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Summary

In the recent past, the world population has faced a very difficult period due to a globally
widespread disease, known to all as COVID-19. This virus originated in China but then
spread rapidly throughout the rest of the world, arriving in Italy at the end of February
2020 which was the beginning of some terrible months: COVID-19 positive individuals in-
creased dramatically and hospitals, with their medical staff, had to endure unprecedented
stress, not to forget also the huge number of deaths this epidemic caused.
The government that was in charge at that time tried to limit the damage caused by
this epidemic with a series of interventions and restrictive measures which were absolutely
necessary to contain the spread of the virus, but on the other hand inevitably caused
a difficult economic crisis causing discontent among a large part of the population: this
is certainly a trouble, because the population is notoriously heterogeneous and it is not
always possible to predict everyone’s behavior and reactions. At the state of the art were
studied many epidemic models already before the spread of COVID-19, but very few of
these deal with the aspect of people’s behavior as a dynamic that influences the spread of
the epidemic.
This master’s thesis aims to design two new epidemic models that also consider the be-
havior of people, with the design of specific payoff functions for a decision-making process
based on game theory, in the first model to evaluate the choice of adopting self-protective
behaviors like social distancing or wearing protective mask, while in the second model a
decision on vaccination will also be added, which has been a delicate matter and discussed
among people for a long time.
Once this model has been created, it will be validated with a calibration of parameters
and a validation based on the real data of infected and dead COVID-19 collected in Italy
in recent years. After the validation of the model we will try to assess through a control
function new intervention policies by the government called NPI, or non-pharmaceutical
interventions, with the aim of obviously reducing the number of infections and deaths to
a minimum, being useful in the case of a future new pandemic that we all wish it would
never happen again.
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Chapter 1

Introduction

In several moments of history, humanity had to deal with epidemics. Just think at the
typhus that has decimated numerous armies over the years, including that of Napoleon;
the Spanish flu that killed about 50 millions people between 1918 and 1920; AIDS which
today has about 35 million victims. COVID-19 has recently joined this list; COVID-19 is
a disease caused by the coronavirus SARS-CoV-2.
This virus appeared for the first time in December 2019 in China and then spread around
the world [31]: even though, the exact origin of COVID-19 is not known, as well as it’s
not known who is the so-called "patient zero", i.e. the first individual infected ever.
On 31 December 2019, Chinese health authorities reported a cluster of pneumonia cases
of unknown etiology in the city of Wuhan (China) [10]. Many of the initial cases reported
a history of exposure to Wuhan’s South China Seafood City market, therefore a trans-
mission from live animals was suspected. People with this pneumonia often suffer from
flu-like symptoms such as dermatitis, fever, dry cough, fatigue, difficulty breathing. In
the most serious cases, often found in subjects already burdened by previous pathologies,
pneumonia develops, acute respiratory failure up to even death. Up to today, more than
6.5 million people have died due to COVID-19-related health problems worldwide [8], and
such a death toll is still growing.

The first signs of the spread of this virus in Italy [32] came on 30 January 2020, when
two Chinese tourists tested positive for SARS-CoV-2 in Rome. In the following weeks,
COVID-19 inevitably spread throughout the Italian peninsula, initially affecting the ar-
eas of northern Italy the most, as it’s shown in Figure 1.2, because they are denser in
population and with a climate perhaps more favorable to the spread of the virus than in
the areas of southern Italy.
In response of such health threat, on 4 March 2020 the Italian government ordered the
complete closure of all schools and universities of all levels at the national level, having
registered 100 deaths in the country due to the disease. On the evening of 9 March 2020,
during a live nationally televised press conference, the Italian prime minister Giuseppe
Conte [28] extended the quarantine ordering severe confinement measures for the popula-
tion, and the interruption of numerous productive, commercial and professional activities,
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Introduction

Figure 1.1. COVID-19 epidemic spread in China up to 31/01/2020, taken from [5]. We
can see in black the city of Wuhan, where COVID-19 is born at the end of 2019.

with the exception of the agri-food, health, essential services and other businesses supply-
ing basic necessities.

In Italy, as well as in the rest of the world, those months were difficult for the population
who necessarily has had to change their lifestyle and daily habits: just think of the huge
increase in workers confined to smart working at their homes, an activity that until then
had never been an option for most companies, or think about how quickly the use of
masks and hand sanitizing gels has spread, in fact almost every person did not leave the
house (when they could) without taking these items with them.
For many months there was a lockdown and most people were confined to their homes
to limit as much as possible contacts and consequentially the spread of infections. These
measures, unfortunately, made a large slice of the population unhappy, due to their social,
psychological and economical consequences. Such an impact on the population may also
reduce the effectiveness of such measures, since unhappy people may not comply with
them.
This is an important matter when dealing with a long lasting disease. In particular, if we
want to create a model able to capture all the dynamics involved in an epidemic spread,
we should not take only a purely epidemic point of view, but we should include in our
analysis the population’s behavior and mental health as a crucial component of the model.

The current literature on mathematical modeling of epidemic disease is rich in epidemic
pattern studies though adopting oversimplified behavioral response [19], limiting their
real-world applicability when long-lasting epidemic are concerned.
This research master thesis aims to fill in this gap by building on the work developed by Ye
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Introduction

Figure 1.2. Covid-19 epidemic spread in Italy up to 13/03/2020.

et al. in their paper named "Game-theoretic modeling of collective decision making during
epidemics" [39], which combines a game-theoretical behavioral decision process with an
epidemic analysis of a simple SIS model, which we are going to introduce in section 2.4.2.
The game-theoretical behavioral dynamic concerns the possibility for each individual to
adopt or not to adopt security measures, and it is linked to a specific payoff function
(see (3.5)) which groups several elements that influence people’s behavior, such as the
non-pharmaceutical interventions (NPIs) that the national authorities can apply in order
to reduce the spreading of the epidemics, such as lockdowns or other duties; this NPIs are
represented in [39] by the control function u(t).
Here, we expand on this work in several directions. First, we are going to extend their
basic model to capture COVID-19. Second, we will use the real data collected in [7] for
the COVID-19 pandemic in Italy starting from 4 February 2020 (therefore concerning
the first epidemic wave in Italy) to calibrate and validate the model. Third, we per-
form an extensive analysis of the effects of NPIs by performing campaign of Monte Carlo
simulations to highlight the impact of the control function u(t) on the epidemic spreading.

Then, further extensions are performed. In chapter 4 we will move to a more recent
time period, when the vaccine against COVID-19 was available and the vaccination cam-
paign started (i.e., we are talking about the first months of 2021 in Italy). We capture
this new element in our model by introducing a new decision-making process concerning
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the possibility for each individual to get vaccinated or not. To this aim, we implement a
new payoff function (4.1) with another control input concerning the vaccination campaign,
named uv(t).
A new model validation has been performed on the model with vaccine, similar to those
done for the first wave model.
Finally, the impact of the two (possibly related (4.7)) control functions u(t) and uv(t) is
extensively investigated, toward optimally design them.

In order to calibrate, validate and analyze our models we needed to perform several MAT-
LAB simulations, which can be found in the appendix A, at the end of this thesis. We
had to simulate numerous different trajectories because the epidemic dynamics that our
models describe are stochastic, therefore we calculated the average among many different
Monte Carlo simulations [30], in order to exclude anomalies due to noise and therefore
judge the results obtained as reliable.

The results of our studies could be of interest for researches, as well as for public health
authorities to help design effective intervention policies. In fact, our model calibrations
suggest that an epidemic model that explicitly incorporate human behavior is key to ac-
curately capture the evolution of an epidemic outbreak. Moreover, the promising results
obtained through the analysis of alternative of NPIs suggest that our framework can be
a useful supporting toolbox for public administrations for their decision-making.
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Chapter 2

Preliminaries

First of all, it may certainly be useful to start by introducing the basic concepts of game
theory, game over networks and epidemic models, necessary to better understand the
foundations on which our model is developed.

2.1 Basic Elements of Game Theory
We can start by considering a simple game [3] in which we have a finite set of players V
and a finite set of actions A. It is useful to introduce the notion of configuration vector
x ∈ AV which stores the actions chosen by each player; clearly, the vector x belong to the
configuration space X = AV .
Each player i ∈ V is equipped with a utility function ui (also called reward or payoff
function)

ui : X → R

that associates every configuration vector x in X with the utility ui(x) that player i gets
when each player j is playing action xj ∈ A (where xj is the j-th element of the vector
x); the utility function is a kind of mathematical quantification of a player’s happiness in
choosing action xi, knowing all the actions chosen by the other players.
In general, the image of function ui(x) can be the whole set of real numbers, but very often
we will find as image a more precise subset S ⊂ R, for example S = [0,1] or S = [−1,1].
We can also indicate as x−i the vector obtained from the configuration x by removing its
i-th entry (clearly, xi ∪ x−i = x). Given this, we can also rewrite

ui(x) = u(xi, x−i)

as the utility received by player i when she chooses to play action xi, and the rest of the
players choose to play x−i.
The triple

(V , A, {ui}i∈V)

will be referred to as a (strategic form) game [3].
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Every player i is to be interpreted as a rational agent choosing her action xi from the
action set A so as to maximize her own utility ui (xi, x−i). In consideration of the fact
that this utility depends not only on player i’s action xi but also on the actions of the rest
of the players’ actions x−i, it is natural to introduce the best response (BR) function

BRi (x−i) = argmax
xi∈A

ui (xi, x−i) .

Assuming that player i knows what the rest of the players’ actions are and that these are
not changing, choosing an action in BRi (x−i) is for her the rational choice as it makes
her utility as large as possible.
In game theory we often deal with the concept of Nash equilibrium: a (pure strategy)
Nash equilibrium (NE) for the game

!
V , A, {ui}i∈V

"
is an action configuration x∗ ∈ X

such that
x∗

i ∈ BRi (x−i) , ∀i ∈ V .

The Nash equilibrium x∗ is called strict if |BRi (x−i)| = 1 for every i.
The interpretation of a Nash equilibrium is the following: it is a configuration such that
no player has any incentive to unilaterally deviate from her current action, as the utility
she is getting with the current action is the best possible given the current actions chosen
by the other players. Note the emphasis on "unilaterally": it is not at all guaranteed that
coordinated deviations of more than one player from their actions in a Nash equilibrium
could not lead to a higher utility for these players. As we shall see, there are games with
multiple Nash equilibria and games which instead have none. We will denote by Neq the
set of NE of a game.

Instead of using the standard best response functions, some models use smoothed best
response functions [26], in which the function does not "jump" from one pure strategy
to another but the decision changes more continuously; In standard best response corre-
spondences, even the slightest benefit to one action will result in the individual playing
that action with probability 1, while with the smoothed best response approach the deci-
sion is more stochastic. There are many functions that represent smoothed best response
functions, most of them are of the form of:

e
ui(0,x−i)

γ

e
ui(0,x−i)

γ + e
ui(1,x−i)

γ

(2.1)

where again ui (xi, x−i) is the utility that player i has by choosing action xi (i.e. 0 or 1
in this case) while all the other players are choosing x−i, and γ is a scaling parameter.

2.1.1 Two-player games
The simplest examples of games are those with just two players V = {1, 2}, that are
referred to as two-player games. A two-player game [3] is simply characterized by two
utility functions ui(ai, aj), for i = 1, 2, with the understanding that ai is the action played
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2.1 – Basic Elements of Game Theory

by player i and aj the action played by his opponent j /= i.
An important special case is when

u1(a1, a2) = u2(a2, a1) = φ(a1, a2) = φ(a2, a1), a1, a2 ∈ A, (2.2)

which amounts to say that the role of the two players is exchangeable. A two-player
game satisfying (2.2) is referred to as symmetric; symmetric two-player games are indeed
characterized by a single utility function φ(ai, aj).
When the action set A is finite, the payoffs (or utilities) of a two-player game are usually
represented by a table called payoff matrix, whose rows and columns correspond to the
actions of player 1 and player 2 respectively.
Table 2.1 shows an example of a payoff matrix, when we have a symmetric two-player
game with (finite) action set A = {0,1}.

0 1
0 a,a d,c
1 c,d b,b

Table 2.1. Payoff matrix of a symmetric 2-player game with (finite) action set A = {0,1}.

2.1.2 The prisoner’s dilemma
The prisoner’s dilemma is a standard example of a (symmetric) game analyzed in game
theory that shows why two completely rational agents might not cooperate, even if it
appears that it is in their best interests to do so.
This dilemma [3] concerns two members of a criminal gang who are arrested and impris-
oned; each prisoner is in solitary confinement, not able to speak to or exchange messages
with the other. The police do not have enough evidence to convict the pair on the prin-
cipal charge but have evidence to convict them to b years in prison on a lesser charge.
Simultaneously, the police offer each prisoner an interesting bargain. Each prisoner is
given the opportunity either to: confess the other by testifying that she committed the
main crime (action 1), or to remain silent (action 0).
If we rename the two prisoners as A and B, the possible outcomes are [33]:

• If A and B each betray the other, each of them serves two years in prison.

• If A betrays B but B remains silent, A will be set free and B will serve three years
in prison.

• If A remains silent but B betrays A, A will serve three years in prison and B will be
set free.

• If A and B both remain silent, both of them will serve one year in prison (on the
lesser charge).
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The prisoner’s dilemma is therefore a symmetric 2×2-game with payoff matrix as in 2.1
whose entries satisfy the relation c > a > b > d.

Figure 2.1. Payoff matrix of the prisoner’s dilemma [33].

It is not hard to verify that the prisoner dilemma admits a unique (pure strategy) Nash
equilibrium (the configuration (1, 1), where the prisoners betray each other) and it’s also
clear that action 1 (betraying) dominates action 0 (remaining silent): no matter what the
other prisoner does betraying always guarantees a better payoff.
We can also observe that, on the other hand, if the prisoners could coordinate and remain
both silent then they would both get a better payoff than the one they get at the previous
Nash equilibrium (1, 1). The prisoner’s dilemma illustrates indeed that the decisions made
under collective rationality may not necessarily be the same as that made under individual
rationality.

2.1.3 Coordination game
A coordination game is a symmetric 2×2-game with payoff matrix as in 2.1 with a > c
and b > d. These two simple inequalities imply that the best response for each player is
to copy the action of the other player. Suppose we have the action set A = {0,1}, we will
have in formulas:

BR1(0) = BR2(0) = 0, BR1(1) = BR2(1) = 1.

It is very simple to verify that a 2×2-coordination game admits two Nash equilibria: the
two "consensus" configuration (0,0) and (1,1).

A classical example of a coordination game [27] is choosing the sides of the road on
which to drive: assume that two drivers meet on a narrow dirt road and obviously both
have to swerve in order to avoid a collision. If both execute the same swerving maneuver
(i.e. both go right or both go left) they will manage to pass each other safely, but if they
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choose different maneuvers they will collide.
In this case there are two pure Nash equilibria: either both swerve to the left, or both
swerve to the right.

2.2 Basic elements of graph theory
Graphs are mathematical structures used to model pairwise relations between agents
(which can be objects, people, etc); they are made up of vertices (also called nodes)
connected by edges (also called links).
More formally [3], a graph G is triple G = (V , E , W) where:

• V is the set of vertices. We usually define the number of vertices n = |V| as the
order of the graph.

• E ⊆ {(x, y)|x, y ∈ V , x /= y} is the set of edges. Each edge is usually an ordered pair
of nodes, with the second one (i.e. y in the case of the edge (x, y)) called the end
point of the edge.

• W ∈ RV×V
+ is the weight matrix, which has Wx,y > 0 if and only if (x, y) is a link of

the graph.

Figure 2.2. An example of a weighted and directed graph where edges of weight 1 are
drawn in grey and edges of weight 2 are drawn in black. [3]

Depending on its characteristics a graph can also be:

• Unweighted if

Wx,y =
I

1, if (x, y) ∈ E
0, otherwise
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In this case we can describe the graph only as the pair G = (V , E), and W is called
adjacency matrix.

• Undirected if W = W ′, i.e. if the weight matrix is symmetric.

• Simple if it is both unweighted and undirected, and furthermore the weight matrix
(or adjacency matrix) W is zero-diagonal, meaning that the graph has no self-loops.

Figure 2.3. An example of a simple graph (unweighted and undirected) [29].

Another useful definition is the neighborhood Ni of a node i as the set of nodes di-
rectly linked to i with an edge. In a directed graph, we use to differentiate between
in-neighborhood and out-neighborhood, depending on the position of the node i (end-point
and starting-point of the edge respectively).
Assuming to have an unweighted graph, if we count the number of link starting or ending
in each node, we obtain respectively the out-degree wout

i and the in-degree win
i :

wout
i =

Ø
j∈V

Wij , win
i =

Ø
j∈V

Wji. (2.3)

It is quite easy to verify that for an undirected graph the two quantities in 2.3 are the
same (i.e. the graph is balanced) and we can define in a natural way the degree of a node
i as wi = wout

i = win
i .

For example, the vertices of the unweighted and undirected graph in 2.3 has:

w1 = 2, w2 = 2, w3 = 3, w4 = 4, w5 = 2, w6 = 1.

2.2.1 Some examples: cycle and ring lattice
A simple graph with n vertices and whose edges form a polygon is called cycle(n).

In a cycle every node has the same degree, equal to 2 (i.e. |Ni| = 2, where Ni is the
neighborhood of a node i in an undirected graph), because the edges link each vertex to
its nearest vertices, one from the left and the other one from the right. But what happens
if we want to link each node not only yo the first nearest vertex, but also to the second
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Figure 2.4. A cycle with n = 6 nodes.

one, to the third one, and so on?
In that case, we obtain a ring lattice. This type of graph is similar to the cycle but each
node is linked with an edge to its k (constant for every node) nearest vertices, such that
k
2 are on its left and the other k

2 are on its right. Furthermore, also in this graph each
node has the same degree, equal to k.

Figure 2.5. A ring lattice with n = 10 and k = 4 nodes [20].

2.2.2 Watts-Strogatz graph
The Watts–Strogatz model [38] is a random graph generation model [36], meaning that
we have a probability distribution over a graph, or a random process used to generate the
graph.
The Watts-Strogatz graph depends on 3 parameters:

• The number of nodes n;
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• The mean degree k (more often an even integer) satisfying n ≫ k ≫ ln(n) ≫ 1;

• A parameter β satisfying β ∈ [0,1].

The model constructs an undirected graph with n nodes and nk
2 edges, in two steps:

1. Construct a regular ring lattice with n nodes, each one connected to the nearest k
neighbors, k

2 on each side.

2. Once the first step is done, we take every edge and we change it with probability β,
making it connect two different nodes than before.

This type of graph is particularly useful when we want to represent a social network
community, in fact it is quite clustered [38], that is each node (person) is linked with the
majority of his neighbor nodes in the ring lattice, as well as a person is linked with her
family or friends. Clearly, there is always some "unusual" link, maybe some far friend
known during summer, or at the university, or anything else.

2.2.3 Time-varying network
A temporal network [37], also known as a time-varying network, is a network whose
links are active only at certain points in time and each link carries information on when
it is active; Time-varying networks are of particular relevance to spreading processes, like
the spread of information and disease, since each link is a contact opportunity that an
individual has at a certain time instant t.
One of the common representations for time-varying network data is denoted as "contact
sequences": if the duration of interactions are negligible, the network can be represented
as a set C of contacts (i, j, t) where i and j are the nodes and t the time instant when the
interaction occurs; Alternatively, it can be also represented as an edge list E where each
edge e is a pair of nodes and has a set of active times tedge = {t1, t2, . . . , tT }, where T is
the time horizon of interest, i.e. the very last time step in which the network is analyzed.
A social network can be seen in some way as a time-varying complete network (i.e. a
network induced by a complete graph) where each link e between two individuals switches
on only in the time instants stored in tedge, but if we change for a second our point of
view, we may also imagine it as a graph with a fixed set of nodes V (i.e. individuals) and
a set of edges E (i.e. the physical or sociological interactions between pairs) varying at
every time instant t. We can see an example in figure 2.6

In a time-varying network some edges (but not everyone) may of course be always activated
or always not, meaning that they never change in time: this will be the case of the contact
layer [39], which we are going to introduce in the next chapter, which describes the
physical contacts happening between pair of individuals among all the population at each
time instant t; in our contact layer some links will be fixed, describing for example the
interactions one has with her family, colleagues or close friends every day, while other
links will be changing at every time instant t in order to capture the occasional contacts
one may have during the day, for example in the elevator or at the supermarket.
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Figure 2.6. An example of time varying network for T = 3 with a fixed set of nodes
V = {1,2,3,4} and a varying set of edges.

2.3 Network games
In these type of games players are represented as vertices of a graph G = (V , E) and their
utility functions depend only on their own and their out-neighbors’ actions (or simpler
neighbors, if we suppose to have an undirected graph).
Formally [3], a G-game (i.e. a network game over the graph G) is any triple (V , A, {ui}i∈V)
whose utilities satisfy the following property: for any player i ∈ V and any configurations
x, y ∈ AV such that xj = yj , ∀j ∈ Ni ∪ i, it holds that:

ui(x) = ui(y)

We can easily define the network game (V , A, {ui}i∈V) over G by setting the utility of
every player i ∈ V as the weighted sum of the utilities of the various two-player games
that i is playing with his neighbors:

ui(x) :=
Ø

j

Wijφ
(i,j)(xi, xj) (2.4)

If we have an unweighted graph, the formula (2.4) changes easily in

ui(x) :=
Ø

j

φ(i,j)(xi, xj).

2.3.1 Network games with binary actions: network coordination
game

A simple case of network game is when the action set is A = {0,1}, for example "to buy
or not to buy", "to do or not to do", or something similar.
For the sake of simplicity, we can assume that the graph over which we have a network
game is undirected and unweighted (it is quite easy to extend this type of game over a
more complicate graph), and that the interaction utility function is the same on every
edge:

φ(i,j) = φ, ∀(i, j) ∈ E .
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A very popular example is the so called network coordination game (or majority game)
[3]: consider an unweighted graph G = (V , E , W) and the interaction utility function:

φ(i, j) =
I

1, if xi = xj

0, if xi /= xj

while the utility function for the player i (i.e. for the i-th node) in the configuration action
x is simply given by the number of his neighbors playing his same action:

ui(x) =
Ø

j∈Ni

φ(i, j).

where Ni is the set of neighbors of node i.
It is clear that in this type of game one individual (i.e. one node of the graph) aims to
assume the same choice as the majority of her neighbors; for example, her neighbors could
be her family or her friends, and we can think about the choice as a political thought,
religion, or the simpler choice about where to go on holidays.
Given these information we can easily notice that the "consensus" configurations are Nash
equilibria, such as the coordination game, but they are not the only, as it’s shown in 2.7,
where the 4 nodes of a cycle can be red (action 0) or blue (action 1).

Figure 2.7. The majority coordination game on a cycle graph with n = 4
nodes has 6 Nash equilibria [3].
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2.4 Epidemic models

2.4.1 Discrete-time Markov chains
Let us start with a motivating example. Imagine to be a gambler who wants to bet 1
euro on the roll of a regular 6-sided dice: if you win, you gain 1 euro, while at the same
time if you lose you lose 1 euro. We are aware that this is not an advantageous game for
the gambler, because he will win one single dice roll with probability p = 1

6 and lose with
probability q = 1 − p = 5

6 .
Suppose the gambler starts the game with a budget of k euro, and he left the game only
when he reaches the amount of n euro (obviously n > k) or when he losees everything,
remaining with 0 euro. We can visualize this game as a random walk over a directed
graph, exactly like in 2.8.

Figure 2.8. The gambler’s capital can be represented as a random walk
on the directed graph above [3].

The gambler game is a very simple example of a discrete-time Markov chain, that is,
once we have a state space properly defined, a discrete-time process over a directed graph
(also called chain) having the Markov property, which we will discuss in a while.

Given a weighted directed graph G = (V , E , W), imagine you are able to move from
one of its nodes to another: each time step t you randomly choose the next node to
move to among the out-neighbors of the current node with probability proportional to the
weight of the edge pointing from the current node to next one.
Formally [3], what we are describing is a discrete-time stochastic process X(t), t = 0, 1, . . . ,
with state space X coinciding with the vertices set V of the graph G.
The state space is such that, for any states i and j in X :

P (X(t + 1) = j|X(0) = i0, X(1) = i1, . . . , X(t − 1) = it−1, X(t) = it) = Pit,j (2.5)

where P = D−1W is the normalized weight matrix of the graph G.
Equation (2.5) states that the future state X(t + 1) = j is completely independent from
the past history of the stochastic process, when conditioned to the present state X(t) = it.
The property we have just stated, i.e. the fact that the dependence of the future state is
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limited to the present state is known as the Markov property, and the stochastic process
X(t) is usually referred to as a discrete-time Markov chain with transition probability
matrix P .
In fact, a discrete-time Markov chain X(t) with finite state space X can be associated with
a stochastic matrix P , i.e. a non-negative square matrix whose entries are labeled by the
corresponding elements of X and whose rows all sum up to 1, and an initial probability
distribution π(0), i.e. a probability vector whose entries correspond to the elements of X
such that

P(X0 = i) = πi(0), ∀i ∈ X .

On the other hand, we can also notice that a stochastic matrix P can always be interpreted
as the normalized weight matrix of some (in general, weighted and directed) graph. To do
that, it is sufficient to consider the graph GP = (V , E , P ) whose node set V = X coincides
with the state space, whose link set E consists of the pairs of nodes (i, j) ∈ V × V for
which Pij > 0, and whose weight matrix coincides with matrix P. The graph GP is usually
referred to as the normal graph associated to the matrix P.

2.4.2 SI and SIS models
In this thesis we will consider epidemic models in a discrete time implementation, mean-
ing that at every discrete time instant t one individual has a specific probability to move
from one (health) state to another, because they are predisposed to be studied through
simulations.

The SI model is the simplest example of a pairwise interacting network system, meaning
that his dynamic and the epidemic diffusion spreads due to the interaction (say contact)
between pairs of individuals. In the SI epidemic model the state space for each individ-
ual is X = {S, I}, i.e. each individual can be Susceptible or Infected, meaning that the
global state space is X V = {S, I}V ; supposing that there is no spontaneous mutation, a
susceptible can change her state only by having a contact with an infected. At every time
step, each individual susceptible, for every contact with an infected, has a probability
λ ∈ (0,1], to become infected herself. With this type of model, it’s very easy to notice
that the whole population is going to become infected, soon or later, that is:

lim
t→+∞

S(t) = 0, lim
t→+∞

I(t) = n.

where we call S(t) and I(t) respectively the number of people susceptible and infected,
and n the size of the population.

If we introduce the possibility for an individual in state I to recover, and thus come
back spontaneously in state S with a probability µ ∈ (0,1] every time step, we obtain the
SIS model like figure 2.9. Since we are in a discrete time Markov chain setting, we have
to say that both λ and µ are independent from the story past and also independent from
one individual to another. Furthermore, we must differentiate the two probabilities: λ is
a per-contact probability, that is a susceptible individual who interacts with an infected
one has probability λ to become infected, while µ is the probability for each infected to
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re-become susceptible at every time step.
One of the modeling limitations of the SIS model is that we don’t have "immune" people,
meaning that one can get infected infinitely many times. This trouble make us thinking
about introducing a new (absorbing, i.e. a state from which nobody can move, no matter
when) state R for the recovered people.

Figure 2.9. The state transition graph a single individual in the SIS model.

2.4.3 SIR model
In the SIR model (Susceptible-Infected-Recovered) epidemics, nodes can be in one of
three possible states: susceptible (S), infected (I), or recovered (R), so that X = {S, I, R}
(sometimes the notation X = {0,1,2} is used [3]). Exactly as in the SI and in the SIS
epidemic models, also in the SIR epidemics infected nodes j may infect their susceptible
neighbors i every time step independently with probability λ. On the other hand, infected
nodes spontaneously recover independently every time step with probability µ, similarly
to the SIS epidemics, with the crucial difference that recovered nodes are not susceptible
anymore but rather remain in state R ever after; λ and µ are again supposed to be
independent from the story past and from one individual to another.
In general we will refer to the health status of an individual i as Xi(t) ∈ {S, I, R}, while
S(t), I(t) and R(t) are the total number of people susceptible, infected or recovered
respectively. The dynamics described above induce Markov chains for the stochastic
processes S(t), I(t) and R(t), in which individual transitions are represented in figure ??.

Figure 2.10. The state transition graph for a single individual in a simple SIR model.
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Again, just like the SI model and provided that λ, µ > 0, if we try to calculate the limit
for t that goes to infinity we will find that all the population n is grouped in a single state
R, that is the absorbent one:

lim
t→+∞

S(t) = 0, lim
t→+∞

I(t) = 0, lim
t→+∞

R(t) = n.

where R(t) is the number of people recovered at time t.
More details on epidemic models can be found in the following survey papers [40].
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Chapter 3

First wave model

The research community has been studying the spread of an epidemic for a long time, and
never before has interest in this area been so high as in recent years, due to the outbreak
of the COVID-19 pandemic; the years during the COVID-19 have been really hard for
most people, and health authorities have always tried by every means to intensify adver-
tising campaigns in order to sensitize the population in the adoption of prudent behaviors
to limit the spread of infections, such as for example wear a protective mask, disinfect
your hands often and avoid unnecessary physical interactions with strangers as much as
possible. However, classical mathematical epidemic models often consider oversimplified
behavioral response [19]; to fill in this gap, awareness-based models have been proposed in
the last decade [12, 21, 24, 23], in which the epidemic process co-evolves with the spread
of the awareness of the outbreak. While these models have demonstrated effectiveness
in capturing the early stage of the pandemic they are limited because they assume fully
rational and purely instantaneous decision making in the population. Such models there-
fore fail to capture the very range of factors that affect real-world behavioral responses
over the whole course of an epidemic, such as social influence from parents and neighbors,
perceived infection risk, accumulating frustration and socioeconomic costs, and last but
not least the impact of government interventions; what can we do in order to capture also
this very important aspect?

The model introduced by Ye et al. in their paper "Game-theoretic modeling of collec-
tive decision making during epidemics" [39] aims to capture the individual responses and
time-varying contagion patterns, whose co-evolution collectively shapes the epidemic out-
break; their study takes into account most salient factors that each individual trades off
when deciding their time-varying behavioral response to an ongoing epidemic.
The approach used in [39], like the title suggests, is to apply game theory for modeling
human behavior, i.e. the decision whether to be prudent wearing the mask and isolating
themselves or not. In [39], the authors proposed their game-theoretic framework coupled
with a simplistic SIS model; here, we extend such a framework toward capturing real-
world epidemics. Specifically, we will adapt it to the COVID-19 disease, fitting the model
with the real data captured in Italy during such pandemic.
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3.1 The original behavioral-epidemic model
Assume to have a population V of size n, where each individual i ∈ V is characterized
by a two-dimensional variable (Xi(t), Yi(t)) [39], which models their social behavior and
health state at the discrete time t ∈ N+, respectively.
The social behavior of individual i ∈ V is captured by the binary variable Xi(t) ∈ {0, 1},
which describes whether individual i adopts self-protective behaviors (Xi(t) = 1), or not
(Xi(t) = 0).
The health state Yi(t) also takes values in a discrete set Y , for example we can have
Y = {S, I} in the SIS epidemic process introduced section 2.4.2. Furthermore, a global
observable Z(t) quantifies the spread of the epidemic at time t, in formula

Z(t) := 1
n

|{i : Yi(t) = I}|,

counting the fraction of the whole population being infected at time t.
The decision making and disease spreading in the population coevolve, mutually influenc-
ing each other on a two-layered network G = (V , EI , EC(t)), as schematized in 3.1.

Figure 3.1. Schematic of the co-evolutionary paradigm, taken from [39].

The set of undirected links EI defines the static influence layer, composed for example by
the people in their life that have strong social influence on their decision-making processes,
like parents, other relatives or close friends. The contact layer EC is defined instead
through a time-varying set of undirected links, which represent the people with whom
one individual has physical contacts at a given time step t: this layer is very important
because the contacts between pairs of people are the avenues for the transmission of the
disease. In [39], the contact layer is created completely at random, while in this thesis
it is thought as an extension of the influence layer: it sounds natural indeed that most
of the physical contact an individual has during the day are the ones with her relatives,
especially during a lockdown due to the epidemic.
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3.1 – The original behavioral-epidemic model

3.1.1 Behavioral decision-making process
At each discrete time step t, every individual i ∈ V enacts a decision-making process
on the adoption of self-protective behaviors and measures, according to an evolutionary
mechanism based on game theory. Two payoff functions (or utility functions) were defined,
π0

i (t) and π1
i which represent a good mix of sociological, psychological, economic, and

personal benefits received by individual i for enacting behaviors Xi(t) = 0 or Xi(t) = 1
at time t, respectively. In [39] these payoff functions are defined as:

π0
i (t) := 1

di

Ø
j:(i,j)∈EI

[1 − Xj(t)] − u(t), (3.1)

π1
i (t) := 1

di

Ø
j:(i,j)∈EI

Xj(t) + r(Z(t)) − fi(t), (3.2)

where di = |{j : (i, j) ∈ EI | is the degree of node i on the undirected graph representing
the influence layer. The two functions in (3.1) and (3.2) contain some interesting terms:

• The first term in (3.1) and (3.2) (i.e. the summation weighted by the node degree
di) is the so-called social influence inspired by network coordination games [3, 27]
discussed in section 2.3.1; this term captures the social influence that arises from
the neighbors of individual i, giving her the desire to coordinate her behavior with
them. Since Xj(t) can assume only the binary values 1 or 0 (i.e. to behave prudent
or not), this mathematical formulation allow us to say that as more of the neighbors
of individual i adopt self-protection or do not adopt self-protection, then individual
i also has more incentive to adopt or not.

• The risk perception function r(Z(t)) : [0,1] → R+ is a monotonically non-decreasing
function of the detectable prevalence Z(t) (i.e. the percentage of the population in-
fected at time t). Here, we assume that the risk perception function is linear in the
prevalence, that is r(Z(t)) = kZ, with a scaling factor k > 0; the larger k, the faster
is the population to react to an outbreak.

• The frustration function fi(t) quantifies in some way the cost of long term self-
protective behaviors for individual i: adopting self-protections could indeed be source
of frustration if it is done for a long time, introducing the risk that people refuse to
continue behaving in a prudent way, for example by wearing mask or by maintaining
social distances. The frustration function in formula is:

fi(t) = c +
tØ

s=1
γscXi(t − s), (3.3)

where c ≥ 0 quantifies the social, economic and psychological immediate cost for
individual i in adopting self-protective measures, due to the inability to socialize,
work from the office, or anything else; another parameter γ ∈ [0, 1] is the accumula-
tion factor: the more γ increases, the more impact on the payoff of all past decisions
increases, reflecting the accumulating nature of fatigue, stress, and economic losses
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in each individual.
In general both c and γ could be heterogeneous, say different from one individual to
another, but for simplicity we assume from now on that the whole population has
the same immediate cost c and accumulation factor γ.

• The last term in (3.1) is the quantification of policy interventions, that is all
the laws and restrictions (see lockdowns or advertising campaigns for the awareness
of the population in wearing the protective face mask) the government applies in
order to reduce physical interactions between people during the epidemic spread and
discouraging dangerous behaviors. The function u(t), also called non-pharmaceutical
interventions (NPIs), is a time-varying function reasonably thought as piecewise
constant, and it will be a crucial element in the next pages of this thesis, because
it is properly an element thanks to which we can apply control over the epidemic
model. Later, we will try to optimize this function in order to reduce the epidemic
spread and people deaths.

The decision process is stochastic rather than deterministic, therefore individual i adopts
self-protective behaviors (i.e. Xi(t + 1) = 1) with a probability equal to

P(Xi(t + 1) = 1) = eβπ1
i (t)

eβπ0
i (t) + eβπ1

i (t) (3.4)

where the parameter β ∈ [0, +∞] measures individual’s rationality in the decision-making
process. In [39] is assumed that β is homogeneous among all individuals, but (3.4) could
be easily generalized using heterogeneous βi. Anyway, in this thesis has been set a com-
mon level of rationality β = 6 for the whole population, which captures a moderate level
of rationality so that individuals tend to maximize their payoff, but still having a small
but non-negligible probability of choosing the action with the lower payoff. Finally we
can notice that if β = 0, then individuals make decisions uniformly at random, while on
the other hand if β → +∞ individuals always chose the behavior with highest payoff, no
matter how much is the lower payoff.

In order to simplify the model, we implemented a new payoff function Πi(t) for in-
dividual i as the difference between π1

i (t) and π0
i (t) (in (3.2) and (3.1)), so that at every

time step t we have the following payoff function for the game-based decision on the
adoption of self-protective behavior for individual i:

Πi(t) = π1
i (t) − π0

i (t) =

= 1
di

Ø
j:(i,j)∈EI

Xj(t) + r(Z(t)) − fi(t) −

 1
di

Ø
j:(i,j)∈EI

[1 − Xj(t)] − u(t)

 =

= #1
i − #0

i

di
+ r(Z(t)) − fi(t) + u(t) =

= #1
i − #0

i

di
+ kZ(t) − c

A
1 +

tØ
s=1

γsxi(t − s)
B

+ u(t), ∀i = 1,2, . . . , n. (3.5)
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where #1
i and #0

i are respectively the number of node i’s neighbors adopting or not
adopting self-protective measures, and di is the degree of node i in the influence layer.
We could have had a deterministic and simpler decision if we had assumed that individual i
at time t would choose action 1, hence having Xi(t) = 1, if Πi(t) ≥ 0 (i.e. if π1

i (t) ≥ π0
i (t))

and would choose action 0 otherwise. Anyway, this decision process is too simple and
doesn’t reflect the real behavior of people, who very often don’t act in a perfectly rational
and schematic way; it is surely better to implement a probabilistic decision like in [39],
but since we have only one payoff function, the stochastic decision becomes more easily:

P(Xi(t + 1) = 1) = eβΠi(t)

1 + eβΠi(t)
(3.6)

3.1.2 Epidemic dynamics
Concurrently with the behavioral decision, at each time step t, every individual i ∈ V that
does not adopt self-protections and is susceptible (i.e., Xi(t) = 0 and Yi(t) = S = 0) and
gets in contact with an infected individual j (Yj(t) = I = 1), has a per-contact infection
probability λ ∈ [0, 1]. Obviously the more physical contacts (denoted by ni(t)) individual
i has at time t, the higher is her total infection probability λi(t).
Individuals who adopt self-protective behaviors have a decreased probability to be infected;
we capture this by introducing a parameter σ ∈ [0, 1], representing the effectiveness of
self-protective behaviors in preventing contagion, assuming on the other hand that the
adoption of self-protection does not affect the individual’s probability of transmitting the
disease. Hence, the contagion probability for a susceptible individual i ∈ V as function of
time is:

P(Yi(t + 1) = I|Yi(t) = S) = (1 − σXi(t))(1 − (1 − λ)ni(t)) (3.7)

where ni(t) = |{j ∈ V : (i, j) ∈ EC(t), Yj(t) = I}| is the number of infectious physical
contacts of node i at time t.
Exactly like the SIS model, at every time step t each infected individual i recovers with
probability µ ∈ (0, 1], becoming susceptible again to the disease, that is:

P(Yi(t + 1) = S|Yi(t) = I) = µ.

In this thesis, we’ve introduced also the Death state D (an obviously absorbing state,
corresponding to a kind of Recover state in a SIR model), since during COVID-19 one of
the main focus was on the mortality of this virus, especially in weak people. The death
probability for an individual i infected at every time step t is δ, i.e.:

P(Yi(t + 1) = D|Yi(t) = I) = δ.

3.2 Model calibration and validation
The first goal of this thesis is to properly extend the modeling framework in [39] adapting
it to the COVID-19 epidemic in Italy during the months of the first wave, that is, from
the end of February 2020. In order to pursue this, we collected the real data of officially
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reported cases and fatalities stored in the GitHub database [7] owning to the Presidency
of the Council of Ministers - Department of Civil Protection.
The database collects data on COVID-19 in Italy from February 24, 2020, and it stores
several useful data like the total number of positive cases, the number of daily swabs, how
many hospitalized people, the number of daily deaths, and many other; what is interesting
for our analysis is obviously the cumulative number of deaths and the daily total number
of people positive to covid-19.
Since the database collects daily data, we will discretize time by setting a time step equal
to 1 day to easily simulate the epidemic dynamics with our model. Furthermore, it’s not
difficult to understand that for a common portable computer it would be an infeasible
effort to simulate a model by considering a population of about 60 million people like Italy
is; for this reason, we have scaled down the population to n = 1000.

The first thing we need is an undirected graph called influence layer EI modeling the
strong connections between very close people: family, partner, close friends, schoolmates
or colleague. The influence layer EI is assumed to be fixed during the entire the time
horizon, and this is a fairy assumption because in those days of early pandemic people
used to be close to the same few people.
Trying to represent the real world more faithfully as possible we have created the influence
layer by using a very useful function [16] for creating a Watts-Strogatz graph, introduced
in 2.2.2, with n = 1000 nodes, kEI

= 5 edges on each side of the nodes (meaning that, be-
fore applying a shuffling of the arcs thanks to the parameter β, every node has 2kEI

= 10
neighbors, corresponding to their family components or close friends) and the parameter
β = 0.15 which is the probability for every link to be changed and replaced with another
one completely at random. The influence layer EI is fixed at the beginning and never
change in time, reasonably corresponding to reality, just think of the lockdown periods in
which the people we interacted with were practically always the same.

We need to put attention also to the creation of the contact layer EC . According to
the study in [17], almost half of the contacts one individual has in a day happen at home,
at school or at work; the other half is composed by temporary and unusual contacts, for
example at the supermarket, in the elevator or while we are on the public transport.
Consistently, we create a contact layer where the first half is exactly the influence layer
EI , and the second half is chosen completely at random, with no restrictions other than
that of having no self-loops; this means that, even if the probability of this event is quite
low, some of the random contacts created in the second half of the contact layer may be
the same of the influence layer EI , so that they are already existing in the first half of the
contact layer EC . This is not a problem for us: we could have avoided this possibility by
inserting specific constraints, but thinking more deeply it’s quite reasonable that a par-
ticular interaction between two people (for example boyfriend and girlfriend) is stronger
than others had during the same day, or it is also possible to have contact twice with the
same friend, in fact this kind of contact layer is such that those stronger links are doubled
and have the double contagion probability for the two individuals included. With this
kind of contact layer, each individual has 20 physical contacts during one single day (if
instead some links are doubled, i.e. made stronger, the degree of that node decreases,
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but this happens quite rarely), and this is in perfect agreement with the study conducted
in [17], where an heterogeneous sample of Italian people results to have on average 19.77
contacts per day.
While the influence layer (and so the first half of the contact layer) is fixed, the second
half the contact layer EC is instead varying in time since it represents the physical contacts
one individual has within 24 hours, hence we simulate it at every time t; the contact layer
should indeed be indicated as EC(t), because it is a time-varying network (2.2.3) different
from one time instant t to another.

3.2.1 Parameters setting
In order to validate our model, we need to think about some parameters to ensure that the
model reflects the true trend of the epidemic; we have three kind of parameters: setting
parameters, epidemic parameters, behavioral parameters.
Let’s start with the setting parameters, useful to bring the model closer to reality, making
it comparable in terms of proportions and dates:

• We set the size of population to n = 1000, which is a good tradeoff between sample
size and computational effort, making the simulation times quite bearable. For the
calculation we have considered an approximation of 60 million as the population size
of Italy, even if it isn’t obviously the exact number, since this is varying day after
day.

• The time horizon T has been set equal to 100 days: this is of course a choice
dictated by the need to obtain simulations in a reasonable computational time, but
not only, because if we count one hundred days from February 24, 2020, we arrive
until the first days of June 2020, just before the beginning of summer. For those
who remember that summer, it was the first after months of lockdown and the vast
majority of people (and locals) were fed up with the restrictions, and tried to fully
enjoy the hottest months of the year on the beach with friends: the infections during
that period were really much lower than the previous spring (and above all also
compared to the autumn 2020 that was about to arrive), both because with the
warmer climate the virus struggled to spread, and because during the summer many
people did not they did swabs despite developing COVID-19 symptoms, to avoid
having to do a quarantine that deprived them of going out. For this reason, the data
collected relating to positive cases during the summer could be underestimated, or
in any case altered, and we therefore decided to set a time horizon of T = 100 days.
In further applications described in the following of this thesis (chapter 4), we will
consider longer time horizon.

• The detection rate DR indicates the fraction of positive people founded thanks
to the pharmaceutical swabs: during the first wave of pandemic, the swabs were
available in very poor quantities, and this is why most of the infected weren’t detected
and didn’t contribute to the stored data in [7]. The study in [2] suggests that the
detection rate in Italy during the first wave was about 0.07 (i.e. 7%), that is a
very little part of the effective infected were detected; in those months, during the
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first epidemic wave in Italy, the swabs availability as well as their price was a big
problem, this is why very few people had a swab when they felt sick and manifested
symptoms.

• Even the detection delay (DD) is related to the difficulty in the detection of the
positive cases of COVID-19: it is not a percentage, but an absolute number that
indicates how many days passed on average from the positivity of a certain infected
individual, with the consequent possibility of infecting his contacts, to the actual
ascertainment of his positivity through the result of a swab. In [2] we can read that
the DD in Italy during the very first months of pandemic was about 2 weeks: this
is consistent if we think that in those months, when an individual became infected,
perhaps a few days passed before the first symptoms appeared, then it was necessary
to call the pharmacy to book a tampon that was carried out in the following days
based on availability, and also to to receive the result of the swab (and therefore the
notification of the actual positivity) it was necessary to wait further at least another
2-3 days. In line with this data, we have set a detection delay DD = 14 days.

Let’s have a look at the epidemic parameters:

• The per-contact infection probability λ means that one individual susceptible (i.e.
in state S) has probability λ to become infected (i.e. to move in the state I) for each
physical contact with another infected individual, which we can see thanks to the
contact layer.

• The external infection probability λ̄ represents the probability of an infection
due to something that is not directly contact, such as when we enter an empty
elevator but in which dozens of people have just gone who may have left traces of
the virus, or, if we think of our population as a small village of n = 1000 people,
the fact that an individual leaves the village and comes into contact with someone
from outside or from a foreigner; this probability, in addition to finding confirmation
in what happens in the real world, is also fundamental from a purely modeling
point of view because it guarantees us that the epidemic never dies, especially in
the very first moments of time where the "patient zero", or the first individual to
be infected (which is our initial condition), she could recover or die before having
infected another person, thus immediately stopping the epidemic and making our
analysis useless. For this reason, we set this non-zero probability to a reasonable
value of λ̄ = 1

n .

• The recovery probability µ is the probability for an infected individual to recover,
i.e. to move out from state I at every time instant t, exactly like in the SIS model
and SIR model (sections 2.4.2 and 2.4.3 respectively). In practice, this probability
can’t be evaluated directly, but we can though estimate it by considering the inverse
of the mean number of days that one individual remains infected ( 1

µ) [18].

• The death probability δ is the probability for an infected individual to die at every
time instant t, as the name clearly suggests. For obvious reasons this probability
assumes a key role in the lethality of a disease, and unluckily it was very high during
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the first wave of covid-19, especially because it was not yet well known how to cure
this disease and also because of the inadequacy of health facilities not yet ready to
accommodate huge numbers of patients in intensive care. The death probability δ is
applied not directly in the state I, but instead when an individual infected recovers:
when individual i move out from stat I, meaning that she is no more infected, she
can recover or die, and this split (see fig 3.2) is governed by the death probability δ.

• In some extensions of SIR model, there is the possibility for an individual recovered
(i.e. in state R) to become again susceptible: this is the unimmunization prob-
ability φ. During the first T = 100 days of pandemic in Italy, almost nobody got
infected twice, hence we can set φ = 0 for our first model, but we will need φ in
chapter 4.

Figure 3.2. Discrete-time Markov chain for individual i’s health at every time step t.
S: susceptible, I: infected, R: recovered, D: dead.

At the end we must introduce the behavioral parameters, most of which we are going to
optimally calibrate in order to validate the model:

• The effectiveness of self-protective behavior σ is a crucial parameter; in fact,
not all the people wear protective masks, or not correctly, furthermore maybe when
one individual who thinks to behave prudent meets her friend can’t resist to hug her
and in doing so, social distancing is lost, this is why we think that a middle value of
σ = 0.5 may be appropriate for the model.

• The people rationality in the decision-making process has been introduced as β ∈
[0, +∞] in equation (3.4), and according to [39] we can set a quite rational value of
β = 6 for every individual i.

• The social, psychological and economic immediate cost c ≥ 0 for individual i in
adopting self-protective measures. This parameters appears twice in equation (3.3)
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and finds a direct bond with reality: just think of when we are annoyed at always
having to wear a mask with us when we leave the house, or the annoyance of having
to cancel participation in a social event, or more concretely also the cost that a
shopkeeper has in having to close his shop due to of the lockdown.

• The accumulation factor γ ∈ [0,1], which we assume equal for everyone, is the
impact of all our past decisions, reflecting the stress and fatigue protracted over
time, such as economic cost (if we think about a restaurant), due to the continuous
use of self-protective behavior.

• The scaling factor k in the risk perception r(Z(t)) = kZ (3.5)has been thought for
a pure mathematical reason: it’s clear to everyone that people adopt self-protective
behavior when the disease spreads too much, but how quickly are these prudent
measures taken by the population? We will be able to answer this question only
after a specific tuning of the parameters.

3.2.2 Simulation setting
The first natural goal of this work is to create an epidemic model that possesses a decision-
making process based on game theory which is capable of faithfully reproducing real hu-
man behavior during the spread of the epidemic (in this specific case, of COVID-19 in
Italy). In order to do this, we obviously need to plot some curves that describe the real
trend of the epidemic in Italy, starting from 24 February 2020 (which refers to the first line
of the dataset in [7]) for the following T = 100 days, and compare it with our simulated
ones.

The two curves on which we will focus are the one of Z(t) describing the spread of the
disease in term of fraction of the population (this is needed in order to compare properly
the Italian population size of 60 million people to our model’s population size of 1000
people), and the one of D(t) describing the fraction of population dead.
However, we must take into account the detection rate (DR) and detection delay (DD) in-
troduced before, since they influence the shape of the curve and its values: this is another
difference between our model and reality, because in our model simulations the count of
positive cases (and then also the fraction of population infected) is done at the moment,
while instead if we focus on the number of infected in real data at a certain date, this
refers to DD days before that date; furthermore, the number of positive case at a certain
date is not the effective number of infected, since the detection rate was very low in those
months (DR = 0.07). Therefore if we name Z̃(t) the real number of (current at time t)
infected cases at time t directly taken from the Italian database [7], the plotted function
of the real Zr(t) will be:

Zr(t) = Z̃(t + DD)
6 × 107

1
DR

, ∀t ∈ [1, T ]. (3.8)

For what regards the fraction of dead Dr(t) we should not scale it by using the detection
rate because every dead individual is detected, and there is also no delay (DD), hence we
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have Dr(t) = D̃(t), where D̃(t) is the fraction of people dead given by real data, similar
to Z̃(t).

Our basic goal will be to fit the real trend of Zr(t) and Dr(t) by evaluating both in
a quantitative way, that is by computing the SSE (sum of square errors) between the
simulated curves and the real ones, and in a qualitative way, that is by looking at the
plots: for our purposes, we will fit both Zr(t) and Dr(t) but the main focus will only be
on the infected trend, since the death trend will be more "random" because the very low
death probability and population size make the death curve D(t) to be more nervous even
with only one more single death (or one less).
For what regards the initial condition, on the first day the real fraction of infected
was Zr(1) = 221

6×107 ≈ 0.0000037 and the real fraction of death was Dr(1) = 7
6×107 ≈

0.00000012, but our model can’t reach a so low precision, because at minimum we can
have a fraction of 1

n = 0.001; for this reason, we decided to set an initial state of:

Z(1) = 1
n

= 0.001, D(1) = 0. (3.9)

It is quite reasonable for us to set these values because our model should start with 0
dead and with the "patient zero" as the first infected individual among all the population
(in our model we will set the first individual as the patient zero).
We may also assume that at the first day of pandemic nobody was wearing protective
masks or adopting other type of self-protective behaviors, therefore we set Xi(1) = 0,
∀i = 1,2, . . . , n.

3.2.3 Parameter tuning
We performed many simulations in order to evaluate how the model’s population behave
(i.e. adopt self-protective measures or not) and how is the COVID-19 spreading in our
sample of n = 1000 individuals. This quite small number of people is the reason why the
epidemic parameters in the model turns out to be very small.
We performed a grid optimization by simulating SIM = 200 different trajectories for
every parameters configuration, at first with a coarse-grain approach in order to find a
good range of reasonable values for each parameter, later by studying a denser grid of
values, thus carrying out a more precise search in that good range of values that we had
previously found. More in detail:

• The per-contact infection probability λ has been tested with several values between
10−3 and 10−1: the optimal value found is λ = 0.007.

• The recovery probability µ has been tested with several values between 0.01 and 0.5:
the optimal value found is µ = 0.14, and this is also coherent with [18] where one
can read that the mean infection time is about 5 days (i.e. µ should be around 0.2).

• The death probability δ has been tested with several values between 10−3 and 10−1:
the optimal value found is δ = 0.003.
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• The immediate cost of adopting self-protective behavior c has been tested with sev-
eral values between 0 and 3 (it was useless to test values greater than 3 because
nobody would choose to adopt self-protective measures with a such high immediate
cost): the optimal value found is c = 0.5.

• The accumulation parameter γ has been tested in all its admissible range [0,1]: the
optimal value found is γ = 0.25; we should remember this value because in the next
chapter it will change for an interesting reason.

• The scaling factor k has been tested with several values between 0 and 20 (it was
useless to test values greater than 20 because almost everyone would choose to adopt
self-protective measures with a such high reaction to the epidemic spread): the
optimal value found is k = 12.

• The government control function u(t) has been fixed to u(t) = 0.5, ∀t ∈ [0, T ] and all
the other parameters have been trained as a consequence of this value. This control
will be changed later (3.3), when we will try to implement some different intervention
strategies in order to reduce as much as possible the spread of the disease.

Parameter Symbol Tuning range Optimal value
Per-contact infection probability λ [10−3,10−1] 0.007

Recovery probability µ [0.01,0.5] 0.14
Death probability δ [10−3,10−1] 0.003
Immediate cost c [0,3] 0.5

Accumulation factor γ [0,1] 0.25
Scaling factor k [0,20] 12

Table 3.1. Tuning parameter and optimal value summary for the first model without vaccine.

Each simulation took about 1 minute to be run, resulting in more than 3 hours for all
the SIM = 200 trajectories; given all the trajectories, we calculated the average among
the 200 realizations at every time instant t, obtaining the final curve for our model which
we may call Z(t); the same method applies for the fraction of death D(t). We also
calculated the standard deviation at every time t in order to define a proper confidence
interval of the type:5

Z(t) − std(Z(t)) × q0.95√
SIM

, Z(t) + std(Z(t)) × q0.95√
SIM

6
(3.10)

where Z(t) is the average of the fraction of infected individuals among all the trajectories
at time t, "std" stands for standard deviation and q0.95 is the 95% probability quantile [35]
for a standard normal distribution (more details on the standard normal distribution and
confidence intervals can be found in [13]).

For the purpose of evaluating which parameter configuration is the best one, we computed
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the SSE (sum of square errors) both for Z(t) and D(t); actually we did not considerate
the latter one because in our model with n = 1000 people just one more death is enough
to bust the curve changing a lot in the fraction of dead D(t) (and one more death can
be realized quite easily with our epidemic dynamic). Together with the SSE, a very good
evaluation element is plotting the curve of Z(t) and D(t) near, respectively, Z̃(t) and
D̃(t): this is clearly a qualitative approach but it must not be underestimated because the
results are very surprising and near to the real data (see 3.3), meaning that the covid-19
epidemic spread of the first wave in Italy is very well fitted by our model.

Figure 3.3. Validation of the model without vaccine, related to the first epidemic wave
in Italy starting from 24th February 2020.
The first picture on the left shows the trend of our model’s Z(t) in blue, with its 95%
confidence interval (the dotted lines), compared to real Zr(t) taken from [7]; the green
curve in the center describes the fraction of people adopting self-protective behavior at
time t; on the right we can see the very accurate trend of deaths D(t).

3.3 Optimization and control
Once we have validated the model, we can start investigating the role of the control func-
tion u(t), representing the non pharmaceutical interventions (NPIs) that the government
could apply in order to reduce the spread of COVID-19, such as complete or partial lock-
down, protective mask wearing duty or other specific rules.
We could reasonably think that a single value for u(t) during all the time period would
not be an optimal solution, therefore we will try to find an optimal changing point t̃, that
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is the time instant when we should change the value of the control function u(t), hopefully
by decreasing it.

3.3.1 The role of the control function u(t)
After having shown that our model is successfully able to reproduce the real world tem-
poral evolution of the epidemic outbreak, we may try to increase, decrease or modify
the function u(t) with the reasonable aim of reducing infections and deaths in order to
investigate a range of what if scenarios. A naive option could be to increase u(t) a lot, for
example by implementing very severe lockdowns as happened in China, but this would
be a very desperate case and would have a dramatic impact on economy [14], because it
would mean to close everything for an indefinite time period; in our model we are working
from a purely epidemic point of view and we are not considering the economic loss that a
national lockdown causes (and this is a very tough matter for those who are running the
government and making decisions), therefore we will not consider this extreme option.

Anyway, it is clear that if we want to decrease the spread of the disease, fixed all the
other parameters, we need to increase the strength of the NPIs (non pharmaceutical in-
terventions by the government). We evaluated the different configurations by simulating
SIM = 50 trajectories each and computing the average among the 50 trajectories; for
each value of u(t), in addition to a qualitative analysis of the contagion curve trend Z(t),
we saved three values of interest:

• The average fraction of people infected along the whole time period, which reflects
the trend of the disease and number of infected.

• The average of the maximum values in each of the 50 simulation, which is a very
good evaluation of the stress endured by the hospitals, which in those months had
the intensive care wards always full and many positive patients were forced to other
less equipped wards or even to stay at home, greatly increasing their probability of
dying.
Notice that the value obtained in this way may be different from the maximum value
we can see in the results graph, but they both have the same interpretation.

• The fraction of dead people (and then the total number) at the end of the time
period of interest.

The first approach aims to reduce the maximum value of the epidemic spread, trying to
relieve the hospitals and the pressure that even the health personnel who were reduced
to exhaustion in that period had to bear. The simulation results are shown in figure 3.4
and in table 3.2.

As expected, increasing u(t) decreases the fraction of infected individuals, both in terms
of maximum value and in average; the same reasoning can be applied also for D(t), but
we already said that this value is a bit nervous due to the small population size, hence its
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Figure 3.4. Testing several values for alternative u(t) during the first epidemic wave in Italy.

u(t) Avg prudent Xi(t) = 1 Avg Z(t) Max Z(t) Avg D(100)
0.45 0.3059 0.0186 0.0388 9.2 × 10−4

0.50 0.4182 0.0169 0.0368 8.2 × 10−4

0.55 0.4951 0.0155 0.0337 6.8 × 10−4

0.60 0.5973 0.0141 0.0309 6.6 × 10−4

0.65 0.6750 0.0132 0.0283 6.2 × 10−4

0.70 0.7762 0.0123 0.0247 6.4 × 10−4

0.75 0.8215 0.0119 0.0229 5.2 × 10−4

0.80 0.8651 0.0112 0.0212 6.2 × 10−4

0.85 0.9035 0.0110 0.0209 3.2 × 10−4

0.90 0.9250 0.0109 0.0203 4.8 × 10−4

Table 3.2. Several values for u(t) were tested during the first epidemic wave in Italy.
The first column stores the value of u(t) applied to the model; the second column stores
the average fraction of population adopting self-protective behavior (i.e. with Xi(t) = 1);
the third column stores the average fraction of population infected Z(t); the fourth column
stores the maximum value of Z(t), directly linked to the hospital stress; the fifth and last
column stores the average fraction of population dead at time T = 100 among the 50
trajectories.
Each of the nrow × SIM = 10 × 50 = 500 simulations took around 40 seconds to be run,
with a total time of around 5 hours and a half.

values could be affected by noise much more than Z(t). If we look closely at the graph
and read it from the top to the bottom lines we can see that the improvement seems
sharp at the beginning and then instead fades towards the end: it seems to increase u(t)
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over 0.75 (i.e. increasing the intensity of NPIs by 50%, passing from 0.5 to 0.75) does not
bring such a marked improvement. So, we consider u(t) = 0.75 an excellent compromise
between containing the epidemic and avoiding a complete lockdown, which would greatly
damage the economy of the country.

3.3.2 Finding an optimal changing point
Even if we let the government avoid to apply too strict restrictions, a value of u(t) = 0.75
is however quite high and many people may think that maintaining such a high u(t) for
a long time could became a trouble both for the population happiness/mental health and
for the long term national economy; furthermore, it may not provide beneficial effects. To
solve this problem, like it really happens in reality, we should try to decrease the strength
of NPIs after a certain date: we may extend the interest time from T = 100 to T = 200
in order to evaluate a longer impact of this policy, and we may arbitrarily set t̃ = 100 as
the changing point in which we modify the value of u(t), clearly by decreasing it, such
that the control function u(t) becomes piecewise constant:

u(t) =
I

0.75, t ≤ 100
u, t > 100

(3.11)

We simulated 50 trajectories (computing the average, similar to as before) for each value
of u = 0.70,0.65,0.60,0.55, . . . , in this order. We observed a great improvement at the
beginning, while the results were quite similar for values smaller than u(t) = 0.3; noticed
that this value was quite good, we then explore more deeply some other values around it,
obtaining what is shown in Table 3.3 and in Figure 3.5.

Figure 3.5. Testing several values for u when t > 100, fixed u(t) = 0.75 for t ≤ 100.
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u(t), t > 100 Avg prudent Xi(t) = 1 Avg Z(t) Max Z(t) Avg D(200)
0.24 0.6468 0.0120 0.0262 9.2 × 10−4

0.26 0.7265 0.0112 0.0254 8.4 × 10−4

0.28 0.8117 0.0108 0.0232 1.1 × 10−3

0.30 0.8847 0.0103 0.0226 8.4 × 10−4

0.32 0.8990 0.0101 0.0223 9.0 × 10−4

0.34 0.9001 0.0105 0.0235 8.0 × 10−4

Table 3.3. Testing several values for u(t) when t > 100, fixed u(t) = 0.75 for t ≤ 100.
The first column stores the value of u(t) for t > 100, fixed u(t) = 0.75 for t ≤ 100; the
second column stores the average fraction of population adopting self-protective behavior
(i.e. with Xi(t) = 1), calculated over the time horizon T = 200; the third column
stores the average fraction of population infected Z(t), calculated over the time horizon
T = 200; the fourth column stores the maximum value of Z(t) over all the time horizon
T = 200, anyway this data does not affect the decision, because the maximum value
of Z(t) usually happens when t ≤ 100, in fact the values in this column are not in an
increasing or decreasing order; the fifth and last column stores the average among the 50
simulations of the fraction of population dead at time T = 200.
Also here, each of the nrow × SIM = 6 × 50 = 300 simulations took around 70 seconds to
be run, with a total time of almost 6 hours.

The first important thing we may notice in Figure 3.5 is that the black dotted line, which
shows the real trend that the covid epidemic has had in Italy, has a period after t̃ = 100
in which it is very low for about 60 days: this should not surprise us, in fact that period of
decline in infections corresponds approximately to the months of July and August (from
day 128 to day 190), in which it seemed that the contagiousness of the virus had dropped
due to the warmer temperature, and also many people maybe did not take a swab even
if they had symptoms, to avoid ruining themselves the holidays (this assumption is con-
firmed by the data stored in [4], showing that the daily number of swabs during summer
was quite lower on average with respect to the past spring and the following autumn);
for these reasons, the real black curve is lower in that period of our simulations, and then
goes to grow towards the end of August when we returned from summer holidays and
unfortunately we were preparing for a new autumn wave.
If we look at the first picture on the left in Figure 3.5 plotting the infected Z(t), a too
low value of u, say 0.24, 0.26, 0.28, makes the spread of the epidemics increase a lot more
than 0.3, 0.32, 0.34, where actually the difference is very few. Furthermore, if we look at
the central picture describing the fraction of people adopting self-protective measures, a
low value of u causes the whole population to stop adopting these measures very quickly
(in fact the curve drops steeply), while a value higher than 0.3 causes a large majority
of the population to continue to adopt them, which is certainly fine in intense periods
of the epidemic, but the hope is always that of being able to stop having to apply these
safety measures as soon as possible: according to this reasoning, we can say that the value
u = 0.3, for t > 100, is an excellent value for easing government restrictions.
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If we focus a while on this value, it means a reduction of 40% from the original value of
0.5, which is quite similar to what happened in the 2020 summer in Italy, when many
restrictions were abolished but others were maintained.
We noticed that piece-wise policies may be beneficial, whereby the intensity of NPIs is
reduced after 100 days; at this point, we could wander whether is t̃ = 100 the optimal
changing point? Can we do better if we change the value of u(t) in another time instant?

First, we observe that we could try to set a changing point in some t̃ > 100, and this
obviously would decrease the average number of infected and the fraction of death, since
it would let the whole population to behave prudent for a longer time, but as we said
before we should avoid this possibility because there would be serious damage in the na-
tional economy, other than the discontent of the population.
Therefore we should find some t̃ < 100 as a new changing point, admitted that this can
have a better impact on the epidemic spread than our baseline scenario with t̃ = 100. In
Figure 3.6 are shown the trends obtained (by calculating the average among 50 different
trajectories with the same configuration) by using several changing point t̃.

Figure 3.6. Testing several changing points t̃ lower than t̃ = 100.

The most surprisingly result is that the COVID-19 spread wouldn’t change a lot if we
choose a t̃ < 100, and this is clear not only from the trend of D(t) in the third picture in
Figure 3.6, but also in the first picture describing the epidemic spread in terms of Z(t).
Furthermore, if we have a look at the central picture, we can see that no matter when the
restrictions change from 0.75 to 0.3, the population starts to behave at the same way.
All these arguments allow us to say that it would be useless to maintain u(t) = 0.75
until t = 100, because we wouldn’t have any improvement over having an earlier changing
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Changing point Avg prudent Xi(t) = 1 Avg Z(t) Max Z(t) Avg D(200)
0 0.0515 0.0164 0.0399 1.2 × 10−3

10 0.0358 0.0164 0.0392 1.3 × 10−3

20 0.5058 0.0130 0.0306 1.0 × 10−3

30 0.8176 0.0107 0.0237 1.1 × 10−3

40 0.8540 0.0106 0.0227 1.0 × 10−3

50 0.8501 0.0107 0.0239 1.1 × 10−3

60 0.8649 0.0102 0.0224 8.6 × 10−4

70 0.8659 0.0104 0.0230 7.8 × 10−4

80 0.8654 0.0104 0.0227 8.0 × 10−4

90 0.8697 0.0104 0.0233 8.8 × 10−4

100 0.8978 0.0105 0.0228 7.6 × 10−4

Table 3.4. Testing several values for a changing point in which we should decrease u(t)
from 0.75 to 0.3.
The first column stores the time instant chosen as the changing point; the second column
stores the average fraction of population adopting self-protective behavior (i.e. with
Xi(t) = 1), calculated over the time horizon T = 200; the third column stores the average
fraction of population infected Z(t), calculated over the time horizon T = 200; the fourth
column stores the maximum value of Z(t) over all the time horizon T = 200; the fifth
and last column stores the average fraction of population dead at time T = 200, anyway
this values are not too significant, as we explain earlier.
Each of the nrow × SIM = 11 × 50 = 550 simulations took around 75 seconds to be run,
with a total time of more than 11 hours.

point; this choice is also very helpful for everyone because a too long lockdown would have
put the country’s economy even more in crisis. We should now investigate the optimal
first-lockdown duration, by choosing the best changing point: for this goal we may try to
decrease again the duration of the first lockdown, as we can see in Figure 3.7, where it
appears very clear that choosing a changing point of t̃ = 50, t̃ = 40 or t̃ = 30 it makes
no difference, because the curves are substantially the same both as regards the spread
of infections Z(t) and as regards the deaths D(t); a changing point of t̃ = 20 instead
worsens the situation a lot, increasing both the dead and the number of infected by about
50%: we can find an explanation for this fact in the central plot in Figure 3.7, where
we see that with a first lockdown that is too short it fails to raise awareness among the
whole population in adopting self-protective measures, and this unfortunately affects the
progress of the epidemic. A one-month lockdown (i.e. t̃ = 30), on the other hand, manages
to ensure that the entire population adopts these measures, and once the value of u(t) is
decreased, the majority of the population will continue to behave in the same way thanks
to a sort of "civic sense", maybe induced by the social pressure, precisely as we remember
that it happened in reality.

Of course, also the possibility of very short lockdown (that is decrease the changing point
to less than a month) has been explored, but the results were not satisfactory, in fact
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Figure 3.7. Finding an optimal changing point as the duration of the first lockdown.

the spread of infections in our simulations really struggled to contain itself, thus going to
draw scenarios unfortunately unsustainable and that we all would like never to live again,
as we can see in Figure 3.8.
The results obtained by testing every changing point t̃ are summarized in Table 3.4.

Figure 3.8. Testing very low values for the first lockdown duration.
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Finally, one could manage to search a second changing point in which we could change
u(t) from 0.3 to another value maybe lower: we explored this possibility, but the results
were not helpful and they have not been useful, and indeed have worsened the solution
found previously. A possible explanation for this fact could be that, given that in Figure
3.6 it is clear that the number of infections was stabilizing on a low value, lowering u(t)
further compared to 0.3, which in any case is already a low enough value, would have led
the whole population to no longer protect themselves, inevitably going to greatly increase
the number of infections and therefore the trend of Z(t).

We conclude the first part of our analysis by summarizing our main findings. Accord-
ing to our extensive campaign of numerical Monte Carlo simulations, the best choice for
the control function u(t) turned out to be:

u(t) =
I

0.75, t ≤ 30
0.3, t > 30

(3.12)

This means that, to the best of our modeling insight, public administrations should impose
stronger restrictive measures (u(t) = 0.75) at the inception of an epidemic outbreak for
a shorter period of time, to then decrease them decisively (u(t) = 0.3), but never drop
them off totally; if we set this optimal value for the control function u(t) together with the
optimal parameters configuration found in the previous section, we obtain the epidemic
trend shown in blue in Figure 3.9.

Figure 3.9. Epidemic dynamics simulated by our model by applying the optimal param-
eters configuration found in Table 3.1 combined with the NPIs in (3.12).
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Chapter 4

Model with vaccine

In chapter 3, we presented, validated and optimized an extension of the model in [39]
tailored to the first wave of COVID-19 in Italy starting from February 2020. At that
time, a vaccine that prevented infection and death due to COVID-19 had not yet been
developed. This was introduced at the end of 2020 and the very first doses in Italy [25]
were injected on December 27, 2020 (precisely 308 days after the first COVID-19 outbreak
in Italy, dated on 24 February 2020). At that moment, Italy had already gone through
two major waves of COVID-19 and the arrival of the vaccine seemed to give everyone
excellent hope of being able to get out of the pandemic very soon. Unfortunately today
we are still struggling with this disease, even if the current prevention measures are very
low (for example there is no longer the obligation to wear a protective mask).

After having developed the model of COVID-19 in absence of vaccination, the goal of
this thesis is to build a new model by adding a new decision-making process, again based
on game theory, regarding the will to vaccinate or not. Clearly there is a substantial
difference between this decision and the previous one regarding the use of self-protective
measures (3.6). In fact, if the latter decision can change at any moment of time, the one
concerning vaccination will instead be definitive (obviously, once vaccinated there is no
way to go back).
The state of an individual in this new model is described by the triple (Yi(t), Xi(t), Vi(t)),
where the three elements are, in order:

• Yi(t) is the individual i’s health state at time t, that can be 0 if i is susceptible (S),
1 if i is infected (I), 2 if i is recovered (R), or 3 if i is dead (D).

• Xi(t) is the first decision about whether to adopt or not self-protective behavior,
which can assume the binary values 1 if i decides to adopt self-protective measures
or 0 if i discard this opportunity.

• Vi(t) regards the second decision about whether to get vaccinated or not: it can be 0
if individual i is not vaccinated, 1 if i is vaccinated but the vaccine has not yet taken
effect and therefore the individual will have to wait some time to become protected,
2 if i is vaccinated and effectively protected.
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The distinction between Vi(t) = 1 and Vi(t) = 2 arise from the fact that in reality
individual i is protected by the vaccine only some days after the first dose, or alternatively
if she takes the 2-nd dose, and only after that individual i is fully protected by the vaccine.
To avoid complicating the model too much, this time frame was modeled by inserting the
transient state "1", in which an individual is not yet protected (has not yet taken the
second dose) but has already been vaccinated (so she has already chosen to vaccinate and
take the first dose). Each individual is in this transient state in fact for 14 days on average
[9], to better imitate reality, because he will have 1

14 probability of moving towards state
"2" at every instant of time t. Formally, we have:

P(Vi(t + 1) = 2|Vi(t) = 1) = 1
14 , P(Vi(t + 1) = 1|Vi(t) = 2) = 0

Since we want to introduce a new decisional process for the vaccination, we also need a
new payoff function that shapes people’s utilities of getting vaccinated or not. The new
payoff function Πv

i for the vaccination decision process is inspired by the one used in the
vaccine-free model (3.5), but obviously brings with it some differences; like we did in the
previous model, we create one single payoff function rather than 2 different functions (one
for the decision "get vaccinated" and one for the opposite decision "don’t get vaccinated"),
therefore at time t the payoff for individual i in general form is:

Πv
i (t) = c1Z(t) + c2

#1
i − #0

i

di
+ uv(t) + fi(t) − (1 − V (t))e−c3V (t) − c4 (4.1)

The higher the payoff, the higher is the probability for an individual with Vi(t) = 0 (i.e.
not yet vaccinated) to decide to get vaccinated, according each time instant t to the
following stochastic rule very similar to (3.6):

P(Vi(t + 1) = 1|Vi(t) = 0) = eβΠv
i (t)

1 + eβΠv
i (t) (4.2)

• c1Z(t) is the corresponding of the reaction function in (3.5), modeling the popu-
lation’s reaction to the spread of the disease; the coefficient c1 can effectively be
assumed equal to the previous scaling factor k, but for the moment we keep the
notation more general. One could think to add another reaction function, in which
the population react to the fraction of death instead of the fraction of infected; how-
ever, this reaction can be directly included in c1Z(t), because the number of deaths
is clearly positive correlated with the fraction of infected, and for this reason we
decided not to complicate the model adding another parameter to be calibrated.

• #1
i −#0

i

di
is the same fraction we found in the payoff for the self-protective behavior

decision (3.5) in chapter 3, with the difference that in this case #1
i and #0

i are
respectively the number of node i’s neighbors vaccinated and not vaccinated, divided
by the degree di of node i in the influence layer; this fraction is multiplied by a
constant c2 which we expected to be slightly greater than 1, like it was instead in
the other model: in fact we may think that our neighbors influence on the vaccination
decision could be stronger than the influence on the self-protective decision, since the
so-called no vax people (i.e. people who don’t want to get vaccinated) are usually
clustered in the population.
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• uv(t) represents the incentives by the government linked to the vaccine: restrictions
for people not vaccinated, green pass, or other measures like these; as we did in
section 3.3 for u(t), we will apply control also on this variable in order to find
an alternative policy, again with the reasonable aim of reducing the spread of the
pandemic.

• fi(t) is exactly the same frustration function we found in (3.2), but here it shows
up with a positive sign in front, because if one individual is frustrated with always
wearing a mask or taking protective measures, then he may have more incentive to
get vaccinated in order to alleviate those measures a little.

• The term (1−V (t))e−c3V (t) represents the "fear of the vaccine": at the very beginning
of the vaccine injection phase, many people were doubtful about the vaccine because
this was created in a hurry and therefore there was the fear that there might be
some mistake in it or it might be ineffective; however, once so many people are
vaccinated this fear fades considerably; the fear can decrease more or less quickly as
the population is vaccinated depending on the parameter c3.

• c4 is the immediate cost in getting vaccinated, for example linked to the need to
lose a few days of work due to the side effects of the vaccine; this cost has the
same conceptual meaning of c in (3.1), but their values do not necessarily have to
coincide. In particular, the immediate cost c4 is the only heterogeneous parameter
in our model, which tries to capture the no-vax people, which are approximately the
10% of the whole population size [15]; therefore the parameter c4 will be a vector
assuming 2 different values, a lower value for people (the first 90%, for simplicity)
and a higher value for no-vax people (the last 10%).

The new payoff function in (4.1) is not the only novelty brought to the decision based on
game theory, because the addition of the vaccine has introduced a fundamental and much
more powerful component against covid infection. For this reason many people vaccinated
(as indeed happened in the real world) choose to adopt self-protection measures much more
rarely, feeling sufficiently protected by the effectiveness of the vaccine. This fact suggests
a modification of the payoff function also for the first decision concerning the adoption of
self-protective behaviors, which becomes:

Πi(t) = #1
i − #0

i

di
+ kZ(t) − c

A
1 +

tØ
s=1

γsXi(t − s)
B

+ u(t) − gVi(t), (4.3)

for a certain individual i at time t. The probability for individual i to adopt self-protective
measures follows the same law as in (3.4) but using the new payoff function in (4.3).
The last component in (4.3) introduces the security parameter g, which captures the
behavior of an individual already vaccinated who feels more safe about getting infected
and decides to adopt self-protective behavior more rarely; gVi(t) can assume only three
values: 0 if individual i is not yet vaccinated at time t (i.e. Vi(t) = 0); g if individual i
has just been vaccinated (i.e. Vi(t) = 1) but she is not yet protected; 2g if individual i
has been vaccinated and is protected (i.e. Vi(t) = 2). Notice that in this latter case, the
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value of the last term in (4.3) is doubled with respect to when i is vaccinated but not
yet immune: this is reasonable because a person who just got vaccinated (i.e. Vi(t) = 1)
may keep adopting self-protective measures for some days in order to wait for the effective
protection (i.e. Vi(t) = 2).

An individual i who is not vaccinated has an infection probability equal to (3.7) at every
time instant t, which is the same for an individual vaccinated but not yet protected by
the vaccine (i.e. Vi(t) = 1). On the other hand, when the protection due to the vaccine
begins to take effect, the probability of getting infected is significantly lowered through
the application of a multiplication factor 1 − α1, where α1 ∈ [0,1] is the effectiveness of
the vaccine in preventing contagion:

P(Yi(t + 1) = I|Yi(t) = S, Vi(t) = 2) = (1 − α1)ü ûú ý
vax protection

× (1 − σXi(t))ü ûú ý
self-behavior

(1 − (1 − λ)Ni(t)) (4.4)

At the same time, a vaccinated individual i who is infected and in which vaccine protection
is already active has a lower probability of dying than the one in vaccine-free model, in
which this probability was dictated by δ at each time instant t ∈ [0, T − 1], thanks to a
multiplication factor (1 − α2) (with α2 ∈ [0,1] not necessarily equal to α1 in general), so
that:

P(Yi(t + 1) = D|Yi(t) = I, Vi(t) = 2) = (1 − α2)ü ûú ý
vax protection

×δ, ∀i = 1,2, . . . , n. (4.5)

The remaining two epidemic probabilities, that is the recovery probability µ and the
probability φ to re-become susceptible after recovering, are not affected by the vaccine
efficacy; nevertheless, the per-contact infection probability λ and the death probability δ
are not necessarily the same as the previous model, since during the vaccination period (i.e.
early 2021) COVID-19 had developed a new variant with a different rate of contagiousness
and lethality, so these epidemic parameters will certainly need to be re-calibrated to
ensure that our model properly fits the real contagion curve Zr(t). At the same time, new
protocols have been developed in hospitals to reduce severe consequences.

4.1 Model calibration and validation
Following the approach implemented in section 3.2, we want to calibrate and validate our
model by using the real Italian data taken from [7], considering as first day the first day
in which the vaccine administration has started, i.e. on the 27th December 2020 (308 days
after 24th February 2020), and setting a time horizon T = 200 days, until the beginning
of summer 2021.
In order to find a good configuration including all the tuning parameters, we performed
SIM = 50 different simulations for each configuration, generating 50 trajectories and
computing the average at every time instant t among all these trajectories, similar to what
we did for the previous model in section 3.2.2, with the only difference in the number of
simulations. We have been forced to decrease it for a computational timing reason: in
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this part of the work we must simulate 2 decision processes and we want to study the
epidemic trend over a longer (precisely, a doubled) time horizon T = 200. Hence, the
computational time for each run of the simulation almost tripled.

4.1.1 Simulation setting
In December 2020 Italian healthcare was much more advanced and prepared in dealing
with COVID-19, and for this reason both the detection rate DR and the detection delay
DD as regards positive cases had changed compared to the previous ones. In particular,
the detection rate has increased [22] and the detection delay has decreased thanks to the
easier swabs availability [7], becoming

DR = 0.07üûúý
first wave model

→ 0.4üûúý
vax model

, DD = 14üûúý
first wave model

→ 10üûúý
vax model

.

The real Zr(t) and Dr(t) are obtained exactly like in (3.8), taking though the 309th line of
the Italian dataset [7] as the first day of our new time period (i.e. t = 1); noticed this, the
real values of the epidemic trend in Italy was Zr(1) = 581760

6×107 ≈ 0.0096, meaning that we
should have as initial condition around 10 individuals infected over the n = 1000 of our
population size, but we should also divide this value for the detection rate (DR), because
not all the real infected were detected in real life. In formula, we obtain:

Z(1) = 1
n

0.0096 × n

DR
= 0.024, (4.6)

meaning that we should set 24 people out of 1000 to be infected at day-1, and we choose
them randomly.
For what regards the deaths at day-1 we set D(1) = 0 because we would like to evaluate
fatalities starting from the first day of our simulation period. Anyway, we are not so much
interested in this value anymore since the number of deaths has fortunately after the first
wave, therefore we will not plot the death curve D(t) anymore, focusing our attention on
the two population choices, and on the fraction of infected individuals Z(t).
The fraction of prudent people at the beginning of the simulation is another initial condi-
tion we have to take into account, since in the previous model it was simply assumed to
be equal to 0. On the 27 December 2020, there were several restrictions in Italy hoping
to limit the COVID-19 spread during the winter holidays. Hence the majority of the
people, if not the entire population, was adopting self-protective measures. Based on this
observation, we decided to set the initial fraction of prudent people to 1.
The fraction of people vaccinated at day-1 is trivially set equal to 0, because obviously
nobody was vaccinated before the 27 December 2020 [25].

4.1.2 Parameter tuning
Following the same procedure of chapter 3, we performed several simulations testing each
parameter to be tuned in a reasonable range, and fixing all the other parameters to certain
appropriate values, that are:
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• The rationality parameter appearing both in (3.4) and (4.2) has been fixed again to
β = 6, following [39].

• The scaling factor k in (4.3) has been fixed to the optimal value found in Table 3.1,
i.e. k = 12.

• The immediate cost c for the self-protection decision, appearing both in (3.1) and in
(4.3), has been fixed to the optimal value found in Table 3.1, i.e. c = 0.5.

• The external infection probability λ̄ is reasonably the same as in chapter 3, i.e.
λ̄ = 1

n .

• We assumed that the vaccine protection doesn’t affect the recovery probability µ,
maintaining it to µ = 0.14.

• The probability to become again susceptible φ has been fixed to φ = 0.1, meaning
that after recovery, one individual is immune for 10 days on average.

• The effectiveness of self-protective behavior σ has been fixed to σ = 0.5 like in the
first wave model in section 3.2.1.

• The vaccine efficacy α1 for preventing infection, introduced in (4.4), has been fixed
to a reasonable value like α1 = 0.7 [6].

• The vaccine efficacy α2 for preventing death, introduced in (4.5), has been fixed to
a value lower than α1, i.e. α2 = 0.5, because in general vaccine is slightly more
effective in preventing infection rather than death, even if it is also helpful in the
latter case.

• The control functions u(t) and uv(t) are both set to 0.5: the first one is the value
used for the model validation in section 3.2 (see Figure 3.3), while uv(t) is thought
to be similar to it, so we may keep them equal before testing other values when we
apply control also in this second model.

All the others parameters, as it is reported in Table 4.1, have instead been tested at
first with a coarse-grain approach in order to find a reasonable range of values for each
parameter, and afterwards by focusing our attention on a denser grid of values for a finer
search. More precisely:

• The per-contact infection probability λ has changed with respect to the first
wave period, because COVID-19 developed some variants of the disease which had
different transmissibility: we investigated several values between 10−4 and 10−2,
finding an optimal value of λ = 0.008.

• For the death probability δ the reasoning is the same as the one for λ because
different COVID-19 variants have different mortality rates: we tested several values
between 10−3 and 10−2, finding an optimal value of δ = 0.002.
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• The accumulation factor γ was 0.25 in the optimal solution for the first wave
model (see Table 3.1), but in this second model, the population had already stand
almost 1 year of pandemic and restrictions, hence their patience was weaker: many
values higher than the previous γ (i.e. in the interval [0.25,1]) have been tested, and
the optimal value found it’s γ = 0.51, meaning that the patience of people has more
than halved, which is consistent with empirical observations [34].

• The security parameter g introduced in (4.3) is tested in several values between
10−4 and 10−2, and the optimal value found for it is g = 0.0018.

• The reaction coefficient c1 is very similar to the scaling factor k, therefore we
tested values around the optimal k = 12 found in Table 3.1, but we didn’t obtain
any improvement by changing it, so we set it again to c1 = 12.

• c2 in (4.3) is the influence coefficient. In (3.5) this was implicitly set to 1. Here,
we conjecture that the influence that our neighbors have on our decisions could be
stronger if we are talking about getting vaccinated or not, since this is a permanent
decision, while instead wearing the protective mask or adopting self-protective be-
haviors in general could be a fickler decision. Hence, we tested values greater than
1. In fact the optimal value for this coefficient is found at c2 = 1.1.

• For the fear coefficient c3 we tested only small integer numbers, which is a coherent
choice because this parameter is a multiplicative exponent of an exponential function:
the optimal value found is c3 = 2.

• The immediate cost c4 for the vaccination decision is very similar to the immediate
cost c for the decision whether to adopt self-protective behavior or not, in fact the
optimal value found by the tuning is again c4 = 0.5, as we found in Table 3.1.

Parameter Symbol Tuning range Optimal value
Per-contact infection probability λ [10−4,10−2] 0.008

Death probability δ [10−3,10−2] 0.002
Accumulation factor γ [0.25,1] 0.51
Security parameter g [10−4,10−2] 0.0018
Reaction coefficient c1 [1,20] 12
Influence coefficient c2 [1,2] 1.1

Fear coefficient c3 [0,5] 2
Immediate cost c4 [0,10] 0.5

Table 4.1. Tuning parameter and optimal value summary for the model with vaccine.

Each simulation took about 3 minutes to be run, resulting in more than 2 hours for all
the SIM = 50 trajectories; given all the trajectories, we calculated the average among
the 50 realizations at every time instant t like we did for the first wave model in section
3.2.2, obtaining the final curve for this new model which we may call again Z(t); the same
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method applies for the fraction of population adopting self-protective measures (Xi(t) = 1)
and the fraction of population already vaccinated but not necessarily immune (Vi(t) > 0)
at time t. We also calculated the standard deviation at every time t in order to define a
proper 95% confidence interval [13] for the fraction of infected of the same type like in
(3.10).
For the purpose of evaluating which parameter configuration is the best one, we computed
for Z(t) the sum of square errors (SSE) compared to Zr(t); this quantitative approach
has a qualitative counterpart, that is a reasonable analysis of the obtained plots of the
infected trend Z(t), the average fraction of prudent people and vaccinated people.
This qualitative approach is also an important element we should apply in order to select
the best parameter configuration, since the SSE doesn’t allow us to know where our model
is going bad, if it has a high value. Hence, both approaches should be used to determine
the optimal calibration of the model.
We can see in Figure 4.1 the result obtained by using the best parameter configuration for
fitting the real infected trend Zr(t). The most surprisingly result is the shape of the model
line in blue, which is able to faithfully reproduce the second peak of Zr(t); furthermore
we can see that the model is able to replicate very well the two decreases after the two
peaks.
In the plot on the right in Figure 4.1 we can see the fraction of prudent people and
vaccinated people evolving in time: while one trend increases (vaccinated people, i.e.
the yellow line) the other one decreases (prudent people, i.e. the green line) almost
simultaneously; in general, the greater the parameter g and the more pending is the green
line of the prudent people, since g models the rejection of people in adopting self-protective
behaviors if they are vaccinated (see (4.3)).

4.2 Optimization and control
In the above, we have verified that our extended model is able to accurately reproduce
the evolution of the pandemic even during the vaccination campaign. Here, similar to
what we did for the first wave model in chapter 3, we utilize our model calibrated on real
data to seek for an alternative strategy for the government, by investigating the impact
of changing the value of the control function.
In particular, since we have introduced the vaccination decision and payoff Πv

i (t) in (4.1),
we are dealing with 2 control functions: u(u) modeling the government interventions to
sensitize people to take self-protective measures, such as restrictions and lockdowns, and
uv(t) modeling the government interventions to sensitize people to get vaccinated, such
as vaccination campaign or green pass requirement at the restaurant.

4.2.1 The role of the control functions u(t) and uv(t)
It is quite obvious that we may increase these control functions obtaining a very huge
reduction of the number of infections, but exactly as we said for u(t), also for uv(t) it turns
to be unrealistic to increase it too much by applying severe restrictions and furthermore

60



4.2 – Optimization and control

Figure 4.1. Validation of the model with vaccine, related to the the period starting from
27th December 2020 in Italy. The picture on the left shows the trend of our model’s
Z(t) in blue, with its 95% confidence interval (the dotted light blue lines), compared to
real Zr(t) taken from [7]; the green curve on the right describes the fraction of people
adopting self-protective behavior at time t, while the yellow line represents the fraction
of vaccinated people evolving in time.

the government in that months did a lot of vaccination campaign therefore a large increase
in uv(t) would have a difficult interpretation.
Nevertheless, we can think that the government economic and time resources are limited,
meaning that it could be almost impossible to keep high values for both control functions
simultaneously, because it would require a too big effort. For this reason, we could set a
budget constraint which allow us to reasonably maintain the government efforts limited.
Consistently with our calibrated model, where u(t) = uv(t) = 0.5, we set:

u(t) + uv(t) ≤ 1, ∀t = 1,2, . . . , T. (4.7)

As we already have seen in chapter 3, the control function u(t) has the effect of decreasing
the epidemic spread when it increases, and the same stands for the control function uv(t)
concerning the vaccination decision. For this reason we expect that in our model, which
doesn’t consider deeply the economic effects of the pandemic, the optimal choice will be
on the boundary of the feasible set, that is, u(t) + uv(t) = 1.
Furthermore we have to say that the choice to set an upper bound equal to 1 is completely
arbitrary: it seems clever because in the best parameter configuration used to obtain the
curve fitting in Figure 4.1 the control functions were both constant u(t) = uv(t) = 0.5 for
every time instant t in the whole period of study T = 200, hence their sum was equal to
1. We should furthermore remark that u(t) and uv(t) are not bounded a priori, but their
optimal values allow us to think that 1 could be a reasonable upper bound for the sum of
the two.
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Our first goal is to avoid the fraction of infected people Z(t) to have a peak after around
80 days, trying then to stabilize the epidemic spread (or even better to decrease it) rather
than having another outbreak. We tried to change the values of the two control functions,
paying attention to satisfy the budget constraint in (4.7): the results of this study are
shown in Figure 4.2 and in Table 4.2.
The first clear result is that we can’t increase uv(t) (and then decrease u(t)) too early
because the immunization requires some weeks, and lowering the restrictions modeled by
u(t) would have the result of making an explosion of the disease, returning to exert unsus-
tainable pressure and stress for hospital staff (something that we hope to avoid), before
decreasing deeply luckily thanks to the immunization brought by vaccinations.
In the first plot in Figure 4.2, the best curve seems to be the purple one, where u(t) = 0.6
and uv(t) = 0.4: the meaning of this fact is that we should keep an high level of attention
or self-protective behavior while the population is gradually getting vaccinated, otherwise
we would face another outbreak of the epidemic.
Anyway, we should not increase u(t) up to 0.7 because in the first part (let’s say up to
around t = 120) of the left plot in Figure 4.2 the green curve is very similar to the purple
one, while in the final part the purple line goes very low because the immunization due
to the vaccine is having positive effects; in fact, if we focus on the right plot showing the
fraction of vaccinated individuals, we can see that the green line stays quite constant to an
almost-zero value, while the purple line related to u(t) = 0.6 and uv(t) = 0.4 is increasing
fast after an initial low phase. To sum up, it seems that there is an optimal setting of
the two control functions to avoid resurgent outbreaks without delaying too much the
vaccination campaign.

Figure 4.2. Testing different combinations for u(t) and uv(t), related to the the period
starting from 27th December 2020 in Italy.

62



4.2 – Optimization and control

u(t) uv(t) Avg Xi(t) = 1 Avg Vi(t) > 0 Avg Z(t) Max Z(t) Avg D(200)
0.30 0.70 0.1267 0.7394 0.0141 0.0535 6.2 × 10−4

0.40 0.60 0.2326 0.6541 0.0139 0.0472 9.8 × 10−4

0.50 0.50 0.5304 0.4651 0.0138 0.0364 5.8 × 10−4

0.60 0.40 0.9673 0.1544 0.0146 0.0310 7.6 × 10−4

0.70 0.30 0.9929 0.0118 0.0154 0.0303 9.2 × 10−4

Table 4.2. Testing several combinations for u(t) and uv(t).
The first and second columns store the value of u(t) and uv(t) respectively; the third and
fourth columns store respectively the average fraction of population adopting self-protec-
tive behavior (i.e. with Xi(t) = 1) and the average fraction of population vaccinated (i.e.
Vi(t) > 0), calculated over the time horizon T = 200; the fifth column stores the average
fraction of population infected Z(t), calculated over the time horizon T = 200; the sixth
column stores the maximum value of Z(t) over all the time horizon T = 200, which de-
scribes in some way the strain borne by hospitals and intensive care units; the seventh
and last column stores the average among the SIM = 50 simulations of the population
dead at time T = 200.
Each of the nrow × SIM = 5 × 50 = 250 simulations took around 200 seconds to be run,
with a huge total time of more than 17 hours.

4.2.2 Finding an optimal changing point
The results obtained in Table 4.2 allow us to consider as a very good policy the adoption
of u(t) = 0.6 and uv(t) = 0.4 for the NPIs, at least for a first time period in order to avoid
resurgent waves. However, keeping such a high level of NPIs may be sub-optimal, the
risk of a resurgent wave has passed. For this reason, we could be interested in modifying
the values of the control functions by increasing the vaccination campaign effort from a
certain time instant t̃ on, because we noticed in Figure 4.2 how powerful is the vaccine in
preventing contagion.
Similar to what we did for the first wave model in section 3.3.2, we fix t̃ = 100 as a first
changing point, making the control functions to became piecewise constant, i.e.:

u(t) =
I

0.6, t ≤ 100
u, t > 100

, uv(t) =
I

0.4, t ≤ 100
1 − u, t > 100

(4.8)

In Figure 4.3 we show the simulations obtained by setting u = {0.6,0.5,0.4,0.3,0.2} and
generating trajectories with the control functions in (4.8); the numerical results are re-
ported in Table 4.3, but just by looking at the plot in Figure 4.3 it is clear that setting
u = {0.2,0.3,0.4} is a bad choice, because we would have a huge peak of the positive cases
of COVID-19, almost higher than the fraction of infected at the beginning of the studied
time period. On the other hand, keeping u(t) = 0.6 and uv(t) = 0.4 even for t > t̃ = 100
may become the best choice for what concerns the fraction of infected (the left plot in Fig-
ure 4.3), but this configuration would let the vaccination process proceeding very slowly,

63



Model with vaccine

as we can see in the third picture of Figure 4.3.
For these reasons, we think it should be better to re-calibrate the control to u(t) = 0.5
and uv(t) = 0.5 after the changing point, i.e. for t > t̃ = 100: this choice can be an ex-
cellent compromise between the need to vaccinate a large part of the population quickly
(therefore not beyond our time horizon T ) and the goal of not to make the Z(t) curve
which describes the trend of infections day by day rise too high.

Figure 4.3. Testing different combinations for u(t) and uv(t) for t > 100, having fixed
u(t) = 0.6 and uv(t) = 0.4 for t ≤ 100.

Following the same reasoning of section 3.3.2, we could be interested in finding a good
changing point t̃ in which decrease the control function u(t) from 0.6 to 0.5, while increas-
ing simultaneously the vaccination control function uv(t) from 0.4 to 0.5, such that the
vaccination campaign grows faster.

Remember that our first goal was to avoid the peak in the Z(t) trend around t = 100,
which is exactly the changing point we set as default in Figure 4.3, since a too lower value
would not have avoided to have a peak that is difficult to manage for healthcare workers.
We simulated the epidemic dynamic for several choices of changing point, even testing
some t̃ < 100. As we can see in Figure 4.4, to have a changing point t̃ = 100 (the red
line in the plot on the left) is better than have t̃ = 80 (the blue line), because the latter
one dominates almost always the former one from above in the trend of the fraction of
infected Z(t).
For what regards values larger than t̃ = 100, we can see in the left plot of Figure 4.4 that
both the yellow and purple line (i.e. respectively t̃ = 120 and t̃ = 140) have a terminal
value Z(T ) much higher with respect to the red line describing the trend of infected with
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u(t) uv(t) Avg Xi(t) = 1 Avg Vi(t) > 0 Avg Z(t) Max Z(t) D(200)
0.60 0.40 0.9739 0.1343 0.0144 0.0300 7 × 10−4

0.50 0.50 0.7478 0.2454 0.0156 0.0355 6 × 10−4

0.40 0.60 0.6160 0.2654 0.0182 0.0453 7.8 × 10−4

0.30 0.70 0.5610 0.2741 0.0200 0.0530 9.8 × 10−4

0.20 0.80 0.5214 0.3183 0.0190 0.0502 7 × 10−4

Table 4.3. Testing several combinations for u(t) and uv(t) when t > 100, having fixed
u(t) = 0.6 and uv(t) = 0.4 for t ≤ 100.
The first and second columns store the value of u(t) and uv(t) respectively (both are
meant for t > 100); the third and fourth columns store respectively the average fraction of
population adopting self-protective behavior (i.e. with Xi(t) = 1) and the average fraction
of population vaccinated (i.e. Vi(t) > 0), calculated over the time horizon T = 200; the
fifth column stores the average fraction of population infected Z(t), calculated over the
time horizon T = 200; the sixth column stores the maximum value of Z(t) over all the
time horizon T = 200, which describes in some way the strain borne by hospitals and
intensive care units; the seventh and last column stores the average among the SIM = 50
simulations of the population dead at time T = 200.
Each of the nrow × SIM = 5 × 50 = 250 simulations took around 200 seconds to be run,
with a huge total time of almost 14 hours.

t̃ = 100, and nevertheless their fraction of vaccinated at the end of the time period are
(quite obviously) lower than the red one.
Furthermore, we should not to forget that in each time instant t before the changing point
t̃ the NPIs about the self-protective behavior is u(t) = 0.6, that is 20% higher than the
"default" value for the measures adopted in real life at that time; given that, we would
like to have a lockdown as short as possible, therefore we may keep t̃ = 100 as the optimal
changing point because it is a very good compromise.

Finally, we may say that, according to our analysis, we identified as an optimal choice for
the control functions u(t) and uv(t) the following policy:

u(t) =
I

0.6, t ≤ 100
0.5, t > 100

, uv(t) =
I

0.4, t ≤ 100
0.5, t > 100

(4.9)

which combined with the best parameters configuration found in Table 4.1 gives as result
the epidemic trend Z(t) shown in Figure 4.5.
In the very last days before T = 200 the epidemic spread Z(t) is decreasing steadily, even
after a peak much less dangerous than the real one (look at the red line in Figure 4.5),
surely thanks to the vaccination campaign which led almost the whole population to get
vaccinated, with the exception of a 10% of people representing who doesn’t want to get
vaccinated (the so-called no vax).
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Figure 4.4. Searching for an optimal changing point t̃, having fixed u(t) = 0.6 and
uv(t) = 0.4 for t ≤ t̃, and u(t) = 0.5 and uv(t) = 0.5 for t > t̃.

t̃ Avg Xi(t) = 1 Avg Vi(t) > 0 Avg Z(t) Max Z(t) D(200)
80 0.7093 0.2648 0.0157 0.0373 6.6 × 10−4

100 0.7455 0.2640 0.0152 0.0348 7.8 × 10−4

120 0.8144 0.1907 0.0156 0.0343 9.4 × 10−4

140 0.8253 0.1650 0.0156 0.0351 1.1 × 10−3

Table 4.4. Searching for an optimal changing point t̃ for u(t) and uv(t), set u(t) = 0.6
and uv(t) = 0.4 for t ≤ t̃ and u(t) = 0.5 and uv(t) = 0.5 for t > t̃.
The first column stores the time instant of the changing point tested t̃; the second and
third columns store respectively the average fraction of population adopting self-protective
behavior (i.e. with Xi(t) = 1) and the average fraction of population vaccinated (i.e.
Vi(t) > 0), calculated over the time horizon T = 200; the fourth column stores the
average fraction of population infected Z(t), calculated over the time horizon T = 200;
the fifth column stores the maximum value of Z(t) over all the time horizon T = 200,
which describes in some way the hospitals and intensive care units pressure; the last
column stores the average among the SIM = 50 simulations of the population dead at
time T = 200.
Each of the nrow × SIM = 4 × 50 = 200 simulations took around 220 seconds to be run,
with a total time of more than 12 hours.
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Figure 4.5. Epidemic trend simulated by our model with vaccine (blue line) compared
to the real trend (red line) applying the optimal parameters configuration (see Table 4.1)
and control functions like in (4.9).
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Chapter 5

Conclusion and further
research

The need to tackle a global pandemic is certainly a tough challenge for every country, es-
pecially nowadays where every part of the world is highly connected and easily accessible
thanks to the hundreds of planes that travel every day. It is perhaps even more prob-
lematic for Italy, due to its population’s lifestyle, which is always very friendly and which
bases a good part of the day on interpersonal relationships. Developing mathematical
models for epidemics that capture the dynamics that the population follows is therefore
fundamental to be able to forecast the evolution of an epidemic and mitigate its spread,
in particular if it concerns behaviors that directly concern the adoption of protective mea-
sures or vaccination.

In this thesis, we combined the study of people’s behavior, using an approach based
on game theory and the introduction of special payoff functions, with the analysis of the
spread of the COVID-19 epidemic in Italy, both in the period before the administration
of vaccines and after it, thus having two different parameter configurations depending on
the time period studied. The behavior of people is greatly influenced not only by the fear
of epidemics and what happens around them and their loved ones, but also by the regu-
lations imposed by the government of the country in which they live: in our case study,
we analyzed the impact of the restrictions applied by the Italian government during the
emergency of the COVID-19 epidemic in Italy on the behavior of people and consequently
on the spread of the epidemic.
The analysis we have carried out on the control of the function u(t) in chapter 3, and
also uv(t) in the second model with the vaccine in chapter 4, is certainly simplified and
leaves a lot of space for possible future investigations, as well as being limited by the
focus purely sociological and epidemic and almost never considering the economic aspect,
which is instead crucial in the decisions that the government takes for the good of the
nation, but already thanks to the results obtained in this thesis we can suggest that,
in the future, an alternative policy with respect to restrictions that have been applied
during the COVID-19 period could help in limiting not only the number of infections
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(and consequently deaths), but also the very heavy situation of pressure and stress that
all hospital departments, nurses, doctors and all health staff had to endure in those very
difficult months.

Specifically, our framework shows that when the vaccine against the spreading disease is
not yet available, applying stronger restrictions (i.e. our control function u(t), see (3.12))
for an initial short period of time, and subsequently partially uplifting these measures to
a lower value (but without removing them completely), may be more advantageous than
keeping the restrictive measures constant at a medium value over the entire period of
time, as was done during the first wave of COVID-19 in Italy with u(t) = 0.5.
On the other hand, when we are at the beginning of the vaccination campaign, we should
not forget the use of self-protective measures, incurring in the risk for the population to
stop adopting those safety measures because they feel protected enough by the vaccine. As
we all know, it takes long time to vaccinate most of the population, due to limited logistic
and budget capacity (4.7). It seems that it would be better for reducing the epidemic
spread to keep a quite high value for the NPIs related to the self-protective measures (i.e.
our first control function u(t)) at the beginning of the vaccination campaign, and subse-
quently reduce the restrictions while pushing on the vaccination (i.e. by increasing our
second control function uv(t)) with the final goal of immunizing mosto of the population.
The results obtained by our analysis are shown in (4.9), where both the control functions
are reasonable piecewise constant functions, with an optimal changing point t̃ identified
in section 4.2.2.

5.1 Further research
The work of this master’s thesis has been carried out with care and diligence, but it would
be foolish to think that it can be exhaustive for the purpose of a complete learning on
the combined dynamics between population decision-making and the spread of a disease.
In the future, we could certainly expand this work and deepen it by developing other
interesting research. For example, the following are questions that are worth of being
investigated:

• We could think of increasing the population size n to evaluate the scalability of the
model: due to limitations in the computational power, we had to limit ourselves to
consider n = 1000, but obviously increasing the number of individuals in our sample
would have helped to bring the model closer to reality, given that, as we know, about
60 million people live in Italy.

• Not only increasing the population size could be interesting, but also increasing the
time horizon T . In fact, we focused our attention on a short-term analysis, setting
T = 100 for the first wave model and T = 200 for the model with the vaccine instead.
Our goal was to improve the epidemic situation in the short-term when considering
the first COVID-19 wave in Italy, because who lived that months knows how much
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Figure 5.1. Crowd in the center of Rome during COVID-19 pandemic [11] on 30 January
2021, a bit more than one month after the "vax day" [25].

they were hard but we can imagine that they could have been better if the number of
infected people had not been so high, as we can see in the Figure 3.9; increasing the
time horizon T can be very useful to be able to model the second wave of COVID-19,
also trying to apply control to find solutions that stabilize the spread of the disease
at an acceptable and therefore preferably low level.

• Another limitation of our model is the assumption of a homogeneous population,
except for the immediate cost c in (4.1). Actually this is not the reality, because
each individual is different from the others. Just think, for example, of the very first
weeks of vaccination, in which the people who were vaccinated were the oldest and
paradoxically those who had less contact during the day because they did not go
to work like the rest of the adult population. Another equally valid example is the
fact that different people have different jobs, therefore the impact of the restrictive
measures has a different weight on each individual, thus leading us to think that
the accumulation factor γ, modeling people’s long-term frustration, may be hetero-
geneous.
In a future work, it can therefore be very interesting to try to make many parameters
of our model heterogeneous, such as for example the immediate cost c, the accumu-
lation factor γ or also some epidemic parameter (λ, µ, or δ) in order to differentiate
between the population the so-called high-risk people from the low-risk ones, that
is, with the lowest immune defenses or with other previous diseases.

• Another interesting research can be conducted towards artificial intelligence which
nowadays is increasingly pervasive in many areas, thanks to the rapid development
of related technologies: one could therefore think of automating the control over the
functions u(t) and uv(t), by implementing self-learning algorithms in the model to
make the model itself to select the optimal policy on its own, instead of having to
go and study different configurations as we have done in this thesis.
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In conclusion, the research work of this thesis helped investigating the interactions between
the decision-making processes that each individual carries out, perhaps even unconsciously,
and the spread of the COVID-19 epidemic.
We have used our modeling approach to highlight how government intervention with
specific laws or restrictive measures has an impact on people’s behavior, and consequently
inevitably also on the spread of the disease. Our analysis therefore could be useful to create
preparedness in the future in the unfortunate case in which new waves of COVID-19 or a
new pandemic ever breaks out.
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Appendix A

MATLAB code

A.1 Watts-Strogatz function
Function to create a Watts-Strogatz graph, introduced in section 2.2.2, taken from [16].
We used a Watts-Strogatz graph to create the influence layer for both models with and
without the introduction of the vaccination decision.

1 % Copyright 2015 The MathWorks , Inc.
2
3 function h = WattsStrogatz (N,K,beta)
4 % H = WattsStrogatz (N,K,beta) returns a Watts - Strogatz model graph with N
5 % nodes , N*K edges , mean node degree 2*K, and rewiring probability beta.
6 % beta = 0 is a ring lattice , and beta = 1 is a random graph.
7
8 % Connect each node to its K next and previous neighbors . This constructs
9 % indices for a ring lattice .

10 s = repelem ((1:N)’,1,K);
11 t = s + repmat (1:K,N ,1);
12 t = mod(t-1,N)+1;
13
14 % Rewire the target node of each edge with probability beta
15 for source =1:N
16 switchEdge = rand(K, 1) < beta;
17
18 newTargets = rand(N, 1);
19 newTargets ( source ) = 0;
20 newTargets (s(t== source )) = 0;
21 newTargets (t(source , ~ switchEdge )) = 0;
22
23 [~, ind] = sort(newTargets , ’descend ’);
24 t(source , switchEdge ) = ind (1: nnz( switchEdge ));
25 end
26
27 h = graph(s,t);
28 end
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A.2 Payoff function for the model without vaccine

The following is our implementation of the payoff function (3.5) for the self-protective
behavior decision-process (3.6), introduced in section 3.1.1 for the first model without
vaccine, related to the first wave of COVID-19 spreading in Italy.

1 % Payoff function for the self - protective decision process
2
3 function Pi = Payoff (i,t)
4 %we compute tha payoff for individual i at time instant t
5
6 global N
7 global K
8 global state
9 global influence_layer

10 global u
11 global c
12 global accumulation
13 global k
14 global degree
15
16 one = 0;
17 three = 0;
18 count = 0; % counter for breaking the for cycle when count = degree (i)
19 for j = 1:K*N
20 if influence_layer (j ,1) == i
21 one = one + (1- state (1, influence_layer (j ,2) ,1));
22 three = three + state (1, influence_layer (j ,2) ,1);
23 count = count +1;
24 elseif influence_layer (j ,2) == i
25 one = one + (1- state (1, influence_layer (j ,1) ,1));
26 three = three + state (1, influence_layer (j ,1) ,1);
27 count = count +1;
28 end
29 if count == degree (i)
30 break
31 end
32 end
33
34 one = one/ degree (i); %first term of Pi0
35 two = u(t); % second term of Pi0
36 three = three/ degree (i); %first term of Pi1
37 four = k*sum(state (2 ,: ,1)==1)/N; %r(t), second term of Pi1
38 five = c + accumulation (i); %third term of Pi1
39
40 Pi = (three+four -five) - (one -two ); % Pi = Pi1 - Pi0
41
42 end

78



A.3 – Payoff function for the model with vaccine

A.3 Payoff function for the model with vaccine
The following is our implementation of a single payoff function which includes both the
payoff for the self-protective behavior decision-process (4.3) and the one for the vaccination
decision (4.1), designed for the model with vaccine in chapter 4. Which decision to take is
indicated by inserting a binary flag in the values that the function takes as input, together
with the individual i and the time instant t.

1 % Payoff function for the vaccine model
2
3 function Pi = Payoff_vax (i,t,flag)
4 % compute the payoff for individual i at time instant t
5 %the flag is a binary value which determines whether we need to compute
6 %the payoff for the self - protective behavior decision (flag =0) or
7 %the payoff for the vaccination decision (flag =1)
8
9 global N

10 global K
11 global state
12 global influence_layer
13 global u
14 global u_v
15 global c
16 global accumulation
17 global k
18 global degree
19 global g
20 global c1
21 global c2
22 global c3
23 global c4
24
25 if flag == 0 % payoff for the self - protective behaviour
26
27 one = 0;
28 three = 0;
29 count = 0; % counter for breaking the for cycle when count = degree (i)
30 for j = 1:K*N
31 if influence_layer (j ,1) == i
32 one = one + (1- state (1, influence_layer (j ,2) ,1));
33 three = three + state (1, influence_layer (j ,2) ,1);
34 count = count +1;
35 elseif influence_layer (j ,2) == i
36 one = one + (1- state (1, influence_layer (j ,1) ,1));
37 three = three + state (1, influence_layer (j ,1) ,1);
38 count = count +1;
39 end
40 if count == degree (i)
41 break
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42 end
43 end
44
45 one = one /( sum(sum( influence_layer ==i))); %first term of Pi0
46 two = u(t); % second term of Pi0
47 three = three /( sum(sum( influence_layer ==i))); %first term of Pi1
48 four = k*sum(state (2 ,: ,1)==1)/N; %r(t), second term of Pi1
49 five = c + accumulation (i); %third term of Pi1
50
51 % Payoff (i,t ,1) (Pi = Pi1 - Pi0)
52 Pi = (three+four -five) - (one -two) - g*state (3,i ,1);
53 %g is the parameter introduced in this new version of the payoff function
54
55 else % payoff for the vaccination decision
56
57 % reaction to the epidemic diffusion
58 one_v = c1*sum(state (2 ,: ,1)==1)/N;
59
60 three_v = 0;
61 four_v = 0;
62
63 % influence ( positive or negative ) from the influence layer
64 count = 0; % counter for breaking the for cycle when count = degree (i)
65 for j = 1:K*N
66 if influence_layer (j ,1) == i
67 three_v = three_v + (1- min (1, state (3, influence_layer (j ,2) ,1)));
68 four_v = four_v + min (1, state (3, influence_layer (j ,2) ,1));
69 count = count +1;
70 elseif influence_layer (j ,2) == i
71 three_v = three_v + (1- min (1, state (3, influence_layer (j ,1) ,1)));
72 four_v = four_v + min (1, state (3, influence_layer (j ,1) ,1));
73 %i have to compute min (1,_) because I need 0 or 1, not 2.
74 count = count +1;
75 end
76 if count == degree (i)
77 break
78 end
79 end
80
81 three_v = three_v /( sum(sum( influence_layer ==i)));
82 four_v = four_v /( sum(sum( influence_layer ==i)));
83
84 %fear of collateral effects of the vaccine
85 five_v = (1-( sum(state (3 ,: ,1) >0)/N)).* exp(-c3*( sum(state (3 ,: ,1) >0)/N));
86
87 % frustration function
88 six_v = accumulation (i);
89
90 % immediate heterogeneous cost of vaccination
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91 seven_v = c4(i);
92
93 %non - pharmaceutical intervention ( control function )
94 eight_v = u_v(t);
95
96 % Payoff for the vaccination decision
97 Pi = one_v + two_v + c2*( four_v - three_v ) - five_v + six_v - seven_v + eight_v ;
98
99 end

100
101 end

A.4 Model without vaccine: calibration and valida-
tion

In this section we report the MATLAB code used to calibrate and validate the first wave
model of chapter 3, applying a grid optimization for the parameters λ, µ, δ, c, γ, k.
We obtained the results in Table 3.1 by running several times the following code, testing
different combinations for the model’s parameters. Depending on how much the grid of
values we want to investigate is dense, the matrix sse_matrix can be bigger or smaller.
At line 74 and 78 we use the function csvimport [1] to import the real Italian data from
the dataset in [7].

1 clc
2 clear all
3 close all
4
5 %%% In this model we have several health states :
6 %%% 0 = S Susceptible
7 %%% 1 = I Infected
8 %%% 2 = R " Removed " (after being recovered , you are immune for some days)
9 %%% 3 = D Dead

10
11 tic % evaluate time
12
13 global N
14 global K
15 global T
16 global beta
17 global state
18 global influence_layer
19 global degree
20
21 N = 1000; % population size
22 T = 200; %time horizon T
23 K = 5; % number of neighboors connected to each node
24 beta = 0.15; % probability for changing a link in the WattStrogatz graph
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25
26 state = zeros (2,N ,2); %state of the individual : decision and health state
27 %we can collect only 2 time steps and update it at every step , instead of
28 % having a big matrix of dimensions (2,N,T).
29 state (2 ,1 ,1) = 1; %we start with the only individual number 1 infected
30 %the decision is 0 (risky) or 1 (safe ). the health state could be 0
31 %( Supsectible ), 1 ( Infected ), 2 ( Removed ) or 3 (Death)
32
33 initial_graph = WattsStrogatz (N,K,beta ); % initial influence graph
34 influence_layer = table2array ( initial_graph .Edges ); % influence layer
35 degree = zeros (1,N); % degree of node i in the influence_layer
36 for i = 1:N
37 degree (i) = sum(sum( influence_layer ==i)); % calculate the degree
38 end
39
40 % The contact_layer is composed by half of the influence layer ,
41 %which never change . The other half is varying random at each
42 % time step. Then the number of total contacts is 2*K*N.
43 contact_layer = zeros (2*K*N ,2); %the contact layer is varying in time
44 contact_layer (1:K*N ,:) = influence_layer (: ,:); %first half
45
46 % global variables , used in the other functions
47 global u
48 global c
49 global gamma
50 global accumulation
51 global k
52
53 % vector that calculates the diffusion of the infected
54 z_evaluated = zeros (1,T);
55 % vector that calculates the fraction of death
56 death_rate = zeros (1,T);
57 u = @(t) 0.75*(t <=30) + 0.3*(t >30); % nonpharmaceutical interventions (NPIs)
58 accumulation = zeros (1,N); % accumulation block for frustration function
59 %c = 0.5; % immediate cost for function f. c >=0
60 %gamma = 0.5; % accumulation factor for function f. 0<=gamma <=1
61 % lambda = 0.012; %per - contact infection probability . 0<= lambda <=1
62 %mu = 0.2; % recover probability . 0<mu <=1
63 %delta = 0.01; %death probability for an infected individual
64 phi = 0; % probability for an R to re - become S (0 for first wave)
65 sigma = 0.5; % effectiveness of self - protective behaviour . 0<=sigma <=1
66 ratio = 6; % rationality : in the paper it was beta.
67 detection_rate = 0.07; % detection rate: not every positive has been founded
68 DD = 14; % detection_delay taken from the paper: in Italy we go from 9 to 14
69
70
71 % Import the real data from Italy. The vector Z contains the real number of
72 % positive people ( infected I) day by day , while the vector D contains the
73 %Death people in Italy day by day since 24/02/2020 until 02/06/2022.
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74 [Z,D] = csvimport (’Andamento_Nazionale_Italia .csv ’, ...
75 ’columns ’,{’totale_positivi ’, ’deceduti ’});
76 Z = Z /(60000000); % italian population is 60 mln
77 D = D /60000000; % italian population is 60 mln
78 [Guariti , totale_casi ] = csvimport (’Andamento_Nazionale_Italia .csv ’, ...
79 ’columns ’, {’dimessi_guariti ’, ’totale_casi ’});
80
81
82 %%% Simulation
83
84 sse_matrix = zeros (1*1*1*1 ,9); % matrix to be populated with square errors
85 %the 9 columns of sse_matrix are:
86 % lambda , mu , delta , c, gamma , k, time , sse_infected , sse_dead
87
88 % Try different configurations of the parameters using neasted for cycle
89 % (lambda , mu , delta , c, gamma , r1 , delta , ratio)
90 for index1 = 1:1
91 delta = 0.003; %delta
92 lambda = 0.007;
93 mu = 0.14; %mu
94 for index2 = 1:1
95 c = 0.5; %c immediate cost
96 for index3 = 1:1
97 gamma = 0.25;% accumulation factor gamma
98 for index4 = 1:1
99 k = 12; % scaling factor k

100
101 % create a matrix for saving the errors in different
102 % simulations using the same configuration
103 SIM = 1;
104 montecarlo = zeros (3, SIM ); %sse_I and sse_D
105 montecarlo_I = zeros (2,SIM ,T); % fraction and sse_I for every sim
106 montecarlo_D = zeros (2,SIM ,T); % fraction and sse_D for every sim
107 montecarlo_avgI = zeros(SIM ,T); %for storing the average of simulations
108 montecarlo_avgD = zeros(SIM ,T); %for storing the average of simulations
109 average_sse = zeros (1 ,2); %for calculating next the sse of the average path
110 %(in the first cell the sse_I , in the second the sse_D)
111 prudent_people = zeros(SIM ,T); % fraction of people adopting decision 1
112
113 hbar= waitbar (0,’’,’Name ’,’Iterazioni ’);
114 for sim = 1: SIM
115 waitbar (sim/SIM ,hbar , sprintf (’sim = %d / %d’,sim ,SIM ));
116
117 tic % evaluate the simulation time
118
119 %need to reinitialize the state matrix for each parameters configuration
120 state = zeros (2,N ,2); %state of the individual : decision and health state
121 state (2 ,1 ,1) = 1; %we always start with the only individual number 1 infected
122
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123 for t = 1:T-1 %in t=1 there is the initial state
124 %fill montecarlo matrices : in 1 the fraction of spread , in 2 the sse
125 montecarlo_I (1,sim ,t) = sum(state (2 ,: ,1)==1)/N;
126 montecarlo_D (1,sim ,t) = sum(state (2 ,: ,1)==3)/N;
127 montecarlo_I (2,sim ,t) = ...
128 ((Z(t+DD)/ detection_rate )- montecarlo_I (1,sim ,t))^2;
129 montecarlo_D (2,sim ,t) = (D(t+DD)- montecarlo_D (1,sim ,t))^2;
130 prudent_people (sim ,t) = sum(state (1 ,: ,1)==1); %count the prudent people
131 % update matrix for calculating the average : this is useful until last
132 %sim , because in the last we must enter the If in the simulation that
133 % calculates the sse_I and sse_D of the average path.
134 montecarlo_avgI (sim ,t) = montecarlo_I (1,sim ,t);
135 montecarlo_avgD (sim ,t) = montecarlo_D (1,sim ,t);
136 % calculate the sse of the mean path
137 if sim == SIM
138 average_sse (1) = average_sse (1) + ...
139 ((Z(t+DD)/ detection_rate )-mean( montecarlo_avgI (:,t )))^2;
140 average_sse (2) = average_sse (2) + ...
141 (D(t+DD)-mean( montecarlo_avgD (:,t )))^2;
142 end
143
144 %fill in the random contacts in the second half of the contact_layer
145 for j = K*N+1:2*K*N
146 %take two random integers between 1 and N
147 contact_layer (j ,:) = randperm (N ,2);
148 end
149
150 for i = 1:N %for each individual
151
152 % update recursively the accumulation for the frustration function
153 accumulation (i) = gamma *( accumulation (i) + c*state (1,i ,1));
154 % stochastic decision for adopting protective measures
155 % Payoff_matrix (i,t) = Payoff (i,t);
156 if rand (1) < (exp(ratio* Payoff (i,t))/( exp(ratio* Payoff (i,t ))+1))
157 state (1,i ,2) = 1; % behave prudent
158 else
159 state (1,i ,2) = 0; % behave not prudent
160 end
161
162 % compute the number of infected contacts for current individual i
163 N_i = 0; % initialization
164 for j = 1:2*K*N
165 if ( contact_layer (j ,1)==i && state (2, contact_layer (j ,2) ,1)==1) || ...
166 ( contact_layer (j ,2)==i && state (2, contact_layer (j ,1) ,1)==1)
167 N_i = N_i + 1;
168 end
169 end
170
171 %%% epidemic dynamics :

84



A.4 – Model without vaccine: calibration and validation

172 % infection
173 if state (2,i ,1)==0
174 if (rand (1) <(1 - sigma*state (1,i ,2))*(1 -(1 - lambda )^( N_i )) || rand (1) <1/N)
175 state (2,i ,2) = 1; % infected (by contact or by external reasons )
176 end
177 % recovery
178 elseif state (2,i ,1)==1 && t>1 && rand (1)<mu
179 state (2,i ,2) = 2; % recover
180 %death
181 if rand (1)< delta
182 state (2,i ,2) = 3; %dead
183 end
184 %an R returns to be Supsectible (this is useful for the second model)
185 elseif state (2,i ,1)==2 && rand (1)< phi
186 state (2,i ,2) = 0; %again Supsectible
187 else
188 state (2,i ,2) = state (2,i ,1);
189 end
190 end
191 state (: ,: ,1) = state (: ,: ,2); % update state for the next time step
192 end %end t
193
194 % Calculate Z,D and sse for the montecarlo in the last time step T
195 montecarlo_I (1,sim ,T) = sum(state (2 ,: ,1)==1)/N;
196 montecarlo_D (1,sim ,T) = sum(state (2 ,: ,1)==3)/N;
197 montecarlo_I (2,sim ,T) = ((Z(T+DD)/ detection_rate )- montecarlo_I (1,sim ,T))^2;
198 montecarlo_D (2,sim ,T) = (D(T+DD)- montecarlo_D (1,sim ,T))^2;
199 montecarlo_avgI (sim ,T) = montecarlo_I (1,sim ,T);
200 montecarlo_avgD (sim ,T) = montecarlo_D (1,sim ,T);
201 % for the last step T, we copy the prudent people value at step T -1. This
202 % method for missing data is called Last Observation Carried Forward (LOCF)
203 prudent_people (sim ,T) = prudent_people (sim ,T -1);
204 % calculate the sse of the average path at step T
205 if sim == SIM
206 average_sse (1) = average_sse (1) + ...
207 ((Z(T+DD)/ detection_rate )-mean( montecarlo_avgI (:,T )))^2;
208 average_sse (2) = average_sse (2) + ...
209 (D(T+DD)-mean( montecarlo_avgD (:,T )))^2;
210 end
211
212 montecarlo (1, sim) = toc;
213 montecarlo (2, sim) = sum( montecarlo_I (2,sim ,:));
214 montecarlo (3, sim) = sum( montecarlo_D (2,sim ,:));
215 end %end for the SIM
216 close(hbar)
217 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,1) = lambda ;
218 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,2) = mu;
219 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,3) = delta;
220 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,4) = c;
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221 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,5) ...
222 = gamma;
223 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,6) = k;
224 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,7) ...
225 = mean( montecarlo (1 ,:));
226 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,8) ...
227 = average_sse (1);
228 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,9) ...
229 = average_sse (2);
230 %we saved the average of the simulations and we calculated the sse
231 %of the average path (not the average of the sse ).
232
233 % calculate the mean along the first dimension
234 z_evaluated (1 ,:) = mean( montecarlo_avgI (: ,:) ,1);
235 death_rate (1 ,:) = mean( montecarlo_avgD (: ,:) ,1);
236
237 standard_devI = std( montecarlo_avgI ,0 ,1); % standard deviation
238 range_I = zeros (2,T);
239 % compute the confidence intervals
240 range_I (1 ,:) = z_evaluated (1 ,:) + ( standard_devI * norminv (0.025))/ sqrt(SIM );
241 range_I (2 ,:) = z_evaluated (1 ,:) + ( standard_devI * norminv (0.975))/ sqrt(SIM );
242
243 average_prudent_people (1 ,:) = mean( prudent_people (: ,:) ,1);
244 end
245 end
246 end
247 end
248
249
250 %% PLOTS
251 figure
252 gr = tiledlayout (1 ,3);
253 title(gr ," Epidemic Plots ")
254 x = 1:1:T;
255
256 %first plot: fraction of infected Z(t)
257 nexttile
258 hold on
259 title (" Fraction of Infected people Z(t)")
260 plot(x, z_evaluated (1:T),’LineWidth ’ ,1.3)
261 xlabel (" time ")
262 ylabel (" fraction of population ")
263 plot(x,Z(1+ DD:T+DD)/ detection_rate ,’LineWidth ’ ,1.3)
264 xlabel (" time ")
265 ylabel (" fraction of population ")
266 plot(x, range_I (1,:),’b--’)
267 xlabel (" time ")
268 ylabel (" fraction of population ")
269 plot(x, range_I (2,:),’b--’)
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270 xlabel (" time ")
271 ylabel (" fraction of population ")
272 legend (" model Z(t)"," real Z_r(t)")
273 hold off
274
275 % second plot: fraction of prudent
276 nexttile
277 hold on
278 title (" Fraction of prudent people (X_i(t) = 1)")
279 plot(x,( average_prudent_people (1 ,:))/N, "g",’LineWidth ’ ,1.3)
280 xlabel (" time ")
281 ylabel (" fraction of population ")
282 hold off
283
284 %third plot: fraction of deaths D(t)
285 nexttile
286 hold on
287 title (" Fraction of Dead people D(t)")
288 plot(x, death_rate (1:T),’LineWidth ’ ,1.3)
289 xlabel (" time ")
290 ylabel (" fraction of population ")
291 plot(x,D(1:T),’LineWidth ’ ,1.3)
292 xlabel (" time ")
293 ylabel (" fraction of population ")
294 legend (" model D(t)"," real D_r(t)")
295 hold off
296
297 toc % evaluate total time

A.5 Model without vaccine: control
In section 3.3 we investigated the role of the control function u(t), representing the non-
pharmaceutical interventions that government may impose during everyday life. The
following script has been used to evaluate the impact of alternative policies, obtaining the
results shown in Figure 3.4, Figure 3.5, Figure 3.6, Figure 3.7 and Figure 3.8.
Furthermore, the matrix find_policy in the following code is exactly what is shown in
Table 3.2 and Table 3.3, by testing appropriate values for u(t).

1 clc
2 clear all
3 close all
4
5 %%% In this model we have several health states :
6 %%% 0 = S Susceptible
7 %%% 1 = I Infected
8 %%% 2 = R " Recovered " (after being recovered , you are immune for some days)
9 %%% 3 = D Dead

10
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11 tic % evaluate time
12
13 global N
14 global K
15 global T
16 global beta
17 global state
18 global influence_layer
19 global degree
20
21 N = 1000; % population size
22 T = 200; %time horizon T
23 K = 5; % number of neighboors connected to each node
24 beta = 0.15; % probability for changing a link in the WattStrogatz graph
25
26 state = zeros (2,N ,2); %state of the individual : decision and health state
27 %we can collect only 2 time steps and update it at every step , instead of
28 % having a big matrix of dimensions (2,N,T).
29 state (2 ,1 ,1) = 1; %we start with the only individual number 1 infected
30 %the decision is 0 (risky) or 1 (safe ). the health state could be 0
31 %( Supsectible ), 1 ( Infected ), 2 ( Removed ) or 3 (Death)
32
33 initial_graph = WattsStrogatz (N,K,beta ); % initial influence graph
34 influence_layer = table2array ( initial_graph .Edges ); % influence layer
35 degree = zeros (1,N); % degree of node i in the influence_layer
36 for i = 1:N
37 degree (i) = sum(sum( influence_layer ==i)); % calculate the degree
38 end
39
40 % The contact_layer is composed by half of the influence layer ,
41 % which never change . The other half is varying random at each
42 % time step. Then the number of total contacts is 2*K*N.
43 contact_layer = zeros (2*K*N ,2); %the contact layer is varying in time
44 contact_layer (1:K*N ,:) = influence_layer (: ,:); %first half of contact_layer
45
46 % global varialbes
47 global u
48 global c
49 global gamma
50 global accumulation
51 global k
52
53 z_evaluated = zeros (1,T); % vector for the diffusion of the infected
54 death_rate = zeros (1,T); % vector for the fraction of death
55 accumulation = zeros (1,N); % accumulation factor for the frustration function
56 %we put phi = 0 for the first wave
57 phi = 0; % probability for an R to re - become S
58 sigma = 0.5; % effectiveness of self - protective behaviour . 0<=sigma <=1
59 ratio = 6; % rationality : in the paper it was beta.
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60 detection_rate = 0.07; % detection rate: not every positive has been founded
61 DD = 14; % detection_delay taken from the paper: in Italy we go from 9 to 14
62
63 % Import the real data from Italy. The vector Z contains the real number of
64 % positive people ( infected I) day by day , while the vector D contains the
65 % Death people in Italy day by day since 24/02/2020 until 02/06/2022.
66 [Z,D] = csvimport (’Andamento_Nazionale_Italia .csv ’, ’columns ’ ,...
67 {’totale_positivi ’, ’deceduti ’});
68 Z = Z /(60000000); % italian population is 60 mln
69 D = D /60000000; % italian population is 60 mln
70 [Guariti , totale_casi ] = csvimport (’Andamento_Nazionale_Italia .csv ’ ,...
71 ’columns ’, {’dimessi_guariti ’, ’totale_casi ’});
72
73 %%
74 %%% SIMULATION
75
76 cases = 4; %how many u(t) to evaluate
77
78 plot_matrix_I = zeros(cases ,T); % matrix for store all the simulations
79 plot_matrix_D = zeros(cases ,T); % matrix for store all the simulations
80 plot_matrix_yes = zeros(cases ,T); % matrix for store all the simulations
81 %(in each row there is the average among all sim of the same configuration )
82
83 find_policy = zeros(cases ,6); % matrix that aims to find the optimal policy
84 % evaluating different values of u(t)
85
86 % we fix a configuration and test several u(t)
87 %fixed parameters (the best configuration found for the first model)
88 delta = 0.003; %delta
89 lambda = 0.007; % lambda
90 mu = 0.14; %mu
91 c = 0.5; %c
92 gamma = 0.25; %gamma
93 k = 12; %k
94
95 for index = 1: cases %index for u(t)
96
97 %non pharmaceutical interventions (NPI)
98 u = @(t) 0.75*(t <=(10+ index *10)) + 0.3*(t >(10+ index *10));
99 %u = @(t) 0.4+0.05* index;

100 save_u = (10+ index *10); %u to save in the matrix later
101
102 SIM = 50; % simulations for every u(t)
103
104 model_I = zeros(SIM ,T);
105 model_D = zeros(SIM ,T);
106 model_yes = zeros(SIM ,T);
107 simtime = 0; % variable for calculate the time of simulations
108
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109 for sim = 1: SIM
110 tic % evaluate the simulation time
111
112 %need to reinitialize the state matrix for each configuration
113 state = zeros (2,N ,2); %state of individual : decision and health state
114 state (2 ,1 ,1) = 1; %start with the individual number 1 infected
115
116 for t = 1:T-1 %in t=1 there is the initial state
117
118 model_I (sim ,t) = sum(state (2 ,: ,1)==1)/N; %count the infected people
119 model_D (sim ,t) = sum(state (2 ,: ,1)==3)/N; %count the deaths
120 model_yes (sim ,t) = sum(state (1 ,: ,1)==1)/N; %count the prudent people
121
122 for j = K*N+1:2*K*N % random contacts in the 2nd half of contact_layer
123 %take two random integers between 1 and N
124 contact_layer (j ,:) = randperm (N ,2);
125 end
126
127 for i = 1:N %for each individual
128
129 % compute the number of infected contacts for current individual i
130 N_i = 0; % initialization
131 for j = 1:2*K*N
132 if ( contact_layer (j ,1)==i && state (2, contact_layer (j ,2) ,1)==1) || ...
133 ( contact_layer (j ,2)==i && state (2, contact_layer (j ,1) ,1)==1)
134 N_i = N_i + 1;
135 end
136 end
137
138 % update the accumulation for the frustration function recursively
139 accumulation (i) = gamma *( accumulation (i) + c*state (1,i ,1));
140 % stochastic decision for adopting self - protective measures
141 if rand (1) < (exp(ratio* Payoff (i,t))/( exp(ratio* Payoff (i,t ))+1))
142 state (1,i ,2) = 1; % behave prudent
143 else
144 state (1,i ,2) = 0; % behave not prudent
145 end
146
147 % epidemic dynamics :
148 % infection
149 if state (2,i ,1)==0
150 if (rand (1) <(1 - sigma*state (1,i ,2))*(1 -(1 - lambda )^( N_i )) || rand (1) <1/N)
151 state (2,i ,2) = 1; % infected (by contact or by external people )
152 end
153 % recovery
154 elseif state (2,i ,1)==1 && t>1 && rand (1)<mu
155 state (2,i ,2) = 2; % recover
156 %death
157 if rand (1)< delta

90



A.5 – Model without vaccine: control

158 state (2,i ,2) = 3; %dead
159 end
160 %an R returns to be Supsectible (this is for the second model)
161 elseif state (2,i ,1)==2 && rand (1)< phi
162 state (2,i ,2) = 0; %again Supsectible
163 else
164 state (2,i ,2) = state (2,i ,1);
165 end
166 end
167 state (: ,: ,1) = state (: ,: ,2); % update state for the next time step
168 end %end t
169
170 model_I (sim ,T) = sum(state (2 ,: ,1)==1)/N;
171 model_D (sim ,T) = sum(state (2 ,: ,1)==3)/N;
172 % for the last step T, we copy the prudent people value at step T -1.
173 model_yes (sim ,T) = model_yes (sim ,T -1);
174
175 simtime_single = toc;
176 simtime = simtime + simtime_single ; % evaluate time
177 end %end for the SIM
178
179 find_policy (index ,1) = save_u ; %store the value of u
180 find_policy (index ,2) = simtime /SIM; % average time for 1 simulation
181 find_policy (index ,3) = mean(mean( model_yes (: ,:))); % average prudent people
182 find_policy (index ,4) = mean(mean( model_I (: ,:))); % average infected people
183 find_policy (index ,5) = mean(max( model_I (: ,:) ,[] ,2)); %mean of max infected
184 find_policy (index ,6) = mean( model_D (:,T)); % average death people at T.
185
186 plot_matrix_I (index ,:) = mean( model_I (: ,:) ,1);
187 plot_matrix_D (index ,:) = mean( model_D (: ,:) ,1);
188 plot_matrix_yes (index ,:) = mean( model_yes (: ,:) ,1);
189
190 end
191
192 toc % evaluate total time
193
194 %% PLOTS
195 figure
196 gr = tiledlayout (1 ,3);
197 title(gr ," Epidemic Plots ")
198 x = 1:1:T;
199
200 %plot of infected Z(t)
201 nexttile
202 hold on
203 title (" Fraction of Infected people Z(t)")
204 xlabel (" time ")
205 ylabel (" fraction of population ")
206 legend
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207 for p = 1: cases
208 %plot(x, plot_matrix_I (p ,1:T),’ DisplayName ’ ,...
209 %[’u(t)= {0.75 (t <=100) , ’,num2str (0.22+ p*0.02) , ’ (t >100)} ’] ,...
210 %’LineWidth ’ ,1.1)
211 plot(x, plot_matrix_I (p ,1:T),’DisplayName ’ ,...
212 [’Changing point: t=’,num2str (10+p*10) , ’.’],’LineWidth ’ ,1.1)
213 %plot(x, plot_matrix_I (p ,1:T),’ DisplayName ’ ,...
214 %[’u(t)= ’,num2str (0.4+0.05* p),’.’],’ LineWidth ’ ,1.1)
215 end
216 plot(x,Z(1+ DD:T+DD)/ detection_rate ,"k--",’DisplayName ’,’real Z_r(t)’)
217 xlabel (" time ")
218 ylabel (" fraction of population ")
219 hold off
220
221 %plot of people adopting self - protective behavior
222 nexttile
223 hold on
224 title (" Fraction of prudent people (X_i(t) = 1)")
225 legend (’Location ’,’southeast ’)
226 for p = 1: cases
227 %plot(x, plot_matrix_yes (p,:),’ DisplayName ’ ,...
228 %[’u(t)= {0.75 (t <=100) , ’,num2str (0.22+ p*0.02) , ’ (t >100)} ’] ,...
229 %’LineWidth ’ ,1.1)
230 plot(x, plot_matrix_yes (p ,1:T),’DisplayName ’ ,...
231 [’Changing point: t=’,num2str (10+p*10) , ’.’],’LineWidth ’ ,1.1)
232 %plot(x, plot_matrix_yes (p,:),’ DisplayName ’ ,...
233 %[’u(t)= ’,num2str (0.4+0.05* p),’.’],’ LineWidth ’ ,1.1)
234 xlabel (" time ")
235 ylabel (" fraction of population ")
236 end
237 % legend (" model prudent people ")
238 hold off
239
240 %plot of the fraction of deaths
241 nexttile
242 hold on
243 title (" Fraction of Dead people D(t)")
244 xlabel (" time ")
245 ylabel (" fraction of population ")
246 legend (’Location ’,’northwest ’)
247 for p = 1: cases
248 %plot(x, plot_matrix_D (p ,1:T),’ DisplayName ’ ,...
249 %[’u(t)= {0.75 (t <=100) , ’,num2str (0.22+ p*0.02) , ’ (t >100)} ’] ,...
250 %’LineWidth ’ ,1.1)
251 plot(x, plot_matrix_D (p ,1:T),’DisplayName ’ ,...
252 [’Changing point: t=’,num2str (10+p*10) , ’.’],’LineWidth ’ ,1.1)
253 %plot(x, plot_matrix_D (p ,1:T),’ DisplayName ’ ,...
254 %[’u(t)= ’,num2str (0.4+0.05* p),’.’],’ LineWidth ’ ,1.1)
255 end
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256 plot(x,D(1:T),"k--",’DisplayName ’,’real D_r(t)’)
257 hold off

A.6 Model with vaccine: calibration and validation
In this section we report the MATLAB code used to calibrate and validate the model with
the vaccination dynamic of chapter 4, applying a grid optimization for all the parameters
that we need to calibrate.
We obtained the results in Table 4.1 by running several times the following code, testing
different combinations for the epidemic and model’s parameters. Depending on how much
the grid of values we want to investigate is dense, the matrix sse_matrix can be bigger
or smaller.
At line 80 we use the function csvimport [1] to import the real Italian data from the
dataset in [7], exactly as we did for the model without vaccine in section A.4.

1 clc
2 clear all
3 close all
4
5 %%% In this model we have several health states :
6 %%% 0 = S Susceptible
7 %%% 1 = I Infected
8 %%% 2 = R " Recovered " (after being recovered , you are immune for some days)
9 %%% 3 = D Dead

10
11 %%% We have two decision processes : one decide wether to adopt or not to
12 %%% adopt safety measures , and one to decide wether to get vaccinated or not.
13
14 tic % evaluate time
15
16 % global variables useful for the functions
17 global N
18 global K
19 global T
20 global beta
21 global state
22 global degree
23 global influence_layer
24 global u
25 global u_v
26 global c
27 global gamma
28 global accumulation
29 global g
30 global k
31
32 % NETWORK PARAMETERS
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33 N = 1000; % population size n
34 T = 200; %time horizon T
35 K = 5; % number of neighboors connected to each node in influence layer
36 beta = 0.15; % probability for changing a link in the WattStrogatz graph
37
38 % STATE MATRIX & NETWORK LAYERS :
39 % 1-first line decision x_i. The decision is 0 (risky) or 1 (safe ).
40 % 2- second line health state S,I,(IV),R,D. The health state could be:
41 % 0 ( Supsectible ), 1 ( Infected ), 2 ( Recovered ) or 3 (Death ).
42 % 3-third line vaccination decision v_i
43 state = zeros (3,N ,2); %state of the individual : decision and health state
44 %we add a third line in the state matrix : it is for the vaxination . It will
45 %be 0 if novax , 1 if sivax. If it is 1 it can ’t return to 0, but if it ’s 1
46 %it will surely go to 2
47 %we can collect only 2 time steps and update it at every step , instead of
48 % having a big matrix of dimensions (3,N,T).
49
50 % Influence Layer: we use a WattsStrogatz graph
51 initial_graph = WattsStrogatz (N,K,beta ); % initial influence graph
52 influence_layer = table2array ( initial_graph .Edges ); % influence layer
53 degree = zeros (1,N); % degree of node i in the influence_layer
54 for i = 1:N
55 degree (i) = sum(sum( influence_layer ==i)); % calculate the degree
56 end
57 %The average node degree is 2K.
58
59 % Contact_layer is composed by half of the influence layer ,
60 % The other half is varying random at each time step.
61 % The number of total contacts (rows of the contact_layer ) is indeed 2KN.
62 contact_layer = zeros (2*K*N ,2); %the contact layer is varying in time
63 %the first half of the contact_layer is the influence layer
64 contact_layer (1:K*N ,:) = influence_layer (: ,:);
65
66 z_evaluated = zeros (1,T); % vector for the diffusion of the infected
67 death_rate = zeros (1,T); % vector for the fraction of death
68
69 % MODEL FUNCTIONS AND PARAMETERS
70 u = @(t) 0.6*(t <=100) + 0.5*(t >100); % nonpharmaceutical interventions (NPIs)
71 u_v = @(t) 1-u(t); %green pass and other measures
72 accumulation = zeros (1,N); % accumulation factor for the frustration function
73 ratio = 6; % rationality : in the paper it was beta.
74
75 % EPIDEMIC PARAMETERS
76 % Import the real data from Italy. The vector Z contains the real number of
77 % positive people ( infected I) day by day , while the vector D contains the
78 % Death people in Italy day by day since 24/02/2020 until 02/06/2022.
79 [Z,D,Guariti , totale_casi ] = ...
80 csvimport (’Andamento_Nazionale_Italia .csv ’, ’columns ’ ,...
81 {’totale_positivi ’, ’deceduti ’, ’dimessi_guariti ’, ’totale_casi ’});
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82 Z = Z /(60000000); % italian population is 60 mln
83 D = D /60000000; % italian population is 60 mln
84 detection_rate = 0.4; % detection rate: not every positive has been founded
85 DD = 10; % detection_delay taken from the paper: in Italy we go from 9 to 14
86 mu = 0.14; % recovery probability . We can fix mu =0.14 , i.e. 5 days.
87 phi = 0.1; % probability for an R to re - become S
88 sigma = 0.5; % effectiveness of self - protective behaviour . 0<=sigma <=1
89 alpha = 0.7; % effectiveness of the vaccine . 0<=alpha <=1
90 alpha_2 = 0.5; % protection to death for a vaccinated person
91
92 % PARAMETERS FOR THE VACCINATION PAYOFF FUNCTION
93 global c1
94 global c2
95 global c3
96 global c4
97
98 c1 = 12;
99 c2 = 1.1;

100 c3 = 2; %the bigger , the more fear of the vaccine
101 c4 = [0.5* ones (1,N*0.9) ,1.5* ones (1,N *0.1)]; % eterogeneous immediate cost
102 g = 0.0018;
103
104 % Loading the vectors containing the number of vaccinations
105 load(’V.mat ’);
106 load(’V_tot.mat ’);
107
108 %%
109 %%% SIMULATION
110
111 sse_matrix = zeros (1*1*1*1 ,10); % matrix to be populated with square errors
112 %the 10 columns of sse_matrix are:
113 % lambda , delta , g, c, gamma , k,
114 % time , sse_infected , sse_dead , sse_vaccinated
115
116 % Try different configurations of the parameters
117 for index1 = 1:1
118 g = 0.0018;
119 delta = 0.002; %delta
120 lambda = 0.008; % lambda
121 for index2 = 1:1
122 c = 0.5; %c immediate cost for self - protective behavior
123 for index3 = 1:1
124 gamma = 0.51; %gamma accumulation factor
125 for index4 = 1:1
126 k = 12; %k scaling factor
127
128 % create a matrix for saving the errors in different
129 % simulations using the same configuration
130 SIM = 100; % number of simulations
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131 montecarlo = zeros (3, SIM ); %sse_I and sse_D
132 montecarlo_I = zeros (2,SIM ,T); % fraction and sse_I for every sim
133 montecarlo_D = zeros (2,SIM ,T); % fraction and sse_D for every sim
134 montecarlo_V = zeros (2,SIM ,T); % fraction and sse_V for every sim
135 montecarlo_avgI = zeros(SIM ,T); %for the average of simulations
136 montecarlo_avgD = zeros(SIM ,T); %for the average of simulations
137 montecarlo_avgV = zeros(SIM ,T); %for the average of simulations
138 average_sse = zeros (1 ,3); %for the sse of the average path
139 %(in the first cell the sse_I , in second the sse_D , in third the sse_V)
140 prudent_people = zeros(SIM ,T); % fraction of people adopting decision 1
141 vaccinated_people = zeros(SIM ,T); % fraction of people vaccinated
142
143 hbar= waitbar (0,’’,’Name ’,’Iterazioni ’);
144 for sim = 1: SIM
145 waitbar (sim/SIM ,hbar , sprintf (’sim = %d / %d’,sim ,SIM ));
146 tic % evaluate the simulation time
147
148 %need to reinitialize the state matrix for each parameters configuration
149 %state of the individual : decision prudent , health state , vax state
150 state = zeros (3,N ,2);
151 %On the 27/12/2020 the population infected in Italy was about the 1%
152 %of the total , that means 10 people every 1000 individuals (our n).
153 %But we also have to adjust the number dividing by the detection_rate ,
154 %so we need 10/ detection rate = 24 .
155 state (2, randperm (N ,24) ,1) = 1; % initial health state on 27/12/2020
156 state (1, randperm (N,N),1) = 1; % initial behaviour on 27/12/2020
157
158 Payoff_matrix = zeros(N,T);
159 Payoff_matrix_vax = zeros(N,T);
160
161 for t = 1:T-1 %in t=1 there is the initial state
162
163 %fill montecarlo matrices : in 1 the fraction of spread , in 2 the sse
164 montecarlo_I (1,sim ,t) = sum(state (2 ,: ,1)==1)/N; % infected
165 montecarlo_D (1,sim ,t) = sum(state (2 ,: ,1)==3)/N; % deaths
166 montecarlo_V (1,sim ,t) = sum(state (3 ,: ,1) >0)/N; % vaccinated
167 prudent_people (sim ,t) = sum(state (1 ,: ,1)==1); %count the prudent people
168 vaccinated_people (sim ,t) = sum(state (3 ,: ,1) >0); %count the vaccinated
169 % update matrix for calculating the average : this is useful until last
170 %sim , because in the last we must enter the If in the simulation that
171 % calculates the sse_I , sse_D , sse_V of the average path.
172 montecarlo_avgI (sim ,t) = montecarlo_I (1,sim ,t);
173 montecarlo_avgD (sim ,t) = montecarlo_D (1,sim ,t);
174 montecarlo_avgV (sim ,t) = montecarlo_V (1,sim ,t);
175
176 for j = K*N+1:2*K*N % random contacts in the 2nd half of contact_layer
177 %take two random integers between 1 and N
178 contact_layer (j ,:) = randperm (N ,2);
179 end
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180
181 for i = 1:N %for each individual
182
183 % compute the number of infected contacts for current individual i
184 N_i = 0; % initialization
185 for j = 1:2*K*N
186 if ( contact_layer (j ,1)==i && state (2, contact_layer (j ,2) ,1)==1) || ...
187 ( contact_layer (j ,2)==i && state (2, contact_layer (j ,1) ,1)==1)
188 N_i = N_i + 1;
189 end
190 end
191
192 % update the accumulation for the frustration using recursive formula
193 accumulation (i) = gamma *( accumulation (i) + c*state (1,i ,1));
194
195 % DECISIONS BASED ON GAME THEORY
196 Payoff_matrix (i,t) = Payoff_vax (i,t ,0);
197 % stochastic daily decision for adopting self - protective measures
198 if rand (1) < ...
199 (exp(ratio* Payoff_matrix (i,t))/( exp(ratio* Payoff_matrix (i,t ))+1))
200 state (1,i ,2) = 1; % behave prudent
201 else
202 state (1,i ,2) = 0; % behave not prudent
203 end
204
205 Payoff_matrix_vax (i,t) = Payoff_vax (i,t ,1);
206 % stochastic decision (if v(i) = 0) for getting vaccinated
207 if state (3,i ,1) == 0 && rand (1) < ...
208 (exp(ratio* Payoff_matrix_vax (i,t))/( exp(ratio* Payoff_matrix_vax (i,t ))+1))
209 state (3,i ,2) = 1; %get vaccinated ,
210 % but one has to wait some days in order to receive the
211 %immunity , i.e. becoming 2 instead of 1.
212 elseif state (3,i ,1) == 1 && rand (1) < 1/14 % external infected prob
213 % thanks to the elseif there is no the possibility to be immune
214 %the same day of the vaccination .
215 state (3,i ,2) = 2; % become immune
216 else
217 state (3,i ,2) = state (3,i ,1); % remains unchanged
218 end
219
220 % EPIDEMIC DYNAMICS
221 % infection without vaccine protection
222 if state (2,i ,1)==0 && state (3,i ,1) <2
223 if ...
224 rand (1) <(1 - sigma*state (1,i ,1))*(1 -(1 - lambda )^( N_i )) || rand (1) <1/N
225 state (2,i ,2) = 1; % infected
226 end
227 % infection with vaccine protection
228 elseif state (2,i ,1)==0 && state (3,i ,1)==2
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229 if rand (1) <...
230 (1- alpha )*(1 - sigma*state (1,i ,1))*(1 -(1 - lambda )^( N_i )) || ...
231 rand (1) <(1 - alpha )*1/N
232 state (2,i ,2) = 1; % infected
233 end
234 % recovery
235 elseif state (2,i ,1)==1 && t>1 && rand (1)<mu
236 state (2,i ,2) = 2; % recover
237 %death without vaccine
238 if state (3,i ,1) <2 && rand (1)< delta
239 state (2,i ,2) = 3; %dead
240 end
241 %death with vaccine
242 if state (3,i ,1)==2 && rand (1) <(1 - alpha_2 )* delta
243 state (2,i ,2) = 3; %dead
244 end
245 %an R returns to be Supsectible
246 elseif state (2,i ,1)==2 && rand (1)< phi
247 state (2,i ,2) = 0; %again Supsectible
248 else
249 state (2,i ,2) = state (2,i ,1);
250 end
251 end
252 % update the state matrix
253 state (: ,: ,1) = state (: ,: ,2); % update state for the next time step
254 end %end t
255
256 % Calculate Z,D and sse for the montecarlo in the last time step T
257 montecarlo_I (1,sim ,T) = sum(state (2 ,: ,1)==1)/N;
258 montecarlo_D (1,sim ,T) = sum(state (2 ,: ,1)==3)/N;
259 montecarlo_V (1,sim ,T) = sum(state (3 ,: ,1) >0)/N;
260 montecarlo_avgI (sim ,T) = montecarlo_I (1,sim ,T);
261 montecarlo_avgD (sim ,T) = montecarlo_D (1,sim ,T);
262 montecarlo_avgV (sim ,T) = montecarlo_V (1,sim ,T);
263
264 prudent_people (sim ,T) = sum(state (1 ,: ,1)==1); %count the prudent people
265 vaccinated_people (sim ,T) = sum(state (3 ,: ,1) >0); %count the vaccinated people
266 % calculate the sse of the mean path at step T
267
268 montecarlo (1, sim) = toc;
269 montecarlo (2, sim) = sum( montecarlo_I (2,sim ,:));
270 montecarlo (3, sim) = sum( montecarlo_D (2,sim ,:));
271 end %end for the SIM
272 close(hbar)
273 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,1) ...
274 = lambda ;
275 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,2) ...
276 = delta;
277 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,3) ...
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278 = g;
279 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,4) ...
280 = c;
281 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,5) ...
282 = gamma;
283 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,6) ...
284 = k;
285 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,7) ...
286 = mean( montecarlo (1 ,:));
287 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,8) ...
288 = average_sse (1);
289 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,9) ...
290 = average_sse (2);
291 sse_matrix (( index1 -1)*(1*1*1)+( index2 -1)*(1*1)+( index3 -1)*(1)+ index4 ,10) ...
292 = average_sse (3);
293 %we saved the average of the simulations and we calculated the sse
294 %of the average path (not the average of the sse ).
295
296 % calculate the mean along the first dimension to do the plots
297 z_evaluated (1 ,:) = mean( montecarlo_avgI (: ,:) ,1);
298 death_rate (1 ,:) = mean( montecarlo_avgD (: ,:) ,1);
299 average_prudent_people (1 ,:) = mean( prudent_people (: ,:) ,1);
300 average_vaccinated_people (1 ,:) = mean( vaccinated_people (: ,:) ,1);
301
302 standard_devI = std( montecarlo_avgI ,0 ,1); % standard deviation
303 range_I = zeros (2,T);
304 % compute confidence intervals
305 range_I (1 ,:) = z_evaluated (1 ,:) + ( standard_devI * norminv (0.025))/ sqrt(SIM );
306 range_I (2 ,:) = z_evaluated (1 ,:) + ( standard_devI * norminv (0.975))/ sqrt(SIM );
307
308 end
309 end
310 end
311 end
312
313 %% PLOTS
314 figure
315 gr = tiledlayout (1 ,2);
316 title(gr ," Epidemic Plots ")
317 x = 1:1:T;
318
319 nexttile
320 hold on
321 title (" Infected people Z(t)")
322 plot(x, z_evaluated (1:T),’LineWidth ’ ,1.1)
323 xlabel (" time ")
324 ylabel (" fraction of population ")
325 plot(x,Z (1+308+ DD:T+308+ DD)/ detection_rate ,’LineWidth ’ ,1.1)
326 xlabel (" time ")
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327 ylabel (" fraction of population ")
328 plot(x, range_I (1,:),’b--’)
329 xlabel (" time ")
330 ylabel (" fraction of population ")
331 plot(x, range_I (2,:),’b--’)
332 xlabel (" time ")
333 ylabel (" fraction of population ")
334 legend (" model Z(t)"," real Z_r(t)")
335 hold off
336
337 nexttile
338 hold on
339 title (" Prudent people (X_i(t) = 1) and Vaccinated people (V_i(t) > 0)")
340 plot(x,( average_prudent_people (1 ,:))/N, "g",’LineWidth ’ ,1.1)
341 xlabel (" time ")
342 ylabel (" fraction of population ")
343 plot(x,( average_vaccinated_people (1 ,:))/N, "y",’LineWidth ’ ,1.1)
344 xlabel (" time ")
345 ylabel (" fraction of population ")
346 legend (" model prudent people "," model vaccinated people " ,...
347 ’Location ’,’southwest ’)
348 hold off
349
350 toc % evaluate total time

A.7 Model with vaccine: control
In section 4.2 we investigated the role of the control functions u(t) and uv(t), represent-
ing respectively the non-pharmaceutical restrictions that government may impose during
everyday life in order to limit the epidemic spread and those regarding the vaccination
campaign.
The following script has been used to evaluate the impact of alternative combinations of
those control functions, always satisfying the budget constraint introduced in (4.7). The
results obtained are shown in Figure 4.2, Figure 4.3 and Figure 4.4.
Furthermore, the matrix find_policy in the following code is exactly what is shown in
Table 4.2, Table 4.3 and Table 4.4, by testing appropriate values for the combination of
u(t) and uv(t).

1 clc
2 clear all
3 close all
4
5 %%% In this model we have several health states :
6 %%% 0 = S Susceptible
7 %%% 1 = I Infected
8 %%% 2 = R " Recovered " (after being recovered , you are immune for some days)
9 %%% 3 = D Dead
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10
11 % We also have two decision processes : one decide wether to adopt or not to
12 % adopt safety measures , and one to decide wether to get or no vaxinated .
13
14 tic % evaluate time
15
16 global N
17 global K
18 global T
19 global beta
20 global state
21 global degree
22 global influence_layer
23 global u
24 global u_v
25 global c
26 global gamma
27 global accumulation
28 global g
29 global k
30
31 % NETWORK PARAMETERS
32 N = 1000; % population size
33 T = 200; %time horizon T
34 K = 5; % number of neighboors connected to each node
35 beta = 0.15; % probability for changing a link in the WattStrogatz graph
36
37 % STATE MATRIX & NETWORK LAYERS :
38 % 1-first line decision x_i. The decision is 0 (risky) or 1 (safe ).
39 % 2- second line health state S,I,(IV ,)R,D. The health state could be:
40 % 0 ( Supsectible ), 1 ( Infected ), 2 ( Recovered ) or 3 (Death ).
41 % 3-third line vaxine decision v_i
42 state = zeros (3,N ,2); %state of the individual : decision and health state
43 %we add a third line in the state matrix for the vaccination . It will
44 %be 0 if novax , 1 if sivax. If it is 1 it can ’t return to 0, but if it ’s 1
45 %it will surely go to 2
46 %we may collect only 2 time steps and update it at every step , instead of
47 % having a big matrix of dimensions (3,N,T).
48
49 % Initial state: we need to compute it with real italian data
50 state (2 ,1 ,1) = 1; %we start with the only individual number 1 infected
51
52 % Influence Layer: we use a WattsStrogatz graph
53 initial_graph = WattsStrogatz (N,K,beta ); % initial influence graph
54 influence_layer = table2array ( initial_graph .Edges ); % influence layer
55 degree = zeros (1,N); % degree of node i in the influence_layer
56 for i = 1:N
57 degree (i) = sum(sum( influence_layer ==i)); % calculate the degree
58 end
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59 %The average node degree is 2K.
60
61 % Contact_layer is half made up of influence layer , which never change .
62 % The other half is varying random at each time step.
63 % The number of total contacts (rows of the contact_layer ) is indeed 2KN.
64 contact_layer = zeros (2*K*N ,2); %the contact layer is varying in time
65 contact_layer (1:K*N ,:) = influence_layer (: ,:); %first half of contact_layer
66
67 z_evaluated = zeros (1,T); % vector for the diffusion of the infected
68 death_rate = zeros (1,T); % vector for the fraction of deaths
69
70 % MODEL FUNCTIONS AND PARAMETERS
71 %u = @(t) 0.5; % nonpharmaceutical interventions (NPIs)
72 %u_v = @(t) 0.5; %green pass and other measures
73 accumulation = zeros (1,N); % accumulation factor for the frustration function
74 ratio = 6; % rationality : in the paper it was beta.
75
76 % EPIDEMIC PARAMETERS
77 % Import the real data from Italy. The vector Z contains the real number of
78 % positive people ( infected I) day by day; vector D contains the real
79 % number of Deaths in Italy day by day since 24/02/2020 until 02/06/2022.
80 [Z,D,Guariti , totale_casi ] = ...
81 csvimport (’Andamento_Nazionale_Italia .csv ’, ’columns ’, ...
82 {’totale_positivi ’, ’deceduti ’, ’dimessi_guariti ’, ’totale_casi ’});
83 Z = Z /(60000000); % italian population is 60 mln
84 D = D /60000000; % italian population is 60 mln
85 detection_rate = 0.4; % detection rate: not every positive has been founded
86 DD = 10; % detection_delay taken from the paper: in Italy we go from 9 to 14
87 phi = 0.1; % probability for an R to re - become S
88 sigma = 0.5; % effectiveness of self - protective behaviour . 0<=sigma <=1
89 alpha = 0.7; % effectiveness of the vaccine . 0<=alpha <=1
90 alpha_2 = 0.5; % protection against death for a vaccinated person
91
92 % PARAMETERS FOR THE VACCINATION PAYOFF FUNCTION
93 global c1
94 global c2
95 global c3
96 global c4
97
98 c1 = 12;
99 c2 = 1.1;

100 c3 = 2; %the bigger , the more fear of the vaccine
101 % eterogeneous immediate cost of vaccination [vax , novax]
102 c4 = [0.5* ones (1,N*0.9) ,1.5* ones (1,N *0.1)];
103 g = 0.0018;
104
105 % Loading the vectors containing the number of vaxinations
106 load(’V.mat ’);
107 load(’V_tot.mat ’);
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108
109 %%
110 %%% SIMULATION
111
112 cases = 5; % number of different cases to test
113
114 plot_matrix_I = zeros(cases ,T); % matrix for store all the simulations
115 plot_matrix_D = zeros(cases ,T); % matrix for store all the simulations
116 plot_matrix_yes = zeros(cases ,T); % matrix for store all the simulations
117 plot_matrix_vax = zeros(cases ,T); % matrix for store all the simulations
118 %(in each row there is the average among all sim of the same configuration )
119
120 find_policy = zeros(cases ,7); % matrix that aims to find the optimal policy
121 % evaluating different values of u(t) and u_v(t)
122
123 % we fix a configuration and test several u(t) and u_v(t)
124 %fixed parameters
125 delta = 0.002; %delta
126 lambda = 0.008; % lambda
127 mu = 0.14; %mu
128 c = 0.5; %c
129 gamma = 0.51; %gamma
130 k = 12; %k
131
132 hbar= waitbar (1,’’,’Name ’,’Iterazioni ’);
133 for index = 1: cases %index for u(t) (now I have only one index)
134
135 %u = @(t) 0.6*(t <=(60+20* index )) + 0.5*(t >(60+20* index ));
136 %u_v = @(t) 1 - u(t);
137 u = @(t) 0.2 + 0.1* index; %npi for the self - protective behavior
138 u_v = @(t) 1 - u(t); %npi for the vax (u_v(t) = 1-u(t))
139 %we can assume the budget constraint u(t) + u_v(t) = 1
140 %even if it should be u(t) + u_v(t) <= 1
141 save_u = 0.2 + 0.1* index; %u to save in the matrix later
142 save_u_v = 1- save_u ;
143
144 SIM = 50; % simulations using the same configuration
145
146 model_I = zeros(SIM ,T);
147 model_D = zeros(SIM ,T);
148 model_yes = zeros(SIM ,T);
149 model_vax = zeros(SIM ,T);
150 simtime = 0; % variable for calculate the time of simulations
151
152 %hbar= waitbar (0,’’,’Name ’,’Iterazioni ’);
153 for sim = 1: SIM
154 waitbar (((( index -1)* SIM )+ sim )/( SIM*cases),hbar ,...
155 sprintf (’sim = %d / %d’ ,((( index -1)* SIM )+ sim),SIM*cases ));
156 tic % evaluate the simulation time
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157
158 % reinitialize the state matrix for each parameters configuration
159 %state of the individual : decision prudent , health state , vax state
160 state = zeros (3,N ,2);
161 %On the 27/12/2020 the population infected in Italy was about the 1%
162 %of the total , that means 10 people every 1000 individuals (our size ).
163 %But we also have to adjust the number dividing by the detection_rate ,
164 %so we need 10/ detection rate = 24.
165 state (2, randperm (N ,24) ,1) = 1; % initial health state on 27/12/2020
166 state (1, randperm (N,N),1) = 1; % initial behaviour on 27/12/2020
167
168 for t = 1:T-1 %in t=1 there is the initial state
169
170 model_I (sim ,t) = sum(state (2 ,: ,1)==1)/N; %count the infected people
171 model_D (sim ,t) = sum(state (2 ,: ,1)==3)/N; %count the death people
172 model_yes (sim ,t) = sum(state (1 ,: ,1)==1)/N; %count the prudent people
173 model_vax (sim ,t) = sum(state (3 ,: ,1) >0)/N; %count the vaccinated people
174
175 for j = K*N+1:2*K*N % random contacts in second half of contact_layer
176 %take two random integers between 1 and N
177 contact_layer (j ,:) = randperm (N ,2);
178 end
179
180 for i = 1:N %for each individual
181
182 % compute the number of infected contacts for current individual i
183 N_i = 0; % initialization
184 for j = 1:2*K*N
185 if ( contact_layer (j ,1)==i && state (2, contact_layer (j ,2) ,1)==1) ...
186 || ( contact_layer (j ,2)==i && state (2, contact_layer (j ,1) ,1)==1)
187 N_i = N_i + 1;
188 end
189 end
190
191 % update the accumulation using recursive formula
192 accumulation (i) = gamma *( accumulation (i) + c*state (1,i ,1));
193
194 % DECISIONS BASED ON GAME THEORY
195 % stochastic daily decision for adopting self - protective measures
196 if rand (1) < ...
197 (exp(ratio* Payoff_vax (i,t ,0))/( exp(ratio* Payoff_vax (i,t ,0))+1))
198 state (1,i ,2) = 1; % behave prudent
199 else
200 state (1,i ,2) = 0; % behave not prudent
201 end
202
203 % stochastic decision (if v(i) = 0) for getting vaccinated
204 if state (3,i ,1) == 0 && rand (1) < ...
205 (exp(ratio* Payoff_vax (i,t ,1))/( exp(ratio* Payoff_vax (i,t ,1))+1))
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206 state (3,i ,2) = 1; %get vaccinated , but not yet immune
207 elseif state (3,i ,1) == 1 && rand (1) < 1/14 % external infection
208 % interval between the first and the second dose. Here we use
209 % 14 as the days needed for being immune after getting vaccin .
210 % thanks to the elseif there is no the possibility to be immune
211 %the same day of the vaccination .
212 state (3,i ,2) = 2; % become immune
213 else
214 state (3,i ,2) = state (3,i ,1); % remains unchanged
215 end
216
217 % EPIDEMIC DYNAMICS
218 % infection without vaccine protection
219 if state (2,i ,1)==0 && state (3,i ,1) <2
220 if rand (1)< ...
221 (1- sigma*state (1,i ,1))*(1 -(1 - lambda )^( N_i )) || rand (1) <1/N
222 state (2,i ,2) = 1; % infected
223 end
224 % infection with vaccine protection
225 elseif state (2,i ,1)==0 && state (3,i ,1)==2
226 if rand (1)< ...
227 (1- alpha )*(1 - sigma*state (1,i ,1))*(1 -(1 - lambda )^( N_i )) || ...
228 rand (1) <(1 - alpha )*1/N
229 state (2,i ,2) = 1; % infected
230 end
231 % recovery
232 elseif state (2,i ,1)==1 && t>1 && rand (1)<mu
233 state (2,i ,2) = 2; % recover
234 %death without vaccine
235 if state (3,i ,1) <2 && rand (1)< delta
236 state (2,i ,2) = 3; %dead
237 end
238 %death with vaccine
239 if state (3,i ,1)==2 && rand (1) <(1 - alpha )* delta
240 state (2,i ,2) = 3; %dead
241 end
242 %an R returns to be Supsectible
243 elseif state (2,i ,1)==2 && rand (1)< phi
244 state (2,i ,2) = 0; %again Supsectible
245 else
246 state (2,i ,2) = state (2,i ,1);
247 end
248 end
249 % update the state matrix
250 state (: ,: ,1) = state (: ,: ,2); % update state for the next time step
251 end %end t
252
253 model_I (sim ,T) = sum(state (2 ,: ,1)==1)/N;
254 model_D (sim ,T) = sum(state (2 ,: ,1)==3)/N;
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255 % for the last step T, we copy the prudent and vaccinated at step T -1.
256 model_yes (sim ,T) = model_yes (sim ,T -1);
257 model_vax (sim ,T) = model_vax (sim ,T -1);
258
259 simtime_single = toc;
260 simtime = simtime + simtime_single ; % evaluate time
261 end %end for the SIM
262 %close(hbar)
263
264 find_policy (index ,1) = save_u ; %store the value of u
265 find_policy (index ,2) = save_u_v ; %store the value of u_v
266 find_policy (index ,3) = simtime /SIM; %avg time for 1 simulation
267 find_policy (index ,4) = mean(mean( model_yes (: ,:))); %avg prudent people
268 find_policy (index ,5) = mean(mean( model_vax (: ,:))); %avg vaccinated people
269 find_policy (index ,6) = mean(mean( model_I (: ,:))); %avg infected people
270 find_policy (index ,7) = mean(max( model_I (: ,:) ,[] ,2)); %avg max of infected
271 find_policy (index ,8) = mean( model_D (:,T)); %avg deaths at time T.
272
273 plot_matrix_I (index ,:) = mean( model_I (: ,:) ,1);
274 plot_matrix_D (index ,:) = mean( model_D (: ,:) ,1);
275 plot_matrix_yes (index ,:) = mean( model_yes (: ,:) ,1);
276 plot_matrix_vax (index ,:) = mean( model_vax (: ,:) ,1);
277
278 end
279 close(hbar)
280
281 toc % evaluate total time
282
283 %% PLOTS
284 figure
285 gr = tiledlayout (1 ,3);
286 title(gr ," Epidemic Plots ")
287 x = 1:1:T;
288
289 %plot infected Z(t)
290 nexttile
291 hold on
292 title (" Infected people Z(t)")
293 xlabel (" time ")
294 ylabel (" fraction of population ")
295 legend
296 for p = 1: cases
297 %plot(x, plot_matrix_I (p ,1:T),’ DisplayName ’ ,...
298 %[’ Changing point t=’, num2str ((60+20* p)), ’.’],’ LineWidth ’ ,1.1)
299 plot(x, plot_matrix_I (p ,1:T),’DisplayName ’ ,...
300 [’u(t)=’, num2str ((0.2+0.1* p)), ’, u_v(t)=’,num2str (1 -(0.2+0.1* p)),’.’] ,...
301 ’LineWidth ’ ,1.1)
302 end
303 plot(x,Z (1+308+ DD:T+308+ DD)/ detection_rate , ...
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304 "k--",’DisplayName ’,’real Z_r(t)’)
305 xlabel (" time ")
306 ylabel (" fraction of population ")
307 hold off
308
309 %plot fraction of people adopting self - protective measures
310 nexttile
311 hold on
312 title (" Prudent people (X_i(t) = 1)")
313 legend
314 for p = 1: cases
315 plot(x, plot_matrix_yes (p,:),’DisplayName ’ ,...
316 [’u(t)=’, num2str (0.2+0.1* p), ’, u_v(t)=’,num2str (1 -(0.2+0.1* p)),’.’] ,...
317 ’LineWidth ’ ,1.1)
318 %plot(x, plot_matrix_yes (p,:),’ DisplayName ’ ,...
319 %[’ Changing point t=’, num2str ((60+20* p)), ’.’],’ LineWidth ’ ,1.1)
320 xlabel (" time ")
321 ylabel (" fraction of population ")
322 end
323 hold off
324
325 %plot the fraction of people vaccinated
326 nexttile
327 hold on
328 title (" Vaccinated people (V_i(t) > 0)")
329 legend (’Location ’,’northwest ’)
330 for p = 1: cases
331 plot(x, plot_matrix_vax (p,:),’DisplayName ’ ,...
332 [’u(t)=’, num2str (0.2+0.1* p), ’, u_v(t)=’,num2str (1 -(0.2+0.1* p)),’.’] ,...
333 ’LineWidth ’ ,1.1)
334 %plot(x, plot_matrix_vax (p,:),’ DisplayName ’ ,...
335 %[’ Changing point t=’, num2str ((60+20* p)), ’.’],’ LineWidth ’ ,1.1)
336 xlabel (" time ")
337 ylabel (" fraction of population ")
338 end
339 hold off
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