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Abstract 

The topic covered in this paper explains a practical application of the project created in 

the Mind4Lab laboratory of the Politecnico di Torino, with the aim of implementing a 

Digital Twin, an extremely promising technology in the manufacturing and other fields, 

research on which is still ongoing.  

The assumption that was made at the beginning of the project was that, since the DT is 

able to replicate the behavior of a system in real time, then by exploiting this data it 

would be possible to work in a dynamic environment and making decisions consequently 

to the changes detected in the physical system. 

The use of simulation models as a decision-making tool at a company level is a great 

strategy to solve industrial problems, especially in the manufacturing field, which is why 

it was chosen as the environment to which to apply the case study. The reasons for this 

are related to the wide variety of problems that can arise within a production line, to 

name a few it is possible to find machinery maintenance, staff absences, and unforeseen 

changes in scheduling. The decision of the specific field to be analyzed was made by 

looking for the one that would allow the case study to be developed as broadly and 

comprehensively as possible. The staff absence scenario was ruled out regardless, as a 

virtual model of human operators would have been extremely error-prone due firstly to 

the variability of system behavior, which is impossible to predict, and secondly to the 

practical and technical difficulty of collecting data from such resources. The two 

candidates from which the decision was made were therefore the topic of predictive 

maintenance and the topic of dynamic scheduling. Both gave the possibility to monitor 

a physical production system through sensors, and to collect and analyze data in order 

to evaluate performance; the reason why the topic chosen in the end was the dynamic 

scheduling is related to the fact that it also gives the possibility to see how machinery 

interacts with each other when a variation in production compromises the planned 

scheduling, thus adding a focus on the connection within the physical system, and not 

just the connections between physical and virtual and vice versa. 
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Dynamic scheduling is an evolution of the Predictive scheduling. The latter is a strategy 

widely used for the preparation of a good-quality optimized baseline schedule, which is 

done in advance taking into account many possible scenarios, and easy to maintain. 

Although it turns out to be a good technique, it is important to remind that in the 

manufacturing context, the integrity of a schedule is very easy to be disrupted. The 

effect of previously introduced events may in some cases lead to the need to completely 

reschedule the project; Dynamic scheduling is useful in that it allows a strategy on how 

to first create the initial baseline, but more importantly, in times of need, a strategy on 

how to respond to events in real time. 

The hypothesis to be proved is that, following a generic production line failure, the final 

results in a dynamic environment should perform better than the theoretical results 

calculated a priori. The entire work will therefore be carried out with the aim of 

collecting data in favor of this thesis, and consequently demonstrating that the 

application of a digital twin is able to bring benefits in terms of performance. 

The work is divided into three main parts: the first is intended to introduce all the basic 

concepts needed to understand the context, the basics of the industry, and the 

platforms used for implementation; the second is related to the detailed presentation 

of the case study, with the explanation of the machinery used, the connection methods, 

and all the programming and development phases that were addressed; the third is 

related to the previous one, as it includes the phases of data collection, analysis, and 

comparison of results.  
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1. Introduction to the Digital Twin technology   

“A digital twin is a virtual representation of an entity such as an asset, person, 

organization, or process. Its elements include model, data, unique one-to-one 

association and monitorability.1” 

Digital twin is indeed used as an industry 4.0’s core technology to the realization of 

Cyber-Physical Systems (CPSs), capable of bringing many different benefits, depending 

on the type of application. According to some research, the digital twin was born with 

two broad purposes: interrogative features and predictive features. The first one refers 

to the ability of the system to analyze the current and past state of the system, while 

the latter refers to the ability to predict future states. 

In this chapter some topics will be mainly introduced: the history of digital twin 

technology, the definition of its characteristics, the research progress, and in conclusion 

the potential implementations of the product.  

1.1 History and generation of Digital Twin technology  

The first digital twin was conceived in the 1960s by NASA as a response to the Apollo 13 

explosion. The technology was useful in subsequent Apollo missions, allowing the real-

time status of the vehicle to be reflected on a 'twin' left on Earth. Thanks to this type of 

connection, it was not only possible to observe the actions of the spacecraft, but also to 

predict future states as optimally as possible, and thus be able to advise the astronaut 

on the most appropriate maneuvers, based on flexible evaluations that could be 

modified in real time and no longer programmed in advance.   

Later, in 2003, discussions began about the 'mirrored spaced model’, a technology based 

on the same principles as the one produced by NASA, the only difference being that in 

 

1 Gartner, 21 Lessons From Successful Digital Twin Implementations for Manufacturing, 21 December 
2021. 
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this case the device that collects and analyses data from a physical model, instead of 

being physical itself, is digital. One of the first to introduce a proper definition of this 

emerging technology, later to be known as the digital twin, was Professor Grieves, who 

called it “a digital copy of one or a set of specific devices that can abstractly represent a 

real device and can be used as a basis for testing under real or simulated conditions”. 

In the first period after its presentation, the model was not very successful, especially 

its possible application to the field of manufacturing. The reasons for this lack of hype 

lay in the fact that in those years, the means by which information related to the 

production process could be obtained were extremely limited and difficult to adapt to a 

digital platform such as the digital twin: much of the information, in fact, was contained 

in manuals and paper documents. The other reason is instead related to the purely 

technological aspect, as at the time it was extremely difficult to create an algorithm 

capable of processing a large amount of data in real time, and consequently the 

connection between the two spaces was difficult to implement.  

The first conceptual model will arrive in 2011, again proposed by Grieves together with 

John Vickers, and will remain in use for years to come. The system is depicted in image 

1-1, in which its main components can be seen: the real space, the virtual space, and the 

interface zone between the two, characterized by a flow of data from the physical space 

to the virtual space, and a flow of information in the opposite direction, from the virtual 

to the physical space. The model is a useful representation of how to make the two 

spaces interact, and how the virtual model can be used to integrate and modify the real 

model.  

Figure 1-1 Conceptual model of a digital twin  
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From 2011 onwards, therefore, opportunities to develop a digital twin began to 

materialize. The first was produced by the US Air Force Research Laboratory, with the 

aim of creating an aircraft twin to evaluate and predict the actions of the physical copy 

during its whole lifecycle; in particular, its main purpose was to collect data about the 

performance of the aircraft, analyze them, and simulate the optimal scenario in which 

the task associated to that specific product could be performed. This data was not the 

only type of information collected: the Airframe Digital Twin was also associated with all 

the mechanical characteristics of the object, so that a complete view of the 

manufacturing information was also available, so that the entire maintenance aspect 

could be managed.  

In 2013, Industry 4.0 and Cyber-Physical Systems, one of its core technologies, were 

discussed for the first time in Germany.  

Industry 4.0, also known as Smart Manufacturing, “is based on the intensified 

application of Information and Communication Technologies in the industrial 

environment”, with the final aim of achieving industrial automation and introducing 

some new production technologies to improve working conditions, create new business 

models, increase plant productivity, and improve product quality, during the whole 

product lifecycle.  

As introduced above, one of the core technologies of Industry 4.0 is the Cyber-Physical 

System (CPS), which is part of the four categories of core technologies defined by 

Knudsen, Kaivo-oja, and Lauraeus. The other three technologies are the Internet of 

Things (IoT), the Cloud Computing, and the Industrial Integration category, with the well-

known SOA and BPM. The focus will be on the CPS category, as it is the one including 

the Digital Twin technology. CPS, in fact, concerns the integration of different kinds of 

systems; the main purpose of which is to control and manage a physical process, through 

the exchange of feedback and information for adjustments to be made in real time. The 

introduction of the Digital Twin concept was therefore crucial to concretize and 

implement the functionality of CPS. 
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From 2016 onwards, the real hype moment for the Digital Twin begins. Many companies 

start to recognize its potential for the application in various sectors; within a year, in 

fact, DT is cited among the ten most strategic and promising technologies.  

This technology has developed rapidly in recent years, both in theory and in practical 

application. The reasons for this booming are linked to a technological development that 

has laid a more solid foundation for the DTs implementation, such as the rapid growth 

of new ICTs, which are more and more adaptable on a large scale and on big data, and 

the development of intelligent algorithms, related to machine learning and deep 

learning.  

1.2 Characteristics and definition of Digital Twin  

As introduced in the previous section, the digital twin is not to be interpreted simply as 

a digital prototype, as it does not only represent the geometry, functions, and 

performance of its physical object; for this reason, defining it as such would be very 

reductive. This section will therefore introduce all the main features of the technology, 

so that to fully understand the potential of this technology.  

1.2.1    Digital Twin related concepts  

When it comes to the digital twin it is common to risk creating misunderstandings. The 

technology under consideration has some common related terms which, however, 

represent different concepts. The difference between Digital Model, Digital Shadow, 

and Digital Twin will then be explained here2.  

With the term Digital Model is intended a digital creation which is not related to an 

existing object. A typical example could be the blueprint of buildings or roads that are 

just planned to be built, but that do not already exist. The typical characteristics of this 

 

2 Robert Woitsch, Anna Sumereder, Damiano Falcioni – Model based data integration along the product 
& service lifecycle supported by digital twinning, April 2022 
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concept are: 1. The absence of data exchange between the physical and virtual 

environment; 2. The absence of impact on the digital model as a result of changes in the 

physical model, once built. 

The second related term is Digital Shadow; in this case the physical object already exists, 

and the shadow represents it. The main difference is that the data flow is unidirectional 

because the physical object sends data to the virtual one, affecting its changes, but the 

digital object cannot send data or information to impose o suggest a change to the 

physical sphere.  

Considering the characteristics that emerged for the two previous technologies, it is 

therefore clear that the digital twin represents the most complete model, in which data 

travels in both directions. This means that each component is fully integrated, and so 

that each change in one environment affects the other. Below is an image that 

encapsulates all the main concepts of the three models presented in this section. 

1.2.2     Main characteristics of the technology  

An analysis of the literature reveals several main characteristics of the Digital Twin, some 

of which have been defined since the emergence of the first models, while others have 

been introduced over time in accordance with developments in research. 

Figure 1-2 Digital Model, Digital Shadow, and Digital Twin 
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From an academic article3 it emerges that the main characteristics of the technology 

under consideration are 12: 1. Physical Entity; 2. Virtual Entity; 3. Physical Environment; 

4. Virtual Environment; 5. Fidelity; 6. State; 7. Parameters; 8. Physical-to-Virtual 

Connection; 9. Virtual-to-Physical connection; 10. Twinning and Twinning Rate; 11. 

Physical Process; 12. Virtual Process. The same article subsequently defines seven 

further categories, which are related to system characteristics that have not yet been 

fully developed, but on which the current research is being based. These are: 13. 

Perceived Benefits; 14. Digital Twin across the Product Life-Cycle; 15. Use-Cases; 16. 

Technical Implementation; 17. Different levels of fidelity; 18. Data Ownership; 19. 

Integration between Virtual Entities.  

The first four characteristics are related to the concepts expressed above, namely the 

difference between physical and virtual entities; a further distinction is done between 

entity and environment, in order to better differentiate which is the representation of a 

single object, and which instead represents the whole system operation. Two other 

important characteristics which have already been introduced are the Physical-to-

Virtual and Virtual-to-Physical connections, which permit to implement the bidirectional 

flow of data.  To conclude the part related to the two different environments, it is also 

important to differentiate the Physical Process from the Virtual Process, the integration 

of which forms the basis of learning factories. Here, the digital copy is no longer only 

linked to the object and the environment in which it is located, but to the entire set of 

phenomena and actions performed, linked by a nexus, that constitute a process.  

The remaining characteristics of a DT system are mainly related to its performance. 

Fidelity is a concept that has to be estimated, the value of which represents how 

frequently the model is able to adapt and update itself according to the input it receives. 

In order to have a good level of fidelity within the system, it is therefore important to 

focus on the signal transmission optimization, because it is precisely from the fact that 

 

3 Jones, Snider, Nassehi, Yon, Hicks – Characterising the digital twin: A systemcatic literature review. CIRP 
Journal of Manufacturing Science and Technology, 2020 
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the distribution of the time function is discrete that the greatest problems with the 

accuracy of the system arise. Some of the typical topics that make problems arise, 

related to discrete signal transmission, are the necessity of time stamps related to the 

events, the clock synchronization across and within platforms, and a careful analysis and 

selection of events that need to be processed, and those that are negligible.  

The State is a characteristic useful to measure the current condition of both physical and 

virtual entities, and of all the environment parameters. These Parameters refer to the 

types of data and information that flows between the two environments. Some 

examples are: 1. Form, which refers to the geometric structure of the physical entity; 2. 

Location, related to the geographic position; 3. Processes, which are all the activities in 

which the entity is engaged; 4. Time, that includes both the duration of a specific action 

and the time at which an action takes place.  

One of the last characteristics to be analyzed is the Twinning, which represents the 

synchronization between the two different entities. This process consists into measuring 

the state of the physical and virtual entities to verify that they are equal in each 

parameter considered in the system. The Twinning process is influenced by every 

change that occurs in the two entities, which are kept under control and communicated 

through the two-way connections, Virtual-to-Physical and Physical-to-Virtual. The 

condition in which both states coincide is defined ‘twinned’. The Twinning Rate is then 

the frequency related to the twinning process, and theoretically it should be in real-time, 

in order to permit the two entities to work simultaneously and together, obtaining an 

instant response to changes.  

An explanation of some of the seven additional points will also follow, in order to better 

understand the requirements of Digital Twin across its entire lifecycle, and to focus on 

existing and under-development methodologies that can be applied to improve the 

technology.  

A particularly important concept is that of Perceived Benefits because it defines all the 

positive consequences, both economically and organizationally, associated with the 
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application of a DT to a system. These leads to a reduction of costs, risks, reconfiguration 

time, but also to increasing efficiency, reliability, and optimal manufacturing 

management and maintenance decision making.  

Another important topic to highlight is the Integration between virtual entities. Digital 

Twin, in fact, can also consists into multiple virtual environments, each one with its own 

specific use-case. An example to clarify the concept may be represented by the need to 

deliver a product by a specific deadline, taking into account the possible failure, which 

must be predicted: each of these tasks can be managed by different, but integrated, 

digital twins. The basic operation of this concept is to take the output of a virtual entity 

and use it as a trigger for a further entity, which will analyze it and exploit it to complete 

its task. It is important to take into account the fact that as the number of digital twins 

increases, also the complexity of the integration process significantly increases. 

1.3 Analysis of the research progress  

The digital twin in recent years has experienced a great increase in interest from both 

the academic and research worlds, as well as from industry due to all its possible 

applications. After introducing the DT and defining its main characteristics, it is also 

important to assess the current state of research and try to predict the future directions 

it may take. This paragraph will be indispensable in order to gain clarity about the 

current state of development of the technology, so as to be able to proceed to analyze, 

in the next step, some of its most probable applications in the field of interest 

considered in this work.  

1.3.1 Gartner’s Hype Cycle  

The hype cycle is a useful tool for the graphical representation of the maturity and 

adoption of a specific technology, as it also indirectly provides information related to 

future exploiting opportunities. 
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Gartner Hype Cycle4 in figure 1-3 shows the point of evolution of many different 

technologies related to the manufacturing operations, by locating them in specific 

points of the graph. The Hype Cycle represented above is composed by five phases:  

1. Innovation Trigger: A potential technological breakthrough triggers research. At 

this stage, there are often no usable products, and commercial feasibility is 

unproven. 

2. Peak of Inflated Expectations: initial enthusiasm produces a series of successes, 

clearly accompanied by multiple failures. Some companies act, continuing with 

research and development, many others do not and exit the market. 

3. Through of Disillusionment: it is known as the phase that creates or destroys the 

product. Here, experiments and implementations have a high probability of 

failure. Investment only continues if the surviving suppliers improve their 

products to the satisfaction of early adopters; if this happens, the technology is 

very likely to proceed to the plateau stage. 

4. Slope of Enlightenment: at this stage, not only the possibility of using the 

technology materializes, but also do different cases in which it can be applied. 

Technology suppliers present new-generation products. 

5. Plateau of Productivity: mainstream adoption is beginning. The broad 

applicability and market relevance of the technology is clearly bearing fruit, 

expanding the earnings of the manufacturing companies as well. 

 

4 Gartner, Hype Cycle for Manufacturing Operations Strategy, 2022 
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In this case, DT technology is in the third phase, the Through of Disillusionment. The 

graph in image 1-3 provides further information in addition to the positioning of the 

technology: it also defines a time range within which the plateau is estimated to be 

reached. The digital twin, unlike other technologies in the same phase, has an estimated 

entry time of 2 to 5 years, making it a particularly promising technology. 

Gartner’s Hype Cycle analysis defined also the market penetration of the technology, 

which resulted between 1% and 5% of the target audience, and the maturity of the 

technology, which resulted being ‘adolescent’.  

1.3.2 Drivers of the technology development  

Considering the potential of technology, companies are accelerating the adoption of the 

digital twin as a means of supporting so many of their internal activities, even if 

nowadays it is still not possible to define a clear and distinct set of drivers for the 

development of this technology. However, there are some areas where the use of the 

digital twin is even more pronounced than in others; among these, it is important to 

mention: 1. Asset-intensive industries (i.e., oil and gas companies, manufacturing, and 

automotive), in which the technology is indispensable to improve business operations; 

Figure 1-3 Hype Cycle for manufacturing operations strategy, 2022 
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2. Military field; 3. Leading-edge enterprises use digital twin to model their IT system or 

supply chain processes, with the final aim of optimizing cost management; 4. Enterprises 

that manage huge amount of data use DT technology to create models able to extract 

the meaningful ones. These environments, although different from each other both in 

terms of the nature of the business and the scope of application of the digital twin, form 

a good base of structural factors, useful for generating knowledge and continuing the 

product innovation process. 

1.3.3 Potential obstacles in technology development  

As mentioned above in the general introduction of the technology, DT has certain 

fundamental requirements for its implementation, which, if they were to be lacking 

within specific sectors, could jeopardize its development. The main obstacles that can 

be noticed are related to many large enterprises’ lacks in technological or managerial 

field. More specifically, companies often do not have enough business objectives, 

structures, teams or processes to start developing such technology, or in other 

situations they may not have enough finance and technology. In fact, the 

implementation of a DT models has a large amount of indirect costs, e.g., related to the 

preparation of the teams, that must be able to create and maintain a possible portfolio 

of corporate digital twins, and that must be able to manage the synchronization 

between the various models. A further example of costs that companies have to bear 

are the costs of adapting the DT to the corporate system, or the creation from scratch 

of a technological structure that can enable its implementation. Not many companies 

have the budget to bear all these costs. 

1.4 Potential implementations  

The purpose of this section is to explain in more detail some of the possible practical 

applications of the digital twin; to do so, four main fields have been selected in which 

the technology shows being most promising. The four fields, with their related relevant 

characteristics, are listed below:   



 

 

 18 

1. Supply Chain: warehouse design optimization, creation of logistic networks. 

2. Retail: modeling and simulation of customer’s behaviors  

3. Healthcare: improvement of operational efficiency of healthcare operations, 

improvement of personalized care. 

4. Manufacturing: performance improvement, predictive maintenance, tasks 

flexible scheduling.  

1.4.1 Supply Chain  

The functioning of the digital twin, when applied to a supply chain, is always based on 

the same concept discussed of creating a simulation of the environment, that can 

predict problems in advance and provide various possible solutions. The use of DT in this 

field provides some major benefits, including increased productivity, optimized 

transport, better management of emergency situations, and a much more detailed view 

of the system.  

One of the major form of weaknesses related to the productivity of a supply chain is 

represented by the inventory management strategy, because it involves changing the 

supply chain itself, which often means having to deal with unexpected consequences 

that could not have been foreseen by a simple analysis made beforehand. Another 

different application concerns the optimization of transportations: through the use of 

the virtual model, companies have the opportunity to better execute their deliveries, 

having immediate information about possible slowdowns and blockages and, as a 

consequence, having the opportunity to suggest the better alternative strategy among 

all the scenarios evaluated in real-time.  

1.4.2 Retail 

The retail sector is included in the list published by Forbes Technology Council in 2020 

that selects 16 most promising application fields for DT able to modify the consumer 

market. In this area, it is therefore important to focus on transforming the customer 

experience, while also integrating analysis and forecasting of buyer behavior. In the case 

of the customer experience, it is important to consider the self-checkout model as 
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example, which, when integrated with digital twin, allows for real-time action that 

avoids queues at the checkout, improving queue management, and facilitating 

transactions by working on the speed of automated checkouts. 

The application of this technology can, in addition, have direct and indirect impacts on 

the product itself, which in its digital version can be monitored, modified, and updated, 

thus allowing changes to be made in parallel on the physical product, after careful 

evaluation of possible optimizations. 

A final benefit is related to the industry's financial analyses and projections; technology 

provides companies with the ability to refine and optimize profit forecasts, to adjust and 

adapt prices, and to customize discount and promotion policies for customers. Here 

again, the main problem is the same as highlighted above: all these implementations, 

however, presuppose the existence of a suitable support architecture. 

1.4.3     Healthcare 

The healthcare sector is beginning to adopt digital twins firstly to improve the 

performance of the healthcare organization, but also to enhance the personalized 

medicine. Today's DTs in the medical field are an important innovation; they are able to 

create models based on information from wearable devices and shared patient records, 

to generate connected networks involving patients, doctors and healthcare 

organizations, as well as drug and device manufacturers. 

The term Personalized Medicine refers to the implementation of medical treatments 

that are customized to the individual's genetics, anatomy, behavior, and other factors. 

The most important example is given by virtual organs, which make it possible to 

understand the progression of a disease over time, in order to assess the response to 

drugs, treatments, or surgeries. To summarize, the underlying concept is to create a 

patient-specific virtual replica of the organ, with an anatomical analysis performed by 

artificial intelligence, in order to improve and predict the study and treatment of 

diseases.  
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Further promising applications in this area include scheduling of surgical operations, full-

body scanning, and optimization of drug dosing.  

1.4.4 Manufacturing  

The application in the field of manufacturing is certainly one of the most promising; the 

industry, in fact, is characterized by the use of high-cost equipment, which consequently 

produces a large amount of data. This creates the perfect environment for the 

implementation of the digital twin. Some of the main applications in manufacturing are 

product development, performance improvement, predictive maintenance, and tasks 

dynamic scheduling. The first two applications are particularly related. In fact, the digital 

twin can be used to monitor and analyze products during their entire life cycle, thus 

helping experts to decide whether or not to produce a product by understanding its 

feasibility. At a later stage, on the other hand, it is useful for analyzing and monitoring 

final products to see which are faulty or underperforming.   

A further very useful application, capable of bringing both economic and operational 

benefits, is predictive maintenance. Manufacturers use the digital twin to predict 

machine downtime, so that companies can manage maintenance activities without 

wasting time and incurring additional costs. This also improves the overall efficiency of 

the machines, as technicians intervene before a breakdown occurs. The problem that 

arises is an economic one as the use of digital twins for predictive maintenance activities 

is not scalable. It is in fact a machine-specific virtual replica and requires costly 

investments on the part of the company related to data science to build and maintain 

the twins. 

The last application is that of dynamic scheduling, or flexible scheduling. This method is 

a crucial point in manufacturing systems, as these are always characterized by 

uncertainty of various kinds, such as job insertion, machine breakdown, workers 

absence and so forth. The integration of a DT can help monitoring and detecting 

disturbance in the system in an immediate way, due to the constant comparison 

between virtual and physical model.  
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2. Introduction to the platforms utilized to build the system: 

FlexSim and Node-Red 

In this chapter, the two platforms used for the implementation of the digital twin will be 

introduced, with a special focus on their main functions, in order to understand as 

comprehensively as possible how their use was crucial.  

The first to be introduced is FlexSim, an object-oriented software whose purpose is to 

develop, model, simulate and monitor dynamic flow process systems. This platform was 

used for the graphic visualization of the system, based on the information received from 

the physical objects. With regard to the connections between physical and virtual 

entities, and vice versa, Node-Red was used as an intermediate platform, capable of 

receiving and collecting data from the physical system and sending it to the virtual one 

for graphic representation. The phase of analyzing the information, followed by its 

processing and decision-making to suggest corrections or changes to the physical 

system. 

2.1     FlexSim: simulation environment  

Flexsim is a software that provides a complete suite of development tools, to create and 

compile simulations of real systems. Animations allow for optimal visualization of the 

system, and the platform supports tree view, 2D, 3D, and virtual reality.  

The problems that usually arise within a system can all be traced back to two main 

sources: uncertainty and complexity. As the number of components in a system 

increases, it will become increasingly complex to understand and describe the 

relationships between the components. Similarly, when uncertainty is introduced into a 

system consisting of several components, most analytical or predictive methods used in 

prior fail. This happens because the uncertainty can be of various kinds, e.g., machinery 

breaking down, variable times, batch sizes, or absence of workers. FlexSim is therefore 

an excellent tool for gaining knowledge about a complex system that is subject to 

uncertainty. It is indeed very important to remember that only when a system is well 
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analyzed and the relationships between its components are understood, then it can be 

improved.  

The core functionality of FlexSim is a simulation application compiler that allows users 

to develop simulations with the help of graphical user interfaces, object libraries and 

menu structures for a variety of applications in the marketplace. 

A further level belonging to the simulation environment is the Flexsim Developer, which 

is used to develop simulation applications. This developer contains tools and interfaces 

that, as shown in Figure 2-1, provide standard objects required for simulations, such as 

sources, queues, robots, processors, etc., which can be used directly, or modified by 

adding user-defined designs and information to match the desired model. The action of 

modifying these features is permitted by the Developer, which in itself already provides 

a number of standard alternatives; in addition, the user, using the Visual C++ compiler, 

can go on to make further modifications as required. 

The last level of use is the Simulation Application, whose function is to construct a 

discrete-event simulation using the tools listed before from Flexsim. This simulation 

application permits many different types of simulations, such as the FlexSim GP (general 

purpose simulations), the FlexSim Port and SANS (for Shares Access Network Storage 

systems). Each application can be designed and modified, which means that each model 

can be faster, more efficient, and more effective, on the basis of the needs of the 

creator.  

Figure 2- 1 Example of simulation objects provided by the developer 
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2.2     FlexSim: model development  

The process of model development is composed by five basic steps: 1. Layout 

development; 2. Object connection; 3. Addition of details; 4. Run of the model; 5. View 

of output.  

2.2.1     Layout development  

The layout is structured by selecting objects from the library, which is shown in Figure 

2-2, and dragging them into the model creation space, which is a virtual 3D spatial 

environment. For each object, it is possible to position it where optimal by changing its 

x, y and z spatial coordinates manually. After being placed in the environment, when the 

layout is complete, what will be displayed on the screen will be an image similar to the 

one shown in figure 2-1, in which the objects represent a real system, and are connected 

to each other. 

As can be seen in the previous image, there are different types of resources in the 

library. Actually, it contains many different categories, but these two, Fixed Resources 

and Task Executers, are the main ones. A fixed resource, which represents sources, 

queues, processors, sinks, combiners, etc., is an object that remains stationary in the 

model. On the contrary, the Task Executers are resources that are not stationary: they 

Figure 2- 2 FlexSim library tool 
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may travel, execute load and unload tasks of flow items, or act like a shared resource 

among fixed objects.  

2.2.2    Object connection 

FlexSim provides two different types of connection, one for the objects (A-Connects), 

and another for the center ports (S-Connects). Each single object, instead, is equipped 

with three ports: input, output and center port.   

Input and output ports are represented with small red triangles, and the direction of the 

connection is illustrated by the orientation of the triangle, which points in toward the 

next object for input, and away from the object for output.  

The S-Connects, instead, is usually used to connect task-executers to fixed resources, 

while in other cases it can also connect two resources that need to communicate. The 

main actions enabled by center ports are:  

• Flow items transport: if a task executer is connected by center port between two 

fixed resources, it can be used as a transporter.  

• Setting up: the model may include setup for its resources, and so there could be 

the need to have a task executer connected through the center port during setup 

times.  

• General reference: as said before, fixed resources may simply have the need to 

communicate or reference each other. 

Figure 2- 3 A-Connects 
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2.2.3    Addition of details 

Once the layout has been completed and the links created, the platform will allow the 

user to add logic and other types of data to the objects. The process consists of selecting 

the layout window, and then editing or entering information such as cycle times, 

capacity, routing logic, downtime, and statistics. Also in this case, the information 

inserted can be chosen among the standard ones provided by FlexSim, or can be added 

by the user through the use of flexscript or C++.  

 

Figure 2- 5 Panel that permits to modify data 

Figure 2- 4 S-Connects between center ports 
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2.2.4    Run the model simulation  

As soon as the simulation is activated, the model execution begins, and various 

conditional scenarios are evaluated. FlexSim collects and returns the data generated by 

each execution, which can comprise a single scenario, or multiple scenarios.  The FlexSim 

simulation has multiple functions: users can define the conditions, variables, and 

constraints to be tested, as well as decide the number of times each condition is to be 

executed and the duration of each execution. At the end of the simulation, performance 

measures will then be provided, which will provide. a starting point on which to evaluate 

scenarios and how to optimize them. 

2.2.5    View of output 

Simulation results tend to be displayed in two ways; in the first case, each simulation 

can be viewed dynamically in 2D, 3D and VR animation as the model runs, while in the 

second case, reports are printed on a dashboard, showing the parameters chosen by the 

user. FlexSim's animation provides the ability to view multiple windows of the same 

model, to move within them in order to zoom in and out of the model, and to view it 

from the most appropriate angle. All these view manipulations can be performed 

without affecting the execution. As for the dashboard visualization, the results of each 

model run are based on predefined parameters, user-defined parameters, predefined 

graphs, and user-defined graphs, as can be seen in the following illustration, Figure 2-6.  

 

Figure 2- 6 Example of dashboard in FlexSim 



 

 

 27 

2.3     FlexSim: emulation tool  

Emulation refers to the ability to simulate a Programmable Logic Controller (PLC). The 

emulation tool in this context is in fact used whenever the system needs to use a PLC, 

so that it can be developed and tested. A PLC, as mentioned before Programmable Logic 

Controller, is a computer used to interact with machinery in production systems. 

Specifically, these computers possess a logic, which acts as the brain of a production 

system, managing all inputs, outputs, internal communications, and the behavior of the 

system as a whole. 

In this context, it is therefore necessary to create a connection between the emulation 

tool in FlexSim and an external server, or another external PLC. The first of the 

emulator’s two main characteristics, shown in Figure 2-7, is therefore represented by 

the connection; the details about how it happens are very technical, so they will only be 

introduced in this section to provide the basic concepts but will then be expanded upon 

later, in the part where the application in the case study will be explained. The second 

technical characteristic of the emulation tool is called variables, and it refers to any input 

and output that can be received by or sent to the PLC. The two variables recognized by 

the platform are: sensors, for the inputs, and controls, for the outputs.  

Figure 2- 7 Two FlexSim windows that show respectively variables and connections 
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As said above, controls are the PLC’s outputs, which means that they receive an 

information from the server and tell the system what to do to respond to that specific 

signal. Typical examples of controls are: start and stop to the conveyors or to the 

processors, positioning in a specific place, issue a warning, etc.  

Sensors, instead, are inputs to the PLC, that contain information about the physical 

environment considered. Usually, sensors are connected to position detectors, photo 

eyes, and any other sensor able to monitor the system. The basic logic related to the 

interactions between these entities is based on the PLC, which receives inputs from the 

system, processes them and communicates with the system, via the outputs, to advise 

what action to take on the basis of the previously evaluated data. 

2.4     Node-red: functionalities of the platform  

The digital visualization of the real model on FlexSim presented a challenge, as not all 

data are digitally available, and therefore need to be processed or derived in different 

ways. Thus, the simple transfer of data from the physical to the digital system required 

the use of an intermediate platform, Node-Red.  

Node-RED is a programming tool conceived with the idea of managing the IoT world 

through data flows. Its basis programming language is JavaScript. The main feature of 

this platform is to create flows that permit a communication between hardware devices 

and online services. In these flows, packets of data travel via some protocols, and pass 

between nodes performing actions, calculations, or analyses. 

Figure 2- 8 On the left the creation of a flow with four nodes; on the right the 
programming environment available for each node 
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As already mentioned, the operation of Node-Red is based on its nodes, also known as 

'black-boxes', each of which has its own specific purpose; it receives data, processes it 

as ordered in the programming environment, and finally passes it on. This functionality 

is the main reason why it is used as an intermediate step in the communication between 

the physical model and FlexSim, in order to pass already processed compatible data to 

the final application.  

Also, in Node-Red there is the possibility to visualize the collected data, through the use 

of a dashboard. The latter can be created on the basis of the user's needs, by placing 

specific nodes in the vicinity of the data of interest, in order to collect them as output 

and plot them on tables, graphs and other types of interfaces for their graphic 

visualization. 

2.5     Node-Red: representation of a model through flows  

With Node-Red, the programming is done through the concatenation of objects, 

assigning each of them a different task in order to have a complete description of the 

assumed, and to be assumed, behavior of the model. Nodes, in order to communicate 

with each other, use a pre-established data packet, known as a message, the content of 

which may vary according to requirements. Each message exchanged has two 

characteristics: the topic, and the payload. The topic identifies the scope, is set using a 

string and may be associated with any value, while the payload represents the value of 

the information being transmitted. 

2.5.1    Flows  

The flow, defined by a name and a specific description, is the main way to organize the 

model logic and represents a set of organized and connected nodes. Each flow has two 

main characteristics: Properties and Environment Variables. The first one is used to 

simply define the flow with name and description, while the second one collects all the 

properties that are valid as environment variables within the flow.  
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2.5.2    Nodes  

Nodes are the objects whose interaction constitutes a flow. Node-Red provides a wide 

set of predefined nodes that can be adapted and used in many different flows, or the 

user may import them from the library or from the clipboard. 

Once the appropriate node has been selected from those available, its configuration can 

be edited. The edit contains three tabs, that are shown in Figure 2-11: 1. Properties; 2. 

Description; 3. Appearance.  

Figure 2- 9 Information box showing a flow with its nodes 

Figure 2- 10 Palette containing some input and output nodes 
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The properties tab permits to edit the node’s properties in a JavaScript programming 

environment. It could be important to set:  

• Value, which is the type related to the property, and it is mandatory to define.  

• Optional Boolean that activates whether the property is required, and that is set 

to null if the property is invalid.  

• Optional function that can be used to validate the value of the property.  

• Optional Node’s Type, if the property is a pointer to a configuration node that 

needs a type.   

The description is a per-node documentation, which is shown in the information bar 

when the node is selected.  

The appearance is instead the option to customize the node, in fact, the tab provides 

many options, such as to select whether the node’s label is shown, to change the icon, 

to provide custom port labels, etc.  

  

Figure 2- 11 Node edit: properties, description, and appearance tab 

Figure 2- 12 Wiring nodes 
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Nodes are connected to each other through wires, that are created by simply dragging 

the link from the output port of a node to the input port of the following, as can be seen 

in Figure 2-12. Other actions that can be done on wires are splitting and moving; if a 

node with both input and output ports is placed on a wire, it can be inserted in the flow 

simply by releasing it on that point on the wire. To move a wire from a node, it would 

be sufficient to take it from the extremity that is to be moved and move it to a new port. 

In conclusion, it is also important to remember that nodes can be switched on and off 

as needed, using a simple command to stop the flow of messages from that node 

forward in the flow. 

An important tool is the one that allows you to manage the palette of nodes, managing 

them or installing new ones. The palette manager has two tabs: one lists the nodes 

currently installed in the runtime, and the other permits to see a list of nodes that can 

be installed. 

The following image, Figure 2-13, shows a representation of what a complete Node-Red 

flow with nodes, connections, and implemented logic looks like.  

Figure 2- 11 Example of a complete flow in Node-Red 
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3. Case study developed in the laboratory 

This chapter will discuss the case study which has been chosen to finalize this work, and 

to illustrate all the processes that will lead to prove (or disprove) the assumption made 

at the very beginning, i.e. that the implementation of a digital twin to support flexible 

scheduling, leads to cost and performance advantages in a production line.  

The situation that will be proposed in the case study is as follows: two collaborative 

robotic arms perform the same task, which consists of taking a unit to be processed from 

the starting point, and releasing it at the finishing point. The batch size is ten units and 

therefore, in the better scenario, each robot will process five units. In the next 

paragraph, it will be seen how, in the programming phase, loops of five repetitions were 

generated, so that if the best-case scenario occurred, each of the two arms would 

perform its own sequence of tasks, without having to make any changes to the system. 

The alternative situation to be evaluated will instead aim to propose a worst-case, a time 

failure scenario, in which one of the two robots will process the units more slowly. At 

this point, there are two possible outcomes: 

Figure 3-1 Physical system used to test the Practical Worst-Case 
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1. Do-nothing scenario, in which the unaffected robot will process its five units as 

planned, and the other will cause a delay in production. 

2. Mitigation scenario, which is the focus of this work, and involves using the digital 

twin to recognize the robot that is causing delay, and to then send a signal to the 

working robot. The latter, once it has processed its five units, will again enter the 

production phase, processing the units for the slow robot as well. By doing so, 

there should be instant scheduling changes. 

The final aim of this whole experiment involves a phase of collecting the results and 

comparing the various scenarios. Obviously, despite the application of the digital twin, 

it will be impossible to mitigate and obtain performance values on a par with the optimal 

scenario; however, with this method of solving a time failure, the final results should lie 

in an intermediate scenario between the best and the worst, in which no action is taken 

at all. 

3.1    Digital Twin applied to a production line to achieve dynamic scheduling    

The case study developed in the laboratory involves the creation of three different 

entities: the physical space, the virtual space, and the connections between the two, in 

both directions. The physical space is represented by two collaborative UR3e robots 

whose associated task is to perform the pick and place action on a batch of units to be 

processed. The two robots therefore represent two machines of a very simple 

production line, which is consequently represented in the virtual model on FlexSim. The 

virtual model is organized in such a way that the two objects shadowing the physical 

machineries not only receive the data, but are also particularly realistic representations 

of them. For the graphic visualization part FlexSim was used, as it provides an optimal 

environment in which to create a faithful model. For data processing, Node-Red 

software was used to read the data from the robots, pass it to FlexSim, and to process 

the information collected and send commands to the robots to optimize, when possible, 

the process.  
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Three scheduling models will be proposed to analyze this production line: 

• non-dynamic scheduling: calculated a priori, representing the optimal 

production case, i.e. the scenario in which no unexpected events of any kind 

occur. 

• non-dynamic scheduling, also calculated a priori, which shows what would 

happen to the system if one of the two machines slowed down but there was no 

sensor to detect it, and thus no corrective action (do-nothing scenario).  

• dynamic scheduling, achieved by evaluating the data passing through the digital 

twin's system in real time, and thus able to take corrective action (mitigation).  

The following sections will introduce in detail the creation of the various entities, 

explaining all the procedures carried out in the laboratory, and then it will be explained 

in detail how the various scheduling models were designed.  

3.2 Physical system 

The physical system considered in this case study consists of two machines of a 

production line. The two machines chosen are two collaborative robotic arms, capable 

Figure 3-2 Steps related to the creation of a Digital Twin model 
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of performing the pick and place action. The machines were programmed to work in 

parallel, equally sharing the production of a batch of ten units. 

3.2.1 UR3e collaborative robot arm 

UR3e is a compact collaborative robot, and the smaller of the e-series produced by 

Universal Robots. These robots are made entirely of plastic and aluminum, with the 

addition of some steel components, resulting in an extremely low weight. Other typical 

features are a maximum load of 3 kg and a reach of 500 mm, making them particularly 

suitable for assembly tasks. Thanks to their compactness, they can be easily positioned 

in any orientation, and the assembly procedure is also particularly simple due to their 

total weight of around 11 kg.  

 

The arm of the Universal Robot consists of tubes and joints, the movement of which can 

be easily coordinated by locating the tool in the desired position, except for the part 

bordering the base. There are 6 joints, and these are the ones that ensure the movement 

of the robot; you have the base, which is the element on which the robot is mounted, 

followed by the shoulder and then the elbow, which are the ones that perform the 

movements with greater amplitude, while at the end of the robot there are then the 

Figure 3-3  UR3e collaborative robot and its Teach Pendant 
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wrists, 1, 2, and 3. Wrists 1 and 2 take care of the finer movements, while wrist 3 is the 

one to which the tool is attached.  

Each robot has its own control unit, which includes all electrical inputs and outputs 

connecting the robot arm, the Teach Pendant (on the right in figure 3-3) and any other 

peripherals. 

For switching the robot on, off, and programming tasks, the Teach Pendant is used. The 

robot switches on from the main on/off button but remains in a state of waiting for the 

start signal, to prepare it for normal operation. Only after the start signal has been given 

via handheld, then the robot is actually ready. Figure 3-4 shows the screen to start it up 

for operation, once it is switched on.  

3.2.2 Robot programming phase  

In the previous section, the main characteristics and some basics concerning the use of 

robots were introduced. In this section, however, all the operations performed on the 

Figure 3-4 Start-up screen on the Teach Pendant 
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physical system will be explained in order to implement the production line by 

programming the tasks to be performed by the robots. 

The production line to be created consists, as explained above, of two machines that 

process a batch of ten units in parallel, splitting it in half. Theoretically, to complete their 

respective tasks, the two robots would then have to pick up a unit at a time at the initial 

position and transport it to the final position, working at the same speed.  

In order to achieve this, it is therefore necessary to create a program using the Teach 

Pendant; this consists of serially inserting commands from the list on the left in Figure 

3-5. 

The main steps to focus on when creating the robot program are the following: 

• Set the initial and final positions of the robot. There are two methods to do that, 

the first one, the freedrive function, consists in choosing the position by moving 

the robot to the point of preference: the spatial co-ordinates where it is located 

will be read automatically and will be recorded as a waypoint. The second 

method permits to choose the x, y and z coordinates in millimeters and in 

radians, relative to the tool position, and then choose the angle in degrees for 

each joint. Figure 3-6 shows the panels used to position the robot: waypoints 1 

and 2 were set manually so that the first corresponded to the robot's start 

position, i.e., the position in which it performs the gripping action on the units in 

the batch, while the second represents the point in which the robot releases the 

unit at the end of the task. 

• Define the main characteristics of the task: in this case, having to process five 

units each in an optimal situation, a loop was defined for both robots consisting 

of five repetitions, which can be restarted at any time if necessary. The loop is 

illustrated in Figure 3-7.  

• Adding all the extra features that permits to optimize the process. In this case, it 

was necessary to add waiting times for digital input in order to regulate the 

execution of the program. All the waiting times that can be read in Figure 3-5 
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relating to the program represent waiting times and the exchange of external or 

internal signals, the so-called digital inputs and digital outputs, which allow more 

control over the execution of the loop. 

• Adding threads. A thread is a part of a program outside the main thread, but 

which is executed concurrently. The usefulness of setting up threads containing 

start and stop signals in this case is that the robot is always listening for these 

signals. Threads 1 and 2 are two subprograms which perform a start and a reset 

action on command; these two actions will be explained in more detail in the 

section on connections, as they are handled by the internal connections between 

robots, in the case of thread 1, and between robot and node-red, in the case of 

thread 2. 
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Figure 3-5  Robot's main program on the left, and graphical representation on the right 
Screenshot taken from Robot 1  

Figure 3-6  Position settings 
Screenshot taken from Robot 1 
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3.3    Virtual system  

The creation of the virtual system is the second fundamental step in the creation of a 

digital twin. As already explained, the environment used for the graphic visualization of 

the model is FlexSim.  

Figure 3-7 Focus on definition of the loop 
Screenshot taken from Robot 1  

Figure 3-8  Graphical representation of the model in which the two robots in 
parallel are digital shadows of the real UR3e in the laboratory 
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Next, the entire digital model building phase will be explained, including any problems 

encountered and solutions. 

The virtual system was created in such a way as to respect the organization of the 

physical one. Therefore, two processors were placed in parallel, so that they could 

perform their tasks in the same way as the UR3e in the laboratory. The remaining system 

components, on the other hand, are unrelated to the real model, but were indispensable 

to ensure the most realistic process possible on FlexSim. These other components will 

be explained below. 

• The source was used to generate the batch of ten units, thanks to its function, 

named arrival schedule, which allows the user to select the size and arrival time 

of the batch.  

• The queues represent the initial and final coordinates in which the physical 

system’s robots do their pick and place actions. Queue 1 automatically receives 

all the units to be processed in the instant they are generated, and places them 

in a specific space, ready to be collected by the robots. The system's default 

settings require that the queue itself sends the units to the next machines, thus 

using a push strategy; these settings have consequently been modified to follow 

a pull strategy as in the physical system, according to which it is the robot that 

fetches the unit to be processed at the moment it is required.   

As mentioned above, physical robots are represented on FlexSim via processors, 

although by default these have a completely different geometric shape. The reason why 

they were chosen as objects for representation anyway are twofold: the processors have 

a large number of functionalities, especially when connected to the emulator tool, while 

the robot, despite existing as a representable object, is regarded by the platform as a 

task executor, and consequently would not have provided useful data if connected to 

the emulator.  

The following images in Figure 3-9 will show how it is possible to change the appearance 

of objects in the system to make them as realistic as possible. 
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3.4     Connections 

Connections are the fundamental part of a digital twin, as without them it would only 

be a digital shadow of a physical system. The presence of connections in fact not only 

allows data to be passed to the digital system, which will then be able to replicate the 

form and behavior of the physical one, but more importantly the connections allow the 

flow of information in the opposite direction, which is important for suggesting changes 

to the physical system. It is precisely this real-time, bidirectional flow that allows the 

optimization of the system, being able to recognize changes and propose solutions while 

the process is in progress.  

In this section, all types of connections implemented within the system will be 

introduced: the connection from physical to virtual, i.e. between robot and FlexSim, via 

Node-red, and the connection from virtual to physical, which mainly takes place from 

Node-Red to the robots, as it is in this platform that the data analysis and program 

execution takes place. However, albeit slightly less optimal, a reverse connection 

starting from FlexSim was implemented in order to demonstrate that the system is able 

to work in its entirety. 

Figure 3-9 On the left the graphical representation of the robots; on the right the panel that permits to modify the geometry 
and import the robot shape 
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Finally, a third type of connection will be introduced, which is not characteristic of a 

digital twin system, but which in this case was nonetheless fundamental to the 

development stages: the connection between the two robots in parallel. It is important 

because the two machines are able to send signals via digital input and digital output to 

each other, which are easier to manage at the program level in the Teach Pendant, and 

highly functional. 

3.4.1 Physical-to-Virtual data flow 

The connection that takes place from the robots to the digital model is called Physical-

to-Virtual data flow, as a large amount of data is passed from the former system to the 

latter.  

With the connection implemented between the physical model and the virtual model, 

it was possible to collect the following data: 

• Status of the process  

• Robot process time, which is calculated as the time between when the robot is 

in its initial position, and when it returns to the same, after unloading the unit in 

its final position 

• The number of units processed by each robot 

Figure 3-10 Representation of bi-directional interactions between systems and platforms 



 

 

 45 

All this data is calculated based on the data received from the TCP-in node, which is then 

processed to obtain different information to be passed to FlexSim. 

To obtain or send data and information packets, most modern systems use open-source 

industrial connection protocols, whose main characteristic is the ease of 

implementation, thanks in part to the large number of connected software that has 

emerged since talk of Industry 4.0 and the Internet of Things began. Next, it will be seen 

how these methods are applied to achieve the purpose of manipulating data from the 

various models. 

3.4.1.1 Modbus Protocol introduction 

The protocol used in this case study is called Modbus. Modbus is an industrial protocol, 

developed in 1979, that represents the main means of communication between 

automation devices. More specifically, Modbus is a request-response protocol based on 

the connection between a master and a slave, that in this specific case is the 

Programmable Logic Controller (PLC) of the robot.  

Modbus is characterized by four data banks, whose main purpose is to define the type 

and the access rights of the contained data. It is important to remind that these four 

blocks are purely conceptual, in fact, they can both exist as separate memory schemes 

or be overlapped. These banks are resumed in the following table. 

Table 3-1 List of the different banks with their main characteristics and data access permitted 



 

 

 46 

Modbus provides a specific Register Indexing Scheme: it defined a specific range, from 

0 to 216, in which each number can address a specific data, and it also associated a prefix 

from 0 to 4 to specify which of the four data blocks the user wants to exploit, in the 

order in which they are listed in Table 3-1. 

A problem that may arise concerns a mismatch between the functions allowed by the 

master, and what the slave can handle. To solve this, the Modbus TCP specification has 

listed three classes called conformance classes: class 0, class 1, and class 2, each of them 

with some related codes supported both by master and slave.  

• Class 0: these codes are considered the basic ones of a Modbus device, and are 

Read Multiple Registers and Write Multiple Registers, with their associated 

number. Their unique mission is to permit the master to write and read data.  

• Class 1: this class provides 7 codes, for all the four memory blocks listed before, 

to both read and write data.  

• Class 2: it includes more specialized functions, but it is very difficult to 

implement.  

3.4.1.2    Data reading from robots: TCP-in node 

Following the brief theoretical introduction on Modbus protocols, it is now possible to 

see how they are implemented in the real case in the laboratory. This section will 

specifically introduce the connection between the robots and the Node-Red platform, 

which is done via TCP/IP protocols. The Transmission Control Protocol / Internet 

Protocol is a set of network standards that encompasses the rules of communication on 

the Internet, using an IP address for sending data packages. 

In Figure 3-10 it is possible to notice that Node-Red uses two connections of the type 

introduced above, which are circled in red: the grey nodes on the left are TCP-in node, 

that use an IP address and a specific port (the number on the right after the colons) to 

get the data. The two IP addresses are related to the two robots: the first one, 

192.168.81.91, is associated to Robot 1, while the second one, 192.168.81.97, is 

associated to Robot 2.  
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Figure 3-12 Panel for setting up the TCP-in node that reads data from robots PLC 

Figure 3-11 Part of the flow that reads data from robots’ PLCs 
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In Figure 3-12, instead, it can be seen how the TCP-in node is created. The panel permits 

to choose the IP address and the port, which are critical to implement the connection, 

but it also gives the possibility to choose the type of output. In this case a buffer type 

was chosen in order to obtain a set of data, and then the ones of interest have been 

selected and collected via the following nodes and functions.  

These two TCP-in nodes are the ones that bring Node-Red a set of data from robot 1 and 

robot 2 respectively. This data set consists of the digital outputs, each representing a 

specific piece of information. In this case, the digital output selected is DO3, containing 

values associated with a complete movement performed by the robot. The digital 

output sent by the robot contains two different values, one, which usually is a number 

different than 40, during the entire movement phase, and one, equal to 40, at the 

instant it is in the starting position ready to execute the task all over again. At this point 

is has been essential the use of a filter node (Figure 3-13), which passes a value only 

when it detects the change from 40 to another number, and vice versa. In this way, the 

flow receives a single value that warns that the robot has finished its task. In order to 

simplify the writing of the code, especially in view of the subsequent steps, the filter 

node that detects a change sends the value 1 to the following functions, which will use 

it to calculate some of the process variables listed above. 

• Process time is calculated through the use of an Interval length node, which 

exploits the DO3 values. Each time it receives the value 1 (which, as said before, 

is associated to the robot ready in the start position), it starts a timer, that stops 

at the following value 1. The value returned by this node will then be the time 

elapsed from the moment the robot starts the task to the moment it finishes it, 

the process time.  

• The number of units processed by each robot is instead calculated through the 

use of a counter node. The counter node has the function of keeping numerical 

track of each time a user-specified event occurs. In this case, the node, starting 

from 0, counts each time the value 1 is received from the filter node. The number 

of times a task is repeated also represents, as a direct consequence, the number 
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of units processed by each robot, as each movement corresponds to a piece 

transported. 

 

3.4.1.3    Data writing to FlexSim: Modbus Write  

Up to now, only the connection part between the physical system and the data 

collection platform has been introduced. This section will instead show how the data is 

actually passed to the virtual system, and then displayed graphically by FlexSim. The 

data transmission method is the same as before, the only difference being that instead 

of using the IP addresses of the robots, the connection is via the localhost, as both 

platforms are on the same device.  

Figure 3-13 Use of the filter node in 'block values as long as they remain equal' mode 

Figure 3-14 Modbus Write nodes that send data to FlexSim 
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The fundamental node to be used is the one shown in Figure 3-14 and is called the 

Modbus Write node, while Figure 3-15 shows the main properties that can be set for 

this kind of connection, such as the FC, which represents the class 1 codes discussed in 

the Modbus introduction section, the address which represents the register used to pass 

a specific data recognized both from master and slave, and finally the server, which in 

this case is the localhost.  

For this type of connection, however, it is also necessary to perform certain actions on 

FlexSim, as the emulator tool must be able to interpret the registers with their data, and 

thus be able to associate them with a specific object and action. For example, registers 

30 and 40 pass the process times of robot 1 and robot 2 respectively to FlexSim. On 

FlexSim, in the appropriate panel, it will therefore be essential to associate these 

registers firstly with the correct object, and then also with the specific action with which 

they are associated. In this case, a short piece of code has therefore been written in this 

environment as well, so as to associate the value received as input, which on FlexSim is 

recognized with the variable named 'newValue', and thus make the model understand 

that this time will be associated with the process time of the machines, a variable that 

appears in the statistics of each object. Another practical example related, instead of 

process time, to system status is shown in Figure 3-16. In particular, at the top it can be 

seen how the connection was created: the type is specified, Modbus TCP Connection, 

the type of register with its number, and finally the associated object, which in this case 

is robot 1. At the bottom there is a brief focus on a piece of code which, based on the 

value received from Node-Red (1 or 2), blocks or starts the model robot. 

Figure 3-15 Properties panel of the Modbus Write node 
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Figure 3-16 Connection creation from the point of view of the FlexSim platform 
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3.4.2 Virtual-to-Physical information flow   

Up to now, the connection between the physical and virtual model has been introduced, 

in which the data goes from the robots to Node-Red, is processed, and then sent to 

FlexSim. Now the reverse process will be analyzed in which, on the basis of the data 

received and analyzed by the virtual model, multiple pieces of information will be sent 

towards the physical model to suggest actions to be performed during the process. The 

connection from the virtual to the physical model is based on the same protocols as 

before, but these must be adapted accordingly, as the data is now an output of the 

virtual system and an input of the physical one. 

The connection between FlexSim and Node-Red will then be introduced first and then, 

respecting the direction of the data flow, the connection from Node-Red to the robots. 

This first connection makes use of Modbus Sensors Registers, which are PLC's inputs; 

this means that, when a PLC (or a server) receives a data through a Modbus sensor, that 

specific value is read from the FlexSim stored values, which are being collected during 

the execution of the model. In the case of the project in the laboratory, this connection 

Figure 3-17 Modbus Sensor Register that transmits the data about 
the number of units processed 

Figure 3-18 Modbus Read node to receive information from FlexSim 



 

 

 53 

was created to pass on the number of units processed during execution. As can be seen 

in Figures 3-17, the basic operation based on connection type, register number, and 

register type is the same as before, it simply occurs in the opposite direction. In this case, 

an event has been defined, via 'conditional value' tool, to specify when the information 

is to be passed or not: the condition specifies that when the counter, which is the 

associated object located within the virtual production line, perceives a number of units 

processed in the system greater than zero, it starts to keep count and gradually passes 

the value to Node-Red via register. From the point of view of Node-Red, as can be 

noticed from Figure 3-18, comparing it with the previous figure, the Modbus Read node 

has been set up as a Reading Holding Register, the address of which is 100, exactly the 

same as the register number that FlexSim uses to pass the value. At the bottom of the 

picture, you can see how, again, the connection is made via localhost. 

For the connection between Node-Red and the robots it was instead sufficient to change 

the type of nodes. Whereas until now the Modbus Write node was used to send 

information to FlexSim, it is now used to send information to the robots, as the 

connection is the opposite. Figure 3-19 shows an example of a Modbus Write node in 

which the IP address to which the information is to be sent is specified; obviously in this 

case it is no longer localhost but the specific address of one of the two robots.  

Figure 3-19 Modbus Write register addressed to Robot 1 
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3.4.3 Communication between robots 

The communication between the two robots was established with the aim of exchanging 

messages between them more efficiently using digital input and digital output. The 

purpose of this type of communication is to set the status of the robot as operational or 

non-operational, based on a specific piece of data received. In more detail, the robot is 

activated and deactivated by setting an internal parameter to 'high' or 'low', when 

receiving the signal in the form of digital input; within the program to be executed by 

the robot, it is then sufficient to insert a piece of code in order to wait for a value passed 

through the other robot’s digital output.  

As illustrated in Figure 3-20, in the I/O control panel of robot 1, it can be seen that the 

connection to robot 2 is established: among the digital inputs the bit 'fromRobot2' is 

active, exactly the same as for the signal ‘toRobot2’ among the digital outputs. What 

happens when using this type of connection is that from Node-Red a Boolean value is 

sent through a specific register to Robot 1 which passes the signal to Robot 2 in the form 

of digital input/output. Although not shown in the image, the same happens in the 

opposite direction, so passing information from Robot 2 to Robot 1. 

Figure 3-20 Digital Input/Output panel on robot’s Teach Pendant 
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3.5    Logic  

Up to this point, all implementations made on a practical level on the physical and virtual 

system have been introduced, so that the functioning of each entity underlying the 

project is clear. In this section, however, the logic of the system will be explained; taking 

into account how the entities are made and how they communicate with each other, 

the functioning of the models will then be shown at a broader and less detailed level, 

with reference to what the objectives of this work are, i.e., how the system must behave 

in order to guarantee flexible scheduling. 

It is important to emphasize that, taking into account the fact that the system must be 

extremely reactive in order to guarantee instantaneous changes, the largest part of  the 

data collection phase with the subsequent reworking and construction of the logic was 

done on Node-Red, as it provides a much less restrictive environment than FlexSim, both 

in terms of code and programming, but also because of the delay in receiving 

information that cannot be reduced due to force majeure, which will be explained next. 

The latter was indeed used mainly for the virtual visualization of the process, and for the 

analysis of the system that can be done ex-post, such as the one related to the 

machinery utilization, throughput, cycle time and factors like these ones.  

As mentioned earlier, it is important to devote a few words to the reason why the entire 

process was not carried out on FlexSim. The purpose of this type of process is to 

generate a time-varying scheduling; to do this, it was decided to assign tasks to one 

robot rather than the other based on a real-time analysis of the process time and the 

number of tasks executed. The process time, as mentioned above, was calculated with 

a timer that is activated and then deactivated at the end of the movement of the robotic 

arm. Node-Red is able to make the decision in real time, as the calculation for the 

allocation of the remaining tasks takes into account the number of units processed by 

the critical resource, and as there is no need in that environment for a virtual 

representation. On FlexSim, however, as digital visualization is necessarily included, the 

delay becomes unavoidable: the virtual model will execute ‘unit 1’ with the calculated 

process time when at the same time the real robot is already starting to process ‘unit 2’. 
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Going beyond the premises just made, the logic of the entire system will now be 

introduced. At the beginning of the process both the two environments are connected, 

and FlexSim and Node-Red are on listening and ready to start. A start signal is sent from 

Node-Red to both robots, which exchange it with each other via digital input and output, 

and begin processing together each with the relative speed, which varies according to 

the replicated scenario. The robots are programmed in repeated loops five times, as 

their mission is to process five units each. 

The robots' program is written so that they send messages at specific times of execution. 

Specifically, at the end of each movement, so at the moment in which the last step of 

the part of the program contained in the loop is executed, the robots send via digital 

output a value to Node-Red, which in turn reprocesses it to derive the number of units 

processed up to that instant and the processing time, using the method explained 

above.  With the first signal received, Node-Red transforms it into a specific number, 1, 

so that it can send it to FlexSim to communicate that the process has begun and that, 

consequently, the digital representation of it should also begin.  

Meanwhile, the robots continue to process, continuing to send the signal at each task 

end. When the first timer stops, the time obtained is instantaneously passed to FlexSim, 

which through the emulation tool passes it to the virtual machines as process time. The 

values received from the virtual platform are shown in a specific panel, the output 

console, which prints the old value received, or the first of all, on the left and the next 

new values on the right. Thus, in each row the values for only one robot of the two are 

shown.  

Figure 3-21 Output Console in FlexSim 

Robot 1 process time 

Robot 2 process time 
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Figure 3-21 shows the FlexSim panel in which the received values are shown: the 

numbers 0 and 1 show the change of state of the two robots from 'waiting for signal' to 

'operational', while the change to number 2, which tends to be at the end of the process 

unless unexpected breakdowns are avoided, means 'machine stopped'. The other values 

are the process times expressed in milliseconds. 

Returning to the real system, it is now important to differentiate various scenarios that 

can happen:  

• The first one is the best case, in which no time failure occurs, and the two robots 

process their five assigned units and then stop. In this case Node-Red finds no 

problem in the received data and consequently will send the stop signal to the 

robots the moment it counts ten processed units. The program on Node-Red was 

written to allow a certain margin of error, which is considered tolerable. As slight 

differences in the execution speed of the two robots may exist in the real case, 

the program does not recognize a 'time failure' until there is at least a mismatch 

of an entire processed unit. 

• The second scenario is one in which time failure occurs instead. Since the system 

is monitored in real time, what happens is that Node-Red, thanks to a specially 

created piece of code, recognizes a delay in task execution by a resource. The 

code, after one of the two robots has finished its five tasks, evaluates, based on 

the number of processed units received, whether to have the stopped resource 

start the loop again. If according to the algorithm this action is necessary, a 

special node will send a boolean value 'true' to the robot in order to give it the 

signal to start the loop from the beginning. This procedure is illustrated in Figure 

3-22.  

The last action performed by the program is to recognize when it is time to send the 

stop signal to the robots. In the scenario where no time failure occurs, theoretically the 

problem should not exist as the two robots are programmed on a cycle of five 

repetitions. In the case of time failure, on the other hand, there is a need to send a stop 

to the two robots, as the Robot 1 would otherwise unnecessarily complete a full five-
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unit cycle, when in reality those needing to be processed might be fewer. Consequently, 

a Node-Red piece of code was written which, based on the number of processed units 

it processes moment by moment, evaluates when it is necessary to send the stop signal.  

Since the visualization is delayed on FlexSim, it is conceptually incorrect to send the stop 

signal at the same time as the one sent to the robots. To solve this problem, an object 

renamed counter units was inserted into the virtual environment, with the sole purpose 

of reading the units output by the two virtual robots and sending the value at each 

instant of time to Node-Red, which, similarly to the process just described, when it 

recognizes that all units have been processed, also sends the stop to FlexSim. 

 

 

Figure 3-22 Node-Red code that detects a time delay and sends a Boolean value ‘true’ 

Figure 3-23 Node that sends the stop message and its code 
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4 Analysis of scenarios and data collected  

As mentioned in the previous chapters, three different scenarios will be presented in 

order to have a basis for comparison between the scenario with the integration of the 

digital twin, which was processed in the laboratory, and two others which were 

processed theoretically, representing the bast case and the worst case.  

In this chapter, the two limiting cases will be analyzed in more detail, providing an a 

priori scheduling linked to the execution of the tasks with the corresponding process 

times (also estimated a priori, based on the process times of the robots should they 

process at 100% of their capacity). For each of these scenarios will then be calculated: 

• TH: the throughput of the line, which represents the number of items processed 

by the system per unit of time 

• CT: the average cycle-time of the line, which represents the actual time required 

to process all the units in the system, in this case the 10 units 

• Utilization of the robot: it is associated with the fraction of time the machine is 

in use (taking into account any setup or breakdowns, as well as the simple time 

it processes).  

In this content, in the practical case with the application of DT technology, one 

should notice an increase in utilization for Robot 1, which will have more units 

to process than in the other cases. 

Based on the collected data and calculated variables, a comparison will then be made at 

the end of the chapter; the expected result of the laboratory test, if completed correctly, 

should represent an intermediate solution between the best and worst case. This should 

happen because, firstly, it is not possible, in the presence of a time failure linked to one 

of the two robots, to have a performance such as to completely cancel out the delay, 

and consequently such as to guarantee results equal to the best case. At the same time, 

thanks to the application of the digital twin, which aims to 'mitigate' damages in the 

system, the total time for the process of the entire batch in dynamic conditions should 
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be better than in the case in which the DT system is absent (non-flexible scheduling 

conditions). 

4.1    Best Case scenario: no time failure 

This scenario represents the best possible outcome related to the production line. The 

two robots are identical in form, equipped with the same tools (a gripper attached to 

the last joint), and have the same characteristics, so it can be assumed that under 

optimal conditions their speed, and therefore their process time, will also be the same, 

within a range of uncertainty due to natural variability.  

The process time considered will therefore be 13,000 milliseconds per item, when no 

time failure occurs. Consequently, the fixed allocation of tasks to be accomplished will 

be as follows: 

As it can be seen, there is no bottleneck in this process, due to the absence of a slower 

resource. The total estimated time for processing the ten units of the batch is therefore 

65,000 milliseconds, which corresponds to the processing time of a single unit multiplied 

by the five units assigned to each robot. Next, in Figure 4-2, it will be shown the FlexSim 

dashboard, obtained by running the simulation on the same system used in the practical 

case, but assigning process times a priori.  

In the collection of results, the variables introduced earlier can be found: throughput is 

represented in the box named 'composite throughput per hour', and cycle-time is 

instead indicated as 'Composite Staytime', which is evaluated as the average staytime 

related to both robots.  

Figure 4-1 Fixed Scheduling related to the Best-Case scenario 
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The state bars box in Figure 4-2 indicates the time the robots were actually operating 

out of the total time. In this case, as there is no disparity in the process of the assigned 

units, the state bar will be 100% for both. 

 

4.2    Worst Case scenario: time failure without DT detection 

The worst-case scenario represents the worst possible outcome, in this case following a 

time failure. In this case, the situation presented involves one of the two robots, namely 

Robot 2, processing the units with a significantly longer process time than Robot 1.  

It has been estimated that the process time of Robot 2 under these conditions is 2.5 

times longer than expected, thus being around 32.500 milliseconds.  

The peculiarity of this scenario is the absence of the digital twin. The absence of this 

technology means that when a time failure occurs, there is nothing capable of detecting 

it, and therefore that no corrective action is planned to mitigate the situation.  

Figure 4-2 Dashboard on FlexSim for the Best Case Scenario 
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Next, a flexible task allocation scheduling will be proposed when Robot 2 turns out to 

be slower; as can be seen in Figure 4-3, as there is no DT system to handle the 

reallocation of tasks in the line, Robot 1 will process the 5 units planned within its pre-

scheduled loop, and so will Robot 2, but taking more than twice as long.  

In this case, it can therefore be seen that the second resource, UR3e 2, represents a 

bottleneck in the production line, bringing the total process time from the 65.000 

milliseconds of the best-case scenario to 162.500 milliseconds, due to the lack of 

response to changes in the physical system.   

Figure 4-3 Fixed Scheduling for the Worst-Case scenario 

Figure 4-4 Dashboard on FlexSim for the Worst Case Scenario 
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Figure 4-4 shows the dashboard for the worst-case scenario, structured in the same way 

as the one seen above. Starting with the analysis of throughput, it can be seen that it is 

the same despite the differences in production times between the two robots. The value 

110,77, expressed in items per hour, is in fact derived from the bottleneck resource, 

which in this case exists and is represented by robot 2. The slowest resource among 

those that constitute a production line is in fact the one that defines the hourly 

production volumes. The system throughput will therefore be 221,54 items per hour, 

and takes into account the contribution of both robots. Robot 1 could have an extremely 

higher throughput but, due to the fixed scheduling, when it finishes processing the 5 

units assigned to it, it remains unused until Robot 2 finishes its batch. Based on 

theoretical concepts, at this point it can be predicted that, most likely, with the use of 

flexible scheduling, one could exploit the unused Robot 1 to assign some units of the 

slower robot to it, in order to increase the final throughput of the system. 

The composite average staytime is 22.750 milliseconds per item, as this is an average 

calculated over the lot size. With regard to the state of the machinery, it can be seen 

that the utilisation of Robot 1 is drastically lower than that of Robot 2, as after processing 

its part of the batch of 5 units, the robot that works as intended remains unused until 

the end of the process. 

4.3    Practical Worst Case: time failure detection through DT system 

The worst practical case is the scenario that occurs when, in the model run in the real 

system, the time failure that occurs is detected by the Digital Twin system and 

consequently changes are implemented to the behavior of the model in order to 

minimize the negative consequences.  

This scenario has been proposed in the laboratory following the logic introduced in the 

previous chapter: in fact, it will be observed that, following the failure, the speed of 

Robot 2 will be approximately 2.5 times less than that of Robot 1, which will instead 

remain unchanged with respect to the conditions predicted a priori.  
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Thanks to the operation of the Digital Twin explained above, the results of this practical 

case shown below will confirm the initial hypothesis, i.e. that although it is impossible 

to obtain results equal to those of the best-case, the variables obtained at the end of 

the experiment, obviously considering time failure conditions, will be better than those 

of the theoretical wort-case. 

Table 4-1 Collected process times and average process times in milliseconds 

  unit 1  unit 2 unit 3 unit 4 unit 5 unit 6 unit 7 
Robot 1  11784,6681 13296,7121 13599,8162 13395,6975 13905,3247 14617,7153 13307,4644 
Robot 2 27875,739 30806,8568 24039,2658         

        
  Avg process time      
Robot 1 13452,3426      
Robot 2 27573,9539      

In Figure 4-5 it can be noticed how the scheduling changed due to the real-time 

detection of the change in the physical system. The scheduling shown in the picture is 

representative of the data collected during the launch of the test in the laboratory, 

shown in Table 4-1. It can be seen that in this case the critical resource is Robot 1, which 

determines the total process time of 93.907,3983 milliseconds.  

What can be seen from the various tests carried out in the laboratory, however, is that 

the variability of process times for each individual task is rather high for both, but 

particularly for Robot 2. Analyzing the average process times, it can be seen that the 

average time related to the machine two is the one that deviates the most from the 

values predicted a priori. In this case, in fact, the process time related to Robot 2 is not 

2.5 times that of Robot 1, but only 2,06 times.  

Figure 4-5 Flexible scheduling obtained by applying the DT to the model 
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4.3.1     FlexSim Dashboard for the Practical Case    

The process dashboard on FlexSim, which collects the data received from the physical 

system, will now be illustrated. This data collection will have to be analyzed more 

specifically as it is certainly error-prone due to the structure of the system. As introduced 

earlier, the replication of the physical process on the platform is delayed by a whole 

process time; this problem cannot be solved as it is necessary for the physical robot 

UR3e to make a whole movement before transmitting the time taken. An a priori 

estimate would in fact render the entire project a mere simulation, and not an emulation 

of the real system.  

Figure 4-6  Output console on FlexSim with the values received during the process 

Figure 4-7 Dashboard on FlexSim 
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The final dashboard will then provide values that deviate slightly from those observed 

in Node-Red, merely because the reception of delayed values of an entire process time, 

relative to each robot, means that on FlexSim the process does not start at the same 

time for both machines, thus leading to idle times for one of them that do not 

correspond exactly to the real ones. These results will be taken up in one of the next 

sections, so that they can be compared with those collected on the Node-Red platform 

to verify their accuracy.  

4.3.2 Node-Red Dashboard for the Practical Case  

Node-Red's dashboard, unlike that of FlexSim which has just been introduced, should 

not be subject to errors (except for the intrinsic margin of error due to measurement, 

which is in any case negligible) as it receives the values directly from the real system, 

and thus from the two robots at the end of each task completed.  

On Node-Red's platform, as the real system proceeds with the execution of the process, 

the times associated with the completion of a task, start signals when Robot1's 

intervention is required, and stop signals when a total of 10 processed units is detected, 

are evaluate through the use of the timer function, and then transmitted.  

Node-Red, differently from FlexSim, which was created for the purpose of analyzing and 

simulating industrial processes, does not have a predefined set of process variables. 

Hence, while on FlexSim there is a palette of output visualizers, which by default includes 

the Throughput and Cycle-Time graphs of the process, on Node-Red the entire 

calculation must be programmed.  

• Throughput  

Figure 4-8  Composite Throughput per Hour 

Composite Throughput per Hour 
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The throughput calculation consists of obtaining the number of items that, on average, 

are produced by the system in a unit of time; In this case, both throughput per hour and 

throughput per second will be shown in Table 4-1, the first one to ensure an effective 

comparison with FlexSim, and the second one because it is more consistent with the 

system's timing. 

The first throughput calculated is for each machine, based on the process times 

received. For Robot 1, the average process time is 13415,3426 milliseconds, while for 

the Robot 2 the average process time is 27573,9539 milliseconds. Thus, the volume 

produced in one hour by each machine will be equal to: 

Table 4-2 Throughputs related to each robot 

  items per hour items per second 
Robot 1  268,35 0,0745 
Robot 2 130,56 0,0363 

Consequently, deriving the compound throughput per hour, it is equal to 398,9075 items 

per hour.  

• Cycle Time  

By analyzing the data collected on Node-Red at the end of the process, it is possible to 

derive not only the average and relative stay times of each individual machine, but also 

the cycle time of the complete system, which is useful for describing the time taken (on 

average) by the ten units of the batch to be processed. 

Table 4-3 Staytime of the two robots 

Staytime in seconds   
Robot 1  13,415 
Robot 2 27,574 
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4.3.3 Comparison of results  

In order to prove that the model is a coherent representation of what happens in the 

real system, it must be verified that there is a correspondence between the number and 

order of task execution, and between the system variables. 

Beginning with task execution, it was confirmed that the processing order of the items 

on FlexSim, despite the delay, is consistent with the order of execution in the physical 

system; indeed, both models show seven units processed by robot 1, and 3 by robot 2, 

in the same chronological order at the end of the process. 

As previously mentioned, the performance results of the entire system in terms of 

Throughput and Cycle Time will now be compared to verify that, despite the 

interference caused on the data by the structure of the FlexSim model, the results are 

still consistent and contained within a tolerable margin of error. 

Table 4-4 Comparison between FlexSim and Node-Red 

    Node-Red  FlexSim 
Throughput [item/s] 0,1108 0,1104 
Cycle Time [s] 90,55 90,64 

The data shown in Table 4-4 are for the specific system, which processes ten units. As 

can be seen, the model shows slight differences in total performance, attributable to 

the reasons listed above such as the delay in receiving the process time, which creates 

a time lag between the two models. More specifically, there is a variation of 0.09 

seconds for every 10 units processed, which corresponds to the 0,1 percent of the Cycle 

Time. This absolutely negligible value demonstrates a certain consistency of the model. 
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5    Conclusions 

The case study concerning the application of a digital twin to a production line was 

implemented with the intention, not so much of creating an exact copy in geometry and 

movements of the two robots, but rather a virtual system rather faithful to the physical 

one, which was however able to recognize variations and suggest changes in real time, 

with the aim of remedying any time failures of the line.  

The main objective was to demonstrate that flexible scheduling could be achieved, 

capable of reallocating tasks dynamically between different resources to achieve 

optimal results in critical situations. The results obtained provide strong evidence to 

prove the assumptions made a priori: it can be seen that, firstly, the scheduling of the 

Worst Practical Case scenario is a viable solution to time failure in terms of managing 

the remaining tasks, and in terms of process variables. As a demonstration of this, in 

fact, it can be seen that in the three various scheduling scenarios proposed, the one in 

the practical case is in the middle, with the total process time of the ten units clearly 

reduced, proving that, in the failure situation presented, it is clearly better than the 

Worst Case scenario, analyzed without the implementation of the Digital Twin.  

In conclusion, it is therefore possible to state that various benefits can be achieved 

through the application of a Digital Twin system in manufacturing. Among the main 

ones, it is worth mentioning improvements in terms of performance, increasing the use 

of resources that, under normal conditions, would have a lower utilization since they 

would not be used to compensate for a delay in production, and above all improvements 

in terms of time, since the non-recognition of a time failure would entail negative 

consequences in economics terms for the companies.  

It would therefore be good, with a view to future implementations, to continue testing 

it on additional machines, thus expanding the production line, in order to have an 

overview to fully understand its potential, which has so far been explored in a narrower 

environment.  
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