altimeter activation

As expected, the results are similar to those obtained considering the whole simulation, since the
altimeter is activated only in the last part of the analysis when the user is landing. In fact, EKF and
SF percentile values are almost the same (as already said for the trend of the error) and they are
lower than the values obtained with the LS technique.

Table 5.7: Comparison of percentile values for each algorithm before altimeter activation

 Least Squares Extended Kalman
Filter

Extended Kalman
Filter + Altimeter

50 Percentile [meters] 41.0715 13.7538 13.1763

95 Percentile [meters] 160.3238 23.2909 22.7518

99 Percentile [meters] 226.1575 121.3540 120.5595

 89

Figure 5.3.5, instead, shows the CDF of the 3D position errors for each technique in the last phases,
i.e., when the altimeter measurement is activated, while the Table 5.8 compares the percentile values
as before. The trend is similar, but of course there are much lower values of analysis with respect of
the rest of the simulation. These results confirm that in the landing phase the SF technique shows the
best performances, since the CDF curve is the nearest to the y-axis and as a consequence the value of
the percentiles are lower than the ones obtained with the EKF alone.

Figure 5.3.5: Comparison of CDF of 3D position errors for each algorithm after altimeter activation

Table 5.8: Comparison of percentile values for each algorithm after altimeter activation

 Least Squares Extended Kalman
Filter

Extended Kalman
Filter + Altimeter

50 Percentile [meters] 21.4062 15.2151 11.3712

95 Percentile [meters] 49.7758 22.5102 17.5984

99 Percentile [meters] 57.7915 24.4353 19.6354

The reasonings made before are also confirmed in the Figure 5.3.6, depicting the position errors
component by component. Color markers are the same as for the 3D position errors, and as before
the difference in the accuracy between EKF and EKF + Altimeter is more evident in Figure 5.3.7,
depicting the final phase of the landing.
As already discussed, the measurement of the altimeter has an impact on all three components, since
the altimeter reading is a vertical measurement directed is directed toward the Up direction, thus
affecting not only the z component, but also x and y. Nevertheless, once again the error is more blunted
along the z component because during the landing the direction followed by the user is almost
perpendicular to the Moon surface, so that Up and z directions are almost aligned.

 90

Figure 5.3.6: Position components error trend

Figure 5.3.7: Position components error considering last phases

To conclude the analysis, Figure 5.3.8 and Figure 5.3.9 show the comparison between the true
trajectory of the user and the approximation values obtained with the different techniques, on the
horizontal and vertical plane respectively. The figures are focused on the last 30 seconds of the
simulation to better highlights the differences among the different algorithms.

 91

Figure 5.3.8: Comparison between horizontal trajectories of user and the different algorithms

Figure 5.3.9: Comparison between vertical trajectories of user and the different algorithms

These results are consistent, since it has been proven the better performances of the Extended Kalman
Filter compared with the Least Squares technique, especially with the additional measurement of the
altimeter. This is in line with expectations, as the Kalman Filter analysis that can be found in literature
on Earth applications almost always show better results compared to Least Squares. The comparison
of the outcomes obtained in this paragraph has demonstrated that this is valid also in Lunar
environment, which is an important result. In fact, the Earth-based techniques currently adopted for
navigation with satellites around the Moon are not able to cover all the needs for future missions, and
this is because the number of satellites foreseen in a lunar service is much smaller, but also due to the
weaker signals and limited coverage in lunar environment.

 92

Moreover, the additional altimeter measurement makes the filter even more precise, and that makes
perfectly sense since this is the functioning and objective of the Sensor Fusion technique: additional
measurement gives more references to the user, which then has the ability to determine its position
and velocity more accurately.
Finally, even if errors implementation in measurement readings leads to slightly worse results, the
overall consistency is not affected, confirming that the Sensor Fusion technique shows better
performances, and the additional measurement of an altimeter provides an added value in the landing
phase on lunar surface.

Despite the positive outcomes achieved, both 3D positions and velocity errors has shown that there
is still an error at the end of the analysis, giving that the approximated position and velocity of the
user calculated with the positioning algorithm are not the expected ones at the end of the landing
(position should be South Pole = [0, 0, -rMoon] and velocity should be zero).
In fact, the analyses done in this work are not 100% perfect, because there are other errors and
considerations to be taken into account. Nevertheless, the results can be considered acceptable for
this phase of study, demonstrating the reliability of the positioning algorithms analyzed and giving a
first comparison of the performances achievable with each of them.

 93

6. Conclusion & Future Works
This thesis aims to provide an assessment of the performance achievable with different suitable
positioning algorithms for Lunar PVT estimation, with the goal of allowing users to perform a
positioning over the Moon surface using a limited number of navigation signals broadcasted by a
dedicated lunar navigation system. Combining the best features of each technique, it can be defined
a unique tool that could perform a PVT estimation with the best possible performance and accuracy.
Firstly, the most used positioning techniques of Least Squares and Extended Kalman Filter have been
presented, discussing the current state of the art and their applications. Afterwards, the Sensor Fusion
technique has been described, considering the additional measurement of an altimeter.
Focusing on lunar environment, the main differences with Earth applications have been presented,
together with the case of studies that consider both a static user in a fixed position on lunar surface
and a dynamic user orbiting around the Moon and approaching it to land on a specific point.
Subsequently, the simulated navigation system considered for the implementation has been presented,
describing the constellation of satellites and the input data provided for the analysis, but also the
formulations behind the implementation of each positioning algorithm.

The analysis of the results shows that generally the Extended Kalman Filter (EKF) provides better
performance in comparison with the Least Squares (LS) estimation, in line with expectations, since
on Earth application KF almost always performs better than LS. However, the analysis carried out in
this work demonstrates that this reasoning is also valid considering a dedicate lunar navigation
system. This is an important result, given that the Earth-based techniques currently adopted for
navigation with satellites around the Moon are not able to cover all the needs for future missions,
because of the smaller number of satellites foreseen in a lunar service, the weaker signals, and the
limited coverage in lunar environment. The analysis of this thesis demonstrates that a dedicated lunar
service, which do not rely on Earth measurements, can successfully provide information to the user
in order to perform the PVT estimation.
Moreover, the implementation of the Sensor Fusion (SF) technique with the aid of the additional
measurement of an altimeter shows even better performance, providing an added value especially in
the landing phase on lunar surface. This is the basic functioning of the SF technique: additional
measurement gives more references to the user, which then has the ability to determine its
characteristics more accurately.
Finally, Sensor Fusion technique shows another important advantage: one of the simulations carried
out in this work demonstrates that the additional altimeter reading can successfully substitute the
measurement of a satellite not in view. This a very important outcome for lunar implementations.
Considering Earth applications, several constellations can give a great amount of information to the
user. In lunar environment, instead, the coverage is limited and in case of a failure or unavailability
of a satellite, this can cause serious problems for the determination of the user PVT over time. The
Sensor Fusion technique provide the aid of an additional measurement, so that in the epochs in which
one satellite cannot provide information to the user, this additional measurement can compensate its
absence, increasing the availability of the solution.

Despite the positive outcomes achieved, the results analyzed still show an error at the end of the
analysis, giving that the approximated position and velocity of the user calculated with the positioning
algorithms are not the expected ones at the end of the landing (position should be South Pole of the
Moon and velocity should be zero).
To improve the analysis proposed, as introduced in the state of the art, there are several variants of
positioning techniques that can be implemented for the lunar PVT estimation, so that the results could
be compared, and observe if one of these variants can perform better.

 94

In addition, besides from the ones introduced in this thesis, there are other sources of errors that can
be taken into account in the implementation of the algorithms.
Moreover, the Sensor Fusion technique has been implemented considering the additional
measurement of an altimeter, but of course the functioning of this algorithm is valid also with other
sensors that could give more information to the user so that it can reach even better performance.
One of the most interesting sensors that could be analyzed is the Inertial Measurement Unit (IMU),
which is a device that typically consist of gyroscopes and accelerometers.

Despite these considerations, the outcomes discussed in this thesis can be considered acceptable for
this phase of study. The results demonstrate the reliability of the positioning algorithms analyzed and
give a comparison of the performances achievable with each of them, so that the lunar PVT estimation
can be performed with the best possible accuracy.

 95

Appendices

Appendix A: Earth Validation
Following data extraction, some issues had to be resolved to make the code more easily interpretable
and to achieve consistent and acceptable results.

A.1. GPS Time
A first thing to do is the conversion of the single epochs, provided as dates of the Gregorian calendar,
into GPS time, which is a continuous time scale defined by the GPS Control Segment based on a set
of atomic clocks at the Monitor Stations and onboard the satellites. The system transmits the number
of weeks since January 6th, 1980, and the number of seconds since the beginning of the current week.
Table A.1 shows the steps followed in the conversion (example date: January 2nd , 2021, at 06:22:43):

Table A.1: Conversion Gregorian date to GPS

DATE 𝒅𝒅/𝒎𝒎/𝒂𝒂𝒂𝒂 – 𝒉𝒉:𝒎𝒊𝒏: 𝒔𝒆𝒄 𝟎𝟏/𝟎𝟐/𝟐𝟎𝟐𝟏 – 𝟎𝟔: 𝟐𝟐: 𝟒𝟑
1a: Years from 1980 𝑎𝑎𝑎𝑎 – 1980 = 𝒚𝒚 2021 – 1980 = 𝟒𝟏

1b: Conversion to days 𝑦𝑦 ∙ 365 = 𝒅𝒀𝑬𝑨𝑹𝑺 41 ∙ 365 = 𝟏𝟒𝟗𝟔𝟓

1c: Add days from January 6th (𝑛. 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝐽𝑎𝑛
𝑡𝑜 𝑚𝑚) + 𝑑𝑑 – 6 = 𝒅𝑫𝑨𝒀𝑺

𝑀𝑜𝑛𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝐽𝑎𝑛 𝑡𝑜 𝐽𝑎𝑛 = 0
2 − 6 = −𝟒

1d: Add one day for each lap
year (year divisible by 4 but not
by 100, unless divisible by 400)

𝒅𝑳𝑨𝑷

𝐿𝑎𝑝 𝑦𝑒𝑎𝑟𝑠 𝑓𝑟𝑜𝑚 1980 𝑡𝑜 2021
= 𝟏𝟏

(‘80 – ’84 – ’88 – ‘92 – ’96 – ’00
– ’04 – ‘08 – ’12 – ’16 – ’20)

1. TOTAL DAYS from
January 6th, 1980

𝑑𝑌𝐸𝐴𝑅𝑆 + 𝑑𝐷𝐴𝑌𝑆 + 𝑑𝐿𝐴𝑃
= 𝒕𝒐𝒕. 𝒅𝒂𝒚𝒔

14965 – 4 + 11
= 𝟏𝟒 𝟗𝟕𝟐 𝒅𝒂𝒚𝒔

2a: Total number of seconds 𝑡𝑜𝑡. 𝑑𝑎𝑦𝑠 ∙ 86400
𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑑𝑎𝑦

= 𝒕𝒐𝒕. 𝒔𝒆𝒄

14972 ∙ 86400
= 𝟏 𝟐𝟗𝟑 𝟓𝟖𝟎 𝟖𝟎𝟎 𝒔𝒆𝒄

2b: Total number of weeks
𝑡𝑜𝑡. 𝑠𝑒𝑐

604800
= 𝒕𝒐𝒕.𝒘𝒆𝒆𝒌𝒔

1 293 580 800

604800

= 𝟐𝟏𝟑𝟖.𝟖𝟓𝟕𝟏𝟒 𝒘𝒆𝒆𝒌𝒔
2. The integer part of tot. weeks (which we call WEEKS)

represents the first part of the final result, while for the second
part it is necessary to work on the decimal part (which we call xdec)

𝑾𝑬𝑬𝑲𝑺 = 𝟐𝟏𝟑𝟖

3a: Days into weeks 𝑥𝑑𝑒𝑐 ∙ 7
𝑑𝑎𝑦𝑠

𝑤𝑒𝑒𝑘𝑠
 = 𝒙𝒅𝒂𝒚𝒔 0.85714 ∙ 7 = 𝟔 𝒅𝒂𝒚𝒔

3b: Number of seconds into
weeks 𝑥𝑑𝑎𝑦𝑠 ∙ 86400

𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑑𝑎𝑦𝑠
= 𝒙𝒔𝒆𝒄 6 ∙ 86400 = 𝟓𝟏𝟖 𝟒𝟎𝟎 𝒔𝒆𝒄

3c: Seconds from 00:00:00 ℎℎ ∙ 3600 + min ∙ 60 + 𝑠𝑒𝑐
= 𝒚𝒔𝒆𝒄

6 ∙ 3600 + 22 ∙ 60 + 43
= 𝟐𝟐 𝟗𝟔𝟑 𝒔𝒆𝒄

3: SECONDS = second part of
the final result (added to the
first part obtained in step 2)

𝑥𝑠𝑒𝑐 + 𝑦𝑠𝑒𝑐 = 𝑺𝑬𝑪𝑶𝑵𝑫𝑺 518400 + 22963 = 541363 𝑠𝑒𝑐
(𝑺𝑬𝑪𝑶𝑵𝑫𝑺 = 𝟓𝟒𝟏 𝟑𝟔𝟑)

 96

FINAL RESULT WEEKS. SECONDS 𝟐𝟏𝟑𝟖.𝟓𝟒𝟏𝟑𝟔𝟑

The weeks are transmitted with a 10-bit encoding: this means that the number of weeks spent are
reset every 1024 weeks (about 19.6 years).

A.2. Lagrange Interpolation
Another very important step that was required to implement the Least Squares algorithm, was the
Lagrange interpolation.
This process was necessary because the observation periods present in the SP3 file (and therefore also
the respective data for each satellite) were reported at intervals of 5 minutes from each other, while
in the RINEX file the observation epochs were at intervals of 30 seconds from each other. Therefore,
it was necessary to interpolate the data coming from the SP3 file in such a way as to obtain all the
data necessary for the implementation of the Least Squares, at intervals of 30 seconds. To accurately
implement the interpolation, one must consider a certain number of values before and after the current
value, in order to have a sample of values around the current value to make the interpolation.
The implementation of the function that performed the Lagrange interpolation has raised several
problems to be solved so that the final results were accurate and correct: the most challenging ones
were the times alignment and the verification that for each current value there were a chosen number
of previous and subsequent values (ten in total), otherwise the interpolation at that point could not
have taken place (or it could but with less accuracy since there are less values to interpolate).

 97

Appendix B: Effect of errors
In chapter 3, the different sources of errors that influence the pseudorange/slant range measurements
have been discussed, with the implementation of the model and formula associated.
The following figures show the effect of these errors considered alone or in combination with each
other, considering the implementation of the Extended Kalman Filter over a static user.

Single Errors effect

Figure B.1: Effect of the different errors alone

Errors Combinations effect

Figure B.2: Effect of the errors in combination with each other

 98

Appendix C: Bowring iterative method
In order to determine the curvilinear coordinates (Latitude , Longitude and Height h) starting from
the cartesian coordinates (x,y,z), numerous solution have been devised, both closed-form and iterative.
A popular and highly convergent iterative method was introduced by B.R. Bowring in 1976 [29]
based on Newton method.
The procedure of this iterative method is described here, showing its fundamental steps.

Input data:

- [𝑥, 𝑦, 𝑧] are user coordinates
- 𝑎 is the semimajor axis of the reference ellipsoid
- 𝑏 is the semiminor axis of the reference ellipsoid

- 𝑒 = √1 −
𝑏2

𝑎2
 is the eccentricity of the reference ellipsoid

- 𝑒′ = √
𝑎2

𝑏2
− 1 =

𝑎

𝑏
𝑒 is second the eccentricity of the reference ellipsoid

Procedure:

𝑝 = √𝑥2 + 𝑦2

tan 𝑢 = (
𝑧

𝑝
) (
𝑎

𝑏
)

Iteration Loop

cos2 𝑢 =
1

1 + tan2 𝑢

sin2 𝑢 = 1 − cos2 𝑢

tan𝜑 =
𝑧 + 𝑒′2 𝑏 sin3 𝑢

𝑝 − 𝑒2 𝑎 cos3 𝑢

tan 𝑢 = (
𝑏

𝑎
) tan𝜑

Until tan u converges, then
𝑁 =

𝑎

√1 − 𝑒2 sin2 𝜑

ℎ = {

𝑝

cos 𝜑
− 𝑁, 𝜑 ≠ 90°

𝑧

sin 𝜑
− 𝑁 + 𝑒2𝑁, 𝜑 ≠ 0

𝜆 =

{

 arctan (

𝑦

𝑥
) , 𝑥 ≥ 0

180° + arctan (
𝑦

𝑥
) , 𝑥 < 0 𝑎𝑛𝑑 𝑦 ≥ 0

−180° + arctan (
𝑦

𝑥
) , 𝑥 < 0 𝑎𝑛𝑑 𝑦 < 0

 99

Appendix D: Tuning of EKF parameters
In the implementation of the Extended Kalman Filter technique, the tuning of the parameters of the
state error autocovariance matrix Q and the measurement error autocovariance matrix R is an issue
of fundamental importance.
Depending on the values assigned to the xyz, t, dt of the matrix Q and R of the matrix R, the
solution modified, given that the filter gives more weight to the model considered or the measurement
given in input. The more the values assigned to these parameters is lower, the more the filter gives
much weight to the matrix associated.
The following figures show the modification of the results considering the application of the errors
on the implementation of the Extended Kalman Filter with a dynamic model over a static user
scenario. This scenario has been considered to give an impression of the effect of the tuning on the
solution, but of course the reasoning is valid for other applications. In some cases, the effect could be
even more impacting on the solution, showing that this procedure is of fundamental importance in
the implementation of the Extended Kalman Filter algorithm.

Tuning of xyz

Figure D.1: Tuning of position parameters

 100

Tuning of t and dt

Figure D.2: Tuning of clock parameters

Tuning of R

Figure D.3: Tuning of measurement parameters

 101

References

[1] (ISECG), International Space Exploration Coordinate Group, "The Global Exploration
Roadmap," NASA, 2018.

[2] A. Grenier, P. Giordano, L. Bucci, A. Cropp, P. Zoccarato, R. Swinden and J. Ventura-
Traveset, "Positioning and Velocity Performance Levels for a Lunar Lander using a Dedicated
Lunar Communication and Navigation System," Institute of Navigation, 2022.

[3] T. F. Melman, P. Zoccarato, C. Orgel, R. Swinden, P. Giordano and J. Ventura-Traveset,
"LCNS Positioning of a Lunar Surface Rover Using a DEM-Based Altitude Constraint,"
MDPI, Basel, Switzerland, 2022.

[4] ESA, "Navipedia," 12 January 2012. [Online]. Available:
https://gssc.esa.int/navipedia/index.php/Main_Page.

[5] J. R. Clynch, "The GLOBAL POSITIONING SYSTEM," 5 February 2003. [Online].
Available: https://www.oc.nps.edu/oc2902w/gps/gpsoview.htm.

[6] GNSS-SDR, "PVT," 2020. [Online]. Available: https://gnss-sdr.org/docs/sp-blocks/pvt/.
[7] D. J. Jwo, M. H. Hsieh and Y. C. Lee, "GPS navigation solution using the iterative least

absolute deviation approach," Scientia Iranica, Teheran, Iran, 2015.
[8] Vector Nav, "Least Squares, Weighted Least Squares and NonLinear Least Squares," 2008.

[Online]. Available: https://www.vectornav.com/resources/inertial-navigation-primer/math-
fundamentals/math-leastsquares.

[9] M. A. Griffioen, "Assessment of Lunar Positioning Accuracy with PECMEO Navigation
Satellites," Delft University of Technology, Delft, 2020.

[10] M. F. Abdel-Hafez, "The Autocovariance Least-Squares Technique for GPS Measurement
Noise Estimation," IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010.

[11] K. Lemon and B. W. Welch, "Comparison of Nonlinear Filtering Techniques for Lunar
Surface Roving Navigation," NASA, 2008.

[12] H. J. Ramos, K. M. Brink and J. E. Hurtado, "Square Root Partial-Update Kalman Filter," in
22nd International Conference on Information Fusion, Ottawa, Canada, 2019.

[13] D. S. Chiu and K. P. O'Keefe, "Bierman-Thornton UD Filtering for Double-Differenced
Carrier Phase Estimation Accounting for Full Mathematical Correlation," in ION NTM, San
Diego, CA, 2008.

[14] G. H. Born, "Potter Square Root Filter," ASEN 5070, 2002.
[15] C. D'Souza and R. Zanetti, "Information Formulation of the UDU Kalman Filter".
[16] Y. Oshman and I. Y. Bar-Itzhack, "Square Root Filtering via Covariance and Information

Eigenfactors," International Federation of Automatic Control, Great Britain, 1986.
[17] M. A. Bashir, F. M. Malik, Z. A. Akbar and M. Uzair, "Kalman Filter Based Sensor Fusion

for Altitude Estimation of Aerial Vehicle," IOP Conference Series: Material Science and
Engineering, Rawalpindi, Pakistan, 2020.

[18] A. M. Sabatini and V. Genovese, "A Sensor Fusion Method for Tracking Vertical Velocity
and Height Based on Inertial and Barometric Altimeter Measurements," MPDI, 24 July 2014.

[19] J. R. Bruzzi, K. Strohbehn, B. G. Boone, S. Kerem, R. S. Layman and M. W. Noble, "A
Compact Laser Altimeter for Spacecraft Landing Applications," Johns Hopkins APL
Technical Digest, 2012.

[20] T. Lacey, Tutorial: The Kalman Filter, Massachusetts Institute of Technology.

 102

[21] M. S. Grewal and A. P. Andrews, "Applications of Kalman Filtering in Aerospace 1960 to the
Present," 2010.

[22] H. Yong, H. XiaoGong, L. PeiJia, C. JianFeng, J. DongRong, Z. WeiMin and F. Min, "Precise
positioning of the Chang’E-3 lunar lander using a kinematic statistical method," Chinese
Science Bulletin, Shangai-Beijing, China, 2012.

[23] J. Sanz Subirana, J. M. Juan Zornoza and M. Hernàndez-Pajares, ESA GNSS DATA
PROCESSING, Vol.I: Fundamentals and Algorithms, 2013.

[24] Hexagon, "Novatel," 1978. [Online]. Available: https://novatel.com/an-introduction-to-
gnss/chapter-4-gnsserror-sources/error-sources.

[25] G. Sirbu and M. Leonardi, Performance evaluation of a satellite navigation system for lunar
exploration, Roma, 2020.

[26] M. Karaim, M. Elsheikh and A. Noureldin, "GNSS Error Sources," 6 April 2018. [Online].
Available: https://www.intechopen.com/books/6540.

[27] E. D. Kaplan and C. J. Hegarty, Understanding GPS/GNSS: Principles and Applications,
Artech House, 2017.

[28] C.-M. Lee and K.-D. Park, "Generation of Klobuchar Ionospheric Error Model Coefficients
Using Fourier Series and Accuracy Analysis," Journal of Astronomy and Space Sciences,
Incheon, Korea, 2011.

[29] R. M. Toms, "An Improved Algorithm for Geocentric to Geodetic Coordinate Conversion,"
Lawrence Livermore National Laboratory, Orlando, FL, 1996.

[30] M. Wickert and C. Siddappa, "Exploring the Extended Kalman Filter for GPS Positioning
Using Simulated User and Satellite Track Data," 2018.

[31] Corning Museum of Glass, "Reflections on Apollo," 15 October 2019. [Online]. Available:
https://blog.cmog.org/2019/10/15/reflections-on-apollo/.

[32] V. Rosmorduc, J. Benveniste, E. Bronner, S. Dinardo, O. Lauret, C. Maheu, M. Milagro, N.
Picot, A. Ambrozio, R. Escolà, A. Garcia-Mondejar, E. Schrama, M. Restano and M. Terra-
Homem, "Radar Altimetry Tutorial - brat," ESA - CNES, 2018.

[33] G. Sirbu and M. Leonardi, Analisi preliminare e valutaione delle prestazioni di un sistema di
posizionamento per la navigazione lunare, Roma, 2021.

[34] IGS and RTCM-SC104, The Receiver Indipendent Exchange Format (RINEX), 2018.
[35] S. Hilla, N. G. Survey, N. O. Service and NOAA, The Extended Standard Product 3 Orbit

Format (SP3-d), 2016.
[36] J. Sanz Subirana, J. M. Juan Zornoza and M. Hernàndez-Pajares, ESA GNSS DATA

PROCESSING, Vol.II: Laboratory Exercises, 2013.
[37] J. J. Parker, F. Dovis, B. Anderson, L. Ansalone, B. Ashman, F. H. Bauer, G. D'Amore, C.

Facchinetti, S. Fantinato, G. Impresario, S. A. McKim, E. Miotti, J. J. Miller and M.
Musmeci, "The Lunar GNSS Receiver Experiment (LuGRE)," 2022.

[38] E. S. J. Muller and P. M. Kachmar, "The Apollo rendezvous navigation filter theory,
description and performance," in APOLLO: Guidance, Navigation and Control, Cambridge,
Massachusetts, MIT Charles Stark Draper Laboratory, 1970, p. 70.

[39] Aerospace America, "Honoring a legacy algorithm," September 2016. [Online]. Available:
https://aerospaceamerica.aiaa.org/departments/honoring-a-legacy-algorithm/.

[40] P. Lynch, "Kalman filters have applications from moon to motorway," The Irish Times, 22
June 2021. [Online]. Available: https://www.irishtimes.com/news/science/kalman-filters-
have-applications-from-moon-to-motorway-1.4600269.

 103

[41] A. Becker, "The Kalman Filter Tutorial," [Online]. Available:
https://www.kalmanfilter.net/default.aspx.

[42] Vector Nav, "Getting up to speed with Kalman Filter," 2008. [Online]. Available:
https://www.vectornav.com/resources/inertial-navigation-primer/math-fundamentals/math-
kalman.

[43] Y. Laamari, B. Athamena and K. Chafaa, "Particle swarm optimization of an extended
Kalman filter for speed and rotor flux estimation of an induction motor drive," 2015.

[44] P. W. Sarunic, "Development of GPS Receiver Kalman Filter Algorithms for Stationary,
Low-Dynamics, and High-Dynamics Applications," Australian Government, Department of
Defence, DTS-Group-TR-3260, Edinburgh, South Australia, 2016.

[45] C. A. Greenhall, R. Boudjemaa and J. Davis, "The Development of a Kalman Filter Clock
Predictor," National Physical Laboratory, Pasadena, CA, 2005.

[46] L. A. Breakiron, "A Kalman Filter for Atomic Clocks and Timescales," U.S. Naval
Observatory, Washington, DC, 2001.

[47] I. Reid, "Discrete-time Kalman filter," Hilary Term, 2001.
[48] A. K. N., G. Sasibhushana Rao and C. Suresh, "Extended Kalman Filter for GPS

ReceiverPosition Estimation," 2018.
[49] R. G. Brown and P. Y. Hwang, "Introduction to Random Signals and Applied Kalman

Filtering, IV ed.," John Wiley & Son, Inc., Hoboken, NJ, 2012.
[50] S. Bhattacharyya, D. L. Mute and D. Gebre-Egziabher, "Kalman Filter-Based Reliable GNSS

Positioning for Aircraft Navigation," 2019.
[51] M. F. Rodrìguez, "A Kalman Filter application for GNSS error correction in Intelligent

Vehicles," Leganés, 2020.
[52] R. Serrano, "Extended Kalman Filters for Dummies," 18 August 2017. [Online]. Available:

https://medium.com/@serrano_223/extended-kalman-filters-for-dummies-4168c68e2117.
[53] Aceinna OpenIMU Developer Manual, "EKF Algorithms," Aceinna Inc Revision, 2018.

[Online]. Available: https://openimu.readthedocs.io/en/latest/algorithms.html.
[54] L. A. McGee and S. F. Schmidt, "Discovery of the Kalman Filter as a Practical Tool for

Aerospace and Industry," NASA, California, 1985.
[55] A. Hooshmand, J. V. Mohammadpour, H. Malki and R. S. Provence, "Distributed Extended

Kalman Filtering for Reliable Navigation on Lunar Surface," American Institute of
Aeronautics and Astronautics, Inc., Portland, Oregon, 2011.

[56] S. University, Lecture 9 - The Extended Kalman filter, 2008.
[57] S. J. Julier and J. K. Uhlmann, "A New Extension of the Kalman Filter to Nonlinear

Systems," The Robotics Research Group, Department of Engineering Science, Oxford, OX,
1997.

[58] M. S. Grewal and A. P. Andrews, "Kalman Filtering: Theory and Practice Using MATLAB, II
Ed.," John Wiley & Sons, Inc., 2001.

[59] M. I. Ribeiro, "Kalman and Extended Kalman Filters: Concept, Derivation and Properties,"
Instituto Superior Te ́cnico, Lisboa, 2004.

[60] G. Welch and G. Bishop, "An Introduction to the Kalman Filter," Department of Computer
Science, UNC-Chapel Hill, 2001.

[61] B. Esme, "Kalman Filter For Dummies," Bilgin's Blog, March 2009. [Online]. Available:
http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies#.

 104

[62] StackExchange, "How to initialize error covariance matrix in Extended Kalman Filter, Q,"
June 2009. [Online]. Available: https://math.stackexchange.com/questions/3242936/how-to-
initialize-error-covariance-matrix-in-extended-kalman-filter-q.

[63] C. Zucca and P. Tavella, "A mathematical model for the atomic clock error in case of jumps,"
Turin, 2015.

[64] L. Galleani, L. Sacerdote, P. Tavella and C. Zucca, "A mathematical model for the atomic
clock error," Institute of Physics Publishing, Metrologia, Turin, IT, 2003.

[65] H. Li, X. Liao, B. Li and L. Yang, "Modeling of the GPS satellite clock error and its
performance evaluation in precise point positioning," Advances in Space Research, Shangai,
China, 2018.

[66] B. Bidikar, G. S. Rao, L. Ganesh and S. M. Kumar, "Satellite Clock Error and Orbital
Solution Error Estimation for Precise Navigation Applications," Department of Science and
Technology, New Delhi, India, 2013.

[67] G. Blewitt, "Basics of the GPS Technique: Observation Equations," Department of
Geomatics, University of Newcastle, Newcastle, UK, 1997.

[68] BCS, "Inside GNSS (Global Navigation Satellite Systems Engineering, Policy, and Design),"
2018. [Online]. Available: https://insidegnss.com.

[69] UAV Navigation, "Global Navigation Satellite System (GNSS)," [Online]. Available:
https://www.uavnavigation.com/support/kb/general/inertial-navigation-system-and-
estimation/global-navigation-satellite-system-gnss.

[70] T. A. Ely and A. H. Chau, "Radar Altimetry and Velocimetry for Inertial Navigation: A Lunar
Landing Example," Advances in Astronautcal Sciences, 2011.

[71] GISGeography, "How GPS Receivers Work – Trilateration vs Triangulation," 2019. [Online].
Available: https://gisgeography.com/trilateration-triangulation-gps/.

[72] I. Sarras, G. Gerakios, A. Diamandis, A. I. Dounis and G. P. Syrcos, "Static Single Point
Positioning Using The Extended Kalman Filter," World Academy of Science, Engineering
and Technology 37, 2010.

[73] J. Sheppard, "What sensors do you need to land on the moon?," SensorTips, 6 April 2022.
[Online]. Available: https://www.sensortips.com/featured/what-sensors-you-need-to-land-on-
moon-faq/.

[74] F. Amzajerdian, G. D. Hines, L. B. Petway, B. W. Barnes, D. F. Pierrottet and J. M. Carson
III, "Development of Navigation Doppler Lidar for Future Landing Mission," NASA.gov,
2016.

[75] G. Vingione, "Radar Altimeter General Waveform Model and Its Application to Cassini
Mission," Department of Aerospace and Mechanical Engineering, Second University of
Naples, Aversa, Italy, 2007.

[76] D. F. Pierrottet, F. Amzajerdian and B. Barnes, "A long distance Laser Altimeter for terrain
relative navigation and spacecraft landing," AIAA Guidance, Navitgation, and Control
Conference, Toronto, 2014.

	List of Figures
	List of Tables
	Acronyms
	1. Introduction
	1.1. Moon Exploration
	1.2. PVT estimation
	1.3. Purpose and Development of the work

	2. State of Art of GNSS positioning method
	2.1. Least Squares
	2.1.1. Weighted Least Squares
	2.1.2. Least Squares variants

	2.2. Kalman Filter
	2.2.1. Kalman Filter Issues
	2.2.2. Kalman Filter variants

	2.3. Sensor Fusion

	3. PVT determination in Lunar Environment
	3.1. Typical Use Cases
	3.1.1. User orbiting around the Moon
	3.1.2. Static User
	3.1.3. Dynamic User

	3.2. Differences with respect to Earth environment
	3.2.1. Earth and Moon Applications
	3.2.2. Adaptation of the algorithms

	4. Simulation Environment
	4.1. Navigation system and inputs
	4.2. Implementation in MATLAB of PVT algorithms
	4.2.1. Least Squares
	4.2.2. Kalman Filter
	4.2.3. Sensor Fusion

	4.3. Performance Analysis Tool
	4.3.1. Least Squares
	4.3.2. Extended Kalman Filter

	5. Analysis of Results
	5.1. Static User
	5.1.1. Least Squares
	5.1.2. Static Kalman Filter
	5.1.3. Dynamic Kalman Filter

	5.2. Dynamic User
	5.2.1. Least Squares
	5.2.2. Dynamic Kalman Filter
	5.2.3. Sensor Fusion

	5.3. Comparison of results

	6. Conclusion & Future Works
	Appendices
	Appendix A: Earth Validation
	A.1. GPS Time
	A.2. Lagrange Interpolation

	Appendix B: Effect of errors
	Appendix C: Bowring iterative method
	Appendix D: Tuning of EKF parameters

	References

