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Abstract 

Among safeguards verification activities, spent nuclear fuel is placed under inspections for the detection 
of possible diversions of the fissile material present, being of particular concern from the non-proliferation 
point of view. Several Non-Destructive Assay are utilized, or under investigation, for the verification of 
spent nuclear fuel. Among the latter, the Partial Defect Tester (PDET) is the one considered in this work. 

In this framework, some machine learning methods have been implemented in this thesis project, in order 
to detect the replacement of fuel pins in spent nuclear fuel assemblies. The input features of the models 
were based on different combinations of types and locations of detector responses, whose values were 
provided by a dataset of Monte Carlo simulations, based on the PDET prototype. The machine learning 
methods used were supervised regression models, namely k-nearest neighbors and neural networks 
algorithms. The expected outcomes were the predictions of the number of replaced pins and their 
locations on the grid lattice. 

Within the different implemented configurations of the models, the results showed better performances 
when the responses of the gamma-ray detectors, for all the locations on the assembly, were involved in 
the input phase, compared to other models using other detector types. Comparing the different machine 
learning algorithms, larger accuracies were generally obtained with neural networks compared to k-
nearest neighbors method, reaching 97% of correct predictions for location of the replacements. 
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1. THEORETICAL FRAMEWORK 

1.1 Nuclear safeguards 

1.1.1 Historical background 

The history of the use of nuclear energy for civil purposes has been carried on a parallel trail with the 
military development since its first appearance on the global scene. Indeed, the first artificial nuclear 
reactor went critical in December 1942 and the first nuclear weapon test was carried out in July 1945. 
Nuclear weapons were then used in August 1945 in Hiroshima and Nagasaki, bringing to the end the 
Second World War. The destructive potential of nuclear material when used in nuclear weapons urged 
States to draft legislation to regulate the use of nuclear technology.  

Even if few attempts have been tried to build up organizations and legislations among the States involved 
in second post-war period, the very first effective program was achieved only in the 1955, when the base 
for the International Atomic Energy Agency (IAEA) was founded and later formally established in 1957. In 
the same year another supernational organization was established: Euratom, the European Atomic Energy 
Community which has the aim of promoting the peaceful uses of nuclear energy. 

From the IAEA statute, the main objective of the agency were to “promote global dissemination of civilian 
nuclear technology and know-how; and to supervise and control this technology and know-how in order 
to prevent the proliferation of nuclear weapons (Article II)” (ESARDA, 2008). In order to fulfill this task, the 
Agency implemented in Article XII of the statute the main points which allowed the rights of inspections 
and supervision by the Agency itself. The latter can be summarized in the following seven points (IAEA, 
1989): 

1. To examine and approve the design of nuclear related facilities, in order to verify they will not 
promote military purposes and that safeguards measures will be easily applied (Article XII.A.1); 

2. To require the fulfillment of health and safety Agency prescribed measures (Article XII.A.2); 
3. To demand operating records of the materials that have to be traced (Article XII.A.3); 
4. To demand and obtain progress reports (Article XII.A.4); 
5. To approve procedures and methods used for chemical processing of irradiated materials, to avoid 

possible military misuse, to require that special fissionable materials recovered or produced as by-
product are used for peaceful purpose, and to require deposit of possible excess of these by-
products by the Agency, in order to avoid stockpiling of material when State does not necessitate 
it (Article XII.A.5); 

6. To send Agency inspectors in nuclear facilities, who must have access any time to any place, data 
and person dealing with materials, equipment or facilities which require to be safeguarded, to 
verify compliance of the agreements (Article XII.A.6); 

7. To suspend/terminate assistance by the Agency or withdraw any material and equipment in case 
corrective steps are not implemented within a reasonable time, when an event of non-compliance 
by the State is detected (Article XII.A.7). 
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However, it was just with the Non-Proliferation Treaty (NPT), opened for signature in 1968 and entered 
into force in 1970, that the IAEA confirmed his status of supernational party responsible for safeguards on 
world scale. The NPT has been eventually ratified in 2022 by 191 states, and covers three critical objectives: 
(1) to prevent the dissemination of nuclear weapons, (2) to promote nuclear disarmament, (3) to promote 
the peaceful use of nuclear energy (ESARDA, 2008). 

After a few decades of relative successful non-proliferation-system, the misleading trend of some of the 
countries belonging to the IAEA safeguards control, highlighted the need of additional measures to prevent 
further inappropriate actions. Following this idea, in May 1997 the Model Additional Protocol was 
approved, which requires the States to provide to the IAEA more information, and extends the inspections 
rights of the Agency, especially allowing a system of short-notice inspections. 

In recent years the Joint Comprehensive Plan of Action (JCPOA) was given ample space in media. The JCPOA 
is a milestone political agreement on the Iranian nuclear program, negotiated between Iran and the so-
called P5+1 (the permanent members of the UN Security Council, China, France, Russian Federation, 
United Kingdom, and the United States of America – plus Germany) and the European Union. Under the 
JCPOA the capabilities of Iran to enrich uranium (i.e., increase the percentage of 235U) are limited and 
additional inspections by IAEA are foreseen.  

1.1.2 Legal framework 

Safeguards rely on a wide area of agreements that have been stipulated between the IAEA and a Member 
State, ensuring that the latter must be compliant with the agreements accepted. In this perspective, under 
the IAEA Comprehensive Safeguards Agreement (CSA), the objectives are “timely detection of diversion of 
significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear 
weapons or of other nuclear explosive devices for purposes unknown, and deterrence of such diversion by 
the risk of early detection” (IAEA, 1972). In addition, the Additional Protocol extends the possibilities of 
the IAEA to carry out inspections and enlarges the information that States must provide to the IAEA (e.g., 
research and development plants). In case a non-compliance condition is detected, the IAEA Director 
General shall report to the IAEA Boards of Governors, and lately to all members of the Security Council and 
General Assembly of UN, which will force the State in question to remedy the situation (IAEA, 2002). 

Referring to the CSA, the safeguards provisions cover the nuclear fuel cycle, as soon as any nuclear 
material, ready for fuel fabrication or for being isotopically enriched due to its composition and purity, 
leaves the plant or the process stage in which it has been produced. The same must be applied when any 
nuclear material, at any level of the nuclear fuel cycle, is being transferred to other states. The safeguards 
inspections are carried on until the material cannot be further used for any nuclear activities relevant from 
the safeguards point of view (i.e., consumed, diluted, or transferred to a non-nuclear use). In addition, 
under IAEA supervision has to be also included the information regarding location or further processing of 
intermediate or high-level waste containing plutonium, high enriched uranium or 233U, on which the direct 
safeguards approach has been concluded. 
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Many actions are foreseen with the aim of enforcing the safeguards agreements between IAEA and the 
State: Nuclear Material Accountancy (NMA), Containment and Surveillance (C/S) measures and 
monitoring, visits and inspections are some of the complementary activities carried out for safeguards 
verification.  

NMA activities are implemented at three different levels independently: by the facility operators, by the 
State System for Accounting for and Control of nuclear material (SSAC), and finally by the IAEA itself to 
verify the correctness of the information provided in the records and reports provided by the two previous 
levels respectively. In general, the NMA process has the meaning of establishing the quantities of nuclear 
materials located in certain predefined areas, and the variation of those quantities within periods of time, 
taking into account also measurements uncertainties.  

The C/S measures and monitoring are complementary to the NMA activities, and generally lead to less 
frequent IAEA inspections and to achieve acceptable costs. Indeed, the intent of C/S is to maintain the 
continuity of knowledge between inspections. Examples of containments are seals that are used to impede 
access to an area or item. Examples of surveillance are cameras that are covering the movements in areas 
where nuclear material is stored. Monitoring devices are implemented as a complementary function since 
they verify the flow of nuclear materials within a certain area. In general, they are identified as radiation 
measurements monitoring systems. 

In accordance with the safeguards agreements, inspectors are supposed to carried out visits and 
inspections on facilities and locations outside the facilities. In case a State is also adherent to the Additional 
Protocol, the rights of complementary access can be as well foreseen. The scopes of the inspections are to 
verify the NMA declarations, examine the records, perform independent measurements of nuclear 
materials under the safeguards agreements, and establish C/S measures. The inspections could be 
planned, short-notice or no-notice inspections. Some examples are Physical Inventory Verification (PIV), 
and Interim inspections. 

1.2 Spent nuclear fuel characteristics and safeguards 

Among the materials that can be identified along the nuclear fuel cycle, the IAEA defines the so-called 
“Direct use material”, i.e., those that can be directly used in the development of nuclear weapons without 
transmutation or further enrichment. The definition includes plutonium (having less than 80% 238Pu), high 
enriched uranium (where the percentage of the isotope 235U is at least 20%) and 233U. In the same category 
can be identified all the mixtures or chemical compounds of the materials above mentioned, and as well 
the plutonium from spent reactor fuel. This category can be further subdivided in unirradiated and 
irradiated direct use material. The former is the one not containing substantial amount of fission products, 
thus it can be easily used into nuclear explosive devices, whereas the latter contains a higher amount of 
fission products (e.g., spent nuclear fuel) and needs further processing before being used in nuclear 
explosive devices. On the contrary, in the “Indirect use material” category, it can be recognized all the 
nuclear material which requires further procedures for producing direct use material (e.g., depleted, 
natural and low enriched uranium, thorium) (IAEA, 2002). Hence, since the irradiated fuel, i.e., the spent 
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nuclear fuel, contains fissile material as irradiated direct use material, it requires specific attention from 
the safeguards perspective. 

Spent nuclear fuel stands for the fuel which has been appropriately irradiated in a nuclear power plant, 
and that cannot further sustain the nuclear chain reaction in a thermal reactor, therefore it has to be 
substituted with fresh fuel for a suitable production of energy. Having been irradiated for an amount of 
time suitable for the energy production, which depends basically on the kind of reactor and on the 
operational power, the fuel has gradually decreased the amount of fissile nuclides present and increased 
the quantity of neutron-absorbing nuclides (i.e., non-fissile actinides and fission products). Moreover, it 
can be characterized by a measure of fuel burnup, which refers to how much energy has been extracted 
from the nuclear fuel. This parameter is strictly correlated to the isotopic composition of the spent fuel. 

The presence of fission products and transuranic elements requires the management of the spent fuel 
paying attention to radioactivity and decay heat, due to the radioactive decay process of the elements 
involved. A common procedure for spent fuel management, in a nuclear power plant, is to store it in a 
spent fuel pool for a suitable cooling time, usually several years, until the decay heat and the radioactivity 
have reached an acceptable level to be moved to long-term storage or reprocessing facilities. 

The composition of the nuclear fuel changes substantially over the operational years in a nuclear power 
reactor. Considering a common thermal reactor, the fresh fuel is composed by low enriched uranium 
(enriched uranium containing less than 20% of the isotope 235U, normally limited to 4-5% in thermal 
reactor), where the enriched part is slowly depleted whereas the fertile 238U isotope, the most abundant 
part, leads mainly to the formation of the fissile 239Pu. Discharged fuel eventually contains still around 95% 
of Uranium-238, 0.8% of Plutonium, 1% of Uranium-235 and about 0.5% Uranium-236. About 3% of 
irradiated fuel is constituted by fission products, as a result of the fission reactions. More precisely, 
different levels of burnup affect the spent fuel composition (Hargraves & Moir, 2010). Most of the fission 
products are highly unstable and undergo through radioactive decays, being short- or mid- to long-life 
isotopes. 

Due to the particular isotopic composition of the spent fuel, containing in fact fissile material, it is of 
concern from the non-proliferation point of view, and generally even more than low enrichment fresh fuel 
(categorized as indirect use material). Furthermore, the large radiation and decay heat from spent fuel 
make it noticeably difficult to be handled, adding also further challenges for the safeguards measurements. 
Spent fuel is generally measured with Non-Destructive Assay (NDA), other than complementary measures 
such as containments, seals, surveillance, and monitoring, which are used to reduce radiation exposure to 
operators and inspectors. Moreover, for safety reasons, the movement and handling of spent fuel is 
generally limited (IAEA, 2018).  

In general, stakeholders such as operators, regulators and inspectors require to know the location and the 
composition of spent fuel assemblies, as well as the characteristic of fuel and the presence/absence of 
some fuel pins. In more detail, IAEA’s intention is to assure the detection of gross, partial, or bias defects 
during the verification of a facility. 
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1.3 Measurement of spent fuel: NDA techniques 

In the set of techniques that have been developed for safeguards aims, the NDA techniques imply the 
measurement of the nuclear material composition without compromising or altering the physical and 
chemical integrity of the item under investigation. The methods generally foreseen a radiometric emission 
or response from the item, and, in certain cases, the comparison of this observation with an equivalent 
calibration item based on a previously performed NDA, or by means of computer simulations. NDA 
methods can be split in two wide categories: 

 Passive NDA: where the radiation measurements are conducted on spontaneous decay of the 
item; 

 Active NDA: where the item is stimulated by irradiation or activation before or in the meanwhile 
the radiation measurements are carried out. 

The main NDA techniques are principally classified as calorimetry, gamma-ray assay, neutron assay and 
spent fuel measurements, where a relevant role is covered by the Cherenkov viewing devices (IAEA, 2011). 

Calorimetry is mainly used for the evaluation of the content of plutonium in an item, specifically it relies 
on its thermal power emission, due to the radioactive decay of Pu isotopes, in combination with the 
information of the Pu isotopic mass ratio. It delivers a measure of the total Pu mass in samples of unknown 
composition. Anyway, it has the disadvantage of needing a long time (e.g. several hours) for reaching 
thermal equilibrium, thus is not a common routine measurement used for spent fuel (ESARDA, 2008). 

Radioactive decay may lead to emission of gamma-rays, which interact with surrounding matter and leave 
part of the energy to the electrons present, in a process called ionization. The ionized electron may further 
collide to other atoms and liberate other electrons. These electrons might be collected, in order to record 
the presence of gamma-rays and to measure the energy carried. Moreover, the resulting response is an 
electrical pulse whose voltage is proportional to the energy deposited in the detector, thus the 
measurement of the energy spectrum of the sample is also investigated (Relly, 1991). Due to the very 
strong gamma-ray emission from spent fuel, gamma-ray measurements have to be carried out with proper 
shielding of the detector. Nevertheless, gamma-ray measurements are used for spent fuel verifications, to 
confirm characteristics, cooling time, initial enrichment and burnup of fuel assemblies (ESARDA, 2008). 

Neutron counting methods measure the emission of neutrons from nuclear material in case of (α, n) 
reactions, spontaneous or induced emission. It basically consists of counting the number of neutrons 
emitted, regardless their specific energy, with the purpose of estimate the mass of fissile material in the 
measured sample. These methods can be divided in different categories: detection of neutrons emitted by 
non-irradiated fissile fuel, gross neutron counting, neutron coincidence counting (subdivided in passive 
and active detector systems), and multiplicity coincidence counting (IAEA, 2011). 
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Some specific NDA are foreseen for the measurement of the spent fuel by IAEA: they are listed in the Table 
1.1, transcript from the IAEA report on ‘’Safeguards Techniques and Equipment’’ (IAEA, 2011). Some of 
these key methods are consequently detailed. 

CODE EQUIPMENT NAME DESCRIPTION/PRIMARY APPLICATION 
AEFC Advanced Experimental Fuel Counter Characterization of spent fuel from research 

reactors stored under water. 
CBVB CANDU Bundle Verifier Verification of the presence of CANDU fuel bundles 

stored in either stacks or baskets in a spent fuel 
pond. 

CRPS Cask Radiation Profiling System for dry 
storage casks 

Gross defect device takes radiation profiles from 
spent fuel storage containers for re-verification 

DCVD Digital Cherenkov Viewing Device Highly sensitive digital device for viewing 
Cherenkov light from long cooled, low burnup fuel. 

FDET Fork DETector irradiated fuel measuring 
system 

Detector system that straddles light water reactor 
fuel assemblies with pairs of neutrons and -ray 
detectors. Gross -ray and neutron intensities and 
ratios of intensities can give specific information 
on the fuel assembly. 

ICVD Improved Cherenkov Viewing Device Hand-held light intensifying device optimized to 
view Cherenkov light (near ultraviolet) in a spent 
fuel storage pond. System can be used in a lighted 
area. Primarily used to identify irradiated light 
water reactor fuel assemblies. 

IRAT Irradiated Fuel Attribute Tester Gross defect device used for verifying fission 
product presence in an irradiated fuel assembly. 

NGAT Neutron and Gamma Attribute Tester Gross defect device used for verifying spent fuel 
assemblies, fresh MOX fuel assemblies and open or 
closed containers holding various irradiated and 
non-irradiated materials including non-fuel items.  

PGET Passive Gamma Emission Tomography Partial defect device for detecting missing or 
substituted pins in a light water reactor spent fuel 
assembly 

SFAT Spent Fuel Attribute Tester Gross defect device used for verifying the presence 
of fission products or activation products at the top 
of the irradiated fuel assembly. 

SFCC Spent Fuel Coincident Counter Underwater verification of Pu in canned fast 
breeder reactor spent fuel. 

SMOPY Safeguards MOX PYthon Gross defect device combines gross neutron 
counting with low level  spectroscopy to 
characterize any kind of spent fuel without 
movement of spent fuel. 

Table 1.1. Spent fuel measurement systems (IAEA, 2011) 

The FDET performs both the gamma-ray and the neutrons measurements of the spent fuel, confirming 
emission of both radiations from the item being measured and with the possibility of verifying the burnup 
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declaration. The structure of the instrumentation, reported in Figure 1.1, is formed by a detector head, an 
extension pipe several meters long, a gamma-ray and a neutron detector electronics units, and a PC. The 
detector head is the one responsible for the assessment of the -rays, reaching high intensity, and of the 
neutron counting, able to detect neutrons rate besides the presence of gamma-rays on the background. 
The fuel assembly to be measured is lifted from the storage position and placed between the FDET 
detectors arms. The processing of the collected radiation data, integrated with other complementary data, 
conducts to the characterization of the fuel assembly, i.e., the neutron exposure in the reactor, the initial 
fissile content, and the irradiation history. In combination with Passive Gamma Emission Tomography 
(PGET), it can identify partial defects, as fuel pin diversions. The PGET consists in a directionally collimated 
detector array system, which detects radiations emitted to different directions and produces an image of 
the data measured. In the imagine are collected the gamma-emitter concentrations, distributed in the fuel 
assembly rods. By a visual or computer-based evaluation it is possible to detect the rods absence or 
substitution. 

 

Figure 1.1. Fork DETector irradiated fuel measuring system (FDET) (IAEA, 2011) 

A different and innovative technical approach, which relies on the idea of contemporary measurement of 
neutrons and gamma-ray fluxes, is the one introduced by the Partial DEfect Tester (PDET) (Ham et al., 
2015), specifically developed for the detection of fuel pins diversion. This device is further investigated in 
the next paragraph. 

Both IRAT and SFAT systems refer to the class of gamma-ray energy spectral analysis. The IRAT detector is 
basically utilized to differentiate between non-fuel and fuel irradiated items stored in the spent fuel pool: 
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it detects -ray of both fission products (as 137Cs, 134Cs, 144Pr, 154Eu) contained in the spent fuel and 
activation products (e.g., 60Co) in irradiated structural materials. SFAT provides a qualitative verification of 
the presence of spent fuel relying on the detection of gamma-ray produced by certain fission products 
(137Cs, 95Zr, 95Nb). It is particularly helpful to support Cherenkov viewing devices, in case of weak signal due 
to low burnup, long cooling time or opaque water in the storage pond (IAEA, 2011). 

ICVD and DCVD are tools provided for the detection of the so-called Cherenkov radiation. This is an 
electromagnetic radiation emitted by a charged particle when it travels through a medium, having a 
velocity which overcomes the speed of light in that medium. Among the particles emitted from spent fuel, 
the beta particles (high-energy electrons) are the main responsible of the Cherenkov radiation. This 
phenomenon leads to a glow surrounding the fuel assemblies in the spent fuel pool, which has the 
characteristic of lying in the ultraviolet part of the spectrum, as visible in Figure 1.2.  

 

Figure 1.2. A spent fuel pond (source: IAEA) 

The related detectors above mentioned are imagine intensifier viewing devices sensitive to the UV 
radiation in the water bordering spent fuel assemblies. They are able to cut off the spectrum of the visible 
light, while intensifying the radiation useful for detection aims, later used for qualitative verification, i.e., 
to distinguish irradiated fuel items from non-fuel items. DCVD has the feature of being used for verification 
of assemblies having weak Cherenkov signal, typical of low level burnup and/or long cooling time spent 
fuel storage (IAEA, 2002), (IAEA, 2011). 

1.4 NDA technique: PDET 

The NDA technique on which this study is based on is the Partial DEfect Tester (PDET). It is an innovative 
method under study as next generation safeguards for spent fuel verification, specifically for the 
identification of partial defects. It tries to overcome some of the disadvantages that could be encountered 
in the identification of partial defects, while using available and approved instruments. For instance, DCVD 
requires high burnup, short cooling time and transparent spent fuel pool water, whereas FDET is foreseen 
to verify operators’ declarations and requires the movement of the spent fuel assemblies. In this 
framework, a prototype of the PDET has been designed at the Lawrence Livermore National Laboratory 
(LLNL) and lately tested in the Central Interim Spent Fuel Storage Facility (CLAB) in Sweden (Ham et al., 
2015). The prototype is reported in Figure 1.3. 
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Figure 1.3. Prototype of PDET (Ham et al., 2015) 

The PDET prototype has been developed for a PWR fuel assembly: a 17x17 square grid where the majority 
of the sites contains the fuel rods, and a set of guide tubes are foreseen for the insertion of the control 
rods. The control rods are in place during the operation of the reactor, lately withdrawn from the spent 
fuel assembly, thus the guide tubes are filled by water in the spent fuel pool. In the concept of PDET, these 
guide tubes are reused as containers of gamma and neutron flux detectors for partial defect 
measurements. Performing analyses on intact spent fuel assemblies, a base signature of the passive 
gamma and neutron signals is obtained, which depends on the irradiation history of the fuel assemblies 
(e.g., burnup and cooling time). According to the developers: “The base signature is the arrangement of 
the signals at each of the guide tube locations normalized to the maximum among them in a particular 
pattern” (Ham et al., 2015). Having defined this base signature, any fuel diversions can be outlined looking 
at the distortions between the signature under investigation and the base one. The basic concept is that 
at wider distortion corresponds greater diversion.  

The deployed detectors are high-dose environment fission chambers and ionization chambers. Fission 
chambers are of 235U type and are sensitive to each individual neutron event, while insensitive to gamma-
rays. The ion chambers are instead the chosen devices to measure the gamma-rays. In the prototype, the 
24 guide tubes locations were provided by fission and ion chambers equally split: 12 of each type. The 
PDET assembly is submerged by water during the measurement. 
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1.5 Introduction to machine learning 

In recent years, Artificial Intelligence (AI) and Machine Learning (ML) methods increase their popularity 
and use on science and technology fields. According to a recent publication of IAEA (IAEA, 2022), this 
discipline can assist and provide benefits also in nuclear related fields, beyond applications in human 
health area, optimization in food and agriculture productions other than improvements in environmental 
responses to climate changes, financial markets, logistics and industries. 

In the safeguards framework, the increase of data provided by different verification techniques and 
activities, on a rising amount of nuclear material under investigation, requires implementation of AI and 
ML in order to optimize and increase the efficiency of such activities, according to (IAEA, 2022). AI and ML 
methods are intended to be implemented also in the verification of spent nuclear fuel, in data collection 
or calibration, and in video surveillance. For instance, the productivity in safeguards activities could 
enhance if integration of AI and ML methods are foreseen, for decreasing the number of repetitive tasks 
performed by inspectors. Moreover, the application of AI could support the procedures of classification of 
data, in particular for the identification of data anomalies also in the spent fuel verification. In fact, ML 
models have been used for recognizing defect fuel assemblies from complete assemblies, for verifying 
burnup, cooling time and initial enrichment of nuclear fuel inventory data, and for assessing bias between 
measured and calculated performances of spent nuclear fuel properties. However, the accuracy of these 
methodologies are still a concern for the accomplishment of the safeguards purposes, which prevents the 
utilization of the AI as an autonomous process and requires the human presence in parallel in order to 
avoid both false alarms and false negatives (IAEA, 2022). 

Artificial intelligence concept relies on educating machines to perform tasks traditionally performed by 
humans, emulating human intelligence. In the AI domain, machine learning is a branch based on data 
analysis, with particular aim of increasing the efficiency of data processing, comprehension, management 
and predictions, simulating a kind of human learning process.  

1.6 Purpose and structure of the study 

The main objective of this work is to apply machine learning methodology for the safeguards verification 
of the spent fuel assemblies. In detail, the goal is to develop models able to detect spent fuel diversions 
and to estimate the number and the location of the replaced pins on the fuel assembly, in case a diversion 
is identified. The machine learning method works on the concept of processing a collection of data, 
building a model which has learnt from the features of the data provided, and finally using this model to 
predict the outcomes of a dataset having similar features of the training one. These three aspects have 
been suitably chosen for the purpose of this study. 

The collection of data used as input of the models are the one provided by a set of Monte Carlo simulations, 
produced to create a database of an NDA detector responses (the PDET detector, in this case). The 
simulations have been performed to determine the detectors responses for both intact and diverted 
scenarios. The responses have been employed in several different combinations in the input phase, with 
the intention of subsequently investigate the dependences of the results on the imported features. 
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The machine learning methods used for this study were based on regression models, in detail two main 
types have been investigated: the k-nearest neighbors and the neural networks algorithms. The coding 
part of the work has been conducted with Python tools such as scikit-learn and TensorFlow & Keras, 
respectively for the k-nearest neighbors and the neural networks implementation. 

From the models constructed, outcomes of interest for safeguards verification have been designated. In 
particular, based on the collection of data above mentioned, the number of diverted pins and the location 
of these diverted pins in the fuel assembly have been predicted, using both methods. These outputs have 
been further treated with the aim of compare different models, different features and different pre-
processing methods of the dataset. 

The current chapter was dedicated to an introduction on nuclear safeguards frameworks, spent nuclear 
fuel and related measurement techniques, with particular focus on the one used in this study, plus a briefly 
introduction on machine learning applications. Next, along this thesis, some of these topics are explored 
more in details. In the second chapter the database of simulated detectors responses based on the 
developed PDET prototype is going to be described, and a preliminary analysis of the dataset is provided. 
In the third chapter the machine learning methods used in this work are introduced, followed by the 
configuration of the prediction models, tailored on the outcomes of interest of each model. In the fourth 
chapter the most promising results are reported, whereas the fifth one is dedicated to the conclusions. 
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2. DESCRIPTION OF THE DATABASE 

2.1 Simulated detector responses 

Starting from the concept of the PDET device, a database of simulated detectors responses has been 
configured and built at SCK CEN. The model of the device used as reference for the calculations is shown 
in Figure 2.1. Two groups of detectors are placed in the guide tubes locations (9 centrals in red, and 16 
peripherals in yellow), and a third group is added on top of the ones foreseen by the original prototype (40 
externals in green). The remaining locations on the fuel assembly are occupied by fuel pins. Thus, in the 
17x17 geometry arrangement, a total amount of 264 fuel pins and 25 detectors are included, while other 
40 detectors are within the surrounding area (Rossa, 2019). 

 

Figure 2.1. Model setup for PDET analysis (Rossa, 2019) 

The detectors responses derived from the results of the Monte Carlo simulations (Rossa, 2021), and this 
study in particular includes three kinds of detectors, sensitive to: 

 Thermal neutrons (TH): responses of bare 235U fission chamber. The responses are in counts per 
second; 

 Fast neutrons (FA): responses of bare 238U fission chamber. The responses are in counts per 
second; 

 Gamma-ray (P): responses of ionization chamber. The responses are proportional to the current 
of the ionization chamber. 

The detectors responses are the bases of the input features used in the machine learning models under 
investigation. 

2.2 Database used in the study 

The guiding principle for the construction of the database was to model, and therefore analyze, some of 
the possible diversion scenarios that a potential proliferator could operate on spent fuel assemblies. In 
this perspective, the simulations for the detectors responses were intended to emulate both complete and 
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defect fuel assemblies scenarios. The simulations were therefore carried out by varying different 
properties of the spent fuel, to cover a wide range of situations. The version of the database used for this 
study has been expanded in the following years with respect to the one proposed in (Rossa, 2019). 

The first part of the database contains the Monte Carlo simulations performed for the complete fuel 
assemblies scenarios. As complete scenarios are identified those where all fuel pins are present, having 
equal material composition and source strength, whose data were taken from SCK CEN reference spent 
fuel library (Rossa et al., 2013). The 1372 complete scenarios were parametrized by the following values: 

 Initial Enrichment (IE): 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 % 
 Burnup (BU): 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 GWd/tHM 
 Cooling time (CT): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 50, 100 years 

The wide range of parameters examined was driven by the intention of investigate the effect of irradiation 
history (namely, IE, BU and CT) on the responses identified by the detectors. 

The remaining part of the dataset covers the defect scenarios simulations, i.e., 963 possible diversions 
where a certain number of fuel pins are replaced by so-called dummy pins, composed of stainless steel. 
The intact part of the fuel assemblies still refers to the material composition and source strength of the 
complete scenarios, whereas the dummy pins have no source terms. In this phase, the parameters 
considering the radiation history were reduced to: 

 Initial Enrichment (IE): 2.0, 3.5, 5.0 % 
 Burnup (BU): 10, 30, 60 GWd/tHM 
 Cooling time (CT): 5 years 

For each of the combination of the above parameters, different amount of replaced pins (from 4 to 180) 
were introduced, and different geometries for the location of the replaced pins were configured. Some 
examples are reported in Table 2.1: the fuel pins are colored in white, dummy pins in grey and guide tube 
positions are marked with crosses. Each scenario is reported with the correspondent number of replaced 
pins.  
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Table 2.1. Examples of defect scenarios configurations 
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Some extracts from the dataset developed for the detectors responses of the PDET are reported in Table 
2.2. To clarify the notation used, an explanation of the content of each column is provided as follows: 

 File ID: Filename of the simulation. For the complete fuel scenarios, the filename starts with “R” 
and is consequently formed by the correspondent IE, BU and CT of the fuel assembly. For the 
defect fuel scenarios, the identification starts with “D” and is followed by the pattern of the 
diversion scenario (i.e., number of dummy pins and geometry configuration of the diversion); 

 IE, BU, CT: as previously described; 
 DummyPins: number of replaced pins in the fuel assembly; 
 TH: responses of the fission chamber for the thermal neutrons, reported in counts per second. 

Namely, there is a column for each of the 65 locations of the detectors; 
 FA: responses of the fission chamber for the fast neutrons, reported in counts per second. Namely, 

there is a column for each of the 65 locations of the detectors; 
 P: responses of the ionization chamber, values proportional to the current of the ionization 

chamber, reported in 106 nA. Namely, there is a column for each of the 65 locations of the 
detectors; 

 Pin: 264 columns referring to the presence (“0”) or replacement (“1”) of each individual fuel pin. 
Pin locations on the fuel assembly are numbered from the top left corner to the bottom right one. 

 

Table 2.2. Extract from PDET detectors responses dataset 

2.3 Visualization of the database 

In order to have a comprehensive vision of the data provided in the database, first a preliminary analysis 
was conducted by plotting the detectors responses for all the observations in the database, with respect 
to different radiation history parameters. 

In the first place, all neutrons detectors responses were considered for a measurement time of 10 minutes: 
any observation, in counts per second, was multiplied by 600 seconds. For each processed observation the 
relative uncertainty was hence introduced. Concerning the values of thermal and fast neutrons counts, the 
relative uncertainties were calculated as the squared root of the respective values, whereas for the data 
related to the gamma-ray an arbitrary uncertainty of 2% was added to each value. Thus, the detectors 
were separated in three groups: central, peripheral, and external, to make an independent analysis on the 
base of location common similarities. Considering one group of detectors at a time, the sum and the 

FileID IE BU CT DummyPins TH01 TH02 FA37 FA38 P64 P65 Pin159 Pin160

R200050101 2.0 5 1 0 0.0739 0.0775 0.0019 0.0025 5.58E+05 4.30E+05 0 0
R300300121 3.0 30 100 0 0.7396 0.7639 0.0229 0.0291 2.73E+04 2.11E+04 0 0
R400250101 4.0 25 1 0 5.2456 5.4396 0.2019 0.2566 1.56E+06 1.20E+06 0 0
R400700121 4.0 70 100 0 6.5001 6.6746 0.2114 0.2699 6.21E+04 4.81E+04 0 0
R450050101 4.5 5 1 0 0.0355 0.0373 0.0015 0.0020 5.53E+05 4.26E+05 0 0
D00401 2 10 5 4 0.3203 0.3319 0.0084 0.0109 1.26E+05 9.73E+04 0 0
D04802 5 30 5 48 3.2880 3.1046 0.1221 0.1544 4.26E+05 3.30E+05 0 0
D06401 2 30 5 64 17.5810 18.6659 0.3866 0.5161 3.00E+05 2.29E+05 0 0
D10802 2 10 5 108 0.1391 0.1456 0.0028 0.0037 6.24E+04 5.11E+04 0 1
D18001 5 60 5 180 17.0395 16.2752 0.5465 0.6551 7.43E+05 5.83E+05 1 1
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average of the values for each kind of detector within each group were computed. The relative uncertainty 
for each new retrieved data was also calculated with propagation of errors formula for both the sum and 
the average approaches. Comparisons among the scenarios were afterwards investigated, based on 
observation data and uncertainties. Since similar results were obtained for the analyses performed, some 
of the results are presented in this section, while others are attached in the Appendix A for additionally 
details. 

As examples, the graphs produced for the average values of the peripheral detector responses are here 
reported with the relative uncertainties. In the first instance, comparisons among the complete and defect 
scenarios were performed, considering thermal neutrons counts and photons current (Figure 2.2), fast 
neutrons counts and photons current (Figure 2.3), and thermal and fast neutrons counts (Figure 2.4). It 
shall be noticed that the values of thermal and fast neutrons counts are reported for a measurement time 
of 600 seconds. 

 
Figure 2.2. Database visualization: Complete and defect scenarios - Average in peripheral detectors and relative uncertainties – 

Thermal neutrons counts and photons current 

 
Figure 2.3. Database visualization: Complete and defect scenarios - Average in peripheral detectors and relative uncertainties – 

Fast neutrons counts and photons current 
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Figure 2.4. Database visualization: Complete and defect scenarios - Average in peripheral detectors and relative uncertainties – 

Thermal and fast neutrons counts 

The general information inferred from the first part of the plotting of the dataset is that defect scenarios 
locate indicatively in the midpoint of the complete scenarios values, due to the choice of the radiation 
history parameters for the development of the scenarios. Similar trends were observed considering the 
sum or the average values of the detectors responses. Therefore, the classification between complete and 
defect assembly seems not possible by simply placing threshold values on the detector responses. 

To further examine how the detectors responses related to the defect scenarios respond to the considered 
parameters, e.g., the number of replaced pins, the initial enrichment and the burnup of each configuration, 
two further analyses have been developed, focusing only on defect scenarios. First, an investigation of the 
data with respect to the actual number of dummy pins have been performed, and second a comparison 
among the different radiation history parameters, examined at fixed cooling time of 5 years. For each 
combination of detectors responses reported above, these investigations are presented in the Figures 2.5-
2.10, considering the average values of peripheral detectors. Also in this analysis, the values of the 
neutrons detectors responses are considered for a measurement time of 600 seconds. 

 
Figure 2.5. Database visualization: Defect scenarios - Average in peripheral detectors - Thermal neutrons counts and photons 

current - Number of dummy pins 
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Figure 2.6. Database visualization: Defect scenarios - Average in peripheral detectors - Thermal neutrons counts and photons 

current - Initial Enrichment and BurnUp 

 
Figure 2.7. Database visualization: Defect scenarios - Average in peripheral detectors - Fast neutrons counts and photons current 

- Number of dummy pins 

 
Figure 2.8. Database visualization: Defect scenarios - Average in peripheral detectors - Fast neutrons counts and photons current 

– Initial Enrichment and BurnUp 
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Figure 2.9. Database visualization: Defect scenarios - Average in peripheral detectors - Thermal and fast neutrons counts - 

Number of dummy pins 

 
Figure 2.10. Database visualization: Defect scenarios - Average in peripheral detectors – Thermal and fast neutrons counts - 

Initial Enrichment and BurnUp 

The responses of the detectors follow similar trends among the different comparisons. Regarding the 
analysis which considers the number of replaced pins (Figure 2.5, Figure 2.7, Figure 2.9), on the same 
conditions, at higher number of dummy pins corresponds lower counting rate: the diversion of the spent 
fuel pins induce a lower amount of fission products and depleted fuel in the assembly, thus a lower value 
of radioactivity present. 

Looking into details at the radiation history of each observation, comparisons among detectors responses 
of fuel assemblies with different values of initial enrichment and burnup can be carried out (Figure 2.6, 
Figure 2.8, Figure 2.10). At the same level of burnup, the neutrons emission is greater at lower values of 
initial enrichment. Indeed, the burnup is also a measure of the fuel depletion and depends on the density 
of the fissile material present (namely, 235U). To reach the same level of burnup in a given time, in a 
situation of lower level of enrichment, the fuel must be exposed to a larger neutron fluency rate, which 
leads to a larger production of neutrons emitters (in particular 242Cm and 244Cm), hence also to a greater 
spent fuel neutrons emission. On the other hand, fixing the level of initial enrichment, the burnup seems 

 IE = 2 
 IE = 3.5 
 IE= 5 

BU = 60 

BU = 30 

BU = 10 
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to contribute more to the detected responses, since higher level of burnup and depletion of the fuel leads 
to a major production of fission products and correspondent radioactive decaying processes, driving to an 
higher neutron and gamma-ray emission. Similar trends were observed for neutron and gamma-ray 
detectors.  

Comparisons among complete and defect scenarios were further performed on the average and the 
Relative Standard Deviation (RSD) values of the detectors responses among each group, with respect to 
the number of dummy pins in each observation. In the Figures 2.11, 2.12 and 2.13 the analyses based on 
thermal neutrons counts, fast neutrons counts and photons current are reported, respectively. 

 
Figure 2.11. Database visualization: Complete and defect scenarios - Average and relative standard deviation in peripheral 

detectors - Thermal neutrons counts - Number of dummy pins 

 
Figure 2.12. Database visualization: Complete and defect scenarios - Average and relative standard deviation in peripheral 

detectors - Fast neutrons counts - Number of dummy pins 



21 

 

 
Figure 2.13 Database visualization: Complete and defect scenarios - Average and relative standard deviation in peripheral 

detectors - Photons current - Number of dummy pins 

The analysis allows to identify the diversions of the fuel assembly pins as actual deviations of the detectors 
responses with respect to the complete scenarios. On the plot, the latter tend to concentrate on a constant 
value of relative standard deviation, while the observations pertaining to the defect scenarios are visible 
as clusters of dispersed data around that more compact trend. The dispersion appears to be more evident 
in the case of photons current values, which is an indicator of the higher sensitivity of the gamma-ray 
responses on the diversion scenarios, with respect to thermal and fast neutrons responses. This larger 
sensitivity to local defects is related to the different mean free paths of the detected particles, indeed 
gamma-rays have a lower mean free path with respect to neutrons, thus the responses show larger 
sensitivity. This characteristic has been further investigated and employed in the models developed for the 
machine learning analyses of the database. 

Focusing on the values of the relative standard deviation of photons current, for peripheral detectors 
locations, with respect to the number of dummy pins of complete and defect scenarios, it can be obtained 
the plot reported in Figure 2.14. The discrepancies of values of the RSD within complete and defect 
scenarios are evident also in this visual configuration of the parameters. In detail, all the complete 
scenarios, which refer to a number of dummy pins equal to zero, superimpose on the same value of RSD, 
while the observations related to the defect scenarios, carrying higher number of replaced pins, lead in 
most cases to higher and more dispersed values of relative standard deviation. Even in this case the 
sensitivity of the γ-ray detectors on the diversions of the fuel assemblies can be inferred. 
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Figure 2.14. Database visualization: Complete and defect scenarios – Relative standard deviation of photons current in peripheral 

detectors - Number of dummy pins 

A further investigation has been performed starting from the above reported results, focusing only on the 
complete scenarios and the peripheral detectors location. To explain the reasons of the occurrence of a 
non-null relative standard deviation identified in the complete assembly scenarios, it has been considered 
the case of four symmetrical detectors in the peripheral perimeter, in comparison to all peripheral 
detectors (i.e., 16). They are represented respectively as blue and yellow dots in Figure 2.15 (for thermal 
neutrons counts), Figure 2.16 (for fast neutrons counts) and Figure 2.17 (for photons current). The relative 
standard deviation, when considering all the 16 peripheral detectors, appears to be higher in value with 
respect to the one calculated in the case of the symmetric detectors only. The discrepancy may be related 
to the larger dispersion of the data introduced by the geometrical distribution of the detectors on the 
perimeter, which faces some asymmetries due to the location of the detectors. The relative standard 
deviation for the four symmetric detectors is related to the uncertainties introduced by the Monte Carlo 
simulations performed for the construction of the database. 

 
Figure 2.15. Database visualization: Complete scenarios - Average and relative standard deviation in peripheral detectors – 

Thermal neutrons counts – All peripheral detectors and 4 symmetric peripheral detectors 
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Figure 2.16. Database visualization: Complete scenarios - Average and relative standard deviation in peripheral detectors – Fast 

neutrons counts – All peripheral detectors and 4 symmetric peripheral detectors 

 
Figure 2.17. Database visualization: Complete scenarios - Average and relative standard deviation in peripheral detectors - 

Photons current – All peripheral detectors and 4 symmetric peripheral detectors  
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3. MACHINE LEARNING 

Machine Learning (ML) techniques imply the use of algorithms suitably generated that, starting from a 
collection of data, improves the learning process itself and learns with a view to treat a random sample, 
similar to the provided data, without being explicitly programmed to predict the outcome of that particular 
sample from the beginning. First of all, ML methods are divided in two broad categories: supervised and 
unsupervised. In the supervised approach, both inputs and outputs of a dataset are known and labeled, 
whereas in case of unsupervised approach the outputs associated to the inputs are unlabeled. Considering 
the database described in the previous chapter, the data allow the use of supervised models for this study. 
A generic scheme of a supervised machine learning procedure is shown in Figure 3.1 (Rossa, 2019).  

 
Figure 3.1. Supervised machine learning method workflow (Rossa, 2019) 

In the training phase the known inputs (features) and known outputs (responses) are provided as the 
training set of observations to the ML algorithm developed, which is trained on this set with the aim of 
making it able to predict unknown outputs when new input data are supplied to the model, which occurs 
in the second phase, called prediction phase. 

In the supervised learning framework, an additional subdivision between classification and regression 
methods is introduced, based on the type of responses which is foreseen in the analysis.  

In the classification approach the responses are categorized, to identify if they belong or not to a given 
class. In case the number of classes is equal to two, the method is called binary classification, for instance 
to identify if a fuel pin is present/absent in a definite location. On the other hand, if a higher number of 
classes is foreseen, it is called multiclass classification (Murphy, 2012). For example, a multiclass 
classification could consider few response classes, based on the percentage of removed pins from a spent 
fuel assembly, as investigated in (Giani, 2019), (Rossa et al., 2020). 

Regression methods have the aim to predict response variables which assume continuous values, as the 
exact number of replaced pins in a diverted spent fuel assembly scenario. The purpose of this study was 
based on the application of this second type of supervised machine learning method, as a complementary 
development of the previous analysis performed in (Giani, 2019). 
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Either for classification or for regression methods several algorithms, implying different approaches and 
performances, have been developed: Support Vector Machines, Linear Models, k-Nearest Neighbors, 
Decision Trees, Discriminant Analysis, Neural Networks are few of them. In this study, as regression 
methods were considered k-nearest neighbors and neural networks. 

As a summary of the working procedure for a machine learning model, it is reported the scheme in Figure 
3.2. 

 
Figure 3.2. Machine learning working process 

The starting point is the complete dataset, which is then divided in training and testing data, introduced 
at different stages in the ML process. From the subsets are extracted the observations related to certain 
selected features of interest (for example, a certain kind of detector), which are the same for both subsets. 
The training set is used to train the model in two different steps: part of it is first destinated to the training 
of the ML model that is going to be subsequently employed for the predictions, and part is supplied to the 
(figurative) Quality Metric block in the diagram. The latter represents the quantification, and the further 
optimization, of the error introduced by the model itself, indeed the data here involved are used to assess 
the goodness of the parameters utilized in the algorithm to predict new data, and to optimize these 
parameters to produce a more refined prediction model. At the end of this process, the inputs pertaining 
to the testing subset are supplied to the trained ML model, which performs the expected predictions. The 
outputs in the testing set are instead used for the estimations of the error, i.e., the discrepancies among 
the predicted values and the true values. 

3.1 k-Nearest Neighbors regression model 

The first supervised machine learning method investigated in this work is the k Nearest Neighbors (k-NN) 
regression algorithm, developed using the scikit-learn library implemented in Python. In Figure 3.3 is 
reported an illustrative scheme for a classification problem, for the sake of more straightforward 
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visualization of the working principle. The method is based on the concept of exploiting the similarities 
among data samples. Precisely, once the training data have been memorized by the model, the label of a 
new point (the black square in the Figure 3.3) is predicted considering a defined number of training 
samples which are the closest, in distance, to the query point. k-nearest objects are considered for the 
prediction of the label of the query point, where the number of neighbors k is arbitrarily defined. In the 
reported example, considering k equal to 1 (inside the inner line circle) or equal to 8 (inside the outer line 
circle) leads to different prediction labels of the query point, if equal importance to the k-nearest samples 
is given. Particular attention has to be given to the value of k, since an insufficient number of neighbors 
may lead to a lack of exhaustiveness of information, whereas an excessive number could be responsible 
for misperception due to a crowed neighborhood. Moreover, the other parameter that has to be defined 
is the weight attributed to each k-neighbor point, i.e., how much each neighbor contributes to the 
prediction. The k-nearest neighbors can either contribute uniformly to the prediction, or proportionally to 
the inverse of the distance with respect to the query point, i.e., closer points provide larger contribution 
to the prediction. For the regression model, the label assigned to the target point is computed as the mean 
of its nearest neighbors, and assigned to the query as a continuous variable (Pedregosa et al., 2011). 

 

Figure 3.3. k-NN classification model scheme (Rossa et al., 2020) 

Configuration of the models 

Python was the environment adopted for the development of the models, specifically it has been taken 
advantage of the scikit-learn library for the implementation of the k-NN regression models. The general 
procedure for the development of the k-NN regression models used in this study can be subdivided in the 
following steps: 

1. Import of the dataset described in Section 2.2, and division of the samples in training and testing data. 
The training dataset was used to train the model: it contains both inputs and outputs of a certain 
number of observations. The testing dataset contains the remaining part of the observations, where 
inputs were used to predict the responses, based on the model previously trained, and the outputs 
were used for measuring the correctness of the prediction model. 

2. Select the features of interest from the input database. 
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3. Pre-process the data: it is a common requirement for learning algorithm to standardize, normalize, or 
scale the data if different unit of measures and/or wide differences in scales among features are 
present. 

4. Choose the number of k-nearest neighbors and the weight to assign to each neighbor. Given that these 
parameters depend on the data under analysis, the selection was made using an hyperparameter 
optimization model: the algorithm is able to choose autonomously the best parameters which 
optimize the learning model. Here, the GridSearchCV approach has been consider, implemented in 
scikit-learn library, that exhaustively considers all the parameter combinations, which in this case were 
a number of k ranging between 1 and 50 and the setting of the weight either “uniform” or “distance”. 
The evaluation metric adopted for the optimization of the parameters is the default scoring function 
used by the GridSearchCV method, namely the R2 score: briefly, it estimates how well unknown 
samples are likely to be predicted by the model. The distance metric, i.e., the method to calculate the 
distance between two points, was set to Euclidean (the length of the line segment connecting the two 
points). 

5. Fit the k-nearest neighbors regressor on the training dataset, using the best parameters retrieved from 
point 4, tuned on the input features introduced in point 2.  

6. Predict the outputs associated to the input variables of the test dataset, by mean of the fitted k-NN 
model. 

7. Evaluate the goodness of the model, by means of different error metrics performed on the 
discrepancies among predicted and actual values. 

8. Validate the model: run the algorithm several times with the intention of increasing the randomness 
of the observations stored in train and test datasets. 

This process has been followed for the prediction of two different outcomes, based on the same dataset: 
the number of dummy pins associated to a certain scenario and the locations of the dummy pins in a 
certain geometry configuration. Due to the different outcomes under examination the steps in the 
illustrated procedure have been adjusted consequently. 

3.1.1 Number of dummy pins 

In this section of the work, the k-NN ML method has been applied for the prediction of the number of 
dummy pins in the scenarios introduced by the described dataset. Different combinations of kinds of 
detectors, groups of detectors and pre-processing operations on the values were considered as input 
features in the training phase of the learning process. Eventually, the performances of each trained model, 
based on different input features, has been compared in order to identify the best approach for the 
implementation of the latter. 

As introduced in the first point of the procedure description, the dataset has been split in training and 
testing data. One of the common practices in machine learning algorithms is to keep a proportion of 80% 
train – 20% test in the subdivision of the investigated database (Hastie, 2017). In this case, the subdivision 
was strictly correlated to the validation scheme, which has been implemented adopting a 5-fold Cross 
Validation (CV) scheme (Hastie, 2017), in accordance to the percentage of data pertaining to each subset.  
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The total number of models investigated in this phase was equal to 147, where each machine learning 
model relied on different input features, selected as a combination of the following characteristics: 

 The kind of detectors: namely TH, FA, P and all the association among the latter, i.e., TH&P, FA&P, 
TH&FA, TH&FA&P; 

 For each of the combination above mentioned, the group to which belongs the kinds of detectors 
was then selected, namely central (Cen), peripheral (Per) or external (Ext). As for the previous 
point, also all the associations of different groups of detectors were investigated, i.e., Cen&Per, 
Cen&Ext, Per&Ext, Cen&Per&Ext; 

 Within each group of detectors (Cen, Per, Ext), some operations on values were introduced before 
supplying the data to the ML model. Specifically, three separated operations were performed: the 
sum within the values (Sum), the average and standard deviation (Ave&Std) within the values, or 
no operation introduced, i.e., taking the values of the detectors responses as they were presented 
in the database (Sin). Each operation recalled was applied to each combination of kinds and groups 
of detectors above mentioned. 

Once the input features were selected, the consecutive training and test data have been additionally pre-
preprocessed to fulfil the requirement of having standardized, normalized, or scaled data in input of the 
ML models. Standardization of the data implies the reshaping of their original distribution in order to 
obtain a standard normally distribution: Gaussian with zero mean and unit variance. Instead, in the 
normalization process the vector containing the values of each observation (in this case, the scenario) is 
rescaled to have unit norm (i.e., the square root of the sum of each squared element in the vector is equal 
to 1), independently from the original distribution of the observations. On the other hand, features can be 
scaled in order to lie between a given minimum or maximum value, which is often set between zero and 
one to fulfill the requirement of some functions employed in specific ML methods (Pedregosa et al., 2011). 
In this case, it has been chosen to standardize the data, since marginally better results were envisaged by 
some trials and errors.  

Afterwards, the algorithms have used the standardized training dataset to tune and select the best 
parameters, fit the models, and predict the outcomes from the inputs of the standardized testing dataset. 

The outcomes of the k-NN models, i.e., the number of dummy pins for each of the scenarios pertaining to 
the testing dataset, were used to evaluate the goodness of the models by means of two different 
evaluation metrics. The first one was the arithmetic difference between the predicted and the real number 
of dummy pins, called Delta (Δ) henceforth. The second one was the so-called Root Mean Squared Error 
(RMSE), which is one of the frequently used machine learning evaluation metrics for regression model. The 
related formula is reported in Equation (3.1): 

𝑅𝑀𝑆𝐸 (𝑦, 𝑦ො) = ඩ 
1

𝑛௦௔௠௣௟௘௦
෍ (𝑦௜ − 𝑦ො௜)ଶ

௡ೞೌ೘೛೗೐ೞିଵ

௜ୀ଴

 (3.1) 
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where 𝑦ො௜  and 𝑦௜  are respectively the predicted and correspondent real value of the number of dummy 
pins, for the i-th sample. The square errors among all samples belonging to the testing dataset are 
averaged on the 𝑛௦௔௠௣௟௘௦ of the subset. This metric provides an accuracy of the model and permits to 
compare the predictions errors of different models, when referring to the same database, as in this case. 
Moreover, the RMSE is on the same scale of the data, where lower value implies more accurate estimations 
(Hyndman, 2006). 

Eventually, the process for the implementation of the CV scheme can be summarized in the following 
steps: 

 A flag (a number from 1 to 5) was randomly assigned to each observation (scenario) in the original 
dataset, thus it was divided in 5 folds. 

 All the scenarios having a flag = “1” were stored in the testing subset, while the remaining 
scenarios pertained to the training subset. 

 The k-NN regression model under investigation was trained on the training subset and evaluated 
on the testing subset. The hyperparameter optimization algorithm was also contextually tuned on 
the training subset. The evaluation parameters, RMSE and Δ, were computed and stored. 

 The last two points were repeated, changing the observations to be introduced in the testing 
subset, i.e., incrementing the flag number until reaching a flag = “5”. In this way, the 5 testing 
subsets, which corresponded to the 5 folds generated at the beginning, covered all the scenarios 
constituting the dataset.  

 To increase the randomness of the input data, the previous points were repeated 5 times, changing 
the random assignment between flags, i.e., folds, and observations. Eventually, each learning 
algorithm was performed 25 times, and 25 RMSE values were retrieved and used to calculate their 
mean value and the correspondent standard deviation. The Δ values were instead stored only in 
the first 5 turns, as an illustrative example of the difference between predicted and real values of 
the number of dummy pins for all the scenarios constituting the database. 

3.1.2 Location of dummy pins 

In this section, the implementation of the k-NN machine learning algorithms for the prediction of the 
locations of the replaced pins in the fuel assembly configuration is outlined. The general approach is similar 
to the one presented for the prediction of the number of replaced pins, besides some procedures, primarily 
the selection of the input features, were changed to consider mainly some intrinsic characteristics of the 
simulated database. Moreover, additional pre-processing operations on values were investigated also in 
this case, and some comparisons among the predictions of the trained ML models were examined. 

Consistently with the previous models, the ratio between train and test split of the dataset has been kept 
equal to 80% - 20 %, in accordance with the implemented cross validation procedure, which considered 5 
folds. 
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The input features to supply to the models were selected from some observations on the data. An 
illustrative example is here reported to explain the concept at the base of the selection of the features. In 
a complete fuel assembly configuration, the detectors responses are symmetrical with respect to the 
central point, as can be inferred by the exemplificative complete scenario reported in Figure 3.4, 3.5 and 
3.6 which considers thermal neutrons counts, fast neutrons counts and photons current, respectively. 

 
Figure 3.4. Observation on data: 
Complete scenario fuel assembly 
configuration - Thermal neutrons 

counts 

 
Figure 3.5. Observation on data: 
Complete scenario fuel assembly 

configuration - Fast neutrons counts 

 
Figure 3.6. Observation on data: 
Complete scenario fuel assembly 
configuration - Photons current 

Performing the same analysis on a defect scenario, the detectors responses show different sensitivities to 
the presence of replaced pins. As representative examples are reported the Figure 3.7, 3.8 and 3.9 which 
considers thermal neutrons counts, fast neutrons counts and photons current, respectively, in a particular 
defect fuel assembly configuration. Comparing the responsiveness of the different kinds of detectors to 
the diverted pin locations (identified by the black squares), the photons current values were selected as 
input features due to their higher sensitivity to the diversion locations. Moreover, all the different locations 
of the detectors were used as input features to the model, to consider a comprehensive picture of the 
data available. 

 
Figure 3.7. Observation on data: Defect 
scenario fuel assembly configuration - 

Thermal neutrons counts 

 
Figure 3.8. Observation on data: Defect 
scenario fuel assembly configuration - 

Fast neutrons counts 

 
Figure 3.9. Observation on data: Defect 
scenario fuel assembly configuration - 

Photons current 

In order to exploit the heterogeneity of the values, which is directly linked to their location on the fuel 
assembly configuration, the selected input features were not manipulated in the preprocessing of the data, 
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but introduced as they present in the algorithms. In addition, other information were also introduced, 
besides the ones already present. Indeed, three different preprocessing of the data were investigated: 

 SIN model: where the photons detectors responses, for all locations on the geometry of the fuel 
assembly, were introduced as they are reported in the original database. Thus, the number of 
input features was equal to N, where N = 65 (total number of photons detectors responses). 

 ADI model: where the single values and the differences of the single values with respect to the 
average of the correspondent group of detectors were introduced as inputs. Thus, the number of 
input features was equal to 2N, where N = 65 (total number of photons detectors responses). 

 STD model: where the single values and the standard deviations of the correspondent group of 
detectors were introduced as inputs. Thus, the number of input features was equal to N+3, where 
N = 65 (total number of photons detectors responses). 

After the selection of the input features, the procedure was equivalent to the one detailed in the previous 
section. The train and test data were standardized, and later provided to the algorithms to tune and select 
the best parameters, fit the models, and predict the outcomes from the inputs of the standardized testing 
dataset. 

If a classification approach had been considered, the outcome would have been a binary classification, 
which would have returned a value equal to 0 in case it was foreseen the presence of the pins, or equal to 
1 in case of the prediction of a replaced pin location. Since it was instead considered a regression approach, 
the predicted outcomes were a continuous number between 0 and 1, interpretable as a probability of 
having the replacement of the pin in a certain location on the fuel assembly. In this perspective, the 
evaluation of the goodness of the models has been instituted consequently, relying also on the 
implementation of the cross validation of the models, differently with respect to the evaluation metrics 
introduced in the case of the models for the prediction of the number of dummy pins.  

In details, also in this case it was introduced the division of the database in 5 folds, and each fold has been 
used at a time as testing dataset, to have prediction of outcomes for all the scenarios listed in the original 
database. In this way, a comparison between the predicted locations of dummy pins and the real locations 
has been envisaged for all the scenarios in the database. Several parameters of evaluation have been then 
introduced. First, the outcome values for the presence/replacement have been rounded to the closer 
integer value. Then, the correct localization of the dummy pin was identified when the real and the 
rounded predicted outcomes matched, otherwise the localization of the dummy pin has been classified as 
mis-interpreted. All the uncorrected predictions were then summed up, and as a result the total number 
of wrong location predictions was given for each scenario. It can be noticed that the rounding condition 
can be tighten up, for example putting equal to 0.6, 0.7, 0.8 or 0.9 the value of the threshold to consider 
the predicted location as a replaced pin location. In this way, a larger number of false negatives would 
have been faced, and vice versa if the threshold was relaxed, possibly leading to a greater number of false 
alarm scenarios. Next, a division among the correct predicted scenarios and the wrong prediction scenarios 
was introduced, and a subsequent subdivision that considered the correctness of the complete and defect 
scenarios cases separately. Eventually, it has been counted the frequency of wrong predictions of complete 
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and defect scenarios with respect to the total correspondent scenarios configurations, in order to 
understand which were the most frequent misinterpreted geometrical configurations for the locations of 
the replacements. 

3.2 Neural Networks regression model 

Neural Networks (NN) algorithms aim to resemble and mimic the nervous system structure of the human 
brain, able to memorize and learn from the external stimuli and to elaborate a specific response. The 
common base structure between NN methods and human nervous system can be deduced from Figure 
3.10, where the grey dots represent in fact the so-called neurons of the network. 

 
Figure 3.10. Generic neural network structure representation (Bhardwaj, 2021) 

The structural objects involved in the networks are the neurons, the layers, and the connections among 
neurons of different layers. In the first layer (input layer) the neurons are constituted by the input variables 
in vectorial form, while in the last layer (output layer) the neurons correspond to the vector of the output 
variables investigated. Among the two, a certain number of hidden layers are present, which contain the 
hidden variables connected to each neuron of the previous layer by means of activation functions and 
weights, associated to each neuron. The input variables operate on the output variables by means of the 
neurons on the hidden layers. Each network is constituted by an input layer, an output layer, and a 
customized number of hidden layers (at least one), while each hidden layer is constituted by a customized 
number of neurons. 

A neural network is a two-stage regression, or classification, model, which is entirely, or at least partially, 
non-linear. The derived hidden neurons 𝑧௝ are linear combinations of the input variables, 𝑥௜, and the target 
variables, 𝑦௞, are constructed as a linear combination of the 𝑧௝ variables. A typical formulation is reported 
on the Equation (3.2) and Equation (3.3), for the modeling of the hidden neurons and the output variables 
respectively: 
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𝑧௝ = 𝑓଴ ቌ෍ 𝑤௜௝𝑥௜

௜→௝

+ 𝑤௝଴ቍ (3.2) 

𝑦௞ = 𝑓ଵ ቌ෍ 𝑤௝௞𝑧௝

௝→௞

+ 𝑤௞଴ቍ (3.3) 

Where 𝑤௜௝and 𝑤௝௞ are the so-called weights, i.e., parameters to be determined, 𝑓଴ and 𝑓ଵare predefined 
activation functions, while 𝑤௝଴and 𝑤௞଴ are the so-called biases, constants which are added to the product 
of variables and weights to offset the results. The structure of a neural network is indeed equivalent to a 
convolution of functions. In case all the activation functions are linear functions, the outputs are going to 
be linear combinations of the inputs, vice versa the structure of the network is not linear. The concept of 
the activation function is to activate just a certain number of outputs of a layer, the ones that, depending 
on the associated weights, has reached a certain threshold. This results in a non-linearity of the network 
since the neurons are not always activated contemporarily. Without these non-linear functions, the whole 
complex structure of the network would collapse to an agglomeration of linear functions which basically 
eliminates the hidden layers (Hastie, 2017). 

As activation function between the 𝑛௧௛ hidden layer and the output layer, in regression algorithms is 
generally used the identity function, reported in Equation (3.4): 

𝑓ଵ(𝑧) = 𝑧 (3.4) 

On the other hand, the selection of the activation functions in the previous layers relies on different 
possible options. It is important to notice that 𝑓଴ is the same for all the neurons belonging to the same 
layer. Among the several possibilities for the choice of the activation function in neural networks, the ones 
typically used can be grouped in three main types: the logistic sigmoid function (logistic), the hyperbolic 
tangent function (tanh), and the Rectified Linear Unit function (ReLU). The choice strongly depends on the 
problem which is required to be solved (Pedregosa et al., 2011). The trend of the three functions, with 
their formulation, are reported in Table 3.1 (Jagtap, 2022). 

Logistic Sigmoid function Hyperbolic tangent function ReLU function 

   

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒ି௫
 (3.5) 𝑡𝑎𝑛ℎ(𝑥) =

𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫
 (3.6) 𝑅𝑒𝐿𝑈(𝑥) = ቄ

0, 𝑥 ≤ 0
𝑥, 𝑥 > 0

 (3.7) 

Table 3.1. Activation functions in NN (Jagtap, 2022) 



34 

 

The sigmoid function is largely employed in classification problems: the codomain of the function is indeed 
bounded between 0 and 1, and it returns large variation in the results for small variation on x in proximity 
of the zero axis, implying a good learning in classification problems. On the other hand, it gives some 
disadvantages at the extremes of the function, where wide changes of x do not affect the changing of y 
values. This could lead to a problem in the second stage of the NN learning process, when the derivatives 
of the activation functions in the extreme regions are convergent to zero, implying that these values would 
not have any impact on the optimization algorithm that minimize the error, and on the improvement of 
the efficiency of the weights attached to those values in the construction of the networks (Jagtap, 2022). 

Moreover, another largely utilized activation function is the hyperbolic tangent function, which has a 
structure similar to the sigmoid function, but it is defined between -1 and +1. With respect to the previous 
function, it leads to a steeper derivative and a faster learning process, however it carries the same issue 
faced at the extremities of the function, where the saturation region, which slows the learning process, is 
again encountered (Jagtap, 2022).  

The ReLU function has been introduced to overcome the vanishing gradient problem discussed above for 
the previous functions, where relevant changes of the values, if located far from zero, are not detected by 
the function, thus they are not going to be considered in the learning process. On the contrary, the ReLU 
function returns null values for each negative value of the domain, and it is linearly increasing in the 
positive side of the domain, so the neurons belonging to the previous layer that have negative outputs are 
taken out by the ReLU function. This requires a specific treatment of the input data, which must be scaled 
between 0 and 1, since the function does not consider negative values. Due to the simplicity of its 
mathematical formulation, the function has also the advantage of having small computational cost, and it 
more prone to locally adapt to the data. Nevertheless, the behavior in the negative region could lead to 
wipe many neurons (Jagtap, 2022). 

The activation functions are arbitrary defined in the configuration phase of the neural networks, while the 
weights associated to each neuron are tuned by an intrinsic iterative process of the algorithm, called 
backpropagation, which is the learning algorithm at the base of the NN structure. This algorithm compares 
the predicted outputs of the network with the expected outputs, i.e., the objectives. On the base of this 
difference an error is computed, used by the algorithm to modify the weights of the neurons in the 
network, in order to make progressively convergent the output values with the expected ones. This is done 
iteratively: after every propagation on the network, from the input to the output layer, the associated 
error is computed, then the algorithm feeds back for adjusting the weights on the computed error, and 
later forward propagate using the new tuned weights, thus new predictions are associated to the outputs 
and a new error is defined. The backpropagation is carried on as longs as a predefined number of iterations 
or a predefined tolerance on the error value is reached.  

The objective error to minimize is called loss function, which corresponds to the mean squared error for 
regression problems, computed among the predicted outputs and the actual values of the training set 
(Pedregosa et al., 2011). 
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The optimization algorithm which is responsible for updating the weights associated to the neurons is 
instead called Gradient Descent: it works on the outputs of the activation function feed to a given neuron 
in the successive layer, noticing which are the neurons contributing more efficiently for the predictions 
(whose weights are then going to be increased), and which are the ones less effective in the prediction 
phase (thus the importance of the respective weights are going to be decreased). This task is performed 
on all the hidden layers and associated neurons. The gradient descent algorithm is linked to the loss 
function since it has to find the local minimum of the loss function computing its gradient and use this 
result to tune the weights and decrease the loss function at the next epoch (an epoch is defined as once 
through the entire training data). The algorithm proceeds in the minimization of the objective function 
until the maximum number of predefined epochs is reached, or when it is reached a certain tolerance on 
the improvement of the loss. 

Several algorithms exist as solvers for the weights optimization, however all of them have to deal with the 
presence of more than one local minimum of the loss function. This could rise an issue in the process of 
the gradient descent algorithm since at a certain point it could reach a local minimum, which does not 
correspond to the function lowest minimum, and get stuck there, leading to reach a convergence of the 
overall results which are not at the lowest possible. To partially get rid of this problem, i.e., getting out 
form a local minimum to reach an overall lower one, Stochastic Gradient Descent (SGD) algorithms have 
been introduced (Bottou, 1991). In total gradient descent algorithms, the loss function is averaged over all 
training samples, so the computation of its gradient requires to consider all the samples, and the weights 
are updated after every loop over the whole training set, in order to converge to a local minimum of the 
loss function. The innovation introduced by the SGD algorithms is to update the weights considering a 
single training sample at a time, according to the gradient of the loss function, i.e., the value of the loss for 
this sample only. In this way the parameters are estimated for every observation, and not to the whole 
sample set: it increases the randomness in the searching phase of the local minimum, since it considers 
more widely the trend of the function, and it would more likely find a global minimum. Due to the 
characteristics of the SGD algorithms (faster, more reliable, and less prone to converge at non-performant 
local minima), they have been largely used for big dataset in neural networks models (Bottou, 1991). The 
mathematical formulation of the regularized training error to minimize in the SGD procedure is reported 
in Equation (3.8) (Pedregosa et al., 2011): 

𝐸𝑟𝑟𝑜𝑟(𝑦ො, 𝑦, 𝑤) =
1

𝑛
෍ 𝐿(𝑦௜ , 𝑦ො௜) + 𝛼𝑅(𝑤)

௡

௜ୀଵ

 (3.8) 

Where: 

 𝐿(𝑦௜ , 𝑦ො௜) is the loss function for the evaluation of the discrepancy between actual values 𝑦௜  and 
predicted values 𝑦ො௜. For regression models it relies on the formula of the Mean Squared Error 
(MSE), which comes down to the Squared Error since the SGD considers one observation at a time, 
as reported in Eq. (3.9): 
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𝐿(𝑦௜ , 𝑦ො௜) = 𝑆𝐸(𝑦௜ , 𝑦ො௜) =
1

2
(𝑦௜ − 𝑦ො௜)ଶ (3.9) 

 𝛼 is the hyperparameter that control the regularization strength; 
 𝑅(𝑤) is the regularization term, or penalty, which penalizes the model complexity. 

The introduction of a penalization function is foreseen in order to avoid the problems related to overfitting 
of the data, discussed in the next section.  

Intuitively, adopting an algorithm which follows singularly every sample at each step, instead of 
considering the loss function on the whole training set, would increase the computational effort. The 
compromise between the advantages of the stochastic method and a lower computational effort is 
reached introducing the batch concept. In details, the training dataset is randomly subdivided in batches 
of a certain size, arbitrarily defined, containing the samples which are processed before updating the 
internal model parameters, thus the samples are processed in groups and the parameters for the loss 
function are not calculated one by one. This implies that just part of the dataset is analyzed at each 
iteration, which is anyway changed at each iteration, with the aim of increasing the variability of the data 
and the possibility to reach a more suitable local minimum. A training dataset can be divided into one or 
more batches: the batch size could cover the size of the training set (and in this case an iteration 
corresponds to an epoch), vice versa the batch size can be set equal to 1, or a size can be set in between 
these two extremes. In the latter case, the algorithm is called mini-batch gradient descent and an epoch is 
completed once the iterations of the gradient descent algorithm have considered all the subgroups of the 
training set, covering the whole dataset (Smith, 2018). 

Eventually, training neural networks could lead to the problem of overfitting and the underfitting of the 
data, intrinsically introduced by the high number of weights and the complex structure involved in the 
algorithm. Both issues rely on imprecise concepts learned by the model while fitting the data in the training 
phase, which will later reflect on the accuracy of the predictions for new data which had not been seen by 
the model during the learning phase.  

Overfitting is encountered when the constructed model is too refined on the training data, i.e., on both 
the features and the statistical noises introduced by the data, thus it is not able to adapt to the new data 
that are provided to the trained model, leading to inaccurate predictions. Contrarily, when the model has 
not learnt enough about the data features in the training phase, it is later inefficient to predict outcomes 
on both the training and the testing data.  

In order to be aware and prevent these effects on the model during the training phase, it is normally 
introduced a validation set, obtained by leaving aside part of the training dataset during the forward 
propagation phase, later used as unseen data against which is going to be evaluated the goodness of the 
model, for tuning the internal parameters in the backward phase. To increase the validation accuracy, the 
validation set can be randomly changed at every epoch. 
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An illustrative example of the trends of the errors in case of overfitting and underfitting, is reported in 
Figure 3.11. As above mentioned, normally the goodness in the training phase is assessed against the 
validation subset, whose error is represented by the orange line in the figure. While the model complexity 
is increasing, which can be inferred as the progressive adjustments of the weights along the epochs, the 
error on the training data decreases, meaning that the network is going to adapt more and more on the 
training data. On the other hand, the model is enhancing its performances on the predictions of the new 
data, as long as it is learning more features on the dataset, thus the validation error decreases, till it is 
going to increase again due to overfitting of the data. The optimal trade-off is encountered when the 
validation error reaches a plateau on the curve: at this point the progressive refinement of the network 
should be stopped. 

 
Figure 3.11. Prediction error for overfitted and underfitted models (Smith, 2018) 

Several hyperparameters and techniques can be introduced to deal with overfitting and underfitting: 
among others, learning rate, penalization functions and early stopping are following presented. In detail: 

 Learning rate: it controls how much the weights are updated each time that the error on the loss 
function is estimated. A small value of this parameter results in higher accuracy in the loss function, 
but a larger computational time and the possibility of overfitting. On the other side, a large value 
of learning rate could accelerate the algorithm, since it requires fewer epochs if large changes are 
provided to the weights, but it could conduct to the divergence of the training process (Smith, 
2018). 

 Penalization functions: they penalize too complex solutions and make the networks less prone to 
overfit the data, preventing to associate excessively large values to the weights. This regularization 
term was introduced in Eq. (3.8), and the function 𝑅(𝑤) is normally selected among the L2 norm, 
the L1 norm and the elastic net (Pedregosa et al., 2011). 

 Early stopping: it stops the training of the model when the error on the validation set start to 
degrade, to reduce overfitting. It requires a monitor criterion, to evaluate the point where to stop 
the iteration process, namely the dataset over which are evaluated the performances and an 
evaluation metric. It is also necessary to define a priori the trigger for stopping the process: since 
the evaluation metric is a statistical inference, it may happen that the first insight of the increasing 
of the error is a false alarm of the overfitting, and the curve could continue to decline after it, 
reaching several other local minima. Thus, the trigger must be suitable chosen to consider this 
occurrence, and several possibilities are consequently defined (Pedregosa et al., 2011). 
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Configuration of the models 

Python was the environment adopted for the development of the models also in the case of neural 
networks, where the tools selected were provided by the Keras API, which runs over TensorFlow. The 
general procedure for the implementation of the NN regression models is similar to the one already 
presented for the k-NN, thus here the steps of the procedure are reported, highlighting the differences 
with respect to the former one: 

1. Import of the dataset described in Section 2.2, and division of the samples in training and testing data. 
2. Select the features of interest from the input database. 
3. Pre-process the data. 
4. Construct the architecture of the networks. To build and compile each layer individually, the model 

selected was Sequential, while the number of layers and the number of neurons for each layer have 
been defined with an hyperparameter optimization model. The chosen approach was the Hyperband 
optimization algorithm, and the parameters selected for the optimization process were the number of 
layers, between 2 and 10, and the number of neurons within each layer, ranging between 50 and 1000. 
The loss function to minimize for the optimization of the parameters was the Mean Squared Error, in 
accordance with the common practice in regression algorithms. Contextually, the activation functions 
must be defined. Eventually, the last information that has to be provided for the models construction 
is the choice of the kernel initializer. 

5. Compile the models: the optimization algorithm, the loss function to minimize and the evaluation 
metric to monitor along the training process require to be defined. 

6. Fit the NN regressor on the training dataset, using the parameters retrieved from point 4, tuned on 
the input features introduced in point 2. Other hyperparameters for the training configuration have to 
be selected, namely the number of epochs, the batch size, and the ones involved in the early stopping 
method. 

7. Predict the outputs associated to the input variables of the test dataset, by means of the fitted NN 
models. 

8. Evaluate the goodness of the models, using different error metrics performed on the discrepancies 
among predicted and actual values. 

9. Validate the models: run the algorithms several times with the aim of increasing the randomness of 
the observations stored in train and test datasets. 

Analogously to the configuration of the k-NN models, the procedure has been followed for predicting both 
the number of dummy pins associated to a certain scenario and the locations of the dummy pins in a 
certain geometry configuration The procedure steps were changed accordingly to the outcomes under 
examination. 

3.2.1 Number of dummy pins 

In this section of the thesis, the neural networks algorithm has been applied for the prediction of the 
number of dummy pins in the scenarios introduced by the described dataset. The implementation process 
is equivalent to the one performed for the k-nearest neighbors models, since a comparison between the 
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two methods, at parity of other conditions, was one of the objectives of this work. Consequently, are 
following presented the variations introduced in this method, with respect to the one referring to the k-
NN, due to the intrinsic differences among the structures of the two methods. 

Concerning the percentage of splitting between training and testing dataset, it has been kept equal to the 
proportion of 80-20%, in accordance with the 5-fold Cross Validation scheme. 

The different combinations of kinds of detectors, groups of detectors and pre-processing operations on 
the values considered as input features in the training phase of the learning process were the same 
introduced for the k-NN case. The final objective was again to compare the performances of the models 
trained on different input features. 

Once the input features were selected, the consecutive train and test data have been additionally pre-
preprocessed to fulfil the requirement of having standardized, normalized, or scaled data in input of the 
ML models. Specifically, this stage was intrinsically dependent on the choice of the functions involved in 
the next steps, thus both the training and the testing dataset were scaled using the MinMaxScaler function 
implemented in scikit-learn library, setting the range between 0 and 1, hence all the sample data were 
scaled within the defined range. 

In the construction phase of the models, it was introduced the HyperBand method for the optimization of 
the structural objects of the network. This method was chosen since it joins the advantage of using a 
random searcher model to the concept that losses in error functions are bigger in the initial epochs of the 
training process. In the first stage are trained many possible configurations of the network, for a small 
number of epochs, integrating the early stopping criterion. Then, the most promising architectures 
encountered in this preliminary stage are subsequently re-tuned for a maximum number of predefined 
epochs. At the last stage, the best configuration is chosen for development of the model (Li et al., 2018). 
The HyperBand method allows to optimize contextually other parameters, but this path was not followed 
with the intention of sparing computational time, due to the large effort required for the training of all the 
models foreseen in this phase. 

Contextually, the activation functions have been set. For what concern the function between the last 
hidden layer and the output layer, it was set to linear, as requested by regression models theory, while for 
the preceding layers the ReLU function was selected. This had implied the scaling of both the training and 
testing dataset between 0 and 1, in the pre-processing phase, as required by the function itself, as above 
described. Eventually, the kernel initializer was implemented since it defines the way to set the initial 
random weights of the layers. Among the several available initializers in Keras, the one selected was the 
HeNormal class, which assured better performances in combination with ReLU functions (Chollet et al., 
2015). 

Regarding the compiling phase, the Adam algorithm has been chosen as optimizer, which is a variation of 
the stochastic gradient descent: it involves limited computational effort and memory requirement and 
introduce different adaptative learning rates for different parameters in the network, typically 
necessitating little tuning (Kingma, 2015). The learning rate initially introduced was set by several trials 
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and errors. As already introduced, the loss function selected was the mean squared error, and the 
evaluation metrics for the prediction accuracy was set to root mean squared error, to be consistent with 
the evaluation metrics introduced for the evaluation of the goodness of the model. 

An exemplificative neural network architecture is reported in Figure 3.12, namely the model that 
considered as input features the values of thermal neutrons counts and photon current for all the 
detectors positions. It starts from the input layer, where 130 vectorial features are fed to the network, it 
continues with 9 hidden layers, each having a number of neutrons reported in the second term of the label 
“kernel”, and eventually ends with the output layer having one vectorial output. The label “bias” refers to 
the number of biases associated to the correspondent layer. Each layer is defined as “Dense”, meaning 
that every neuron in a layer is connected to every neuron in both the previous and successive layers, while 
the activation function of each layer is reported in the red rectangle, except the last layer which employs 
a linear activation function. 

 

 

 
Figure 3.12. Example of a NN architecture for the prediction of number of dummy pins 

The last hyperparameters to be tuned for the training configuration were the number of epochs, set to 
500 (which was a tradeoff between the large computational time required and the necessity to avoid 
overfitting, prevented in combination with the early stopping criterion), the batch size, set equal to 32, 
and the ones related to the early stopping. The latter requires a monitoring criterion, chosen as the value 
of the RMSE calculated on the validation set and, moreover, the learning process stopped after 50 epochs 
in which a minimum change of the RMSE equal to 0.01 has not been found. An illustrative example of the 
trends of the validation and train losses along the progression of the epochs, reported for the same model 
represented in Figure 3.12, is reported in Figure 3.13. It can be inferred that the desirable plateau, on the 
validation losses, to avoid overfitting and underfitting is reached. 
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Figure 3.13. Train and validation losses trends for an illustrative NN model 

Afterwards, the algorithms have used the scaled training dataset to fit the models and predict the 
outcomes from the inputs of the scaled testing dataset. The outcomes of the NN models have been used 
to evaluate the performances of the models exactly as stated for the k-NN models for the prediction of the 
number of dummy pins, thus the RMSE and the Delta were the calculated evaluation metrics for each 
model. 

Eventually, the Cross Validation scheme was constructed similarly to the one previously introduced in the 
Section 3.1.1. A discrepancy with respect to the previous process was established, due to the large 
computational time caused by the repetition of the HyperBand scheme for all the 147 models investigated. 
Specifically, the optimization algorithm was implemented for the searching of the best numbers of layers 
and neurons just in the first of the 25 loops foreseen by the Cross Validation, and later the same 
architecture was introduced for the remaining loops of the validation process for the model that 
considered the same input features. 

3.2.2. Location of dummy pins 

Eventually, this last section is dedicated to the implementation of the neural network method for the 
prediction of the locations of the replaced pins in the fuel assembly configurations. The procedure has 
integrated both the structure of the neural network introduced in the last paragraph, and the scheme seen 
in the Section 3.1.2 for the same expected outcomes. 

Consistently with the previous models, the ratio between train and test split of the dataset has been kept 
equal to 80% - 20 %, in accordance with the implemented cross validation procedure, which considered 5 
folds. 

The input features were selected correspondingly to the k-NN models constructed for the prediction of 
the locations of the dummy pins, hence considering the photons current values, more sensitive to the 
diversions on the grid lattice, for all the locations of the detectors. Moreover, the same prepossessing 
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operations on values before introduced were adopted: SIN (having N input features), ADI (having 2N input 
features) and STD (having N+3 input features). 

After the selection of the input features, the train and test data were scaled to fulfill the requirement of 
the ReLU activation function, and later provided to the HyperBand algorithm to tune and select the best 
parameters, seeking among the same ranges of layers and neurons reported in the previous paragraph. 
Analogously to the previous NN models, the activation functions were set as ReLU among the hidden 
layers, and as linear on the output layer. As well, the kernel initializer was selected as HeNormal. 

Concerning the compiling step, the Adam optimizer was implemented, and contextually also the mean 
square error as loss function and the root mean square error as evaluation metric. 

The architectures of the three analyzed models are following reported in Figure 3.14, Figure 3.15 and 
Figure 3.16 for SIN, ADI and STD case respectively. With respect to the former model, in Figure 3.12, here 
264 outputs are expected from the output layer, namely the 264 locations of the pins on the squared grid 
lattice. On the other hand, different inputs are feed in the corresponding layer, indeed the N (65), 2N (130) 
and N+3 (68) input features of the diverse models. 

 

 

Figure 3.14. SIN model architecture for the prediction of location of dummy pins 

 

 

Figure 3.15. ADI model architecture for the prediction of location of dummy pins 



43 

 

 

 

Figure 3.16. STD model architecture for the prediction of location of dummy pins 

Regarding the tuning of the hyperparameters pertaining to the training configuration, the maximum 
number of epochs was set equal to 1000, since the low number of developed models (three) allowed to 
handle a larger computational effort. Besides, the early stopping criteria was either way employed, 
resulting in training processes having the trends reported in Figure 3.17, Figure 3.18 and Figure 3.19 for 
the SIN, ADI and STD models respectively. The monitoring criterion chosen was again the value of the RMSE 
calculated on the validation set while the learning process stopped after 20 epochs in which a minimum 
change of the RMSE equal to 0.001 has not been found. The latter was lowered since the expected 
outcomes in this case were numbers between 0 and 1, nearly one order of magnitude lower than the 
situation encountered in the models predicting the number of dummy pins present. From the following 
plots, it can be better inferred the result of the introduction of the early stopping criterion: all the training 
processes stopped at around 250 epochs, when not a large improvement of the loss function was 
addressed, and the occurrence of overfitting was almost encountered. 

 
Figure 3.17. Train and validation losses trends for SIN model 
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Figure 3.18. Train and validation losses trends for ADI model 

 
Figure 3.19. Train and validation losses trends for STD model 

Subsequently, the scaled training datasets has been feed to the algorithms to fit the models and predict 
the outcomes for the scaled testing datasets inputs. Even in this case, the models have returned values 
between 0 and 1, interpreted as the probability to have a pin replacement. Indeed, the evaluation metrics 
were the same presented in the correspondent chapter of the k-NN configuration models. The evaluation 
process was strictly related to the Cross Validation procedure, which even in this case has considered the 
5 folds subdivision of the dataset and the use of each fold as testing data once, to perform predictions for 
all simulated scenarios.  
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4. RESULTS 

In this chapter the results of the analyses performed by means of the developed k-nearest neighbors and 
neural networks machine learning models are reported. Only the most insightful outcomes are described 
in the next paragraphs, while the others are reported in Appendix B. 

4.1 k-Nearest Neighbors regression models 

Concerning the k-NN regression algorithms, the results of the analyses performed for the prediction of the 
number of dummy pins in the simulated scenarios and the location of the dummy pins in the fuel assembly 
geometrical configurations are presented. 

4.1.1 Number of dummy pins 

First some examples of the models outcomes are reported just for the sake of illustration of the working 
principle of the algorithms. Few comparisons between the real and the predicted number of dummy pins 
are following presented, considering certain input features, i.e., kind, group and preprocessing operation 
of the detectors responses values. To follow a logical continuity with the graphs introduced in the database 
visualization paragraph, the outcomes of the models that considered the average and the standard 
deviation within the peripheral detectors are following reported. In Figure 4.1, Figure 4.2 and Figure 4.3 
are represented the comparisons of exact and predicted number of dummy pins when as detector 
responses inputs were considered thermal neutrons counts, fast neutrons counts and photons current 
respectively. 

 
Figure 4.1. Comparison between exact and predicted values of number of dummy pins - Peripheral detectors - Average and 

standard deviation - Thermal neutrons counts 
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Figure 4.2. Comparison between exact and predicted values of number of dummy pins - Peripheral detectors - Average and 

standard deviation - Fast neutrons counts 

 
Figure 4.3. Comparison between exact and predicted values of number of dummy pins - Peripheral detectors - Average and 

standard deviation - Photons current 

The previous plots have been produced only for illustrative aims and were not foreseen with the intention 
of presenting meaningful statistical inferences. Indeed, those outcomes are the ones predicted by the first 
of the 25 runs introduced in the cross validation procedure and refer only to the comparison between the 
exact and predicted outputs of the testing database, i.e., one fifth of the original database. 

Hence, comparisons among evaluation parameters are here presented, as results of the cross validation 
process. First of all, the graphs representing the comparisons among RMSE of all the different 
combinations of kinds and groups of detectors are reported in Figure 4.4, 4.5 and 4.6, for the case of Sum, 
Ave&Std and Sin operations within the values, respectively. In the figures, the mean value of the RMSE, 
depicted with the empty mark, is represented with the respective standard deviation, depicted as the 
vertical error bar. Among the RMSE values retrieved by the different models, considering the same 
preprocessing operations on the values, generally better performances were encountered when all groups 
of detectors were investigated in the same model, and photons current (P) detectors responses were 
involved. 
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Figure 4.4. k-NN model RMSE - Sum in detectors groups for all combinations of kinds of detectors responses 

 
Figure 4.5. k-NN model RMSE - Average and standard deviation in detectors groups for all combinations of kinds of detectors 

responses 

 
Figure 4.6. k-NN model RMSE - Single inputs of detectors groups for all combinations of kinds of detectors responses 
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A further investigation on the trend of the RMSE values for models considering all groups of detectors is 
presented in Figure 4.7, comparing different operations and different combinations of kind of detectors 
responses. Again, the higher performances of the models which supplied photons current as input features 
can be inferred, related to the greater sensitivity of the gamma-ray detectors responses with respect to 
the diversions of the fuel assembly configuration. Moreover, the models based on the average and 
standard deviation as preprocessing operations within the values of the detector groups produced better 
results with respect to the other operations investigated. This trend can be referred to the investigation 
performed on the values of average and relative standard deviation of the photons detectors responses in 
the database visualization section, where the dispersion of the relative standard deviation values in the 
defect scenarios cases was illustrated as a consequence of the higher sensitivity for the defect scenarios, 
with respect to thermal neutrons or fast neutrons counts. 

 
Figure 4.7. k-NN model RMSE - Operations on values within all detectors groups for all combinations of kinds of detectors 

responses 

Moreover, the Delta, i.e., the difference between the predicted and exact values of number of dummy 
pins, of the models accounting for all the groups of detectors in the case of the most accurate operation 
on input features (Ave&Std) are presented in Figure 4.8. The comparison has been conducted on the 
percentage of the predictions belonging to each bin presented in the histogram. In details, the difference 
between actual and predicted values of number of dummy pins was computed for all the scenarios of the 
original dataset. The results were grouped in classes, which covers a range of 10 pins of discrepancies 
between true and predicted outputs, except for the middle interval, which covers a discrepancy between 
-1 and 1 Delta. Each resulting Δ fell in the bin of competence, which at end returned the percentage of 
predictions belonging to each range. The bin covering the largest number of predictions is the one ranging 
in a Delta from -1 to 1, implying that the majority of the misinterpreted predictions were actually small 
discrepancies. More examples, for the different combinations of detectors groups, are reported in 
Appendix B. 
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Figure 4.8. k-NN model Δ- Ave&Std within all detectors groups for all combinations of kind of detectors responses 

In Table 4.1, Table 4.2, and Table 4.3 are reported the mean values and the standard deviation of RMSE 
for the different models used, considering Sum, Ave&Std and Sin models, respectively. The models which 
best predict within each group or combination of groups are highlighted, and the best one for each 
preprocessing operation is then selected below. Overall, the best prediction model is the one referring to 
the average and standard deviation of photons detectors responses values considering all the detectors 
locations, which returned a mean RMSE equal to 6.2 and a standard deviation of 1.4.  

Eventually, a conclusion can be assessed comparing the results of the models for the different 
preprocessing operations, fixing the other conditions. Although more information were provided to the 
models which deal with the values of the detectors responses as they present in the database, the best 
performances were encountered for the Ave&Std models. It may be deduced that increasing the number 
of features, it would increase the statistical noise associated to them, since feeding the values for all 
locations could be meaningful when predicting the localized diversions on the lattice grid, but not when 
averaged on the whole lattice. Therefore, providing all the detailed information could be misleading for a 
measure of diversion which is averaged on the lattice, unless the single inputs would have been feed to 
the models in order to predict the precise location of the diversions, to be later summed up to retrieve the 
total number of dummy pins, as it was indeed implemented in the predictions of the replacements, later 
presented in this work. 
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Table 4.1. k-NN models: Mean RMSE and standard deviation – Operation on values: Sum 

 
Table 4.2. k-NN models: Mean RMSE and standard deviation – Operation on values: Average and Standard Deviation 

 
Table 4.3. k-NN models: Mean RMSE and standard deviation – Operation on values: Single input 
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4.1.2 Location of dummy pins 

As in the previous section, dedicated to the presentations of the models results, a qualitative example of 
the working procedure of the prediction models is shown. A real configuration of a defect scenario is taken 
as an example, and it is represented in Figure 4.9, where the respective photons current values are 
superimposed on the diverted fuel assembly geometry. 

 
Figure 4.9. Defect scenario fuel assembly configuration - Real locations of dummy pins - Photons current 

For the same defect scenario, the outcomes of the prediction models are instead reported in Figure 4.10, 
4.11 and 4.12, for the SIN, ADI and STD models respectively. The locations of the detectors are reported in 
bordeaux, whereas the probability of having a replaced pin in a certain location relies on a dashing colorbar 
going from white (representing “0”, i.e., pin present) to black (representing “1”, i.e., pin replaced). Thus, 
the darker the square on the lattice, the higher the predicted probability of having a replaced pin.  

 
Figure 4.10. k-NN SIN model: Defect 

scenario fuel assembly configuration - 
Predicted locations of dummy pins 

 
Figure 4.11. k-NN ADI model: Defect 

scenario fuel assembly configuration - 
Predicted locations of dummy pins 

 
Figure 4.12. k-NN STD model: Defect 

scenario fuel assembly configuration - 
Predicted locations of dummy pins 

An analysis on the overall predictions for the location of replaced pins is here presented. First, the 
percentage of correct and wrong predictions of the locations of the replaced pins for each model are 
reported. As previously mentioned, the probability of prediction to encounter a replaced pin in a certain 
location has been rounded to the nearest integer value, i.e., considering a threshold of 0.5. The rounded 
outcome has been then compared to the real outcome, to verify the correctness of the predictions for 
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each position on the fuel assembly. For each scenario, the number of wrong positions predicted were 
therefore summed up, reported on the abscissa of the following graphs. On the ordinate is instead 
reported the percentage of the scenarios for which has been predicted the defined number of wrong 
positions, with respect to all scenarios. In Figure 4.13 the results for the SIN model are presented, which 
focus only on the wrong predicted scenarios, from which it can be inferred the percentage, out of all 
scenarios, of the number of wrong positions predicted in each scenarios investigated. A brief summary of 
the number of predicted scenarios belonging to each category is listed, in the case of SIN model: 

 Number of complete scenarios whose dummy pin locations have been well predicted: 1372/1372; 
 Number of complete scenarios whose dummy pin locations have been wrong predicted: 0/1372; 
 Number of defect scenarios whose dummy pin locations have been well predicted: 225/963 

(23.4%); 
 Number of defect scenarios whose dummy pin locations have been wrong predicted: 738/963 

(76.6%); 

having a total percentage of accuracy of 69.4%. 

 
Figure 4.13. k-NN SIN model: Percentage of prediction VS Number of wrong position predicted – Wrong predicted scenarios 

The same analysis has been performed also for the ADI model, whose summarized results are reported in 
Figure 4.14 for the wrong predicted scenarios. For this model, the number of predicted scenarios belonging 
to each category is listed below:  

 Number of complete scenarios whose dummy pin locations have been well predicted: 1372/1372; 
 Number of complete scenarios whose dummy pin locations have been wrong predicted: 0/1372; 
 Number of defect scenarios whose dummy pin locations have been well predicted: 537/963 

(55.8%); 
 Number of defect scenarios whose dummy pin locations have been wrong predicted: 426/963 

(44.2%); 
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having a total percentage of accuracy of 81.7%. 

 
Figure 4.14. k-NN ADI model: Percentage of prediction VS Number of wrong position predicted – Wrong predicted Scenarios 

Finally, same observations were made on the STD model, which analyses are presented in Figure 4.15. In 
this last case, the number of predicted scenarios pertaining to each category are: 

 Number of complete scenarios whose dummy pin locations have been well predicted: 1372/1372; 
 Number of complete scenarios whose dummy pin locations have been wrong predicted: 0/1372; 
 Number of defect scenarios whose dummy pin locations have been well predicted: 255/963 

(26.5%); 
 Number of defect scenarios whose dummy pin locations have been wrong predicted: 708/963 

(73.5%); 

having a total percentage of accuracy of 69.7%. 

 
Figure 4.15. k-NN STD model: Percentage of prediction VS Number of wrong position predicted – Wrong predicted Scenarios 

The summary of the results above described, for the three different k-NN models, is reported in Table 4.4. 
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 SIN model ADI model STD model 
Complete scenarios well predicted [%] 100 100 100 

Complete scenarios wrong predicted [%] 0 0 0 
Defect scenarios well predicted [%] 23.4 55.8 26.5 

Defect scenarios wrong predicted [%] 76.6 44.2 73.5 
Total accuracy [%] 69.4 81.7 69.7 

Table 4.4. k-NN models: Location of dummy pins - Summarized results 

A further investigation on the model which led to the higher accuracy has been integrated. In this case, 
the method of using the single input detectors and the difference of the single values with respect to the 
average of the pertaining group (the ADI model) has reached the highest accuracy. This model was indeed 
particularly sensitive to the locations of the replaced pin if the diversion geometry faced some 
asymmetrical distribution of the dummy pins, as in the case reported in Figure 3.7, 3.8 and 3.9. In similar 
diverted cases, the discrepancies among the single detectors and the average of the group of detectors 
are higher in the area of diverted pins, with respect to the untouched locations, leading to a higher 
contribution of the input features to the final prediction. The STD model has as well led to better results 
with respect to the raw input features provided by the original database, but since the standard deviation 
is related to all the detectors in a certain group, it may lose some of the additional information that the 
heterogeneity of the data could provide. 

Considering the results from the ADI model, the configurations of the fuel assembly which have been mis-
interpreted more frequently, have been inspected. In detail: each configuration of defect scenario has 9 
different subcases relying on the combinations of the values of IE and BU. In the Figures from 4.16 to 4.35 
are reported the defect scenario configurations which had the highest frequency of wrong positions 
predictions for a certain geometry configuration, i.e., 9/9 (the 9 subcases which combines IE and BU values, 
pertaining to a certain geometrical configuration, for a certain number of dummy pins). On the left-hand 
side the figures are reporting the real configurations, while on the right-hand side one of the 9 wrong 
predicted configurations is reported. On each fuel assembly configuration are superimposed the detectors 
responses for the photons current. 
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Figure 4.16. Defect scenario fuel assembly configuration – 

1/10 Most frequent wrong interpreted scenarios - Real 
locations of dummy pins - Photons current 

 
Figure 4.17. Defect scenario fuel assembly configuration – 

1/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 

 
Figure 4.18. Defect scenario fuel assembly configuration – 

2/10 Most frequent wrong interpreted scenarios - Real 
locations of dummy pins - Photons current 

 
Figure 4.19. Defect scenario fuel assembly configuration – 

2/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 

 
Figure 4.20. Defect scenario fuel assembly configuration – 

3/10 Most frequent wrong interpreted scenarios - Real 
locations of dummy pins - Photons current 

 
Figure 4.21. Defect scenario fuel assembly configuration – 

3/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 
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Figure 4.22. Defect scenario fuel assembly configuration – 

4/10 Most frequent wrong interpreted scenarios - Real 
locations of dummy pins - Photons current 

 
Figure 4.23. Defect scenario fuel assembly configuration – 

4/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 

 
Figure 4.24. Defect scenario fuel assembly configuration – 

5/10 Most frequent wrong interpreted scenarios - Real 
locations of dummy pins - Photons current 

 
Figure 4.25. Defect scenario fuel assembly configuration – 

5/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 

 
Figure 4.26. Defect scenario fuel assembly configuration – 

6/10 Most frequent wrong interpreted scenarios - Real 
locations of dummy pins - Photons current 

 
Figure 4.27. Defect scenario fuel assembly configuration – 

6/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 
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Figure 4.28. Defect scenario fuel assembly configuration – 

7/10 Most frequent wrong interpreted scenarios - Real 
locations of dummy pins - Photons current 

 
Figure 4.29. Defect scenario fuel assembly configuration – 

7/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 

 
Figure 4.30. Defect scenario fuel assembly configuration – 

8/10 Most frequent wrong interpreted scenarios - Real 
locations of dummy pins - Photons current 

 
Figure 4.31. Defect scenario fuel assembly configuration – 

8/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 

 
Figure 4.32. Defect scenario fuel assembly configuration – 

9/10 Most frequent wrong interpreted scenarios - Real 
locations of dummy pins - Photons current 

 
Figure 4.33. Defect scenario fuel assembly configuration – 

9/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 
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Figure 4.34. Defect scenario fuel assembly configuration – 
10/10 Most frequent wrong interpreted scenarios - Real 

locations of dummy pins - Photons current 

 
Figure 4.35. Defect scenario fuel assembly configuration – 

10/10 Most frequent wrong interpreted scenarios - Predicted 
locations of dummy pins - Photons current 

Form the worst predicted configurations above reported, it can be generally inferred that the most difficult 
lattices to predict are the ones presenting a chess-board distribution of the diverted pins on the geometry 
of the fuel assembly. Moreover, other difficulties of prediction were encountered more where diversions 
are performed on the outwards perimeter, and with a low number of replaced pins. This is an important 
insight for those which are the purposes of safeguards, since they give a hint on which could be the more 
challenging scenarios to predict, in a potential proliferative situation. Furthermore, considering the worst 
cases of 2nd, 3rd and from the 6th one to the 10th one, the graphs show that some diversions of the pins 
were actually predicted, but the locations of the replaced pins were wrongly established, meaning that 
eventually diverted situations would have been correctly identified by the model. 

4.2 Neural Networks regression models 

Concerning the neural networks regression algorithms, the outcomes of the analyses performed for the 
predictions of the number of dummy pins in the simulated scenarios and the locations of the dummy pins 
in the fuel assembly geometrical configurations are presented. 

4.2.1 Number of dummy pins 

Analogously to the precedent chapter, involving the results of the k-NN methods for the prediction of 
number of dummy pins, comparisons among evaluation metrics are here reported, retrieved at the end of 
the cross validation procedure. In the first place, the graphs representing the comparisons among RMSE 
of all different combinations of kinds and groups of detectors are reported in Figure 4.36, Figure 4.37, and 
Figure 4.38, for the operations on values: Sum, Ave&Std and Sin, respectively. Again, in the figures the 
mean value of the RMSE, depicted with the empty mark, is represented with the respective standard 
deviation, depicted as the vertical error bar. Generally, considering the same preprocessing operations on 
values, better results were achieved considering all groups of detectors in the same model. Additionally, 
as previously stated, the models which appear more sensitive to the pin diversions, i.e., implying lower 
values of RMSE, are the ones involving the photons current values, singularly or in combination with other 
detectors responses.  
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Figure 4.36. NN model RMSE - Sum in detectors groups for all combinations of kinds of detectors responses 

 
Figure 4.37. NN model RMSE - Average and Standard Deviation in detectors groups for all combinations of kinds of detectors 

responses 

 
Figure 4.38. NN model RMSE - Single inputs of detectors groups for all combinations of kinds of detectors responses 
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A further investigation on the trend of the RMSE values for models considering all groups of detectors is 
presented in Figure 4.39, comparing different operations and different combinations of kinds of detectors 
responses. Again, the higher performance of the models which supplied photons current as input features 
can be inferred, beyond those in combination with other detectors. Focusing instead on the outcomes 
related to different operations on values, different trends were faced in case photons current were indeed 
included as inputs or not. Specifically, both thermal and fast neutrons counts inputs reached lower mean 
values of RMSE when the values were treated considering their average and standard deviation, while all 
the combinations including photons current reacted better RMSE when their values were considered 
singularly. The attitude of the latter could be an effect of the architecture of the neural networks, where 
the weights associated to the photons current values were enhanced with respect to the ones of the 
neutrons counts, such that the overall structure was following more closely the γ-ray responses. On the 
other hand, involving the neutrons counts, less sensitive to the diversions, consider the standard deviation 
of the values may help in the overall estimation of the diverted pins. 

 
Figure 4.39. NN model RMSE - Operations on values within all detectors groups for all combinations of kinds of detectors 

responses 

Moreover, the Delta, i.e., the difference between the predicted and exact values of number of dummy 
pins, of the models accounting for all the groups of detectors in the case of the most accurate operations 
on input features (Ave&Std and Sin) are presented in Figure 4.40 and Figure 4.41 respectively. The 
histograms have been built as introduced in the corresponding paragraph for the k-NN models. Even in 
these reported cases, the bin covering the largest number of predictions is the one ranging in a Delta from 
-1 to 1, implying that the majority of the misinterpreted predictions were actually small discrepancies. 
Dissimilarities on the outcomes can be inferred between Ave&Std and Sin operations for the input values 
of the neutrons counts, where the Ave&Std operation conducted to better estimations. On the other side, 
when the latter are compared to the results obtained with the involvement of the photons current, their 
lower performances are evident. More examples, for the different combinations of detectors groups, are 
reported in Appendix B. 
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Figure 4.40. NN model Δ- Ave&Std within all detectors groups for all combinations of kinds of detectors responses 

 

Figure 4.41. NN model Δ- Single central, peripheral, and external detectors values for all combinations of kinds ofdetectors 
responses 

Eventually, the mean values and the standard deviation of RMSE for the different implemented models, 
considering Sum, Ave&Std and Sin models, are reported in Table 4.5, Table 4.6, and Table 4.7 respectively. 
The models which best predict within each group or combination of groups are highlighted, and the best 
one for each preprocessing operation is then selected below. Generally, better performances are 
encountered in the models involving Ave&Std and Sin pre-processing operations, which values of mean 
RMSE are indeed comparable. Besides, the best prediction model is the one referring to the single inputs 
of photons current and thermal neutrons counts values considering all detectors locations, which returned 
a mean RMSE equal to 7.0 and a standard deviation of 1.2.  
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Table 4.5. NN models: Mean RMSE and standard deviation – Operation on values: Sum 

 
Table 4.6. NN models: Mean RMSE and standard deviation – Operation on values: Average and Standard Deviation 

 
Table 4.7. NN models: Mean RMSE and standard deviation – Operation on values: Single input
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4.2.2. Location of dummy pins 

First, a qualitative representation of the outcomes of the models are presented. Referring to the same real 
configuration of replaced dummy pins introduced in Figure 4.9, the corresponding predicted outcomes of 
the three examined models are reported in Figure 4.42, Figure 4.43 and Figure 4.44 for the SIN, ADI and 
STD models respectively. Again, the locations of the detectors are reported in bordeaux, whereas the 
probability of having a replaced pin in a certain location relies on a dashing colorbar going from white 
(representing “0”, i.e., pin present) to black (representing “1”, i.e., pin replaced). Thus, the darker the 
square on the lattice, the higher the predicted probability of having a replaced pin.  

 
Figure 4.42. NN SIN model: Defect 

scenario fuel assembly configuration - 
Predicted locations of dummy pins 

 
Figure 4.43. NN ADI model: Defect 

scenario fuel assembly configuration - 
Predicted locations of dummy pins 

 
Figure 4.44. NN STD model: Defect 

scenario fuel assembly configuration - 
Predicted locations of dummy pins 

Following the same procedure reported in the analogous paragraph involving the k-NN models, an analysis 
on the outcomes of these three models were investigated, and the results are discussed on the 
consequently graphs. On the abscissa, the number of wrong positions predicted for each scenario is 
reported, while on the ordinate the percentage of scenarios for which has been predicted the 
correspondent number of wrong positions, percentage calculated with respect to all scenarios.  

In Figure 4.45 the results for the SIN model are presented, which focus only on the wrong predicted 
scenarios, from which it can be inferred the percentage, out of all scenarios, of the number of wrong 
positions predicted in each scenarios investigated. A brief summary of the number of predicted scenarios 
belonging to each category is listed, in the case of SIN model: 

 Number of complete scenarios whose dummy pin locations have been well predicted: 1372/1372; 
 Number of complete scenarios whose dummy pin locations have been wrong predicted: 0/1372; 
 Number of defect scenarios whose dummy pin locations have been well predicted: 843/963 

(87.5%); 
 Number of defect scenarios whose dummy pin locations have been wrong predicted: 120/963 

(12.5%); 

having a total percentage of accuracy of 94.7%. 
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Figure 4.45. NN SIN model: Percentage of prediction VS Number of wrong position predicted – Wrong predicted scenarios 

The same analysis has been performed also for the ADI model, whose summarized results are reported in 
Figure 4.46 for the wrong predicted scenarios. For this model, the number of predicted scenarios belonging 
to each category is listed below:  

 Number of complete scenarios whose dummy pin locations have been well predicted: 1372/1372; 
 Number of complete scenarios whose dummy pin locations have been wrong predicted: 0/1372; 
 Number of defect scenarios whose dummy pin locations have been well predicted: 609/963 

(63.2%); 
 Number of defect scenarios whose dummy pin locations have been wrong predicted: 354/963 

(36.8%); 

having a total percentage of accuracy of 84.8%. 

 
Figure 4.46. NN ADI model: Percentage of prediction VS Number of wrong position predicted – Wrong predicted Scenarios 

Finally, same observations were made on the STD model, which analyses are presented in Figure 4.47. In 
this last case, the number of predicted scenarios pertaining to each category are: 
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 Number of complete scenarios whose dummy pin locations have been well predicted: 1372/1372; 
 Number of complete scenarios whose dummy pin locations have been wrong predicted: 0/1372; 
 Number of defect scenarios whose dummy pin locations have been well predicted: 917/963 

(95.2%); 
 Number of defect scenarios whose dummy pin locations have been wrong predicted: 46/963 

(4.8%); 

having a total percentage of accuracy of 97.5%. 

 
Figure 4.47. NN STD model: Percentage of prediction VS Number of wrong position predicted – Wrong predicted Scenarios 

The summary of the results above described, for the three different NN models, is reported in Table 4.8. 

 SIN model ADI model STD model 
Complete scenarios well predicted [%] 100 100 100 

Complete scenarios wrong predicted [%] 0 0 0 
Defect scenarios well predicted [%] 87.5 63.2 95.2 

Defect scenarios wrong predicted [%] 12.5 36.8 4.8 
Total accuracy [%] 94.7 84.8 97.5 

Table 4.8. NN models: Location of dummy pins - Summarized results 

A further investigation on the model which led to the higher accuracy has been integrated. In this case, 
the method which considered the single input and the standard deviation within each group has reached 
the highest accuracy, besides also the other methods provided a good correctness. The STD model 
eventually joined the precision provided by the SIN model, having already high performance, and introduce 
some further information on the values which are more related to the distortions per sè. On the other 
hand, having provided 130 input features to the ADI model, could have led to an increase of the statistical 
noise of the intrinsic features of the dataset, inside a network which is already quite complex. 
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Considering the results from the STD model, frequently mis-interpreted geometrical configurations were 
not encountered, if it is considered the maximum number of 9 wrong predicted configurations out of 9, as 
reported in the previous correspondent paragraph. On the other hand, lowering the constraint of the 
maximum frequency and considering the geometrical configurations which have been incorrectly 
predicted half of the times (i.e., more than 4 configurations out of 9), some further information may be 
retrieved. In the Figure from 4.48 to 4.53 are reported the diverted scenarios which had a frequency of 
misinterpretation of more than half of the total number of scenarios for a certain geometrical 
configuration. On the left-hand side the figures are reporting the real configurations, while on the right-
hand side one of the wrong predicted configurations is reported, with the number of times they have been 
misinterpreted, out of 9. On each fuel assembly configuration are superimposed the detectors responses 
for the photons current. 

 
Figure 4.48. Defect scenario fuel assembly configuration – 
Wrong interpreted scenario 5/9 - Real locations of dummy 

pins - Photons current 

 
Figure 4.49. Defect scenario fuel assembly configuration – 

Wrong interpreted scenarios 5/9- Predicted locations of 
dummy pins - Photons current 

 
Figure 4.50. Defect scenario fuel assembly configuration – 
Wrong interpreted scenarios 8/9- Real locations of dummy 

pins - Photons current 

 
Figure 4.51. Defect scenario fuel assembly configuration – 

Wrong interpreted scenarios 8/9- Predicted locations of 
dummy pins - Photons current 
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Figure 4.52. Defect scenario fuel assembly configuration – 

Wrong interpreted scenarios 5/9 - Real locations of dummy 
pins - Photons current 

 
Figure 4.53. Defect scenario fuel assembly configuration – 
Wrong interpreted scenarios 5/9 - Predicted locations of 

dummy pins - Photons current 

Even in this case, from the worst predicted configurations above reported, it can be generally inferred that 
the most difficult lattices to predict are the ones presenting a chess-board distribution of the diverted pins 
on the geometry of the fuel assembly, especially if their number is low and the replacements are located 
on the outwards perimeter. Moreover, the graphs show that some diversions of the pins were actually 
predicted, but the locations of the replaced pins were wrongly established, meaning that eventually 
diverted situations would have been correctly identified by the model.  
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5. CONCLUSIONS 

The objective of this study was to develop machine learning models to detect the diversions of spent 
nuclear fuel assemblies, both investigating the number of pins replaced by steel dummies and the specific 
locations of the replacements on the 17x17 lattice, in a safeguards perspective. In particular, the thesis 
had the aim to further examine models which have been already investigated in a previous similar work, 
for extending the predictions using another prospective: regression models instead of classification ones. 

The starting point was a database constituted by thousands of Monte Carlo simulated scenarios, 
calculating different detectors responses for both complete and defect fuel assemblies The former covered 
a wide range of combination of radiation history parameters of the fuel, such as burnup, initial enrichment 
and cooling time, whereas the defect scenarios were tuned on reduced number of factors, but on extensive 
range of numbers of dummy pins and geometrical configurations of the replacements on the lattice. The 
detectors responses were simulated on the base of the prototype of the NDA technique, the so-called 
PDET, which employed detectors sensitive to thermal and fast neutrons, and γ-rays in several locations on 
a spent fuel assembly. 

The simulated detectors responses were used in different combinations as input features of the machine 
learning algorithms, for the predictions of some outcomes of interest, namely the number of dummy pins 
and their location on the grid. For both purposes were considered two ML models: the k-nearest neighbors 
and the neural networks, configured on the same input features to eventually confront their 
performances. Comparisons at different levels could be asserted on the processing, the methodologies 
and the databases employed.  

Focusing on the detectors responses supplied in the input phase of the procedure, better predictions were 
reached when all detectors locations were considered simultaneously, for any method and expected 
outcome. Moreover, the detectors which appeared more sensitive to the diversions, thus leading to larger 
accuracy of the models results for the prediction of the number of dummy pins, were the γ-ray detectors. 
When only photons current values were used in k-NN models, the best results were generally obtained, 
whereas as input of NN models better performances were reached in combination with other detectors 
responses values. The structures of the two methods are indeed intrinsically different: whether the k-NN 
uses just some k observations for training the models, the NN relies basically on all provided information, 
giving different relevance to the samples depending on their contribution on the prediction. This mostly 
results on the amount of the information a model can retain, since the former has to choose which data 
preserve and which discharge, even if they might be useful on the final prediction, whereas the latter could 
press the advantage of considering all the features provided, associating suitable weights. 

Regarding the preprocessing methods that were integrated in the input phase, preserving the 
heterogeneity of the values of the dataset typically conduced to better accuracies of the predictions. 
Specifically, considering the sum within groups of detectors performed the worst estimations, although 
the single detectors inputs and average within groups and their standard deviation conducted to similar 
outcomes. This effect was more visible in the models based on NN with respect to k-NN, probably due to 
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the amount of data that the networks could handle, and properly tune, against k-nearest neighbors 
methods. On the other hand, the complex structure of neural networks could lead to problems of 
overfitting of the data, if the configuration is not properly tuned and adjusted on the input features. This 
could be one of the reasons why the best predictive model has been encountered using the k-NN, even if 
better overall estimations were encountered by means of the neural networks. 

Preserving the heterogeneity of the values was effective also in the phase concerning the prediction of the 
location of the dummy pins. In this case, the greater the amount and the diversification of the information 
provided to the model, the more proficient was the latter, where focusing on the enhancement of the 
discrepancies proper of the diversions was efficient. In this case, better results were achieved in the 
configurations relying on neural networks methods, reaching almost the perfect superimposing of data 
and predictions, nevertheless a tradeoff between amount of information and model complexity must be 
foreseen. 

An additional comment should be introduced on the number of models investigated in this work. In order 
to further improve and increase the efficiency of the models, the idea of first investigate a large number 
of models and then select the best ones, for further and more precise tuning, could be an efficacious 
option. Indeed, in this work it has been decided to investigate a wide range of models in the stage of 
prediction of number of dummy pins, while just the best configuration was later used for the investigation 
of the location of the replacements. This has resulted in a lower computational expense of the second 
stage, and the possibility to deeply tune the hyperparameters required, on the data selected, especially in 
the development of the neural networks algorithms, which has then reached 97.5% of accuracy. 

In conclusion, the machine learning models implemented in this study showed very promising results for 
the detection of partial defects of spent fuel assemblies. Very accurate and precise predictions were 
achieved developing neural networks algorithms in the replacement locations, whereas overall good 
estimations of the diversions were encountered for the purpose of revealing proliferation actions even 
implementing the less complex k-nearest neighbors architectures. Future works could introduce further 
investigation on the preprocessing phase of the input features, to focalize on the source of distortions with 
respect to the complete scenarios, providing more effective information to the models. 
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APPENDIX A: DATABASE VISUALIZATION 

In this section are reported the additional graphs related to the database visualization presented in 
Paragraph 2.3. Central, peripheral, and external detectors are treated separately, for each kind of detector 
response. The plots produced for the sum of the values within each group are reported in the first part, 
while the second is dedicated to the average within each group. The sequence of the figure follows the 
structure presented in the body text. 

  



73 

 

Sum in central detectors 

 
Figure A.1. Database visualization: Complete and defect scenarios - Sum in central detectors and relative uncertainties – Thermal 

neutrons counts and photons current 

 
Figure A.2. Database visualization: Complete and defect scenarios - Sum in central detectors and relative uncertainties – Fast 

neutrons counts and photons current 

 
Figure A.3. Database visualization: Complete and defect scenarios - Sum in central detectors and relative uncertainties – Thermal 

and fast neutrons counts 
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Figure A.4. Database visualization: Defect 

scenarios - Sum in central detectors - Thermal 
neutrons counts and photons current - Number 

of dummy pins 

 
Figure A.5. Database visualization: Defect scenarios – Sum in central 

detectors - Thermal neutrons counts and photons current – Initial 
Enrichment and BurnUp 

 
Figure A.6. Database visualization: Defect 
scenarios – Sum in central detectors - Fast 

neutrons counts and photons current - Number 
of dummy pins 

 
Figure A.7. Database visualization: Defect scenarios – Sum in central 

detectors - Fast neutrons counts and photons current – Initial Enrichment 
and BurnUp 

 
Figure A.8. Database visualization: Defect 

scenarios – Sum in central detectors - Thermal 
and fast neutrons counts - Number of dummy 

pins 

 
Figure A.9. Database visualization: Defect scenarios – Sum in central 

detectors - Thermal and fast neutrons counts – Initial Enrichment and 
BurnUp 
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Sum in peripheral detectors 

 
Figure A.10. Database visualization: Complete and defect scenarios - Sum in peripheral detectors and relative uncertainties – 

Thermal neutrons counts and photons current 

 
Figure A.11. Database visualization: Complete and defect scenarios - Sum in peripheral detectors and relative uncertainties – Fast 

neutrons counts and photons current 

 
Figure A.12. Database visualization: Complete and defect scenarios - Sum in peripheral detectors and relative uncertainties – 

Thermal and fast neutrons counts 
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Figure A.13. Database visualization: Defect 

scenarios - Sum in peripheral detectors - Thermal 
neutrons counts and photons current - Number 

of dummy pins 

 
Figure A.14. Database visualization: Defect scenarios – Sum in peripheral 

detectors - Thermal neutrons counts and photons current – Initial 
Enrichment and BurnUp 

 
Figure A.15. Database visualization: Defect 

scenarios – Sum in peripheral detectors - Fast 
neutrons counts and photons current - Number 

of dummy pins 

 
Figure A.16. Database visualization: Defect scenarios – Sum in peripheral 
detectors - Fast neutrons counts and photons current – Initial Enrichment 

and BurnUp 

 
Figure A.17. Database visualization: Defect 

scenarios – Sum in peripheral detectors - Thermal 
and fast neutrons counts - Number of dummy 

pins 

 
Figure A.18. Database visualization: Defect scenarios – Sum in peripheral 

detectors - Thermal and fast neutrons counts – Initial Enrichment and 
BurnUp 
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Sum in external detectors 

 
Figure A.19. Database visualization: Complete and defect scenarios - Sum in external detectors and relative uncertainties – 

Thermal neutrons counts and photons current 

 
Figure A.20. Database visualization: Complete and defect scenarios - Sum in external detectors and relative uncertainties – Fast 

neutrons counts and photons current 

 
Figure A.21. Database visualization: Complete and defect scenarios - Sum in external detectors and relative uncertainties – 

Thermal and fast neutrons counts 
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Figure A.22. Database visualization: Defect 

scenarios - Sum in external detectors - Thermal 
neutrons counts and photons current - Number 

of dummy pins 

 
Figure A.23. Database visualization: Defect scenarios – Sum in external 

detectors - Thermal neutrons counts and photons current – Initial 
Enrichment and BurnUp 

 
Figure A.24. Database visualization: Defect 
scenarios – Sum in external detectors - Fast 

neutrons counts and photons current - Number 
of dummy pins 

 
Figure A.25. Database visualization: Defect scenarios – Sum in external 

detectors - Fast neutrons counts and photons current – Initial Enrichment 
and BurnUp 

 
Figure A.26. Database visualization: Defect 

scenarios – Sum in external detectors - Thermal 
and fast neutrons counts - Number of dummy 

pins 

 
Figure A.27. Database visualization: Defect scenarios – Sum in external 
detectors - Thermal and fast neutrons counts – Initial Enrichment and 

BurnUp 
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Average in central detectors 

 
Figure A.28. Database visualization: Complete and defect scenarios - Average in central detectors and relative uncertainties – 

Thermal neutrons counts and photons current 

 
Figure A.29. Database visualization: Complete and defect scenarios - Average in central detectors and relative uncertainties – 

Fast neutrons counts and photons current 

 
Figure A.30. Database visualization: Complete and defect scenarios - Average in central detectors and relative uncertainties – 

Thermal and fast neutrons counts 
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Figure A.31. Database visualization: Defect 

scenarios - Average in central detectors - 
Thermal neutrons counts and photons current - 

Number of dummy pins 

 
Figure A.32. Database visualization: Defect scenarios – Average in central 

detectors - Thermal neutrons counts and photons current – Initial 
Enrichment and BurnUp 

 
Figure A.33. Database visualization: Defect 

scenarios – Average in central detectors - Fast 
neutrons counts and photons current - Number 

of dummy pins 

 
Figure A.34. Database visualization: Defect scenarios – Average in central 
detectors - Fast neutrons counts and photons current – Initial Enrichment 

and BurnUp 

 
Figure A.35. Database visualization: Defect 
scenarios – Average in central detectors - 

Thermal and fast neutrons counts - Number of 
dummy pins 

 
Figure A.36. Database visualization: Defect scenarios – Average in central 

detectors - Thermal and fast neutrons counts – Initial Enrichment and 
BurnUp 
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Figure A.37. Database visualization: Complete and defect scenarios - Average and relative standard deviation in central detectors 

- Thermal neutrons counts - Number of dummy pins 

 
Figure A.38. Database visualization: Complete and defect scenarios - Average and relative standard deviation in central detectors 

- Fast neutrons counts - Number of dummy pins 

 
Figure A.39. Database visualization: Complete and defect scenarios - Average and relative standard deviation in central detectors 

- Photons current - Number of dummy pins 
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Figure A.40. Database visualization: Complete and defect scenarios - Relative standard deviation of photons current in central 

detectors - Number of dummy pins 
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Average in external detectors 

 
Figure A.41. Database visualization: Complete and defect scenarios – Average in external detectors and relative uncertainties – 

Thermal neutrons counts and photons current 

 
Figure A.42. Database visualization: Complete and defect scenarios - Average in external detectors and relative uncertainties – 

Fast neutrons counts and photons current 

 
Figure A.43. Database visualization: Complete and defect scenarios - Average in external detectors and relative uncertainties – 

Thermal and fast neutrons counts 
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Figure A.44. Database visualization: Defect 
scenarios - Average in external detectors - 

Thermal neutrons counts and photons current - 
Number of dummy pins 

 
Figure A.45. Database visualization: Defect scenarios – Average in 

external detectors - Thermal neutrons counts and photons current – Initial 
Enrichment and BurnUp 

 
Figure A.46. Database visualization: Defect 

scenarios – Average in external detectors - Fast 
neutrons counts and photons current - Number 

of dummy pins 

 
Figure A.47. Database visualization: Defect scenarios – Average in 

external detectors - Fast neutrons counts and photons current – Initial 
Enrichment and BurnUp 

 
Figure A.48. Database visualization: Defect 
scenarios – Average in external detectors - 

Thermal and fast neutrons counts - Number of 
dummy pins 

 
Figure A.49. Database visualization: Defect scenarios – Average in 

external detectors - Thermal and fast neutrons counts – Initial Enrichment 
and BurnUp 
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Figure A.50. Database visualization: Complete and defect scenarios - Average and relative standard deviation in external 

detectors - Thermal neutrons counts - Number of dummy pins 

 
Figure A.51. Database visualization: Complete and defect scenarios - Average and relative standard deviation in external 

detectors - Fast neutrons counts - Number of dummy pins 

 
Figure A.52. Database visualization: Complete and defect scenarios - Average and relative standard deviation in external 

detectors - Photons current - Number of dummy pins 
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Figure A.53. Database visualization: Complete and defect scenarios - Relative standard deviation of photons current in external 

detectors - Number of dummy pins 
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APPENDIX B: RESULTS 

In this section are reported the additional graphs related to the results of the machine learning models 
developed in this work, presented in Chapter 4. Specifically, the following graphs are presenting the delta 
extracted by each model, i.e., the difference between the predicted and the exact number of dummy pins, 
for each combination of input features investigated. The plots produced from the outcomes of the k-NN 
models are reported in the first part, while the second is dedicated to the outputs of the NN models. 

k-NN regression models 

Number of dummy pins 

 
Figure B.1. k-NN model Δ- Sum within central detectors for all combinations of kinds of detectors responses 

 
Figure B.2. k-NN model Δ- Sum within peripheral detectors for all combinations of kinds of detectors responses 
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Figure B.3. k-NN model Δ- Sum within external detectors for all combinations of kinds of detectors responses 

 
Figure B.4. k-NN model Δ- Sum within central and peripheral detectors for all combinations of kinds of detectors responses 

 
Figure B.5. k-NN model Δ- Sum within central and external detectors for all combinations of kinds of detectors responses 
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Figure B.654. k-NN model Δ- Sum within peripheral and external detectors for all combinations of kinds of detectors responses 

 
Figure B.755. k-NN model Δ- Sum within central, peripheral and external detectors for all combinations of kinds of detectors 

responses 

 
Figure B.8. k-NN model Δ- Ave&Std within central detectors for all combinations of kind of detectors responses 
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Figure B.9. k-NN model Δ - Ave&Std within peripheral detectors for all combinations of kinds of detectors responses 

 
Figure B.10. k-NN model Δ - Ave&Std within external detectors for all combinations of kinds of detectors responses 

 
Figure B.11. k-NN model Δ - Ave&Std within central and peripheral detectors for all combinations of kinds of detectors responses 
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Figure B.12. k-NN model Δ - Ave&Std within central and external peripheral detectors for all combinations of kinds of detectors 

responses 

 
Figure B.13. k-NN model Δ - Ave&Std within peripheral and external detectors for all combinations of kinds of detectors 

responses 

 
Figure B.14. k-NN model Δ – Single central detectors values for all combinations of kinds of detectors responses 
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Figure B.15. k-NN model Δ – Single peripheral detectors values for all combinations of kinds of detectors responses 

 
Figure B.16. k-NN model Δ – Single external detectors values for all combinations of kinds of detectors responses 

 
Figure B.17. k-NN model Δ – Single central and peripheral detectors values for all combinations of kinds of detectors responses 
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Figure B.18. k-NN model Δ – Single central and external detectors values for all combinations of kinds of detectors responses 

 
Figure B.19. k-NN model Δ – Single peripheral and external detectors values for all combinations of kinds of detectors responses 

 
Figure B.20. k-NN model Δ – Single central, peripheral and external detectors values for all combinations of kinds of detectors 

responses 
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NN regression models 

Number of dummy pins 

 
Figure B.21. NN model Δ - Sum within central detectors for all combinations of kinds of detectors responses 

 
Figure B.22. NN model Δ - Sum within peripheral detectors for all combinations of kinds of detectors responses 
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Figure B.23. NN model Δ - Sum within external detectors for all combinations of kinds of detectors responses 

 
Figure B.24. NN model Δ - Sum within central and peripheral detectors for all combinations of kinds of detectors responses 

 
Figure B.25. NN model Δ - Sum within central and external detectors for all combinations of kinds of detectors responses 
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Figure B.26. NN model Δ - Sum within peripheral and external detectors for all combinations of kinds of detectors responses 

 
Figure B.27. NN model Δ – Sum within central, peripheral and external detectors for all combinations of kinds of detectors 

responses 

 
Figure B.28. NN model Δ - Ave&Std within central detectors for all combinations of kinds of detectors responses 
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Figure B.29. NN model Δ - Ave&Std within peripheral detectors for all combinations of kinds of detectors responses 

 
Figure B.30. NN model Δ - Ave&Std within external detectors for all combinations of kinds of detectors responses 

 
Figure B.31. NN model Δ - Ave&Std within central and peripheral detectors for all combinations of kinds of detectors responses 
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Figure B.32. NN model Δ - Ave&Std within central and external detectors for all combinations of kinds of detectors responses 

 
Figure B.33. NN model Δ - Ave&Std within peripheral and external detectors for all combinations of kinds of detectors responses 

 
Figure B.34. NN model Δ - Single central detectors values for all combinations of kinds of detectors responses 
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Figure B.35. NN model Δ – Single peripheral detectors values for all combinations of kinds of detectors responses 

 
Figure B.36. NN model Δ – Single external detectors values for all combinations of kinds of detectors responses 

 
Figure B.37. NN model Δ - Single central and peripheral detectors values for all combinations of kinds of detectors responses 
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Figure B.38. NN model Δ - Single central and external detectors values for all combinations of kinds of detectors responses 

 
Figure B.39. NN model Δ - Single peripheral and external detectors values for all combinations of kinds of detectors responses 


