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Summary

Clinical trials often collect and assess data of survival (or time-to-event) with the objective
of comparing different treatments or identifying risk factors that are linked to individuals
risk rate of experiencing an event, that can be death, tumor progression or any other
meaningful clinical outcome. When dealing with these types of survival data, the most
popular method is the Cox proportional hazards regression model, used to explore the
relationship between survival experience and characteristics of patients. The standard
outcome of the Cox model is a semiparametric estimate of the hazard ratio, a relative
measure that informs on the rank of patients’ risk among others, but does not meaningfully
inform on individual patients. However, especially in the context of personalized medicine,
it is of interest to identify an accurate model for lifetime prediction on an individual level.

The aim of this work is to inspect if it is possible to obtain an estimate of survival time
for a new patient, starting from a validated Cox model and known regression coefficients.

First of all two functions of the survival package in the software R are examined,
namely predict.coxph() and survfit.coxph(), in order to identify which methods can
be used for the purpose of individual survival time prediction. The first function turns
out to provide risk predictions, that are relative measures not adequate to describe indi-
vidual survival times; the second one provides instead individualized survival curves, that
are absolute measures and from which two different values can be extrapolated: median
survival time and restricted mean survival time. These can be used for prediction but
rely on an estimate of the baseline survival function and are thus classified as parametric
approaches. Since the Cox proportional hazards model is classified as a semiparametric
model, not requiring the hazard and the survival function to be specified, the aim of this
work is to preserve this feature and find a non-parametric approach for the estimation of
survival times.

In particular, it is questioned whether it is possible to invert the equation characterizing
the Cox model and solve it for the survival time of a single individual, once the estimated
coefficients are known. At this scope, a kind of inversion of the model is proposed, where
the partial likelihood used in the estimation of the regression coefficients is exploited. It is
shown that, if the regression coefficients are known, the model can be inverted somehow
and a range of survival times can be obtained for a new patient; practically, there are
some issues when the real values of the regression coefficients are not known and the main
limitations are underlined. Finally, the results obtained with the parametric approaches
of median and restricted mean survival time are analyzed over two example data sets and
compared with the novel algorithmic approach in terms of predictive performance.
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Chapter 1

Introduction

The work of this thesis originates from an experience in the pharmaceutical company
Bayer AG as an intern in clinical statistics in the Oncology SBU department. Among all
the different tasks and roles that characterize the team, the biomarker team stands out
for its fast growing and its increasingly importance in many aspects of pharmaceutical
discovery and development.

Biomarkers act as a predictor in a model for different clinical outcomes, be these in
terms of disease prognosis, treatment response or occurrence of toxicities, with the aim of
explaining the variation in the responses among individuals and being potentially valuable
for individual patient management and personalized healthcare.

It is in this setting of increasing interest in personalized and precision medicine that
some interesting questions may arise. In the field of survival analysis, fundamental ques-
tions regard the possibility of predicting patients’ lifetime: " What can we say about
survival times of individuals? Can we predict how long patients with a particular disease
are expected to live?".

Starting from this background, this work aims at finding an answer to the previous
questions under specific assumptions and conditions, with the objective of predicting
lifetime of patients that could potentially impact the field of personalized medicine and
improve the decision-making process at an individual level.

The thesis is organized as follows. Chapter 2 introduces the concept of survival analysis
in the particular context of medical research giving the basis for understanding what is the
final objective. Chapter 3 presents the popular Cox model used for analyzing survival data,
together with its main characteristics concerning partial likelihood estimation (Section
3.2), survivor function estimate (Section 3.3) and prediction (Section 3.4). Chapter 4
concerns survival data and prediction using the survival package in R; it introduces an
example of survival data (Section 4.1) and the function coxph() that implements the Cox
model (Section 4.2). Finally, it analyzes the functions predict.coxph() (Section 4.3) and
survfit.coxph() (Section 4.4) used for predictions. Chapter 5 contains a novel approach
for prediction of individual lifetimes starting from the Cox partial likelihood; in particular,
Section 5.1 contains the theoretical formulation and considerations while Section 5.2 shows
its application to an example data set. Chapter 6 presents a performance evaluation
metric (Section 6.1) and compares, graphically and through this measure, the presented
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Introduction

prediction models (Section 6.2); Section 6.3 presents another example of survival data in
order to make further comparisons and assess quality of predictions. To conclude, chapter
7 summarizes the results obtained, highlighting the main issues and limitations that are
encountered when dealing with individual lifetime prediction.
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Chapter 2

Survival Analysis

2.1 Introduction to Survival Analysis

The term survival analysis describes a statistical methodology used for the analysis of
data in the form of times until an event occurs. In particular, the times refer to the
time elapsed from a well-defined time origin until the occurrence of some particular event
of interest and they will generally be defined as survival times. Although the methods
that characterize survival analysis can be used in many areas, the focus here is on the
application of survival analysis in medical research, where the time origin will often be
the recruitment of an individual into an experimental study, and possible end-points will
be disease remission, progression or death of the patient.

2.1.1 Main Features of Survival Analysis

In clinical trial setting it may be not possible to observe the end-point for every patient:
this may be because the data from the study have to be analyzed at a specific point in
time (e.g. end-of-study) when some individuals are still alive, or because the individual
has been withdrawn from the study or lost to follow up. These incomplete observations
are called censored survival times and for these patients the only available information is
the last date in which it is known they were alive.

There are in general various categories of censoring, such as right censoring, left cen-
soring, and interval censoring but throughout this work only the most common right-
censoring will be considered, where the right-censored survival time is smaller than the
actual, but unknown, survival time. Moreover, an important assumption that is made in
modelling survival data, is that the actual survival time of an individual does not depend
on any mechanism that causes that individual’s survival time to be censored; censoring
that meets this requirement is called non-informative [2]. Censoring is one of the main
reasons why, to analyze survival data, special tools are required.
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Survival Analysis

2.1.2 Summarising Survival Data
There are three basic concepts that pervade the whole theory of survival analysis and are
used in summarising survival data, namely the survivor function, the hazard function and
the cumulative hazard function [2].

Survivor function

The survivor function S(t) gives the expected proportion of individuals for which the event
has not yet happened at time t and, in other terms, gives the unconditional probability
that the individual will survive beyond time t (experiencing the event after time t). If the
survival time of an individual t is regarded as an observation of a random variable T that
has probability density function f(t), formally the survivor function is given by:

S(t) = P(T ≥ t) =
Ú ∞

t
f(u) du. (2.1)

The survivor function is a monotone, non-increasing function that is equal to one at origin
and zero as the time approaches infinity; its rate of decline varies according to the risk of
experiencing the event at time t, that is given by the hazard function.

Hazard function

The hazard function h(t), on the contrary, is defined by means of conditional probability: it
represents the probability that an individual experiences the event at time t, conditional
on he or she having survived to that time. Also called a hazard rate, it expresses the
instantaneous risk of an event occurring and is formally defined as:

h(t) = lim
δt→0

1
δt

P(t ≤ T < t + δt | T ≥ t). (2.2)

The hazard rate can take many different shapes and the only restriction on h(t) is that it
is non-negative, i.e. h(t) ≥ 0.

Cumulative hazard function

A quantity related to the hazard rate is the cumulative hazard function H(t), that sum-
marizes the cumulative risk of an event occurring by time t. It is derived from the previous
two functions as follows:

H(t) =
Ú t

0
h(u) du , (2.3)

and
H(t) = − log S(t). (2.4)

In the analysis of survival data, estimates of the survivor function, hazard function and
cumulative hazard function just mentioned can be obtained from the observed survival
times and be used to draw on the survival experience of patients.
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2.2 – Objective of the thesis

2.2 Objective of the thesis
The objective of survival analysis in clinical setting is often to assess the effect of a
treatment over placebo on the survival experience for a population in the study, but this
is not its only application. Survival analysis is also widely used to assess the effect of one
or more predictors, usually termed covariates or explanatory variables, on the survival
outcome of the individuals in the study. When the objective is to find a relationship
between survival experience of patients and a number of explanatory variables, regression
models are called for. The most popular and widely used regression model is the Cox
regression model that can handle the peculiarity of censored-data and is presented in
Chapter 3 with more details .

With the objective of assessing the effect of certain variables on survival, statistical
models, considering the increasing demand for accuracy in practical applications, play
also an important role in the prediction of survival times for new patients. With the ever
increasing attention paid to personalized medicine, it would be of interest to predict what
is the expected time of experiencing the event of interest for a new patient.

The aim of this work is to identify a method that can be used to predict survival
times of new individuals in the setting of a Cox regression model. With this objective,
the survival package in software R is firstly inspected to analyze if there are already
available options for prediction and to explore what are the main limitations. Secondly,
possible improvements are proposed in order to provide a patient with an estimation of
his or her expected survival time.

11
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Chapter 3

Cox Proportional Hazard
Model

3.1 Introduction and Notation
The Cox proportional hazard model [3] is a regression model that is widely used in survival
analysis to investigate the relationship between the survival experience of a patient and
some explanatory variables.

For an individual with covariates xi = (x1i, ..., xpi), the hazard function takes the form
of

hi(t) = h0(t) exp (β1x1i + ... + βpxpi), (3.1)
where h0(t) is a beseline hazard that describes the shape of the hazard as a function of time
and β = (β1, . . . , βp) is a p x 1 column vector of coefficients. Model 3.1 is often expressed
in terms of the hazard ratio and the model, which is multiplicative for the hazard, is then
linear for the log-hazard ratio:

log
5

hi(t)
h0(t)

6
= β1x1i + ... + βpxpi. (3.2)

One important aspect of the model is that it relies on the assumption of proportional
hazards (PH), which means that:

• Covariates have a multiplicative effect on the hazard.

• The effect of the covariates on the hazard function doesn’t change with time, letting
the hazard ratio between two subjects be constant in time

hi(t)
hj(t)

= h0(t) exp(β′xi)
h0(t) exp(β′xj)

= exp(β′xi)
exp(β′xj)

. (3.3)

It is important to assess these assumptions when fitting a Cox model, otherwise violating
the PH assumption can seriously invalidate the model.

The exponentiated coefficients exp(βj) take the name of hazard ratios (HR) and are
interpreted as the multiplicative effects on the hazard:
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Cox Proportional Hazard Model

• HR = 1: the covariate has no effect.

• HR < 1: the effect of the covariate is to reduce the hazard and the risk of experiencing
the event of interest.

• HR > 1: the effect of the covariate is to increase the risk of experiencing the event.

The coefficient βj of xij , that represent the logarithm of the hazard ratio, can be inter-
preted as the change in the logarithm of the hazard ratio when the value of xij is increased
by one unit and the other covariates are kept constant.

The vector of regression coefficients β̂ can be estimated for the model in Equation 3.1,
and the next section (Section 3.2) will give an idea on how it is estimated.

Since no assumptions are made about the actual form of the baseline hazard function
h0(t) in Equation 3.1, the Cox model is called a semi-parametric model where no particular
form of probability distribution is assumed for survival times. This is one of the main
reasons for which this method is widely used, since no extra assumptions are required for
the survival times that may be not appropriate.

However, the simplifying aspects of the Cox model that make is so useful are exactly
those that should be verified to determine whether a fitted Cox regression model ade-
quately describes the data, in order to make future inferences. Mainly four underlying
assumptions should be considered: proportional hazards, additivity, linearity, and lack of
any high leverage point [6]. Different types of residuals are used for this purpose, see for
example [2, Chapter 4].

3.2 Partial Likelihood
Estimation of the vector of regression coefficients β is based on the method of maximum
likelihood. If the individual experiences the event at time ti, his or her contribution to the
likelihood would be the density f(ti), given by the product of the survivor function S(ti)
and the hazard function h(ti):

Li(β) = S(ti)h(ti).
If the unit is still alive at ti, meaning that the time is censored, the contribution to the
likelihood would then be given by the only survivor function:

Li(β) = S(ti).

The full likelihood function can thus be written including both contributions as

L(β) =
Ù

i

Li(β) =
Ù

i

h(ti)δiS(ti). (3.4)

Since the likelihood in equation 3.4 requires the knowledge of the shape of the hazard
function, a partial likelihood is considered for the Cox model instead. For a study with n
patients, the partial likelihood for the model in Equation 3.1 is defined as

PL(β) =
nÙ

i=1

5 exp(β′xi)q
l∈R(ti) exp(β′xl)

6δi

, (3.5)
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3.2 – Partial Likelihood

or, in the form of partial log-likelihood, as

ℓ(β) =
nØ

i=1
δi

5
β′xi − log

# Ø
l∈R(ti)

exp(β′xl)
$6

, (3.6)

where R(ti), called the risk set, indicates the set of individuals who are at risk at time
ti and δi is an event indicator being equal to zero if the time ti is right-censored and
equal to unity otherwise. Although the partial-likelihood is not, in general, a likelihood
in the sense of being proportional to the probability of an observed dataset, nonetheless
it can be treated as a likelihood for purposes of asymptotic inference [8]. Estimates of the
β-parameters can thus be found by maximising the partial log-likelihood in Equation 3.6.
Taking the first derivative with respect to β gives the score vector U(β):

Uj(β) = dℓ

dβj
=

nØ
i=1

δi

5
xji −

q
l∈R(ti) exp(β′xl)xjlq

l∈R(ti) exp(β′xl)

6
, j = 1 . . . p. (3.7)

The information matrix is the negative of the matrix of second derivatives of the log-
likelihood and is given by I(β) = [Izj(β)]pxp with the (z, j)-th element given by

Izj(β) =
nØ

i=1

q
l∈R(ti) exp(β′xl)xjlxzlq

l∈R(ti) exp(β′xl)
−

nØ
i=1

q
l∈R(ti) exp(β′xl)xzlq

l∈R(ti) exp(β′xl)

5q
l∈R(ti) exp(β′xl)xjlq

l∈R(ti) exp(β′xl)

6
.

(3.8)
The (partial) maximum likelihood estimates are found by solving the set of p nonlinear
equations Uj(β) = 0 in Equation 3.7 for j = 1, . . . , p. Since they cannot be solved
analytically, numerical methods like the Newton-Raphson algorithm will be used to find
the estimates.

It is worth noting that the partial likelihood in Equation 3.5, used in a Cox model,
depends only on the ranking of the event-times, thus inferences about the effect of ex-
planatory variables on the hazard function depend only on the rank order of the survival
times and not on their absolute values [2].

Tied Events

The Cox regression model and its partial likelihood hold under the assumption of contin-
uous data but, in real situations, survival times are usually recorded to the nearest day,
month, year etc, and so it is possible to have two or more events happening at the same
time, as a consequence of this rounding process. These events take the name of tied events
and variants of the partial likelihood are needed to address this situation. The simplest
approximation for Equation 3.5 is due to Breslow [1] and is given by:

rÙ
j=1

exp(β′sj)# q
l∈R(tj) exp(β′xl)

$dj
, (3.9)

where dj is the number of events at time t(j) and sj is the vector of sums of each of the p

covariates for those individuals who experience the event at the jth event time t(j). This
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Cox Proportional Hazard Model

approximation is adequate especially when the number of tied observations at any one
event time is not too large.

Another approximation is due to Efron [4] who proposed
rÙ

j=1

exp(β′sj)rdj

k=1
# q

l∈R(t(j)) exp(β′xl) − (k − 1)d−1
j

q
l∈D(t(j)) exp(β′xl)

$ , (3.10)

where D(t(j)) is the set of all the individuals who experience the event at time t(j). This
approximation is closer to the appropriate likelihood function than the one due to Breslow,
although in practical situations they have very similar performance.

Cox’s approximation treats the underlying time scale as discrete rather than continuous
and is takes the name of exact partial likelihood:

rÙ
j=1

exp(β′sj)q
l∈R(t(j);dj) exp(β′sl)

, (3.11)

where R(t(j); dj) denotes a set of dj individuals drawn from the risk set R(t(j)) at time
t(j).

Because of the superiority of the Efron approximation (Eq 3.10), the Cox model im-
plemented in software R uses this method as default for handling tied event time, while
other Cox regression programs use Breslow approximation (Eq 3.9) for its simplicity in
computation. If there are few tied event times than all the approximations in Equations
3.9,3.10,3.11 will be nearly equivalent and when there are no ties, they all reduce to the
same form [2].

3.3 Estimation of Hazard and Survivor Functions
In order to make inferences about the effect of explanatory variables on the hazard func-
tion, all what is needed is the estimate of the vector β of the regression coefficients. But,
once these estimates are obtained, one could further summarize survival experience of
the patients in the study computing estimates for the hazard and survivor functions. For
these purposes, an estimate of h0(t) itself is also needed. These estimates should match
the way in which ties are treated in the likelihood for the Cox model, as discussed in
Section 3.2 [8].

One popular estimator of the cumulative baseline hazard, due to its simplicity, is given
by:

Ĥ0(t) =
kØ

j=1

djq
l∈R(t(j)) exp(β̂′xl)

for t(k) ≤ t < t(k+1), (3.12)

where k = 1, .., r − 1 and r is the total number of different event-times observed in the
study. The corresponding estimator of the survivor function, derived from the exponential
of the cumulative hazard, is then

Ŝ0(t) =
kÙ

j=1
exp

5 −djq
l∈R(t(j)) exp(β̂′xl)

6
for t(k) ≤ t < t(k+1). (3.13)
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3.4 – Predictions from a Cox Model

The estimate of Equation 3.12 is often referred to as the Nelson-Aalen estimate and the
derived one in Equation 3.13 as the Breslow estimate.

Finally, from the estimates of the baseline cumulative hazard and survivor functions,
the corresponding estimates can be obtained for an individual characterized by a vector
of explanatory variables xi:

Ŝi(t) = {Ŝ0(t)}exp(β̂′xi) for t(k) ≤ t < t(k+1). (3.14)

From this definition, the estimated survivor function for an individual is a piecewise con-
stant function that is defined only until the last observed event-time. Equation 3.14 shows
that a survival curve for each patient in the study can be obtained from the estimated
regression coefficients and this is already an important input to clinical decision making.
Furthermore, the entire distribution can be summarized in single values and used to com-
pute estimates of other measures of interest like, for example, the p-year probability of
survival for an individual or the median and mean survival times.

Confidence intervals can also be computed for the estimated survivor function Ŝ0(t),
once its variance has been computed. One common estimator is due to Greenwood:

ˆvar(Ŝ0(t)) = σ̂2(Ŝ0(t)) = Ŝ0(t)2 Ø
i:ti≤t

di

ri(ri − di)
, (3.15)

where ri is the number at risk right before t and di is the number of deaths occurred at
time ti. The standard deviation is then indicated as σ̂ = se[Ŝ0(t)], where se refers to the
standard error.

In the same manner, 95% confidence intervals for Ŝi(t) can be computed on the plain
scale

Ŝi(t) ± 1.96 se[Ŝi(t)], (3.16)
or on the cumulative hazard (or log survival) scale

exp{ log Si(t) ± 1.96 se[log Ŝi(t)] }. (3.17)

Also log-log and logit transformations of the survivor function can be used, and they are
obtained simply substituting Ŝi(t) with the corresponding transformation in the confidence
interval in Equation 3.16.

Many authors have investigated the behavior of transformed intervals like that in
Equation 3.17, and a general conclusion is that the direct intervals (Eq.3.16) do not
behave well, particularly near 0 and 1, while all the others are acceptable. For this reason
in the software R they are computed with the log-transformation as default [6].

3.4 Predictions from a Cox Model
Once a suitable Cox model for a set of survival data has been identified and estimates
for the vector of coefficients β̂, the hazard ĥ0 and the survivor function Ŝ0 have been
computed, it would be of interest to predict a survival time for a new patient that is
added to the study. In order to compute estimates for new individuals, the predictive
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Cox Proportional Hazard Model

ability of the Cox model should be assessed and there are essentially two aspects that are
considered regarding the evaluation of the predictive performance: discrimination and
calibration.

• Discrimination measures how well model-estimated risks translate to patient out-
comes: patients predicted to be at higher risk (greater hazard ratio) should have
experienced the event before those deemed at lower risk in the observed dataset.
C-index, that is a measure of concordance, is a common statistic used to assess dis-
crimination ability of a Cox model; values of concordance equal to one represent
perfect discrimination.

• Calibration reflects prediction accuracy, in particular the accuracy of survival proba-
bilities at any time after the time origin. The Brier Score is a common statistic used
to assess calibration performance of a Cox model, measuring the distance between
the predicted survival probability and the actual outcome at that time. The best
possible value is zero, coinciding with perfect accuracy.

For a new patient, it is supposed that all the values corresponding to the explanatory
variables used in the Cox model for the original set of patients are known, so that he or
she is characterized by a set of covariates xnew = (x1,new, ..., xp,new). Furthermore, for
the proportional hazards assumption to still hold, the new patient is assumed to be taken
from a group that is qualitatively the same as the original one used to derive the Cox
proportional hazards model.

Since the Cox PH model is a risk prediction model, for each new patient it predicts a
risk score ( also called linear predictor or prognostic index), that is a relative measure for
the probability of occurrence of the event of interest. The risk score corresponds to the
linear component of the model and is given by a linear combination of the values of the p
explanatory variables in xnew:

η̂new = log
;

hnew(t)
h0(t)

<
= β̂′xnew = β̂1x1,new + β̂2x2,new + · · · + β̂pxp,new . (3.18)

The predicted risk score informs on the rank of the patient’s risk among the others,
but does not meaningfully inform on an individual level, since it cannot directly give an
individual survival time and not even a survival probability. To achieve this last objective
the Cox model has to be combined with an estimator of the baseline hazard function as
discussed in Section 3.3, from which other estimates and information can be obtained.
However, it is not straightforward to directly estimate survival times for new individuals.

Based on this consideration, the purpose of the next chapter is to analyze what are
the estimates that can be computed for a new patient taking advantage of the survival
package included in the software R and to highlight what still remains a challenge in the
context of survival times prediction.
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Chapter 4

Survival Analysis and
Prediction in R

The survival package included in software R (≥ 3.5) is concerned with time-to-event
analysis that, as already stated, refers to a special type of outcome which arises very often
in the analysis of medical data: time to progression for a tumor or death itself are only
two examples. A key common principle for such outcomes is that "it takes time to observe
time" and this is is what led to the creation of an appropriate package in order to manage
the resulting challenges [6].

Survival data is often represented as a pair (ti, δi) where ti is the time until end-point
or last follow-up, and δi is a binary variable equal to 0 if the subject i was censored at
time ti and equal to 1 if the subject i had an event at time ti. In R code survival data
take the form of Surv(time, status) and are called survival objects.

In the survival package a function called coxph() is used to fit a Cox model to a given
dataset of patients and other two R functions, predict() and survfit(), if applied to
the result of a fitted Cox model, can give further information on the survival experience
of a new patient.

A dataset from the survival library will be used throughout this chapter to illustrate
the response of these functions and analyze the different options regarding the input
arguments.

4.1 MGUS Data Set
The library survival contains different examples of survival data that can be used for
survival analysis. The dataset mgus has been selected and is here used for illustrative
purposes. The dataset contains the natural history of 241 subjects with monoclonal
gammopathy of undetermined significance (MGUS), that is a condition characterized by
the presence of a monoclonal paraprotein in the blood that can eventually progress to a
plasma cell malignancy. The dataset contains 12 variables for each subject in the study:

• id: subject id;
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• age: age in years at the detection of MGUS;

• sex: male or female;

• dxyr: year of diagnosis;

• pcdx: for subjects who progress to a plasma cell malignancy the subtype of ma-
lignancy (multiple myeloma (MM), amyloidosis (AM), macroglobulinemia (MA),
lymphprolifative disorders (LP));

• pctime: days from MGUS until diagnosis of a plasma cell malignancy;

• futime: days from diagnosis to last follow-up;

• death: 1= follow-up is until death;

• alb: albumin level at MGUS diagnosis;

• creat: creatinine at MGUS diagnosis;

• hgb: hemoglobin at MGUS diagnosis.

• mspike: size of the monoclonal protein spike at diagnosis;

The variables include some demographic aspects, like age or sex, and other clinical values
reported at the time of diagnosis. For subjects who progressed to a plasma cell malignancy
also the subtype of malignancy is reported together with their time until progression. As
very common in cancer treatment studies, overall survival (OS) is here considered as the
primary end-point. It is defined as the duration from the date of diagnosis to death, with
no restriction on the cause of death that can be for cancer or not. With this choice of
end-point the variable reporting the time until progression will not be considered but the
information on the experience of patients progression is still included in the variable pcdx.

The response variables for each subject are then the time from diagnosis of MGUS to
the last follow up (futime) and the opposite of the censoring state (death), defining if
death has been observed or not.

After the removal of variable pctime, the modification of variable pcdx to let it include
patients who did not experience progression, and the removal of subjects for which some
values were unknown, a subset of observations from the new dataset "mgus_os" takes the
form shown below.
> head(mgus_os)

id sex dxyr pcdx futime death alb creat hgb mspike
1 1 female 68 0 748 1 2.8 1.2 11.5 2.0
3 3 male 68 0 277 1 2.2 1.1 11.2 1.3
4 4 male 69 0 1815 1 2.8 1.3 15.3 1.8
5 5 female 68 0 2587 1 3.0 0.8 9.8 1.4
6 6 male 68 0 563 1 2.9 0.9 11.5 1.8
7 7 female 68 0 1135 1 3.0 0.8 13.5 1.3

This data set is then used to fit a Cox model that can later be used for prediction purposes.
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4.2 Function "coxph"

This section shows the main features of the function coxph() using as an example the
previously presented data set mgus_os.

The first step is to fit a Cox regression model to the data in order to get an estimate
of the vector of coefficients β̂ and this is done using the function coxph() of the survival
package. Three continuous variables, namely the age of the individuals and their initial
values of creatinine and hemoglobin, showed to be statistically significant fitting a Cox
model with all the variables and will thus be used for the analysis of overall survival.
> coxfit <-coxph(Surv(futime ,death)~age+creat+hgb ,data=mgus_os)
> coxfit
Call:
coxph( formula = Surv(futime ,death)~age+creat+hgb ,data=mgus_os)

coef exp(coef) se(coef) z p
age 0.072865 1.075585 0.008446 8.627 < 2e -16
creat 0.421832 1.524752 0.138054 3.056 0.00225
hgb -0.117225 0.889385 0.056031 -2.092 0.03643

Likelihood ratio test =94.1 on 3 df , p=< 2.2e -16
n= 176, number of events = 165

Other arguments can be specified inside the coxph function (see [7] for more details)
and, in particular, method=c("efron","breslow","exact") allows to choose the way in
which tied event times should be handled in the computation of the partial likelihood (see
Section 3.2). The default option is to use Efron approximation.

The main terms of the resulting coxph object are briefly described in order to have a
clear understanding of what information could eventually be used to make future predic-
tions, that is the final goal:

• coefficients: the vector of the estimated coefficients β̂.

• concordance: the concordance statistic for the model, that is used to measure
the discriminative power of a risk prediction model. In survival analysis, a pair of
patients is called concordant if the risk of the event predicted by a model is lower
for the patient who experiences the event at a later timepoint. The concordance
probability (C-index) is the frequency of concordant pairs among all pairs of subjects.

• means: vector x̄ of values used as the "reference" for each covariate. This is not
statistically ideal since it could be seen as the representation of an “average” patient,
which is not because it just represents a patient with the mean value for the covariates
[5].

• linear.predictors: the linear predictors for each observation, centered with respect
to the "reference" value: η̂i = β̂′(xi − x̄), i = 1, . . . , n.

• logLik: a vector containing the partial log-likelihood (Eq.3.6) computed with the
initial values and the final values of the coefficients.
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Finally, once the model has been fitted to the observed survival data, the interest is on
predicting a survival estimate for an additional patient. In order to do this, the functions
predict.coxph() and survfit.coxph() are analyzed and discussed.

4.3 Function "predict.coxph"
The aim of this section is to analyze which kind of prediction can be obtained from the
predict() function if applied to the result of a fitted Cox model. The interest would be
on having predictions for the survival time of a new patient, but it will be clear at the
end of this section that such a direct prediction cannot be obtained and only other types
of predictions are provided.

The function predict.coxph() produces various types of predicted values from a Cox
model that will be examined one by one, but firstly the main arguments of the function
are presented:

• object: an object of class coxph that is the result of a fitted Cox model.

• newdata: optionally, a new dataset with values of the covariates that characterize
new individuals for which predictions are desired. If this is absent, predictions are
for all the observations used to fit the model.

• type: the type of predicted value. Choices are "lp", "risk", "expected", "terms"
or "survival", that will be discussed later on in more details.

• se.fit: whether or not to return pointwise standard errors of the predictions.

• na.action: how to handle missing values if there is new data.

• terms: the terms that are desired if type="terms" is chosen.

• collapse: an optional vector of subject identifiers, over which to sum or ‘collapse’
the results of the prediction.

• reference: the reference context for centering the results obtained with choices of
type "lp","risk" and "terms". If not defined, this is given by x̄ obtained from the
fitted Cox model with coxfit$means. The option "zero" causes no centering to be
done.

[5].
Since the aim is to make predictions for new patients, the newdata argument will here

be used to describe a patient with covariates xnew. Note that the function requires this
argument to be a dataset, thus a new patient could be represented as follows:

new_patient<-data.frame(age=74,creat=0.8,hgb=9.8).

Now the different types of predicted values are discussed in more details.
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• type="lp"

The default predicted value for a Cox PH model is the linear predictor, that cor-
responds to the predicted risk score of Equation 3.18 centered with respect to the
mean values of the variables, that is indicated as x̄. The mean is used because it
is more practical, since it is just needed to get β̂′x in the neighborhood of zero.
It represents the log-hazard ratio centered with respect to the reference value; in
formula, the linear predictor is given by:

η̂new = β̂′(xnew − x̄) = β̂1(x1,new − x̄1) + · · · + β̂p(xp,new − x̄p). (4.1)

This is a relative measure, meaning that it is relative to the sample used to fit the
model. This value gives a measure of the risk of the new patient relative to the risk
of a "reference" patient who has the mean values for all the covariates.
> pred_lp <-predict (coxfit , newdata = new_patient ,type="lp")
> pred_lp

1
1.052579

• type="risk"

If this is the choice for the type of prediction, the outcome corresponds to the ex-
ponential of the linear predictor, again centered with respect to a "reference" set of
covariates, which represents the hazard ratio. In formula:

eη̂new = e(β̂′(xnew−x̄)) = eβ̂1(x1,new−x̄1)+···+β̂p(xp,new−x̄p). (4.2)

Since it comes directly from the previous linear predictor, this is also a relative
measure, and not an absolute one, for the risk of a new subject.
> pred_risk <-predict (cox , newdata = new_patient ,type="risk")
> pred_risk

1
2.865029

The interpretation of this value is that the new patient has a risk of death that is
2.87 times the risk of a "reference" patient from the original study sample.

• type="expected"

The description of the function refers this value as "the expected number of events
given the covariates and follow-up time". If the argument newdata is used, the
output is a single value that corresponds to the cumulative hazard function at a
specific time, that depends on the follow-up time for the future subject as well as
on his or her covariates. This type of prediction is generally meaningful when an
observation can have multiple events as it gives an estimate of how many event-times
are expected over the predefined follow-up time. In formula, this type of prediction
gives the cumulative hazard:

Ĥnew(t) =
Ú t

0
ĥ0(u) exp(β̂′xnew)du. (4.3)
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Note that this predicted value is a function of time and does require an estimate of
the baseline hazard that needs therefore to be computed. In this case, the argument
newdata requires both the right and the left hand side of the formula that defines
the Cox model (Section 4.2): the variable status will not be used, but is required
since the underlying code needs to reconstruct the entire formula, while the variable
time represents the time at which it is of interest to compute the cumulative hazard
function. Lets consider again an example. If the follow-up time for the new individual
is 365 days, than the new data, that represent the subject of the previous examples,
should now be defined to consider also this follow-up time:
new_ patient _time <-data.frame( futime =365 , death =1, age =74,

creat =0.8 , hgb =9.8)

The predicted cumulative hazard at that time is:
> pred_ expected <-predict (coxfit , newdata = new_ patient _time ,

type=" expected ")
> pred_ expected
[1] 0.09601368

Since predictions of type expected incorporate an estimate of the baseline hazard,
they are absolute measures instead of relative ones.

• type="terms"

With this option, the terms of the linear predictor (relative to the "reference") are
produced, one for each explanatory variable in the model:

{ β̂j(xj,new − x̄j) }
p

j=1 . (4.4)

> pred_terms <-predict (coxfit , newdata =new_patient ,type="terms")
> pred_terms

age creat hgb
1 0.7882628 -0.1279875 0.3923033
attr(," constant ")
[1] 3.528067

The term attr(,"constant") refers to the linear predictor for the "reference" pa-
tient, whose covariates are given by coxfit$means. In formula, this means:

ˆ̄η = β̂′x̄ = β̂1x̄1 + · · · + β̂px̄p. (4.5)

As for the predictions of type lp and risk, it is worth underlying that predictions of
type terms are relative to the original sample of patients, thus not absolute measures.

• type="survival"

This option produces a predicted survival probability for a new patient at a specific
time and it is directly computed from the prediction of type "expected" as exp(-
expected):

Ŝnew(t) = exp(−Ĥnew(t)). (4.6)
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Again note that it is a function of time and so the follow-up time for the future
subject has to be provided to the argument newdata. The prediction is then a single
value that represents the probability of survival until a specific time point.
> pred_ survival <-predict (coxfit , newdata = new_ patient _time ,

type=" survival ")
> pred_ survival
[1] 0.9084516

As the prediction of type expected, this type of prediction is absolute rather then
relative.

It can be seen that the contribution of the function predict.coxph() to the prediction
of the survival time of a new patient is only indirect. Predictions of the prognostic index
give a measure of the relative risk of that new patient, but since this is a relative measure,
it is not adequate to provide an estimate of the survival time. On the contrary, predicted
probabilities of survival are absolute measures and can inform an individual on what is
his or her probability to survive until a specific time point, but cannot directly provide
estimates of survival times.

To proceed with the goal of prediction, there is another function in R that is used to
predict quantities from a Cox model and this is the survfit() function. The next section
will analyze this function and will show which types of predictions can be obtained.

4.4 Function "survfit.coxph"
The function survfit.coxph() of the survival package computes the predicted survivor
function for a Cox PH model. The default procedure used by the function is to estimate
the baseline survivor function as the exponential of the cumulative hazard, better known
as the Breslow estimate (Eq.3.13) presented in Section 3.3. The option newdata allows
to produce a subject-specific survival curve that is representative for an individual whose
covariates xnew correspond to the values in newdata. The arguments of the function are:

• formula: an object of class coxph that is the result of a fitted Cox model.

• newdata: contains the data values of the new individuals for which curves should
be predicted. If it is not present, the value of coxfit$means from a fitted Cox model
is used as the default covariate set.

• se.fit: logical value true/false that indicates if pointwise standard errors of the
survival curve should be computed.

• conf.int: the level of the two-sided confidence interval on the survival curve(s).
Default is 95%.

• stype: states if the survival curve should be computed directly (=1) or as expo-
nential of the cumulative hazard; since the direct estimate of survival can be very
difficult to compute, the default procedure is to compute an estimate of the cumu-
lative hazard function and use the relation of Equation 2.4.
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• ctype: option to include correction for ties in the computation of the cumulative
hazard (Sect. 3.2), where 1=no, 2=yes.

• conf.type: which transformation to use in the computation of the confidence in-
tervals for the survival curve(s); default is the log-transformation in Equation 3.17
("log"). Other options are "none","plain","log-log" or "logit".

• censor: if false, any times that have no events are removed from the output.

• id: optional variable name of subject identifiers.

• start.time: a single numeric value that gives an optional starting time. If present,
the result is a conditional survival curve that contains survival after time start.time
conditional on surviving to that time-point.

• influence: option to return the influence values in case of multi-state data. Since
it is not the case here, comments on its meaning are left to [6].

• na.action: the action to be used for new data if there are missing values

[7].
Using the survfit() function on a previously fitted Cox model and the explanatory

variables that characterize a new individual, the outcome is the following.
> surv <-survfit (coxfit , newdata =new_ patient )
> surv
Call: survfit ( formula = coxfit , newdata = new_ patient )

n events median 0.95 LCL 0.95 UCL
[1,] 176 165 2587 2016 3855

From the response of the function a summary measure, the median survival time, is given
together with its 95% confidence interval, for which more details are given in Section
4.4.1. In addition, combining the result with the plot() function, the predicted individual
survival curve of Figure 4.1 is obtained.
> plot(surv ,main=" Predicted Survival Curve",xlab="Time",

ylab=" Survival Probability ")
> segments ( median _time ,0, median _time ,surv_prob ,lty =2, col="red")
> segments (0, surv_prob , median _time ,surv_prob ,lty =2, col="red")

Other values can then be extrapolated from a ’survfit’ object:
> str(surv)

$ n : int 176
$ time : num [1:173] 6 7 31 32 39 61 277 362 370 ...
$ n.risk : num [1:173] 176 175 174 173 172 171 169 168 167 ...
$ n.event : num [1:173] 1 1 1 1 1 2 1 1 1 ...
$ n. censor : num [1:173] 0 0 0 0 0 0 0 0 0 ...
$ surv : num [1:173] 0.99 0.98 0.97 0.959 ...
$ cumhaz : num [1:173] 0.0101 0.0204 0.0308 0.0414 ...
$ std.err : num [1:173] 0.0103 0.015 0.0189 0.0224 ...

26



4.4 – Function "survfit.coxph"

Figure 4.1. Predicted individual survival curve for a new individual with his or her
predicted median survival time (red). Broken lines represent a 95% confidence interval.

$ logse : logi TRUE
$ std.chaz : num [1:173] 0.0103 0.015 0.0189 0.0224 ...
$ lower : num [1:173] 0.97 0.951 0.934 0.918 0.903 ...
$ upper : num [1:173] 1 1 1 1 0.998 ...
$ conf.type: chr "log"
$ conf.int : num 0.95
$ call : language survfit ( formula =coxfit , newdata =new_ patient )
- attr(*, "class")= chr [1:2] " survfitcox " " survfit "

It can be seen that standard errors and confidence intervals are computed for each event
time together with the estimated survival probability (surv$surv).

An estimate of the cumulative hazard function is also provided and it is given by
surv$cumhaz. Note that the same cumulative hazard can be obtained from another func-
tion basehaz() in R but, since this latter does the actual work of survfit() and has less
options, there are not more advantages in using it. If a time point at which to compute
the cumulative hazard is specified, then this result will also be the same as the prediction
of type "expected" of the previously discussed predict.coxph() function. The survfit
object has to be combined with the summary() function, specifying the time at which the
hazard should be computed with the argument time=y. Assuming again that y = 365
days,
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> s_ probability <-summary ( survfit (coxfit , newdata =new_ patient ),
time =365)

> s_ probability $ cumhaz
[1] 0.09601368

it can be seen that the results of the two functions coincide.
Finally, estimates of the probability of survival until a specific time y for the new

patient can also be obtained from Ŝi(t):

Ŝi(y) = {Ŝ0(y)}exp(β̂′xi)
. (4.7)

Referring again to the example, the predicted probability of survival until time y = 365
days is:
> s_ probability <-summary ( survfit (coxfit , newdata =new_ patient ),

time =365)
> s_ probability $surv
[1] 0.9084516

This predicted probability coincides with the prediction of type "survival" in the func-
tion predict.coxph.

To summarize, the function survfit.coxph() produces the entire estimated survival
curve, rather then predicted probabilities of survival for predefined follow-up times as
done by the predict() function. Next, having the entire estimated individual curve,
quantities that refer to specific time points can also be extracted. Furthermore, the
survivor distribution can be summarized in single values that could be used to obtain
predictions for new individuals that are median and restricted mean survival time and are
described in the next two sections 4.4.1 and 4.4.2 respectively.

4.4.1 Median Survival Time
The first quantity that can be derived from the estimated survival curve of a new patient
with covariates xnew is his or her median survival time that is directly shown in the output
of the function. It corresponds to the smallest time for which the value of the estimated
survivor function Snew(t) is smaller than 0.5, that is

t̂m = min{tnew | Ŝnew(tnew) < 0.5}

= min {tnew | Ŝ0(tnew)exp(β̂′xnew)
< 0.5}.

(4.8)

This is visualized by graphing the estimated survival function and drawing a horizontal
line at probability value of 0.5: the estimated median time equals the time where the
function and line intersect (Figure 4.1). The 95% confidence interval for the median t̂m is
then given by the points at which this horizontal line crosses over the pointwise confidence
intervals of Ŝnew(t). The median survival time and its 95% confidence interval are given
directly by the survfit() function and they can be extracted as follows.
> summary (surv)$table [’median ’]
median

28



4.4 – Function "survfit.coxph"

2587
> cbind (as. numeric ( summary (surv)$table [’0.95 LCL ’]),

as. numeric ( summary (surv)$table [’0.95 UCL ’]))
[,1] [,2]

[1,] 2016 3855

Estimates of other percentiles can also be obtained from the estimated survival curve
Ŝnew(t) with the same definition. The estimated pth percentile is in fact defined as the
smallest observed time t̂(p) for which

Ŝnew{t̂(p)} < 1 − (p/100).

In R the percentiles, together with their confidence intervals, can be obtained from the
function quantile() applied to a survfit object. Hereafter it is shown, as an example,
the 25th percentile with its 95% confidence interval.

> quantile (surv ,probs =0.25) $ quantile
25

1392
> cbind ( quantile (surv ,probs =0.25) $lower ,

quantile (surv ,probs =0.25) $upper )
[,1] [,2]

25 748 2339

Median survival time provides a summary of a predicted survival curve that, on a
population level has a clear useful meaning, but on an individual level the question is
whether is good or not to predict a patient’s survival time whit that time-point for which
he or she has 50% estimated probability of survival if a group of identical individuals is
observed. It could be questioned how accurate would be such a prediction. In addition,
one drawback of using the median survival time as an estimate for the survival time is that
it is not always defined: if the estimated survivor function of an individual stays above 0.5
for the entire follow-up period, it can only be said that the median time is greater than
the last observed time, but it remains undefined. For this reason it would be of interest
to find another value that could be used for prediction of survival time, that has not this
issue and is always defined.

Before introducing this alternative measure, an application to the study sample in
mgus_os is shown. Exploiting the leave-one-out procedure of cross validation, one by one
each subject is considered to be a new patient and a prediction of his or her survival time
is made. The Cox regression model is fitted on the training set of all the other individuals
while the selected patient is used as a single-item test set.

Results are shown graphically in Figure 4.2 in which predicted survival time is com-
pared to the actual one for non-censored patients. This choice is done for comparative
purposes; in fact, for censored patients their actual time is unknown and the comparison
with the predicted time is not immediate. Survival time is plotted against the predicted
prognostic index (Eq.4.1 obtained with predict.coxph() )in order to visualize the rela-
tion among the predicted risk of patients and their survival times. As expected, patients
with higher predicted score are predicted to have smaller survival time.
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Figure 4.2. Predicted median survival time (red) and observed event time (black) for
each non-censored patient of the original study sample.

Predicted median survival time is, in this example, defined for each patient. However
it can happen that it is not defined for some individuals and a general measure that does
not suffer from this issue is preferable.

4.4.2 Restricted Mean Survival Time

In addition to median survival time, a second quantity can be derived from the survfit()
function and this is called restricted mean survival time (RMST). Its definition is firstly
presented and then it is shown how to obtain this value in R.

The idea is to estimate survival time with its expected value under a certain probability
distribution and one way to compute this expected value is to go from an estimate of the
hazard function (Section 3.3) to an estimate of the distribution function F (t) of survival
times. The actual survival time of an individual t can be regarded as the observed value
of a random variable T that has a probability distribution. Assuming that f(t) is its
probability density function, the distribution function of T is then given by

F (t) = Prob(T < t) =
Ú t

0
f(u) du, (4.9)

that is linked to the survivor function through the following relation:

F (t) = Prob(T < t) = 1 − Prob(T ≥ t) = 1 − S(t). (4.10)
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The expected survival time is then defined as:

E[T ] =
Ú ∞

0
u dF (u) =

Ú ∞

0
u f(u) du . (4.11)

Integrating by parts and using the relation in Equation 4.10, the integral becomesÚ ∞

0
u f(u) du = uF (u)|∞0 −

Ú ∞

0
F (u) du

= u(1 − S(u))|∞0 −
Ú ∞

0
(1 − S(u)) du

=
Ú ∞

0
S(u) du,

so that finally
E[T ] =

Ú ∞

0
S(u) du. (4.12)

Since an estimate of Ŝ(t) is available using Equation 3.14, it could be put into Equation
4.12 in order to obtain the estimated expectation of survival time. However, the integral
in Equation 4.12 will diverge if Ŝ(t) does not converge to zero and the survivor function is
only defined until the last observed time tmax. This property creates a challenge for most
data, and one resolution is to use a finite value τ as the bound for the integral, where
τ may be a predetermined time point (smaller than the maximum observed time tmax)
or the maximum observed time tmax itself. Restricting the computation of the expected
value to this time leads to the restricted mean survival time:

µτ =
Ú τ

0
S(t) dt (4.13)

[2]. The RMST is then defined as the area under the survival curve up to a time τ and
its interpretation on a population level would be “when patients are followed-up for τ ,
patients will survive for µτ on average”, which is quite a straightforward and clinically
meaningful summary of the censored survival data. For a single individual, RMST is
interpreted as the time he or she is expected to survive if followed for a time period of τ

From Equation 4.13 a natural estimate of the restricted mean survival time for an
individual with covariates xi is given by:

µ̂τ =
Ú τ

0
Ŝi(t) dt. =

Ú τ

0
Ŝ0(t)exp(β̂′xi)

dt. (4.14)

Equation 4.14 can then be used to predict the time for a new patient, substituting xi with
the new covariates xnew.

In R such a prediction may be obtained using the function survfit() in conjunction
with the function print(), that gives the restricted mean survival time with its standard
error: the print.rmean=TRUE argument is used to obtain them.
> print (surv ,print .rmean = TRUE)
Call: survfit ( formula = coxfit , newdata = new_ patient )
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n events rmean se(rmean) median 0.95 LCL 0.95 UCL
[1,] 176 165 2833 86.9 2587 2016 3855

* restricted mean with upper limit = 14325

> summary (surv)$table [’rmean ’]
rmean

2833.478

The upper bound τ is automatically set as the largest observed or censored time (in the
example 14325 days). If one is interested in computing the mean time until a precise time
point, a different τ may be specified using the rmean argument

As done with the median survival time, restricted mean survival time is used to pre-
dict time-to-event for each non-censored patient in the original data set mgus_os using
technique of leave-one-out cross validation. For each patient the chosen upper bound τ
is taken to be the last observed time among the others. Results are shown in Figure 4.3
where predicted restricted mean survival time is compared with the observed one.

Figure 4.3. Predicted restricted mean survival time (red) and observed event time
(black) for each non-censored patient of the original study sample.

In conclusion, the main contribution of the function survfit.coxph() to the prediction
of survival times, is to provide estimates of subject-specific survival curves. This latter
is advantageous from a visualization point of view and, although it does not directly
estimate the survival time of the new individual, it can be used to extrapolate some
values that can provide a kind of estimate for this time, like the median survival time
or the mean restricted survival time. Due to the median survival time not always been
defined, however, it seems more reasonable to take the restricted mean survival time for
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this purpose.
The reason why the survival package in R doesn’t contain a function that directly

predicts survival times from a Cox model is because this latter has not been developed for
this purpose. The Cox model is a relative risk model that can explain the impact of several
explanatory variables on survival times of individuals but this relationship is modelled
only through the hazard function. In order to have estimates of time it is necessary to go
through an estimation of the hazard function and also in R the informative measures for
times prediction (like median survival time or restricted mean survival time) are computed
only after an estimation of the survivor function.

A first objective should be to assess if these estimated quantities could be employed to
adequately predict survival times for new patients; secondly, it may be worth considering if
there are alternatives that could give direct estimates of time, without having to estimate
the hazard function. The next chapter aims to discuss if there are reasonable alternatives
or improvements in the direction of non-parametric prediction.
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Chapter 5

Non Parametric Survival
Times Predictions

The aim of this chapter is to describe a possible candidate method, that is different from
those already available in the survival package in R, to be used for the estimation of times-
to-event for new individuals that enter into a study. Having a Cox PH model that has
been fitted and validated for a certain population, the objective is to determine a value
that can provide a prediction for a survival time when a new patient is added in order to
answer the question of "how long will he or she survive?". At this scope, the definition of
a novel Cox prediction time is provided.

5.1 "Inversion" of Partial Likelihood
Until now it has not been shown any direct method that allows to compute estimates of
survival times without needing an estimation of hazard and survivor functions. While
the Cox model is a semi parametric model with unknown shape of the hazard function,
the estimates of the previous chapter (median and restricted mean survival time) are
computed only after an estimation of the survivor function and are thus classified as
parametric approaches. Preserving the strength of the Cox model, the desire would be to
develop a non-parametric method to predict survival times.

An attempt in this direction is to use the partial likelihood involved in the Cox model
(Eq.3.5): as shown in Section 3.2, maximization of the partial likelihood is used to estimate
the regression coefficients of the Cox model in Equation 3.1. For its computation, the
ranking of the observed survival times is exploited, rather than the exact survival times
themselves. In simple words, this process takes as input the covariates of the patients
together with their survival times and gives as an output the vector of estimated regression
coefficients β̂, solving Equation 3.7 for each coefficient. For a sample of n patients, each
characterized by p explanatory variables, the input-output process is summarized as:

(x1, . . . , xn, t1, ..., tn) → (β̂1, . . . , β̂p). (5.1)

The idea is then to "invert" this process: if the regression coefficients are known from
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a previous fitted Cox model and the covariates of the patients are also available, the goal
is to obtain the estimated survival times:

(x1, . . . , xn, β̂1, . . . , β̂p) → (t1, ..., tn). (5.2)

In order to obtain the survival time for each patient in the study, a number of equations
that equals the number of unknown variables should be needed. However, most of the
times, there will be more individuals than predictor variables (with relative coefficients)
and consequently more unknowns than equations. If the aim is to estimate the time
of a single individual, only one equation is necessary if the survival times of the other
individuals are known. Suppose then that the objective is to estimate the time of the kth

individual, the "inverse" process would be summarized as:!
{xi}i /=k, xk, {ti}i /=k, {β̂j}j=1,...,p

"
→ tk. (5.3)

The "inverse" process is defined through the same equation used to find the coefficients
β̂, but this time solved for the unknown time tk. First of all, the derivative of the partial
log-likelihood of Equation 3.7 can be rewritten so to highlight the contribution of survival
times:

∂ℓ

∂βj
=

nØ
i=1

δi

5
xji −

qn
l=1 ✶(tl ≥ ti) exp(β′xl)xjlqn

l=1 ✶(tl ≥ ti) exp(β′xl)

6
= 0, j = 1 . . . p, (5.4)

where the characteristic function ✶(tl ≥ ti) is used to indicate the risk set R(ti): it is
equal to one if tl is greater than ti and zero otherwise.

Next, suppose that the survival time of the kth individual is unknown, while the re-
gression coefficients and the survival times of all the other patients in the study are given.
Then from Equation 5.4 it would be possible to obtain the time tk of the kth individual:
the derivative of the partial log-likelihood with respect to each βj is theoretically equal to
zero if computed at the estimated coefficients β̂:

∂ℓ

∂βj

----
β=β̂

= 0, j = 1 . . . p. (5.5)

In order to solve the equation for the unknown tk, only one of the p equations in 5.5 has
to be considered. The coefficient βj to be used in the computation of the derivative of the
partial likelihood is then arbitrary, resulting in the same solution tk; here a generic βj is
considered. Equation 5.4 can then be rewritten highlighting the time tk and substituting
the vector of coefficients β with its estimate β̂:

∂ℓ

∂βj

----
β=β̂

=
Ø
i /=k

5
xji −

qn
l=1,l /=k ✶(tl ≥ ti) exp (β̂′xl)xjl + ✶(tk ≥ ti) exp (β̂′xk)xjkqn

l=1,l /=k ✶(tl ≥ ti) exp (β̂′xl) + ✶(tk ≥ ti) exp (β̂′xk)

6

+ xjk −
qn

l=1,l /=k ✶(tk ≤ tl) exp (β̂′xl)xjl + exp (β̂′xk)xjkqn
l=1,l /=k ✶(tk ≤ tl)exp(β̂′xl) + exp (β̂′xjk)

= 0.

(5.6)

The only unknown of equation 5.6 is the time tk and if this equation could be solved for
this variable, then it would be possible to obtain the survival time for the kth individual.
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However, if a solution exists, it will not be a single value but a range of times that lie
in-between two observed survival times; in fact, as already stated, the partial likelihood
does not use the exact values of the survival times, but only their relative ranking. This
means that, "inverting" the process, the outcome will be a position of the kth patient in
the ranking of the already known survival times of the others.

The "inverse" process can be summarized as follows:
• Consider an estimate of the vector of regression coefficients β̂ obtained from a Cox

regression model using the method of maximum likelihood estimation.

• Consider the kth patient with known covariates xk but unknown survival time tk.

• "Solve" Equation 5.6 for the unknown tk using β̂ and the known survival times of
the other patients ti, i /= k.

• Obtain the range of survival times for the kth individual that corresponds to its
relative ranking among the survival times of the other patients.

In using Equation 5.6 to obtain ranges of survival times some practical considerations
need to be done:

• First of all, Equation 5.6 has been obtained from the partial likelihood (Eq. 3.5) of
the Cox model that, as discussed in section 3.2, does not consider the possibility of
two events happening at the same time point. In order to handle tied-observations,
approximations of the partial likelihood are necessary and thus other equations need
to be used for the "inverse" process, computing derivatives of these approximated
versions of the partial likelihood. Equation 5.6 could still be used in case of ties,
adding a small error to the time points that coincide, so to avoid the problem and
have all distinct event times.

• Equation 3.7 is not solved exactly for the regression coefficients βj but only through
iterative methods, like the Newton Raphson method. The result is that the derivative
of the partial log-likelihood in Equation 5.4, computed at the estimated values β̂j ,
that theoretically should be equal to zero, will in practice only be approximately so:

∂ℓ

∂βj

----
β=β̂

≈ 0 for j = 1, . . . , p.

5.1.1 "Inverse" approach for prediction
When a new patient with covariates xnew is added to the study, the approach summarized
by Equation 5.6 could still be used to provide an interval of his or her survival time, that
again corresponds to a ranking among known times. Replacing the unknown tk with the
unknown tnew leads to the following:

dℓ

dβj

----
β=β̂

=
nØ

i=1

5
xji −

qn
l=1 ✶(tl ≥ ti) exp (β̂′xl)xjl + ✶(tnew ≥ ti)) exp (β̂′xnew)xj,newqn

l=1 ✶(tl ≥ ti) exp (β̂′xl) + ✶(tnew ≥ ti) exp (β̂′xnew)

6

+ xj,new −
qn

l=1 ✶(tnew ≤ tl) exp (β̂′xl)xjl + exp (β̂′xnew)xj,newqn
l=1 ✶(tnew ≤ tl) exp (β̂′xl) + exp (β̂′xj,new)

= 0,

(5.7)
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for j = 1, . . . , p. In this case the resulting interval for tnew, if it exists, is interpreted as the
survival time that would give the same estimated coefficients, if patient with covariates
xnew would belong to the study sample used to fit the model. Practically, if a Cox model
were fit including the new subject with covariates xnew, what is asked with the "inverse"
method is that the difference in the estimated coefficients in β̂ should be zero. In general,
the difference β̂ − β̂(k) in the estimates of the regression coefficients including and not
including the kth individual (respectively given by β̂ and β̂(k)) is called delta-beta and can
be approximated by:

∆kβ̂ ≈ r′
Ukvar(β̂), (5.8)

where r′
Uk represents the score residual for the kth individual (see [2] for its definition).

Even if the mean of these delta-beta residuals is zero, in real examples it is rare to find
single observations that have ∆β̂ equal to zero and estimating the survival time of a new
individual asking for this difference to be zero seems not so reasonable. It sounds rather
more appropriate to consider the difference in the coefficients given by a new subject
inside the algorithm, using β̂ + ∆newβ̂ instead of β̂ in solving Equation 5.7. If the value
of ∆newβ̂ is known for a new patient or there is a way to estimate it, then an accurate
predicted interval can be found solving the following equation for tnew, using the same
approach described earlier for the kth patient in the data set:

dℓ(tnew)
dβj

----
β=β̂+∆newβ̂

= 0. (5.9)

It is worth noting again that the choice of the coefficient βj to use in Equation 5.9 is
arbitrary since the vector β̂ has been estimated satisfying all the equations.

However, when the value of the delta-beta residual for the new patient is not known,
the solution tnew of Equation 5.7 may be different for the different βj . As previously
mentioned, this is a consequence of the fact that in practice new individuals will almost
never leave the estimates unchanged. For this reason a new global measure needs to
be used that takes into account derivative of partial log-likelihood with respect to all p
coefficients and is given by the l2-norm of the gradient of the partial log-likelihood:

..∇ℓ
.. =

....3
∂ℓ

∂β1
, . . . ,

∂ℓ

∂βp

4..... (5.10)

Substituting the coefficients βj with their estimates in β̂, the objective would be to have
the norm of the gradient equal to zero. However, the nature of this method implies that
a solution (convergence) cannot always be achieved and the aim is then to search for the
time that provides the smallest l2-norm.

Definition 1. The event time prediction, or Cox prediction time, based on the minimiza-
tion of the l2-norm of the partial log-likelihood gradient, is defined as:

t̂new = arg min
tnew

..∇ℓ(tnew)
--
β=β̂

..
= arg min

tnew

öõõô3
∂ℓ(tnew)

∂β1

----
β=β̂

42
+ · · · +

3
∂ℓ(tnew)

∂βp

----
β=β̂

42
,

(5.11)
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where the derivatives of the partial log-likelihood, that constitute the components of the
gradient, are those in Equation 5.7.

This definition for the Cox prediction time is just a point definition, representing the
best time point corresponding to the minimum l2-norm in Definition 1. The solution of
this minimization problem is usually not a single one but it turns out to be an interval of
survival times. The reason of this claim is the nature of the Cox regression model itself,
which only works with ranks of survival rather than absolute values of observed times.

Theorem 1. Let consider a sample of n individuals, each characterized by a set of predic-
tors xi, an observed survival time ti and its censoring state δi. Let define the order statis-
tics of the time intervals, i.e the ordered observed survival times t(1) < t(2) < · · · < t(n).

For a new patient with known set of predictors xnew, the Cox prediction time tnew is
the solution of the minimization problem in Definition 1. This solution is invariant to the
choice of tnew in any of the intervals defined by the order statistics of the time intervals.
It turns out that:

• if tnew is a solution such that t(i) < tnew < t(i+1), then the entire interval (t(i), t(i+1))
is a solution;

• the search of the minimizer in Equation 5.11 reduces to the search of the best over
n + 1 possible intervals.

Proof. The two propositions exposed in Theorem 1 follow directly from the definition of
the partial likelihood given for a Cox regression model. The latter works only with the
rank of the survival times and their contribution to the partial likelihood is observed only
in the risk-sets. Considering the order statistics of the time intervals, the contribution of
time tnew to the partial log-likelihood derivative can be highlighted. Suppose here that xi

represents the covariates for the patient with time t(i).

dℓ

dβj

----
β=β̂

=
nØ

i=1

5
xji −

qn
l=i exp (β̂′xl)xjl + ✶(tnew ≥ t(i)) exp (β̂′xnew)xj,newqn

l=i exp (β̂′xl) + ✶(tnew ≥ t(i)) exp (β̂′xnew)

6

+ xj,new −
qn

l=1 ✶(tnew ≤ t(l)) exp (β̂′xl)xjl + exp (β̂′xnew)xj,newqn
l=1 ✶(tnew ≤ t(l)) exp (β̂′xl) + exp (β̂′xj,new)

.

(5.12)

If t(k) < tnew < t(k+1), then:

dℓ

dβj

----
β=β̂

=
kØ

i=1

5
xji −

qn
l=i exp (β̂′xl)xjl + 1 exp (β̂′xnew)xj,newqn

l=i exp (β̂′xl) + 1 exp (β̂′xnew)

6

+
nØ

i=k+1

5
xji −

qn
l=i exp (β̂′xl)xjlqn

l=i exp (β̂′xl)

6

+ xj,new −
qn

l=k+1 exp (β̂′xl)xjl + exp (β̂′xnew)xj,newqn
l=k+1 exp (β̂′xl) + exp (β̂′xj,new)

.

(5.13)

In Equation 5.13 the time tnew is not explicit, highlighting that the position in the ordered
observed times t(k), k = 1, . . . , n, is the only information used about the time. If the
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derivative of the partial log-likelihood with respect to each coefficient depends only on
the k − th interval for the new patient, the same will be for the norm of the gradient.
As a consequence, an entire interval (t(k), t(k+1)) will be the solution for the l2-norm
minimization in Definition 1.

Since it has been shown that values of
..∇ℓ(tnew)

.. change only in correspondence of
different positions k in the order of the survival times, it is sufficient to consider a finite
number of possible values for its minimization. This finite number equals the number
of intervals defined by the order statistics t(1), . . . , t(n): it is equal to n − 1 in-between
intervals plus two intervals (one for those times smaller than t(1) and one for those greater
than t(n)). In conclusion, the minimization problem reduces to the comparison of only
n + 1 values.

Considerations and future work

The result of the "inverse" method, in either one of the two forms presented throughout
this section, is a point definition, corresponding in particular to a range of times. A
comparison with the linear regression setting allows to support the "inverse" approach by
one side, and to think on possible improvements by the other. If survival times would
be related to individual predictors through a simple linear regression, then prediction of
individual survival time for a new patient would simply be obtained as:

tnew = β̂xnew. (5.14)

In this context, regression coefficients are estimated minimizing the residual sum of squares
and they are obtained imposing the derivative of the latter to be equal to zero. The
question is now whether inverting this process, as done for the Cox model, would give the
same predictions. In practice it can be seen that the same predictions of Equation 5.14
can be obtained following an "inverse" approach asking for a time prediction that gives the
same estimated coefficients (or the smallest variation). This result supports the idea of
inverting the equations of the partial log-likelihood also in the context of a more complex
Cox regression model, as proposed at the beginning of this section.

In analogy of linear regression, the desire would also to obtain real prediction intervals
for the Cox prediction times. As already mentioned, the definition of a Cox prediction
time is a point prediction; however it would be of interest to find a prediction interval
in which a future observation will fall, with a certain probability. Until now it has not
identified a clear method to obtain such intervals but further investigation could be done
to improve available information on individual times prediction.

The next section provides practical examples on how to implement this non-parametric
approach for survival times prediction, highlighting in particular the main issues and
difficulties that are encountered.

5.2 Application
In practical applications, it is worth distinguishing if the new patient for whom an estimate
of the survival time is wanted, has also been used to fit the original Cox model or not. In
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the first case, the interval obtained from the "inverse" process (summarized in Equation
5.6) will contain the exact observed time for uncensored patients; indeed, it represents
the time that would give those estimated coefficients that are supposed to be already
known. In the second case, instead, the computed interval will not necessarily contain the
actual time if the same method is followed. Since the difference in the estimates of the
regression coefficients is rarely zero, as discussed in the theoretical section, knowing its
value would lead to predicted survival intervals that are close to the actual observed times.
For example, accurate survival time prediction would be obtained if values of the delta-
beta residuals would be known. Otherwise, the request for the time of the new patient
would be to be to minimize the variation in the estimates of the coefficients, knowing that
this latter will almost never be zero.

The "inverse" non-parametric approach has been implemented in R and it is hereafter
shown for both cases previously mentioned.

5.2.1 Survival time for the k-th patient in the study sample
In this section it is assumed that the regression coefficients are computed fitting a model
over the entire data set of individuals and that in a second moment the interest is on
obtaining the time of the kth individual.

The computation of the derivative of partial log-likelihood in Equation 5.6 is done
by the function derivative_pll(), that depends on the data of the individuals in the
sample excluding the kth patient (data_small), the covariates that characterize the new
individual (xnew) and the estimated coefficients from a previous Cox model (coeff). With
specific values of the just mentioned parameters, the function is a function of the only
unknown tnew. As already stated, the choice of the coefficient βj with respect to which
compute the derivative is arbitrary; here the coefficient β1 relative to the first variable
x_1 is used. Suppose that variables time and status represent the observed event-time
and the censoring status of the subjects respectively and that three covariates characterize
each patient. The function is implemented as follows.
derivative _pll <-function (tnew ,data_small ,xnew ,coeff ){

ns=nrow(data_small)
d_i=0*c(1: ns)

for (i in (1: ns )){
d1=as. matrix (data_ small[data_ small $time >= data_small$time[i],

c("x_1","x_2","x_3")])
d2=as. matrix (data_ small[data_ small $time >= data_small$time[i],

"x_1"])
m1=sum(exp(d1%*%coeff)*d2)
m2=sum(exp(d1%*%coeff ))

# contribution of the i-th individual to the pll derivative
d_i[i]= data_small$ status [i]*(data_small$x_1[i]-((m1+

ifelse (tnew >= data_small$time[i] ,1,0)*
exp(as. vector (xnew)%*%coeff)*xnew [1])/
(m2+ ifelse (tnew >= data_ small $time[i],1,0)*
exp(as. vector (xnew)%*%coeff ))) )
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}

d3=as. matrix (data_small[data_small$time >=tnew ,
c("x_1","x_2","x_3")])

d4=as. matrix (data_small[data_small$time >=tnew ,"x_1"])

m3=sum(exp(d3%*% coeff)*d4)
m4=sum(exp(d3%*% coeff ))

# contribution of the new individual to the pll derivative
d_new= xnew [1] -( (m3+exp(as. vector (xnew)%*%coeff)*xnew [1])/
(m4+exp(as. vector (xnew)%*% coeff )) )

d_pll=sum(d_i)+d_new
return (d_pll)

}

The "inverse" process is now summarized for the situation in which the actual estimated
vector β̂ is known and the actual observed event time for the kth subject can be used to
compare the results of the method. Suppose to have an original study sample made of n
patients and p predictors, then it can be proceeded as follows:

1. Remove tied-observations (if any) so to use Equation 3.5 for the computation of the
partial likelihood.

2. Fit a Cox regression model on the data of the n individuals.

3. Obtain the estimated vector of regression coefficients β̂ maximizing the partial log-
likelihood of the model and using iterative methods to solve the equations.

4. Take the kth patient with covariates xk out of the n ones and suppose now that his
or her time tk is unknown.

5. Choose one j out of the p coefficients and compute the derivative of the partial
log-likelihood with respect to that βj .

6. Insert the vector of estimated coefficients β̂ and the survival times of the n − 1
individuals in Equation 5.6.

7. "Solve" the equation for the time tk.

8. Obtain the relative ranking for the survival time of the kth patient.

One way to solve Equation 5.6 in point 6. is to use grid search and choose the time for
which the computed derivative of the partial log-likelihood, that will never be exactly
zero due to approximation, is smallest and approximately zero. Since the function does
not need an exact time but just the ranking of all survival times of the subjects, it is
sufficient to define a vector (time_grid) that includes the information on the ranking: it
will contain a time point between every two consecutive observed times and this will be
used to obtain the lower and upper bounds of the interval, that correspond to those two
consecutive times.
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time_grid =0*c(1:( nrow(data_small )+1) #time points between two
# consecutive observed times

for (k in (2: nrow(data_ small ))){
time_grid[k]=( data_ small _ ordered $time[k]+

data_ small _ ordered $time[k -1])/2
}

time_grid [1]= data_small_ ordred [1] -1/2
time_grid[n+1]= data_small_ ordered $time[nrow(data_small )]+1/2

Again the dataset mgus_os with its relative notation is used for illustrative purposes;
the 8 points that characterize the method are now shown more in detail using this data
set as an example.

1. Adjust for tied-observations: a small error of 0.01 has been added for two equal event-
times and a new data set mgus_noties is obtained, where only one event occurs at
each observed time.

2. Fit a Cox model:
cox_ noties <-coxph(Surv(futime ,death)~age+creat+hgb ,

data=mgus_ noties ).

3. Get the estimated regression coefficients:
beta_ noties <-as. vector (cox_ noties $ coefficient ).

4. Choose the kth patient: suppose, as an example, to be interested in obtaining the
survival time of the first patient. The explanatory variables that characterize this
patient are:
> mgus_ noties [1,]

id age sex dxyr pcdx futime death alb creat hgb mspike
1 1 78 female 68 0 748 1 2.8 1.2 11.5 2

where it can be seen that the observed event time is equal to 748 days; this value
is used for comparison with the result of the "inverse" process. Since only the three
variables age, creat and hgb are used in the Cox regression model, the covariates
for the new subject are
x_k<-as. matrix (mgus_ noties [1,c("age","creat","hgb")]).

5. Define the coefficient to use for the computation of function derivative_pll(). If
the first explanatory variable age is used, Equation 5.6 implemented in the function
refers to ∂ℓ

∂βage
≈ 0.

6. Define the derivative with respect to βage as a function of time tnew:
derivative _pll(tnew ,mgus_train ,x_k,beta_ noties ),

where mgus_train refers to the data set obtained excluding the first patient
(mgus_train<-mgus_noties[-1,]).
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7. As already said, the equation is here simply solved with grid search, using the vector
time_grid that identifies the possible new intervals. For each value in the vector, it
is saved the value of the computed partial log-likelihood derivative and the interval
for which the value is approximately zero (the smaller in absolute value in this case)
is taken.
for ( j in (1: length (time_grid ))){

d_pll[j]= abs( derivative _pll(time_grid[j],mgus_train ,x_k,
beta_train ))

}
i_opt <-which(d_pll == min(d_pll ))
if ( length (i_opt )==1){

i1 <-i_opt
i2 <-i_opt

}else{
i1 <-i_opt[which(i_opt == min(i_opt ))]
i2 <-i_opt[which(i_opt == max(i_opt ))]

}
if(i1 ==1){

opt_u<-mgus_train _o$ futime [i2]
opt_l=0

}else if (i2 ==( nrow(mgus_train )+1)){
opt_u<-max(mgus_train _o$ futime )
opt_l<-mgus_train _o$ futime [i1 -1]

}else{
opt_l<-mgus_train _o$ futime [i1 -1]
opt_u<-mgus_train _o$ futime [i2]

}
interval _k<-cbind(opt_l,opt_u)

8. Finally the bounds of the new interval are obtained from the observed times of the
individuals and the resulting survival interval for the first patient is:

> interval _k
[1] 652 779

that contains the actual time of 748 days.

This process can be repeated for each individual in the study and the result is an
interval for each of them that contains the actual observed time. Note that this is true
for the subjects who were not censored, but the interval for the patients whose survival
time was censored does not necessarily contain the original censored survival time, since
it is supposed to contain the actual event-time that is not known in this case.

For each patient it can can be computed the predicted score (Eq.3.18) using the func-
tion predict.coxph of Chapter 4 and plot the survival time against this value to compare
the observed time with the predicted one. The resulting interval from the "inverse" ap-
proach is shown in red in Figure 5.1 where it is compared to the observed survival time
(black points) for those subjects who were uncensored. From Figure 5.1 it is evident
that the obtained intervals cover exactly the observed times for each patient whose actual
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Figure 5.1. Predicted survival interval (red) and observed event time (black)
for each non-censored patient of the original study sample in mgus_noties
knowing the exact value for β̂.

time was known. The size of the predicted intervals varies among the patients and this
is because it depends on the known observed survival times of the other individuals in
the study and, in particular, on their relative distance. This aspect underlies the strong
dependence of this methodology on the observed data.

If a single time-point is preferred rather than an interval of times, then the median
time of the predicted interval could be taken as the survival time prediction for the kth

individual:
t_k=( interval _k[1]+ interval _k[2])/2
> t_k
[1] 715.5

Otherwise it could be thought of an exponential distribution for the survival function
between the two bounds of the interval (t1 and t2). Computing the empirical survival
probability for these two time-points (s1 and s2) allows to compute an exponential func-
tion for the considered interval and to take the time that corresponds to the mean of the
survival probabilities of the two bounds.

b=( log(s2)-log(s1))/(t2 -t1)
a= s1*exp(-b*t1)
t_k<-1/b*( log ((( s1+s2)/2)/a))
>t_k
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[1] 715.4005

5.2.2 Survival time for a new patient
In the second case, the new patient is supposed not to be in the original study used to fit
the model. As for the parametric cases, leave-one-out cross validation is used to validate
the prediction. The new patient is taken again as one of the original n subjects for whom
the actual survival time is known but the model is then fitted over the remaining n − 1
individuals.

If the values of the delta-beta residuals are known, the function derivative_pll()
can be used to get a prediction of the intervals, including this further information. If for
example, the first patient is considered to be the new one, his or her predictors are given
by:
x_new <-as. matrix (mgus_ noties [1,c("age","creat","hgb")])

Using the function residuals() on a fitted Cox model over the full data set, allows to
obtain the delta-beta residuals ∆1β̂ that are shown to be different from zero.
> res_beta <-residuals (cox_noties ,type=" dfbeta ")
> res_beta [1,]
[1] 0.0004202891 0.0017042735 -0.0028970961

If this information were known for the new subject, than it could be included in the
model in order to obtain times that are nearer to those actually observed. In fact, adding
the approximated difference on the estimated coefficients when computing the partial
likelihood derivative,
derivative _pll(tnew ,mgus_train ,x_new ,beta_ train+res_beta_[1 ,])

allows to obtain an interval that is close to the observed time of death (748 days):
> interval _new [1,]
[1] 779 791

If this process is repeated for each non-censored patient with the leave-one-out approach,
the obtained results are the ones in Figure 5.2.

As more realistically happens, when exact values or estimates of the difference in
the regression coefficients are not given, Definition 1 is used to obtain a time prediction.
Rather than computing the partial log-likelihood derivative with respect to one coefficient,
now a global measure is needed and the l2-norm of the gradient of the partial log-likelihood
is used instead, as discussed in Section 5.1. This latter is implemented in the function
gradient_norm that again, with specific values of data_small, xnew and coeff, is a
function of the only unknown tnew.
gradient _norm <-function (tnew ,data_small ,xnew ,coeff ){

ns=nrow(data_small)

dl1_i=0*c(1: ns)
dl2_i=0*c(1: ns)
dl3_i=0*c(1: ns)
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Figure 5.2. Observed and predicted survival time vs predicted risk score for each non–
censored patient of the original study sample mgus_noties using the "inverse" process
and supposing to know values of the difference in β ( ∆newβ̂ ≈ delta-beta residuals).

for (i in (1: ns )){
x=as. matrix (data_ small[data_ small $futime >=

data_ small $ futime [i], c("age","creat","hgb")])
x_1= as. matrix (data_ small[data_small $futime >=

data_ small $ futime [i],"age"])
x_2= as. matrix (data_ small[data_small $futime >=

data_ small $ futime [i],"creat"])
x_3= as. matrix (data_ small[data_small $futime >=

data_ small $ futime [i],"hgb"])

num_1= sum(exp(x%*%coeff)*x_1)
num_2= sum(exp(x%*%coeff)*x_2)
num_3= sum(exp(x%*%coeff)*x_3)

den=sum(exp(x%*%coeff ))

dl1_i[i]= data_small$death[i]*( data_ small $age[i]-(( num_1 +
ifelse (tnew >= data_ small $ futime [i],1,0)*
exp(xnew%*%coeff)*xnew [1])/
(den+ ifelse (tnew >= data_small$ futime [i],1,0)*
exp(xnew%*%coeff ))) )
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dl2_i[i]= data_small$death[i]*( data_ small $creat[i]-(( num_2+
ifelse (tnew >= data_ small $ futime [i],1,0)*
exp(xnew%*%coeff)*xnew [2])/
(den+ ifelse (tnew >= data_small$ futime [i],1,0)*
exp(xnew%*%coeff ))) )

dl3_i[i]= data_small$death[i]*( data_ small $hgb[i]-(( num_3 +
ifelse (tnew >= data_ small $ futime [i],1,0)
*exp(xnew%*% coeff)*xnew [3]) /
(den+ ifelse (tnew >= data_small$ futime [i],1,0)*
exp(xnew%*%coeff ))) )

}

xstar=as. matrix (data_ small[data_small $futime >=tnew ,
c("age","creat","hgb")])

xstar _1=as. matrix (data_small[data_small$futime >=tnew ,"age"])
xstar _2=as. matrix (data_small[data_small$futime >=tnew ,"creat"])
xstar _3=as. matrix (data_small[data_small$futime >=tnew ,"hgb"])

num_star1=sum(exp(xstar%*% coeff)*xstar _1)
num_star2=sum(exp(xstar%*% coeff)*xstar _2)
num_star3=sum(exp(xstar%*% coeff)*xstar _3)

den_star=sum(exp(xstar%*% coeff ))

dl1_new= xnew [1] -(( num_star1+exp(as. vector (xnew)%*%coeff)*
xnew [1])/ (den_star+exp(as. vector (xnew)%*%coeff )))

dl2_new= xnew [2] -(( num_star2+exp(as. vector (xnew)%*%coeff)*
xnew [2])/ (den_star+exp(as. vector (xnew)%*%coeff )))

dl3_new= xnew [3] -(( num_star3+exp(as. vector (xnew)%*%coeff)*
xnew [3])/ (den_star+exp(as. vector (xnew)%*%coeff )))

dl1=sum(dl1_i)+ dl1_new
dl2=sum(dl2_i)+ dl2_new
dl3=sum(dl3_i)+ dl3_new

norm=sqrt(dl1 ^2+ dl2 ^2+ dl3 ^2)
return (norm)

}

The idea would be to use the same process of the previous case but using the estimated
coefficients of a Cox model fitted over the sample of the remaining n − 1 subjects instead
of using the full sample of n patients and using the function gradient_norm() instead of
derivative_pll() which computes instead the derivative with respect to only one chosen
coefficient.

Except for these changes, the methodology used in practice looks very similar to the
previous one:
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1. Remove tied-observations and obtain mgus_noties so to use Equation 3.5 for the
partial likelihood.

2. Take the kth patient with covariates xk out of the n ones: he or she is treated as the
new patient with covariates xnew = xk and survival time tnew. If k = 1:
x_new <-as. matrix (mgus_ noties [1,c("age","creat","hgb")]).

3. Fit a Cox regression model on the data of the other n − 1 individuals.
mgus_train <-mgus_ noties [-1,]
cox_train <-coxph(Surv(futime ,death)~age+creat+hgb ,

data=mgus_train)

4. Obtain the estimated vector of regression coefficients β̂ maximizing the partial log-
likelihood of the model and using iterative methods to solve the equations.
beta_train <-as. vector (cox_train $ coefficients )

5. Compute the gradient for the partial log-likelihood together with its norm as done
in Equation 5.10 and insert the vector of estimated coefficients β̂ and the survival
times of the n − 1 individuals:
gradient _norm(tnew ,mgus_train ,x_new ,beta_train)

6. Minimize the equation for the time tnew. As for the previous case, grid search is used
to find the time that satisfies the request in Definition 1.
for ( j in (1: length (time_grid ))){

grad_norm[j]= gradient _norm(time_grid[j],mgus_train ,x_new ,
beta_train)

}
i_opt <-which(grad_norm == min(grad_norm ))
if ( length (i_opt )==1){

i1 <-i_opt
i2 <-i_opt

}else{
i1 <-i_opt[which(i_opt == min(i_opt ))]
i2 <-i_opt[which(i_opt == max(i_opt ))]

}
if(i1 ==1){

opt_u<-mgus_train _o$ futime [i2]
opt_l=0

}else if (i2 ==( nrow(mgus_train )+1)){
opt_u<-max(mgus_ train_o$ futime )
opt_l<-mgus_train _o$ futime [i1 -1]

}else{
opt_l<-mgus_train _o$ futime [i1 -1]
opt_u<-mgus_train _o$ futime [i2]

}
interval _new <-cbind (opt_l,opt_u)
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8. Obtain the relative ranking for the survival time of the new individual among the
others:
> interval _new
[1] 3027 3062
> t_pred =( interval _new [1]+ interval _new [2])/2
> t_pred
[1] 3044.5

The observed event-time for patient 1 in this case was 748 days, quite far from the pre-
dicted one. Exploiting leave-one-out cross validation, results of the Cox prediction time
are given by Figure 5.3 that shows the Cox prediction times (intervals in red) compared
to the observed death-times (black points).

Figure 5.3. Observed and predicted survival time vs predicted risk score for each non–
censored patient of the original study sample mgus_noties using the "inverse" process
asking for the smallest difference in the coefficients.

Summarising all the results obtained, it has been shown that theoretically it would
be possible to "invert" the process of maximum likelihood estimation solving Equation
5.6 and obtaining an interval of survival times for a certain patient. This is verified in
the case in which the right values of the coefficients β̂ are known and the time of the
kth individual can in this way be "recovered". If only the coefficients computed over a
certain population not including the new patient are available, as more realistically would
be, then practical issues arise in solving Equation 5.7. If estimates of the difference in
the regression coefficients ∆β̂ can be computed, than again it is possible to make the
"inversion" including the latter information and get prediction times that are close to the
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real death-times. In the general case, when such values are not known, practical issues are
solved proposing a new definition (Def 1) based on the minimization of the l2-norm of the
partial log-likelihood gradient. The function gradient_norm() is minimized through grid
search, exploiting the nature of the Cox model which is only based on the ranking of the
survival times. Results seem not to overcome the limitations of the parametric approaches
of Section 4 and in the next Chapter a comparison is done through visualization and some
performance evaluation metrics.
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Chapter 6

Results and Comparisons

In this chapter possible performance metrics for prediction evaluation are defined and are
then used to compare the three methods (median survival time, restricted mean survival
time and cox prediction time obtained from the "inverse" approach) for survival time
prediction.

6.1 Performance Evaluation Metrics

Once a method for prediction of survival times has been identified, its performance should
be evaluated to assess whether the predictions are accurate or not. However, performance
evaluation is not straightforward in survival analysis: the censoring problem of survival
data is the main reason why survival models are difficult to evaluate, since the actual
survival time of certain subjects is not known. One way could be to not consider the
information of the censored data and construct a measure that is used only over the
uncensored sample.

A first measure that will be used to compare the performance of the different methods
proposed, is the root mean square error (RMSE) for the uncensored observations:

RMSE =

öõõô 1
nevent

nØ
i=1

[δi(tpred,i − tobs,i)]2, (6.1)

where n is the observed sample size and nevents is the event sample size that corresponds
to individuals who showed genuine death. The RMSE measures the difference between
the predicted survival time tpred,i and the observed uncensored survival time for each
individual. Note that RMSE defined in this way can be used to compare performances
of different prediction models over the same data but is not appropriate to compare
performances over different data sets since it depends on the scale of times, that can vary
a lot from one data set to the other.

For this scope, a very intuitive way to evaluate performance starts from a definition
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of "serious error" given by Parkes 1: the error in prediction is defined to be serious if the
predicted outcome differs from the observed event-time by a multiplicative factor of two,
that is, if the predicted time is less than half the observed time (tpred ≤ 0.5 tobs) or more
than twice the observed time (tpred ≥ 2 tobs). With this definition, the number of serious
errors can be computed for different models in different data sets and used to compare
the different prediction performances.

6.2 Models Comparison
In this section a comparison between the performance of the three different prediction
models, namely median survival time, restricted mean survival time and the new proposed
cox prediction time obtained from the "inverse" approach, is made in terms of the root
mean square error for uncensored observations for the example data set mgus_os.

For each model a graphical representation shows the difference between the observed
survival time and the prediction obtained from the model: a diagonal line would mean
a perfect prediction, where predicted survival times for the uncensored patients coincide
exactly with the actual ones and deviations from this line are measured by the root
mean square error. Figure 6.1 shows the errors for the median survival time (a) and the
restricted mean survival time (b) with their values for RMSE; restricted mean survival
time turns out to be more accurate than median survival time in predicting individual
survival times. In addition, although it is not the case of this example, median survival
time could be undefined for certain values of the explanatory variables and using restricted
mean survival time instead is even more appropriate because it does not suffer from this
limitation. Concerning predictions obtained with the "inverse" algorithm, as discussed
in Chapter 5, it is worth making some considerations. If the survival time is obtained
from Definition 1, this should represent the time which gives the smaller variation in the
estimates of the regression coefficients. The result is in general an entire interval of times,
but here the mean time of each interval is taken in order to make single time points
comparisons. The predicted times so obtained are shown in Figure 6.2(a). It can be seen
that some predicted times are quite far from the diagonal representing perfect prediction
and the RMSE is slightly higher than the two parametric methods.

If for each subject a predefined value of the difference in the β-coefficients is available,
coinciding for example with the value of the delta-beta residuals, then predicted times will
move close to diagonal (Figure 6.2(b)) improving prediction accuracy. However, since the
beta-residuals will not be available for a new individual, another reasonable value should
be found for this difference in order to obtain such accurate predictions.

1
Parkes CM. Accuracy of predictions of survival in later stages of cancer, British Medical Journal 1972; 2: 29 –31.
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(a) RMSE: 3019.585 .

(b) RMSE: 2920.068 .

Figure 6.1. Observed vs predicted survival time for uncensored patients in the mgus_os
data set computed with median survival time (a) and restricted mean survival time (b).
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(a) RMSE: 3048.771 .

(b) ∆newβ̂ ≈ delta-beta residuals.

Figure 6.2. Observed vs predicted survival times for uncensored patients in mgus_os
computed with the "inverse" approach minimizing the variation in the coefficients (a) and
supposing to know the exact values of the delta-beta residuals (b) .
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6.3 PBC Data Set
In Section 4.1 the data set mgus has been presented and then used throughout this work
as an example to firstly visualize the responses of the functions predict.coxph() and
survfit.coxph() in R and then to show how the proposed non-parametric "inverse"
method works. Here another example data set from the library survival in R is reported
and used for comparative purposes, assessing the impact of some sample features as, for
example, the number of patients and the percentage of censoring.

The data set pbc from the survival package collects the data from the Mayo Clinic
trial in "primary biliary cirrhosis (PBC)" between 1974 and 1984 and contains a total
number of 418 patients (more details on the data set in [7, Pag.76]). Primary sclerosing
cholangitis is an autoimmune disease leading to destruction of the small bile ducts in
the liver; progression is slow but inexhortable, eventually leading to cirrhosis and liver
decompensation. This condition takes the name of "primary biliary cirrhosis".

Taking advantage of the variables already selected to be significant for overall survival
in [8] and successively selecting those that meet the proportional hazards assumption,
finally each patient can be described by:

• age: age in years.

• edema: categorical variable that indicates the presence of an edema (0: no edema,
0.5: untreated or successfully treated, 1: edema despite diuretic therapy).

• albumin: serum albumin (g/dl).

• bili: serum bilirunbin (mg/dl).

• status: status at endpoint (0: censored, 1: transplant, 2: dead). For the analysis
of overall survival, liver transplantation is treated as censoring so that the event is
represented by "status"=2.

• time: number of days between registration and the earlier of death, transplantion,
or study end (July 1986).

Since in [8] it has be shown that the relationship between survival and the continuous
variables albumin and bili is logarithmic rather than linear, a log-transformation is
considered also in this case. A Cox regression model can then be fitted on that data.
cox_pbc <-coxph(Surv(time , status ==2)~age+edema+log(bili)

+log( albumin ),data=pbc)

This dataset is here used as a second example of survival data for which prediction
times are desired and can be compared with the firstly described dataset mgus_os in terms
of prediction performances.

Two features differentiate mainly the two data sets and those are given by sample size
and censoring: mgus_os contains 11 censored observations out of 176, while death was
not observed for 257 over 418 patients in pbc. Since the first dataset has a low percentage
of censoring (6.25%) and the second has a very high censoring (61.48%), a comparison
can be done to assess how much censoring can affect prediction of survival times. The
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discriminative power, measured by the C-index, of the Cox model on the two different
data sets is slightly different,
> c_index

C-index mgus C- index pbc
concordance 0.7069157 0.8339209

showing higher discriminative power for the pbc data set. However, as already claimed in
Section 3.4, high discriminative predictive models can show low calibration (thus accuracy)
that is however fundamental in predicting individual survival times. Unfortunately this
is one of these cases, in which survival times predictions are not accurate at an individual
level. Hereafter the restricted mean survival time is preferred to the median survival time
in order to make predictions and compare the results of the proposed algorithm, since
median survival time is not defined for some individuals in the original sample. Using
restricted mean survival time to predict survival times for individuals in the pbc data set,
leads then to results in Figure 6.3 for non-censored patients. The reason for such a poor

Figure 6.3. Observed vs predicted survival times for uncensored patients in pbc using
restricted mean survival time (rmst) for prediction.

result is the high number of censored observations, that leads to predicted survival times
that are almost always greater than the actual observed ones. Applying the new "inverse"
method, results appear slightly better having a smaller mean square error and smaller
percentage of "serious" errors as defined in Section 6.1.
> RMSE_ error_pbc

rmst ’inverse ’
[1,] 1742.968 1648.604
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> serious _error_pbc
rmst ’inverse ’

[1,] 0.5652174 0.5403727

However, Figure 6.4 shows that again the impact of censored observations is very high,
affecting the quality of Cox prediction times obtained with the "inverse" algorithm. By
modifying the algorithm adding the information of a known difference in the estimated
values of the coefficients, i.e delta-beta residuals, high censoring would not affect much
the performance as it can be seen in Figure 6.5.

Figure 6.4. Observed vs predicted survival times for uncensored patients in pbc com-
puted with the "inverse" approach.

If the number of serious errors is used as a measure for qualitatively comparing perfor-
mance over the two different data sets, it can be seen that for samples with high number
of censored patients, the number of errors increases. Indeed, for the mgus_os data set the
percentage of serious errors decreases, containing very few censored observations.
> serious _error_mgus

rmst ’inverse ’
[1,] 0.2909091 0.2969697

In conclusion, the use of mgus_os and pbc data sets to assess performances of the illus-
trated predictive methods together with their comparison, allows to draw some consid-
erations. First of all, it can be seen that good discriminative power is not enough for a
model to make accurate predictions at the individual level. Even if the Cox model fitted
over the pbc data set has a high value of concordance, greater than the first example
proposed, the high number of censored observation affects the accuracy of individual time
prediction when using the restricted mean survival time. Unfortunately the same impact
of censored observations can be seen also in the "inverse" method that, even if it has a
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Figure 6.5. Observed vs predicted survival times for uncensored patients in pbc
computed with the modified "inverse" approach supposing to know the exact values
of the delta-beta residuals.

slightly smaller root mean square error, cannot overcome this dependence. Also in the
first example of mgus_os the performance looks quite similar but the "inverse" method in
the proposed form for a new patient, in this case, fails also in the attempt to improve the
accuracy in prediction.

The dependence on censoring could be overcome if the exact values of the estimated
coefficients β̂ or estimates for the delta-beta residuals ∆newβ̂ were known, making possible
to "invert" the equation used in the maximization of the partial log-likelihood and obtain
accurate predictions on an individual level.
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Chapter 7

Conclusions

Individual lifetime prediction is a challenging and interesting goal of survival analysis in
clinical research since it could improve the decision-making process for the single patients
moving forward into the field of personalized medicine.

The Cox proportional hazards regression model is the most popular method when
dealing with survival data, explaining relationships between individual characteristics and
survival experience. The standard output of this model is a relative measure of the risk
of the individuals among each other, and not an absolute estimate of their survival times;
indeed, for this latter objective, the model has to be combined with a parametric estimate
of the hazard and survival function.

The survival package in R can be used to predict some useful quantities from a
fitted Cox model. Function predict.coxph() allows to predict the relative risk score
for a new patient, together with its survival probability at a specific time. Function
survfit.coxph() instead provides a predicted individualized survival curve that gives
information at an individual level: survival probabilities at each time can be extrapolated
for a new patient along with its median and restricted mean survival time. Restricted mean
survival time in particular turns out to be a better value for survival time prediction, even
if it is strongly affected by censoring and by the assumptions of linearity of the underlying
Cox model.

A novel approach that aims to somehow invert the Cox model has been proposed,
starting from the partial likelihood involved in the estimation of the regression coefficients.
It has been shown that, if the coefficients are known, it is possible to invert the model and
obtain a range of survival times for each individual, that correspond to its ranking among
the known survival times of the rest of the individuals in the study. This algorithmic
approach does not require any estimation of the hazard or survival function, reflecting
the semi-parametric nature of the Cox model. Inversion is possible if the right coefficients
are supposed to be known but, if the same algorithm is used for prediction, practical
issues coming from approximations may arise. However, if approximated values of delta-
beta residuals would be available, then it would be possible to invert the model again
and obtain predictions of survival times that does not suffer too much from the model
assumptions. With these assumptions, it has been shown that accurate predictions can
be obtained for individual patients, improving the parametric approaches of median and

61



Conclusions

mean survival time.
In more realistic conditions, when such information is not available, a novel definition

of a Cox prediction time is provided, based on the minimization of the l2-norm of the
partial-likelihood gradient. The result of the approach is an interval of times rather than
a single value, that aims at minimizing the variation in the estimates of the regression
coefficients.

Finally, conclusions on the restrictive assumptions of a Cox model are made in order
to improve in the field of individual lifetime prediction.
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