
politecnico di torino
Department of Control and Computer Engineering

master’s degree in computer engineering
Academic Year 2021/2022

effective heuristics for assessing the similarity of a
set of graphs

Supervisors
Prof. Giovanni
squillero
Prof. Stefano quer

Candidate
Enrico carraro

July, 2022

ABSTRACT

The maximum common subgraph problem has been proven to
have NP-hard complexity. Despite this theoretical limit, state-of-
the-art algorithms made it viable to solve the problem exactly
for some applications. This thesis discusses improvements to
the state-of-the-art (a branch and bound algorithm with a smart
partitioning strategy) in two areas: the generalization of the al-
gorithm to handle sets of graphs and a best-first search space
exploration strategy. The original algorithm is not designed to
serve applications where time is constrained, and approximate
solutions can be accepted, as it explores the solution space ex-
haustively. The newly proposed algorithm aims to achieve better
approximate solutions in time-bounded problem instances. Tests
demonstrated that the newmethod is scalable to multiple threads
with low overhead. Finally, they can handle heterogeneous sets of
graphs in sensible ways, i.e., discarding graphs that are not simi-
lar to most of the set. Graph Neural Networks are then used in
other efforts to improve upon the heuristics for the state-of-the-art
solver. Additionally, a variant of the original solver that employs
heuristics to select node pairs as opposed to single nodes is dis-
cussed. Experiments demonstrated a significant improvement
over the original method. A variant of the solver that employs
heuristics to select node pairs rather than single nodes is also
proposed.

I

ACKNOWLEDGEMENTS

“The dwarf sees farther than the giant, when he has the giant’s shoulder
to mount on.”

The Friend, Samuel Taylor Coleridge

Without the insights and help from Thomas Madeo, Lorenzo
Cardone and Andrea Calabrese this thesis would not have been
what it is, thank you.

I thank my parents, grandparents, and my sisters Lisa and Sofia
for their constant support throughout the years.

Finally, I thank Paola Vottero, that, over the past five years, helped
and motivated me to become a better student and human being.

III

CONTENTS

1 introduction 1
1.1 Graph similarity . 1

1.1.1 Examples of graph similarity applications . 2
1.1.2 Graph similarity notions 3

1.2 Formal notation and definitions 5
1.3 Thesis overview . 7

2 graph similarity notions in detail 9
2.1 Hardness . 14

3 approaches to the mcs problem 15
3.1 Constraints modelling 15

3.1.1 Constraint Resolution 16
3.1.2 Inference . 16
3.1.3 Exploration 17
3.1.4 Heuristics 18
3.1.5 Bounds . 19
3.1.6 Microstructure 19
3.1.7 Smart versus Fast 19

3.2 Constraing Programming 20
3.3 MCS via maximal clique 21
3.4 Branch and bound 22

3.4.1 McSplit . 23
3.5 McSplit with Reinforcement Learning 27
3.6 Portfolio approach 28

4 mcs on a set of graphs 31
4.1 Existing approaches 31
4.2 Alike . 31

4.2.1 Architecture 32
4.2.2 Vertex partitioning and upper bound com-

putation . 33
4.2.3 Search Nodes 34
4.2.4 Search Node selection 35
4.2.5 Search Node Branching 35
4.2.6 Pruning . 35
4.2.7 Parallelism 35
4.2.8 Heterogeneous Graphs 36
4.2.9 Experimental results 36

5 gnn-based heuristics 41
5.1 Graph Neural Networks 41

V

CONTENTS

5.1.1 Multilayer Perceptron and Machine Learn-
ing Fundamentals 41

5.1.2 Machine Learning with Graphs 44
5.1.3 GNN . 49

5.2 GNNs for the MCS problem 58
5.2.1 NeuroMatch 59
5.2.2 GNN-based node ordering heuristics . . . 62
5.2.3 Best-pair McSplit Implementation 68
5.2.4 Custom Neural Network 70

5.3 Experimental findings 73
5.3.1 GNN based heuristics 73
5.3.2 Best-pair McSplit Implementation 78

6 conclusions 81
6.1 Alike . 81
6.2 Heuristics based on GNNs 82

6.2.1 Node-ordering heuristics 82
6.2.2 Best node-pair Heuristic 83

VI

1
INTRODUCT ION

Graphs are structures made of a set of vertices and edges, which are
pairs of adjacent vertices. Graphs are often drawn using rings or
dots to represent vertices and lines for edges. Labels, weights, or
other data may be associated with vertices or edges. Sometimes
edges are directed, in which case they are drawn as arrows rather
than lines.

Thanks to their intuitive, machine-readable representation,
graphs are a foundational data structure in a variety of applica-
tions. They are used to represent 3D objects, task dependencies,
molecules, source code, executable binaries, social networks and
many other types of data [59, 26].

𝑎1
𝑎2

𝑎3

𝑎5

𝑎6

𝑎4

(a) Undirected graph.

𝑎2

𝑎3 𝑎1

𝑎5 𝑎4

𝑎6

(b) Directed graph.

Figure 1: Examples of graphs structures.

1.1 graph similarity

In many computer vision and pattern recognition applications,
where graph representations are frequently employed to charac-
terize objects or interactions between elements, assessing simi-
larity between graphs is crucial. However, selecting a similarity
notion is not straightforward and can be greatly influenced by
the application at hand.

1

introduction

This section contains some examples of graph similarity ap-
plication followed by an overview of pairwise graph similarity
notions.

1.1.1 Examples of graph similarity applications

A common problem in chemoinformatics is defined as follows:
given a large set of chemical compounds (represented as node-
and edge-labeled graphs) having a specific function (e.g., toxicity)
and another set of molecules that do not, the task is predicting
whether an unknown molecule will exhibit this function. In this
problem, it is a common assumption that molecules with similar
structures have similar functional properties.

(a) Ball-and-stick model. [5]. (b) Graph representation.

Figure 2: Chemical structure and graph representation of beta-D-
Glucose.

Another useful application of graph similarity is computer
vision, in which locating ”most of” a pattern graph within a target
graph approximates a visual match. An example of this is well
illustrated in image 3 from the 2017 paper on graph based object
search [67].

Finally, graph similarity can be applied in the field of cluster
analysis [16]. Cluster analysis, or more simply clustering, is ap-
plied in various fields including pattern recognition, information
retrieval [42], bioinformatics, data compression, and machine
learning. The goal of clustering is to organize a collection of items
so that items in the same group (referred to as a cluster) resemble
one another more closely than those in other clusters.

Homogeneity measures how much the objects in a cluster are
similar. It is usually defined using the Shannon’s entropy [57],

2

1.1 graph similarity

Figure 3: Graph based object detection pipeline by Wei et al. [67]

but when the objects are graphs it could be useful to define it as
the graph similarity of the group.

1.1.2 Graph similarity notions

The definition of graph similarity can change depending on the
use-case. This section contains a brief description of the most
notable graph similarity notions.

Graph isomorphism is a binary similarity measure. A group of
graphs is isomorphic if the graphs are topologically identical.

𝑎3

𝑎2

𝑎5 𝑎4

𝑎7

𝑎8

𝑎9

𝑎1

𝑎6
𝑏3

𝑏2

𝑏5 𝑏4

𝑏7

𝑏8

𝑏9

𝑏1

𝑏6

Figure 4: Example of structurally identical graphs.

An example of isomorphic graphs shown in figure 4.

3

introduction

Subgraph isomorphism is a generalized version of the graph
isomorphism problem, it consists in looking for topologically
identical copies of a graph 𝐺 within another graph 𝐻.

(a) Example of induced subgraph
isomorphism.

(b) Not an induced subgraph isomor-
phism due to the dashed edge.

Figure 5: Induced and non-induced subgraph isomorphism.

As seen in Figure 7a and 7b, the problem exists in both in-
duced and non-induced forms.

The maximum common subgraph of two graphs is the largest
graph (in terms of nodes and edges) contained both graphs.

Figure 6: Example of maximum common subgraph.

The minimum common supergraph is the smallest graph that
contains the subject graphs.

The minimum number of operations (node and edge addi-
tions, substitutions, and deletions) required to transform one
graph into the another is the error-correcting graph matching (or
edit distance). This is a generalization of the isomorphism prob-
lem, which asserts that two graphs are isomorphic if their edit
distance is zero.

While the graph edit distance is a very broad notion, that can
be used to derive both the maximum common subgraph and
graph isomorphism, it is inherently a binary operator, and thus
cannot be applied to a set of graphs. Conversely, the maximum
common subgraph problem, can be applied to multiple graphs
at once; this is why the present work focuses on heuristics and
algorithms for the maximum common subgraph problem and its
variations.

4

1.2 formal notation and definitions

1.2 formal notation and definitions

The following is a list of fundamental definitions from graph
theory [6] to fully comprehend the present work.

Definition 1.2.1 A graph 𝐺 is an ordered pair of disjoint sets (𝑉, 𝐸)
such that E is a subset of the set 𝑉(2) of pairs of V. The set 𝑉 is the set
of vertices, and 𝐸 is the set of edges.

If 𝐺 is a graph, then 𝑉 = 𝑉𝐺 is the vertex set of 𝐺, and 𝐸 = 𝐸𝐺 is
the edge set.

In this thesis, only finite graphs are considered; that is, 𝑉 and
𝐸 are always finite.

Definition 1.2.2 The order of 𝐺 is the number of vertices in 𝐺; it is
denoted by |𝐺|. The same notation is used for the cardinality, i.e. the
number of elements of a set: |𝑋| denotes the number of set elements 𝑋.
Thus |𝐺| = |𝑉𝐺|.

The size of 𝐺 is the number of edges in 𝐺; it is denoted by 𝐸𝐺. 𝐺𝑛

is the notation for an arbitrary graph of order n. Similarly, 𝐺(𝑛, 𝑚)
denotes an arbitrary graph of order n and size m.

Definition 1.2.3 An edge {𝑥, 𝑦} is said to join the vertices 𝑥 and 𝑦 and
is denoted by 𝑥𝑦. If the edges are ordered pairs of vertices, the notion
of a directed graph is introduced; otherwise, the graph is said to be
undirected; thus, for undirected graphs, 𝑥𝑦 and 𝑦𝑥 mean the same edge.

Except where otherwise stated, graphs in this thesis are undi-
rected.

Definition 1.2.4 If 𝑥𝑦 ∈ 𝐸𝐺 and then 𝑥 and 𝑦 are adjacent vertices
of 𝐺, and the vertices 𝑥 and 𝑦 are incident with the edges 𝑥𝑦 and 𝑦𝑥.
Two edges are adjacent if they have exactly one common endvertex.

If 𝐺 is a directed graph and 𝑥𝑦 ∈ 𝐸𝐺, then 𝑥 is adjacent to 𝑦, but 𝑦
is only adjacent to 𝑥 if 𝑦𝑥 ∈ 𝐸𝐺.

Definition 1.2.5 The set of vertices adjacent to a vertex 𝑥 ∈ 𝐺, the
neighbourhood of 𝑥, is denoted by Γ(𝑥). The degree of 𝑥 is 𝑑(𝑥) =
|Γ(𝑥)|.

In order to emphasize that the underlying graph is 𝐺, the neigh-
bourhood and degree are denoted by Γ𝐺(𝑥) and 𝑑𝐺(𝑥), respectively; a
similar convention will be adopted for other functions depending on an
underlying graph.

5

introduction

Definition 1.2.6 The adjacency matrix 𝐴 = 𝐴(𝐺) = (𝑎𝑖𝑗) of a
graph G is the 𝑛 × 𝑛 matrix given by

𝑎𝑖𝑗 =
⎧{
⎨{⎩

1 if 𝑣𝑖𝑣𝑗 ∈ 𝐸𝐺,
0 otherwise

Definition 1.2.7 For directed graphs, the incidence matrix 𝐵 =
𝐵(𝐺) = (𝑏𝑖𝑗) of 𝐺 is the 𝑛 × 𝑚 matrix defined by

𝑏𝑖𝑗 =
⎧{{
⎨{{⎩

1 if 𝑣𝑖 is the initial vertex of the edge 𝑒𝑗,
−1 if 𝑣𝑖 is the terminal vertex of the edge 𝑒𝑗,
0 otherwise.

Definition 1.2.8 A path is a graph P of the form

𝑉(𝑃) = {𝑥0, 𝑥1, ..., 𝑥𝑙}, 𝐸(𝑃) = {𝑥0𝑥1, 𝑥1𝑥2, ..., 𝑥𝑙−1𝑥𝑙}.

This path 𝑃 is usually denoted by 𝑥0, 𝑥1, ..., 𝑥𝑙. The vertices 𝑥0 and 𝑥𝑙
are the end vertices of 𝑃 and 𝑙 = 𝑒(𝑃) is the length of 𝑃. 𝑃 is defined as
a path from 𝑥0 to 𝑥𝑙, or an 𝑥0-𝑥𝑙 path.

Definition 1.2.9 Awalk 𝑊 in a graph is an alternating sequence of
vertices and edges, say 𝑥0, 𝑒1, 𝑥1, 𝑒2..., 𝑒𝑙, 𝑥𝑙 where 𝑒𝑖 = 𝑥𝑖−𝑙𝑥𝑖, 0 ≤ 𝑖 ≤
𝑙.

In accordance with the terminology above, 𝑊 is an 𝑥0-𝑥𝑙 walk de-
noted by 𝑥0, 𝑥1, ..., 𝑥𝑙; the length of 𝑊 is 𝑙. This walk 𝑊 is called a trail
if all its edges are distinct. Note that a path is a walk with distinct
vertices. A trail whose end vertices coincide (a closed trail) is called a
circuit.

Definition 1.2.10 A graph is connected if for every pair {𝑥, 𝑦} of
distinct vertices there is a path from 𝑥 to 𝑦.

Definition 1.2.11 Agraphwithout any cycles is a forest, or an acyclic
graph; a tree is a connected forest.

Definition 1.2.12 𝐺′ = (𝑉′, 𝐸′) is defined as a subgraph of 𝐺 =
(𝑉, 𝐸) if 𝑉′ ⊂ 𝑉 and 𝐸 ⊂ 𝐸. In this case, we have that 𝐺′ ⊂ 𝐺.

Definition 1.2.13 (Induced subgraph) If 𝐺′ contains all edges of
𝐺 that join two vertices in𝑉′ then𝐺′ is said to be the subgraph induced
or spanned by 𝑉′ and is denoted by 𝐺[𝑉′].

Definition 1.2.14 Thus 𝐺 = (𝑉, 𝐸) is isomorphic to 𝐺′ = (𝑉′, 𝐸′)
if there is a bijection 𝜙 ∶ 𝑉 → 𝑉′ such that 𝑥𝑦 ∈ 𝐸 iff 𝜙(𝑥)𝜙(𝑦) ∈ 𝐸′.
Clearly, isomorphic graphs have the same order and size. Two isomorphic
graphs 𝐺 and 𝐻 can be denoted by either 𝐺 ≅ 𝐻 or simply 𝐺 = 𝐻.

6

1.3 thesis overview

Definition 1.2.15 A graph of order 𝑛 and size 𝑚 is called a complete
𝑛-graph and is denoted by 𝐾𝑛.

Definition 1.2.16 Amaximal complete subgraph of a graph is a clique.

Definition 1.2.17 A graph is labeled, when information, such as
labels or weights, characterizes its vertices or edges.

1.3 thesis overview

This work proposes new strategies to tackle the maximum com-
mon subgraph (MCS) problem. It also uses a variation of the
MCS problem applied to a set of graphs to evaluate their overall
similarity.

The following is an overview of the organization of this work:

chapter 1 Introduction to graph similarity, its applications and
formal notation.

chapter 2 Overview of pair-wise and group graph similarity.

chapter 3 Survey of various approaches used to tackle the max-
imum common subgraph problem.

chapter 4 Smart solution space exploration using best-first heuris-
tics for the multi-graph MCS problem.

chapter 5 GNN-based heuristics for the MCS.

chapter 6 Conclusions.

7

2
GRAPH S IM ILAR ITY NOT IONS IN DETA IL

Let Ξ(𝒢) be the similarity of a set of graphs

𝒢 = {𝐺1, 𝐺2, ..., 𝐺𝑛}

where the cardinality of the set is at least 2, i.e. 𝑛 = |𝒢| ≥ 2.
This section explores in detail the most important measures

that can be used as Ξ(⋅) to assess the similarity of group of graphs.

Graph isomorphism

Possibly the most natural method to measure the similarity of
graphs is to check whether they are topologically identical, that
is, isomorphic. This gives rise to a binary similarity measure.

Despite the idea of checking graph isomorphism being so
intuitive, no efficient general algorithms are known for it.

The complexity of determining whether two graphs are iso-
morphic is still unknown. Polynomial-time algorithms have been
developed for several special classes of graphs, including trees
and planar graphs [63], but many existing algorithms, which
often seek to find the correct matrix permutation, are exhaustive
in the worst case: see, for example, [64]. It is currently postu-
lated that graph isomorphism may lie strictly between the 𝒫 and
𝒩𝒫-complete complexity classes [43], i.e. 𝒩𝒫-intermediate.

An example of isomorphic graphs is shown in figure 4.
If graphs 𝐺 and 𝐻 are isomorphic, then a permutation matrix

𝑃 exists, that will transform the adjacency matrix 𝐴𝐺 into the
adjacency matrix 𝐴𝐻, i.e. 𝐴𝐻 = 𝑃𝐴𝐺𝑃𝑇. Additionally, if 𝐺 and 𝐻
are attributed graphs, then an isomorphism between them must
also preserve the attributes on each node and edge.

Using graph isomorphism to define graph similarity leads to
the following definition:

Ξ(𝒢) =
⎧{
⎨{⎩

1 if ∀𝐺𝑖 ∈ 𝒢, 𝐺𝑖 is isomorphic to 𝐺𝑖+1,
0 otherwise.

9

graph similarity notions in detail

Subgraph isomorphism

A generalization of the graph isomorphism problem is that of
subgraph isomorphism, in which one looks for isomorphic copies
of a graph 𝐺 within another graph 𝐻.

(a) Example of induced subgraph
isomorphism.

(b) Not an induced subgraph isomor-
phism due to the dashed edge.

Figure 7: Induced and non-induced subgraph isomorphism.

Unlike the graph isomorphism problem, the problem of sub-
graph isomorphism has been proven to be 𝒩𝒫-complete [19,
Section 3.2.1].

As seen in Figure 7a and 7b, the problem exists in both in-
duced and non-induced forms.

Subgraph isomorphism does not lend itself well to be used as
a similarity measure, as it can only assert if a graph (pattern) is
present into another graph (target).

Finally, if the pattern does not appear, one may want to know
howmuch of it can be found; this iswhere themaximum common
subgraph (MCS) problem comes into play.

Maximum common subgraph

The maximum common subgraph of two graphs is the largest
graph (in terms of nodes and edges) that is present in both graphs.
The problem is 𝒩𝒫-complete [19, Section 3.3].

(a) Example of connected
maximum common subgraph.

(b) Example of maximum common
subgraph.

Figure 8: Maximum common subgraphs.

Maximum common subgraph problems are crucial in com-
paring graphs: in order to figure out what two graphs don’t

10

graph similarity notions in detail

have in common, one must first determine what they have in
common[27]. They have been widely applied in biology and
chemistry, computer vision, source code and binary programs
analysis, circuit designs, computer-aided manufacturing, crisis
management, dataset deanonymization, and character recogni-
tion problems; the biochemical applications alone are significant
enough to justify extensive research into the problem [18]. The
case for multiple graphs, as described by Hariharan et al. in
2011 [23], is mainly used in molecular science, and many of the
currently used methods are based on choosing a substructure
that is present in one molecule or that is shared by two, and then
confirming that it is present in the other molecules.

The MCS problem comes in many forms; several of the appli-
cations listed above, including biochemistry, require the MCS
to be connected. Figures 8a and 8b illustrate the difference that
constraining the MCS to be connected makes.

Similarly to subgraph isomorphism, there are also induced
and non-induced version of the problem. The goal of calculat-
ing the maximum common induced subgraph is to find a graph
with as many vertices as possible that is an induced subgraph
of each of two input graphs. It is necessary to map non-edges to
non-edges and edges to edges. The aim of solving the maximum
common partial subgraph problem (non-induced form) is to find
a subgraph with as many edges as possible (vertices must be
matched to vertices, but there may be additional edges in the
solution).

Using the MCS to derive a graph similarity measure is intuitive,
but given the many variants the MCS problem has, different
Ξ(𝒢)(⋅) can be derived. When computing the MCS for a pair of
graphs, i.e. |𝒢| = 2, we can Let 𝔊ℑ be the maximum common
induced subgraph of 𝒢, then Ξ(𝒢) = |𝑉(𝔊ℑ)| for the induced
version of the problem.

The number of vertices and edges of the resulting graphs should
be taken into account when thinking about the maximum com-
mon partial subgraph problem, with the two factors possibly
being weighted. Being 𝔊𝔓 the maximum common partial sub-
graph of 𝒢, then

Ξ(𝒢) = 𝛼 ⋅ |𝑉(𝔊𝔓)| + 𝛽 ⋅ |𝐸(𝔊𝔓)|

11

graph similarity notions in detail

When dealing with more than one graph, the MCS problem
can be relaxed to have some vertices attributed only to a subset of
𝒢, meaning that the MCS is made up of vertices that are common
among all of 𝒢 and some that can be matched only to a subset of
𝒢. For the sake of simplicity, the induced version of the problem
is considered here. We have that:

Ξ(𝒢) =
|𝒬|
∑
𝑖=1

𝜉𝑄𝑖 (1)

where 𝜉 ≥ 1 affects the balance between havingmany equivalence
sets and having equivalence sets with many vertices (small 𝜉 vs.
large 𝜉). While 𝒬 is a set of equivalence sets

𝒬 = {𝑄1, 𝑄2, ..., 𝑄𝑛} (2)

such that each 𝑄𝑖 ∈ 𝒬 is a set of vertices

𝑄𝑖 = {𝑣𝐺1
𝑖,1 , 𝑣𝐺2

𝑖,2 , ..., 𝑣𝐺𝑚
𝑖,𝑚} (3)

with the vertex 𝑣𝐺𝑗
𝑖,𝑗 belonging to graph 𝐺𝑗 (i.e., 𝑣𝐺𝑗

𝑖,𝑗 ∈ 𝑉(𝐺𝑗)) and

all vertices in 𝑄𝑖 belonging to different graphs (i.e., ∀𝑣𝐺𝑗
𝑖,𝑗 , 𝑣𝐺𝑘

𝑖,𝑘 ∈
𝑄𝑖 ∶ 𝑗 ≠ 𝑘 ⇒ 𝑔𝑗 ≠ 𝑔𝑘). Vertices belonging to the same equivalence
set 𝑄𝑖 are called equivalent and denoted with 𝑣𝑔

𝑖,𝑗 ≈ 𝑣ℎ
𝑖,𝑘. If two

vertices of the same graph 𝐺𝑔 appearing in two different sets
𝑄𝑖 and 𝑄𝑗 are connected by an edge, then all vertices of 𝑄𝑖 and
𝑄𝑗 must be connected in their relative graphs, a requirement
similar to the the one in induced equivalence of sub-graphs. More
formally:

∀𝑣𝐺
𝑖,𝑘, 𝑣𝐻

𝑖,𝑙 ∈ 𝑄𝑖 and

𝑣𝐺
𝑗,𝑚, 𝑣𝐻

𝑗,𝑛 ∈ 𝑄𝑗 ∶ (𝑣𝐺
𝑖,𝑘, 𝑣𝐺

𝑗,𝑚) ∈ 𝐸(𝐺) ⇒ (𝑣𝐻
𝑖,𝑙, 𝑣

𝐻
𝑗,𝑛) ∈ 𝐸(𝐻)

(4)

Minimum common supergraph

Like the maximum common subgraph, this graph similarity mea-
sure compares a set of input graphs by generating another.

The minimum common supergraph is the smallest graph
containing the subject graphs. As observed in [8], algorithms
for the maximum common subgraph can be easily modified to
find the minimum common supergraph and vice versa. Note
that the MCS of the set of graphs will be a isomorphic subgraph
of the minimum common supergraph. This notion is trivially

12

graph similarity notions in detail

applicable to a set of graphs, but it is easier to translate it into
a dissimilarity measure because a very dissimilar set of graphs
will lead to a large minimum common supergraph. Let 𝔤 be the
minimum common supergraph of 𝒢, then

Ξ(⋅) = |𝑉(𝔤)|.

Graph edit distance

Image representations as graphs are frequently affected by miss-
ing or corrupted information in pattern recognition problems.
Whole graph isomorphism will fail to recognize the images’ un-
derlying similarity in this case. Using an error-correcting proce-
dure is one way to deal with corrupted data.

The minimum number of edit operations (node and edge
additions, substitutions, and deletions) required to transform one
graph into another is the error-correcting graph matching, or edit
distance, between two graphs. This problem is a generalization
of isomorphism, which states that two graphs are isomorphic if
their edit distance is zero.

Typically, the costs of various edit operations are inversely
related to the likelihood of the edit occurring. As a result, deter-
mining the edit distance between two graphs becomes an opti-
mization problem: find the least expensive set of edit operations
to transform one graph into another. Furthermore, if the nodes
and edges of the graph have their attributes, different pairs of
substitutions may have different costs. The cost function has a
strong impact on the optimal error-correcting graph matching.

It can be proved that graph edit distance computation is equiv-
alent to the maximum common subgraph problem when a par-
ticular cost function is used [7] on these nodes and edges. The
graph edit distance between two attributed graphs, 𝐺𝐸𝐷, 𝐺 and
𝐺′ is defined as:

GED (𝐺, 𝐺′) = min
∀(𝑒1,𝑒2,…𝑒𝑘)∈𝐸(𝐺,𝐺′)

{ CED (𝐺, 𝐺′)
(𝑒1, 𝑒2, … 𝑒𝑘) }

where 𝐸 (𝐺, 𝐺′) denotes the set of all edit paths (𝑒1, 𝑒2, … 𝑒𝑘) that
transform 𝐺 into 𝐺′ and the cost of the edit path is CED:

CED (𝐺, 𝐺′) = ∑
(𝑒1,𝑒2,…𝑒𝑘)

𝐶vs (𝑒𝑡) + ∑
∀𝑒𝑡∈vs

𝐶es (𝑒𝑡) + ∑
∀𝑒𝑡∈vd

𝐶vd (𝑒𝑡)

+ ∑
∀𝑒𝑡∈𝑒𝑑

𝐶ed (𝑒𝑡) + ∑
∀𝑒𝑡∈𝑣𝑖

𝐶vi (𝑒𝑡) + ∑
∀𝑒𝑡∈𝑒𝑖

𝐶ei (𝑒𝑡)

13

graph similarity notions in detail

The set of node substitutions, deletions and insertions is rep-
resented by 𝑣𝑠, 𝑣𝑑, and 𝑣𝑖, respectively. The costs of these edit
operations are represented by 𝐶vs, 𝐶vd and 𝐶vi. Edit operations
and costs on edges are defined in a similar way: 𝑒𝑠, 𝑒𝑑, 𝑒𝑖, 𝐶es𝐶ed
and 𝐶𝑒𝑖.

A similarity measure can be simply derived using the graph edit
distance but it can only be applied on pair of graphs. While the
graph edit distance is a very broad and easily applicable notion
of graph similarity, that can be used to derive both the maximum
common subgraph and graph isomorphism, it is inherently a
binary operator, and thus cannot be applied to a set of graphs.

Finding the graph edit distance is 𝒩𝒫-hard [70], and is even
hard to approximate, being part of the 𝒜𝒫𝒳 class[14].

This work is focused on the maximum common subgraph
problem because of the extensible nature of the problem and the
vast literature on efficient algorithms to solve it.

2.1 hardness

It is easy to fall into the trap of thinking that the problems above
are easily solvable when presented with neat visual aids like
coloring nodes and edges. Indeed it wouldn’t be particularly
challenging to solve the instances shown above by hand without
any help; this is because the combinatorial nature of the problem
is not visible in such examples, i.e., the order and size of the
graphs is too small.

From complexity theory, we know that: problemswhere, if the
answer is yes, then there is always a proof verifiable in polynomial
time by a deterministic Turingmachine; these problems are called
non-deterministic polynomial, or 𝒩𝒫.

A property shared by MCS and other subgraph isomorphism
problems is that they are𝒩𝒫-complete. If an algorithm exists that
can solve either of them in polynomial time, then an algorithm
exists to solve any 𝒩𝒫 problem in polynomial time. Usually, a
problem is determined to be 𝒩𝒫-complete by showing that an
existing known 𝒩𝒫-complete problem can be reduced to it.

Currently it doesn’t exist any algorithm capable of solving
𝒩𝒫-complete problems with polynomial time complexity.

14

3
APPROACHES TO THE MCS PROBLEM

This chapter begins with an introduction to constraint program-
ming, describing the notions of inference, search, heuristics and
bounds. The following sections are dedicated to the analysis of
various resolution strategies that build on top of these fundamen-
tal concepts.

3.1 constraints modelling

Sudoku is probably the most well-known constraint satisfaction
problem (CSP). Several variables can be accessed in a CSP, each of
which can assume a specific range of values. In addition to this,
a set of constraints denotes permitted combinations of values for
a particular subset of the variables. To solve the game, one has to
look for a way to assign a value from each variable’s domain to
satisfy all of the constraints on the problem. In order to find the
optimal solution to a problem involving constraints and optimiza-
tion, the original problem can be extended to consider various
scoring functions [53].

The Sudoku game is set on a nine-by-nine grid. Some of the
cells contain a number between one and nine, and the objective
is to place a number between one and nine in each remaining box
so that each number appears exactly once in each row, column,
and each of the nine 3 × 3 subgrids. To represent this as a CSP, a
variable is created for each of the 9 × 9 = 81 boxes, and each is
assigned a domain consisting of the numbers one through nine.
Then, a constraint is set on each row, column, and subgrid, stating
that each of the nine variables must be unique. Since there are
nine values and nine variables, use each value only once and each
value must be unique are equivalent. Finally, for each pre-filled cell,
there is a constraint stating that the corresponding box’s value
must match the specified value. Note that ”proper” Sudoku
puzzles are expected to have exactly one solution, whereas a CSP
may have multiple solutions or none.

15

approaches to the mcs problem

3.1.1 Constraint Resolution

One method for solving a CSP is to first generate every possi-
ble assignment of values to variables in turn and then check to
see if all the constraints are satisfied. However, in most cases,
the number of possible permutations renders such an approach
impractical; consequently, algorithms with a higher level of intel-
ligence are needed to deal with non-trivial issues. In this chapter,
several different algorithms are examined, the majority centered
on inference, bounds, and heuristic-driven search.

3.1.2 Inference

It is sometimes possible to deduce that certain variables can never
be assigned a particular value. Since there is no point in gener-
ating any combination that contains a prohibited assignment,
this line of reasoning can be used to reduce the amount of work
needed. To represent this information algorithmically, one can
keep track of the remaining values in the variable’s domain, for
each variable. Then, any value ruled out by the deductions is
eliminated, much like when the remaining possible numbers in a
Sudoku box are written and then crossed out as facts are deduced.
A propagator is an algorithm that eliminates infeasible values.

Occasionally, a variable will have only one remaining value
in its domain. This situation is commonly used to eliminate addi-
tional values; for instance, in subgraph isomorphism problems, if it
is known that a particular pattern vertex 𝑣 can only be mapped
to a single target vertex 𝑤, any value representing target ver-
tices that are not adjacent to 𝑣 for each variable corresponding
to a vertex adjacent to 𝑣 can be eliminated. This can potentially
have a cascade effect, allowing further systematic deletions [49].
Additionally, it may be possible to reason with combinations of
domains withmore than one remaining value. Figure 9 illustrates
the specific case of graph isomorphism.

Sometimes it is viable to calculate higher levels of consistency
[35, 54]. In some problems, for example, additional information
can be inferred by checking support for each value 𝑣 in a domain,
i.e., looking at each constraint in turn that involves 𝑣’s variable
and verifying that at least one way of giving values to the other
variables involved in that constraint that is consistent with 𝑣 exists.
A set of domains is said to be arc consistent (or generalized arc
consistent if constraints involve more than two variables) if every
value in the set is supported this way.

16

3.1 constraints modelling

Figure 9: The top left vertex 𝑎 in the pattern can only be mapped to
pattern vertices 3 or 5, and the central vertex 𝑐 can only be mapped
to the target’s central vertex 5. Since 𝑐 = 5 is forced, no other pattern
vertex can take 5; 𝑎’s domain is 3. Consequently, 3 is removed from each
domain. Because adjacent vertices must be mapped to adjacent vertices,
𝑏 and 𝑑 can only go to 1 and 6. There are no more forced assignments,
but because 𝑏 and 𝑑 only have 1 and 6 between them, 𝑒 cannot take
either value [36]

.

3.1.3 Exploration

Despite the many different inference methods available, filter-
ing is frequently insufficient to either locate a solution or prove
that none exists. In this predicament, speculation is required: a
variable is chosen and instructed to take one of the values still
available within its domain. It is expected that this assignment
will allow for further propagation. If this step alone does not
succeed in locating a solution, the process is repeated, leading to
a recursive search. Thus, at some point, the domain of a variable
might become empty, meaning that a mistake was made (or that
there is no solution). In such a situation, one must go back over
the steps and try another value for the most recently guessed
variable. When branching this way, there is also the possibility
of running out of admissible values for one of the variables. If

17

approaches to the mcs problem

this happens, one of the previously guessed variables needs to be
restored; if this situation occurs for the first variable, it is proof
that there is no solution.

Forward checking is the process of interleaving search with the
basic propagation of constraints across domains that was just
described. The expression maintaining arc consistency is used if
the algorithm successfully keeps the arc consistent throughout
each level of the search. Conventional backtracking refers to simpler
algorithms that do not store domains at all and do not detect the
lack of a value that is available for a variable until an assignment
is attempted. These types of backtracking algorithms are known
to be more efficient. When search and inference are performed se-
quentially, the effectiveness of the inference step is of the utmost
importance. Extensive research has been conducted to identify an
appropriate and principled order to make inferences for different
sets of constraints.

A fully general constraint propagation algorithm needs to be
able to determine not only when it is necessary to propagate a
constraint, but also when it is not necessary to look at a constraint
in order to avoid wasting effort and achieve the best performance
possible. This requires knowledge of whether individual propa-
gators guarantee properties such as idempotence (does running
the propagator twice consecutively always give the same results
as running it just once?) and monotonicity (does the propagator
guarantee that it will never eliminate fewer values when applied
to reduced domains?), besides having estimates of the relative
execution costs of various propagators. In literature [55, 56] there
are different perspectives on the design of such algorithms.

3.1.4 Heuristics

When branching during the search process, the choice of which
variable and value to guess first has a significantly affects the
total amount of time spent searching. There are good general
principles that can be applied to the process of selecting vari-
ables [22]. One such principle is to select the domain that has the
fewest number of values left first. Another principle is to select
whichever domain is the most constrained.

This kind of rule is known as a heuristic; the term refers to the
fact that it does not guarantee that it will provide the best choice,
but it does, empirically speaking, tend to provide good choices
the majority of the time. Value selection can be more challenging

18

3.1 constraints modelling

when discussing solutions to graph problems, we typically end
up discussing the number of neighbors that a vertex possesses.
Unfortunately, value selection heuristics for the maximum sub-
graph isomorphism problem are not particularly reliable. This is
especially true when, as is frequently the case, a large number of
vertices have the same number of neighbors.

3.1.5 Bounds

When dealing with optimization problems such as the maximum
common subgraph, a bound function can provide an additional
form of inference. Let’s say we want to find the MCS between
two graphs. A feasible solution, i.e., any subgraph isomorphism,
can be found by using inference and search, and this solution
is called the incumbent. After that, the search goes on, but this
time the focus is on finding subgraphs that are significantly larger
than the already discovered one.

In order to accomplish this, the existing solution is used in
a specific kind of filtering that removes portions of the search
space that can be proved not to have a more optimal solution.
The general idea is that each time a solution is discovered, a new
constraint is added that states that ”the solution must be better
than this new incumbent”, and the search continues until there
is no other better solution.

3.1.6 Microstructure

The microstructure encoding of a CSP [25] is a method for rep-
resenting a problem instance as a graph in which a clique of a
specific size corresponds to a solution. In constraint program-
ming, microstructure is primarily studied for its theoretical prop-
erties [10, 11, 13, 25], but it is sometimes also useful as a practical
problem-solving technique.

3.1.7 Smart versus Fast

Complex methods to reduce the size of the search tree often
do not lead to corresponding reductions in actual execution
time, because of the additional work needed at each node.

Cook, Stephen A. and David G. Mitchell [12]
A trade-off is needed between the amount of propagation

done and the amount of search that must be done. Even when

19

approaches to the mcs problem

strong filtering is theoretically capable of removing more values,
it is not always worthwhile to make every effort to remove values
via propagation because expensive propagation algorithms may
not result in additional deletions or, if they do, those deletions
may not significantly reduce the amount of search necessary.

When choosing variable and value ordering heuristics, the
proper balance must also be struck. For instance, it may be more
profitable to select a vertex having the most neighbors at the
beginning of the search rather than trying to find a vertex with
the majority of neighbors still present in other variables (which
must be calculated dynamically). Similarly, we can choose how
much effort to put into obtaining very good bounds at the cost of
increasing the cost of each step and how much effort to put into
pruning symmetries.

3.2 constraing programming

Constraint programming (CP) is an established paradigm for solv-
ing combinatorial search problems. It incorporates approaches
from artificial intelligence, operations research, algorithms, graph
theory, and other disciplines. The core notion underlying con-
straint programming is that the user specifies the constraints,
which are then solved using a general-purpose constraint solver.

Constraints are simply relationships, and a constraint satis-
faction problem (CSP) specifies which relationships should exist
between the decision variables [52].

The first explicit constraint programming model was created
by Vismara and Valery in 2008 [66]. Given two graphs 𝐺 and 𝐻,
this model connects a variable 𝐷𝑣 to every vertex 𝑣 of 𝐺, and the
domain of this variable includes all vertices of 𝐻 plus an extra
value ⟂: If the vertex 𝑣 doesn’t match any vertex of 𝐻, variable 𝐷𝑣
is given to ⟂. If it does match a vertex of 𝐻, variable 𝐷𝑣 is given to
that vertex. Edge constraints make sure that variable assignments
keep edges and non-edges between matched vertices:

∀𝑢, 𝑣 ∈ V(𝐺), (𝑖(𝑢) =⟂)∨(𝑖(𝑣) =⟂)∨((𝑢, 𝑣) ∈ E(𝐺) ⇔ (𝑖(𝑢), 𝑖(𝑣)) ∈ E(𝐻))

where 𝑖(𝑣) is the value that was assigned to the variable 𝐷𝑣. Dif-
ference constraints make sure that each vertex of 𝐻 is assigned to
no more than one variable, that is:

∀𝑢, 𝑣 ∈ V(𝐺) distinct, (𝑖(𝑢) =⟂) ∨ (𝑖(𝑣) =⟂) ∨ (𝑖(𝑢) ≠ 𝑖(𝑣)).

20

3.3 mcs via maximal clique

In 2011, Ndiaye and Solnon [41] enhanced this constraint
programming model by exchanging binary difference constraints
with a soft global all-different constraint. This change maximizes
the number of 𝐷𝑢 variables that are assigned to values that are
distinct from ⟂, while also ensuring that these variables are all
distinct when they are not assigned to ⟂. They concluded that
forward checking achieves the best results on unlabeled graphs,
while maintaining arc consistency [54] on the edge constraints
achieves the best results on labelled graphs. Both methods are
superior to those that came before them and achieve better results.
This is a weaker version of global arc consistent soft all-different
constraint by Petit, Régin, and Bessière [45] that is used in both
cases. It uses a matching algorithm to check whether or not it
is possible to assign distinct values to enough 𝐷𝑢 variables to
surpass the best cost found so far.

3.3 mcs via maximal clique

Solving the problem of finding the largest clique in an association
graph can be an alternative approach to computing the maxi-
mum common subgraph [4, 17, 29, 48]. The association graph
(also known as a compatibility graph or weak modular product)
between two graphs 𝐺 and 𝐻 is an undirected graph 𝐺∇𝐻 with
vertex set

V(𝐺∇𝐻) = {(𝑣, 𝑣′) ∈ V(𝐺) × V(𝐻) ∶ (𝑣, 𝑣) ∈ E(𝐺) ⇔ (𝑣′, 𝑣′) ∈ E(𝐻)} .

In order to avoid confusion between the vertices of 𝐺∇𝐻 and the
vertices of the two original graphs, the vertices of 𝐺∇𝐻 are called
matching nodes. This is because each vertex of (𝑢, 𝑢′) of 𝐺∇𝐻
denotes the matching of 𝑢 with 𝑢′. The edges of 𝐺∇𝐻 connect
matching nodes that denote compatible assignments. As a result,
two matching nodes (𝑢, 𝑢′) and (𝑣, 𝑣′) are adjacent if 𝑢 ≠ 𝑣 and
𝑢′ ≠ 𝑣′, and if they preserve both edges and non-edges. As a
result (𝑢, 𝑣) ∈ E(𝐺) ⇔ (𝑢′, 𝑣′) ∈ E(𝐻). Figure 10 illustrates this
concept.

A clique in an association graph represents a collection of
compatible pairings. Consequently, such a clique corresponds
to a common subgraph, and the maximum clique of 𝐺∇𝐻 cor-
responds to the maximum common subgraph of 𝐺 and 𝐻. Any
method capable of locating the largest clique in a graph can there-
fore be used to solve the maximum common subgraph problem.

Note that the association graph is a subgraph of themicrostruc-
ture [25] associated with Vismara and Valery’s constraint pro-

21

approaches to the mcs problem

Figure 10: The two graphs on the left have amaximum common induced
subgraph with three vertices. One solution is shown in bold. On the
right is the association graph encoding: the highlighted three-member
clique shows the same answer. The ”missing” vertices do not have
assignable edges due to the presence or absence of loops.

gramming model [66]; the microstructure has more matching
nodes than the association graph because it contains a matching
node (𝑢, ⟂) for each vertex 𝑢 of 𝐺. Each clique of size |V(𝐺)| cor-
responds to a subgraph whose size is defined by the number of
matching nodes that do not contain ⟂.

According to previous research [36], the clique-based algo-
rithm outperforms constraint programmingmodels with labelled
graphs; however, when dealing with unlabelled graphs, both ap-
proaches perform similarly.

3.4 branch and bound

In 1973, Levi [29] published an algorithm to solve the MCS prob-
lem using the concept of maximal compatibility classes.

Later, McGregor [40] presented a branch-and-bound MCS
algorithm with backtrack search. It was used as a program com-
ponent for analysing chemical reactions and enumerating the
bond changes that have taken place. This algorithm bounding
function estimates the number of vertices that can still bematched,
cutting the current branch as soon as its bound drops below the
size of the largest known common subgraph; a mapping between
two nodes of the input graphs is made for each branch.

Krissinel, Evgeny and Henrick [28] improved McGregor’s
algorithm with a more efficient backtrack search in 2004.

22

3.4 branch and bound

In 2017 McCreesh, Prosser and Trimble introduced McSplit,
a new method based on vertex labelling and partitioning, that
reliably outperforms traditional CP by an order of magnitude.
It is the state-of-the-art algorithm to solve the maximum common
subgraph and maximum common connected subgraph problems. It
takes advantage of a CP invariant to reduce memory require-
ments and allow for more powerful and time-efficient branching
strategies [37].

3.4.1 McSplit

McSplit [37] improves backtracking and pruning operations
while retaining the branching and filtering benefits of constraint
programming; it also achieves a consistent speedup of up to an or-
der of magnitude for solution space exploration when compared
to state-of-the-art in constraint programming.

Thanks to the sparing use of memory, it manages to handle
larger graphs than its competitors. Thanks to the clever design of
the graph data-structure it uses, the algorithm is able to solve the
maximum common partial subgraph and the maximum common in-
duced subgraph problems for undirected, directed, and labeled graphs.

General Description

Let 𝐺 and 𝐻 be two undirected and unlabelled graphs of or-
der 𝑔 and ℎ, respectively. The goal is to find a mapping 𝑀 =
{(𝑣1, 𝑤1) , … , (𝑣𝑛, 𝑤𝑛)} of |𝑀| = 𝑚 vertex pairs, where 𝑣𝑖 ∈ 𝑉(𝐺)
and 𝑤𝑖 ∈ 𝑉(𝐻) are distinct vertices from the input graphs, such
that 𝑣𝑖 and 𝑣𝑗 are adjacent in 𝐺 if and only if 𝑤𝑖 and 𝑤𝑗 are adjacent
in 𝐻.

The subgraph in 𝐺 induced by{𝑣1, … , 𝑣𝑛} and the subgraph
in 𝐻 induced by {𝑤1, … , 𝑤𝑛} are isomorphic by construction and
correspond to the maximum common subgraph of 𝐺 and 𝐻 given
the largest mapping, |𝑀∗| = max(𝑚).

The depth-first search-based algorithm has a recursive struc-
ture. Starting from ∅ at each depth level, for each vertex 𝑣𝑖 ∈ 𝐺, it
first attempts all matches (𝑣𝑖, 𝑤𝑖) with all the 𝑤𝑗 ∈ 𝐻;, computing
any potential subgraphs while leaving the vertex 𝑣𝑖 unmatched.

The graphs 𝐺 and 𝐻 in Figure 11 are useful to analyze a simple
example. They share a four-vertex maximum common subgraph;
one of the possible solutions is themapping {(1, 𝑎), (2, 𝑓), (3, 𝑑), (5, 𝑏)}.
The subgraph of 𝐺 induced by vertices 1, 2, 3, 5 is therefore iso-
morphic with the subgraph of 𝐻 induced by the vertices 𝑎, 𝑏, 𝑑, 𝑓.

23

approaches to the mcs problem

A fundamental aspect of the algorithm is the labeling of ver-
tices as the search progresses. Every time a new pair is added to
the mapping, all the other vertices are assigned a new label that
keeps track of whether or not they are adjacent to every existing
vertex. These labels are referred to as adjacency classes. The set
of nodes belonging to a certain adjacency class is also called a
domain. Bidomain refers to the set of nodes belonging to the same
adjacency class when considering both input graphs, which can
be stored in memory efficiently.

Returning to the example, the algorithmfirst arbitrarily selects
vertex 1 from 𝐺 and then attempts to match it with vertex 𝑎 from
𝐻.

1 45
2

3

(a) Graph 𝐺.

𝑎

𝑏

𝑐

𝑒

𝑑

𝑓

(b) Graph 𝐻.

Figure 11: Example graphs.

Vertex Label
2 0
3 0
4 1
5 1

(a) Labelling of 𝐺.

Vertex Label
b 1
c 1
d 0
e 1
f 0

(b) Labelling of 𝐻.

Figure 12: Node labels after mapping 1 to 𝑎.

Vertex Label
3 01
4 10
5 11

(a) Labelling of 𝐺.

Vertex Label
b 11
c 11
e 10
f 01

(b) Labelling of 𝐻.

Figure 13: Node labels after mapping 2 to 𝑑.

24

3.4 branch and bound

Vertex Label
4 100
5 111

(a) Labelling of 𝐺.

Vertex Label
b 111
c 111
e 101

(b) Labelling of 𝐻.

Figure 14: Node labels after mapping 3 to 𝑓.

As shown in the tables in Figure 12, each unmatched vertex in
𝑉(𝐺) is labeled based on whether it is adjacent to vertex 1, and
each unmatched vertex in 𝑉(𝐻) is labeled based on whether it is
adjacent to vertex 𝑎. Adjacent vertices have label 1; non-adjacent
vertices have label 0.

The same strategy is applied for each subsequent recursion:
the mapping 𝑀 can be extended with a new pair (𝑣, 𝑤) if and
only if 𝑣 and 𝑤 share the same label. This property of mapping
vertices with identical labels from the two input graphs is the
algorithm’s central feature.

The following step is to map another vertex of 𝐺 to an un-
matched vertex in 𝐻 having the same label. Assuming the al-
gorithm selects the vertices 2 and 𝑑, the mapping is now 𝑀 =
{(1, 𝑎), (2, 𝑑)}. Now, a two-character string is used to label un-
matched vertices, with the first character being the label of the
previous step and the second character indicating whether the
vertex is adjacent to the newlymapped vertex or not. For instance,
vertex 3 is labeled with 01 because it is not adjacent to vertex 1,
but it is adjacent to vertex 2, which are already present in 𝑀.
(Figure 13). Similar labels are assigned to non-mapped vertices
in 𝑉(𝐻), indicating adjacency to mapped vertices 𝑎 and 𝑑.

Only vertices that have the same label can bemapped together
and added to the mapping in the subsequent steps, so the invari-
ant method will continue to be maintained throughout these
steps.

At each level, it is possible to determine themaximumnumber
of possible pairs that can be added to the mapping before going
back and attempting other mappings. In Figure 14, for example,
four distinct labels are used: 100, 101, 011, and 111.Since it is not
possible to identify a matching element in the other graph, new
pairs formed with those vertices cannot be added to the mapping
in the future. Since the first three only appear in one graph, it is
impossible to add them to the mapping. Instead, the label 111
appears once in 𝐺 and once in 𝐻, which means that it is possible

25

approaches to the mcs problem

to generate one new pair of vertices with this label before having
to resort to backtracking.

Therefore, the upper bound of the mapping size is the sum of
the smallest number of occurrences for each label that occurs at
least once in both graphs. The bound formula is

bound = |𝑀| + ∑𝑙∈𝐿 min (∣{𝑣 ∈ 𝑉𝐺 ∶ label(𝑣) = 𝑙}∣
∣{𝑤 ∈ 𝑉𝐻 ∶ label(𝑤) = 𝑙}∣) (5)

where 𝐿 represents the collection of all labels used in both graphs.

Analysis of the Algorithm

Label-classes, or groups of vertices with the same label, and a re-
cursive function 1 with two parameters are the algorithm’s defin-
ing characteristics. 𝑓 𝑢𝑡𝑢𝑟𝑒, which contains the list of currently
available label-classes, and 𝑀, which is the current mapping of
vertices, are the function’s parameters. During each recursion
iteration, the optimal solution is used to update a global structure,
the incumbent.

At each run of the function search, first, if a greater mapping
has been found, the global incumbent is updated; then, the upper
bound for the current search branch is computed, and if the
bound has been reached (i.e., the bound is less than or equal
to the size of the actual incumbent, so further searches cannot
improve it), the branch is pruned, and the function returns (lines
3 and 4).

The actual exploration can now start. A label class is first
chosen from 𝑓 𝑢𝑡𝑢𝑟𝑒 using a predetermined heuristic, and then a
vertex 𝑣 belonging to that label class is chosen from the 𝐺 space
and excluded from further searches. An iteration is carried out on
each vertex 𝑤 ∈ 𝐻 that belongs to the same label class. The effects
of including the pair (𝑣, 𝑤) in the mapping for each of them is
investigated. Considering (𝑣, 𝑤) as a new pair in the mapping,
each label-class is now split into two new classes, depending on
whether the vertices belonging to it are adjacent to 𝑣 and 𝑤. This
process is repeated for all label-classes in 𝑓 𝑢𝑡𝑢𝑟𝑒.

Vertices in 𝐺 next to 𝑣 and 𝐻 next to 𝑤 are found in the first
class (lines 10 to 13). This callss is then merged with 𝑓 𝑢𝑡𝑢𝑟𝑒′ if
there is at least one vertex in both sets. The same is repeated for
vertices that are not adjacent (lines 14 to 17). A recursive call to
Search is performedwith 𝑓 𝑢𝑡𝑢𝑟𝑒 and 𝑀∪{(𝑣, 𝑤)}; consequently, a
new search is conducted with one additional pair in the mapping
and new label classes that account for this addition.

26

3.5 mcsplit with reinforcement learning

Algorithm 1 McSplit.
1 Search(future, 𝑀)2 begin
3 if |𝑀| > |incumbent| then incumbent ← 𝑀

4 bound ← |𝑀| + ∑⟨𝐺,𝐻⟩∈future min(|𝐺|, |𝐻|)5 if bound ≤
|incumbent| then return

6 ⟨𝐺, 𝐻⟩ ← SelectLabelClass(future)7 𝑣 ← SelectVertex(𝐺)
8 for 𝑤 ∈ 𝐻 do

9 future′ ← ∅10 for ⟨𝐺′, 𝐻′⟩ ∈ 𝑓 𝑢𝑡𝑢𝑟𝑒 do
11 𝐺″ ← 𝐺′ ∩ N(𝒢, 𝑣) {𝑣}12 𝐻″ ← 𝐻′ ∩ N(ℋ, 𝑤) {𝑤}13 if

𝐺″ ≠ ∅ and 𝐻″ ≠ ∅ then
14 future′ ← future′ ∪ {⟨𝐺″, 𝐻″⟩}
15 𝐺″ ← 𝐺′ ∩ N(𝒢, 𝑣) {𝑣}16 𝐻″ ← 𝐻′ ∩ N(ℋ, 𝑤) {𝑤}17 if

𝐺″ ≠ ∅ and 𝐻″ ≠ ∅ then
18 future′ ← future′ ∪ {⟨𝐺″, 𝐻″⟩}

19 Search(future′, 𝑀 ∪ {(𝑣, 𝑤)})
20 𝐺′ ← 𝐺 {𝑣}21 future ← future {⟨𝐺, 𝐻⟩}22 if 𝐺′ ≠ ∅ then future ←

future ∪ {⟨𝐺′, 𝐻⟩}
23 Search(future, 𝑀)
24 McSplit(𝒢, ℋ)25 begin

26 global incumbent ← ∅27 Search({⟨𝑉(𝒢), 𝑉(ℋ)⟩}, ∅)
28 return incumbent

After every possible pairing between 𝑣 and the vertices in
𝐻 with the same label has been investigated, a new recursion is
performed considering solutions with 𝑣 unmatched. 𝑣 is removed
from 𝐺, and if it was the final vertex to be considered in its label-
class, its label-class is also removed from 𝑓 𝑢𝑡𝑢𝑟𝑒.

3.5 mcsplit with reinforcement learning

Reinforcement learning (RL) is a machine learning technique in
which an agent is rewarded for desirable behavior and punished
for undesirable behavior [50]. The agent interacts with the ex-
ternal environment, possesses a particular state, and generates
an action. The external environment provides the agent with
feedback on the performed action. The purpose of the reward
or punishment is to improve the agent’s behavior in the future.
The agent essentially learns through trial and error, similar to
humans.

27

approaches to the mcs problem

Figure 15: In a typical Reinforcement Learning scenario, an agent’s
actions in an environment are interpreted into a reward and a state
representation, which are then fed back to the agent.

This framework was used to solve the MCS problem by in-
corporating an agent into the standard McSplit implementation.
This new technique was coined as McSplit+RL [31]. The rein-
forcement learning agent is used to learn the optimal branching
decisions, i.e., the branches that reduce the size of the search tree.
Each branching option is considered an action; when the agent
executes a branch, it receives a reward proportional to the search
space reduction. The agent will choose the path with the greatest
expected reward at each fork. McSplit always branches on the
nodes with the highest degree, given a label class. McSplit+RL
can branch on lower-degree nodes if the reinforcement learning
agent anticipates a greater reward from them. McSplit+RL has
been shown to perform better than McSplit, excluding instances
where the reinforcement learning overhead is more computation-
ally expensive than solving the problem itself. Both methods
seek to identify the optimal MCS solution. McSplit+RL was
able to solve approximately a hundred more problems within
the predetermined time limit of 1800 seconds when tested on
approximately 3000 problem instances.

3.6 portfolio approach

While some algorithms are better on average than others, there
is rarely a single best algorithm for a given problem. Instead,
it is common for different algorithms to perform well on differ-

28

3.6 portfolio approach

ent problem instances. When algorithms have a lot of run time
variance, it can be difficult to decide which one to use. This par-
ticular problem has been called algorithm selection problem by Rice
in 1976 [51]. Since run times for 𝒩𝒫-Hard algorithms are often
highly variable from instance to instance, this phenomenon is
most pronounced for these algorithms [30]. One can take advan-
tage of such differences by combining several algorithms into a
portfolio.

An example of a method using the portfolio approach is the
Glasgow subgraph solver [39], which combines constraint program-
ming concepts with a variety of powerful but fast domain-specific
search and inference techniques. It can handle a wide range of
graphs, including many that other solvers find particularly hard
to solve.

Another example [46] proposes a portfolio of CPU and GPU
algorithms. The approach drastically limits memory bandwidth
constraints and avoids other typical portfolio fragilities as CPU
and GPU versions often show a complementary efficiency and
run on separated platforms.

29

4
MCS ON A SET OF GRAPHS

This chapter discusses existing approaches that tackle the MCS
problems on more than two graphs, then introduces and de-
scribes a novel algorithm, Alike.

4.1 existing approaches

There is limited literature on the MCS problem applied to a set of
graphs, as described by Hariharan et al. in 2011 [23], it is mainly
used in molecular science, and many of the currently used meth-
ods are based on choosing a substructure that is present in one
molecule or that is shared by two, and then confirming that it
is present in the other molecules. More recently, Cardone [33]
proposed to extend the McSplit algorithm to solve the problem
of the maximum common subgraph on a set of graphs. He de-
veloped an exact as well as an approximate version consisting of
the repeated application of McSplit first on a pair of graphs and
then, once the result is obtained, between the current graph and
the next one.

The following section proposes a new method to solve the
MCS problem that is not based on the McSplit algorithm, but
that reuses some of its components.

4.2 alike

Alike is an algorithm for evaluating the similarity of a set of graphs
and, as a byproduct, determining the degree to which each graph
is similar to the entire set. The algorithm is approximated, as
it compromises optimality for scalability. The approach builds
a solution incrementally using a branch-and-bound procedure
analogous to best-first search (BFS) [15]. The priority of a node in
the search tree is determined by the mix of how good the current
solution is and how much it may be further improved; the latter
is also regularly updated during exploration by back-propagating
the values of the new nodes.

Alike reuses the McSplit bound formula and bidomain data
structure and enhances it by extending their applicability to graph

31

mcs on a set of graphs

sets rather than pairs. The bound formula is used to inform its
best-first strategy and to prune the search space.

It supports two or more input graphs, which can be undi-
rected, directed, vertex- and edge-labeled. It can solve both the
maximum common subgraph andmaximum common connected
subgraph problems. Given a set of graphs 𝒢, Alike is able to evalu-
ate its similarity Ξ(𝒢) (using equation 1 8) and find a reasonably
large equivalence 𝒬.

Similar to traditional BFS, Alike explicitly memorizes the so-
lution tree and grows a new node at each step. However, it uses
heuristic evaluations to prune away huge parts of the search space,
closing off unexplored nodes; such a reduction may impede the
search for the global optimum, but allows to solve more complex
problems. Nonetheless, it can be easily modified to be exact.

Alike is designed with parallelism in mind and can be easily
modified to perform as an exact solver or, conversely, to be highly
resource efficient by employing a greedy and non-exhaustive
strategy.

To be more specific, it uses best-first search to iteratively ex-
plore the space of possibilities 𝑄𝑖 and develop a solution 𝒬. Best-
first search is distinct from BFS (Breadth-First Search) and DFS
(Depth-First Search) in that it utilizes problem-specific informa-
tion to determine which search tree node to expand next. Best-
first search is an informed search, whereas BFS and DFS are not.
In this particular example, BFS investigates the tree of all possi-
ble solutions by maintaining two lists of nodes: the open nodes,
which have been generated without but not yet fully branched,
and the closed nodes, which have been fully expanded. In each
phase, the best node on the open list is expanded, closed, and
its descendants are added to the open list. Upon completion of
exploration, the best solution(s) can be recovered by traversing
the search tree.

4.2.1 Architecture

Alike tackles the problem with a very different approach from
McSplit. While McSplit is a recursive algorithm, Alike explicitly
stores the search tree inmemory. This enables the best-first search
strategy, that consists in expanding the most promising node at
each step. In this section, the term node is used to refer to the
search tree element, not the vertices of the input graphs. Themost
promising node at a given moment is defined as the node that

32

4.2 alike

Figure 16: Diagram of the solution expansion procedure.

has the largest bound (calculated using 5 adapted to multiple
graphs).

The pseudo-code for the entire procedure is reported in algo-
rithm 2. The main procedure of the method consists in selecting
themost promising search node candidate and executing a branch
operation on it. This generates other candidates that are added to
the priority queue. Finally, Alike discards some nodes, removing
them from all future searches.

Figure 16 illustrates an high level view of the proposed search
procedure.

4.2.2 Vertex partitioning and upper bound computation

As mentioned in section 3.4.1, McSplit uses a memory efficient
data structure called bidomain to store the set of nodes belong-
ing to the same adjacency class when considering the two input
graphs. Alike uses a modified version of the data structure that
supports multiple graphs. Partitioning the vertices by adjacency
classes is critical to compute the upper bound that is used to drive
the search.

Therefore, the upper bound of the size of the mapping 𝑀 is
the sum of the smallest number of occurrences for each label that
occurs at least once for every 𝐺𝑖 ∈ 𝒢. The following upper bound
formula is a generalization of equation 5:

bound = |𝑀| + ∑𝑙∈𝐿 min(|𝐿𝐺1
|, |𝐿𝐺2

|, ..., |𝐿𝐺𝑛
|) (6)

where 𝐿 represents the collection of all labels that identify adja-
cency classes present in all graphs and

𝐿𝐺𝑖
= {𝑣 ∈ 𝑉𝐺𝑖

∶ label(𝑣) = 𝑙}.

33

mcs on a set of graphs

Algorithm 2 𝐴𝑙𝑖𝑘𝑒(𝒢): Creates an explicit (tree-shaped) solution
space and explores it, giving priority to promising nodes.
Input :A set of graphs 𝒢.
Output : 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡

29 𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑜𝑜𝑡(𝑔𝑟𝑎𝑝ℎ𝑠); // Initialize the root of

the tree with the the data structures needed (node partitioning,

etc.).

30 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← {𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒}; // Initialize the queue with the root

node.

31 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 ← 0; // Tracks best solution quality found so far.

32 while 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ≠ ∅ do
33 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑁𝑜𝑛𝐼𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠); // Remove

candidates that cannot generate children that improve the

solution, i.e. they have a quality upper-bound that is less

than or equal than the current best solution.

34 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑐𝑢𝑟 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠); // Select the most

promising candidate.

35 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠 ← 𝐵𝑟𝑎𝑛𝑐ℎ(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑐𝑢𝑟); // Generate new children

from the selected candidate.

36 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠; // Add newly generated

nodes to the candidate queue.

37 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 ← 𝑚𝑎𝑥{
𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡),
𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠[𝑖]) ∶ 𝑖 = 1, ..., |𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠|}

38 return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡

The vertex partition 𝒫 is the extension of McSplit Bidomain
data structure and is a set of sets of sets 𝒫 = {𝑃1, 𝑃2, … , 𝑃𝑚}.
Each set of sets 𝑃𝑗 contains vertices from the different graphs
𝑃𝑗 = {𝐶1

𝑗 , 𝐶2
𝑗 , … , 𝐶𝑛

𝑗 } with 𝐶𝑔
𝑗 ⊆ 𝑉𝑔; the vertices of graph 𝐺𝑔 are

partitioned into the different adjacency classes 𝐶𝑔
𝑗 ⊆ 𝑉𝑔. A solu-

tion 𝒬𝑠 is associated with the partition 𝒫𝑠 that lists the vertices
that could still be considered equivalent without violating any
constraint. Thus, if 𝒫𝑠 = ∅, the solution 𝒬𝑠 cannot be extended
by adding any equivalence set and the node 𝜈𝑠 is a leaf in the
solution tree.

4.2.3 Search Nodes

A search node represents a piece of the solution to the MCS prob-
lem. Each node 𝜈𝑖 in the solution tree encodes an equivalence set

34

4.2 alike

𝑄𝑖, except the root node 𝜈0 that encodes an empty set ∅. The path
from the root node 𝜈0 to a generic node 𝜈𝑠 defines an equivalence
𝒬𝑠 = {𝑄𝑠0

, 𝑄𝑠1
, 𝑄𝑠2

, … , 𝑄𝑠𝑛
}. The equivalence 𝒬𝑠 can only be

extended with a new equivalence set 𝑄𝑠𝑛+1
that does not make

equation 4 invalid; as a result, only nodes encoding valid equiva-
lence sets may be successors of 𝜈𝑖. As 𝑄𝑠0

= ∅, it is safe to write
𝒬𝑠 = {𝑄𝑠1

, 𝑄𝑠2
, … , 𝑄𝑠𝑛

}.

4.2.4 Search Node selection

At each iteration the most promising node in the priority queue
of open nodes is selected and branched. A node is considered
promising if it has the highest combination of solution quality
and upper bound.

4.2.5 Search Node Branching

Once a node 𝜈 has been selected, Alike generates a set of succes-
sors. This is done by selecting an adjacency class 𝑃𝑠 from the
vertex partition and then generating a fixed number of equiv-
alence sets that haven’t yet been produced by 𝜈. This can be
achieved simply and efficiently by constraining the generation
order of equivalence sets to be lexicographical.

If 𝜈 is not explored exhaustively and is still promising after the
first branching operation, it will be selected again until it either
won’t be promising anymore or it will have generated its possible
successors.

4.2.6 Pruning

A search node 𝜈𝑖 can be closed (or pruned) for two reasons:

• Their vertex partition is empty and thus cannot generate
any new nodes.

• Their upper bound is lower than the best quality solution
found so far.

4.2.7 Parallelism

Having an explicit search tree makes implementing a parallel
version of Alike trivial. As reported in algorithm 3, the only high-

35

mcs on a set of graphs

level modification needed is restructuring the search procedure
such that it can run on multiple processes.

Algorithm 3 Alike(𝒢): Creates an explicit (tree-shaped) solution
space and explores in parallel, giving priority to promising nodes.
Input :A set of graphs 𝒢.
Output : 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡

39 𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑜𝑜𝑡(𝑔𝑟𝑎𝑝ℎ𝑠); // Initialize the root of

the tree with the the data structures needed (node partitioning,

etc.).

40 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← {𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒}
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 ← 0; // Tracks best solution quality found so far.

41 while 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ≠ ∅ do
42 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑁𝑜𝑛𝐼𝑚𝑝𝑟𝑜𝑣𝑖𝑛𝑔(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠); // Remove

candidates that cannot generate children that improve the

solution, i.e. they have a quality upper-bound that is less

than or equal than the current best solution.

43 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑏𝑒𝑠𝑡 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑇𝑜𝑝𝐾𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠); // Select

the K most promising candidate.

44 for 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑐𝑢𝑟 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑏𝑒𝑠𝑡 do in parallel
45 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠 ← 𝐵𝑟𝑎𝑛𝑐ℎ(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑐𝑢𝑟); // Generate new

children from the selected candidate.

46 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠; // Add newly

generated nodes to the candidate queue.

47 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 ← 𝑚𝑎𝑥{
𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡),
𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠[𝑖]) ∶ 𝑖 = 1, ..., |𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠|}

48 return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡

4.2.8 Heterogeneous Graphs

A peculiar effect of allowing multiple best solutions to co-exist in
the search tree is the ”clustering” behavior which could be useful
to partition heterogeneous sets of graphs. Figure 17 illustrates
this behavior.

4.2.9 Experimental results

A prototype of Alike has been implemented in C++ [9] and it
is distributed under Apache License 2.0. The programming lan-
guage decision was influenced by the necessity to produce code

36

4.2 alike

Figure 17: An heterogeneous set of graphs with two different common
subgraphs of the same size highlighted.

with competitive performance, the availability of both low-level
and medium-level implementation options for parallelism, the
author’s familiarity with the language, and access to precise per-
formance metrics. The implementation has been compared with
the original sequential and parallel McSplit implementation, and
with a modified version of McSplit that can handle sets of graphs.

The tests have been executed on graph instances from the
ARG database [2]. It consists of numerous classes of graphs that
were randomly generated using one of six distinct generation
algorithms and various parameters. A random sample of 40
graphs was selected from a subset of the dataset, consisting of
pairs of graphs already prepared to have maximum common
subgraphs of categories, i.e., pairs of graphs with maximum
common subgraphs comprising 10%, 30%, 50%, 70%, and 90%
of the original graphs’ size.

The tests have been performed on amid-2014 AppleMacBook
Pro running MacOS Big Sur, with a 2.5GHz quad-core Intel Core
i7 processor (Turbo Boost up to 3.7GHz) with 6MB shared L3
cache and 16GB of 1600MHz DDR3L onboard memory. All the
solvers run with a 100 seconds timeout.

The variant of the problem tested is for themaximumcommon
induced subgraph with undirected graphs, unlabelled nodes
and edges. This is because these variants enforce constraints
that restrict the search space, thus making the problem easier to
resolve.

37

mcs on a set of graphs

The results can be observed in Table ??, ?? and ??. PMcSplit
is the original parallel McSplit algorithm, while SMcSplit is the
sequential implementation. PAlike and SAlike are the parallel
and sequential versions of Alike , respectively. PAlikeLax is a
parallel version of Alike that doesn’t constraint the elements
of the solution to have a cardinality that corresponds with the
number of input graphs. MMcSplit refers to the modified version
of McSplit that can handle sets of graphs. Nodes indicates the
number of branching operations applied in the algorithm.

Regrettably, the experiments [1] show that Alike is not able
to keep up with the performances of McSplit. Since it hits the
timeout most of the times without being able to find a better
solution than McSplit. An important detail to note is the number
of search nodes produced during the search: Alike generates
consistently fewer nodes with respect to its counterparts. This
is expected since, as mentioned in Section 3.1.7, algorithms with
complex strategies usually move slower but, in turn, are more
effective. However, it is promising to see that the CPU time in
the parallel version of Alike is almost 8 times as much the Wall
clock time. Suggesting excellent exploitation of the processor
parallelism.

Table 1: Average comparison with McSplit versions on two graphs.

Graph Size 22.375 - - -
Algorithm PMcSplit SMcSplit PAlike SAlike
|Solution| 15.525 15.525 9.675 9.5
Solutions 1 1 4.2 4.025
Nodes 8750837.825 8906843 1447674.75 3227078.8
Nodes/|Solution| 563661.0515 573709.694 149630.4651 339692.5053
Time (s) 0.9395504 2.520845125 100.1419079 99.37229138
CPU time (s) 4.231347075 2.519320125 100.0625433 757.5118585

38

4.2 alike

Table 2: Average comparison with the modified McSplit version on 3
graphs.

Graph Size 22.375 - - -
Algorithm MMcSplit PAlike PAlikeLax SAlike
|Solution| 14.15 10.925 10.35 11.15
Solutions 1 1.425 3.35 1.4
Nodes 336891394.4 503798.9 835,417.70 290421.625
Nodes/|Solution| 23808579.11 46114.31579 80716.68599 26046.78251
Time (s) 51.59383 100.1017574 100.1 100.0336755
CPU time (s) 51.59383 779.1232493 776.72 99.96234168

Table 3: Average comparison with the modified McSplit version on 4
graphs.

Graph Size 22.375 - - -
Algorithm MMcSplit SAlike PAlike PAlikeLax
|Solution| 12.4 10.075 9.4 9.825
Solutions 1 1.95 2.825 2.45
Nodes 686781490.3 61905.05 133642.55 363779.275
Nodes/|Solution| 55385604.06 6144.421836 14217.29255 37025.88041
Time (s) 86.74025668 100.0129063 100.0225639 100.0459582
CPU time (s) 86.74025668 99.94120058 779.3438776 781.3665515

39

5
GNN-BASED HEUR I ST ICS

5.1 graph neural networks

This section describes the machine learning models that were
utilized to enhance McSplit. First, one of the simplest machine
learning models, the perceptron, is discussed. The fundamental
principles of machine learning are also reviewed. The multilayer
perceptron, the simplest neural network architecture, will then be
described (Section 5.1.1). Lastly, Section 5.1.2 focuses on graph-
specificmachine learning techniques, with an emphasis on Graph
Neural Networks (Section 5.1.3).

5.1.1 Multilayer Perceptron and Machine Learning Fundamentals

The perceptron is a mathematical algorithm inspired by biolog-
ical neurons. Real neurons receive constant signals, and each
signal activates a subset of the neuron’s synapses. The activated
synapses determine the significance of the input signal. The out-
put is then transported along an axon. In a perceptron, the input
is simply a vector of numbers, and the synapses are represented
by another set of numbers known as weights. A perceptron is a
binary classifier, meaning that, given an input, it can determine
whether or not it belongs to a particular class.

Typically, a perceptron’s input is a data point where each fea-
ture is represented by a number. For instance, analyzing images
with a 256 × 256 resolution, a single image could be represented
by a 256 × 256 vector where each number represents the pixel’s
color. Then, each element of the input vector is multiplied by its
weight. The output is obtained by summing all the results with a
bias and feeding them to a nonlinear activation function.

The perceptron is a machine learning model whose purpose
is to learn the proper weights. Suppose each input either belongs
to a class or does not; two possible labels exist:

• 1: Represents an input instance belonging to that class

• 0: Represents an input instance not belonging to that class
After processing an input instance, the perceptron will predict

its label. The objective of the learning process is a set of weights

41

gnn-based heuristics

that minimizes the number of errors on a set of general input
instances.
Before being deployed, a perceptron undergoes three phases:

• A training phase, where weights are adjusted.

• A validation phase, where hyperparameters are fine-tuned.

• A test phase: where the performance is evaluated.

To execute the three phases, a dataset, or collection of input sam-
ples, is required. Each step will utilize a distinct subset of the
initial dataset. Typically, themajority of the dataset is used during
the training phase.
The training phase consists of feeding the training dataset to the
perceptron, which was initialized with random values. A predic-
tion will be obtained for each training set input instance. It’s also
assumed that the correct prediction for each instance is already
known. Given this, a loss function can be used to evaluate the
performance. The loss function quantifies the difference between
the predicted and expected labels. The training phase’s objec-
tive is to minimize the loss function score. Another algorithm
called gradient descent accomplishes this. At each step, the entire
dataset is fed to the perceptron, and after computing the loss,
the weights are updated in the direction of the steepest descent.
The direction of descent is determined by computing the func-
tion gradient. This procedure is typically repeated until the loss
function reaches a local minimum. When updating the weights,
the step size must be set, also known as the learning rate. The
learning rate is simply a number that multiplies the gradient
value; it is also a hyperparameter of the problem and must be
selected before the training phase begins. The validation phase is
required to determine the optimal learning rate and optimal set
of hyperparameters. The validation phase consists of selecting a
predetermined range of acceptable values for each hyperparame-
ter, and training the perceptron with all possible combinations of
those values. Each trained perceptron is evaluated on a subset
of the dataset referred to as the validation set. The best percep-
tron is retained and used for testing. In the testing phase, the
perceptron is evaluated on an additional portion of the dataset.
It is crucial that the model has never encountered these data;
otherwise, the results would be skewed. Figure 18 provides a
graphical representation of a perceptron.

Multiple perceptrons can be stacked: the resulting architec-
ture is the simplest type of neural network, known as multilayer

42

5.1 graph neural networks

Figure 18: The scheme of a perceptron.

perceptron (MLP) [24]. Every perceptron constitutes a layer. Ex-
cept for the first layer, which works directly on the input, each
subsequent layer uses the output of the previous one. Each layer
has an output, and the output of the final layer is the final result.
A minimum of three layers is required for a deep neural network,
which is one layer more than the input and output layers. The
layer in themiddle is known as a hidden layer, and there can be an
arbitrary number of them. Training a MLP is considerably more
time-consuming than training a single perceptron. Since there is
a nonlinear activation function following each perceptron, this
model can also approximate nonlinear functions. A graphical
representation of the multilayer perceptron is shown in figure 19.

Figure 19: Illustration of a MLP.

43

gnn-based heuristics

5.1.2 Machine Learning with Graphs

This section describes the fundamentals of applying machine
learning to graphs. The simplest method for approaching graphs
is feature engineering, i.e., defining a feature vector ”by hand”.
Methods capable of automatically learning a representation are
examined later in this section. These techniques are known as rep-
resentation learning. Specifically, the WL-kernel and the concept
of node embeddingwill be introduced, which are closely associated
with graph neural networks.

Feature Engineering Methods

The traditional machine learning pipeline is centered on feature
design. There are two types of features: node level features (such
as proteins with different properties) and structural features,
which describe how these nodes are positioned relative to the
remainder of the graph. By developing the appropriate character-
istics, more precise predictions can bemade. Therefore, the initial
step involves transforming each graph into a vector of features.
These vectors can be used to train any conventional classifier, in-
cluding support vector machines and random forests. Some common
node level features are:

• The degree of the nodes.

• Eigenvector centrality: the significance of a node is com-
puted as the normalized sum of its neighbors’ significance.

• Betweenness centrality: a node is considered significant if it
is located on numerous shortest paths between other pairs
of nodes.

• Closeness centrality: a node has closeness centrality if it
has a short shortest path length to all other nodes.

• Clustering coefficient: indicates the connectivity of a node’s
neighbors.

• Graphlets: count pre-specified graphs in a node’s neighbor-
hood.

Graphlets are specifically rooted, connected, andnon-isomorphic
graphs. A graphical representation is provided in figure 20. A
graphlet degree vector can be constructed to describe a node
using graphlets by selecting a node and counting every possible

44

5.1 graph neural networks

graphlet it participates in. Each vector cell will contain the final
count for a particular graphlet. Graphlets exemplify structural
characteristics, whereas node centrality measures more closely
resemble node characteristics.

On occasion, characteristics that define the structure of the
entire graph may be needed to calculate the degree of similarity
between two given graphs. The concept of similarity can vary.
Typically, kernel methods are applied to solve this issue.

A kernel is a function that measures the degree of similarity
between two things (graphs); it accepts two vectors as input and
returns a value between 0 and 1. Specifically, the kernel function
represents the dot product between a specific representation of
a feature from each of the two graphs. The Weisfeiler-Lehman
kernel (WL), closely related to graph neural networks, will be
discussed.

Figure 20: All possible graphlets with up to five nodes.

WL-kernel

The concept of bag of node degrees is generalized by theWL-kernel [58].
A bag of node degrees is a vector that counts the number of nodes
with a certain node degree value within a graph. An example of
a bag of node degrees is 𝑉 = [2, 0, 4] signifies that the depicted
graph contains two nodes with degree 1, zero nodes with degree
2, and four nodes with degree 3. WL-kernel aims to iteratively
expand the node’s vocabulary by generalizing the node’s degree
by gathering degree information from a k-hop neighborhood.

45

gnn-based heuristics

The algorithm that accomplishes this is known as color refine-
ment.

Given a graph 𝐺 = (𝑉𝐺, 𝐸𝐺), initially a color 𝑐(0) (𝑣) is as-
signed to each node 𝑣 ∈ 𝑉𝐺. At iteration 𝑘, the node colors are
modified using the following formula:

𝑐(𝑘+1) (𝑣) = 𝐻𝐴𝑆𝐻 ({𝑐(𝑘) (𝑣) , {𝑐𝑘 (𝑢)𝑢 ∈ 𝑁(𝑣)}}) (7)

TheHASH functionmust be bijective, i.e., it must map distinct
inputs to distinct colors. Consequently, at step 𝑘, the color 𝑐(𝐾) (𝑣)
summarizes the structure of a node’s k-hop neighborhood. Af-
ter the final iteration, a bag of color vectors is computed. Each
element of the vector represents the total number of nodes that
possess a particular color. This process can be repeated for a
second graph, and the dot product between the two bags of color
vectors can be computed to derive a similarity measure. Figure 21
depicts a graphical example.

Representation Learning

With the help of representation learning techniques, it’s possible
to try and eliminate a challenging step in the machine learning
pipeline: the necessity of feature engineering. Every node will be
mapped to a d-dimensional feature vector through a learned func-
tion. The obtained vector is referred to as an embedding. Nodes
that are comparable in the graph must also be close in the embed-
ding space. Nodes that are dissimilar within the graph should
also be dissimilar within the embedding space. Three things
must be defined:

• A measure of similarity between nodes in a graph.

• An encoder: a mapping function between nodes and the
embedding space.

• A decoder: a function that converts an embedded value to
a similarity score (usually the dot product).

Encoder parameters must be optimized so that the embed-
ding space similarity function is as close as possible to the graph
similarity function. Typically, the dimension of an embedding
vector ranges from 64 to 1000. Before discussing deep learning
and graph neural networks, node2vec, a ”shallow” embedding
method, will be introduced.

46

5.1 graph neural networks

(a)

(b)

(c)

(d)

(e)

Figure 21: WL-Kernel application example

node2vec

The core element of node2vec [20] is tomatrix computation. Each
column of the matrix will correspond to a distinct node embed-
ding. The node embeddings are optimized directly, while with
GNNs, the parameters of the network are optimized, similar to the
multilayer perceptron. The objective is to identify the optimal
matrix, a set of embeddings whose dot product represents the
chosen concept of similarity. node2vec computes embeddings
using the random walk algorithm. A random walk is a walk that
has been generated using a random strategy. For example, an im-

47

gnn-based heuristics

partial random walk may consider all neighboring nodes equally
likely to be the next step.

The main random walk optimization steps for embedding
space are summarized below:

• Perform a predetermined number of random walks from
each node.

• For each node, the neighborhood is compiled. In this case,
the neighborhood is themultiset of nodes visited by random
walks.

• Given a node, optimize the embedding space to predict its
neighborhood.

Given a graph 𝐺 = (𝑉𝐺, 𝐸𝐺), the third step of optimization
can be represented by the following loss function:

∑
𝑣 ∈ 𝑉𝐺

⎛⎜
⎝

∑
𝑢 ∈𝑁𝑅(𝑣)

(−𝑙𝑜𝑔 (𝑃 (𝑢|𝑧𝑣)))⎞⎟
⎠

(8)

Where 𝑁𝑅(𝑣) represents the neighborhood of node 𝑣 as deter-
mined by the random walk method 𝑅, and 𝑧𝑣 is the embedding
vector of node 𝑣. A softmax function may be used to represent
the probability 𝑃(𝑣|𝑧𝑢):

𝑃 (𝑢|𝑧𝑣) =
𝑒𝑥𝑝 (𝑧𝑇

𝑣 𝑧𝑢)
∑𝑛 ∈ 𝑉𝐺

(𝑒𝑥𝑝 (𝑧𝑇
𝑣 𝑧𝑛))

(9)

The softmax function merely converts a vector of real values
to probabilities by normalizing them so that they add up to 1.
The gradient descent approach can then solve this optimization
problem. Since the number of random walks in this scenario
might be very large, gradient descent is typically computed on
batches of training samples. The name of this algorithm is stochas-
tic gradient descent. Now a random walk strategy must be defined.
Deep walk [44] is an embedding technique that employs random
walks without bias. This technique is generalized by node2vec by
adding two hyperparameters. Adding the in-out variable 𝑞 biases
the random walks toward traversing the graph in depth (as in a
depth-first search) or by breadth (as with a breadth-first search).
A return parameter 𝑝 is introduced to adjust the likelihood that
the random walk will return to a previously visited node.

48

5.1 graph neural networks

5.1.3 GNN

The multilayer perceptron is a reasonably generic framework for
deep learning. It is compatible with practically any data structure
that can be represented as a vector. In deep learning, special-
purpose architectures that utilize a data structure’s specific prop-
erties may be required in order to create significantly more ac-
curate predictions with less training time. Convolutional neural
networks (CNNs) are an example of such deep neural networks.
CNNs are optimized for image-based applications. While im-
ages can be represented as vectors, spatial information included
within the image itself is not optimally utilized with this repre-
sentation. Moreover, images typically exhibit repeated patterns
(e.g., all the windows on a building are identical), therefore it is
advantageous to share neuron weights. The weight distribution
between neurons is accomplished by multiplying the input by
a sliding weight matrix. Another example is recurrent neural
networks (RNNs), optimized for sequences. Text analysis is the
most valuable use case. In the same way CNNs capture spatial
information, RNNs capture time or ordering information (words
are one after the other).

Graphs have a unique data structure, and their characteristics
may be used to make more accurate predictions. Graphs are con-
siderably more general: images can be seen as planar grid graphs
(Figure 22a), and planar chain graphs can model sequences (Fig-
ure 22b). Therefore, GNNs are a generalization of both CNNs
and RNNs.

The preceding section discussed ”shallow” techniques. These
approaches have some drawbacks, including:

• Not a collection of parameters, but the embeddings them-
selves are optimized. By adjusting parameters, a type of
”weight sharing” is obtained. The same set of settings can
create two different node embeddings.

• Node features are not supported.

• They are transductive, meaning they can only construct
node embeddings for nodes that were observed during
training.

.

49

gnn-based heuristics

(a) Grid graph (images). (b) Sequence graph
(text). (c) A random graph.

Figure 22: Graphs are more general than images or text.

Graph Convolution

The primary objective of graph convolution is generalizing the
concept of convolution from CNNs [71]. A sliding window can-
not be used because graphs lack a fixed notion of locality (e.g., a
picture has a top-right corner). Each node will ”send a message”
to its neighbors through message passing, and each message is
multiplied by a weight matrix 𝑊. Finally, the totals are tallied.
Each node will have its own computational graph due to the ne-
cessity to specify the flow of messages. A computational graph
is constructed by unfolding the target node’s neighbors a pre-
determined number of times. Each unfolding specifies a GNN
layer. Figure 23 depicts a graph on the left and the computational
graph for node 1 on the right.

Figure 23: Computational graph.

Each node will have its own computational graph based on
its vicinity. Each node will transmit messages to the next layer,
after which they will be collected and then processed by a neural

50

5.1 graph neural networks

network. The aggregation step is vital in GNNs, given that it can
be executed in several ways. For instance, the average of all the
messages could be used. Starting with ℎ0 = 𝑥𝑣, where ℎ𝑖 is the
feature vector at layer 𝑖 and 𝑥𝑣 is the original feature vector input,
the following equation is used to compute the feature vector (or
embedding vector) at layer 𝑖 ≠ 1:

ℎ(𝑙+1)
𝑣 = 𝜎 ⎛⎜

⎝
𝑊𝑙 ∑ 𝑢∈ 𝑁(𝑣) ⎛⎜

⎝
ℎ𝑙

𝑢
|𝑁 (𝑣)|

⎞⎟
⎠

+ 𝐵𝑙ℎ𝑙
𝑣⎞⎟
⎠

, ∀𝑙 ∈ {0, ..., 𝐿 − 1}

(10)
The 𝜎 sign denotes the final stage activation function. 𝑊 and 𝐵 are
the neighborhood aggregationweight matrix and aweight matrix
used to change the target node embedding vector, respectively.
Using any loss function and the gradient descent approach, it is
possible to train both matrices, which are shared by all nodes.
When neighbor aggregation is expressed in terms of matrix mul-
tiplication, it can be performed more efficiently:

𝐻(𝑙+1) = 𝜎 (𝐷−1𝐴 𝐻(𝑙) 𝑊𝑇
𝑙 + 𝐻𝑙𝐵𝑇

𝑙) (11)

• 𝐻𝑙 is the embedding matrix: it contains all node embed-
dings at a given layer 𝑙.

• 𝐴 is the adjacency matrix.

• Each node’s degree is represented by the diagonal matrix 𝐷.
The inverse of D is employed so that the diagonal contains
1/𝑑𝑒𝑔𝑟𝑒𝑒.

• 𝑊 and 𝐵 are the weight and bias trainable matrix.

This operation yields a product between matrices rather than a
summative product.

Design choices in a GNN

When developing a graph neural network, there are various op-
tions available. Two operations comprise a GNN layer: message
transformation and aggregation. Each distinct GNN architecture
defines these two operations differently. Messages can also be
changed before aggregation, for instance via matrix multiplica-
tion. The aggregation operator must be independent of permu-
tation. The manner in which GNN layers are stacked is also a
design option. Layers of a GNN can either be linked together or
skip connections can be created. When layers are connected in a

51

gnn-based heuristics

chain, each layer 𝑙 receives inputs from the layer 𝑙 − 1 correspond-
ing to it. A skip link enables the reception of information from
any previous tier. In conclusion, the computational graph out-
lined in the previous section can be extended in order to discover
more accurate embeddings. The following will examine the most
popular GNN layer types and design possibilities in detail.

Graph convolutional networks (GCNs) [71] were one of the first
GNN layers to be proposed; it is denoted as:

ℎ𝑙
𝑣 = 𝜎 ⎛⎜

⎝
∑

𝑢∈ 𝑁(𝑣)
𝑊𝑙 ℎ𝑙−1

𝑢
|𝑁 (𝑣)|

⎞⎟
⎠

(12)

In this situation, the message is calculated using 𝑚𝑙
𝑢 = 𝑊𝑙 ℎ𝑙−1

𝑢
|𝑁(𝑣)| .

Specifically, at each layer 𝑙, the message 𝑚𝑙
𝑢 computed by node

𝑢 at layer 𝑙 is the product between the embedding vector of the
previous layer ℎ𝑙−1 and a weight matrix 𝑊𝑙. The result is then
normalized by the neighborhood size of that node. The aggrega-
tion operation is summation; the messages from all neighbors are
added together. The GNN layer is defined as follows in Graph-
SAGE [21]:

ℎ𝑙
𝑣 = 𝜎 (𝑊𝑙 ⋅ 𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑙−1

𝑣 , 𝐴𝐺𝐺 ({ℎ𝑙−1
𝑢 , ∀ 𝑢 ∈ 𝑁 (𝑣)})))

(13)
In this instance, there is no single definition for the aggregation
function. GraphSAGE permits various types of aggregation, in-
cluding mean (taking a weighted average of all neighbors), pool
(transforming the neighbor vector and then applying the mean
or max function), and other advanced techniques that will not be
covered (such as long short term memory). Additionally, mes-
sage aggregation is performed in two phases. Inside the 𝐴𝐺𝐺
function, only the neighbors of the node 𝑣 are considered initially.
The result is then concatenated with the embedding of node 𝑣.

Graph Attention Networks [65] are a powerful kind of GNN. In
both GCN and GraphSAGE, all of the target node’s neighbors are
equally important. GATs are enhanced by the presence of a learn-
able attention matrix 𝑎𝑣𝑢 that enables the network to determine
which neighbors are more significant. Many traditional learning
modules can be inserted between the layers of a GNN. The batch
normalization and the dropout modules will be discussed below.

When training amachine learningmodel, input data ismapped
to the appropriate output. Typically, it is assumed that the input

52

5.1 graph neural networks

distribution remains constant throughout training. However, as
each layer in neural networks is dependent on the previous layer’s
outputs, this assumption may not hold. By re-centering the node
embeddings to zero mean and rescaling the variance to unit vari-
ance, batch normalization assists in stabilizing the networks. The
batch normalization is accomplished in two steps: first, the mean
and variance of the embeddings are computed; then, the embed-
dings are normalized using the computed mean and variance.
However, normalization can diminish the expressive capacity of
neural networks. In order to address this issue, two learnable
parameters are added to the formula, allowing the network to
select arbitrary values for the mean and variance.

Dropout is a technique used to reduce the effect of overfitting in
neural networks [61]. Every machine learning model trains and
tunes its parameters using available data (the training dataset)
and then applies the same rules to new data. These models are
only useful if they can generalize. The generalization power may
decrease when a model becomes increasingly adept at compre-
hending the training dataset.

This is because the training dataset frequently has a differ-
ent distribution than the original data. The more information is
available, the better the actual distribution can be approximated.
However, most practical cases contain significantly less informa-
tion than is required. If overtrained, themodel will learn tomatch
the training data precisely . This typically results in larger errors
when evaluating the model with unknown data.

When computing the output of a neural network layer, the
key idea is to eliminate a certain proportion of neurons. This
prevents certain neurons from becoming more important during
training. The method consists of three phases:

• Assigning a dropout rate. This will determine the propor-
tion of neurons to be removed.

• Remove neurons at random until the desired number of
neurons is reached.

• The output is calculated using only the remaining neurons.

Thus, all neurons are allowed to contribute to the final output. In
GNNs, dropout is applied during the phase of message transfor-
mation.

53

gnn-based heuristics

(a) Underfitting. (b) Balanced. (c) Overfitting.

The most popular activation functions used in GNNs are:

• The Rectified linear unit (ReLU) is defined as 𝑅𝑒𝐿𝑈(𝑥𝑖) =
𝑚𝑎𝑥(𝑥𝑖, 0) and is the most commonly used.

• The Sigmoid is defined as 𝜎 (𝑥𝑖) = 1
1+𝑒−𝑥𝑖 and is often em-

ployed when the range of the embeddings must be con-
strained.

• The Parametric ReLU adds a trainable parameter to the ReLU
and is defined as 𝑃𝑅𝑒𝐿𝑈(𝑥𝑖) = 𝑚𝑎𝑥(𝑥𝑖, 0) + 𝑎𝑖𝑚𝑖𝑛(𝑥𝑖, 0).
Typically, it outperforms standard ReLU.

(a) ReLU (b) Sigmoid (c) Parametric ReLU

Graph augmentation: as previously stated, each node defines
a computational graph. A computational graph is a graph that
illustrates how message passing occurs for a given target node.
As discussed, a computational graph can be created by simply
unrolling a node’s neighborhood. Nonetheless, additional al-
ternatives exist. The typical computational graph is unlikely
to be the optimal method for computing embeddings. Several
problems plague standard computational graphs. If the graph
is insufficiently dense, message transmission will be inefficient.
Adding virtual nodes or edges to the graph to enable more mes-
sage passing solves this issue. Using virtual edges to connect
2-hop neighbors is a possible solution, and it is particularly use-
ful when constructing bipartite graphs.

It is also a good idea to add a virtual node that connects to
every other node in the graph so that the distance between each
node is two. This makes the graph considerably less sparse and

54

5.1 graph neural networks

(a) (b) (c)

Figure 26: Red nodes in Figures 26a and 26b will both generate Fig-
ure 26c’s computational graph.

is advantageous for message transmission. If the graph is too
dense, it may be advantageous to disregard the neighborhood
of every node. Typically, a different portion of a node’s neigh-
borhood is sampled at each layer. When each node has a large
neighborhood, this is performed to reduce the computational
cost of passing messages. Also, if a graph is too large, it may be
challenging to fit it on GPUs. As the first message at layer 0 is
composed of the node feature vector, node characteristics are also
crucial when computing messages. If nodes are missing features,
it may be beneficial to add them. A common approach is to assign
each node a constant value, such as 1. This is particularly helpful
in inductive settings (when generalization on unseen graphs is
desired). The GNN will learn from the graph’s structure despite
all nodes being identical. For transductive settings, assigning an
ID to each node and using it as a characteristic is possible. This
procedure is more expressive because it stores node-specific in-
formation, but it does not generalize well because a GNN cannot
determine the identifier of an unseen node. Without node fea-
tures, it is much more difficult for a GNN to differentiate between
nodes. For instance, the red nodes in figures 26a and 26b will
produce the identical computational graph (Figure 26c).

The cycle count could be a possible augmented feature vector
to solve this problem. Each node is aware of the length of the cycle
in which it resides. In this manner, the red node in Figure 26a will
have a value of 3, as its cycle has a length of 3 units. Figure 26b’s
red node will have a value of 4. Now, a GNN can distinguish
between the two nodes because their characteristics are distinct
(the structure of the computational graph will remain the same).

Various types of problems can be modeled using GNNs. Re-
ducing a problem to recognizable patterns or prediction tasks is
advantageous. The prediction task is typically stated in one of
the following ways:

55

gnn-based heuristics

• At the node level, predict a discrete (classification) or con-
tinuous (regression) value for nodes.

• Classification or regression on node pairs or the prediction
of new edges.

• Classification or regression across the entire graph.

The last layer of a GNN will generate embeddings. The resulting
embeddings are used to make predictions for node-level tasks.
Pairs of the original embeddings can be concatenated to create
new embeddings for link-level tasks. The alternative is to use
the dot product between two embeddings. In this manner, a
simple binary value representing the presence or absence of an
edge can be predicted. For tasks at the graph level, embeddings
must be aggregated in alternative ways. Common techniques
include calculating all embeddings’ mean, maximum, or sum. A
great deal of expressive power is lost by naively employing these
techniques.

Suppose that graph 𝐺 has a node embedding vector 𝑧𝑔 =
[−1, −1, −2, 1, 3] and graph 𝐻 has a node embedding vector 𝑧ℎ =
[−10, −10, −20, 10, 30], while the sum operation is used to aggre-
gate these embeddings. Both 𝐺 and 𝐻 will have an embedding
of 30 as a result. Consequently, the GNN will be incapable of
differentiating between these two vastly distinct graphs. This
issue can be solved by aggregating embeddings hierarchically.
The result of aggregating the first two nodes of each graph is then
fed into an activation function. The final three nodes undergo the
same process, and the final two results are aggregated once more.

Setting up a graph dataset is trickier than others, e.g., an image
dataset. In an image dataset, each image is an independent data
point. The prediction of an image depends solely on the image’s
unique characteristics. When classifying nodes, the configuration
varies. Each node is linked to its neighbors by one or more edges
(Figure 27). In this instance, other nodes will impact the target
node’s prediction. Whether the task is transductive or inductive
may affect how datasets are used.

In a transductive setting, only one input graph is available
during all three phases (training, validation, and testing) of a
neural network training pipeline: training, validation, and test-
ing. However, graph nodes are divided into training, validation,
and test groups. During training, embeddings are computed
using the entire graph, but only the labels of the training nodes

56

5.1 graph neural networks

(a) (b) (c)

Figure 27: Seven data points were separated into training (red), vali-
dation (yellow), and test sets (light blue). Figure a depicts an image
dataset in which each point is independent. Figure b depicts a graph
dataset in which nodes are actually interconnected. Figure (c) depicts a
graph dataset that was divided inductively. The initial graph is divided
into three separate graphs.

are used. In the same way, only validation nodes are evaluated
during validation. In an inductive setting, the dataset consists
of multiple graphs. The objective of the inductive setting is not
to predict missing node labels but rather to generalize to un-
observed graphs. In this instance, the dataset is divided into
training, validation, and test, similar to how an image dataset
would be divided. There are node-level and link-level tasks for
both inductive and transductive settings, but only the inductive
setting has well-defined graph-level tasks.

Expression potential of GNNs

The expressive power of a GNN resides in its capacity to dif-
ferentiate between various graph structures [68]. In general, a
GNN cannot distinguish symmetric or isomorphic nodes in a
graph. The embedding of each node is computed according to
the message passing paths specified by its computational graph.
If two nodes share the same computational graph structure, so
will their embedding. This is even more problematic if nodes
have identical characteristics. The aggregation steps introduce a
new difficulty that could diminish the expressive power of the
GNN. After aggregation, two distinct sets of messages can pro-
duce the same output. This causes various graph structures to
be mistaken for the same one.

Mean pooling is the mean operator used in graph convolu-
tional networks; it yields the same output if the proportion of
each label’s inputs is the same. Suppose that there are two labels,
green and red, encoded by the vectors (0, 1) and (1, 0), respec-

57

gnn-based heuristics

Figure 28: The two symmetric nodes 1 and 2 generates the same com-
putational graph.

tively. If two green and two red messages are received before
the aggregation step, the output obtained by applying the mean
to each element is (0.5, 0.5). The same output is produced in all
circumstances where half of the messages are green and half are
red.

5.2 gnns for the mcs problem

In this section, three different methods are proposed to enhance
McSplit by using Graph Neural Networks. As previously men-
tioned, McSplit is an exact algorithm optimized to find the MCS
between two input graphs in the shortest time possible. As the
MCS problem is 𝒩𝒫-hard, this approach will not scale well to
larger graphs. The aim is to optimize the algorithm so that it can
find higher-quality solutions in a short amount of time. To ac-
complish this, Three distinct methods that utilize McSplit as their
foundation are proposed to accomplish this. As stated previously,
McSplit employs two heuristics:

• The bidomain heuristic, that gives precedence to the bido-
main with the smallest
𝑚𝑎𝑥(|𝐺|, |𝐻|)

• The node ordering heuristic: higher degree nodes are tried
first during the search.

The primary objective of these heuristics is to reduce the tree
search size, allowing the branch and bound algorithm to perform
more pruning. However, there are a few disadvantages. The
node degree is an overly simplistic metric; consequently, most

58

5.2 gnns for the mcs problem

heuristics are based on random factors, i.e., the alphabetical order
of nodes. In addition, McSplit adheres to a fail-first paradigm,
frequently utilized among branch and bound algorithms. Its goal
is to reach leaf nodes in the search tree as quickly as possible so
that a more aggressive pruning can be performed later. This is
beneficial for McSplit’s goals because it is interested in the exact
solution.

Section 5.2.1 introduces NeuroMatch. Then, using the represen-
tational power of Graph Neural Networks, two ”smarter” node
ordering heuristics will be implemented (section 5.2.2). Subse-
quently, McSplit will be modified significantly by introducing a
best-first method that selects node pairs directly (section 5.2.3).
Finally, a custom neural network that learns a node’s likelihood
of being part of a large MCS solution will be presented in section
5.2.4.

5.2.1 NeuroMatch

NeuroMatch is a graph neural network (GNN) that computes
and imposes an order constraint on graph embeddings, allowing
for fast graph matching calculation [34].

Given a graph 𝐺 = (𝑉, 𝐸), NeuroMatch learns embeddings
by selecting one node 𝑣 ∈ 𝑉 at a time and extracting its 𝑘-hop
neighborhood using the Breadth-First Search (BFS) algorithm.
Therefore, given 𝑣 (also referred to as anchor-node) its embed-
ding represents its 𝑘-hop neighborhood.

As previously described, the 𝑘-hop neighborhood of a given
node 𝑣 ∈ 𝑉 is defined as the subgraph induced by the set of
nodes that includes 𝑣 and all nodes that can be reached from 𝑣
through a path shorter than 𝑘. Graph embeddings are learned by
enforcing an order constraint, as the geometry of the embeddings
represents the relationship between subgraphs. This also enables
matchings to be computed by merely comparing the components
of two embeddings.

NeuroMatch satisfies the following four requirements for sub-
graph relationships:

• Transitivity: 𝐺 is a subgraph of 𝐿 if 𝐺 is a subgraph of 𝐻 and
𝐻 is a subgraph of 𝐿.

• Anti-symmetry: 𝐺 is a subgraph of 𝐻 and 𝐻 is a subgraph
of 𝐺 if and only if they are isomorphic.

59

gnn-based heuristics

• Intersection set: The intersection of the subgraph sets 𝐺 and
𝐻 contains all subgraphs shared by both sets.

• Non-trivial intersection: the intersection of any two graphs
contains the trivial graph, that is, a graph with one node
and no edges.

In practice, a graph 𝐺 with 𝐷-dimensional embedding vector
𝑍𝐺 is considered a subgraph of graph 𝐻 with embedding vec-
tor 𝑍𝐻 if each component of 𝑍𝐺 is less than the corresponding
component in 𝑍𝐻.

∀𝑖 ∈ [1, 𝐷] ∶ 𝑍𝐺[𝑖] ≤ 𝑍𝐻[𝑖] ⟺ 𝐺 ⊆ 𝐻 (14)

To guarantee the previously indicated order limitation, Neuro-
Match is trained with the maximum margin loss:

ℒ(𝑍𝐺, 𝑍𝐻) = ∑(𝑍𝐺,𝑍𝐻)∈𝑃 𝐸(𝑍𝐺, 𝑍𝐻) +
∑(𝑍𝐺,𝑍𝐻)∈𝑁 max(0, 𝛼 − 𝐸(𝑍𝐺, 𝑍𝐻)) (15)

where 𝐸(𝑍1, 𝑍2) = max(0, |𝑍1 − 𝑍2|22). 𝑃 and 𝑁 are the positive
and negative samples, respectively. Positive samples consist of
graph pairs wherein the first graph is a subgraph of the second.
The pairs that do not satisfy this requirement are referred to as
negative samples. The loss is minimized when the subgraph
relationship specified by 𝐸 holds for pairings in 𝑃 but is violated
by at least 𝑎𝑙𝑝ℎ𝑎 pairs in 𝑁.

The training technique is further improved by a curriculum
learning scheme, in which the model is initially trained on easier
instances that progressively get more difficult as the model loss
stabilizes.

Figure 29 demonstrates that the outcome is an order embed-
ding space. 𝐺 is contained in 𝐻 if it is located on the lower-left
side of 𝐻 in the order embedding space.

Embedding Computation

In this particular scenario, Embeddings for each node 𝑣 ∈ 𝐺 are
computed while taking their 𝑘-hop neighborhood into considera-
tion. Sampling all neighbors up to 𝑘 yields the related induced
subgraph of 𝐺 on which the embedding is calculated. The sam-
pled subgraphs are sampled into batches before to loading them
into the GPU memory, such that process is sped-up using the
GPU parallelism.

60

5.2 gnns for the mcs problem

This helps the GPU to spend less time in an idle state, as mul-
tiples of 32 threads form each thread warp, and having only one
thread operating negates the GPU’s benefits by leaving 31 threads
inactive. NeuroMatch does not rely on a specific GNN and may
utilize all the numerous cutting-edge models, including graph
convolutional networks (GCNs), GraphSAGE, and graph isomor-
phism networks (GINs). In this work, an 8-layer GraphSAGE
model is used.

Finding the optimal BFS depth

Given an anchor-node 𝑣, the parameter 𝑘 allows choosing the
depth of the breadth-first visit used to construct the 𝑘-hop neigh-
borhood subgraphs. In other words, 𝑘 represents the eccentricity
of the sampled subgraph’s anchor node. Similarly, a GNN with
a predetermined number of layers 𝑗 is employed. There is no
relationship between 𝑗 and 𝑘 for the following reason: A GNN
with 𝑗 layers computes an embedding for a particular node by ag-
gregating and manipulating information obtained from its 𝑗-hop
neighbors.

Since initially a 𝑘-hop neighborhood subgraph is sampled
using a BFS, if 𝑘 > 𝑗, any nodes with a distance greater than
𝑑 > 𝑗 from the anchor vertex will be disregarded. Therefore, the
number of layers 𝑗 must always be greater than or equal to 𝑘 to
ensure that information from all nodes propagates to the anchor.

Additionally, the value of 𝑘 impacts the total performance.
Indeed, even though the number of layers during the embedding
computation is 𝑗, the value of 𝑘 corresponds to the depth of the BFS
technique that must be executed, and consequently, 𝑘 increases
the time cost of the procedure.

Figure 29: NeuroMatch architecture [69].

61

gnn-based heuristics

5.2.2 GNN-based node ordering heuristics

As previously discussed, McSplit first selects the bidomain with
the least 𝑚𝑎𝑥(|𝐺|, |𝐻|), i.e., by comparing the values produced by
the formula for all potential bidomains. Then, the vertex with
the highest degree is chosen within the selected bidomain. Given
the graphs 𝐺 and 𝐻, the method constructs the final 𝑀𝐶𝑆(𝐺, 𝐻)
by matching one vertex of 𝐺 with one vertex of 𝐻 and sorting the
nodes of 𝐺 and 𝐻 depending on their degree, so that high-degree
nodes are matched before along the branch-and-bound process.

This strategy, despite its simplicity, has numerous downsides,
primarily because the node degree does not capture graph struc-
tural information about neighbors, resulting in a large number
of ties that are ultimately resolved using the irrelevant original
lexicographic order of the nodes. On big graphs, this causes
scalability concerns and inefficiency. This section presents an
approach that utilizes the main concepts of McSplit and modifies
its static heuristic by ranking nodes with NeuroMatch embedding
norms and cumulative cosine similarity.

Given a graph 𝐺 = (𝑉𝐺, 𝐸𝐺), for each node 𝑣 ∈ 𝑉𝐺 (the
“anchor” node), Consider a subgraph containing all 𝑘-hop neigh-
boring nodes of 𝑣. Increasing or reducing the value of 𝑘 provides
finer or coarser information about 𝐺 to the node embedding,
respectively.

Norms represent concisely the order and size of each sub-
graph created through 𝑘-hop partitioning of the graph. Greater
embedding norm values are connected with larger subgraph
sizes. The cumulative cosine similarity is obtained by adding
the cosine similarity between a node in the first graph and all
other nodes in the second graph. This causes a node to be ranked
higher when it has a large number of comparable nodes in the
second graph, since it has a greater a priori likelihood of being
part of a larger solution.

Using Algorithm 4 as a guide, the suggested heuristic sub-
stitutes the node degree heuristic in lines 9 and 11 of McSplit.
Instead of the maximum degree, the priority method considers
the maximum norm or cumulative cosine similarity. Similar to
the original technique, the scores are generated during a setup
phase before invoking the mcs function.

62

5.2 gnns for the mcs problem

Algorithm 4 mcs(𝐺, 𝐻, 𝑀, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡, 𝐿)
Input : Twographs𝐺 = (𝑉𝐺, 𝐸𝐺) and𝐻 = (𝑉𝐻, 𝐸𝐻); 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡,

the biggest common subgraph found thus far; 𝑀, the so-
lution being built; 𝐿 the current set of labels (bidomains)

Output : 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡
49 if |𝑀| > |𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡| then
50 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 ← 𝑀
51 𝑏𝑜𝑢𝑛𝑑 ← |𝑀| + 𝑐𝑎𝑙𝑐_𝑏𝑜𝑢𝑛𝑑(𝐿); // Eq. 5

52 if 𝑏𝑜𝑢𝑛𝑑 ≤ |𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡| then
53 return 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡
54 𝑏𝑑 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑏𝑖𝑑𝑜𝑚𝑎𝑖𝑛(𝐿); // bidomain selection

55 𝑣 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑙𝑒𝑓 𝑡_𝑛𝑜𝑑𝑒(𝑏𝑑) ; // node selection

56 remove 𝑣 from bd
for each 𝑤 ∈ 𝑏𝑑 do

57 remove 𝑤 from bd
𝑀.𝑝𝑢𝑠ℎ((𝑣, 𝑤)); // Add new pair to M

58 𝑛𝑒𝑤_𝐿 ← 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑙𝑎𝑏𝑒𝑙𝑠(𝐿, 𝑣, 𝑤); // Generate new L set

59 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 ← 𝑚𝑐𝑠(𝐺, 𝐻, 𝑀, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡, 𝑛𝑒𝑤_𝐿)
M.pop()
add 𝑤 to 𝑏𝑑; // w is added back

60 if 𝑏𝑑.𝑉𝑙,𝑔 is empty then
61 remove 𝑏𝑑 from 𝐿
62 return 𝑚𝑐𝑠(𝐺, 𝐻, 𝑀, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡, 𝐿)

Embedding norm

The first heuristic presented is based on the L2 norm. The Eu-
clidean Norm is computed by evaluating NeuroMatch embed-
dings on the 𝑘-hop neighborhood of each node in both graphs.
To be more specific:

𝐿2 (𝑍) = √∑𝐷
𝑖=1 𝑍 [𝑖]2 (16)

where 𝑍 is a 𝐷-dimensional embedding vector. Due to the Neu-
roMatch order constraint, the L2 norm of these embeddings for
nodes of large and dense graphs is greater. Instead of only con-
sidering the degree of a node, the size and order of the entire
𝑘-hop neighborhood are considered. Due to the NeuroMatch
order constraint, the L2 norm of these embeddings for nodes of
large and dense graphs is greater.

Experiment results are shown in figure 30 to demonstrate the
validity of this hypothesis.

63

gnn-based heuristics

Using a BFSwith a depth limit of 3, 100 subgraphs are sampled
from a single graph with 100 nodes.

Then, for each graph, the mean value is plotted against the
number of nodes, as shown in figure 30a, and edges (figure 30b).

(a) (b)

Figure 30: The embedding norm increases with the number of nodes
(a) and edges (b)

Figures 31a and 31b depict the degree and norm distributions
computed for a set of 10 graphs with 100 nodes each. It is ob-
servable that the distribution of node degree is considerably less
sparse. Since the graph is connected and contains 100 nodes, the
degree values of the nodes could range from 1 to 100. In contrast,
most nodes tend to have few neighbors, and the average degree
is approximately 5. This is common in the graph domain, where
nodes tend to cluster into small neighborhoods.

In addition, while the degree of a node is a discrete variable,
the embedding norm is continuous. Since McSplit breaks ties
lexicographically, the performance of the node degree heuristic
is significantly more dependent on random factors.

(a) (b)

Figure 31: The node degree distribution (Fig. a) is much less sparse
than norm value distribution (Fig. b)

64

5.2 gnns for the mcs problem

Recomputing the Norm

As the objective is to give higher priority to nodes with a larger
and denser neighborhood, it may be advantageous to periodically
recompute the normswhile the procedure is running. This allows
the removal of already selected nodes from all neighborhoods.
However, the computational cost overhead for recalculating the
norm at each recursion step is so high that recalculating the norm
consumes most of the budget time. Therefore, despite the fact
that this strategy should maximize the efficiency of the selection
heuristic and reach good solutions with fewer recursions, an algo-
rithmic improvement is required to make it appealing. At every
recursion call, McSplit chooses a newpair of nodes. Consequently,
at each new call along the search tree, the newly selected pair
of nodes is added to the previously selected set. When expand-
ing the current solution and making a new selection, previously
selected or unselected pairs are no longer considered. This con-
sideration influences how and when the actual embeddings are
computed (and possibly updated).

By only initially computing embeddings, the entire 𝑘-hop
neighborhood surrounding each node is considered. However,
as the search continues, it may be prudent to disregard nodes
that are already part of the solution as members of any neigh-
borhood. For example, the following situation is conceivable: A
vertex 𝑣 has a large neighborhood consisting primarily of nodes
already included in the solution, whereas a vertex 𝑢 has a small
neighborhood consisting primarily of nodes available for future
matchings. In this circumstance, the norm evaluated at the outset
of the process may suggest an incorrect vertex selection by giving
𝑣 precedence over 𝑢.

To avoid this issue, the most obvious solution is to (poten-
tially) recompute embeddings after each pair selection and, con-
currently, to ignore all nodes already selected in the current so-
lution when sampling neighbors during the BFS. This solution
corresponds to removing from the current solution all nodes from
previously sampled subgraphs. Therefore, the nodes affected by
this procedure will have lower standards and a lower priority
as the selection procedure progresses. Moreover, this procedure
will increase the cost of computing embeddings.

Experimentally, computing the embeddings only at the begin-
ning of the process requires only 0.1 to 0.4% of the total budget
time 𝑡. In contrast, recalculating the norms at each recursion

65

gnn-based heuristics

can consume over 95% of 𝑡, drastically reducing the number of
recursions that can be performed by the algorithm.

A trade-off is necessary to balance time and precision in norm
computation. One possible strategy is to recompute the norm if
the algorithm fails to reduce the solution size within a predeter-
mined amount of time or a predetermined number of iterations.
This could be accomplished in various ways. The naive strategy
would be to stop the algorithm at any branching point, recalculate
the norm, and restart the algorithm with the new norms.

A more effective strategy could be to backtrack to a promising
branching point before computing norms there. In [3], for in-
stance, the algorithm backtracks to the branching point with the
largest action space, i.e., the highest number of possible branches.
This can also prevent the occurrence of a local optimum.

Cumulative Cosine Similarity

The objective is to compute a score for each node in both graphs, as
in the previous section. The cosine similarity between two nodes
represents their respective 𝑘-hop neighborhood similarity. Nodes
with neighborhoods that are highly similar will have a higher
similarity score. In this instance, the graph nodes are ordered
according to the sum of the cosine similarity between a node of 𝐺
and all nodes of 𝐻. The primary benefit of considering this metric
is that the score of each node is determined by reasoning on both
graphs. In contrast, the norm and degree-based heuristics only
consider a single graph.

In figures 32 and 33, cosine similarity values for two pairs of
graphs are displayed. The higher the cosine similarity, the more
similar two graphs are.

In the first step, given two graphs 𝐺 and 𝐻, the matrix 𝑀 is
derived, where 𝑀𝑖𝑗 is the cosine similarity score between nodes
𝑖 ∈ 𝐺 and 𝑗 ∈ 𝐻.

Then, the score of each node in 𝐺 is determined by the sum
of values on the corresponding row in 𝑀, whereas the scores of
nodes in 𝐻 are determined by adding over columns. Specifically,
the following is computed for the nodes of 𝐺:

𝐶𝑆𝑆 (𝑖) = ∑|𝐻|
𝑗=1 𝑀𝑖𝑗 𝑤ℎ𝑒𝑟𝑒 𝑀𝑖𝑗 = 𝑍𝑖 ⋅ 𝑍𝑗 (17)

𝑍𝑖 and 𝑍𝑗 are embedding vectors of node 𝑖 ∈ 𝐺 and node 𝑗 ∈ 𝐻,
respectively. This score indicates the frequency with which a
subgraph sampled from one graph and represented by a node’s 𝑘-
hop neighborhood appears within the other graph. These nodes

66

5.2 gnns for the mcs problem

have a greater likelihood of being a part of a large solution or
being matched, so they have a higher priority.

(a) (b)

Figure 32: Two graphs with cosine similarity of 1.

(a) (b)

Figure 33: Two graphs with a 0.22 cosine similarity.

Neighborhood sampling and cosine similarity

The number of GNN layers has a significant effect on the in-
formativeness of the cosine similarity. It can be demonstrated
that the expressive power of a GNN does not increase mono-
tonically with the number of layers, as is the case with other
types of neural networks. This is a phenomenon known as over-
smoothing [chen2019measuring], which also depends on the
size of the graph.

Typically, larger graphs permit the addition of more layers
before over-smoothing. Before embedding the graph, a 𝑘-hop
neighborhood surrounding each node in the original graph is
sampled.

This issue is also present in the proposed setting, as shown
in figure 34. The figure’s dataset contains graphs with up to 100
nodes. The analysis led to the conclusion that a 𝑘 value of 1 or 2
may be optimal for this dataset.

67

gnn-based heuristics

Figure 34: Distribution of cosine similarity scores computed for all
node pairs in a 100-node sample graph taking into account its 𝑘-hop
neighborhood, with 𝑘 equal to 1, 2, 4, and 6 (Clockwise from top left).
For 𝑘 equal to 4, nearly all pairs have a similarity greater than 0.90,
whereas for 𝑘 equal to 6, nearly all pairs have a similarity greater than
0.99.

5.2.3 Best-pair McSplit Implementation

This section proposes a radical modification of the original Mc-
Split algorithm, which uses only one heuristic instead of two.
Again, the employed heuristic is based on cosine similarity. While
the McSplit heuristic operates at the node level, the node selec-
tion is replaced by a node-pair heuristic, which scores node pairs
directly. In McSplit, a node from the first graph is paired with
each node from the second.

The nodes of both graphs are prioritized following the same
heuristic. McSplit also subdivides nodes into different classes,
representing a node connectivity pattern with respect to already
selected node pairs. These classes are used to prune the search
space further. Before selecting nodes using the node-degree
heuristic, McSplit uses another heuristic to select the class from
which nodes are considered. Instead of sorting nodes, a differ-
ent priority is given to node pairs. Cosine similarity is the score
given to each pair, computed from the embeddings of both nodes.
Initially, an attempt is made to select a pair from a node class
determined by theMcSplit class heuristic. Subsequently, the algo-
rithm is modified to select the best pair among all classes, thereby
replacing the original McSplit heuristics with the proposed node-

68

5.2 gnns for the mcs problem

pair heuristic. McSplit classes continue to be utilized to reduce
the search space.

Choosing the Most Similar Pairs Within a Selected Bidomain

Node pairs with greater cosine similarity are prioritized without
affecting the McSplit bidomain heuristic, thereby replacing only
the node ordering heuristic. Some modifications to McSplit are
required to make this possible. The original implementation of
McSplit selects a node from the first input graph and attempts
to match it with all nodes from the second input graph that are
in the bidomain determined by the bidomain heuristic. In this
circumstance, node pairs are chosen directly. After selecting the
bidomain, all node pairs within that bidomain are tested, with
high cosine similarity scores being prioritized. Cosine similar-
ity scores can be pre-computed and stored in a priority queue.
However, since the chosen bidomain is unknown, a subset of the
queue must be selected at each recursion level, corresponding to
all node pairs in the chosen bidomain. In addition, as with the
norms heuristic, the node embeddings are recalculated with each
recursion call. The new embeddings are still computed based
on the 𝑘-hop neighborhoods of the nodes but exclude already
chosen nodes.

Selecting the Bidomain Pairs With the Highest Similarity

In this instance, the McSplit bidomain heuristic is disregarded,
and a node pair is chosen directly. Because each node pair be-
longs to a single bidomain, the chosen bidomain is automatically
derived. Before the recursive phase starts, the cosine similarity
between every pair of nodes is computed and stored in a priority
queue. Again, node pairs with greater cosine similarity are given
precedence. All recursion levels use the identical copy of the
priority queue. To facilitate this, the queue’s last selected pair
index is tracked. In other words, if the last selected pair was at
index 𝑖, the first pair considered in the subsequent recursive call
is the pair at index 𝑖 + 1.

This also eliminates the need to evaluate permutations of the
same solution. Observe that as the algorithm continues, not all
pairs remain valid. Only pairs belonging to the same bidomain
at that particular recursion level can be chosen, so even if the first
pair at index 𝑖+1 is considered, it does not necessarilymean it will
be chosen. In such a case, the next pair in the queue is evaluated

69

gnn-based heuristics

until a valid pair is discovered. Algorithm 5 demonstrates the
entire procedure.

Algorithm 5 mcs(𝐺, 𝐻, 𝑀, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡, 𝐿, 𝑞𝑢𝑒𝑢𝑒, 𝑖𝑑𝑥)
Input : Twographs𝐺 = (𝑉𝐺, 𝐸𝐺) and𝐻 = (𝑉𝐻, 𝐸𝐻); 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡,

the biggest common subgraph found thus far; 𝑀, the
solution being built; 𝐿 the current set of labels (bido-
mains); queue, priority queue with cosine similarity for
each pair; idx, first index to consider at this recursion
level

Output : 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡
63 if |𝑀| > |𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡| then
64 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 ← 𝑀
65 𝑏𝑜𝑢𝑛𝑑 ← |𝑀| + 𝑐𝑎𝑙𝑐_𝑏𝑜𝑢𝑛𝑑(𝐿) if 𝑏𝑜𝑢𝑛𝑑 ≤ 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 then
66 return 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡
67 while 𝑖𝑑𝑥 < 𝑞𝑢𝑒𝑢𝑒.𝑠𝑖𝑧𝑒() do
68 𝑛𝑒𝑤_𝑖𝑑𝑥, 𝑣, 𝑤, 𝑏𝑑 ← 𝑔𝑒𝑡_𝑝𝑎𝑖𝑟(𝑞𝑢𝑒𝑢𝑒, 𝑖𝑑𝑥, 𝐿) ; // Get next valid

pair, its index and its bidomain.

69 remove 𝑣 and 𝑤 from 𝑏𝑑
𝑀.𝑝𝑢𝑠ℎ((𝑣, 𝑤)); // Add new pair to M.

70 𝑛𝑒𝑤_𝐿 ← 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑙𝑎𝑏𝑒𝑙𝑠(𝐿, 𝑣, 𝑤); // Generate new L set.

71 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 ← 𝑚𝑐𝑠(𝐺, 𝐻, 𝑀, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡, 𝑛𝑒𝑤_𝐿, 𝑞𝑢𝑒𝑢𝑒, 𝑛𝑒𝑤_𝑖𝑑𝑥)
M.pop()
add 𝑤 and 𝑣 to 𝑏𝑑; // w and v inserted again in the bidomain.

72 𝑖𝑑𝑥 ← 𝑖𝑑𝑥 + 1
73 return incumbent

The function get_pair searches the queue beginning with the
index 𝑖𝑑𝑥 for a valid pair. To validate a pair, it is necessary to
know which bidomain each node belongs to. This information
may change at each level of recursion. To improve the efficiency
of checks, a dictionary mapping each node to its bidomain is
computed.

5.2.4 Custom Neural Network

All previous efforts have focused on learning a score on nodes
or node pairs that can correctly prioritize nodes so that a larger
solution can be found more quickly. All of these approaches,
however, are based on unsupervised machine learning. Learned
node embeddings from the structure of the graphs are then used

70

5.2 gnns for the mcs problem

to compute norm or cosine similarity scores. This section will
propose a supervised learning method for acquiring these scores.

Unsupervised learning is based on learning embeddings di-
rectly from unlabeled data, i.e., it learns from the data structure
only. Supervised learning learns from labeled data. The goal is to
learn scores for node pairs. These scores are thought to be used
together with the McSplit best-pair variation proposed in section
5.2.3.

The idea is to utilize a training dataset consisting of MCS
problem instances and the optimal solution (computed by the
original McSplit). The network should then learn to compute
embeddings such that the notion of similarity between two nodes
can be represented as a similarity between embeddings vector,
i.e., two nodes that have been optimally paired should be close to
one another in the embedding space. If two nodes have not been
paired, they should be separated in the embedding space.

The similarity measure is a number between 1 and 0 and is
interpreted as the probability that McSplit will choose a pair
of nodes as part of the optimal solution. By prioritizing these
pairs, if correctly learned, the best-pair version of McSplit should
converge to the optimal solution more quickly.

The network, shown in figure 35, consists of two MLPs. Both
graphs are inputs and separately fed to the first MLP. The MLP
outputs are then combined and fed to a second MLP. The output
is a probability matrix.

Using the MLP model, which requires a fixed-size input and
is not optimized for graphs, is the major limitation of this method.
GNNs could be utilized in the future to overcome this limitation.
Figure 35 depicts a graphical representation of the proposed archi-
tecture. The Python implementation is illustrated in algorithm 6.
The framework for deep learning is PyTorch. The dim value in-
dicates the size of the graph input. If graphs with 10 nodes are
analyzed, for instance, dim will equal 10, while the adjacency
matrix will have dimensions of 10 × 10.

The output likelihood matrix could be used in conjunction
with the best-pair McSplit algorithm described in the previous
section. In fact, best-pair McSplit could prioritize nodes with a
higher probability of being paired over others, potentially coming
extremely close to the optimal solution on its first attempt.

71

gnn-based heuristics

Figure 35: Custom neural network architecture.

Algorithm 6 Python implementation of the custom neural net-
work.

1 class NeuralNetwork(torch.nn.Module):

2 def __init__(self):

3 super(NeuralNetwork, self).__init__()

4 self.flatten = torch.nn.Flatten()

5 self.linear_relu_stack = torch.nn.Sequential(

6 torch.nn.Linear(dim*dim, 1000),

7 torch.nn.ReLU(),

8 torch.nn.Linear(1000, 1000),

9 torch.nn.ReLU(),

10 torch.nn.Linear(1000, dim*1000),

11)

12 self.common_part = torch.nn.Sequential(

13 torch.nn.Linear(dim*1000*2, 1000),

14 torch.nn.ReLU(),

15 torch.nn.Linear(1000, 1000),

16 torch.nn.ReLU(),

17 torch.nn.Linear(1000, dim*dim)

18)

19 def forward(self, X):

20 x1 = X[0]

21 x2 = X[1]

22 x1 = self.flatten(x1)

23 logits1 = self.linear_relu_stack(x1)

24 x2 = self.flatten(x2)

25 logits2 = self.linear_relu_stack(x2)

26 cat = torch.cat((logits1, logits2), dim = 1)

27 logits = self.common_part(cat)

28 return logits

72

5.3 experimental findings

5.3 experimental findings

5.3.1 GNN based heuristics

The implementations of the approaches presented previously
(each with multiple settings) are compared to the sequential
versions of McSplit [38] McSplit+RL [32].

The implementations are written in C++, the same program-
ming language used by the state-of-the-art, and instead of sorting
nodes based on their degree, they load an arbitrary score vector
that is then used to pair nodes. The score vectors are precomputed
using a Python script that can utilize the Pytorch framework, the
Pytorch Geometric library, and the DeepSnap library, which are
all used by NeuroMatch [69]. This strategy combines the Python
framework’s efficient neural network environment with a faster
language.

This is significant because the Python implementation of the
original algorithm, which is the portion of the process that con-
sumes the most time, is one to two orders of magnitude slower
than the original algorithm. The instances were retrieved from
the McSplit code repository [38].

The resulting experiments were performed with an i9 9900K
CPU and an Nvidia GTX 1060 GPU for embedded computation.
The machine runs on Ubuntu 20.04 with a version 2 Windows
Subsystem for Linux. The experiments were conducted on two
sets of graphs to ensure equality:

• 50 synthetic, connected, unlabeled, and undirected small-
sized graph pairs (less than 50 nodes) on which the MCS
can be found by at least one of the strategies.

• 50 graph pairs with similar features but medium-sized
(from 50 to 100 nodes) on which none of the methods is
able to find the MCS in the allocated amount of time.

All runs have a time limit of 50 minutes. In addition, as sug-
gested by [34], a few hyper-parameters are selected to effec-
tively train NeuroMatch. Following their analysis, the proposed
NeuroMatch model employs an 8-layer GraphSAGE and a 64-
dimensional embedding space. This appears to be the configu-
ration that maximizes NeuroMatch’s accuracy, as measured by
the number of correct matches. In addition, experiments are con-
ducted with 𝑘 ranging from 1 to 8. As the number of GNN layers
was also fixed at 8, larger values of 𝑘 would not affect the results,
as nodes at distances greater than 8 would be ignored.

73

gnn-based heuristics

The norm heuristic

Table 4 displays the results of the proposed norm heuristic consid-
ering all possible values of 𝑘 for the set of small-sized graph pairs.
For these benchmarks, all algorithms are capable of completing
the computation within the allotted wall-clock time. The table
displays the number of times the proposed version outperformed
McSplit and McSplit+RL. Since each method finds the optimal
solution, they are compared based on the number of recursion
steps they take. These instances are relatively simple to solve, and
as demonstrated in section [31], McSplit+RL performs poorly on
them.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
McSplit 26 25 22 21 23 23 23 23
McSplit+RL 30 26 27 23 25 25 25 25

Table 4: A comparison of the original McSplit heuristic andMcSplit+RL
against the norm heuristic with varying 𝑘 values on the smaller graphs.

Table 5 displays the results for instances in which at least
one of the methods timed out. It is formatted and presented
identically to table 4.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
McSplit 24 25 27 26 20 21 24 24
McSplit+RL 27 26 28 26 22 23 26 25

Table 5: Number of victories of the norm-based strategy over the
original McSplit heuristic and McSplit+RL on larger graphs.

In this instance, the size of the solution and the number of
recursions required to compute it are evaluated to determine the
winner. Specifically, the winning method is the one that finds
a solution that is larger than the other. Alternately, when two
results have the same size, ties are broken by counting the number
of recursion steps required to reach the initial solution size. For
smaller graphs, the proposedmethod’s advantage decreases with
all 𝑘 values, while for larger graphs, the number of wins oscillates
around half the number of graphs. Even if a method can explore
the entire search space more quickly, this does not necessarily
mean that it can find a better solution in less time. The results of
both smaller and larger graphs indicate that the norm heuristic
outperforms McSplit in approximately fifty percent of cases for
each 𝑘 value.

74

5.3 experimental findings

Table 6 displays the number of cumulative wins of the pro-
posed algorithm over the original version of McSplit (which,
based on the experiments performed, is more efficient than Mc-
Split+RL) on the large graph pair set, given all eight possible
values of 𝑘. Keeping in mind that there are multiple parallel
implementations of McSplit [46], the cumulative result can be
easily achieved by running multiple instances of McSplit in paral-
lel, with each version adopting a different value for 𝑘. Predicting
the optimal value of 𝑘 for each instance is another way to reduce
resource consumption. There may be a correlation between 𝑘
and the size of the graph, given that 𝑘 represents the hop ”dis-
tance” considered from the selected node. To date, it has not
been possible to find any correlation between such measures and
others.

k=1 k≤2 k≤3 k≤4 k≤5 k≤6 k≤7 k≤8
Wins 24 38 42 43 43 44 44 44
[%] 48 76 84 86 86 88 88 88

Table 6: Cumulative (from left to right) wins of the norm heuristic
against the original McSplit heuristic for various 𝑘 values.

Since 𝑘 controls the depth at which 𝑘-hop neighborhoods are
sampled, larger or denser graphs can benefit fromgreater 𝑘 values.
Consequently, the first step is to search for a correlation between
𝑘 and graph measures such as graph order, average number of
edges, density, or diameter. Unfortunately, it has not been pos-
sible to find a correlation between these measures and anything
else. Table 7 provides a comparison of the proposed heuristic
with norm recomputation, i.e., recalculating the norm after each
recursion, to McSplit.

Recalculating the norm at each step is also ineffective, as the
algorithm is rendered up to 30,000 times slower without yielding
a significant improvement.

An attempt to recompute norms at each recursion step was
made. The test was conducted with a 𝑘 value of 1. Adopting the
current implementation, which is in noway optimized, recomput-
ing the norm slows down the algorithm by a factor of 30,000, but
it did not outperform McSplit’s original heuristic or the proposed
norm heuristic. For the evaluation, a fixed number of recursion
depths is considered, approximately 5K. The method that finds
the largest common subgraph is deemed the winner.

Generally, the McSplit Python re-implementation is capable
of reaching 80M recursions in the predetermined 10 minutes

75

gnn-based heuristics

time budget. This occurs with both its original heuristic and
the newly proposed one. When trying to re-compute norms
at each recursion step, only about 3K recursions can be made,
therefore the algorithm is about 30,000x slower. For that reason
the table reports the comparison considering an equal number
of recursions, around 5K. A decision to to not pursue this line
of inquiry was made because norm recomputation is too costly,
despite the fact that the two approaches appear to be equivalent
even when accounting for the number of recursions.

Baseline Wins Losses
k=1 36 34
McSplit 30 40

Table 7: Comparison of the original McSplit heuristic and the proposed
norm heuristic without recomputing the norm (with k=1) and the
proposed heuristic when recomputing the norm at every recursion step
(k still equal to 1).

Figure 36 compares the proposed heuristic while recalculat-
ing the norm to the original McSplit heuristic and the proposed
heuristic without recomputation for the same problem instance.
The norm recomputation heuristic is inferior to both, primarily
due to its slow speed. It has an advantage when considering
less than 10000 recursions, which is more than three times the
total number of recursions the norm recomputation heuristic can
perform in 10 minutes.

(a) (b)

Figure 36: Comparison of the norm heuristic proposed with and with-
out norm recomputation. Up to a certain number of recursions, the
proposed heuristic with norm recomputation (RN) outperforms Mc-
Split is original heuristic. After that number, norms may lose their
effectiveness and the initial heuristic may converge more rapidly.

76

5.3 experimental findings

Cumulative Cosine Similarity

Table 8 compares the cumulative cosine similarity heuristic to
McSplit andMcSplit+RL for the smaller graph pair set. The norm
heuristic outperforms the cumulative cosine similarity in this
instance. In this method, scores are computed using information
from both graphs, as opposed to just one node.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
McSplit 11 15 19 16 17 17 17 17
McSplit+RL 16 18 19 17 17 18 18 18

Table 8: The number of victories of the cumulative cosine similarity-
based strategy over the McSplit original heuristic and McSplit+RL on
small graph pairs.

Figure 37 depicts a detailed analysis of two instances of the
problem, of the cumulative cosine similarity heuristic versus Mc-
Split, reporting the solution size (along the y-axis) as a function
of the number of recursions (x-axis). The number of recursions
(reaching 74B in the first case and 73B in the second) is reported
on a logarithmic scale for readability purposes. Each dot on the
two graphs represents the first time the corresponding heuristic
achieves a particular solution size. Notably, the cumulative cosine
similarity algorithm finds larger solutions in less time than the
original algorithm.

(a) (b)

Figure 37: The heuristic of cumulative cosine similarity (𝑘=3) in com-
parison to McSplit is presented here. In a shorter period of time, larger
solutions are discovered. First, the proposed heuristic (red) finds a
solution with 68 nodes, while the original method (blue, MC) stops
at 64 nodes in the same amount of time (left). While McSplit takes 50
minutes to reach nodes, the proposed heuristic in the second case only
finds a solution with 57 nodes.

The number of victories achieved by the cumulative cosine
similarity heuristic on the large graph pair set is displayed in

77

gnn-based heuristics

table 9. The benefits of this heuristic are readily apparent, as it
also outperforms the norm-based approach. This is because of
the behavior depicted in figure 37 and described previously. In
this case, however, unlike the standard heuristic, results obtained
with varying 𝑘 values are typically not complementary; thus,
varying 𝑘 values cannot be used to generate competing portfolio
engines.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
McSplit 35 28 36 37 36 36 34 35
McSplit+RL 35 28 36 37 36 37 35 35

Table 9: Number of victories of the cumulative cosine similarity-based
strategy over the McSplit original heuristic and McSplit+RL on larger
graphs.

Combining the two best values of 𝑘 for both heuristics, namely
𝑘 = 1 and 𝑘 = 2 for the norm and 𝑘 = 3 and 𝑘 = 4 for the
cumulative cosine similarity heuristic, yields the results shown in
table 10. The table demonstrates that these strategies outperform
the original heuristics in over ninety percent of instances.

CCS k=3 CCS k=4 Norms k=1 Norms k=2
Wins 36 42 45 46
[%] 72 84 90 92

Table 10: Cumulative (from left to right) results against McSplit when
combining the proposed heuristics with the two best values of 𝑘.

5.3.2 Best-pair McSplit Implementation

This section shows and discusses the tests performed to evaluate
the best-pair McSplit implementation (Section 5.2.3). All tests
were performed on the same hardware as in the previous section
(i9 9900k + GTX 1060). In this case, the solver is fully imple-
mented in python. In future works, if this method is improved,
it is also possible to use the Python script only to pre-compute
embeddings and load them in a C++ environment as done with
node heuristics. Of course, the modified solver is compared with
a python re-implementation of McSplit. Tests are performed on
70 instances, randomly selected from the dataset [38] used by
McCreesh, Prosser, and Trimble [37].

Note that in table 11, the proposed methods are unable to
outperform McSplit. On average, they can reach a relatively

78

5.3 experimental findings

BPBD BP
Wins 3 5
Losses 67 65
Solution Size Ratio (AVG) 0.85 0.87

Table 11: The two modified versions of McSplit (best-pair on Selected
BiDomain (BPBD) and best-pair across all BiDomains (BP)) are supe-
rior to the original McSplit.

large solution size. This demonstrates that prioritizing node
pairs over single nodes may still be possible using a different
heuristic. Cosine similarity is used to prioritize node pairs in this
case. Either the embeddings can be improved so that the cosine
similarity yields more accurate results, or a different method for
prioritizing node pairs should be explored.

79

6
CONCLUS IONS

In an effort to improve upon the state-of-the-art methods to solve
themaximumcommon subgraphproblem, several strategies have
been proposed in this dissertation. The experimental findings
presented in this work highlight how researching and improving
upon existing heuristics can yield significant results. As dis-
cussed in chapters 1 and 2, the focus on the maximum common
subgraph problem is justified by the generality that it offers with
respect to other similarity measures, particularly because it can
be extended to more than two graphs. Two types of approaches
were proposed:

• Implementing a solution with a completely new architec-
ture that reuses some McSplit components.

• Replacing or improving heuristics used by McSplit in order
to obtain a speed up. These exploit the power of graph neural
networks to match nodes with similar neighborhoods sooner
rather than later in the exploration of the solution space.

6.1 alike

Alike is an approximate algorithm that reuses the McSplit bound
formula and bidomain data structure, enhancing it by extending
its applicability to graph sets rather than pairs. It employs the
bound formula to inform its best-first approach and to prune the
search space. Alike is designed with parallelism in mind and
can be easily modified to perform as an exact solver or, on the
opposite end of the spectrum, to be highly resource efficient by
employing a greedy and non-exhaustive strategy.

Even though Alike has not been able to compete with state-of-
the-art solvers in terms of performance, the features it provides
are significant. Some are not available in any other tool, including
support for different solution quality measures and the ability to
continue searching only a subset of graphs that are more similar
to one another when dealing with more than two graphs.

As anticipated, the obtained results have not been as satis-
factory; however, the design concepts underlying Alike remain
valuable, and it is possible that optimizing the implementation

81

conclusions

will result in significant performance improvements across all
dimensions.

An important area of development is optimizing the context
switch required when a worker thread is rescheduled to focus
on a different portion of the search tree. Another area that needs
work is memory usage, which becomes unmanageable on tasks
with lengthy timeouts because a sizable portion of the search tree
is kept in memory throughout the entire execution.

6.2 heuristics based on gnns

6.2.1 Node-ordering heuristics

Section 5.2.2 discusses two node-ordering heuristics that use the
node embeddings produced by a graph neural network. Neu-
roMatch is the graph neural network architecture that embeds
the 𝑘-hop neighborhood around each node to generate an embed-
ding.

Instead of node degrees, norm and cosine similarity priori-
tize nodes during branching. Different 𝑘-parameter values were
tested, andwhile a definitive advantage over the original heuristic
could not be achieved with norms, it performed better in roughly
half of the test instances.

A clear advantage could be observed when considering the
different orderings obtained with varying values of 𝑘. Interest-
ingly, the cumulative cosine similarity heuristic performs better
for all values of 𝑘. The combination of the best 𝑘 values both in
norms and cumulative cosine similarity outperforms the node-
degree heuristic in almost all cases.

Among potential future works, the following are particularly
interesting:

• Expand the graph types supported by the proposedmethod.
NeuroMatch can be adapted to work with labeled, directed,
and even larger graphs, so this is certainly feasible.

• Find a replacement for the McSplit bidomain heuristic,
which currently restricts branching procedure options.

• Test how supervised methods compare on the same task.

• Perform experiments on large graphs to evaluate the scala-
bility of the proposed approaches.

82

6.2 heuristics based on gnns

6.2.2 Best node-pair Heuristic

A modification to McSplit that directly enables the selection of
pairs of nodes has been discussed in section 5.2.3. The heuristic
is based on cosine similarity, meaning that node pairs with the
highest cosine similarity are chosen first. This intuitively priori-
tizes the search on node pairs that are more likely to be part of
the MCS solution.

The proposed implementation is fully functional, but perfor-
mance enhancements are possible. Future efforts will focus on
increasing the quality of the embeddings, which should result in
a more precise cosine similarity measure. Designing new heuris-
tics for ordering node pairs will also be an intriguing area of
future study (not necessarily using GNNs).

83

B IBL IOGRAPHY

[1] Alike experimental results. url: https://docs.google.com/
spreadsheets/d/1Fygpr6GeVsCRLsTkCtZzPhI7qdxIgx5D_

SSKkQ4HMpk/edit?usp=sharing.
[2] ARG Graph database. url: https:%20//mivia.unisa.it/

datasets/graph-database/arg-database/.
[3] Yunsheng Bai et al. “GLSearch: Maximum Common Sub-

graph Detection via Learning to Search”. In: Proceedings
of the 38th International Conference on Machine Learning. Ed.
by Marina Meila and Tong Zhang. Vol. 139. Proceedings
of Machine Learning Research. PMLR, 18–24 Jul 2021,
pp. 588–598. url: https : / / proceedings . mlr . press /
v139/bai21e.html.

[4] Egon Balas and Chang Sung Yu. “Finding a maximum
clique in an arbitrary graph”. In: SIAM Journal on Comput-
ing 15.4 (1986), pp. 1054–1068.

[5] Beta-D-glucose-3D-balls.png. 2007. url: https://en.wikipedia.
org/wiki/File:Beta-D-glucose-3D-balls.png.

[6] B. Bollobás et al. Modern Graph Theory. Graduate Texts in
Mathematics. SpringerNewYork, 1998. isbn: 9780387984889.
url: https://books.google.com/books?id=SbZKSZ-
1qrwC.

[7] H. Bunke. “On a relation between graph edit distance and
maximum common subgraph”. In: Pattern Recognition Let-
ters 18.8 (Aug. 1997), pp. 689–694. doi: 10.1016/s0167-
8655(97) 00060 - 3. url: https : / / doi . org / 10 . 1016 /
s0167-8655(97)00060-3.

[8] Horst Bunke, Xiaoyi Jiang, and Abraham Kandel. “On
the minimum common supergraph of two graphs”. In:
Computing 65.1 (2000), pp. 13–25.

[9] Enrico Carraro and Thomas Madeo. Alike repository. 2021.
url: https://github.com/enricocarraro/alike.

[10] D. A. Cohen et al. “The Tractability of CSP Classes Defined
by Forbidden Patterns”. In: Journal of Artificial Intelligence
Research 45 (Sept. 2012), pp. 47–78. doi: 10.1613/jair.
3651. url: https://doi.org/10.1613/jair.3651.

85

https://docs.google.com/spreadsheets/d/1Fygpr6GeVsCRLsTkCtZzPhI7qdxIgx5D_SSKkQ4HMpk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Fygpr6GeVsCRLsTkCtZzPhI7qdxIgx5D_SSKkQ4HMpk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Fygpr6GeVsCRLsTkCtZzPhI7qdxIgx5D_SSKkQ4HMpk/edit?usp=sharing
https:%20//mivia.unisa.it/datasets/graph-database/arg-database/
https:%20//mivia.unisa.it/datasets/graph-database/arg-database/
https://proceedings.mlr.press/v139/bai21e.html
https://proceedings.mlr.press/v139/bai21e.html
https://en.wikipedia.org/wiki/File:Beta-D-glucose-3D-balls.png
https://en.wikipedia.org/wiki/File:Beta-D-glucose-3D-balls.png
https://books.google.com/books?id=SbZKSZ-1qrwC
https://books.google.com/books?id=SbZKSZ-1qrwC
https://doi.org/10.1016/s0167-8655(97)00060-3
https://doi.org/10.1016/s0167-8655(97)00060-3
https://doi.org/10.1016/s0167-8655(97)00060-3
https://doi.org/10.1016/s0167-8655(97)00060-3
https://github.com/enricocarraro/alike
https://doi.org/10.1613/jair.3651
https://doi.org/10.1613/jair.3651
https://doi.org/10.1613/jair.3651

bibliography

[11] David Cohen et al. “Symmetry Definitions for Constraint
Satisfaction Problems”. In: Constraints 11.2-3 (June 2006),
pp. 115–137. doi: 10.1007/s10601-006-8059-8. url: https:
//doi.org/10.1007/s10601-006-8059-8.

[12] Stephen A Cook and David G Mitchell. “Finding hard
instances of the satisfiability problem: A survey”. In: Satis-
fiability Problem: Theory and Applications 35 (1997), pp. 1–
17.

[13] Martin C Cooper, Peter G Jeavons, and András Z Sala-
mon. “Generalizing constraint satisfaction on trees: Hy-
brid tractability and variable elimination”. In: Artificial
Intelligence 174.9-10 (2010), pp. 570–584.

[14] Pierluigi Crescenzi and Alessandro Panconesi. “Complete-
ness in approximation classes”. In: Information and Compu-
tation 93.2 (1991), pp. 241–262.

[15] RinaDechter and Judea Pearl. “Generalized best-first search
strategies and the optimality of A”. In: Journal of the ACM
(JACM) 32.3 (1985), pp. 505–536.

[16] Benjamin S Duran and Patrick L Odell. Cluster analysis: a
survey. Vol. 100. Springer Science & Business Media, 2013.

[17] Paul J Durand et al. “An efficient algorithm for similarity
analysis of molecules”. In: Internet Journal of Chemistry 2.17
(1999), pp. 1–16.

[18] Hans-Christian Ehrlich and Matthias Rarey. “Maximum
common subgraph isomorphism algorithms and their ap-
plications in molecular science: a review”. In: WIREs Com-
putational Molecular Science 1.1 (Jan. 2011), pp. 68–79. doi:
10.1002/wcms.5. url: https://doi.org/10.1002/wcms.
5.

[19] Michael R. Garey and David S. Johnson. Computers and
Intractability; A Guide to the Theory of NP-Completeness. USA:
W. H. Freeman & Co., 1979. isbn: 0716710455.

[20] Aditya Grover and Jure Leskovec. “node2vec”. In: Proceed-
ings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, Aug. 2016. doi:
10.1145/2939672.2939754. url: https://doi.org/10.
1145/2939672.2939754.

86

https://doi.org/10.1007/s10601-006-8059-8
https://doi.org/10.1007/s10601-006-8059-8
https://doi.org/10.1007/s10601-006-8059-8
https://doi.org/10.1002/wcms.5
https://doi.org/10.1002/wcms.5
https://doi.org/10.1002/wcms.5
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754

bibliography

[21] William L. Hamilton, Rex Ying, and Jure Leskovec. “In-
ductive Representation Learning on Large Graphs”. In:
Proceedings of the 31st International Conference on Neural In-
formation Processing Systems. NIPS’17. Long Beach, Cali-
fornia, USA: Curran Associates Inc., 2017, pp. 1025–1035.
isbn: 9781510860964. doi: 10.5555/3294771.3294869. url:
https://dl.acm.org/doi/10.5555/3294771.3294869.

[22] Robert M Haralick and Gordon L Elliott. “Increasing tree
search efficiency for constraint satisfaction problems”. In:
Artificial intelligence 14.3 (1980), pp. 263–313.

[23] Ramesh Hariharan et al. “MultiMCS: A Fast Algorithm
for the Maximum Common Substructure Problem on Mul-
tiple Molecules”. In: Journal of Chemical Information and
Modeling 51.4 (2011). PMID: 21446748, pp. 788–806. doi:
10.1021/ci100297y. eprint: https://doi.org/10.1021/
ci100297y. url: https://doi.org/10.1021/ci100297y.

[24] Simon Haykin. Neural networks: a comprehensive foundation.
Prentice Hall PTR, 1994.

[25] Philippe Jégou. “Decomposition of domains based on the
micro-structure of finite constraint-satisfaction problems”.
In: AAAI. Vol. 93. 1993, pp. 731–736.

[26] William Kocay and Donald L Kreher. Graphs, algorithms,
and optimization. Chapman and Hall/CRC, 2016.

[27] Nils Morten Kriege. “Comparing graphs”. PhD thesis.
2015.

[28] Evgeny B Krissinel and KimHenrick. “Common subgraph
isomorphism detection by backtracking search”. In: Soft-
ware: Practice and Experience 34.6 (2004), pp. 591–607.

[29] Giorgio Levi. “A note on the derivation of maximal com-
mon subgraphs of two directed or undirected graphs”. In:
Calcolo 9.4 (1973), p. 341.

[30] Kevin Leyton-Brown et al. “A portfolio approach to algo-
rithm selection”. In: IJCAI. Vol. 3. 2003, pp. 1542–1543.

[31] Yanli Liu et al. “A Learning Based Branch and Bound for
Maximum Common Subgraph Related Problems”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence 34.03
(Apr. 2020), pp. 2392–2399. doi: 10.1609/aaai.v34i03.
5619. url: https://doi.org/10.1609/aaai.v34i03.
5619.

87

https://doi.org/10.5555/3294771.3294869
https://dl.acm.org/doi/10.5555/3294771.3294869
https://doi.org/10.1021/ci100297y
https://doi.org/10.1021/ci100297y
https://doi.org/10.1021/ci100297y
https://doi.org/10.1021/ci100297y
https://doi.org/10.1609/aaai.v34i03.5619
https://doi.org/10.1609/aaai.v34i03.5619
https://doi.org/10.1609/aaai.v34i03.5619
https://doi.org/10.1609/aaai.v34i03.5619

bibliography

[32] Yanli Liu et al. McSplit+RL code repository. url: https://
github.com/JHL-HUST/McSplit-RL.

[33] CardoneLorenzo. “Themaximumcommon subgraphprob-
lem: concurrency and multi-graph extentions”. In: (2021).
url: https://webthesis.biblio.polito.it/21140/.

[34] Zhaoyu Lou et al. “Neural subgraph matching”. In: arXiv
preprint arXiv:2007.03092 (2020). doi: 10.48550/arXiv.
2007.03092. url: https://doi.org/10.48550/arXiv.
2007.03092.

[35] Alan K. Mackworth. “Consistency in networks of rela-
tions”. In: Artificial Intelligence 8.1 (Feb. 1977), pp. 99–118.
doi: 10.1016/0004-3702(77)90007-8. url: https://doi.
org/10.1016/0004-3702(77)90007-8.

[36] Ciaran McCreesh. “Solving hard subgraph problems in
parallel”. PhD thesis. University of Glasgow, 2017.

[37] Ciaran McCreesh, Patrick Prosser, and James Trimble. “A
partitioning algorithm for maximum common subgraph
problems”. In: (2017).

[38] Ciaran McCreesh, Patrick Prosser, and James Trimble. Mc-
Split code repository. 2017. url: https : / / www . github .
com/jamestrimble/ijcai2017-partitioning-common-

subgraph.
[39] CiaranMcCreesh, Patrick Prosser, and James Trimble. “The

Glasgow subgraph solver: using constraint programming
to tackle hard subgraph isomorphism problem variants”.
In: International Conference onGraph Transformation. Springer.
2020, pp. 316–324.

[40] James J McGregor. “Backtrack search algorithms and the
maximal common subgraph problem”. In: Software: Prac-
tice and Experience 12.1 (1982), pp. 23–34.

[41] Samba Ndojh Ndiaye and Christine Solnon. “CP Models
forMaximumCommon SubgraphProblems”. In:Principles
and Practice of Constraint Programming – CP 2011. Springer
Berlin Heidelberg, 2011, pp. 637–644. doi: 10.1007/978-
3-642-23786-7_48. url: https://doi.org/10.1007/978-
3-642-23786-7_48.

88

https://github.com/JHL-HUST/McSplit-RL
https://github.com/JHL-HUST/McSplit-RL
https://webthesis.biblio.polito.it/21140/
https://doi.org/10.48550/arXiv.2007.03092
https://doi.org/10.48550/arXiv.2007.03092
https://doi.org/10.48550/arXiv.2007.03092
https://doi.org/10.48550/arXiv.2007.03092
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1016/0004-3702(77)90007-8
https://www.github.com/jamestrimble/ijcai2017-partitioning-common-subgraph
https://www.github.com/jamestrimble/ijcai2017-partitioning-common-subgraph
https://www.github.com/jamestrimble/ijcai2017-partitioning-common-subgraph
https://doi.org/10.1007/978-3-642-23786-7_48
https://doi.org/10.1007/978-3-642-23786-7_48
https://doi.org/10.1007/978-3-642-23786-7_48
https://doi.org/10.1007/978-3-642-23786-7_48

bibliography

[42] Andreas Papadopoulos, George Pallis, andMarios D. Dika-
iakos. “Identifying Clusters with Attribute Homogeneity
and Similar Connectivity in Information Networks”. In:
2013 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT).
IEEE, Nov. 2013. doi: 10.1109/wi-iat.2013.49. url:
https://doi.org/10.1109/wi-iat.2013.49.

[43] Marcello Pelillo. “Replicator Equations, Maximal Cliques,
andGraph Isomorphism”. In:Neural Computation 11.8 (Nov.
1999), pp. 1933–1955. doi: 10.1162/089976699300016034.
url: https://doi.org/10.1162/089976699300016034.

[44] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deep-
walk: Online learning of social representations”. In: Pro-
ceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. 2014, pp. 701–710.
doi: 10.1145/2623330.2623732. url: https://doi.org/
10.1145/2623330.2623732.

[45] Thierry Petit, Jean-Charles Régin, and Christian Bessière.
“Specific Filtering Algorithms for Over-Constrained Prob-
lems”. In: Principles and Practice of Constraint Programming
— CP 2001. Springer Berlin Heidelberg, 2001, pp. 451–463.
doi: 10.1007/3-540-45578-7_31. url: https://doi.org/
10.1007/3-540-45578-7_31.

[46] Stefano Quer, Andrea Marcelli, and Giovanni Squillero.
“The Maximum Common Subgraph Problem: A Parallel
and Multi-Engine Approach”. In: Computation 8.2 (May
2020), p. 48. doi: 10.3390/computation8020048. url: https:
//doi.org/10.3390/computation8020048.

[47] Stefano Quer and Gabriele Mosca. “Solving the maximum
common subgraph problem on many-cores architectures”.
In: (2019). url: https://webthesis.biblio.polito.it/
11038/1/tesi.pdf.

[48] John W Raymond and Peter Willett. “Maximum common
subgraph isomorphism algorithms for the matching of
chemical structures”. In: Journal of computer-aided molecular
design 16.7 (2002), pp. 521–533.

[49] Jean-Charles Régin. “A filtering algorithm for constraints
of difference in CSPs”. In: AAAI. Vol. 94. 1994, pp. 362–
367.

89

https://doi.org/10.1109/wi-iat.2013.49
https://doi.org/10.1109/wi-iat.2013.49
https://doi.org/10.1162/089976699300016034
https://doi.org/10.1162/089976699300016034
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1007/3-540-45578-7_31
https://doi.org/10.1007/3-540-45578-7_31
https://doi.org/10.1007/3-540-45578-7_31
https://doi.org/10.3390/computation8020048
https://doi.org/10.3390/computation8020048
https://doi.org/10.3390/computation8020048
https://webthesis.biblio.polito.it/11038/1/tesi.pdf
https://webthesis.biblio.polito.it/11038/1/tesi.pdf

bibliography

[50] “Reinforcement Learning:” in: Kybernetes 27.9 (Dec. 1998),
pp. 1093–1096. doi: 10.1108/k.1998.27.9.1093.3. url:
https://doi.org/10.1108/k.1998.27.9.1093.3.

[51] John R Rice. “The algorithm selection problem”. In: Ad-
vances in computers. Vol. 15. Elsevier, 1976, pp. 65–118.

[52] Francesca Rossi, Peter Van Beek, and Toby Walsh. “Con-
straint programming”. In: Foundations of Artificial Intelli-
gence 3 (2008), pp. 181–211.

[53] Francesca Rossi, Peter Van Beek, and TobyWalsh.Handbook
of constraint programming. Elsevier, 2006.

[54] Daniel Sabin and Eugene C. Freuder. “Contradicting con-
ventional wisdom in constraint satisfaction”. In: Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1994,
pp. 10–20. doi: 10.1007/3-540-58601-6_86. url: https:
//doi.org/10.1007/3-540-58601-6_86.

[55] Christian Schulte and Peter J Stuckey. “Efficient constraint
propagation engines”. In: ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 31.1 (2008), pp. 1–
43.

[56] Christian Schulte and Guido Tack. “Weakly monotonic
propagators”. In: International conference on principles and
practice of constraint programming. Springer. 2009, pp. 723–
730.

[57] Claude E Shannon. “Prediction and entropy of printed
English”. In: Bell system technical journal 30.1 (1951), pp. 50–
64.

[58] Nino Shervashidze et al. “Weisfeiler-Lehman Graph Ker-
nels”. In: Journal of Machine Learning Research 12.77 (2011),
pp. 2539–2561. url: http : / / jmlr . org / papers / v12 /
shervashidze11a.html.

[59] SG Shirinivas, S Vetrivel, and NM Elango. “Applications
of graph theory in computer science an overview”. In:
International journal of engineering science and technology 2.9
(2010), pp. 4610–4621.

[60] Giovanni Squillero, Stefano Quer, and Mattia De Prisco.
“An Approximate Graph-Similarity Algorithm based on
Monte Carlo Tree Search”. In: ().

90

https://doi.org/10.1108/k.1998.27.9.1093.3
https://doi.org/10.1108/k.1998.27.9.1093.3
https://doi.org/10.1007/3-540-58601-6_86
https://doi.org/10.1007/3-540-58601-6_86
https://doi.org/10.1007/3-540-58601-6_86
http://jmlr.org/papers/v12/shervashidze11a.html
http://jmlr.org/papers/v12/shervashidze11a.html

bibliography

[61] Nitish Srivastava et al. “Dropout: A SimpleWay to Prevent
Neural Networks from Overfitting”. In: J. Mach. Learn. Res.
15.1 (Jan. 2014), pp. 1929–1958. issn: 1532-4435. doi: 10.
5555/2627435.2670313. url: https://dl.acm.org/doi/
10.5555/2627435.2670313.

[62] Madeo Thomas. “Graph neural networks for the MCS
problem”. In: (2022). url: https://webthesis.biblio.
polito.it/22683/1/tesi.pdf.

[63] Jacobo Torán. “On the Hardness of Graph Isomorphism”.
In: SIAM Journal on Computing 33.5 (Jan. 2004), pp. 1093–
1108. doi: 10.1137/s009753970241096x. url: https://
doi.org/10.1137/s009753970241096x.

[64] J. R. Ullmann. “AnAlgorithm for Subgraph Isomorphism”.
In: Journal of the ACM 23.1 (Jan. 1976), pp. 31–42. doi: 10.
1145/321921.321925. url: https://doi.org/10.1145/
321921.321925.

[65] Petar Veličković et al. Graph Attention Networks. 2017. doi:
10.48550/ARXIV.1710.10903. url: https://arxiv.org/
abs/1710.10903.

[66] Philippe Vismara and Benoıt̂ Valery. “Finding Maximum
CommonConnected Subgraphs Using Clique Detection or
Constraint Satisfaction Algorithms”. In: Communications
in Computer and Information Science. Springer Berlin Heidel-
berg, 2008, pp. 358–368. doi: 10.1007/978-3-540-87477-
5_39. url: https://doi.org/10.1007/978-3-540-87477-
5_39.

[67] HuiWei, Chengzhuan Yang, andQian Yu. “Efficient graph-
based search for object detection”. In: Information Sciences
385-386 (Apr. 2017), pp. 395–414. doi: 10.1016/j.ins.
2016.12.039. url: https://doi.org/10.1016/j.ins.
2016.12.039.

[68] Keyulu Xu et al. “How powerful are graph neural net-
works?” In: arXiv preprint arXiv:1810.00826 (2018). doi:
10.48550/arXiv.1810.00826. url: https://doi.org/
10.48550/arXiv.1810.00826.

[69] Rex Ying et al.Neural SubgraphMatching. [Online; accessed
September, 2021]. 2020. url: http://snap.stanford.edu/
subgraph-matching/files/neuromatch_arch.png.

91

https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://webthesis.biblio.polito.it/22683/1/tesi.pdf
https://webthesis.biblio.polito.it/22683/1/tesi.pdf
https://doi.org/10.1137/s009753970241096x
https://doi.org/10.1137/s009753970241096x
https://doi.org/10.1137/s009753970241096x
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/321921.321925
https://doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://doi.org/10.1007/978-3-540-87477-5_39
https://doi.org/10.1007/978-3-540-87477-5_39
https://doi.org/10.1007/978-3-540-87477-5_39
https://doi.org/10.1007/978-3-540-87477-5_39
https://doi.org/10.1016/j.ins.2016.12.039
https://doi.org/10.1016/j.ins.2016.12.039
https://doi.org/10.1016/j.ins.2016.12.039
https://doi.org/10.1016/j.ins.2016.12.039
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.1810.00826
http://snap.stanford.edu/subgraph-matching/files/neuromatch_arch.png
http://snap.stanford.edu/subgraph-matching/files/neuromatch_arch.png

bibliography

[70] Zhiping Zeng et al. “Comparing stars: On approximating
graph edit distance”. In: Proceedings of the VLDB Endow-
ment 2.1 (2009), pp. 25–36.

[71] Si Zhang et al. “Graph convolutional networks: a com-
prehensive review”. In: Computational Social Networks 6.1
(2019), pp. 1–23. doi: 10.1186/s40649-019-0069-y. url:
https://doi.org/10.1186/s40649-019-0069-y.

92

https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1186/s40649-019-0069-y

	Title Page
	Introduction
	Graph similarity
	Examples of graph similarity applications
	Graph similarity notions

	Formal notation and definitions
	Thesis overview

	Graph similarity notions in detail
	Hardness

	Approaches to the MCS problem
	Constraints modelling
	Constraint Resolution
	Inference
	Exploration
	Heuristics
	Bounds
	Microstructure
	Smart versus Fast

	Constraing Programming
	MCS via maximal clique
	Branch and bound
	McSplit

	McSplit with Reinforcement Learning
	Portfolio approach

	MCS on a set of graphs
	Existing approaches
	Alike
	Architecture
	Vertex partitioning and upper bound computation
	Search Nodes
	Search Node selection
	Search Node Branching
	Pruning
	Parallelism
	Heterogeneous Graphs
	Experimental results

	GNN-based Heuristics
	Graph Neural Networks
	Multilayer Perceptron and Machine Learning Fundamentals
	Machine Learning with Graphs
	GNN

	GNNs for the MCS problem
	NeuroMatch
	GNN-based node ordering heuristics
	Best-pair McSplit Implementation
	Custom Neural Network

	Experimental findings
	GNN based heuristics
	Best-pair McSplit Implementation

	Conclusions
	Alike
	Heuristics based on GNNs
	Node-ordering heuristics
	Best node-pair Heuristic

