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Abstract

Nowadays, the Internet is becoming the primary source of information, and the use of
social networks makes it possible to come every day in contact with a great deal of news,
much of which turns out to be fake. In recent years, for this reason, more and more fake
news has been studied, trying to understand how to recognize them, how they propagate
and how they affect people, especially their knowledge.
In the first part of this thesis, it is analyzed through kinetic theory how individual’s com-
petence varies in the interaction with a fake news, characterized by a degree of falsehood.
This analysis shows that, over long periods of time, there is a polarization in agents’
knowledge toward the highest degree of competence (those who are perfectly able to dis-
cern between true and false news) and toward the lowest degree of competence (those who
are unable in any way to recognize the reliability of a news). This analytically obtained
behavior is also verified numerically through Monte Carlo simulations.
The second part is devoted to the study of the popularity of fake news on a social network.
At first, we make the assumption that, who is not sufficiently competent, will share the
news. From the study of the evolution of the popularity conditional on a given degree
of falsity of the news, the results show that, a totally false news, tends in a long time
to completely lose popularity, since no one will share it, while, if the news is true, the
average popularity conditional on that degree of falsity will not cancel out. In the end,
we propose 3 alternative models for the popularity of the fake news.
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Intoduction

More and more, in recent years, the use of the Internet and social networks has become
extremely widespread and with it the number of fake news. Social networks, and, in
general, the Internet are within the reach of all and we make extensive use of them, also
as a primary source of information. Identifying if a news is false is not an easy task and
for this reason, nowadays, it has become necessary to study the effect of fake news on
individuals’ knowledge and how they tend to become popular. In particular, this need
has become even more urgent following the arrival of the Covid-19 pandemic, which, due
to the huge number of fake news circulating online (mainly in the phase when there was
little official data), caused a slowdown of the vaccination campaign all over the world.

In the first part of this work, we use kinetic theory to study, through the Boltzmann-
type equation, the effect of the interaction between the individual and fake news on the
ability of the agents to recognize the reliability of the news and, therefore, to distinguish
the real news from the false ones. By this approach, we have studied the evolution of the
average of the agents’ competence and the cases in which it remains constant over time.
Afterward, in the regime of quasi-invariant interactions, the stationary distributions, to
which competence tends for a long time, were found. The result obtained shows that,
with and without stochastic fluctuation, the dynamics tends toward a disappearance of
intermediate level of knowledge and a consequent polarization towards extreme values of
competence: the maximum, which represents individuals who can discern between false
and true news, regardless of the degree of falsity, and the minimum, which characterizes
the individuals who are not competent and who are not able at all to recognize fake news.
This theoretical result was also verified through a numerical simulation by the Monte
Carlo method implemented in Matlab.

In the second part, we analyze, with the theory of multi-agent systems, the spreading
of the popularity of fake news on a social network and how it changes according to the
degree of falsity of the news. At the begging of this part, in the chosen model, it was made
the simplistic assumption that the agents, which are not competent enough to recognize
false news, share the news on the social network. For this model, we focus on studying the
trend of average popularity over time, and then on the behavior of the dynamics of pop-
ularity conditioned to the degree of falsity of the news, to be able to compare results for
different levels of falsity. To do that, we have derived a Boltzmann-type equation specific
for the conditional popularity distribution at a determined level of falsehood of the news.
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Intoduction

Furthermore, through the deduced equation, it was possible to analyze the variation over
time of the average news popularity with a fixed level of falsehood and, under the limit
of quasi-invariant interactions, derive the Fokker-Planck equation to find the stationary
distribution.
In conclusion, three alternative models for the study of popularity have been proposed.
In all these models, the hypothesis on the sharing of the news is relaxed, allowing the
individuals with a degree of competence close to the degree of falsity to share the news
anyway. Hence, even if the agent is more competent and is able to recognize the news
as false, he can still share it as long as the difference between the competence of the
individual and the degree of the falsity of the news is sufficiently small. The definition of
sufficiently small changes according to the model chosen.

14



Part I

Competence’s changes due to
the interaction with the fake

news
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Chapter 1

The epidemiological approach
in the study of fake news

In many scientific articles, in which the topic of fake news is discussed, an epidemiological
approach is used. As an example, Daley and Kendall in [2] proposed a SIR-type model to
treat fake news as an infectious disease. The model considers agents labeled as ignorants,
spreaders and stiflers, which constitute the susceptible, infected and recovered, respec-
tively, of the famous epidemiological model. Later, other epidemiological models such as
SIS and SIRS were used for the study of fake news. More advanced models have also been
proposed, such as SEIZ, for studying the evolution of susceptible, exposed, infected, and
skeptical groups over time.

1.1 SEIR model with individual competence
In this chapter, we will analyze the SEIR model proposed by J.Franceschi and L.Pareschi
in [4] , in which they considered a structure of the population based on the concept of
competence, which represents the agent’s ability to evaluate the news with which he or
she came in contact.
In the model, the population is divided into:

• Susceptible agents (S), those who are unaware of the news;

• Exposed agents (E), those who have come into contact with the news and will move
into an active class;

• Infectious agents (I), those who spread the false news;

• Removed agents (R), those who are aware of the news and decide not to share the
news.

The dynamics of the SEIR model can be described as follows: a susceptible comes into
contact with the news through an infectious agent. After contact, the agent evaluates the
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The epidemiological approach in the study of fake news

information, becoming an exposed. Finally, he can decide between: not sharing the news,
removing himself from the news propagation process and changing his label to removed
agents, or sharing it becoming part of the infectious class (see Figure 1.1).

Figure 1.1. SEIR model.

We define fS(x, t), fE(x, t), fI(x, t), fR(x, t), respectively the distribution of compe-
tence at time t > 0 of susceptible, exposed, infected, and removed. Assuming no one
leaves the social network, we have:Ú

X
(fS(x, t) + fE(x, t) + fI(x, t) + fR(x, t))dx = 1.

From the definition of densities it is possible to derive the fraction of individuals belonging
to each class at time t:

S(t) =
Ú

X
fS(x, t)dx, E(t) =

Ú
X
fE(x, t)dx,

I(t) =
Ú

X
fI(x, t)dx, R(t) =

Ú
X
fR(x, t)dx.

Obviously, it will be worth: S + E + I +R = 1.
Assuming that this dynamics is independent of knowledge, the system can be expressed
with the system of ODEs: 

dS
dt = −βSI + (1 − α)γI
dE
dt = βSI − δE
dI
dt = (1 − η)δE − γI
dR
dt = ηδE + αγI.

(1.1)

Let us look at each ODE in more detail.
The first tells us that an agent stops being susceptible if it comes into contact with an
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1.1 – SEIR model with individual competence

infected person, the rate at which this happens is β. It also tells us that an infected
can become susceptible: this occurs if the agent loses interest in the news and forgets its
content. The γ denotes the rate at which spreaders lose interest in sharing the news, while
α is related to the probability that the individual will remember the fake news.
The change in the exposed class can be related to an increase during the interaction be-
tween susceptible and infected, in which the susceptible automatically becomes exposed,
or a decrease related to whether the exposed agent makes the decision to share or not the
news, and the rate at which a person makes the decision is δ.
The number of infected agents may decrease if the spreaders lose interest in sharing the
news or forget it, while they may increase if an exposed makes the decision to share, which
occurs with the rate (1 − η)δ, where 1 − η indicates the portion of agents that become
infected.
Finally, the removals can only increase. The factors that make possible an increase in
that class are either that an exposed person decides not to share the news (rate ηδ) or if
an infected person forgets and loses interest in the news (rate αγ).

We will now focus on how, in [4], the SEIR model was combined with the dynamics
of competence. Let’s denote the degree of competence that the agent acquires or loses in
each interaction with the background with z ∈ R+ and its probability distribution with
C(z).
If a susceptible agent has competence level x and interacts with an agent with competence
x∗, their knowledge after the interaction will be given by:I

x′ = (1 − λS(x))x+ λCJ(x)x∗ + λBS(x)z + kSJx

x′
∗ = (1 − λJ(x∗))x∗ + λCS(x∗)x+ λBJ(x∗)z + k̃SJx∗,

(1.2)

for J ∈ {S,E, I, R}. In (1.2) it appears:

• λS(·): the competence lost thanks to forgetfulness;

• λBS(·): the competence earned by the background;

• λCJ : the knowledge gained in the interaction with an agent of class J ;

• kEJ and k̃EJ : the independent stochastic fluctuations with zero mean and variance
σ(t).

Similarly to (1.2), we can define the interactions for the other classes.
For exposed agents the post-interaction competence will be:I

x′ = (1 − λE(x))x+ λCJ(x)x∗ + λBE(x)z + kEJx

x′
∗ = (1 − λJ(x∗))x∗ + λCE(x∗)x+ λBJ(x∗)z + k̃EJx∗.

(1.3)

For the infectious class:I
x′ = (1 − λI(x))x+ λCJ(x)x∗ + λBI(x)z + kIJx

x′
∗ = (1 − λJ(x∗))x∗ + λCI(x∗)x+ λBJ(x∗)z + k̃IJx∗.

(1.4)
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For the removed agents:

I
x′ = (1 − λR(x))x+ λCJ(x)x∗ + λBR(x)z + kRJx

x′
∗ = (1 − λJ(x∗))x∗ + λCR(x∗)x+ λBJ(x∗)z + k̃RJx∗.

(1.5)

The Boltzmann-type theory was used to combine the effect of the dynamics of competence
with the dynamics of the epidemiological model by introducing the interaction operator
QHJ(·, ·).
Let ϕ(x) be an observable of competence. We can analyze the effect of QHJ(fH , fJ)(x, t)
on ϕ(x). If x′ follows the interaction rule (1.2), i.e., the agent is in the class of susceptible:

Ú
R+

QSJ(fS , fJ)ϕ(x)dx = ⟨
Ú
R2

+

fS(x, t)fJ(x∗, t)(ϕ(x′) − ϕ(x))dx∗dx⟩. (1.6)

Otherwise, if the agent is part of the class of exposed, x′ is defined as in (1.3), and we
have: Ú

R+

QEJ(fE , fJ)ϕ(x)dx = ⟨
Ú
R2

+

fE(x, t)fJ(x∗, t)(ϕ(x′) − ϕ(x))dx∗dx⟩. (1.7)

For infectious agents (x′ defined as (1.4)):

Ú
R+

QIJ(fI , fJ)ϕ(x)dx = ⟨
Ú
R2

+

fI(x, t)fJ(x∗, t)(ϕ(x′) − ϕ(x))dx∗dx⟩. (1.8)

Lastly, for the agent in the removed class, x′ follows (1.5) and the Boltzmann-type equation
is: Ú

R+

QRJ(fR, fJ)ϕ(x)dx = ⟨
Ú
R2

+

fR(x, t)fJ(x∗, t)(ϕ(x′) − ϕ(x))dx∗dx⟩. (1.9)

Choosing ϕ(·) = 1 we have that, for all of the last four equations, the term on the
right-hand side will become zero. Hence, the number of agents in each class will remain
the same.
Let’s define the function:

K(x, t) =
Ú
R+

β(x, x∗)fI(x∗, t)dx∗, (1.10)

where the contact rate is expressed as a function of both x and x∗, because individuals
interact mostly with agents with a similar level of knowledge. Let’s use (1.10) to rewrite
(1.1) as:
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1.1 – SEIR model with individual competence



∂fS(x,t)
∂t = −K(x, t)fS(x, t) + (1 − α(x))γ(x)fI(x, t) +

Ø
J∈{S,E,I,R}

QSJ(fS , fJ)(x, t)

∂fE(x,t)
∂t = K(x, t)fS(x, t) − δ(x)fE(x, t) +

Ø
J∈{S,E,I,R}

QEJ(fE , fJ)(x, t)

∂fI (x,t)
∂t = δ(x)(1 − η(x))fE(x, t) − γ(x)fI(x, t) +

Ø
J∈{S,E,I,R}

QIJ(fI , fJ)(x, t)

∂fR(x,t)
∂t = δ(x)η(x)fE(x, t) + α(x)γ(x)fI(x, t) +

Ø
J∈{S,E,I,R}

QRJ(fR, fJ)(x, t).

(1.11)
It is reasonable to express δ(x) as a function of the competence since it represents the rate
at which the agent decides to spread or not the news, and, of course, a more competent
agent spends a lot of time analyzing the reliability of the news. Also η, which marks the
decision of individuals to share the news, depends on x. Instead, γ and α do not have a
strict dependence on x.

1.1.1 The quasi-invariant regime and the Fokker-Planck equa-
tion

Let’s study the behavior for t → ∞ using the quasi-invariant limit. To have small changes
during the interaction it is necessary to scale, through a coefficient small and positive ϵ,
the following quantities:

λBJ → ϵλBJ , λCJ → ϵλCJ , λJ → ϵλJ , σ → ϵσ,

with J ∈ {S,E, I, R}, and also:

β(x, x∗) → ϵβ(x, x∗), δ(x) → ϵδ(x), γ(x) → ϵγ(x), η(x) → ϵη(x).

To analyze the large-time behavior it is important to scale the time, hence, we define
τ = ϵt.

Since ϵ has to be chosen small enough, it is possible to rewrite ϕ(x′) with the Taylor
expansion centered in x:

ϕ(x′) = ϕ(x) + (x′ − x)ϕ′(x) + (x′ − x)2

2 ϕ′′(x) + O(ϵ2).

According to the definition in (1.2), the Taylor expansion for susceptible agents is:

ϕ(x′) = ϕ(x) + (−λS(x)x+ λCJ(x)x∗ + λBS(x)z)ϕ′(x) + σ

2x
2ϕ′′(x) + O(ϵ2),
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where we exploit the fact that the mean of the stochastic fluctuation is zero and the
variance is σ.
Similarly, we can evaluate the Taylor expansion for the other classes. For exposed we get:

ϕ(x′) = ϕ(x) + (−λE(x)x+ λCJ(x)x∗ + λBE(x)z)ϕ′(x) + σ

2x
2ϕ′′(x) + O(ϵ2).

For the class of infectious:

ϕ(x′) = ϕ(x) + (−λI(x)x+ λCJ(x)x∗ + λBI(x)z)ϕ′(x) + σ

2x
2ϕ′′(x) + O(ϵ2),

and finally for removed agents, we have:

ϕ(x′) = ϕ(x) + (−λR(x)x+ λCJ(x)x∗ + λBR(x)z)ϕ′(x) + σ

2x
2ϕ′′(x) + O(ϵ2).

Replacing these results in (1.6) - (1.9), we obtain:

1
ϵ

Ú
R+

Qϵ
SJ(fS , fJ)ϕ(x)dx ≈

Ú
R+

C
− ϕ(x)′(λSxJ − λCJmJ − λBSmBJ) + σ

2ϕ(x)′′x2J

D
fS(x, t) dx

1
ϵ

Ú
R+

Qϵ
EJ(fE , fJ)ϕ(x)dx ≈

Ú
R+

C
− ϕ(x)′(λExJ − λCJmJ − λBEmBJ) + σ

2ϕ(x)′′x2J

D
fE(x, t) dx

1
ϵ

Ú
R+

Qϵ
IJ(fI , fJ)ϕ(x)dx ≈

Ú
R+

C
− ϕ(x)′(λIxJ − λCJmJ − λBImBJ) + σ

2ϕ(x)′′x2J

D
fI(x, t) dx

1
ϵ

Ú
R+

Qϵ
RJ(fR, fJ)ϕ(x)dx ≈

Ú
R+

C
− ϕ(x)′(λRxJ − λCJmJ − λBRmBJ) + σ

2ϕ(x)′′x2J

D
fR(x, t) dx,

(1.12)

where Qϵ
HJ(·, ·) represent the scaled version of QHJ(·, ·).

In (1.12), we used the following definitions for a generic class J ∈ {S,E, I, R}:

J =
Ú
R+

fJ(x, t)dx, mJ =
Ú
R+

xfJ(x, t)dx.

We also denoted the mean of the competence gained or lost in the interaction with the
background with mB, i.e.,

mB =
Ú
R+

zC(z)dz.

Taking advantage of the results obtained in (1.6)-(1.8) and pass to the quasi-invariant
regime (imposing ϵ → 0), we can rewrite (1.11) to obtain the Fokker-Planck system.
Proceeding as said and integrating by part the right-hand side of (1.12), we reach:
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1.1 – SEIR model with individual competence

∂fS(x, t)
∂t

= −K(x, t)fS(x, t) + (1 − α(x))γ(x)fI(x, t) + ∂

∂x
[(xλS − m̄(t) − λBSmB)fS(x, t)]+

+ σ

2
∂2

∂x2 (x2fS(x, t))

∂fE(x, t)
∂t

=K(x, t)fS(x, t) − δ(x)fE(x, t) + ∂

∂x
[(xλE − m̄(t) − λBEmB)fE(x, t)]+

+ σ

2
∂2

∂x2 (x2fE(x, t))

∂fI(x, t)
∂t

=δ(x)(1 − η(x))fE(x, t) − γ(x)fI(x, t) + ∂

∂x
[(xλI − m̄(t) − λBImB)fI(x, t)]+

+ σ

2
∂2

∂x2 (x2fI(x, t))

∂fR(x, t)
∂t

=δ(x)η(x)fE(x, t) + α(x)γ(x)fI(x, t) + ∂

∂x
[(xλR − m̄(t) − λBRmB)fR(x, t)]+

+ σ

2
∂2

∂x2 (x2fR(x, t)),

in which m̄(t) is defined as follows:

m̄(t) = λCSmS(t) + λCEmE(t) + λCImI(t) + λCRmR(t).
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Chapter 2

Definition of the model

In the following chapters, we proposed an alternative approach to the epidemiological one,
to studying fake news and the interplay with competence. The model that we propose
allows a more aggregate modeling approach, omitting a subdivision of the population in
classes. Furthermore, unlike the model introduced in Chapter 1, we consider for fake news
a distribution based on the level of the falsehood permitting a more accurate description
of the news, that does not just classify news as true or false.
The approach used in this work is based on Statistical Mechanics. This subject allows
studying multi-agent systems without focusing on the interactions of each individual par-
ticle, which would require the study of an extremely large number of coupled differential
equations. To do this, it resorts to a single instrument: the probability density, creating
a clear parallel between physical and mathematical concepts.
In 1880 Ludwing Boltzmann began to apply this theory to gases, to then generalize this
method to different systems, giving rise to Statistical Mechanics. This approach permits
a good analysis of the dynamics with a macroscopic description of it and has the huge
advantage of having a very wide field of application: from social systems (opinion dy-
namics, voter model, etc.) to the vehicular traffic or crowd dynamics. It is important to
notice that, to give an aggregate statistical description of our system, whatever it is, it is
necessary to resort to the hypothesis of indistinguishable agents.

First of all, we define the interaction rule for our system and then we deduce the Boltzmann-
type equation and use it to study our dynamics.

2.1 Interaction rule
Let X and Y be random variables that respectively represent the individual’s knowledge
(viz. the ability to recognize the reliability of news) and the degree of falsity of the news.
The post-interaction competence is a random variable, whose realization is given by the
following expression:

x∗ = x+ λ(x, y) +D(x)η, (2.1)
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Definition of the model

where λ is a function of x and y defined in the following way:I
c2(1 − x) if x ≥ 1 − y

−c1x if x < 1 − y.
(2.2)

The choice of this interaction rule comes out from the fact that, if an individual has a
knowledge greater than or equal to the degree of truthfulness of the news (x ≥ 1−y), then
the agent recognizes the reliability of the news. Hence, his knowledge will tend to increase,
since he will not only neglect its content but will have a superior ability to recognize other
fake news with content similar to the one he came into contact with. The increase is
considered proportional to the lack of knowledge needed to achieve the maximum level of
competence, that is 1 − x, and the constant of proportionality will be denoted by c2.
Conversely, if the individual does not have sufficient knowledge to recognize the accuracy
of the fake news, which means that his knowledge is less than the degree of truthfulness
of the news (x < 1 − y), the competence will decrease, since the person will acquire infor-
mation that does not represent the truth. The decrease is proportional to the degree of
knowledge x and the constant of proportionality is indicated with c1. Both the constants
c1 and c2 assume values in the interval [0.1].
The stochastic fluctuation, denoted by η, by definition, has E[η] = 0 and Var[η] = σ2 > 0,
since, if the variance was zero, the fluctuation would be an identically zero constant.
The function D(x) represents the diffusion coefficient and adjusts the intensity of stochas-
tic fluctuation. Obviously, it must be chosen properly, to have a post-interaction knowl-
edge that falls within the interval [0.1].

2.2 Derivation of the Boltzmann-type equation
To derive the Boltzmann equation we start from the discrete case. We take into account
a time interval ∆t > 0 and we consider a pair of one agent and one fake news. In the
time interval ∆t, the couple may or may not interact. If it interacts, then the knowledge
evolves according to (2.1), otherwise, it remains unchanged, maintaining the same value of
competence as time t. To model this, we consider a random variable Θ ∼ Bernoulli(∆t

τ )
which, based on the returned value, tells us whether, in the interval ∆t, the interaction
between agent and news occurs (Θ = 1) or not (Θ = 0). The interaction probability
is proportional to the duration of the time interval, and the proportionality constant is
the interaction frequency 1

τ . Hence, τ > 0 represents the characteristic time between
two interactions. Since ∆t

τ is a probability, it has to be less than or equal to 1, from
which follows the constraint ∆t ≤ τ . This condition does not turn out to be particularly
stringent since, to be possible to go from the discrete to the continuous case, it is necessary
to choose a small ∆t. Consequently, we have that the knowledge at time t+ ∆t will be:

xt+∆t = (1 − Θ)xt + Θx∗
t (2.3)

= (1 − Θ)xt + Θ(xt + λ(x, y) +DσY ),

where the definition of x∗
t follows from (2.1) and Y represents the "normalized" fluctuation

with zero mean and variance equal to 1.
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2.3 – Study of the first moment

Let us now consider an observable of the system (viz., any quantity that can be calculated
as a function of the microscopic state of the agent) and apply it to (2.3). Then, we analyze
the average changes in the observable:

⟨φ(xt+∆t)⟩ = ⟨φ((1 − Θ)xt + Θx∗
t )⟩.

Since the Bernoulli is a discrete probability distribution that takes only two values, we
can easily calculate the mean as follows:

⟨φ(xt+∆t)⟩ = ⟨φ(x∗
t )⟩P(Θ = 1) + ⟨φ(xt)⟩P(Θ = 0)

= ⟨φ(x∗
t )⟩∆t

τ
+ ⟨φ(xt)⟩

A
1 − ∆t

τ

B
.

From which, bringing φ(xt) to the other side of equal, it follows:

⟨φ(xt+∆t)⟩ − ⟨φ(xt)⟩
∆t = 1

τ
[⟨φ(x∗

t )⟩ − ⟨φ(xt)⟩].

We pass to continuous time by making the limit for ∆t → 0 and, consequently, the
incremental ratio will tend to the derivative in time of the mean of φ(xt):

d

dt
⟨φ(xt)⟩ = 1

τ
[⟨φ(x∗

t )⟩ − ⟨φ(xt)⟩],

and therefore, by the arbitrariness of φ, we obtain the Boltzmann equation in weak form:

d

dt

Ú 1

0
f(x, t)φ(x)dx = 1

τ
⟨
Ú

[0,1]2
(φ(x∗) − φ(x))f(x, t)g(y)dxdy⟩ ∀φ : [0,1] → [0,1].

(2.4)
The meaning of the Boltzmann equation is: the variation over time of the mean of the
observable φ coincides with the mean of the variation of φ in a generic binary interaction.

2.3 Study of the first moment
We define f(x, t), the density of the agents characterized by a degree of knowledge x ∈ [0,1]
at time t ≥ 0, and g(y), the probability distribution of the degree of falsity of the news
y ∈ [0,1]. We introduce φ(x), any observable quantity of the competence.
The law of evolution of f(x, t) follows the Boltzmann-type equation in weak form in (2.4).
Choosing τ = 1, the following expression comes out:

d

dt

Ú 1

0
f(x, t)φ(x)dx = ⟨

Ú
[0,1]2

(φ(x∗) − φ(x))f(x, t)g(y)dxdy⟩, (2.5)

where x∗ obeys to the interaction rules (2.1).
Since f(x, t) is a probability density, it is known that

s 1
0 f(x, t)dx = 1. An evidence of

this can be easily obtained by choosing φ(x) = 1 in (2.5):
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Definition of the model

d

dt

Ú 1

0
f(x, t)dx =

Ú
[0,1]2

(1 − 1)f(x, t)g(y)dxdy = 0,

with which it is proved that
s 1

0 f(x, t)dx must be a constant.
In this section, we aim to study the first moment and how it varies over time. This is
possible choosing φ(x) = x and replacing it in (2.5):

d

dt

Ú 1

0
xf(x, t)dx = ⟨

Ú
[0,1]2

(x∗ − x)f(x, t)g(y)dxdy⟩.

From equation (2.1) we find:

⟨x∗ − x⟩ = ⟨x+ λ(x, y) +D(x)η − x⟩ = λ(x, y),
in which the second equality derives from ⟨η⟩ = 0.
Going back to the calculation of the variation in time of the first moment, we have:

d

dt

Ú 1

0
xf(x, t)dx =

Ú 1

0

Ú 1

1−x
c2(1 − x)g(y)f(x, t)dydx−

Ú 1

0

Ú 1−x

0
c1xg(y)f(x, t)dydx.

Let’s define GY (·) as the cumulative distribution function of the random variable Y
and MX(t) the mean of the degree of competence X. Noting, as we did for f(x, t), thats 1

0 g(y)dy = 1, we obtain:

dMX(t)
dt

=
Ú 1

0
c2(1 − x)[1 −GY (1 − x)]f(x, t)dx−

Ú 1

0
c1xGY (1 − x)f(x, t)dx

= c2 − c2

Ú 1

0
GY (1 − x)f(x, t)dx− c2MX(t) + c2

Ú 1

0
xGY (1 − x)f(x, t)dx+

− c1

Ú 1

0
xGY (1 − x)f(x, t)dx,

where the definition of MX(t) and the fact that f(x, t) is a probability density have been
exploited.
For simplicity, we assume that Y has a uniform distribution over the interval [0,1]. As a
consequence, we have GY (x) = x and the computation is reduced to:

dMX(t)
dt

= c2 − c2

Ú 1

0
(1 − x)f(x, t)dx− c2MX(t) + c2

Ú 1

0
x(1 − x)f(x, t)dx+

− c1

Ú 1

0
x(1 − x)f(x, t)dx.

By developing the calculations and simplifying, we obtain:

dMX(t)
dt

= (c2 − c1)MX(t) + (c1 − c2)M (2)
X ,

in which M
(2)
X denotes the second moment, i.e the energy of the system.

Clearly the evolution of MX depends on M
(2)
X , hence, to determine the evolution of a
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2.4 – Remark: why is forgetfulness omitted in our case?

given moment, it will be necessary to always use the one of higher order, not allowing to
determine an evolution in closed form for the moments of X. To overcome this problem,
the interaction rule (2.1) can be further simplified by setting c1 = c2, obtaining the
following equation for the evolution of the first moment:

dMX(t)
dt

= 0,

which shows that MX(t) will remain constant and equal to MX(0) for all time t.

2.4 Remark: why is forgetfulness omitted in our case?

Many models that deal with the evolution of knowledge based on the interaction with news
or any information, take into account forgetfulness, i.e., the natural process according to
which an individual tends in a long time to forget what he has come into contact with.
However, assuming in our case the existence of this process leads to a not very interesting
result, as we will show in this section.

Given the existence of a forgetting process, the interaction rule becomes:

x∗ = (1 − λdim(x))x+ λ(x, y) +D(x)η. (2.6)

We can evaluate ⟨x∗ − x⟩ under (2.6):

⟨x∗ − x⟩ = ⟨(1 − λdim(x))x+ λ(x, y) +D(x)η − x⟩ = −λdim(x)x+ λ(x, y).

Substituting this result in the Boltzmann equation in the weak form (2.5) and rear-
ranging the terms, we get:

d

dt

Ú 1

0
xf(x, t)dx = −

Ú 1

0
xλdim(x)f(x, t)dx

Ú 1

0
g(y)dy +

Ú 1

0

Ú 1

1−x
c2(1 − x)g(y)f(x, t)dydx+

−
Ú 1

0

Ú 1−x

0
c1xg(y)f(x, t)dydx.

Following the steps done in 2.3, we define GY (·) the cumulative distribution function
of the random variable Y and, then, we assume that the distribution of Y is uniform over
the interval [0,1]:
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Definition of the model

dMX(t)
dt

= −
Ú 1

0
xλdim(x)f(x, t)dx+

Ú 1

0
c2(1 − x)[1 −GY (1 − x)]f(x, t)dx+

−
Ú 1

0
c1xGY (1 − x)f(x, t)dx

= −
Ú 1

0
xλdim(x)f(x, t) + c2 − c2

Ú 1

0
GY (1 − x)f(x, t)dx− c2MX(t)+

+ c2

Ú 1

0
xGY (1 − x)f(x, t)dx− c1

Ú 1

0
xGY (1 − x)f(x, t)dx

= −
Ú 1

0
xλdim(x)f(x, t) + c2 − c2

Ú 1

0
(1 − x)f(x, t)dx− c2MX(t)+

+ c2

Ú 1

0
x(1 − x)f(x, t)dx− c1

Ú 1

0
x(1 − x)f(x, t)dx.

Performing the calculations we have:
dMX(t)
dt

= −
Ú 1

0
xλdim(x)f(x, t)dx+ (c2 − c1)MX(t) + (c1 − c2)M (2)

X .

We need again to request c1 = c2 to get a closed-form equation for the first moment,
from which it follows:

dMX(t)
dt

= −
Ú 1

0
xλdim(x)f(x, t).

Under the further assumption that λdim is a constant in the range between 0 and 1,
we get:

dMX(t)
dt

= −λdimMX(t).

Therefore we reach the following equation in closed form for the mean of the knowledge:

MX(t) = MX(0)e−λdimt.

This result basically tells us that on average, due to forgetfulness, agents tend to
completely lose their competence (because MX → 0 for t → +∞). More generally,
the whole population completely loses its competence, since, if the average of a random
variable X, which is limited between 0 and 1, tends to 0, we have that the random variable
X itself will tend to become deterministically null. To prove this, it is useful to notice
that, since x is in the interval between 0 and 1, then x2 ≤ x :

0 ≤ E[X2] =
Ú 1

0
x2f(x, t)dx ≤

Ú 1

0
xf(x, t)dx = MX(t).

This tells us that, if MX → 0, then E[X2] is also forced to go to zero.
To conclude it is necessary to show that the variance also tends to zero, since an identically
zero random variable must necessarily have both mean and variance equal to zero:

Var(X) = E[X2] − E[X]2 −→ 0.
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Chapter 3

Model without stochastic
fluctuation

3.1 Study of energy without stochastic fluctuation
and forgetfulness

Suppose now to omit the forgetting process. If we assume c1 = c2, as derived in 2.3, the
mean remains constant and equal to its initial value, viz. MX(t) = MX(0).
In this chapter, we neglect the stochastic fluctuation by setting D(x) = 0. Under these
hypotheses, we are going to study the variation of the energy of the system, i.e., of the
second moment, by setting φ(x) = x2 in (2.5):

d

dt

Ú 1

0
x2f(x, t)dx = ⟨

Ú
[0,1]2

[(x∗)2 − x2]f(x, t)g(y)dxdy⟩. (3.1)

Therefore, we define the post-interaction competence x∗ of the simplified dynamics:

x∗ = x+ λ(x, y), (3.2)
with λ(x, y) defined as in (2.2).

We first verify that, under the interaction rule (3.2), we obtain a value of x∗ in the
range of interest. To have x∗ greater than or equal to 0, it is sufficient to verify that this is
true for the smallest value of λ(x, y), since, if it holds for this value, it will be verified also
for larger values. Hence, by replacing λ(x, y) with the value −c1x, we find the following
condition that makes x∗ ≥ 0:

x− c1x ≥ 0 ⇐⇒ (1 − c1)x ≥ 0 ⇐⇒ c1 ≤ 1,

given that x is, by definition, greater than 0.
To ensure that x∗ ≤ 1, it is enough to verify the condition with the largest value of λ(x, y).
By replacing λ(x, y) with the value c2(1 − x), we find the following constraint that makes
x∗ ≤ 1:

x+ c2(1 − x) ≤ 1 ⇐⇒ (1 − x)(c2 − 1) ≤ 0 ⇐⇒ c2 ≤ 1,
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Model without stochastic fluctuation

considering that x, by definition, is less then 1.
Both conditions are always satisfied since c1 and c2 stay in the interval [0,1], because
they represent, in a certain way, the percentage of knowledge that is respectively lost and
gained in the interaction. We can therefore proceed with the study of the second moment.

From (3.2) we obtain:

(x∗)2 − x2 = 2λ(x, y)x+ λ2(x, y) =
I

2c2x(1 − x) + c2
2(1 − x)2 if x ≥ 1 − y

−2c1x
2 + c2

1x
2 if x < 1 − y.

Replacing these values in (3.1) we note that, since no stochastic fluctuation term
appears, it is possible to omit the brackets ⟨·⟩:

dM (2)(t)
dt

=
Ú 1

0

Ú 1

1−x
2c2x(1 − x) + c2

2(1 − x)2g(y)f(x, t)dydx+

+
Ú 1

0

Ú 1−x

0
(−2c1x

2 + c2
1x

2)g(y)f(x, t)dydx.

As we did in the previous chapters, we define GY the cumulative distribution function
of Y , obtaining:

dM (2)(t)
dt

=
Ú 1

0
[(c2

2 − 2c2)x2 + 2x(c2 − c2
2) + c2

2][1 −GY (1 − x)]f(x, t)dx+

+
Ú 1

0
(−2c1x

2 + c2
1x

2)GY (1 − x)f(x, t)dx.

Let’s impose c1 = c2 and again exploit the property of probability density.

dM (2)(t)
dt

=
Ú 1

0
[(c2

2 − 2c2)x2 + 2x(c2 − c2
2) + c2

2]f(x, t)dx−
Ú 1

0
[(c2

2 − 2c2)x2+

+ 2x(c2 − c2
2) + c2

2]GY (1 − x)f(x, t)dx

+
Ú 1

0
(−2c2x

2 + c2
2x

2)GY (1 − x)f(x, t)dx.

Simplifying the terms and assuming that the distribution, which governs the degree of
falsity of the news, is a uniform distribution over the interval [0,1]:

=
Ú 1

0
[(c2

2 − 2c2)x2 + 2x(c2 − c2
2) + c2

2 − 2x(c2 − c2
2) − c2

2 + 2x2(c2 − c2
2) + c2

2x)]f(x, t)dx
(3.3)

= −c2
2

Ú 1

0
x2f(x, t)dx+ c2

2

Ú 1

0
xf(x, t)dx = c2

2[MX −M
(2)
X ].
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3.2 – Study of the asymptotic behavior through the Fokker-Planck equation

Based on what we achieved in 2.3, if c1 = c2 and λdim = 0 then MX(t) = MX(0) ∀t.
This allows us to derive the following formula for the second moment, imposing an initial
condition M

(2)
X (0):

M
(2)
X = MX(0) + (M (2)

X (0) −MX(0))e−c2
2t.

We note that, for t → ∞, we have that the second term will go to zero and M
(2)
X will

tend to MX(0). This result tells us that, unlike in many other models where stochastic
fluctuation is not considered, the variance does not tend to vanish.

3.2 Study of the asymptotic behavior through the
Fokker-Planck equation

To study the asymptotic behavior (in time) of the solutions of the Boltzmann equation, we
use an asymptotic procedure which is known by the name of limit of quasi-invariant in-
teractions and which allows us to pass from the Boltzmann equation to the Fokker-Planck
equation, a kinetic equation simpler to handle. If the interactions produce small changes,
the equilibria of the Fokker-Planck equation coincide with those of the Boltzmann equa-
tion. Then, we can focus on the study of the simpler equation, remembering however
that, if we are not under the hypothesis of the quasi-invariant interactions, usually the
two equations behave differently.
As we mentioned, the limit of quasi-invariant interactions is based on the fact that, near
the equilibrium, the interactions make small contributions to the variation of the micro-
scopic state of the particles. To pass to the quasi-invariant regime, we need to lead both
the deterministic and the stochastic part (which in this case is null) of order ϵ, scaling
λ(x, y) as follows:

λ(x, y) → ϵλ(x, y),

where ϵ > 0 is sufficiently small.
To study the trend near equilibrium, it is necessary to consider a longer time scale by
setting τ = ϵt. Considering these rescalings, (2.5) becomes:

d

dτ

Ú 1

0
φ(x)f(x, τ)dx = 1

ϵ

Ú
[0,1]2

⟨φ(x′) − φ(x)⟩f(x, τ)g(y)dxdy, (3.4)

in which, x′ indicates the scaled post-interaction knowledge, defined in the following way:

x′ = x+ ϵλ(x, y).

Let’s introduce φ ∈ C3([0,1]) and x̃ ∈ (min{x, x′},max{x, x′}) to be able to write the
Taylor expansion up to order 3 (with Peano remainder) of φ(x′) centered in x:

⟨φ(x′) − φ(x)⟩ = ⟨φ(x) + φ′(x)ϵλ(x, y) + 1
2φ

′′(x)ϵ2λ2(x, y) + 1
6φ

′′′(x̃)ϵ3λ3(x, y) − φ(x)⟩

= φ′(x)ϵλ(x, y) + 1
2φ

′′(x)ϵ2λ2(x, y) + 1
6φ

′′′(x̃)ϵ3λ3(x, y).
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Model without stochastic fluctuation

Replacing this result in (3.4), we obtain:

d

dτ

Ú 1

0
φ(x)f(x, τ)dx =

Ú
[0,1]2

C
φ′(x)λ(x, y) + 1

2φ
′′(x)ϵλ2(x, y)+

+ 1
6φ

′′′(x̃)ϵ2λ3(x, y)
D
f(x, τ)g(y)dxdy.

Passing to the limit of quasiinvariant interactions, ϵ → 0+:

d

dτ

Ú 1

0
φ(x)f(x, τ)dx =

Ú 1

0
φ′(x)

AÚ 1

0
λ(x, y)g(y)dy

B
f(x, τ)dx.

If we further assume that the test function has compact support, i.e. φ ∈ C3
C([0,1]),

integrating by parts the term on the right of the equal, we obtain:

d

dτ

Ú 1

0
φ(x)f(x, τ)dx = −

Ú 1

0
φ(x)∂x

CAÚ 1

0
λ(x, y)g(y)dy

B
f(x, τ)

D
dx.

Due to the arbitrariness of φ, we get the following strong form:

∂τf = −∂x

CAÚ 1

0
λ(x, y)g(y)dy

B
f

D
, (3.5)

then, we proceed with the computation of the integral in (3.5):Ú 1

0
λ(x, y)g(y)dy =

Ú 1

1−x
c2(1 − x)g(y)dy −

Ú 1−x

0
c1xg(y)dy

= c2(1 − x)[1 −GY (1 − x)] − c1xGY (1 − x).

If we consider Y uniformly distributed in the interval [0,1]:Ú 1

0
λ(x, y)g(y)dy = c2(1 − x)x− c1x(1 − x) = (c2 − c1)x(1 − x).

Hence (3.5) becomes:

∂τf = −∂x[(c2 − c1)x(1 − x)f ].

It is immediate to see that, if c1 = c2, we have ∂τf = 0, therefore the density of
knowledge remains unchanged over time. This is because the fraction of knowledge gained
coincides with the one that is lost.
The case c1 /= c2 is more interesting. The stationary distribution, which we denote by
f∞(x), is the limit for τ → ∞ of f(x, τ) and must not depend on time. To obtain f∞(x),
it is sufficient to derive the equilibria by setting ∂τf = 0:

(c2 − c1)x(1 − x)f∞ = 0.
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Under the hypothesis of c2 − c1 /= 0, it is possible to simplify the term containing the
coefficients, obtaining:

x(1 − x)f∞ = 0. (3.6)

Surely, the product is null if f∞ = 0, but this is not acceptable as the integral on
[0,1] is different from 1. The acceptable solutions are given by a linear combination of the
Dirac delta centered in 0, δ(x), and the Dirac delta centered at 1, δ(x− 1).
The Dirac delta centered in x0 is defined as follows:

Ú +∞

−∞
δ(x− x0)ϕ(x) = ϕ(x0).

Therefore, we derive the following expression for the stationary distribution:

f∞(x) = aδ(x) + bδ(x− 1). (3.7)

In fact, if x = 0 or x = 1, the equation (3.6) will be verified since x(1 − x) will assume
value 0, while, for all other values, both δ(x) and δ(x− 1), for the definition of the delta,
will vanish again, returning (3.6) equal to zero.
This result tells us that, the model without diffusion, tends to extreme levels of knowledge
for a long time, returning a fraction of individuals with maximum knowledge and the
remaining fraction of individuals with zero knowledge. As a consequence, for long t, there
will be no agents with an opinion in the range of (0,1).
Since f∞(x) is a probability density, we need to impose that its integral, over the definition
interval of x, must be equal to 1:

Ú 1

0
f∞(x)dx = a+ b = 1.

In other words, the density, that we are looking for, must be a convex combination
of the Dirac delta centered in 0 and the Dirac delta centered in 1, and therefore, if we
indicate the coefficient of the first delta with a, as a consequence, b must be equal to 1−a.

From the theory, we know that, since this is the solution of the Fokker-Planck equation,
it will coincide with the solution of the Boltzmann equation in the quasi- invariant regime.
However, we can try to see if (3.7) represents an exact stationary distribution for the
Boltzmann equation (3.4) for each pair of coefficients c1 and c2. Substituting (3.7) in
(2.5) we have:

d

dt

Ú 1

0
f∞(x)φ(x)dx = ⟨

Ú
[0,1]2

(φ(x∗) − φ(x))(aδ(x) + bδ(x− 1))g(y)dxdy⟩. (3.8)

Exploiting the definition of x∗ in (3.2):
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d

dt

Ú 1

0
f∞(x)φ(x)dx =

Ú
[0,1]2

[φ(x+ λ(x, y)) − φ(x)][aδ(x) + bδ(x− 1)]g(y)dxdy (3.9)

=
Ú 1

0

Ú 1

1−x
[φ(x+ c2(1 − x)) − φ(x)][aδ(x) + bδ(x− 1)]g(y)dydx+

+
Ú 1

0

Ú 1−x

0
[φ(x− c1x) − φ(x)][aδ(x) + bδ(x− 1)]g(y)dydx

=
Ú 1

0
{[φ(x+ c2(1 − x)) − φ(x)][1 −GY (1 − x)]}[aδ(x) + bδ(x− 1)]dx+

+
Ú 1

0
{[φ(x− c1x) − φ(x)]GY (1 − x)}[aδ(x) + bδ(x− 1)]dx

= a[φ(c2) − φ(0)][1 −GY (1)] + b[φ(1) − φ(1)][1 −GY (0)]+

+ a[φ(0) − φ(0)]GY (1) + b[φ(1 − c1) − φ(1)]GY (0) = 0,

since the cumulative distribution function of a random variable with support [0,1] in 0 is
null, and in 1 is equal to 1.
We have proved that we are in the special case in which f∞ is an exact stationary distri-
bution for the Boltzmann equation for any choice of c1 and c2.
It is important to highlight that this result does not tell us that (3.7) constitutes the only
solution of (2.5), but that it is one of them.
In the case c1 = c2 we can also impose the conservation of the first moment, consistent
with what we obtained in Section 2.3, to derive the exact value of a. Hence:

MX(0) =
Ú 1

0
xf∞(x)dx = a

Ú 1

0
xδ(x) dx+ (1 − a)

Ú 1

0
xδ(x− 1)dx = 1 − a. (3.10)

Going to replace (3.10) in (3.7), we have our stationary distribution for competence in
absence of stochastic fluctuation and under the assumption that c1 and c2 are equal:

f∞(x) = (1 −MX(0))δ(x) +MX(0)δ(x− 1). (3.11)

Thus, we have a polarization towards the two extreme levels of competence, the maxi-
mum one and the null one, in which the fraction of individuals with maximum knowledge
is given by the value of MX(0), which is reasonable since individuals with a null compe-
tence will have no influence in the calculation of the average. We note that f∞ does not
depend on c1 and c2 in the form, so the two constants will only affect the time needed to
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reach the stationary distribution.
The solution (3.11) shows that, if the initial population has the maximum possible knowl-
edge, then they will not lose competence, conversely, if initially all agents are totally
ignorant, then the level of knowledge will remain null. As obtained in 3.1, under the
assumption that c1 = c2, the energy is also equal to MX(0) for t → ∞, therefore we can
check that this is verified by our f∞:

M
(2)
X =

Ú 1

0
x2f∞(x)dx = (1 −MX(0))

Ú 1

0
x2δ(x) dx+MX(0)

Ú 1

0
x2δ(x− 1)dx = MX(0).
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Chapter 4

Model with stochastic
fluctuation

4.1 Study of the dynamics with stochastic fluctuation
In chapter 3, a simplified model was carried out, which does not take into account the
stochastic fluctuation. In this chapter, we consider the stochastic fluctuation by choosing
D(x) = min{x, 1 − x} as the non-zero diffusion coefficient.
First of all, it is necessary to verify that the choice of the above diffusion coefficient allows
having x∗ ∈ [0,1].
Therefore, we define the post-interaction knowledge x∗ as in (2.1), and we verify under
what conditions on η the competence x∗ assumes values greater than 0 and less than 1.
To have x∗ greater than or equal to zero, it is sufficient to verify that this holds for the
smallest values assumed by λ(x, y), that is −c1x, since, if for this value the inequality is
satisfied, then, necessarily, it will be satisfied for bigger values of λ(x, y). Thus we get:

x− c1x+D(x)η ≥ 0 ⇐⇒ D(x)η ≥ (c1 − 1)x. (4.1)

Conversely, to get x∗ ≤ 1 we can impose the condition for the largest values assumed
by λ(x, y), that is c2(1 − x):

x+ c2(1 − x) +D(x)η ≤ 1 ⇐⇒ D(x)η ≤ (1 − x)(1 − c2). (4.2)

If we combine (4.1) and (4.2), we obtain:

(c1 − 1)x ≤ D(x)η ≤ (1 − x)(1 − c2), (4.3)

from which we conclude, replacing the two possible values of D(x), that we have
acceptable values for x∗ under the following condition for the random variable:

c1 − 1 ≤ η ≤ 1 − c2. (4.4)

Assuming that (4.4) holds, we can proceed with the study of our dynamics.
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Model with stochastic fluctuation

Figure 4.1. Diffusion coefficient: D(x) = min{x,1 − x}.

From (2.1) we reach:

⟨(x∗)2 − x2⟩ = λ2(x, y) +D2(x)⟨η2⟩ + 2xλ(x, y) +D(x)⟨η⟩x+ 2λ(x, y)D(x)⟨η⟩
= λ2(x, y) +D2(x)⟨η2⟩ + 2xλ(x, y), (4.5)

in which the last passage derives from the fact that, by definition of stochastic fluctuation,
⟨η⟩ = 0 and, as a consequence, ⟨η2⟩ coincides with Var(η) = σ2, which we impose different
from zero, to not fall into the deterministically null case.
Replacing (4.5) in (3.1) we achieve:

dE(t)
dt

=
Ú

[0,1]2
[λ2(x, y) + 2xλ(x, y) +D2(x)σ2]g(y)f(x, t)dydx,

in which, to distinguish from the previous case, we use E(t) to indicate the energy.
We immediately notice that, the only difference with respect to the case without stochastic
fluctuation, lies in the term in which the diffusion coefficient appears, consequently, for
the linearity of the integral, we can focus only on that:Ú

[0,1]2
D2(x)σ2g(y)f(x, y)dydx.

Since the diffusion coefficient does not depend on y, we can apply the property of
the integral of the probability distributions, reducing our two-dimensional integral to a
mono-dimensional one.
A further observation concerns the definition of D(x), that we can write as:

D(x) = min{x,1 − x} =
I
x if 0 ≤ x < 1

2
1 − x if 1

2 ≤ x ≤ 1.

Therefore, we can proceed with the calculation of the integral:
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σ2
Ú 1

0
D2(x)f(x, y)dx = σ2

è Ú 1
2

0
x2f(x, t)dx+

Ú 1

1
2

f(x, t)dx−2
Ú 1

1
2

xf(x, t)dx+
Ú 1

1
2

x2f(x, t)dx
é
.

Since we have not fixed a particular probability distribution for the random variable
X, we are not able to explicitly evaluate the integrals

s 1
1
2
xf(x, t)dx and

s 1
1
2
x2f(x, t)dx.

The only thing we can do is looking for an estimate.
To find an estimate from below, we recall the fact that x cannot be greater than 1 and
that the integral of the density on a subset of [0,1] will necessarily be less than or equal
to 1, obtaining the following lower bound:

σ2
Ú 1

0
D2(x)f(x, y)dx =σ2

è
E(t) +

Ú 1

1
2

f(x, t)dx− 2
Ú 1

1
2

xf(x, t)dx
é

≥ σ2
è
E(t) −

Ú 1

1
2

f(x, t)dx
é

≥

(4.6)
≥ σ2(E(t) − 1).

Let us now focus on the upper bound. Since x varies between 0 and 1, then x ≥ x2

and also
s 1

1
2
f(x, t)dx ≤

s 1
0 f(x, t)dx = 1, from which it follows:

σ2
Ú 1

0
D2(x)f(x, y)dx ≤ σ2

è Ú 1
2

0
x2f(x, t)dx+

Ú 1

1
2

x2f(x, t)dx− 2
Ú 1

1
2

x2f(x, t)dx+ 1
é

=

(4.7)

= σ2
è
E(t) − 2

Ú 1

1
2

x2f(x, t)dx+ 1
é

≤ σ2[E(t) + 1].

Recalling now that in Chapter 3 we found:

dM (2)(t)
dt

= c2
2[MX(0) −M

(2)
X (t)]. (4.8)

Combining (4.8) with the estimates in (4.6) and (4.7), we have the following bounds
for the variation of the energy over time:

E(t)(σ2 − c2
2) + c2

2MX(0) − σ2 ≤ dE(t)
dt

≤ E(t)(σ2 − c2
2) + c2

2MX(0) + σ2.

It is easy to see that, if σ2 > c2
2, then necessarily E(t) will explode. Under the opposite

hypothesis σ2 ≤ c2
2, we know that the energy will be bounded from below and from above.

Let’s focus first on the lower bound by solving the following differential equation:

Ė = E(σ2 − c2
2) + c2

2MX(0) − σ2,

from which we obtain:

E(t) = c2
2MX(0) − σ2

c2
2 − σ2 +

A
E(0) − c2

2MX(0) − σ2

c2
2 − σ2

B
e(σ2−c2

2)t. (4.9)
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Let’s move on to the analysis of the upper bound:

Ė = E(σ2 − c2
2) + c2

2MX(0) + σ2,

from which we get:

E(t) = c2
2MX(0) + σ2

c2
2 − σ2 +

A
E(0) − c2

2MX(0) + σ2

c2
2 − σ2

B
e(σ2−c2

2)t. (4.10)

If we combine the results obtained in (4.9) and (4.10) and make the limit for t → ∞ we
get that e(σ2−c2

2)t → 0, as we are under the hypothesis σ2 − c2
2 ≤ 0 so, as a consequence:

c2
2MX(0) − σ2

c2
2 − σ2 ≤ E∞ ≤ c2

2MX(0) + σ2

c2
2 − σ2 .

If we consider σ2 = 0, i.e. the case in which the stochastic fluctuation is zero, we get
MX(0) ≤ E∞ ≤ MX(0) and therefore E∞ = MX(0), which is consistent with the result
obtained in Chapter 3.

4.2 Study of the asymptotic behavior through the
Fokker Planck equation

To derive the behavior of the solution of the Boltzmann-type equation for long times,
and therefore close to equilibrium, we pass to the quasi-invariant regime, in which the
interactions produce small changes in the state of the particles. In order to have little
changes, we must perform the following scaling: make the deterministic part of the inter-
action rule and the variance of the stochastic fluctuation of order ϵ (small and positive)
and change the time to have a larger scale. It must be notice that, to make the variance
of the fluctuation of order ϵ, we need to multiply the stochastic fluctuation by

√
ϵ.

Then, we consider the scaled post-interaction knowledge defined below:

x′ = x+ ϵλ(x, y) +
√
ϵD(x)Zσ,

where Z represents the "standardized" stochastic fluctuation, such that ⟨Z⟩ = 0 and
⟨Z2⟩ = ⟨Z⟩2 = 1. As a consequence, we can write η as σZ.
Now let’s scale the time by setting τ = ϵt. With the aforementioned scaling, the Boltz-
mann equation (in weak form) becomes as in (3.4).
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Let’s introduce φ ∈ C3([0,1]) and analyze the Taylor expansion of φ(x′) centered in x:

⟨φ(x′) − φ(x)⟩ = ⟨φ(x) + φ′(x)[ϵλ(x, y) +
√
ϵσD(x)Z] + 1

2φ
′′(x)[ϵλ(x, y) +

√
ϵσD(x)Z]2+

+ 1
6φ

′′′(x̃)[ϵλ(x, y) +
√
ϵσD(x)Z]3 − φ(x)⟩

= φ′(x)ϵλ(x, y) + 1
2φ

′′(x)ϵ2λ2(x, y) + 1
2φ

′′(x)ϵσ2D2(x)⟨Z2⟩+

+ φ′′(x)ϵ 3
2σλ(x, y)D(x)⟨Z⟩ + 1

6φ
′′′(x̃)[ϵ3λ3(x, y) + 3ϵ2λ(x, y)σ2D2(x)+

+ 3ϵ 5
2λ2(x, y)σD(x)⟨Z⟩ + ϵ

3
2σ3D3(x)⟨Z3⟩]

= φ′(x)ϵλ(x, y) + 1
2φ

′′(x)ϵ2λ2(x, y) + 1
2φ

′′(x)ϵσ2D2(x)+

+ 1
6φ

′′′(x̃)[ϵ3λ3(x, y) + 3ϵ2λ(x, y)σ2D2(x) + ϵ
3
2σ3D3(x)⟨Z3⟩],

replacing the result in (3.4), we have:

d

dτ

Ú 1

0
φ(x)f(x, t)dx =

Ú 1

0

Ú 1

0
[φ′(x)λ(x, y) + 1

2φ
′′(x)ϵλ2(x, y) + 1

2φ
′′(x)σ2D2(x)+

+ 1
6φ

′′′(x̃)[ϵ2λ3(x, y) + 3ϵλ(x, y)σ2D2(x) +
√
ϵσ3D3(x)⟨Z3⟩]f(x, τ)g(y)dxdy.

Let us assume that η has finite third moment, i.e., |⟨η3⟩| < +∞ and, consequently,
also |⟨Y 3⟩| < +∞. By passing to the limit ϵ → 0+ (limit of quasi-invariant interactions),
we achieve the global behavior of the Boltzmann equation for small changes:

d

dτ

Ú 1

0
φ(x)f(x, τ)dx =

Ú 1

0

Ú 1

0
[φ′(x)λ(x, y) + σ2

2 φ
′′(x)D2(x)]f(x, τ)g(y)dxdy,

exploiting the fact that λ(x, y) and D(x) are bounded in the range [0,1] to conclude that
all other terms to the right of the equal tend to zero. Rearranging the terms we get:

d

dτ

Ú 1

0
φ(x)f(x, τ)dx =

Ú 1

0
φ′(x)

AÚ 1

0
λ(x, y)g(y)dy

B
f(x, τ)dx+ σ2

2

Ú 1

0
φ′′(x)D2(x)f(x, τ)dx.

If we assume that φ has also a compact support in [0,1], i.e., φ ∈ C3
C([0,1]), by

integrating by parts we obtain:

= −
Ú 1

0
φ(x)∂X

CAÚ 1

0
λ(x, y)g(y)dy

B
f

D
+ σ2

2

Ú 1

0
φ(x)∂2

X [D2(x)f ].

Due to the arbitrariness of φ(x), we can pass to the strong form:

∂τf = −∂X

CAÚ 1

0
λ(x, y)g(y)dy

B
f

D
+ σ2

2 ∂
2
X [D2(x)f ]. (4.11)
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The equation (4.11) is called the Fokker-Planck equation. From it we can explicitly
derive the stationary profile of the asymptotic distribution of competence f∞(x), which
is obtained by making τ tends to ∞. The distribution f∞(x) must be an equilibrium
configuration, hence it has to solve (4.11) with ∂τf = 0.
Then, by exploiting the results obtained in Section 3.2, we achieve the following ODE in
the independent variable x:

∂X

5
− (c2 − c1)x(1 − x)f∞ + σ2

2 ∂X(D2(x)f∞)
6

= 0.

The term inside the square brackets represents the flow of the Fokker-Planck equation.
Since at equilibrium the flow is not only constant, but in particular it is null, we solve:

−(c2 − c1)x(1 − x)f∞ + σ2

2 ∂X(D2(x)f∞) = 0. (4.12)

If c1 = c2, the expression becomes:

∂X(D2(x)f∞) = 0,

which is verified if f∞ vanishes at the points where D2(x) /= 0. Since D2(x) is null
only in x = 0 and x = 1, we can define f∞ as a linear combination of the Dirac delta
centered in 0 and the Dirac delta centered in 1, and, because also in this case the mean
remains constant, we can proceed in a similar way to Section 3.2, obtaining the stationary
distribution in (3.11).

If we focus on the case c1 /= c2, the fact that D(x) is piecewise-defined can create
complications.
Let’s try to choose a different diffusion coefficient:

D(x) =
ñ
x(1 − x), (4.13)

showed in Figure 4.2.
We note that this diffusion coefficient does not satisfy the condition (4.3) to have x∗

in the domain of interest. In fact, if we replace (4.13) in (4.3), we reach:

(c1 − 1)xð
x(1 − x)

≤ η ≤ (1 − x)(1 − c2)ð
x(1 − x)

,

in which, if x → 1 then the upper bound tends to 0, thus, η should be defined only for
negative or null values, but this is not possible because η has zero mean and positive
variance. Therefore, there is no way to satisfy the constraint. Consequently, it is not
possible to study the Boltzmann equation with a diffusion coefficient of this type. However,
as shown in [10], we can study the Fokker-Planck equation thanks to the fact that it exists
a family of functions that at the limit returns the Fokker-Planck equation for D(x) =ð
x(1 − x).
Replacing the new diffusion coefficient in (4.12), we obtain:

−(c2 − c1)x(1 − x)f∞ + σ2

2 ∂X(x(1 − x)f∞) = 0.
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Figure 4.2. Diffusion coefficient: D(x) =
ð

x(1 − x).

If we define g(x) := x(1 − x)f∞, the previous equation becomes:

−(c2 − c1)g(x) + σ2

2 ∂Xg(x) = 0.

Rearranging the terms, we get:

D[ln(g(x)] = ∂Xg(x)
g(x) = (c2 − c1) 2

σ2 .

By integrating on both sides:

ln(g(x)) = 2
σ2 (c2 − c1)x.

Applying the exponential function, we achieve the following expression for g(x):

g(x) = Ke
2

σ2 (c2−c1)x, (4.14)
in which K indicates the normalization constant. From (4.14) we find out the following
definition of f∞:

f∞ = g(x)
x(1 − x) = Ke

2
σ2 (c2−c1)x

x(1 − x) .

We note that f∞ is a solution of the Fokker-Planck equation, but it cannot be a
probability density, since the integral on the interval [0,1] is different from 1.
However, we can observe that a generic diffusion coefficient D(x) must necessarily assume
a null value for x = 0 and x = 1, otherwise, the fluctuation returns values for the post-
interaction competence x∗ that are not acceptable. This observation makes it clear that,
if we consider f∞ = aδ(x) + bδ(x− 1) and going to replace it in (4.12), we get:

−(c2 − c1)x(1 − x)[aδ(x) + (1 − a)δ(x− 1)] + σ2

2 ∂X [D2(x)(aδ(x) + (1 − a)δ(x− 1))] = 0,
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which is necessarily null, since for x = 0 or x = 1 both the term (c2 − c1)x(1 − x) and
D2(x) become zero, while, for intermediate values, the Dirac deltas will assume a null
value. So, even in the presence of diffusion, for any choice of an admissible diffusion co-
efficient, f∞ = aδ(x) + bδ(x− 1) is a solution of the Fokker-Planck equation.
Let us check, as we did for the model without fluctuation, if this probability distribution
constitutes, in general, an asymptotic solution of the Boltzmann-type equation. Substi-
tuting (2.1) into (2.5), we obtain:

d

dt

Ú 1

0
f∞(x)φ(x)dx = ⟨

Ú
[0,1]2

(φ(x+ λ(x, y) +D(x)η) − φ(x))f∞(x)g(y)dxdy⟩. (4.15)

Choosing f∞ equal to (3.7):

=⟨
Ú 1

0

Ú 1

1−x
[φ(x+ c2(1 − x) +D(x)η) − φ(x)][aδ(x) + bδ(x− 1)]g(y)dydx⟩+

+ ⟨
Ú 1

0

Ú 1−x

0
[φ(x− c1x+D(x)η) − φ(x)][aδ(x) + bδ(x− 1)]g(y)dydx⟩

=⟨
Ú 1

0
{[φ(x+ c2(1 − x) +D(x)η) − φ(x)][1 −GY (1 − x)]}[aδ(x) + bδ(x− 1)]dx⟩+

+⟨
Ú 1

0
{[φ(x− c1x+D(x)η) − φ(x)]GY (1 − x)}[aδ(x) + bδ(x− 1)]dx⟩.

Since D(0) = D(1) = 0, we get the same calculations performed for the case without
stochastic fluctuation in (3.9) and, consequently, we achieve that, even in the presence of
stochastic fluctuation, the definition of the stationary distribution as a convex combination
of Dirac deltas concentrated in 0 and 1 is a solution of the Boltzmann equation, for any
choice of the diffusion coefficient. Since ⟨η⟩ = 0, the trend of the mean will be identical to
the case without diffusion and, therefore, we can reason as in part I and observe that, if
c1 = c2, the mean will be conserved and we can explicitly derive the value of parameters
a and b:

f∞(x) = (1 −MX(0))δ(x) +MX(0)δ(x− 1).

In the case c1 /= c2, the mean depends on the second moment and we have no way to
easily derive a condition for the coefficients.

It might be surprising that the model with diffusion returns a solution with a polar-
ization toward the extreme values, since, often, the results obtained with the inclusion of
a fluctuation are less concentrated than in the case without a fluctuation. This is not the
case, because the Fokker-Planck diffusion tends to push toward the most extreme values
of the defining interval, but, since our model admits a solution for the fluctuation-free
case that is already concentrated on 0 and 1, the solution of the model with fluctuation
will also tend to stay on those extreme values.
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Chapter 5

Numerical illustration with
Monte Carlo

In general, the weak form of the differential equations is not used directly to find the
solution, anyway it is possible to pass to the strong form and then use a quadrature
formula to discretize the integral. However, this approach is usually not used, because
the accuracy is not good enough compared to the computational cost involved in solving
multidimensional integrals using quadrature formulas, particularly in high dimensions.
To solve the Boltzmann equation numerically, a widely used method is to simulate the
stochastic particle system with the Monte Carlo method. This method has the character-
istic of being very compact and non-intrusive, i.e., the way in which it is implemented does
not depend on how the interaction rules that characterize the system are made. Hence, in
the case in which someone wants to choose a different interaction rule, it is not necessary
to change the algorithm from the beginning.

5.1 Algorithm of Monte Carlo simulation
1. Fix N , the total number of particles to be simulated. Since we want to provide a

good reconstruction of the statistical distribution we need many samples. Usually,
a good order of magnitude is 106. However, in our model the interactions are not
between agents but between agent and fake news, hence it is enough to consider
104 agents which interact with an equal number of fake news, represented with their
level of falsity.

2. Generate an initial sample of N competences, X, and a sample of N degrees of
falsehood for news, F . Generating a random sample is itself a complex problem, but
there are predefined routines in Matlab that generate a vector of values distributed
according to the best-known probability distributions. The values x0

1, . . . , x
0
N must

be sampled from the probability distribution f0(x) that has to be assigned as the
initial condition. In many cases, when the cumulative distribution function of the
chosen distribution is known and not particularly difficult to invert, Matlab uses
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Numerical illustration with Monte Carlo

a method called Inverse Transform Method, that consists of sampling from a uni-
form distribution on the interval [0,1] through a pseudo-random number generation
method (e.g., linear congruential generators LCGs), and then obtain the desired
sample by applying the inverse of the cumulative distribution function to the uni-
form sample. In fact, it can be easily shown, by exploiting the monotonicity of the
cumulative distribution function and the properties of the uniform distribution, that
the sample X thus obtained follows the desired distribution:

P{X ≤ x} = P{F−1(U) ≤ x} = P{U ≤ F (x)} = F (x),

in which, the fact that U is uniformly distributed was exploited.
It is interesting to note that, for sampling from a normal distribution, since it has a
cumulative distribution function that is not particularly easy to invert, Matlab uses
ad hoc methods (e.g., the Polar approach and Box-Muller approach).

3. We set ∆t > 0 sufficiently small, so that we have a good approximation of (2.5).

4. We start the iterations for n = 0, . . . , N , where N denotes the number of steps in
the time interval analyzed:

• we randomly permute the elements of the vector X at each iteration to make
the sample of agents and the sample of fake news statistically independent,
otherwise, the agent will always continue to interact with the same news and
the knowledge of the particle will depend only on the value of that news;

• for each pair, we sample Θ ∼ Bernoulli(∆t
τ ), obtained from the routine for the

Binomial distribution, to see if the pair interacts;
• we sample the normalized stochastic fluctuation Y from the distribution we

prefer. We note that the choice of the stochastic fluctuation η = σY can affect
the solution of the Boltzmann equation, but in the quasi-invariant interactions
regime the specific law of η is not important, because the stochastic fluctua-
tion fits into the Fokker-Planck equation only through the variance σ2. Conse-
quently, by choosing a distribution with zero mean and variance σ2 and under
the assumption of the quasi-invariant limit of iterations, the solution will not
change;

• we apply the interaction rule:

xn+1
i = (1 − Θ)xn

i + Θ[xn
i + λ(xn

i , y) +DσY ];

• we create the new vector xn+1;
• we approximate f(x, tn+1) (where tn = n∆t) with an histogram constructed

from the values contained in xn+1.

The computational time depends on two factors: the particle number, which, however,
needs to be large to obtain a statistically significant result, and the number of interactions,
which depends on ∆t. Also, for efficiency reasons, it is preferable to use a vector form
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5.1 – Algorithm of Monte Carlo simulation

instead of implementing particle by particle.

Below we report the code to simulate the quasi-invariant regime for the model with
diffusion coefficient equal to D(x) =

ð
x(1 − x) and with N = 104 agents interacting with

an identical number of news.
Let us first see the case in which the sample of the degrees of falsity and competences are
distributed uniformly over the interval [0,1].

1 N=1e4;
2 eps =1e -2; % small to be in the quasi - invariant regime
3 dt=eps;
4 Tfin =1e3; %final time
5 nmax=floor(Tfin/dt);
6 sigma=sqrt(eps);
7 tau=eps;
8

9 X=rand(N ,1);
10 %X= betarnd (2,5,N ,1); %mean less than 0.5
11 F=rand(N ,1);
12 u=mean(X); % if c1=c2 the mean is constant in time
13

14 hbar= waitbar (0,’’,’Name ’,’Iterazioni ’);
15 for n=1: nmax
16 waitbar (n/nmax ,hbar , sprintf (’$n$ = %d / %d’,n,nmax));
17 X=X( randperm (N)); % random permutation of X
18 Theta= binornd (1,dt/tau ,N ,1); % a value for each couple
19 Y=sqrt (12) *( -0.5 + rand(N ,1)); %mean 0 and variance 1
20 eta=sigma*Y;
21 c1 =0.4;
22 c2 =0.4;
23 diff= X.*(1 -X);
24 D=sqrt(diff).*( diff >=0);
25 lambda = c2 .*(1 -X).* heaviside (X -1+F)- c1.*X.* heaviside (1-F-X);
26 Xnew =(1- Theta).*X+Theta .*(X+eps* lambda +D.* eta);
27 X=Xnew;
28 end
29 close(hbar)
30

31 figure (1)
32 hold on
33 set(0,’ DefaultTextInterpreter ’,’latex ’)
34 set(0,’ DefaultAxesFontSize ’ ,18)
35 set(0,’ DefaultLineLineWidth ’ ,1.2);
36 set(gca ,’ TickLabelInterpreter ’,’latex ’)
37 histogram (X,’ Normalization ’,’ probability ’,’LineStyle ’,’none ’,’FaceColor

’,’#9ECB73 ’);
38 y1=yline(u,’-.b’,’y = M(0) ’,’LineWidth ’,2);
39 yl. LabelHorizontalAlignment = ’center ’;
40 xlabel (’$x$ ’)
41 ylabel (’$f^\ infty(x)$’)
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Numerical illustration with Monte Carlo

Note that dt = τ has been chosen, so that the parameter of Θ is 1, which is equivalent
to saying that each chosen pair interacts. This makes it easier to reach the steady state
and thus it reduces the computational time.

Figure 5.1. Solution of the Boltzmann-type equation in the quasi-invariant regime with
stochastic fluctuation and initial competence uniformly distributed, in the case c1 = c2.

If we set c1 = c2, the theoretical result suggests that the distribution f∞ is defined as
follows:

f∞(x) = (1 −MX(0))δ(x) +MX(0)δ(x− 1).

Since a uniform distribution over the interval [0,1] was taken as the initial distribution of
competence, the histogram shows two peaks of height 0.5 in x = 0 and x = 1, as shown
in Figure 5.1. This outcome is consistent with the analytical approach because we choose
an initial distribution with MX(0) = 0.5.
Next, to analyze a more interesting case, we simulated the trend by changing the initial
distribution of X.

Figure 5.2. Probability density function of B(2,5).
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5.1 – Algorithm of Monte Carlo simulation

In particular, the probability distribution Beta with parameters α = 2 and β = 5 was
chosen, whose density is reported in Figure 5.2. As can be seen, it has a mean of less
than 0.5 and cancels out at the extreme values 0 and 1. Leaving the other parameters
unchanged and replacing line 10 with line 9 in the script, the result obtained is the
histogram shown in 5.4. The figure 5.3 shows the evolution of f(x, t) over time. The
transition from the continuous distribution to the discrete one, centered in x = 0 and
x = 1, occurs in the following way: the population, initially distributed as a B(2,5) (see
picture on the left in Figure (5.3)), tends to move toward the lower level of knowledge,
and this happens because the mean is closer to 0 and, therefore, most of the population
has a low competence (see center picture in 5.3), finally, the agents with an intermediate
value of knowledge tend to move, more and more, toward the extreme values (see pictures
on the right in 5.3), until the levels of competence different from the maximum and the
minimum ones tend to vanish and the distribution assumes the asymptotic trend shown
in 5.4.

Figure 5.3. Evolution of f(x, t) over time.

Figure 5.4. Solution of the Boltzmann-type equation in the quasi-invariant
regime for the model with stochastic fluctuation, with competence initially dis-
tributed as a B(2,5) and c1 = c2.
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Numerical illustration with Monte Carlo

The horizontal dashed line indicates the value of MX(0) and we see that, even with
this choice of initial distribution, the results are consistent with those found analytically,
in fact the fraction of agents with maximum competence coincides with MX(0).
It is also important to notice that both the histograms 5.1 and 5.4 are defined out of the
range (0,1) and the only values, within the definition interval of the competence that are
part of the histogram, are 0 and 1. This makes the numerical approximation very pre-
cise, because it perfectly shows that the solution is defined only in the two extreme values.

As we saw in (3.9) the convex combination of δ(x) and δ(x− 1) is also an asymptotic
solution of the Boltzmann equation. To check this result with the Monte Carlo simulation,
we need only to choose ϵ = 1 in the script, avoiding any scaling.
We simulate the asymptotic solution of (2.5) under the assumption of competence uni-
formly distributed in two different cases: c1 = c2 and c1 /= c2.

Figure 5.5. Solution of the Boltzmann-type equation for the model with stochastic
fluctuation. On the left we have the solution for c1 = c2, and on the right for c1 /= c2.

As we can see in Figure 5.5, the picture on the left shows a performance equal to Figure
5.1, in which the value assumed for x = 1 is on the line of MX(0). Instead, in the case
c1 /= c2 (in particular we choose c1 = 0.4 and c2 = 0.6), as we saw in the theory, the value
of b, in

f∞ = aδ(x) + bδ(x− 1),
is not equal to MX(0) since the mean is not conserved.

Choosing D = 0, it is possible to check the solution of the Boltzmann-type equation
for the model without stochastic fluctuation. Also in this case, we consider the initial
competence uniformly distributed. As we can see in Figure 5.6, the solution for c1 = c2
is the same as the picture on the left of Figure 5.5, consistent with the solution found
in (3.7). Instead, if c1 /= c2, the values of a and b differ from the case with a non-zero
diffusion coefficient.

Both the results obtained in Figure 5.5 and Figure 5.6 suggest to us an important
conclusion that could not be derived from the theory: the convex combination of δ(x) and
δ(x− 1) is the unique solution of the Boltzmann-type equation (2.5).
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5.1 – Algorithm of Monte Carlo simulation

Figure 5.6. Solution of the Boltzmann-type equation for the model without stochastic
fluctuation. On the left we have the solution for c1 = c2, and on the right for c1 /= c2.

Now let’s analyze the result related to the solution of the Boltzmann-type equation for
the model without stochastic fluctuation under the quasi-invariant regime. The results
obtained in 3.2 show a different asymptotic behavior based on the value of the two con-
stants c1 and c2. In the case c1 /= c2, the analysis shows that the solution is given by the
convex combination of the delta exactly as in the cases mentioned before. From theory,
however, it was not possible to find the coefficients since the mean, for these values of
the constants, is not conserved. Also this time, the simulations help us to find a behavior
that with the analytical approach was not evident: as it is shown in Figure 5.7, in this
case, there are not two picks, instead the dynamics tend to a unique value. In particular,
we notice that if c1 > c2 (graphic on the right of the Figure 5.7), i.e the proportion of
competence loss for the incapacity to recognize the reliability of the news is greater than
the proportion of competence gained, all the population tends to a null value of com-
petence in the long-run. Otherwise, if c1 < c2 (graphic on the left of the Figure 5.7),
everybody will reach the maximum level of competence. Thanks to these outcomes, we
know that in the quasi-invariant interactions regime the mean MX , which could not be
determined analytically, takes value 1 if c1 < c2, and value 0 if c1 > c2. Moreover, this is
consistent with the asymptotic theory of the quasi-invariant regime developed in Section
3.2, because the two peaks that the theory generally predicts in f∞ are reduced to only
one if the asymptotic mean is known to be equal to 0 or 1.
We note that there is a difference between the outcome obtained by simulating the solu-
tion of the Boltzmann-type equation not in the quasi-invariant regime and with c1 /= c2
(picture on the right of Figure 5.6) and the pictures in Figure 5.7. When c1 /= c2 and
without stochastic fluctuation, only in the quasi-invariant regime there is a concentration
of the population in one of the two extreme knowledge classes: this perfectly emphasizes
the fact that the quasi-invariant regime is not, in general, representative of any regime
treatable by the general Boltzmann equation.

Instead, in the case c1 = c2 and D(x) = 0, in Section 3.2 we obtained that the
distribution remains constant over time. We can choose as the initial distribution for the
competence the Beta distribution with parameters α = 2 and β = 5 (the same holds for
the uniform distribution), and check if the competence continues to have the same trend.
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Numerical illustration with Monte Carlo

Figure 5.7. Solution of the Boltzmann-type equation in the quasi-invariant regime for
the model without stochastic fluctuation. On the left we have the solution for c1 < c2,
otherwise on the right c1 > c2.

Figure 5.8. Solution of the Boltzmann-type equation in the quasi- invariant regime for
the model without stochastic fluctuation with initial distribution B(2,5) and c1 = c2.

To simulate this result, it is necessary to choose D = 0 in the Matlab code and, in
order to have a better approximation of the result, we choose a greater number of agents
(105) and a smaller ϵ ( 10−4). Furthermore, to reduce the number of iterations, we choose
a smaller final time (102). In addition, to have a comparison with the density of the initial
distribution, we wrote the following lines to the final part of the code:

1 z =0:0.01:1;
2 b= betapdf (z ,2 ,5);
3 plot(z,b)

As can be seen in figure 5.8, the histogram shows a trend similar to that of the initially
assigned distribution. Obviously, the shown graph represents a discrete approximation
and, therefore, it is less smooth and cannot be able to perfectly fit the continuous distri-
bution.
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Part II

Kinetic description of the fake
news popularity dynamics
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Chapter 6

Dynamics of the popularity of
a product on a social network

In this part, we will analyze the approach used in [9] to study the spread of a product’s
popularity on a social network. The term "product" means any information that can reach
the users of the social network (such as news, videos, advertisements, etc.). Starting from
this, we will modify the interaction creating a model that is more suitable for studying
the spread of fake news.
The Boltzmann approach is very powerful because it can be also used to study all the
types of dynamics on a network. In this chapter, we will explore, through the Boltzmann-
type equation, the dynamics of the popularity of any product that can reach the member
of a social network.
Let v ∈ R+ be a variable that represents the popularity of a product. The evolution of
the popularity of this product depends on the interactions with agents. Every agent has
a microscopic state described by the opinion-degree of connection pair (w, c). In [9] the
following interaction rule was proposed:

v′ = (1 − µ)v + P (w, c) +Dpop(v)ξ. (6.1)

Let’s analyze better the terms that appear in this equation:

• µ ∈ (0,1) is a rate that expresses the natural decline in the popularity of a product
when it is not reposted;

• P : [−1,1] ×R+ −→ R+ is a function that expresses the increase in popularity when
the product is reposted;

• ξ is a random variable with zero mean and finite variance σ̂2 > 0, which models a
stochastic fluctuation in popularity;

• Dpop(v) ≥ 0 is the diffusion coefficient, that has the role of regulating the strength
of the fluctuation, which depends on the popularity itself.
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Dynamics of the popularity of a product on a social network

A possible choice of the function P (w, c) can be:

P (w, c) = νcχ(|w − ŵ| ∈ [0,∆]), (6.2)

where χ(|w− ŵ| ∈ [0,∆]) indicates the characteristic function on the interval [0,∆], i.e.,:

χ(|w − ŵ| ∈ [0,∆]) =
I

1 if |w − ŵ| ∈ [0,∆]
0 otherwise.

The ŵ ∈ [−1,1] denotes the target opinion, i.e., the opinion to which the product is mostly
direct. From (6.2) we have that the increase in popularity of a product depends on whether
an individual belonging to the network decides to share the product. This happens if his
opinion is close enough to the threshold of the target opinion. If this occurs, then the
increase in popularity is proportional to the degree of connection of the individual, viz.
to the number of followers reached when the product is reposted.
At the beginning of the chapter, we specified that the product popularity variable must
belong to R+ :, for this reason, we know that v′, defined as in (6.1), must satisfy the
condition v′ ≥ 0. Since P (w, c) ≥ 0 by definition, it is enough to require that Dpop(v)ξ ≥
(µ− 1)v, which is satisfied if the following inequalities hold: ξ ≥ µ− 1 and Dpop(v) ≤ v.
From here we deduce that the stochastic fluctuation ξ can assume negative values, while
from the other equation combined with the request that Dpop(v) ≥ 0 for the definition of
the diffusion coefficient, we need Dpop(0) = 0.. To choose Dpop in such a way that the
spread gets bigger and bigger as popularity grows, one possible choice would be Dpop = v.
Other choices could be:

• Dpop(v) = min{v, V0}, if we want to express a saturation of the diffusion coefficient
for large values of v (v > V0);

• Dpop(v) = min{v, V 2
0
v } that, unlike the previous case, only expresses a decline in

popularity for products that exceed a popularity threshold equal to V0.

6.1 Dynamics of the popularity of fake news
In the case of fake news, however, not all the agents who have an opinion close to the
target one will share the fake news. To overcome this, we can hypothesize, for simplicity,
that, if the individual has insufficient knowledge to recognize the fake news, he will share
the news, bringing to the news a growth in its popularity proportional to the agent’s
degree of connection. Conversely, if the agent can recognize the reliability of the news, he
will not share the news. Hence, the interaction rule is:

v′ = (1 − µ)v + P (x, y, c) +Dpop(v)ξ. (6.3)

In this case, P could be defined, as follows:

P (x, y, c) = νcχ(x < 1 − y), (6.4)

The probability densities that we need for the model are:
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6.1 – Dynamics of the popularity of fake news

• h = h(t, v, y): the fraction of products with popularity in the range [v, v + dv] at
time t and having degree of falsity [y, y + dy];

• p(t, x, c): the density of agents with a microscopic state described by the pair
knowledge-degree of connection (x, c).

In this model, we will have two dynamics that evolve over time: one relating to the
dynamics of knowledge on the social network and one relating to the dynamics of the pop-
ularity of the product. The weak form of the Boltzmann equation for product popularity
is given by the equation:

d

dt

Ú
R+

Ú 1

0
φ(v, y)h(t, v, y) dy dv = (6.5)KÚ

R+

Ú 1

0

Ú 1

0

Ú
R+

[φ(v′, y) − φ(v, y)]h(t, v, y)p(t, x, c) dv dx dy dc
L
.

In the previous equation, ⟨·⟩ denotes the mean respect to the random variable ξ and
φ : R+ → R indicates the test function, which represents any observable amount of the
popularity v and the degree of falsity y.
Since in the equation appears also p(t, x, c), it would be necessary to solve the following
coupled system:I

d
dt

s
R+
φ(x, c)p(t, x, c)dx =

s 1
0
s
R+

⟨φ(x′, c) − φ(x, c)⟩p(t, x, c) dc dx
d
dt

s
R+
φ(v, y)h(t, v, y)dv =

s
R+

s 1
0
s 1

0
s
R+

⟨φ(v′, y) − φ(v, y)⟩h(t, v, y)p(t, x, c) dv dx dy dc,

solving the first equation, we should obtain p(t, x, c) which we can then replace in the
second equation to find h(t, v, y). Doing all this, however, could be complicated, therefore,
we can introduce the hypothesis that the dynamics of knowledge is much faster than that
of the popularity of news. Under this assumption, it is possible to rewrite (6.5) replacing
p(t, x, c) with the asymptotic distribution p∞(x, c), which can be easily obtained through
the Fokker-Planck equation.

Also in this case, it is interesting to analyze the distribution of some significant statis-
tical moments, in particular, we will focus on the average of the popularity.

Substituting φ(v, y) = v in (6.5) and maintaining the hypothesis that the opinion
dynamics is faster than the popularity spread process, we have:

dMV

dt
=
Ú
R+

Ú 1

0

Ú 1

0

Ú
R+

⟨v′ − v⟩h(t, v, y)p∞(x, c) dv dx dy dc. (6.6)

Similarly to the previous chapter ⟨v′−v⟩ = −µv+P (x, c, y)+Dpop(v)⟨ξ⟩ = −µv+P (x, c, y),
since for definition ⟨ξ⟩ = 0, hence (6.6) can be rewritten as follows:

dMV

dt
=
Ú
R+

Ú 1

0

Ú 1

0

Ú
R+

(−µv + P (x, c, y))h(t, v, y)p∞(x, c) dv dx dy dc.
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Chapter 7

A Boltzmann-like equation for
the distribution of popularity
conditional on the degree of
falsity

Up to now, we have considered the joint distribution of the popularity and the degree
of falsity of the news, but, it is more interesting to study the popularity conditional on
the degree of untruth, to be able to see, once a certain degree of falsity is fixed, what is
the distribution of conditional popularity. To do this, however, it is necessary to find a
Boltzmann-type equation for the conditional distribution, that we denote by hy(t, v). As
it is well known, the joint distribution of v and c can be rewritten as the product of the
distribution of v conditional on y by the marginal of y, viz. h(t, v, y) = hy(t, v)g(y). In
our model, we assume that the probability density of the connection g(y) does not depend
on time. Hence the equation (6.5) becomes:

d

dt

Ú
R+

Ú 1

0
φ(v, y)hy(t, v)g(y) dy dv =

Ú
R+

Ú 1

0

Ú 1

0

Ú
R+

⟨φ(v′, y) − φ(v, y)⟩hy(t, v)g(y)

p(t, x, c) dv dx dy dc.

Under the further hypothesis that φ(v, y) can be factored into the product of two
functions: one dependent only on v, ϕ(v), and the other dependent only on y, ψ(y):

d

dt

Ú 1

0
ψ(y)

AÚ
R+

ϕ(v)hy(t, v) dv
B
g(y) dy =

=Ú
R+

Ú 1

0

Ú 1

0

Ú
R+

ψ(y)[ϕ(v′) − ϕ(v)]hy(t, v)g(y)

p(t, x, c) dv dx dy dc
>
.

We also assume, as done above for the joint distribution, that the dynamics relating to
the knowledge of the individual is faster than the dynamics of popularity, thus we replace
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p(t, x, c) with its asymptotic distribution which, for consistency of notation, we denote by
p∞(x, c):

d

dt

Ú 1

0
ψ(y)

AÚ
R+

ϕ(v)hy(t, v) dv
B
g(y) dy = (7.1)

KÚ 1

0
ψ(y)

C Ú 1

0

Ú
R+

AÚ
R+

[ϕ(v′) − ϕ(v)]hy(t, v) dv
B
p∞(x, c) dc dx

D
g(y) dy

L
.

By defining the following functions:

A(t, y) =
Ú
R+

ϕ(v)∂thy(t, v) dv,

B(t, y) =
KÚ 1

0

Ú
R+

AÚ
R+

[ϕ(v′) − ϕ(v)]hy(t, v) dv
B
p∞(x, c) dc dx

L
,

equation (7.1) turn to:Ú 1

0
ψ(y)A(t, y)g(y)dy =

Ú 1

0
ψ(y)B(t, y)g(y)dy.

For the arbitrariness of ψ, then the equality is valid if and only if:

A(t, y) = B(t, y).

By imposing this equality and taking out the derivative in time from the integral
in A(t, y), we obtain a Boltzmann-like equation for the conditional distribution hy(t, v),
which is a function of y:

d

dt

Ú
R+

ϕ(v)hy(t, v) dv =
KÚ 1

0

Ú
R+

Ú
R+

[ϕ(v′) − ϕ(v)]hy(t, v)p∞(x, c) dv dc dx
L
. (7.2)

This allows us to study the mean of the popularity dynamics and its asymptotic dis-
tribution conditional on the value of the degree of falsity y.

7.1 Average distribution of popularity conditional on
the degree of falsity of the fake news

To calculate the derivative in time of the average of the distribution of popularity condi-
tional on the degree of falsehood, we consider ϕ(v) = v in (7.2):

dMV |Y

dt
= d

dt

Ú
R+

vhy(t, v) dv =
Ú 1

0

Ú
R+

Ú
R+

⟨v′ − v⟩hy(t, v)p∞(x, c) dv dc dx.
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As we saw in Section 6.1, ⟨v′ − v⟩ = −µv+P (x, c, y) +Dpop(v)⟨ξ⟩ = −µv+P (x, c, y),
in which P (x, c, y) is defined as in (6.4), therefore we get:

dMV |Y

dt
=
Ú 1

0

Ú
R+

Ú
R+

(−µv + P (x, y, c))hy(t, v)p∞(x, c) dv dc dx (7.3)

= −µMV |Y + ν

Ú 1

0

Ú
R+

Ú
R+

cχ(x < 1 − y)hy(t, v)p∞(x, c) dc dv dx.

Let us now focus on calculating the integral. Since hy(t, v) is a probability density,
then it must be worth

s 1
0 hy(t, v) = 1. Since no term in the integral depends on v, we

have:Ú 1

0

Ú
R+

Ú
R+

cχ(x < 1 − y)hy(t, v)p∞(x, c) dc dv dx =
Ú 1

0

Ú
R+

cχ(x < 1 − y)p∞(x, c) dc dx

(7.4)

=
Ú 1−y

0

Ú
R+

cp∞(x, c) dc dx.

From which we obtain, replacing in (7.3):

dMV |Y

dt
= −µMV |Y + ν

Ú
R+

Ú 1−y

0
cp∞(x, c) dx dc. (7.5)

We note that there is an upper bound for (7.4):

Ú
R+

Ú 1−y

0
cp∞(x, c) dx dc ≤

Ú
R+

Ú 1

0
cp∞(x, c) dx dc =

Ú
R+

c

AÚ 1

0
p∞(x, c)dx

B
dc = (7.6)

=
Ú
R+

cg̃∞(c)dc = MC ,

where g̃∞(c) is the asymptotic probability distribution of c and MC indicates the mean
of the distribution of the network connection. Hence, in general, we have:

dMV |Y

dt
≤ −µMV |Y (y) + νMC .

We note that, if we analyze the news with a null degree of falsity and therefore to-
tally true (y = 0), the inequality in (7.6) will be valid with the equal and therefore the
conditional mean will take on the following value:

dMV |y=0

dt
= −µMV |y=0 + νMC ,

from which it follows, since MC is constant over time:

MV |y=0 = νMC

µ
+
A
MV |y=0(0) − νMC

µ

B
e−µt, (7.7)
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where MV |y=0(0) denotes the average popularity of totally true news at the initial time.
It is easy to see that, for t → ∞, we have MV |y=0 → νMC

µ .
While, if y = 1, which means for news with a maximum degree of falsehood, that

everyone will recognize as false and no one will repost, (7.4) becomes null because the
integration extremes will coincide and consequently we will simply have:

dMV |y=1

dt
= −µMV |y=1,

which will return the following result:

MV |y=1 = MV |y=1(0)e−µt, (7.8)

so, for t → ∞, the average popularity of news that are totally fake will go to zero due to
the process of popularity loss related to non-reposting.
We note that the estimation in (7.6) causes a loss of information about the competence
x. To avoid this issue, we assume that the distribution of competence and connectivity
are independent. Under this hypothesis, it is possible to factorize the joint distribution of
x and c as follows:

p∞(x, c) = f∞(x)g̃∞(c) = (aδ(x) + bδ(x− 1))g̃∞(c), (7.9)

in which we assume that g̃∞ is given, and we exploit the result obtained in the part I
to assign the distribution f∞(x). Consequently, equation (7.4), under the independence
assumption, becomes:Ú 1−y

0

Ú
R+

cp∞(x, c) =
Ú
R+

cg̃∞(c)dc
Ú 1−y

0
[aδ(x) + (1 − a)δ(x− 1)]dx = (7.10)

= MC

Ú 1−y

0
[aδ(x) + (1 − a)δ(x− 1)]dx.

The solution of the integral changes according to the level of the degree of falsity y:

• if y = 0, i.e., the news is totally true, we have the integral of f∞ over the entire
defining interval of the random variable. Thus (7.10) assumes value MC , which leads
to the solution obtained in (7.7);

• if 0 < y ≤ 1 then 0 ≤ 1 − y < 1, we will have that the Dirac delta concentrated in 0
will fall within the defining range of the integral, while the Dirac delta concentrated
in 1 will remain outside, so the result of (7.10) is aMC . Consequently, the conditional
mean, in this case, will be given by:

MV |y = νaMC

µ
+
A
MV |y(0) − νaMC

µ

B
e−µt. (7.11)

Recalling that, in the case where the constants c1 and c2 coincide, the mean is
conserved over time and, then, a = 1 − MX(0), where MX(0) denotes the initial
mean of competence, (7.11) becomes:
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MV |y = ν(1 −MX(0))MC

µ
+
A
MV |y(0) − ν(1 −MX(0))MC

µ

B
e−µt. (7.12)

We note that, from (7.12), taking the limit for t → ∞, we get MV |y → ν(1−MX (0))MC

µ ,
since MX(0) must take value in [0,1], we can fall into the following cases:

1. if MX(0) = 0, i.e., at the beginning all agents have zero knowledge, then we
have the same behavior as when y = 0 in (7.7), viz. the behavior is the same as
when all news are totally true and therefore everyone reposts except those with
maximum knowledge (x < 1);

2. if MX(0) = 1, i.e., at the beginning all agents have maximal competence, then
we fall back into the same behavior as when y = 1 in (7.8), so no one reposts
and, as a consequence, the news loses popularity;

3. If 0 < MX(0) < 1, then, for t → ∞, we will reach an average in the interval3
0, νMC

µ

4
.

So, regardless of the average degree of competence, a news that is not true (y /= 0)
will have an asymptotic mean smaller or equal then the one of the news with y = 0.

65



66



Chapter 8

Study of the asymptotic
behavior

Let’s analyze the asymptotic behavior of the density function of popularity conditional
on news falsity by exploiting, as we have already seen in 3.2, the limit of the quasi-
invariant interactions. To proceed with this analysis, it is important to move to a dilated
time scale and to multiply the various terms by a very small factor ϵ (0 < ϵ ≪ 1).
Then, we define µ = µ0ϵ , ν = ν0ϵ with ν0, µ0 > 0 and P (x, y, c) = ϵP0(x, y, c) with
P0(x, y, c) = ν0cχ(x < 1 − y).
Finally we define the distribution on the dilated time scale h̃y(τ, v) = hy(τ/ϵ, v) which,
for (7.2), must satisfy:

d

dτ

Ú
R+

ϕ(v)h̃y(τ, v) dv = 1
ϵ

KÚ 1

0

Ú
R+

Ú
R+

[ϕ(v′) − ϕ(v)]h̃y(τ, v)p∞(x, c) dv dc dx
L
. (8.1)

For simplicity, we analyze the case without stochastic fluctuation and thus D(vpop) = 0.
We consider ϕ ∈ C3

C(0,1) and proceed to make the Taylor series expansion centered in v,
with Peano remainder, of the term ϕ(v′) − ϕ(v):

ϕ(v′) − ϕ(v) = ϕ′(v)(v′ − v) + 1
2ϕ

′′(v)(v′ − v)2 + 1
6ϕ

′′′(v̄)(v′ − v)3,

with v̄ ∈ (min{v, v′},max{v, v′}).
Since we are neglecting the stochastic fluctuation, there will be no random terms and,
therefore, we can omit the brackets ⟨·⟩ obtaining:

v′ − v = −µv + P (x, y, c),
(v′ − v)2 = µ2v2 + P 2(x, y, c) − 2µvP (x, y, c).

Replacing these results in (8.1) and exploiting the definitions given at the beginning of
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Study of the asymptotic behavior

the chapter, we get:

d

dτ

Ú
R+

ϕ(v)h̃y(τ, v)dv =
Ú 1

0

Ú
R+

Ú
R+

ϕ′(v)(−µ0v + P0)h̃y(τ, v)p∞(x, c) dv dc dx+

+ ϵ

2

Ú 1

0

Ú
R+

Ú
R+

ϕ′′(v)(µ2
0v

2 + P 2
0 − 2µ0vP0)h̃y(τ, v)p∞(x, c) dv dc dx

+ R̂(ϕ),

in which:

R̂(ϕ) := 1
6

Ú 1

0

Ú
R+

Ú
R+

ϕ′′′(v̄)[−µv + P (x, y, c)]3h̃y(τ, v)p∞(x, c) dv dc dx.

If we consider the limit of quasi-invariant interactions, ϵ → 0+, we get:

d

dτ

Ú
R+

ϕ(v)h̃y(τ, v)dv =
Ú 1

0

Ú
R+

Ú
R+

ϕ′(v)[−µ0v + P0(x, y, c)]h̃y(τ, v)p∞(x, c) dv dc dx.

Integrating by parts and taking advantage of the fact that, being ϕ with compact
support, it will be zero at the extremes of the interval [0,1], we get:

d

dτ

Ú
R+

ϕ(v)h̃y(τ, v)dv = −
Ú 1

0

Ú
R+

Ú
R+

ϕ(v)∂v[(−µ0v + P0(x, y, c))h̃y(τ, v)]p∞(x, c) dv dc dx

=
Ú
R+

ϕ(v)∂v

CA
µ0v −

Ú 1

0

Ú
R+

P0(x, y, c)dc dx
B
h̃y(τ, v)

D
p∞(x, c) dv.

Introducing the following definition:

P0 :=
Ú 1

0

Ú
R+

P0(x, y, c)p∞(x, c)dcdx,

and, by exploiting the arbitrariness of ϕ, we deduce the following Fokker-Planck equation:

∂τ h̃y = ∂v[(µ0v − P0)h̃y]. (8.2)

We derive the stationary distribution by imposing ∂τ h̃y = 0. Furthermore, since at
steady state the flux of any conservation law is necessarily zero, we obtain:

(µ0v − P0)h̃∞
y = 0.

This result suggest us that, if v /= P0
µ0

, h̃∞
y must be zero. We again assume that knowledge

and degree of connection are independent, so that we can rewrite p∞(x, c) as in (7.9).
With calculations similar to those performed in (7.10), we have:

P0 = ν0MC

Ú 1−y

0
[aδ(x) + (1 − a)δ(x− 1)] dx.

68



8.1 – Numerical simulation

Exactly as observed for (7.10), if y = 0 then, since
s 1

0 f
∞(x) dx = 1, we will have that

P0 = ν0MC . Whereas, if y ∈ (0,1], the delta centered in 1 will not fall in the defining
interval of the integral, therefore P0 = ν0aMC . If we divide these values by µ0, the ϵ is
simplified and we get, in all three cases, the asymptotic values of the mean conditional on
the degree of falsity. Then the asymptotic distribution, in the case without fluctuation,
coincides with a Dirac delta centered on the value of the conditional mean for t → ∞.
Hence, formally, we have, if y = 0:

h̃∞
y=0 = δ

3
x− νMC

µ

4
, (8.3)

otherwise:

h̃∞
y /=0 = δ

3
x− νaMC

µ

4
, (8.4)

where a = 1 −MX(0) if c1 = c2.

8.1 Numerical simulation
In this section, following the steps mentioned in Chapter 5, we provide a numerical simu-
lation for the dynamics of the news popularity, in which we avoid the stochastic fluctuation.

This is the code used to simulate the dynamics:
1 %FIRST PART
2 N_x =1e4;
3 eps1 =1;
4 dt1=eps1;
5 Tfin =1e2; %final time
6 nmax1=floor(Tfin/dt1);
7 sigma1 =sqrt(eps1);
8 tau1=eps1;
9

10 X=rand(N_x ,1);
11 F=rand(N_x ,1);
12 for n=1: nmax1
13 X=X( randperm (N_x)); % random permutation of X
14 Theta1 = binornd (1, dt1/tau1 ,N_x ,1); %a value for each couple
15 %all pairs interact
16 Y1=sqrt (12) *( -0.5 + rand(N_x ,1)); %mean =0, variance =1
17 eta= sigma1 *Y1;
18 c1 =0.4;
19 c2 =0.4;
20 diff= X.*(1 -X);
21 D1=sqrt(diff).*( diff >=0);
22 lambda = c2 .*(1 -X).* heaviside (X -1+F)- c1.*X.* heaviside (1-F-X);
23 Xnew =(1- Theta1 ).*X+ Theta1 .*(X+eps1* lambda +D1.* eta);
24 X=Xnew;
25 end
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Study of the asymptotic behavior

26

27

28

29 % SECOND PART
30

31 N_v=N_x;
32 eps2 =1e -2; %small for the quasi - invariant regime
33 dt2=eps2; %delta t = tau
34 nmax2=floor(Tfin/dt2);
35 D2 =0;
36 tau2=eps2;
37

38 X = X.* heaviside (X-1e -20);
39 C=rand(N_x ,1);
40 V=rand(N_v ,1);
41

42 mu_0 = 0.2;
43 nu_0 = 0.3;
44 q = (nu_0 *(1- mean(X))*mean(C))/mu_0; % if y different from 0
45 q_0 = (nu_0*mean(C))/mu_0; %if y=0
46

47 sigma2 = 0.5;
48 hbar= waitbar (0,’’,’Name ’,’ Iterazione 2’);
49 for n=1: nmax2
50 waitbar (n/nmax2 ,hbar , sprintf (’$n$ = %d / %d’,n,nmax2));
51 V=V( randperm (N_v)); % random permutation of V
52 Theta2 = binornd (1, dt2/tau2 ,N_v ,1); %all the couple interact
53 Y2=sqrt (12) *( -0.5 + rand(N_v ,1)); %mean =0 e variance =1
54 eta2= sigma2 *Y2;
55 f=0; %fixed degree of falsity
56 P_0 = nu_0 .*C.* heaviside (1-f-X+1e -10);
57 Vnew =(1- Theta2 ).*V+ Theta2 .*(V - eps2*mu_0*V+eps2*P_0+D2.* eta2);
58 V=Vnew;
59 end
60 close(hbar)
61

62 figure (1)
63 hold on
64 set(0,’ DefaultTextInterpreter ’,’latex ’)
65 set(0,’ DefaultAxesFontSize ’ ,18)
66 set(0,’ DefaultLineLineWidth ’ ,1.2);
67 set(gca ,’ TickLabelInterpreter ’,’latex ’)
68 histogram (V,’ Normalization ’,’ probability ’,’LineStyle ’,’none ’,’FaceColor

’,’#9ECB73 ’);
69 y1=xline(q_0 ,’-.b’,’ y = M^\ infty_ {y=0}(v) ’,’LineWidth ’,2);
70 y2=xline(q,’-.r’,’ y = M^\ infty_ {y \neq 0}(v) ’,’LineWidth ’,2);
71 xlabel (’$v$ ’)
72 ylabel (’$h^\ infty_Y (v)$’)

The first part of the code aims to obtain a sample that is distributed as (3.11). To
create this we used the same code wrote in Chapter 5. In particular, we implemented
the solution of the Boltzmann-type equation for the model with stochastic diffusion and
c1 = c2. We choose an initial distribution for the competence uniformly distributed, in
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8.1 – Numerical simulation

order to have an half of the population with x = 0 and the other half with x = 1. Looking
at the sample X, we saw that for agents with zero knowledge, the values of x returned
were very small (order 10−22) and they did not coincide with zero. To overcome this
problem we added a tolerance threshold that would replace very small values with zero.

In the second part we simulate the dynamics of the popularity, through the following

Figure 8.1. Asymptotic behavior of the popularity of the fake news conditional to
the minimum degree of falsity.

rule for the popularity of the agent i in the time interval n+ 1:

vn+1
i = (1 − Θ)vn

i + Θ[(1 − µ)vn
i + P (xn

i , y, c)], (8.5)

and we plotted the histogram that approximates the asymptotic behavior of the distri-
bution of the popularity conditional to the value of the degree of falsity of the news.
According with what we found in Chapter 8, the dynamics tends to a delta centered in
the value of the mean for t → ∞.

Figure 8.2. Asymptotic behavior of the popularity of the fake news conditional to a
degree of falsity different from zero.

In 8.1 and 8.2 there are respectively the behaviors when the degree of falsity is 0 and
when it is 1. The red and the blue dashed lines represent respectively the limit of the mean
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of the popularity conditional on y /= 0, that is, since we choose c1 = c2, ν(1−MX (0))MC

µ ,
and y = 0, which is νMC

µ .
It is evident that the simulations are consistent with the theory. In fact, both the results
show, in a clear way, that the asymptotic distribution is defined on the value of the mean.
Moreover, comparing the two histograms it is obvious that the popularity of the totally
true news is greater than the one of the news that are completely false. If we fix a degree
of falsity different from zero, we obtain histogram that is equivalent to 8.2. This is due to
the fact that, if y /= {0,1}, the average popularity conditional on the degree of falsehood
is given by (7.11), exactly as y = 1.
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Chapter 9

Alternative models for the
dynamics of popularity

The model considered in the previous section requires that anyone with sufficient com-
petence to recognize fake news will not share it again. This assumption turns out to be
very stringent, and in order to obtain a model more similar to reality, we can relax this
constraint by analyzing alternative models. As an example, we can consider a model in
which, when the difference between the competence and the level of falsity is very small,
the agent decides to share the news, even if the individual turns out to be competent
enough to recognize the falsity of the news.
To study this model, we need to change the definition of P (x, y, c), given in (6.4), replacing
it with:

P1(x, y, c) = νcχ(y − d < x < y + d), (9.1)

with d ≤ y e d ≤ 1 − y . We proceed to calculate the change over time of the mean of the
distribution of popularity conditional on the degree of falsity, under this first alternative
model, substituting in (7.3) the new function (9.1):

dMV |Y

dt
=
Ú 1

0

Ú
R+

Ú
R+

[−µv + P1(x, y, c)]hy(t, v)p∞(x, c) dv dc dx (9.2)

= −µMV |Y + ν

Ú 1

0

Ú
R+

Ú
R+

cχ(y − d < x < y + d)hy(t, v)p∞(x, c) dc dv dx.

Let’s focus on the calculation of the integral:Ú 1

0

Ú
R+

Ú
R+

cχ(y − d < x < y + d)hy(t, v)p∞(x, c) dc dv dx =

=
Ú 1

0

Ú
R+

cχ(y − d < x < y + d)p∞(x, c) dc dx

=
Ú y+d

y−d

Ú
R+

cp∞(x, c) dc dx.
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If we again assume independence between knowledge and connection, recalling the defini-
tion of f∞ found in (3.7), we get:

Ú y+d

y−d

Ú
R+

cp∞(x, c) dc dx =
Ú
R+

cg̃∞(c)dc
Ú y+d

y−d
[aδ(x) + (1 − a)δ(x− 1)]dx. (9.3)

If the interval [y− d, y+ d] contains zero and not one, then y = d and d < 1
2 , the integral

will take value aMC , and so we will have:

MV |y = νaMC

µ
+
A
MV |y(0) − νaMC

µ

B
e−µt. (9.4)

If we are also in the case where c1 and c2 coincide, then we have a = 1 −MX(0) and thus
it results in (7.12).
On the other hand, if it contains the one but not the zero, then d = 1 − y and d < 1

2 , the
integral will return (1 − a)MC and so we have:

MV |y = ν(1 − a)MC

µ
+
A
MV |y(0) − ν(1 − a)MC

µ

B
e−µt, (9.5)

with 1 − a = MX(0) if c1 = c2.
We notice that the result in (9.5) does not appear in the initial model.
Obviously, it makes no sense to choose a d that covers the entire range of definition of
the competence, since it would mean that, whatever the degree of falsity of the news, the
agent will share the news.

Another alternative model comes from choosing a popularity increase function done in
the following way:

P2(x, y, c) = νcχ(x < 1 − y + γ) ∀γ s.t. γ ≥ 0. (9.6)

The choice of this function models the case in which an agent might repost fake news even
if his competence is slightly higher. Hence, even if an agent recognizes the falsity of the
news, he still decides to repost it because it is close to his level of competence. Again, we
can analyze the average and see if the obtained behavior is similar to the initially chosen
model.
Under the assumption that the new function expressing the increase in popularity is (9.6),
the change over time of the average popularity conditional on the degree of falsity will be:

dMV |Y

dt
=
Ú 1

0

Ú
R+

Ú
R+

(−µv + P2(x, y, c))hy(t, v)p∞(x, c) dv dc dx (9.7)

= −µMV |Y + ν

Ú 1

0

Ú
R+

Ú
R+

cχ(x < 1 − y + γ)hy(t, v)p∞(x, c) dv dc dx.
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Let’s evaluate the integral:

Ú 1

0

Ú
R+

Ú
R+

cχ(x < 1 − y + γ)hy(t, v)p∞(x, c) dv dc dx =

=
Ú 1

0

Ú
R+

cχ(x < 1 − y + γ)p∞(x, c) dc dx

=
Ú 1−y+γ

0

Ú
R+

cp∞(x, c) dc dx.

Under the assumption of independence, we get:

Ú 1−y+γ

0

Ú
R+

cp∞(x, c) dc dx =
Ú
R+

cg̃∞(c)dc
Ú 1−y+γ

0
[aδ(x) + (1 − a)δ(x− 1)]dx. (9.8)

If γ < y then the Dirac delta centered in 1 does not fall within the definition interval
of the integral, therefore, the integral (9.8) returns as a solution aMC , hence we obtain
the expression for the mean defined in (7.11). Otherwise, for y ≤ γ, the integral will be
defined over the whole [0,1], and thus the conditional mean will be defined as in the case
of the original model with y = 0 (see (7.7)). This result suggests that, under this model,
the news that are not excessively false (whose threshold is given by γ) will behave as the
totally true one in the first model.

A third alternative model comes out by combining two models. It is reasonable to
assume that the more competent an agent is, the less likely he or she will be to share the
news. Consequently, it is possible to define the γ in the previous model not as a constant
equal for all, but as a function of competence x. This function must take smaller and
smaller values as x increases. One idea might be to define γ(x) = r(1 − x), with r > 0.
We note that, with the choice of this function, we have that, if x = 1 we fall back into the
starting model studied at the beginning of part II, while if x = 0, we relax the constraint
by falling back into the last model discussed. For intermediate values, we get that, as
γ(x) decreases, it becomes increasingly difficult for an agent with competence above the
degree of falsity of the news to repost the news.
In this case, the repost-related popularity growth function becomes:

P3(x, y, c) = νcχ(x < 1 − y + r(1 − x)). (9.9)

The change over time of the mean conditional on the falsity of the news under this
model is:

dMV |Y

dt
=
Ú 1

0

Ú
R+

Ú
R+

(−µv + P3(x, y, c))hy(t, v)p∞(x, c) dv dc dx (9.10)

= −µMV |Y + ν

Ú 1

0

Ú
R+

Ú
R+

cχ(x < 1 − y + r(1 − x))hy(t, v)p∞(x, c) dc dv dx,

75



Alternative models for the dynamics of popularity

in which:Ú 1

0

Ú
R+

Ú
R+

cχ(x < 1 − y + r(1 − x))hy(t, v)p∞(x, c) dc dv dx =

=
Ú 1

0

Ú
R+

cχ(x < 1 − y + r(1 − x))p∞(x, c) dc dx

=
Ú 1−y+r

1+r

0

Ú
R+

cp∞(x, c) dc dx.

If we again assume independence:Ú 1−y+r
1+r

0

Ú
R+

cp∞(x, c) dc dx =
Ú
R+

cg̃∞(c)dc
Ú 1−y+r

1+r

0
[aδ(x) + (1 − a)δ(x− 1)]dx.

We note that, for each choice of y ∈ [0,1], we have 1−y+r
1+r ≤ 1. If y = 0, we get the

mean (7.7). On the other hand, if y > 0, the upper extreme of the definition interval of
the integral will be less than 1 and thus the mean will be given by (7.11). Both results
are consistent with the original model.
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Conclusion

In this work, two models were proposed concerning two distinct aspects of fake news.
The first model deals with the study of the changes in personal competence due to the
interactions with the news, which is characterized by a certain degree of falsehood. This
model provides an aggregate view of the population, without distinguishing individuals
into groups as is often done in the epidemiological approach.
The results obtained theoretically, with kinetic theory, were then checked by a numerical
approach and both the methods gave evidence of a polarization toward extreme degrees
of competence, nullifying over long timescales the intermediate values of knowledge.
In the second model, another crucial aspect of news was studied: the spread of their pop-
ularity on a social network. In the starting model, it was assumed that anyone who is not
competent enough to understand the reliability of the news, would share it.
Specifically, we focused on studying the trend of popularity conditional on a fixed value of
falsehood, to give a comparison based on different levels of falsity. This approach showed
that, regardless of the initial average degree of popularity, a totally true news will have
greater or equal popularity than news with non-zero degrees of falsity. Furthermore, we
analyzed the behavior for t that tends to infinity and, unlike the initial model that asymp-
totically showed a pull toward two different values, this one returned that the dynamics,
in the long run and avoiding the presence of a stochastic fluctuation, will tend toward a
single value: the asymptotic conditional mean.

These models provide a starting point for future developments: for example, in the study
of the evolution of knowledge, the model could be improved by adding a term related
to the variation in competence due to the interaction with the surrounding environment
(see [4] and [7]). In our model we worked, for simplicity, with the degree of falsehood
uniformly distributed, however, this assumption is overly simplistic since it is reasonable
to think that the number of news with a small level of falsity is higher than the ones that
are completely untrue. Thus, another possible way to enrich the model is to consider a
less trivial distribution for the degree of falsity.
Regarding the popularity model, it is realistic to think that social network connections
change over time, hence, further studies in which the assumption of a constant degree of
connection is avoided can be carried out. This can be done using an approach similar to
the one used in the entire thesis, writing a Boltzmann-type equation for g(c, t) and then
deriving, through the Fokker-Planck equation, the asymptotic distribution g∞(c), to be
substituted into the popularity model proposed in Section 6.1.
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Conclusion

Furthermore, we studied the asymptotic behavior for the popularity model omitting the
stochastic fluctuation. It could be interesting to analyze how the model changes in pres-
ence of a stochastic fluctuation, exactly as we did for the model of the competence in
Section 4.2.

78



Bibliography

[1] Giacomo Albi, Lorenzo Pareschi, and Mattia Zanella. Opinion dynamics over complex
networks: kinetic modeling and numerical methods, 2016. URL https://arxiv.org/
abs/1604.00421.

[2] D. J. Daley and D. G. Kendall. Epidemics and rumours. Nature, 204(4963):1118–
1118, December 1964. doi: 10.1038/2041118a0. URL https://doi.org/10.1038/
2041118a0.

[3] Giacomo Dimarco, Lorenzo Pareschi, Giuseppe Toscani, and Mattia Zanella. Wealth
distribution under the spread of infectious diseases. Physical Review E, 102(2), Au-
gust 2020. doi: 10.1103/physreve.102.022303. URL https://doi.org/10.1103/
physreve.102.022303.

[4] Jonathan Franceschi and Lorenzo Pareschi. Spreading of fake news, competence and
learning: kinetic modelling and numerical approximation. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2224),
April 2022. doi: 10.1098/rsta.2021.0159. URL https://doi.org/10.1098/rsta.
2021.0159.

[5] Dirk P. Kroese, Thomas Taimre, and Zdravko I. Botev. Handbook of Monte Carlo
Methods. Wiley, February 2011. doi: 10.1002/9781118014967. URL https://doi.
org/10.1002/9781118014967.

[6] Nadia Loy, Matteo Raviola, and Andrea Tosin. Opinion polarization in social net-
works. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 380(2224), April 2022. doi: 10.1098/rsta.2021.0158. URL
https://doi.org/10.1098/rsta.2021.0158.

[7] L. Pareschi and G. Toscani. Wealth distribution and collective knowledge: a boltz-
mann approach. Philosophical Transactions of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, 372(2028):20130396, November 2014. doi:
10.1098/rsta.2013.0396. URL https://doi.org/10.1098/rsta.2013.0396.

[8] Lorenzo Pareschi and Giuseppe Toscani. Interacting Multiagent Systems: Kinetic
equations and Monte Carlo methods. Oxford University Press, 2013.

79

https://arxiv.org/abs/1604.00421
https://arxiv.org/abs/1604.00421
https://doi.org/10.1038/2041118a0
https://doi.org/10.1038/2041118a0
https://doi.org/10.1103/physreve.102.022303
https://doi.org/10.1103/physreve.102.022303
https://doi.org/10.1098/rsta.2021.0159
https://doi.org/10.1098/rsta.2021.0159
https://doi.org/10.1002/9781118014967
https://doi.org/10.1002/9781118014967
https://doi.org/10.1098/rsta.2021.0158
https://doi.org/10.1098/rsta.2013.0396


BIBLIOGRAPHY

[9] G. Toscani, A. Tosin, and M. Zanella. Opinion modeling on social media and mar-
keting aspects. 2018. doi: 10.48550/ARXIV.1805.01892. URL https://arxiv.org/
abs/1805.01892.

[10] Giuseppe Toscani. Kinetic models of opinion formation. Communications in Mathe-
matical Sciences, 4(3):481–496, 2006. doi: 10.4310/cms.2006.v4.n3.a1. URL https:
//doi.org/10.4310/cms.2006.v4.n3.a1.

80

https://arxiv.org/abs/1805.01892
https://arxiv.org/abs/1805.01892
https://doi.org/10.4310/cms.2006.v4.n3.a1
https://doi.org/10.4310/cms.2006.v4.n3.a1

	List of Figures
	Intoduction
	I Competence's changes due to the interaction with the fake news
	The epidemiological approach in the study of fake news
	SEIR model with individual competence
	The quasi-invariant regime and the Fokker-Planck equation


	Definition of the model
	Interaction rule
	Derivation of the Boltzmann-type equation
	Study of the first moment
	Remark: why is forgetfulness omitted in our case?

	Model without stochastic fluctuation
	Study of energy without stochastic fluctuation and forgetfulness
	Study of the asymptotic behavior through the Fokker-Planck equation

	Model with stochastic fluctuation
	Study of the dynamics with stochastic fluctuation
	Study of the asymptotic behavior through the Fokker Planck equation

	Numerical illustration with Monte Carlo
	Algorithm of Monte Carlo simulation


	II Kinetic description of the fake news popularity dynamics
	Dynamics of the popularity of a product on a social network
	Dynamics of the popularity of fake news

	A Boltzmann-like equation for the distribution of popularity conditional on the degree of falsity
	Average distribution of popularity conditional on the degree of falsity of the fake news

	Study of the asymptotic behavior
	Numerical simulation

	Alternative models for the dynamics of popularity
	Conclusion
	Bibliography


