

Politecnico di Torino

Master of Science in Engineering and Management (Class LM-31)
Department of Management and Production Engineering

Degree Thesis

Application of Digital Twin and
simulation for dynamic task allocation

Supervisor: Candidate:
Professor Giulia Bruno

Elena Bianco Prevot

 288870

A.y. 2021/2022
December 2022

 2

Contents

ABSTRACT .. 5

1. INTRODUCTION TO THE DIGITAL TWIN TECHNOLOGY .. 7

1.1 HISTORY AND GENERATION OF DIGITAL TWIN TECHNOLOGY .. 7

1.2 CHARACTERISTICS AND DEFINITION OF DIGITAL TWIN .. 10

1.2.1 DIGITAL TWIN RELATED CONCEPTS ... 10

1.2.2 MAIN CHARACTERISTICS OF THE TECHNOLOGY ... 11

1.3 ANALYSIS OF THE RESEARCH PROGRESS .. 14

1.3.1 GARTNER’S HYPE CYCLE .. 14

1.3.2 DRIVERS OF THE TECHNOLOGY DEVELOPMENT ... 16

1.3.3 POTENTIAL OBSTACLES IN TECHNOLOGY DEVELOPMENT ... 17

1.4 POTENTIAL IMPLEMENTATIONS .. 17

1.4.1 SUPPLY CHAIN ... 18

1.4.2 RETAIL ... 18

1.4.3 HEALTHCARE .. 19

1.4.4 MANUFACTURING .. 20

2. INTRODUCTION TO THE PLATFORMS UTILIZED TO BUILD THE SYSTEM: FLEXSIM AND NODE-RED ... 21

2.1 FLEXSIM: SIMULATION ENVIRONMENT ... 21

2.2 FLEXSIM: MODEL DEVELOPMENT .. 23

2.2.1 LAYOUT DEVELOPMENT .. 23

2.2.2 OBJECT CONNECTION .. 24

 3

2.2.3 ADDITION OF DETAILS ... 25

2.2.4 RUN THE MODEL SIMULATION .. 26

2.2.5 VIEW OF OUTPUT ... 26

2.3 FLEXSIM: EMULATION TOOL .. 27

2.4 NODE-RED: FUNCTIONALITIES OF THE PLATFORM ... 28

2.5 NODE-RED: REPRESENTATION OF A MODEL THROUGH FLOWS .. 29

2.5.1 FLOWS ... 29

2.5.2 NODES ... 30

3. CASE STUDY DEVELOPED IN THE LABORATORY .. 33

3.1 DIGITAL TWIN APPLIED TO A PRODUCTION LINE TO ACHIEVE DYNAMIC SCHEDULING .. 34

3.2 PHYSICAL SYSTEM .. 35

3.2.1 UR3E COLLABORATIVE ROBOT ARM ... 36

3.2.2 ROBOT PROGRAMMING PHASE ... 37

3.3 VIRTUAL SYSTEM .. 41

3.4 CONNECTIONS .. 43

3.4.1 PHYSICAL-TO-VIRTUAL DATA FLOW ... 44

3.4.1.1 MODBUS PROTOCOL INTRODUCTION .. 45

3.4.1.2 DATA READING FROM ROBOTS: TCP-IN NODE ... 46

3.4.2 VIRTUAL-TO-PHYSICAL INFORMATION FLOW ... 52

3.4.3 COMMUNICATION BETWEEN ROBOTS ... 54

3.5 LOGIC ... 55

 4

4 ANALYSIS OF SCENARIOS AND DATA COLLECTED ... 59

4.1 BEST CASE SCENARIO: NO TIME FAILURE ... 60

4.2 WORST CASE SCENARIO: TIME FAILURE WITHOUT DT DETECTION .. 61

4.3 PRACTICAL WORST CASE: TIME FAILURE DETECTION THROUGH DT SYSTEM ... 63

4.3.1 FLEXSIM DASHBOARD FOR THE PRACTICAL CASE ... 65

4.3.2 NODE-RED DASHBOARD FOR THE PRACTICAL CASE ... 66

4.3.3 COMPARISON OF RESULTS ... 68

5 CONCLUSIONS .. 69

REFERENCES ... 70

LIST OF FIGURES ... 72

LIST OF TABLES ... 73

 5

Abstract

The topic covered in this paper explains a practical application of the project created in

the Mind4Lab laboratory of the Politecnico di Torino, with the aim of implementing a

Digital Twin, an extremely promising technology in the manufacturing and other fields,

research on which is still ongoing.

The assumption that was made at the beginning of the project was that, since the DT is

able to replicate the behavior of a system in real time, then by exploiting this data it

would be possible to work in a dynamic environment and making decisions consequently

to the changes detected in the physical system.

The use of simulation models as a decision-making tool at a company level is a great

strategy to solve industrial problems, especially in the manufacturing field, which is why

it was chosen as the environment to which to apply the case study. The reasons for this

are related to the wide variety of problems that can arise within a production line, to

name a few it is possible to find machinery maintenance, staff absences, and unforeseen

changes in scheduling. The decision of the specific field to be analyzed was made by

looking for the one that would allow the case study to be developed as broadly and

comprehensively as possible. The staff absence scenario was ruled out regardless, as a

virtual model of human operators would have been extremely error-prone due firstly to

the variability of system behavior, which is impossible to predict, and secondly to the

practical and technical difficulty of collecting data from such resources. The two

candidates from which the decision was made were therefore the topic of predictive

maintenance and the topic of dynamic scheduling. Both gave the possibility to monitor

a physical production system through sensors, and to collect and analyze data in order

to evaluate performance; the reason why the topic chosen in the end was the dynamic

scheduling is related to the fact that it also gives the possibility to see how machinery

interacts with each other when a variation in production compromises the planned

scheduling, thus adding a focus on the connection within the physical system, and not

just the connections between physical and virtual and vice versa.

 6

Dynamic scheduling is an evolution of the Predictive scheduling. The latter is a strategy

widely used for the preparation of a good-quality optimized baseline schedule, which is

done in advance taking into account many possible scenarios, and easy to maintain.

Although it turns out to be a good technique, it is important to remind that in the

manufacturing context, the integrity of a schedule is very easy to be disrupted. The

effect of previously introduced events may in some cases lead to the need to completely

reschedule the project; Dynamic scheduling is useful in that it allows a strategy on how

to first create the initial baseline, but more importantly, in times of need, a strategy on

how to respond to events in real time.

The hypothesis to be proved is that, following a generic production line failure, the final

results in a dynamic environment should perform better than the theoretical results

calculated a priori. The entire work will therefore be carried out with the aim of

collecting data in favor of this thesis, and consequently demonstrating that the

application of a digital twin is able to bring benefits in terms of performance.

The work is divided into three main parts: the first is intended to introduce all the basic

concepts needed to understand the context, the basics of the industry, and the

platforms used for implementation; the second is related to the detailed presentation

of the case study, with the explanation of the machinery used, the connection methods,

and all the programming and development phases that were addressed; the third is

related to the previous one, as it includes the phases of data collection, analysis, and

comparison of results.

 7

1. Introduction to the Digital Twin technology

“A digital twin is a virtual representation of an entity such as an asset, person,

organization, or process. Its elements include model, data, unique one-to-one

association and monitorability.1”

Digital twin is indeed used as an industry 4.0’s core technology to the realization of

Cyber-Physical Systems (CPSs), capable of bringing many different benefits, depending

on the type of application. According to some research, the digital twin was born with

two broad purposes: interrogative features and predictive features. The first one refers

to the ability of the system to analyze the current and past state of the system, while

the latter refers to the ability to predict future states.

In this chapter some topics will be mainly introduced: the history of digital twin

technology, the definition of its characteristics, the research progress, and in conclusion

the potential implementations of the product.

1.1 History and generation of Digital Twin technology

The first digital twin was conceived in the 1960s by NASA as a response to the Apollo 13

explosion. The technology was useful in subsequent Apollo missions, allowing the real-

time status of the vehicle to be reflected on a 'twin' left on Earth. Thanks to this type of

connection, it was not only possible to observe the actions of the spacecraft, but also to

predict future states as optimally as possible, and thus be able to advise the astronaut

on the most appropriate maneuvers, based on flexible evaluations that could be

modified in real time and no longer programmed in advance.

Later, in 2003, discussions began about the 'mirrored spaced model’, a technology based

on the same principles as the one produced by NASA, the only difference being that in

1 Gartner, 21 Lessons From Successful Digital Twin Implementations for Manufacturing, 21 December
2021.

 8

this case the device that collects and analyses data from a physical model, instead of

being physical itself, is digital. One of the first to introduce a proper definition of this

emerging technology, later to be known as the digital twin, was Professor Grieves, who

called it “a digital copy of one or a set of specific devices that can abstractly represent a

real device and can be used as a basis for testing under real or simulated conditions”.

In the first period after its presentation, the model was not very successful, especially

its possible application to the field of manufacturing. The reasons for this lack of hype

lay in the fact that in those years, the means by which information related to the

production process could be obtained were extremely limited and difficult to adapt to a

digital platform such as the digital twin: much of the information, in fact, was contained

in manuals and paper documents. The other reason is instead related to the purely

technological aspect, as at the time it was extremely difficult to create an algorithm

capable of processing a large amount of data in real time, and consequently the

connection between the two spaces was difficult to implement.

The first conceptual model will arrive in 2011, again proposed by Grieves together with

John Vickers, and will remain in use for years to come. The system is depicted in image

1-1, in which its main components can be seen: the real space, the virtual space, and the

interface zone between the two, characterized by a flow of data from the physical space

to the virtual space, and a flow of information in the opposite direction, from the virtual

to the physical space. The model is a useful representation of how to make the two

spaces interact, and how the virtual model can be used to integrate and modify the real

model.

Figure 1-1 Conceptual model of a digital twin

 9

From 2011 onwards, therefore, opportunities to develop a digital twin began to

materialize. The first was produced by the US Air Force Research Laboratory, with the

aim of creating an aircraft twin to evaluate and predict the actions of the physical copy

during its whole lifecycle; in particular, its main purpose was to collect data about the

performance of the aircraft, analyze them, and simulate the optimal scenario in which

the task associated to that specific product could be performed. This data was not the

only type of information collected: the Airframe Digital Twin was also associated with all

the mechanical characteristics of the object, so that a complete view of the

manufacturing information was also available, so that the entire maintenance aspect

could be managed.

In 2013, Industry 4.0 and Cyber-Physical Systems, one of its core technologies, were

discussed for the first time in Germany.

Industry 4.0, also known as Smart Manufacturing, “is based on the intensified

application of Information and Communication Technologies in the industrial

environment”, with the final aim of achieving industrial automation and introducing

some new production technologies to improve working conditions, create new business

models, increase plant productivity, and improve product quality, during the whole

product lifecycle.

As introduced above, one of the core technologies of Industry 4.0 is the Cyber-Physical

System (CPS), which is part of the four categories of core technologies defined by

Knudsen, Kaivo-oja, and Lauraeus. The other three technologies are the Internet of

Things (IoT), the Cloud Computing, and the Industrial Integration category, with the well-

known SOA and BPM. The focus will be on the CPS category, as it is the one including

the Digital Twin technology. CPS, in fact, concerns the integration of different kinds of

systems; the main purpose of which is to control and manage a physical process, through

the exchange of feedback and information for adjustments to be made in real time. The

introduction of the Digital Twin concept was therefore crucial to concretize and

implement the functionality of CPS.

 10

From 2016 onwards, the real hype moment for the Digital Twin begins. Many companies

start to recognize its potential for the application in various sectors; within a year, in

fact, DT is cited among the ten most strategic and promising technologies.

This technology has developed rapidly in recent years, both in theory and in practical

application. The reasons for this booming are linked to a technological development that

has laid a more solid foundation for the DTs implementation, such as the rapid growth

of new ICTs, which are more and more adaptable on a large scale and on big data, and

the development of intelligent algorithms, related to machine learning and deep

learning.

1.2 Characteristics and definition of Digital Twin

As introduced in the previous section, the digital twin is not to be interpreted simply as

a digital prototype, as it does not only represent the geometry, functions, and

performance of its physical object; for this reason, defining it as such would be very

reductive. This section will therefore introduce all the main features of the technology,

so that to fully understand the potential of this technology.

1.2.1 Digital Twin related concepts

When it comes to the digital twin it is common to risk creating misunderstandings. The

technology under consideration has some common related terms which, however,

represent different concepts. The difference between Digital Model, Digital Shadow,

and Digital Twin will then be explained here2.

With the term Digital Model is intended a digital creation which is not related to an

existing object. A typical example could be the blueprint of buildings or roads that are

just planned to be built, but that do not already exist. The typical characteristics of this

2 Robert Woitsch, Anna Sumereder, Damiano Falcioni – Model based data integration along the product
& service lifecycle supported by digital twinning, April 2022

 11

concept are: 1. The absence of data exchange between the physical and virtual

environment; 2. The absence of impact on the digital model as a result of changes in the

physical model, once built.

The second related term is Digital Shadow; in this case the physical object already exists,

and the shadow represents it. The main difference is that the data flow is unidirectional

because the physical object sends data to the virtual one, affecting its changes, but the

digital object cannot send data or information to impose o suggest a change to the

physical sphere.

Considering the characteristics that emerged for the two previous technologies, it is

therefore clear that the digital twin represents the most complete model, in which data

travels in both directions. This means that each component is fully integrated, and so

that each change in one environment affects the other. Below is an image that

encapsulates all the main concepts of the three models presented in this section.

1.2.2 Main characteristics of the technology

An analysis of the literature reveals several main characteristics of the Digital Twin, some

of which have been defined since the emergence of the first models, while others have

been introduced over time in accordance with developments in research.

Figure 1-2 Digital Model, Digital Shadow, and Digital Twin

 12

From an academic article3 it emerges that the main characteristics of the technology

under consideration are 12: 1. Physical Entity; 2. Virtual Entity; 3. Physical Environment;

4. Virtual Environment; 5. Fidelity; 6. State; 7. Parameters; 8. Physical-to-Virtual

Connection; 9. Virtual-to-Physical connection; 10. Twinning and Twinning Rate; 11.

Physical Process; 12. Virtual Process. The same article subsequently defines seven

further categories, which are related to system characteristics that have not yet been

fully developed, but on which the current research is being based. These are: 13.

Perceived Benefits; 14. Digital Twin across the Product Life-Cycle; 15. Use-Cases; 16.

Technical Implementation; 17. Different levels of fidelity; 18. Data Ownership; 19.

Integration between Virtual Entities.

The first four characteristics are related to the concepts expressed above, namely the

difference between physical and virtual entities; a further distinction is done between

entity and environment, in order to better differentiate which is the representation of a

single object, and which instead represents the whole system operation. Two other

important characteristics which have already been introduced are the Physical-to-

Virtual and Virtual-to-Physical connections, which permit to implement the bidirectional

flow of data. To conclude the part related to the two different environments, it is also

important to differentiate the Physical Process from the Virtual Process, the integration

of which forms the basis of learning factories. Here, the digital copy is no longer only

linked to the object and the environment in which it is located, but to the entire set of

phenomena and actions performed, linked by a nexus, that constitute a process.

The remaining characteristics of a DT system are mainly related to its performance.

Fidelity is a concept that has to be estimated, the value of which represents how

frequently the model is able to adapt and update itself according to the input it receives.

In order to have a good level of fidelity within the system, it is therefore important to

focus on the signal transmission optimization, because it is precisely from the fact that

3 Jones, Snider, Nassehi, Yon, Hicks – Characterising the digital twin: A systemcatic literature review. CIRP
Journal of Manufacturing Science and Technology, 2020

 13

the distribution of the time function is discrete that the greatest problems with the

accuracy of the system arise. Some of the typical topics that make problems arise,

related to discrete signal transmission, are the necessity of time stamps related to the

events, the clock synchronization across and within platforms, and a careful analysis and

selection of events that need to be processed, and those that are negligible.

The State is a characteristic useful to measure the current condition of both physical and

virtual entities, and of all the environment parameters. These Parameters refer to the

types of data and information that flows between the two environments. Some

examples are: 1. Form, which refers to the geometric structure of the physical entity; 2.

Location, related to the geographic position; 3. Processes, which are all the activities in

which the entity is engaged; 4. Time, that includes both the duration of a specific action

and the time at which an action takes place.

One of the last characteristics to be analyzed is the Twinning, which represents the

synchronization between the two different entities. This process consists into measuring

the state of the physical and virtual entities to verify that they are equal in each

parameter considered in the system. The Twinning process is influenced by every

change that occurs in the two entities, which are kept under control and communicated

through the two-way connections, Virtual-to-Physical and Physical-to-Virtual. The

condition in which both states coincide is defined ‘twinned’. The Twinning Rate is then

the frequency related to the twinning process, and theoretically it should be in real-time,

in order to permit the two entities to work simultaneously and together, obtaining an

instant response to changes.

An explanation of some of the seven additional points will also follow, in order to better

understand the requirements of Digital Twin across its entire lifecycle, and to focus on

existing and under-development methodologies that can be applied to improve the

technology.

A particularly important concept is that of Perceived Benefits because it defines all the

positive consequences, both economically and organizationally, associated with the

 14

application of a DT to a system. These leads to a reduction of costs, risks, reconfiguration

time, but also to increasing efficiency, reliability, and optimal manufacturing

management and maintenance decision making.

Another important topic to highlight is the Integration between virtual entities. Digital

Twin, in fact, can also consists into multiple virtual environments, each one with its own

specific use-case. An example to clarify the concept may be represented by the need to

deliver a product by a specific deadline, taking into account the possible failure, which

must be predicted: each of these tasks can be managed by different, but integrated,

digital twins. The basic operation of this concept is to take the output of a virtual entity

and use it as a trigger for a further entity, which will analyze it and exploit it to complete

its task. It is important to take into account the fact that as the number of digital twins

increases, also the complexity of the integration process significantly increases.

1.3 Analysis of the research progress

The digital twin in recent years has experienced a great increase in interest from both

the academic and research worlds, as well as from industry due to all its possible

applications. After introducing the DT and defining its main characteristics, it is also

important to assess the current state of research and try to predict the future directions

it may take. This paragraph will be indispensable in order to gain clarity about the

current state of development of the technology, so as to be able to proceed to analyze,

in the next step, some of its most probable applications in the field of interest

considered in this work.

1.3.1 Gartner’s Hype Cycle

The hype cycle is a useful tool for the graphical representation of the maturity and

adoption of a specific technology, as it also indirectly provides information related to

future exploiting opportunities.

 15

Gartner Hype Cycle4 in figure 1-3 shows the point of evolution of many different

technologies related to the manufacturing operations, by locating them in specific

points of the graph. The Hype Cycle represented above is composed by five phases:

1. Innovation Trigger: A potential technological breakthrough triggers research. At

this stage, there are often no usable products, and commercial feasibility is

unproven.

2. Peak of Inflated Expectations: initial enthusiasm produces a series of successes,

clearly accompanied by multiple failures. Some companies act, continuing with

research and development, many others do not and exit the market.

3. Through of Disillusionment: it is known as the phase that creates or destroys the

product. Here, experiments and implementations have a high probability of

failure. Investment only continues if the surviving suppliers improve their

products to the satisfaction of early adopters; if this happens, the technology is

very likely to proceed to the plateau stage.

4. Slope of Enlightenment: at this stage, not only the possibility of using the

technology materializes, but also do different cases in which it can be applied.

Technology suppliers present new-generation products.

5. Plateau of Productivity: mainstream adoption is beginning. The broad

applicability and market relevance of the technology is clearly bearing fruit,

expanding the earnings of the manufacturing companies as well.

4 Gartner, Hype Cycle for Manufacturing Operations Strategy, 2022

 16

In this case, DT technology is in the third phase, the Through of Disillusionment. The

graph in image 1-3 provides further information in addition to the positioning of the

technology: it also defines a time range within which the plateau is estimated to be

reached. The digital twin, unlike other technologies in the same phase, has an estimated

entry time of 2 to 5 years, making it a particularly promising technology.

Gartner’s Hype Cycle analysis defined also the market penetration of the technology,

which resulted between 1% and 5% of the target audience, and the maturity of the

technology, which resulted being ‘adolescent’.

1.3.2 Drivers of the technology development

Considering the potential of technology, companies are accelerating the adoption of the

digital twin as a means of supporting so many of their internal activities, even if

nowadays it is still not possible to define a clear and distinct set of drivers for the

development of this technology. However, there are some areas where the use of the

digital twin is even more pronounced than in others; among these, it is important to

mention: 1. Asset-intensive industries (i.e., oil and gas companies, manufacturing, and

automotive), in which the technology is indispensable to improve business operations;

Figure 1-3 Hype Cycle for manufacturing operations strategy, 2022

 17

2. Military field; 3. Leading-edge enterprises use digital twin to model their IT system or

supply chain processes, with the final aim of optimizing cost management; 4. Enterprises

that manage huge amount of data use DT technology to create models able to extract

the meaningful ones. These environments, although different from each other both in

terms of the nature of the business and the scope of application of the digital twin, form

a good base of structural factors, useful for generating knowledge and continuing the

product innovation process.

1.3.3 Potential obstacles in technology development

As mentioned above in the general introduction of the technology, DT has certain

fundamental requirements for its implementation, which, if they were to be lacking

within specific sectors, could jeopardize its development. The main obstacles that can

be noticed are related to many large enterprises’ lacks in technological or managerial

field. More specifically, companies often do not have enough business objectives,

structures, teams or processes to start developing such technology, or in other

situations they may not have enough finance and technology. In fact, the

implementation of a DT models has a large amount of indirect costs, e.g., related to the

preparation of the teams, that must be able to create and maintain a possible portfolio

of corporate digital twins, and that must be able to manage the synchronization

between the various models. A further example of costs that companies have to bear

are the costs of adapting the DT to the corporate system, or the creation from scratch

of a technological structure that can enable its implementation. Not many companies

have the budget to bear all these costs.

1.4 Potential implementations

The purpose of this section is to explain in more detail some of the possible practical

applications of the digital twin; to do so, four main fields have been selected in which

the technology shows being most promising. The four fields, with their related relevant

characteristics, are listed below:

 18

1. Supply Chain: warehouse design optimization, creation of logistic networks.

2. Retail: modeling and simulation of customer’s behaviors

3. Healthcare: improvement of operational efficiency of healthcare operations,

improvement of personalized care.

4. Manufacturing: performance improvement, predictive maintenance, tasks

flexible scheduling.

1.4.1 Supply Chain

The functioning of the digital twin, when applied to a supply chain, is always based on

the same concept discussed of creating a simulation of the environment, that can

predict problems in advance and provide various possible solutions. The use of DT in this

field provides some major benefits, including increased productivity, optimized

transport, better management of emergency situations, and a much more detailed view

of the system.

One of the major form of weaknesses related to the productivity of a supply chain is

represented by the inventory management strategy, because it involves changing the

supply chain itself, which often means having to deal with unexpected consequences

that could not have been foreseen by a simple analysis made beforehand. Another

different application concerns the optimization of transportations: through the use of

the virtual model, companies have the opportunity to better execute their deliveries,

having immediate information about possible slowdowns and blockages and, as a

consequence, having the opportunity to suggest the better alternative strategy among

all the scenarios evaluated in real-time.

1.4.2 Retail

The retail sector is included in the list published by Forbes Technology Council in 2020

that selects 16 most promising application fields for DT able to modify the consumer

market. In this area, it is therefore important to focus on transforming the customer

experience, while also integrating analysis and forecasting of buyer behavior. In the case

of the customer experience, it is important to consider the self-checkout model as

 19

example, which, when integrated with digital twin, allows for real-time action that

avoids queues at the checkout, improving queue management, and facilitating

transactions by working on the speed of automated checkouts.

The application of this technology can, in addition, have direct and indirect impacts on

the product itself, which in its digital version can be monitored, modified, and updated,

thus allowing changes to be made in parallel on the physical product, after careful

evaluation of possible optimizations.

A final benefit is related to the industry's financial analyses and projections; technology

provides companies with the ability to refine and optimize profit forecasts, to adjust and

adapt prices, and to customize discount and promotion policies for customers. Here

again, the main problem is the same as highlighted above: all these implementations,

however, presuppose the existence of a suitable support architecture.

1.4.3 Healthcare

The healthcare sector is beginning to adopt digital twins firstly to improve the

performance of the healthcare organization, but also to enhance the personalized

medicine. Today's DTs in the medical field are an important innovation; they are able to

create models based on information from wearable devices and shared patient records,

to generate connected networks involving patients, doctors and healthcare

organizations, as well as drug and device manufacturers.

The term Personalized Medicine refers to the implementation of medical treatments

that are customized to the individual's genetics, anatomy, behavior, and other factors.

The most important example is given by virtual organs, which make it possible to

understand the progression of a disease over time, in order to assess the response to

drugs, treatments, or surgeries. To summarize, the underlying concept is to create a

patient-specific virtual replica of the organ, with an anatomical analysis performed by

artificial intelligence, in order to improve and predict the study and treatment of

diseases.

 20

Further promising applications in this area include scheduling of surgical operations, full-

body scanning, and optimization of drug dosing.

1.4.4 Manufacturing

The application in the field of manufacturing is certainly one of the most promising; the

industry, in fact, is characterized by the use of high-cost equipment, which consequently

produces a large amount of data. This creates the perfect environment for the

implementation of the digital twin. Some of the main applications in manufacturing are

product development, performance improvement, predictive maintenance, and tasks

dynamic scheduling. The first two applications are particularly related. In fact, the digital

twin can be used to monitor and analyze products during their entire life cycle, thus

helping experts to decide whether or not to produce a product by understanding its

feasibility. At a later stage, on the other hand, it is useful for analyzing and monitoring

final products to see which are faulty or underperforming.

A further very useful application, capable of bringing both economic and operational

benefits, is predictive maintenance. Manufacturers use the digital twin to predict

machine downtime, so that companies can manage maintenance activities without

wasting time and incurring additional costs. This also improves the overall efficiency of

the machines, as technicians intervene before a breakdown occurs. The problem that

arises is an economic one as the use of digital twins for predictive maintenance activities

is not scalable. It is in fact a machine-specific virtual replica and requires costly

investments on the part of the company related to data science to build and maintain

the twins.

The last application is that of dynamic scheduling, or flexible scheduling. This method is

a crucial point in manufacturing systems, as these are always characterized by

uncertainty of various kinds, such as job insertion, machine breakdown, workers

absence and so forth. The integration of a DT can help monitoring and detecting

disturbance in the system in an immediate way, due to the constant comparison

between virtual and physical model.

 21

2. Introduction to the platforms utilized to build the system:

FlexSim and Node-Red

In this chapter, the two platforms used for the implementation of the digital twin will be

introduced, with a special focus on their main functions, in order to understand as

comprehensively as possible how their use was crucial.

The first to be introduced is FlexSim, an object-oriented software whose purpose is to

develop, model, simulate and monitor dynamic flow process systems. This platform was

used for the graphic visualization of the system, based on the information received from

the physical objects. With regard to the connections between physical and virtual

entities, and vice versa, Node-Red was used as an intermediate platform, capable of

receiving and collecting data from the physical system and sending it to the virtual one

for graphic representation. The phase of analyzing the information, followed by its

processing and decision-making to suggest corrections or changes to the physical

system.

2.1 FlexSim: simulation environment

Flexsim is a software that provides a complete suite of development tools, to create and

compile simulations of real systems. Animations allow for optimal visualization of the

system, and the platform supports tree view, 2D, 3D, and virtual reality.

The problems that usually arise within a system can all be traced back to two main

sources: uncertainty and complexity. As the number of components in a system

increases, it will become increasingly complex to understand and describe the

relationships between the components. Similarly, when uncertainty is introduced into a

system consisting of several components, most analytical or predictive methods used in

prior fail. This happens because the uncertainty can be of various kinds, e.g., machinery

breaking down, variable times, batch sizes, or absence of workers. FlexSim is therefore

an excellent tool for gaining knowledge about a complex system that is subject to

uncertainty. It is indeed very important to remember that only when a system is well

 22

analyzed and the relationships between its components are understood, then it can be

improved.

The core functionality of FlexSim is a simulation application compiler that allows users

to develop simulations with the help of graphical user interfaces, object libraries and

menu structures for a variety of applications in the marketplace.

A further level belonging to the simulation environment is the Flexsim Developer, which

is used to develop simulation applications. This developer contains tools and interfaces

that, as shown in Figure 2-1, provide standard objects required for simulations, such as

sources, queues, robots, processors, etc., which can be used directly, or modified by

adding user-defined designs and information to match the desired model. The action of

modifying these features is permitted by the Developer, which in itself already provides

a number of standard alternatives; in addition, the user, using the Visual C++ compiler,

can go on to make further modifications as required.

The last level of use is the Simulation Application, whose function is to construct a

discrete-event simulation using the tools listed before from Flexsim. This simulation

application permits many different types of simulations, such as the FlexSim GP (general

purpose simulations), the FlexSim Port and SANS (for Shares Access Network Storage

systems). Each application can be designed and modified, which means that each model

can be faster, more efficient, and more effective, on the basis of the needs of the

creator.

Figure 2- 1 Example of simulation objects provided by the developer

 23

2.2 FlexSim: model development

The process of model development is composed by five basic steps: 1. Layout

development; 2. Object connection; 3. Addition of details; 4. Run of the model; 5. View

of output.

2.2.1 Layout development

The layout is structured by selecting objects from the library, which is shown in Figure

2-2, and dragging them into the model creation space, which is a virtual 3D spatial

environment. For each object, it is possible to position it where optimal by changing its

x, y and z spatial coordinates manually. After being placed in the environment, when the

layout is complete, what will be displayed on the screen will be an image similar to the

one shown in figure 2-1, in which the objects represent a real system, and are connected

to each other.

As can be seen in the previous image, there are different types of resources in the

library. Actually, it contains many different categories, but these two, Fixed Resources

and Task Executers, are the main ones. A fixed resource, which represents sources,

queues, processors, sinks, combiners, etc., is an object that remains stationary in the

model. On the contrary, the Task Executers are resources that are not stationary: they

Figure 2- 2 FlexSim library tool

 24

may travel, execute load and unload tasks of flow items, or act like a shared resource

among fixed objects.

2.2.2 Object connection

FlexSim provides two different types of connection, one for the objects (A-Connects),

and another for the center ports (S-Connects). Each single object, instead, is equipped

with three ports: input, output and center port.

Input and output ports are represented with small red triangles, and the direction of the

connection is illustrated by the orientation of the triangle, which points in toward the

next object for input, and away from the object for output.

The S-Connects, instead, is usually used to connect task-executers to fixed resources,

while in other cases it can also connect two resources that need to communicate. The

main actions enabled by center ports are:

• Flow items transport: if a task executer is connected by center port between two

fixed resources, it can be used as a transporter.

• Setting up: the model may include setup for its resources, and so there could be

the need to have a task executer connected through the center port during setup

times.

• General reference: as said before, fixed resources may simply have the need to

communicate or reference each other.

Figure 2- 3 A-Connects

 25

2.2.3 Addition of details

Once the layout has been completed and the links created, the platform will allow the

user to add logic and other types of data to the objects. The process consists of selecting

the layout window, and then editing or entering information such as cycle times,

capacity, routing logic, downtime, and statistics. Also in this case, the information

inserted can be chosen among the standard ones provided by FlexSim, or can be added

by the user through the use of flexscript or C++.

Figure 2- 5 Panel that permits to modify data

Figure 2- 4 S-Connects between center ports

 26

2.2.4 Run the model simulation

As soon as the simulation is activated, the model execution begins, and various

conditional scenarios are evaluated. FlexSim collects and returns the data generated by

each execution, which can comprise a single scenario, or multiple scenarios. The FlexSim

simulation has multiple functions: users can define the conditions, variables, and

constraints to be tested, as well as decide the number of times each condition is to be

executed and the duration of each execution. At the end of the simulation, performance

measures will then be provided, which will provide. a starting point on which to evaluate

scenarios and how to optimize them.

2.2.5 View of output

Simulation results tend to be displayed in two ways; in the first case, each simulation

can be viewed dynamically in 2D, 3D and VR animation as the model runs, while in the

second case, reports are printed on a dashboard, showing the parameters chosen by the

user. FlexSim's animation provides the ability to view multiple windows of the same

model, to move within them in order to zoom in and out of the model, and to view it

from the most appropriate angle. All these view manipulations can be performed

without affecting the execution. As for the dashboard visualization, the results of each

model run are based on predefined parameters, user-defined parameters, predefined

graphs, and user-defined graphs, as can be seen in the following illustration, Figure 2-6.

Figure 2- 6 Example of dashboard in FlexSim

 27

2.3 FlexSim: emulation tool

Emulation refers to the ability to simulate a Programmable Logic Controller (PLC). The

emulation tool in this context is in fact used whenever the system needs to use a PLC,

so that it can be developed and tested. A PLC, as mentioned before Programmable Logic

Controller, is a computer used to interact with machinery in production systems.

Specifically, these computers possess a logic, which acts as the brain of a production

system, managing all inputs, outputs, internal communications, and the behavior of the

system as a whole.

In this context, it is therefore necessary to create a connection between the emulation

tool in FlexSim and an external server, or another external PLC. The first of the

emulator’s two main characteristics, shown in Figure 2-7, is therefore represented by

the connection; the details about how it happens are very technical, so they will only be

introduced in this section to provide the basic concepts but will then be expanded upon

later, in the part where the application in the case study will be explained. The second

technical characteristic of the emulation tool is called variables, and it refers to any input

and output that can be received by or sent to the PLC. The two variables recognized by

the platform are: sensors, for the inputs, and controls, for the outputs.

Figure 2- 7 Two FlexSim windows that show respectively variables and connections

 28

As said above, controls are the PLC’s outputs, which means that they receive an

information from the server and tell the system what to do to respond to that specific

signal. Typical examples of controls are: start and stop to the conveyors or to the

processors, positioning in a specific place, issue a warning, etc.

Sensors, instead, are inputs to the PLC, that contain information about the physical

environment considered. Usually, sensors are connected to position detectors, photo

eyes, and any other sensor able to monitor the system. The basic logic related to the

interactions between these entities is based on the PLC, which receives inputs from the

system, processes them and communicates with the system, via the outputs, to advise

what action to take on the basis of the previously evaluated data.

2.4 Node-red: functionalities of the platform

The digital visualization of the real model on FlexSim presented a challenge, as not all

data are digitally available, and therefore need to be processed or derived in different

ways. Thus, the simple transfer of data from the physical to the digital system required

the use of an intermediate platform, Node-Red.

Node-RED is a programming tool conceived with the idea of managing the IoT world

through data flows. Its basis programming language is JavaScript. The main feature of

this platform is to create flows that permit a communication between hardware devices

and online services. In these flows, packets of data travel via some protocols, and pass

between nodes performing actions, calculations, or analyses.

Figure 2- 8 On the left the creation of a flow with four nodes; on the right the
programming environment available for each node

 29

As already mentioned, the operation of Node-Red is based on its nodes, also known as

'black-boxes', each of which has its own specific purpose; it receives data, processes it

as ordered in the programming environment, and finally passes it on. This functionality

is the main reason why it is used as an intermediate step in the communication between

the physical model and FlexSim, in order to pass already processed compatible data to

the final application.

Also, in Node-Red there is the possibility to visualize the collected data, through the use

of a dashboard. The latter can be created on the basis of the user's needs, by placing

specific nodes in the vicinity of the data of interest, in order to collect them as output

and plot them on tables, graphs and other types of interfaces for their graphic

visualization.

2.5 Node-Red: representation of a model through flows

With Node-Red, the programming is done through the concatenation of objects,

assigning each of them a different task in order to have a complete description of the

assumed, and to be assumed, behavior of the model. Nodes, in order to communicate

with each other, use a pre-established data packet, known as a message, the content of

which may vary according to requirements. Each message exchanged has two

characteristics: the topic, and the payload. The topic identifies the scope, is set using a

string and may be associated with any value, while the payload represents the value of

the information being transmitted.

2.5.1 Flows

The flow, defined by a name and a specific description, is the main way to organize the

model logic and represents a set of organized and connected nodes. Each flow has two

main characteristics: Properties and Environment Variables. The first one is used to

simply define the flow with name and description, while the second one collects all the

properties that are valid as environment variables within the flow.

 30

2.5.2 Nodes

Nodes are the objects whose interaction constitutes a flow. Node-Red provides a wide

set of predefined nodes that can be adapted and used in many different flows, or the

user may import them from the library or from the clipboard.

Once the appropriate node has been selected from those available, its configuration can

be edited. The edit contains three tabs, that are shown in Figure 2-11: 1. Properties; 2.

Description; 3. Appearance.

Figure 2- 9 Information box showing a flow with its nodes

Figure 2- 10 Palette containing some input and output nodes

 31

The properties tab permits to edit the node’s properties in a JavaScript programming

environment. It could be important to set:

• Value, which is the type related to the property, and it is mandatory to define.

• Optional Boolean that activates whether the property is required, and that is set

to null if the property is invalid.

• Optional function that can be used to validate the value of the property.

• Optional Node’s Type, if the property is a pointer to a configuration node that

needs a type.

The description is a per-node documentation, which is shown in the information bar

when the node is selected.

The appearance is instead the option to customize the node, in fact, the tab provides

many options, such as to select whether the node’s label is shown, to change the icon,

to provide custom port labels, etc.

Figure 2- 11 Node edit: properties, description, and appearance tab

Figure 2- 12 Wiring nodes

 32

Nodes are connected to each other through wires, that are created by simply dragging

the link from the output port of a node to the input port of the following, as can be seen

in Figure 2-12. Other actions that can be done on wires are splitting and moving; if a

node with both input and output ports is placed on a wire, it can be inserted in the flow

simply by releasing it on that point on the wire. To move a wire from a node, it would

be sufficient to take it from the extremity that is to be moved and move it to a new port.

In conclusion, it is also important to remember that nodes can be switched on and off

as needed, using a simple command to stop the flow of messages from that node

forward in the flow.

An important tool is the one that allows you to manage the palette of nodes, managing

them or installing new ones. The palette manager has two tabs: one lists the nodes

currently installed in the runtime, and the other permits to see a list of nodes that can

be installed.

The following image, Figure 2-13, shows a representation of what a complete Node-Red

flow with nodes, connections, and implemented logic looks like.

Figure 2- 11 Example of a complete flow in Node-Red

 33

3. Case study developed in the laboratory

This chapter will discuss the case study which has been chosen to finalize this work, and

to illustrate all the processes that will lead to prove (or disprove) the assumption made

at the very beginning, i.e. that the implementation of a digital twin to support flexible

scheduling, leads to cost and performance advantages in a production line.

The situation that will be proposed in the case study is as follows: two collaborative

robotic arms perform the same task, which consists of taking a unit to be processed from

the starting point, and releasing it at the finishing point. The batch size is ten units and

therefore, in the better scenario, each robot will process five units. In the next

paragraph, it will be seen how, in the programming phase, loops of five repetitions were

generated, so that if the best-case scenario occurred, each of the two arms would

perform its own sequence of tasks, without having to make any changes to the system.

The alternative situation to be evaluated will instead aim to propose a worst-case, a time

failure scenario, in which one of the two robots will process the units more slowly. At

this point, there are two possible outcomes:

Figure 3-1 Physical system used to test the Practical Worst-Case

 34

1. Do-nothing scenario, in which the unaffected robot will process its five units as

planned, and the other will cause a delay in production.

2. Mitigation scenario, which is the focus of this work, and involves using the digital

twin to recognize the robot that is causing delay, and to then send a signal to the

working robot. The latter, once it has processed its five units, will again enter the

production phase, processing the units for the slow robot as well. By doing so,

there should be instant scheduling changes.

The final aim of this whole experiment involves a phase of collecting the results and

comparing the various scenarios. Obviously, despite the application of the digital twin,

it will be impossible to mitigate and obtain performance values on a par with the optimal

scenario; however, with this method of solving a time failure, the final results should lie

in an intermediate scenario between the best and the worst, in which no action is taken

at all.

3.1 Digital Twin applied to a production line to achieve dynamic scheduling

The case study developed in the laboratory involves the creation of three different

entities: the physical space, the virtual space, and the connections between the two, in

both directions. The physical space is represented by two collaborative UR3e robots

whose associated task is to perform the pick and place action on a batch of units to be

processed. The two robots therefore represent two machines of a very simple

production line, which is consequently represented in the virtual model on FlexSim. The

virtual model is organized in such a way that the two objects shadowing the physical

machineries not only receive the data, but are also particularly realistic representations

of them. For the graphic visualization part FlexSim was used, as it provides an optimal

environment in which to create a faithful model. For data processing, Node-Red

software was used to read the data from the robots, pass it to FlexSim, and to process

the information collected and send commands to the robots to optimize, when possible,

the process.

 35

Three scheduling models will be proposed to analyze this production line:

• non-dynamic scheduling: calculated a priori, representing the optimal

production case, i.e. the scenario in which no unexpected events of any kind

occur.

• non-dynamic scheduling, also calculated a priori, which shows what would

happen to the system if one of the two machines slowed down but there was no

sensor to detect it, and thus no corrective action (do-nothing scenario).

• dynamic scheduling, achieved by evaluating the data passing through the digital

twin's system in real time, and thus able to take corrective action (mitigation).

The following sections will introduce in detail the creation of the various entities,

explaining all the procedures carried out in the laboratory, and then it will be explained

in detail how the various scheduling models were designed.

3.2 Physical system

The physical system considered in this case study consists of two machines of a

production line. The two machines chosen are two collaborative robotic arms, capable

Figure 3-2 Steps related to the creation of a Digital Twin model

 36

of performing the pick and place action. The machines were programmed to work in

parallel, equally sharing the production of a batch of ten units.

3.2.1 UR3e collaborative robot arm

UR3e is a compact collaborative robot, and the smaller of the e-series produced by

Universal Robots. These robots are made entirely of plastic and aluminum, with the

addition of some steel components, resulting in an extremely low weight. Other typical

features are a maximum load of 3 kg and a reach of 500 mm, making them particularly

suitable for assembly tasks. Thanks to their compactness, they can be easily positioned

in any orientation, and the assembly procedure is also particularly simple due to their

total weight of around 11 kg.

The arm of the Universal Robot consists of tubes and joints, the movement of which can

be easily coordinated by locating the tool in the desired position, except for the part

bordering the base. There are 6 joints, and these are the ones that ensure the movement

of the robot; you have the base, which is the element on which the robot is mounted,

followed by the shoulder and then the elbow, which are the ones that perform the

movements with greater amplitude, while at the end of the robot there are then the

Figure 3-3 UR3e collaborative robot and its Teach Pendant

 37

wrists, 1, 2, and 3. Wrists 1 and 2 take care of the finer movements, while wrist 3 is the

one to which the tool is attached.

Each robot has its own control unit, which includes all electrical inputs and outputs

connecting the robot arm, the Teach Pendant (on the right in figure 3-3) and any other

peripherals.

For switching the robot on, off, and programming tasks, the Teach Pendant is used. The

robot switches on from the main on/off button but remains in a state of waiting for the

start signal, to prepare it for normal operation. Only after the start signal has been given

via handheld, then the robot is actually ready. Figure 3-4 shows the screen to start it up

for operation, once it is switched on.

3.2.2 Robot programming phase

In the previous section, the main characteristics and some basics concerning the use of

robots were introduced. In this section, however, all the operations performed on the

Figure 3-4 Start-up screen on the Teach Pendant

 38

physical system will be explained in order to implement the production line by

programming the tasks to be performed by the robots.

The production line to be created consists, as explained above, of two machines that

process a batch of ten units in parallel, splitting it in half. Theoretically, to complete their

respective tasks, the two robots would then have to pick up a unit at a time at the initial

position and transport it to the final position, working at the same speed.

In order to achieve this, it is therefore necessary to create a program using the Teach

Pendant; this consists of serially inserting commands from the list on the left in Figure

3-5.

The main steps to focus on when creating the robot program are the following:

• Set the initial and final positions of the robot. There are two methods to do that,

the first one, the freedrive function, consists in choosing the position by moving

the robot to the point of preference: the spatial co-ordinates where it is located

will be read automatically and will be recorded as a waypoint. The second

method permits to choose the x, y and z coordinates in millimeters and in

radians, relative to the tool position, and then choose the angle in degrees for

each joint. Figure 3-6 shows the panels used to position the robot: waypoints 1

and 2 were set manually so that the first corresponded to the robot's start

position, i.e., the position in which it performs the gripping action on the units in

the batch, while the second represents the point in which the robot releases the

unit at the end of the task.

• Define the main characteristics of the task: in this case, having to process five

units each in an optimal situation, a loop was defined for both robots consisting

of five repetitions, which can be restarted at any time if necessary. The loop is

illustrated in Figure 3-7.

• Adding all the extra features that permits to optimize the process. In this case, it

was necessary to add waiting times for digital input in order to regulate the

execution of the program. All the waiting times that can be read in Figure 3-5

 39

relating to the program represent waiting times and the exchange of external or

internal signals, the so-called digital inputs and digital outputs, which allow more

control over the execution of the loop.

• Adding threads. A thread is a part of a program outside the main thread, but

which is executed concurrently. The usefulness of setting up threads containing

start and stop signals in this case is that the robot is always listening for these

signals. Threads 1 and 2 are two subprograms which perform a start and a reset

action on command; these two actions will be explained in more detail in the

section on connections, as they are handled by the internal connections between

robots, in the case of thread 1, and between robot and node-red, in the case of

thread 2.

 40

Figure 3-5 Robot's main program on the left, and graphical representation on the right
Screenshot taken from Robot 1

Figure 3-6 Position settings
Screenshot taken from Robot 1

 41

3.3 Virtual system

The creation of the virtual system is the second fundamental step in the creation of a

digital twin. As already explained, the environment used for the graphic visualization of

the model is FlexSim.

Figure 3-7 Focus on definition of the loop
Screenshot taken from Robot 1

Figure 3-8 Graphical representation of the model in which the two robots in
parallel are digital shadows of the real UR3e in the laboratory

 42

Next, the entire digital model building phase will be explained, including any problems

encountered and solutions.

The virtual system was created in such a way as to respect the organization of the

physical one. Therefore, two processors were placed in parallel, so that they could

perform their tasks in the same way as the UR3e in the laboratory. The remaining system

components, on the other hand, are unrelated to the real model, but were indispensable

to ensure the most realistic process possible on FlexSim. These other components will

be explained below.

• The source was used to generate the batch of ten units, thanks to its function,

named arrival schedule, which allows the user to select the size and arrival time

of the batch.

• The queues represent the initial and final coordinates in which the physical

system’s robots do their pick and place actions. Queue 1 automatically receives

all the units to be processed in the instant they are generated, and places them

in a specific space, ready to be collected by the robots. The system's default

settings require that the queue itself sends the units to the next machines, thus

using a push strategy; these settings have consequently been modified to follow

a pull strategy as in the physical system, according to which it is the robot that

fetches the unit to be processed at the moment it is required.

As mentioned above, physical robots are represented on FlexSim via processors,

although by default these have a completely different geometric shape. The reason why

they were chosen as objects for representation anyway are twofold: the processors have

a large number of functionalities, especially when connected to the emulator tool, while

the robot, despite existing as a representable object, is regarded by the platform as a

task executor, and consequently would not have provided useful data if connected to

the emulator.

The following images in Figure 3-9 will show how it is possible to change the appearance

of objects in the system to make them as realistic as possible.

 43

3.4 Connections

Connections are the fundamental part of a digital twin, as without them it would only

be a digital shadow of a physical system. The presence of connections in fact not only

allows data to be passed to the digital system, which will then be able to replicate the

form and behavior of the physical one, but more importantly the connections allow the

flow of information in the opposite direction, which is important for suggesting changes

to the physical system. It is precisely this real-time, bidirectional flow that allows the

optimization of the system, being able to recognize changes and propose solutions while

the process is in progress.

In this section, all types of connections implemented within the system will be

introduced: the connection from physical to virtual, i.e. between robot and FlexSim, via

Node-red, and the connection from virtual to physical, which mainly takes place from

Node-Red to the robots, as it is in this platform that the data analysis and program

execution takes place. However, albeit slightly less optimal, a reverse connection

starting from FlexSim was implemented in order to demonstrate that the system is able

to work in its entirety.

Figure 3-9 On the left the graphical representation of the robots; on the right the panel that permits to modify the geometry
and import the robot shape

 44

Finally, a third type of connection will be introduced, which is not characteristic of a

digital twin system, but which in this case was nonetheless fundamental to the

development stages: the connection between the two robots in parallel. It is important

because the two machines are able to send signals via digital input and digital output to

each other, which are easier to manage at the program level in the Teach Pendant, and

highly functional.

3.4.1 Physical-to-Virtual data flow

The connection that takes place from the robots to the digital model is called Physical-

to-Virtual data flow, as a large amount of data is passed from the former system to the

latter.

With the connection implemented between the physical model and the virtual model,

it was possible to collect the following data:

• Status of the process

• Robot process time, which is calculated as the time between when the robot is

in its initial position, and when it returns to the same, after unloading the unit in

its final position

• The number of units processed by each robot

Figure 3-10 Representation of bi-directional interactions between systems and platforms

 45

All this data is calculated based on the data received from the TCP-in node, which is then

processed to obtain different information to be passed to FlexSim.

To obtain or send data and information packets, most modern systems use open-source

industrial connection protocols, whose main characteristic is the ease of

implementation, thanks in part to the large number of connected software that has

emerged since talk of Industry 4.0 and the Internet of Things began. Next, it will be seen

how these methods are applied to achieve the purpose of manipulating data from the

various models.

3.4.1.1 Modbus Protocol introduction

The protocol used in this case study is called Modbus. Modbus is an industrial protocol,

developed in 1979, that represents the main means of communication between

automation devices. More specifically, Modbus is a request-response protocol based on

the connection between a master and a slave, that in this specific case is the

Programmable Logic Controller (PLC) of the robot.

Modbus is characterized by four data banks, whose main purpose is to define the type

and the access rights of the contained data. It is important to remind that these four

blocks are purely conceptual, in fact, they can both exist as separate memory schemes

or be overlapped. These banks are resumed in the following table.

Table 3-1 List of the different banks with their main characteristics and data access permitted

 46

Modbus provides a specific Register Indexing Scheme: it defined a specific range, from

0 to 216, in which each number can address a specific data, and it also associated a prefix

from 0 to 4 to specify which of the four data blocks the user wants to exploit, in the

order in which they are listed in Table 3-1.

A problem that may arise concerns a mismatch between the functions allowed by the

master, and what the slave can handle. To solve this, the Modbus TCP specification has

listed three classes called conformance classes: class 0, class 1, and class 2, each of them

with some related codes supported both by master and slave.

• Class 0: these codes are considered the basic ones of a Modbus device, and are

Read Multiple Registers and Write Multiple Registers, with their associated

number. Their unique mission is to permit the master to write and read data.

• Class 1: this class provides 7 codes, for all the four memory blocks listed before,

to both read and write data.

• Class 2: it includes more specialized functions, but it is very difficult to

implement.

3.4.1.2 Data reading from robots: TCP-in node

Following the brief theoretical introduction on Modbus protocols, it is now possible to

see how they are implemented in the real case in the laboratory. This section will

specifically introduce the connection between the robots and the Node-Red platform,

which is done via TCP/IP protocols. The Transmission Control Protocol / Internet

Protocol is a set of network standards that encompasses the rules of communication on

the Internet, using an IP address for sending data packages.

In Figure 3-10 it is possible to notice that Node-Red uses two connections of the type

introduced above, which are circled in red: the grey nodes on the left are TCP-in node,

that use an IP address and a specific port (the number on the right after the colons) to

get the data. The two IP addresses are related to the two robots: the first one,

192.168.81.91, is associated to Robot 1, while the second one, 192.168.81.97, is

associated to Robot 2.

 47

Figure 3-12 Panel for setting up the TCP-in node that reads data from robots PLC

Figure 3-11 Part of the flow that reads data from robots’ PLCs

 48

In Figure 3-12, instead, it can be seen how the TCP-in node is created. The panel permits

to choose the IP address and the port, which are critical to implement the connection,

but it also gives the possibility to choose the type of output. In this case a buffer type

was chosen in order to obtain a set of data, and then the ones of interest have been

selected and collected via the following nodes and functions.

These two TCP-in nodes are the ones that bring Node-Red a set of data from robot 1 and

robot 2 respectively. This data set consists of the digital outputs, each representing a

specific piece of information. In this case, the digital output selected is DO3, containing

values associated with a complete movement performed by the robot. The digital

output sent by the robot contains two different values, one, which usually is a number

different than 40, during the entire movement phase, and one, equal to 40, at the

instant it is in the starting position ready to execute the task all over again. At this point

is has been essential the use of a filter node (Figure 3-13), which passes a value only

when it detects the change from 40 to another number, and vice versa. In this way, the

flow receives a single value that warns that the robot has finished its task. In order to

simplify the writing of the code, especially in view of the subsequent steps, the filter

node that detects a change sends the value 1 to the following functions, which will use

it to calculate some of the process variables listed above.

• Process time is calculated through the use of an Interval length node, which

exploits the DO3 values. Each time it receives the value 1 (which, as said before,

is associated to the robot ready in the start position), it starts a timer, that stops

at the following value 1. The value returned by this node will then be the time

elapsed from the moment the robot starts the task to the moment it finishes it,

the process time.

• The number of units processed by each robot is instead calculated through the

use of a counter node. The counter node has the function of keeping numerical

track of each time a user-specified event occurs. In this case, the node, starting

from 0, counts each time the value 1 is received from the filter node. The number

of times a task is repeated also represents, as a direct consequence, the number

 49

of units processed by each robot, as each movement corresponds to a piece

transported.

3.4.1.3 Data writing to FlexSim: Modbus Write

Up to now, only the connection part between the physical system and the data

collection platform has been introduced. This section will instead show how the data is

actually passed to the virtual system, and then displayed graphically by FlexSim. The

data transmission method is the same as before, the only difference being that instead

of using the IP addresses of the robots, the connection is via the localhost, as both

platforms are on the same device.

Figure 3-13 Use of the filter node in 'block values as long as they remain equal' mode

Figure 3-14 Modbus Write nodes that send data to FlexSim

 50

The fundamental node to be used is the one shown in Figure 3-14 and is called the

Modbus Write node, while Figure 3-15 shows the main properties that can be set for

this kind of connection, such as the FC, which represents the class 1 codes discussed in

the Modbus introduction section, the address which represents the register used to pass

a specific data recognized both from master and slave, and finally the server, which in

this case is the localhost.

For this type of connection, however, it is also necessary to perform certain actions on

FlexSim, as the emulator tool must be able to interpret the registers with their data, and

thus be able to associate them with a specific object and action. For example, registers

30 and 40 pass the process times of robot 1 and robot 2 respectively to FlexSim. On

FlexSim, in the appropriate panel, it will therefore be essential to associate these

registers firstly with the correct object, and then also with the specific action with which

they are associated. In this case, a short piece of code has therefore been written in this

environment as well, so as to associate the value received as input, which on FlexSim is

recognized with the variable named 'newValue', and thus make the model understand

that this time will be associated with the process time of the machines, a variable that

appears in the statistics of each object. Another practical example related, instead of

process time, to system status is shown in Figure 3-16. In particular, at the top it can be

seen how the connection was created: the type is specified, Modbus TCP Connection,

the type of register with its number, and finally the associated object, which in this case

is robot 1. At the bottom there is a brief focus on a piece of code which, based on the

value received from Node-Red (1 or 2), blocks or starts the model robot.

Figure 3-15 Properties panel of the Modbus Write node

 51

Figure 3-16 Connection creation from the point of view of the FlexSim platform

 52

3.4.2 Virtual-to-Physical information flow

Up to now, the connection between the physical and virtual model has been introduced,

in which the data goes from the robots to Node-Red, is processed, and then sent to

FlexSim. Now the reverse process will be analyzed in which, on the basis of the data

received and analyzed by the virtual model, multiple pieces of information will be sent

towards the physical model to suggest actions to be performed during the process. The

connection from the virtual to the physical model is based on the same protocols as

before, but these must be adapted accordingly, as the data is now an output of the

virtual system and an input of the physical one.

The connection between FlexSim and Node-Red will then be introduced first and then,

respecting the direction of the data flow, the connection from Node-Red to the robots.

This first connection makes use of Modbus Sensors Registers, which are PLC's inputs;

this means that, when a PLC (or a server) receives a data through a Modbus sensor, that

specific value is read from the FlexSim stored values, which are being collected during

the execution of the model. In the case of the project in the laboratory, this connection

Figure 3-17 Modbus Sensor Register that transmits the data about
the number of units processed

Figure 3-18 Modbus Read node to receive information from FlexSim

 53

was created to pass on the number of units processed during execution. As can be seen

in Figures 3-17, the basic operation based on connection type, register number, and

register type is the same as before, it simply occurs in the opposite direction. In this case,

an event has been defined, via 'conditional value' tool, to specify when the information

is to be passed or not: the condition specifies that when the counter, which is the

associated object located within the virtual production line, perceives a number of units

processed in the system greater than zero, it starts to keep count and gradually passes

the value to Node-Red via register. From the point of view of Node-Red, as can be

noticed from Figure 3-18, comparing it with the previous figure, the Modbus Read node

has been set up as a Reading Holding Register, the address of which is 100, exactly the

same as the register number that FlexSim uses to pass the value. At the bottom of the

picture, you can see how, again, the connection is made via localhost.

For the connection between Node-Red and the robots it was instead sufficient to change

the type of nodes. Whereas until now the Modbus Write node was used to send

information to FlexSim, it is now used to send information to the robots, as the

connection is the opposite. Figure 3-19 shows an example of a Modbus Write node in

which the IP address to which the information is to be sent is specified; obviously in this

case it is no longer localhost but the specific address of one of the two robots.

Figure 3-19 Modbus Write register addressed to Robot 1

 54

3.4.3 Communication between robots

The communication between the two robots was established with the aim of exchanging

messages between them more efficiently using digital input and digital output. The

purpose of this type of communication is to set the status of the robot as operational or

non-operational, based on a specific piece of data received. In more detail, the robot is

activated and deactivated by setting an internal parameter to 'high' or 'low', when

receiving the signal in the form of digital input; within the program to be executed by

the robot, it is then sufficient to insert a piece of code in order to wait for a value passed

through the other robot’s digital output.

As illustrated in Figure 3-20, in the I/O control panel of robot 1, it can be seen that the

connection to robot 2 is established: among the digital inputs the bit 'fromRobot2' is

active, exactly the same as for the signal ‘toRobot2’ among the digital outputs. What

happens when using this type of connection is that from Node-Red a Boolean value is

sent through a specific register to Robot 1 which passes the signal to Robot 2 in the form

of digital input/output. Although not shown in the image, the same happens in the

opposite direction, so passing information from Robot 2 to Robot 1.

Figure 3-20 Digital Input/Output panel on robot’s Teach Pendant

 55

3.5 Logic

Up to this point, all implementations made on a practical level on the physical and virtual

system have been introduced, so that the functioning of each entity underlying the

project is clear. In this section, however, the logic of the system will be explained; taking

into account how the entities are made and how they communicate with each other,

the functioning of the models will then be shown at a broader and less detailed level,

with reference to what the objectives of this work are, i.e., how the system must behave

in order to guarantee flexible scheduling.

It is important to emphasize that, taking into account the fact that the system must be

extremely reactive in order to guarantee instantaneous changes, the largest part of the

data collection phase with the subsequent reworking and construction of the logic was

done on Node-Red, as it provides a much less restrictive environment than FlexSim, both

in terms of code and programming, but also because of the delay in receiving

information that cannot be reduced due to force majeure, which will be explained next.

The latter was indeed used mainly for the virtual visualization of the process, and for the

analysis of the system that can be done ex-post, such as the one related to the

machinery utilization, throughput, cycle time and factors like these ones.

As mentioned earlier, it is important to devote a few words to the reason why the entire

process was not carried out on FlexSim. The purpose of this type of process is to

generate a time-varying scheduling; to do this, it was decided to assign tasks to one

robot rather than the other based on a real-time analysis of the process time and the

number of tasks executed. The process time, as mentioned above, was calculated with

a timer that is activated and then deactivated at the end of the movement of the robotic

arm. Node-Red is able to make the decision in real time, as the calculation for the

allocation of the remaining tasks takes into account the number of units processed by

the critical resource, and as there is no need in that environment for a virtual

representation. On FlexSim, however, as digital visualization is necessarily included, the

delay becomes unavoidable: the virtual model will execute ‘unit 1’ with the calculated

process time when at the same time the real robot is already starting to process ‘unit 2’.

 56

Going beyond the premises just made, the logic of the entire system will now be

introduced. At the beginning of the process both the two environments are connected,

and FlexSim and Node-Red are on listening and ready to start. A start signal is sent from

Node-Red to both robots, which exchange it with each other via digital input and output,

and begin processing together each with the relative speed, which varies according to

the replicated scenario. The robots are programmed in repeated loops five times, as

their mission is to process five units each.

The robots' program is written so that they send messages at specific times of execution.

Specifically, at the end of each movement, so at the moment in which the last step of

the part of the program contained in the loop is executed, the robots send via digital

output a value to Node-Red, which in turn reprocesses it to derive the number of units

processed up to that instant and the processing time, using the method explained

above. With the first signal received, Node-Red transforms it into a specific number, 1,

so that it can send it to FlexSim to communicate that the process has begun and that,

consequently, the digital representation of it should also begin.

Meanwhile, the robots continue to process, continuing to send the signal at each task

end. When the first timer stops, the time obtained is instantaneously passed to FlexSim,

which through the emulation tool passes it to the virtual machines as process time. The

values received from the virtual platform are shown in a specific panel, the output

console, which prints the old value received, or the first of all, on the left and the next

new values on the right. Thus, in each row the values for only one robot of the two are

shown.

Figure 3-21 Output Console in FlexSim

Robot 1 process time

Robot 2 process time

 57

Figure 3-21 shows the FlexSim panel in which the received values are shown: the

numbers 0 and 1 show the change of state of the two robots from 'waiting for signal' to

'operational', while the change to number 2, which tends to be at the end of the process

unless unexpected breakdowns are avoided, means 'machine stopped'. The other values

are the process times expressed in milliseconds.

Returning to the real system, it is now important to differentiate various scenarios that

can happen:

• The first one is the best case, in which no time failure occurs, and the two robots

process their five assigned units and then stop. In this case Node-Red finds no

problem in the received data and consequently will send the stop signal to the

robots the moment it counts ten processed units. The program on Node-Red was

written to allow a certain margin of error, which is considered tolerable. As slight

differences in the execution speed of the two robots may exist in the real case,

the program does not recognize a 'time failure' until there is at least a mismatch

of an entire processed unit.

• The second scenario is one in which time failure occurs instead. Since the system

is monitored in real time, what happens is that Node-Red, thanks to a specially

created piece of code, recognizes a delay in task execution by a resource. The

code, after one of the two robots has finished its five tasks, evaluates, based on

the number of processed units received, whether to have the stopped resource

start the loop again. If according to the algorithm this action is necessary, a

special node will send a boolean value 'true' to the robot in order to give it the

signal to start the loop from the beginning. This procedure is illustrated in Figure

3-22.

The last action performed by the program is to recognize when it is time to send the

stop signal to the robots. In the scenario where no time failure occurs, theoretically the

problem should not exist as the two robots are programmed on a cycle of five

repetitions. In the case of time failure, on the other hand, there is a need to send a stop

to the two robots, as the Robot 1 would otherwise unnecessarily complete a full five-

 58

unit cycle, when in reality those needing to be processed might be fewer. Consequently,

a Node-Red piece of code was written which, based on the number of processed units

it processes moment by moment, evaluates when it is necessary to send the stop signal.

Since the visualization is delayed on FlexSim, it is conceptually incorrect to send the stop

signal at the same time as the one sent to the robots. To solve this problem, an object

renamed counter units was inserted into the virtual environment, with the sole purpose

of reading the units output by the two virtual robots and sending the value at each

instant of time to Node-Red, which, similarly to the process just described, when it

recognizes that all units have been processed, also sends the stop to FlexSim.

Figure 3-22 Node-Red code that detects a time delay and sends a Boolean value ‘true’

Figure 3-23 Node that sends the stop message and its code

 59

4 Analysis of scenarios and data collected

As mentioned in the previous chapters, three different scenarios will be presented in

order to have a basis for comparison between the scenario with the integration of the

digital twin, which was processed in the laboratory, and two others which were

processed theoretically, representing the bast case and the worst case.

In this chapter, the two limiting cases will be analyzed in more detail, providing an a

priori scheduling linked to the execution of the tasks with the corresponding process

times (also estimated a priori, based on the process times of the robots should they

process at 100% of their capacity). For each of these scenarios will then be calculated:

• TH: the throughput of the line, which represents the number of items processed

by the system per unit of time

• CT: the average cycle-time of the line, which represents the actual time required

to process all the units in the system, in this case the 10 units

• Utilization of the robot: it is associated with the fraction of time the machine is

in use (taking into account any setup or breakdowns, as well as the simple time

it processes).

In this content, in the practical case with the application of DT technology, one

should notice an increase in utilization for Robot 1, which will have more units

to process than in the other cases.

Based on the collected data and calculated variables, a comparison will then be made at

the end of the chapter; the expected result of the laboratory test, if completed correctly,

should represent an intermediate solution between the best and worst case. This should

happen because, firstly, it is not possible, in the presence of a time failure linked to one

of the two robots, to have a performance such as to completely cancel out the delay,

and consequently such as to guarantee results equal to the best case. At the same time,

thanks to the application of the digital twin, which aims to 'mitigate' damages in the

system, the total time for the process of the entire batch in dynamic conditions should

 60

be better than in the case in which the DT system is absent (non-flexible scheduling

conditions).

4.1 Best Case scenario: no time failure

This scenario represents the best possible outcome related to the production line. The

two robots are identical in form, equipped with the same tools (a gripper attached to

the last joint), and have the same characteristics, so it can be assumed that under

optimal conditions their speed, and therefore their process time, will also be the same,

within a range of uncertainty due to natural variability.

The process time considered will therefore be 13,000 milliseconds per item, when no

time failure occurs. Consequently, the fixed allocation of tasks to be accomplished will

be as follows:

As it can be seen, there is no bottleneck in this process, due to the absence of a slower

resource. The total estimated time for processing the ten units of the batch is therefore

65,000 milliseconds, which corresponds to the processing time of a single unit multiplied

by the five units assigned to each robot. Next, in Figure 4-2, it will be shown the FlexSim

dashboard, obtained by running the simulation on the same system used in the practical

case, but assigning process times a priori.

In the collection of results, the variables introduced earlier can be found: throughput is

represented in the box named 'composite throughput per hour', and cycle-time is

instead indicated as 'Composite Staytime', which is evaluated as the average staytime

related to both robots.

Figure 4-1 Fixed Scheduling related to the Best-Case scenario

 61

The state bars box in Figure 4-2 indicates the time the robots were actually operating

out of the total time. In this case, as there is no disparity in the process of the assigned

units, the state bar will be 100% for both.

4.2 Worst Case scenario: time failure without DT detection

The worst-case scenario represents the worst possible outcome, in this case following a

time failure. In this case, the situation presented involves one of the two robots, namely

Robot 2, processing the units with a significantly longer process time than Robot 1.

It has been estimated that the process time of Robot 2 under these conditions is 2.5

times longer than expected, thus being around 32.500 milliseconds.

The peculiarity of this scenario is the absence of the digital twin. The absence of this

technology means that when a time failure occurs, there is nothing capable of detecting

it, and therefore that no corrective action is planned to mitigate the situation.

Figure 4-2 Dashboard on FlexSim for the Best Case Scenario

 62

Next, a flexible task allocation scheduling will be proposed when Robot 2 turns out to

be slower; as can be seen in Figure 4-3, as there is no DT system to handle the

reallocation of tasks in the line, Robot 1 will process the 5 units planned within its pre-

scheduled loop, and so will Robot 2, but taking more than twice as long.

In this case, it can therefore be seen that the second resource, UR3e 2, represents a

bottleneck in the production line, bringing the total process time from the 65.000

milliseconds of the best-case scenario to 162.500 milliseconds, due to the lack of

response to changes in the physical system.

Figure 4-3 Fixed Scheduling for the Worst-Case scenario

Figure 4-4 Dashboard on FlexSim for the Worst Case Scenario

 63

Figure 4-4 shows the dashboard for the worst-case scenario, structured in the same way

as the one seen above. Starting with the analysis of throughput, it can be seen that it is

the same despite the differences in production times between the two robots. The value

110,77, expressed in items per hour, is in fact derived from the bottleneck resource,

which in this case exists and is represented by robot 2. The slowest resource among

those that constitute a production line is in fact the one that defines the hourly

production volumes. The system throughput will therefore be 221,54 items per hour,

and takes into account the contribution of both robots. Robot 1 could have an extremely

higher throughput but, due to the fixed scheduling, when it finishes processing the 5

units assigned to it, it remains unused until Robot 2 finishes its batch. Based on

theoretical concepts, at this point it can be predicted that, most likely, with the use of

flexible scheduling, one could exploit the unused Robot 1 to assign some units of the

slower robot to it, in order to increase the final throughput of the system.

The composite average staytime is 22.750 milliseconds per item, as this is an average

calculated over the lot size. With regard to the state of the machinery, it can be seen

that the utilisation of Robot 1 is drastically lower than that of Robot 2, as after processing

its part of the batch of 5 units, the robot that works as intended remains unused until

the end of the process.

4.3 Practical Worst Case: time failure detection through DT system

The worst practical case is the scenario that occurs when, in the model run in the real

system, the time failure that occurs is detected by the Digital Twin system and

consequently changes are implemented to the behavior of the model in order to

minimize the negative consequences.

This scenario has been proposed in the laboratory following the logic introduced in the

previous chapter: in fact, it will be observed that, following the failure, the speed of

Robot 2 will be approximately 2.5 times less than that of Robot 1, which will instead

remain unchanged with respect to the conditions predicted a priori.

 64

Thanks to the operation of the Digital Twin explained above, the results of this practical

case shown below will confirm the initial hypothesis, i.e. that although it is impossible

to obtain results equal to those of the best-case, the variables obtained at the end of

the experiment, obviously considering time failure conditions, will be better than those

of the theoretical wort-case.

Table 4-1 Collected process times and average process times in milliseconds

 unit 1 unit 2 unit 3 unit 4 unit 5 unit 6 unit 7
Robot 1 11784,6681 13296,7121 13599,8162 13395,6975 13905,3247 14617,7153 13307,4644
Robot 2 27875,739 30806,8568 24039,2658

 Avg process time
Robot 1 13452,3426
Robot 2 27573,9539

In Figure 4-5 it can be noticed how the scheduling changed due to the real-time

detection of the change in the physical system. The scheduling shown in the picture is

representative of the data collected during the launch of the test in the laboratory,

shown in Table 4-1. It can be seen that in this case the critical resource is Robot 1, which

determines the total process time of 93.907,3983 milliseconds.

What can be seen from the various tests carried out in the laboratory, however, is that

the variability of process times for each individual task is rather high for both, but

particularly for Robot 2. Analyzing the average process times, it can be seen that the

average time related to the machine two is the one that deviates the most from the

values predicted a priori. In this case, in fact, the process time related to Robot 2 is not

2.5 times that of Robot 1, but only 2,06 times.

Figure 4-5 Flexible scheduling obtained by applying the DT to the model

 65

4.3.1 FlexSim Dashboard for the Practical Case

The process dashboard on FlexSim, which collects the data received from the physical

system, will now be illustrated. This data collection will have to be analyzed more

specifically as it is certainly error-prone due to the structure of the system. As introduced

earlier, the replication of the physical process on the platform is delayed by a whole

process time; this problem cannot be solved as it is necessary for the physical robot

UR3e to make a whole movement before transmitting the time taken. An a priori

estimate would in fact render the entire project a mere simulation, and not an emulation

of the real system.

Figure 4-6 Output console on FlexSim with the values received during the process

Figure 4-7 Dashboard on FlexSim

 66

The final dashboard will then provide values that deviate slightly from those observed

in Node-Red, merely because the reception of delayed values of an entire process time,

relative to each robot, means that on FlexSim the process does not start at the same

time for both machines, thus leading to idle times for one of them that do not

correspond exactly to the real ones. These results will be taken up in one of the next

sections, so that they can be compared with those collected on the Node-Red platform

to verify their accuracy.

4.3.2 Node-Red Dashboard for the Practical Case

Node-Red's dashboard, unlike that of FlexSim which has just been introduced, should

not be subject to errors (except for the intrinsic margin of error due to measurement,

which is in any case negligible) as it receives the values directly from the real system,

and thus from the two robots at the end of each task completed.

On Node-Red's platform, as the real system proceeds with the execution of the process,

the times associated with the completion of a task, start signals when Robot1's

intervention is required, and stop signals when a total of 10 processed units is detected,

are evaluate through the use of the timer function, and then transmitted.

Node-Red, differently from FlexSim, which was created for the purpose of analyzing and

simulating industrial processes, does not have a predefined set of process variables.

Hence, while on FlexSim there is a palette of output visualizers, which by default includes

the Throughput and Cycle-Time graphs of the process, on Node-Red the entire

calculation must be programmed.

• Throughput

Figure 4-8 Composite Throughput per Hour

Composite Throughput per Hour

 67

The throughput calculation consists of obtaining the number of items that, on average,

are produced by the system in a unit of time; In this case, both throughput per hour and

throughput per second will be shown in Table 4-1, the first one to ensure an effective

comparison with FlexSim, and the second one because it is more consistent with the

system's timing.

The first throughput calculated is for each machine, based on the process times

received. For Robot 1, the average process time is 13415,3426 milliseconds, while for

the Robot 2 the average process time is 27573,9539 milliseconds. Thus, the volume

produced in one hour by each machine will be equal to:

Table 4-2 Throughputs related to each robot

 items per hour items per second
Robot 1 268,35 0,0745
Robot 2 130,56 0,0363

Consequently, deriving the compound throughput per hour, it is equal to 398,9075 items

per hour.

• Cycle Time

By analyzing the data collected on Node-Red at the end of the process, it is possible to

derive not only the average and relative stay times of each individual machine, but also

the cycle time of the complete system, which is useful for describing the time taken (on

average) by the ten units of the batch to be processed.

Table 4-3 Staytime of the two robots

Staytime in seconds
Robot 1 13,415
Robot 2 27,574

 68

4.3.3 Comparison of results

In order to prove that the model is a coherent representation of what happens in the

real system, it must be verified that there is a correspondence between the number and

order of task execution, and between the system variables.

Beginning with task execution, it was confirmed that the processing order of the items

on FlexSim, despite the delay, is consistent with the order of execution in the physical

system; indeed, both models show seven units processed by robot 1, and 3 by robot 2,

in the same chronological order at the end of the process.

As previously mentioned, the performance results of the entire system in terms of

Throughput and Cycle Time will now be compared to verify that, despite the

interference caused on the data by the structure of the FlexSim model, the results are

still consistent and contained within a tolerable margin of error.

Table 4-4 Comparison between FlexSim and Node-Red

 Node-Red FlexSim
Throughput [item/s] 0,1108 0,1104
Cycle Time [s] 90,55 90,64

The data shown in Table 4-4 are for the specific system, which processes ten units. As

can be seen, the model shows slight differences in total performance, attributable to

the reasons listed above such as the delay in receiving the process time, which creates

a time lag between the two models. More specifically, there is a variation of 0.09

seconds for every 10 units processed, which corresponds to the 0,1 percent of the Cycle

Time. This absolutely negligible value demonstrates a certain consistency of the model.

 69

5 Conclusions

The case study concerning the application of a digital twin to a production line was

implemented with the intention, not so much of creating an exact copy in geometry and

movements of the two robots, but rather a virtual system rather faithful to the physical

one, which was however able to recognize variations and suggest changes in real time,

with the aim of remedying any time failures of the line.

The main objective was to demonstrate that flexible scheduling could be achieved,

capable of reallocating tasks dynamically between different resources to achieve

optimal results in critical situations. The results obtained provide strong evidence to

prove the assumptions made a priori: it can be seen that, firstly, the scheduling of the

Worst Practical Case scenario is a viable solution to time failure in terms of managing

the remaining tasks, and in terms of process variables. As a demonstration of this, in

fact, it can be seen that in the three various scheduling scenarios proposed, the one in

the practical case is in the middle, with the total process time of the ten units clearly

reduced, proving that, in the failure situation presented, it is clearly better than the

Worst Case scenario, analyzed without the implementation of the Digital Twin.

In conclusion, it is therefore possible to state that various benefits can be achieved

through the application of a Digital Twin system in manufacturing. Among the main

ones, it is worth mentioning improvements in terms of performance, increasing the use

of resources that, under normal conditions, would have a lower utilization since they

would not be used to compensate for a delay in production, and above all improvements

in terms of time, since the non-recognition of a time failure would entail negative

consequences in economics terms for the companies.

It would therefore be good, with a view to future implementations, to continue testing

it on additional machines, thus expanding the production line, in order to have an

overview to fully understand its potential, which has so far been explored in a narrower

environment.

 70

References

[1] Yibing Li, Zhiyu Tao, Lei Wang, Baigang Du, Jun Guo, Shibao Pang – Digital twin-based

job shop anomaly detection and dynamic scheduling, Elsevier Ltd, 21 August 2022.

[2] Scot Kim, 21 Lessons From Successful Digital Twin Implementations for Manufacturing,

Gartner, 21 December 2021.

[3] Simon Jacobson, Janet Suleski, Hype Cycle for Manufacturing Operations Strategy,

Gartner, 2022.

[4] Alfonso Velosa, Quick Answer: 4 Technical Prerequisites for Successful Digital Twins

Implementation in Manufacturing, Gartner, 9 March 2022.

[5] Fuquiang Zhang, Junyan Bai, Dongyu Yang, Qiang Wang – Digital Twin data-driven

proactive job-shop scheduling strategy towards asymmetric manufacturing execution decision,

Scientific Reports, 2022.

[6] Qi Yan, Hongfeng Wang, Fang Wu – Digital Twin enabled dynamic scheduling with

preventive maintenance using a double layer Q-learning algorithm, Elsevier Ltd., 2022.

[7] Douxi Yan, Weinan Sha, Dwen Wang, Jiafreng Yang, Shenghui Zhang – Digital twin driven

variant design of a 3C electronic product assembly line, Scientific Reports, 2022.

[8] Frank Siqueira, Joseph G. Davis – Service computing for Industry 4.0: State of the Art,

Challenges, and Research Opportunities, ACM Computing Surveys, October 2021.

[9] Ping Chong Chua, Seung Ki Moon, Yen Ting Ng, Huey Yuen Ng – A surrogate model to

predict production performance in Digital Twin-based Smart Manufacturing, Journal of

Computing and Information Science in Engineering, June 2022.

[10] Jiming Li, Yingfenz Zhang, Cheng Qian – The enhanced resource modeling and real-time

transmission technologies for Digital Twin based on QoS considerations, Elsevier Ltd,

December 2021.

[11] Ding Zhang, Jiewu Leng, Min Xie, Hong Yan, Qiang Liu – Digital twin wnabled optimal

reconfiguration of the semi-automatic electronic assembly line with frequent changeovers,

Elsevier Ltd, 19 March 2022.

[12] Robert Woitsch, Anna Sumereder, Damiano Falcioni – Model-based data integration

along the product and service lifecycle supported by digital twinning, Elsevier Ltd, 7 April 2022.

[13] Robert Kazala, Slawomir Luscinski, Pawel Straczynski, Albena Taneva – An Enabling

Open-Source Technology for Development and Prototyping of Production Systems by Applying

Digital Twinning, MPDI, 23 December 2021.

 71

[14] Alvaro Garcia, Anibal Bregon, Miguel A. Martinez-Prieto - Towards a connected Digital

Twin Learning Ecosystem in manufacturing: Enablers and challenges, Elsevier Ltd, 14 July 2022.

[15] Jakob Bonsch, Matthes Elstermann, Andreas Kimming, Jivka Ovtcharova – A subject-

oriented reference model for Digital Twins, Elsevier Ltd, 9 August 2022.

[16] Maulshree Singh, Rupal Srivastava, Evert Fuenmayor, Vladimir Kuts, Yuansong Qiao,

Niall Murray, Declan Devine – Applications of Digital Twin across Industries: a Review, MDPI, 4

June 2022.

[17] Hainfan Jiang, Shengfeng Qin, Jianlin Fu, Jian Zhang, Guofu Ding – How to model and

implement connections between physical and virtual models for digital twin application,

Elsevier Ltd, 2 June 2020.

[18] Mohammad Azarian, Hao Yu, Wei Deng Solvang – A Simulation-Based Approach for

Improving the Performance of a Manufacturing System, IEEE, 11 January 2021.

[19] Wang Y. R., Chen A. N. – Production logistics simulation and optimization of industrial

enterprise based on FLEXSIM, 2016.

[20] Shahd Yaser, Nour Abdelatif, Irene Fahim, Youssef Emad, Abdelrahman Saleh, Sally S.

Kassem – FlexSim Simulation to Enhance Productivity of a Production Cell: A Case Study, 2021.

[21] https://www.flexsim.com/plc-emulation/

[22] https://docs.flexsim.com/en/21.2/Reference/Tools/Emulation/Emulation.html

[23] https://nodered.org/docs/user-guide/

[24] https://www.universalrobots.com/articles/?filter_Manuals[]=98757&filter_Manuals[]=

98758&filter_Manuals[]=98761

[25] https://www.universal-robots.com/products/ur3-robot/

[26] https://www.modbus.org

 72

List of Figures

1-1 Conceptual model of a digital twin

1-2 Digital Model, Digital Shadow, and Digital Twin

1-3 Hype Cycle for manufacturing operations strategy, 2022

2-1 Example of simulation objects provided by the developer

2-2 FlexSim library tool

2-3 A-Connects

2-4 S-Connects between center ports

2-5 Panel that permits to modify data

2-6 Example of dashboard in FlexSim

2-7 Two FlexSim windows that show respectively variables and connections

2-8 On the left the creation of a flow with four nodes; on the right the programming

environment available for each node

2-9 Information box showing a flow with its nodes

2-10 Palette containing some input and output nodes

2-11 Node edit: properties, description, and appearance tab

2-12 Wiring nodes

2-13 Example of a complete flow in Node-Red

3-1 Physical system used to test the Practical Worst-Case

3-2 Steps related to the creation of a Digital Twin model

3-3 UR3e collaborative robot and its Teach Pendant

3-4 Start-up screen on the Teach Pendant

3-5 Robot’s main program on the left, and graphical representation on the right

3-6 Position settings

3-7 Focus on definition of the loop

3-8 Graphical representation of the model in which the two robots in parallel are

digital shadows of the real UR3e in the laboratory

3-9 On the left the graphical representation of the robots; on the right the panel that

permits to modify the geometry and import the robot shape

3-10 Representation of the bi-directional interactions between systems and platforms

 73

3-11 Part of the flow that reads data from robot’s PLCs

3-12 Panel for setting up the TCP-in node that reads data from robot’s PLC

3-13 Use of the filter node in ‘block values as long as they remain equal” mode

3-14 Modbus write nodes that sends data to Flexsim

3-15 Properties panel of the Modbus Write node

3-16 Connection action from the point of view od the FlexSim platform

3-17 Modbus Sensor Register

3-18 Modbus read node to receive information from FlexSim

3-19 Modbus Write register addressed to Robot 1

3-20 Digital Input/Output panel on robot’s Teach Pendants

3-21 Output console in FlexSim

3-22 Node-Red code that detects a time delay and sends boolean value ’true’

3-23 Node that sends the stop message and its code

4-1 Fixed scheduling related to the Best-Case scenario

4-2 Dashboard on FlexSim for the Best-Case scenario

4-3 Fixed scheduling for the Worst-Case scenario

4-4 Dashboard on FlexSim for the Worst-Case scenario

4-5 Flexible scheduling obtained by applying the DT to the model

4-6 Output console on FlexSim with the values received during the process

4-7 Dashboard on FlexSim

4-8 Composite Throughput per Hour

List of Tables

3-1 List of the different banks with their main characteristics and data access

permitted

4-1 Collected process times and average process times in milliseconds

4-2 Throughputs related to each robot

4-3 Staytime of the two robots

4-4 Comparison between FlexSim and Node-Red

