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Summary

Nowadays, it is crucial to ensure the secrecy of shared data and the validity of received
information. This is the case of money exchange between two different parties, in which
one must keep the data of its own bank account hidden, or the exchange of information
in the military field, where an interception must be prevented. For such reasons, cryptog-
raphy was born. Because of its primary characteristic of assuring secrecy and reliability,
one of its main applications regards blockchains: a network composed of people who do
not know or trust each other uses it to ensure valid transactions.
In 2009, Bitcoin was developed: a shared, permissionless blockchain whose structure and
integrity are based on a Proof of Work (PoW) protocol. Miners, users that perform the
protocol, compute a value that must be lower than a specific target to prove that they
have done a sufficient amount of work. This type of protocol leads to a certain central-
ization, due to the ever-increasing difficulty of the task, so that only few users, combining
their resources in a mining pool, have the appropriate computational power to carry it
out; moreover, since it is a trial-and-error kind of task, it consumes a lot of energy, so it
has a great negative environmental impact.
In 2013, the idea of another type of blockchain, Ethereum, was conceived. Its main pur-
pose was not only to assure safe transactions between users, but also the possibility of
implementing Smart Contracts on a distributed platform. When Ethereum went live for
the first time in 2015, it used a PoW consensus protocol; only recently, on September
15th, 2022, Ethereum replaced it with a Proof of Stake (PoS) one. This change was made
to improve decentralization and scalability and to limit the environmental impact of the
blockchain. PoS is based on the idea that all those who take part in the protocol, known
as validators, have a stake in the network, a frozen amount of the cryptocurrency man-
aged by the blockchain, and their decisional power is proportional to that stake. The PoS
protocol used by Ethereum is Gasper, obtained combining Casper and GHOST. Casper
is a finalization gadget used to mark certain blocks as finalized, so that even a user with
only partial information can be sure of the validity of that specific block.
GHOST is based on the idea that ommer blocks, valid blocks that are in the chain but do
not belong to the main one, contribute to the heaviness of a chain from a computational
point of view. The chosen branch in a fork will not be the longest one, as in Bitcoin, but
the heaviest one.
Gasper combines these two elements in a complete PoS protocol: a user becomes a val-
idator when he stakes a fixed amount of its Ether, Ethereum’s cryptocurrency. Validators
are then split into committees and in each slot, the unit in which time is divided into,
one is randomly chosen to propose a block, while the others must attest to the block
obtained using GHOST. If the block receives at least two thirds of attestations, messages
with which validators vote for the next head of the chain, it is finalized and added to the
chain. Gasper possesses the properties of safety and liveness: two conflicting blocks, thus
when neither is an ancestor of the other, can never be finalized and the set of finalized
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blocks will always grow.
The purpose of this master thesis is the in-depth description of the Gasper protocol and
its properties and the demonstration of how and why PoS seems like a better alternative
to PoW.
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Chapter 1

Blockchain basics

Blockchains are gaining importance and are being used in multiple sectors, such as fi-
nance, art, healthcare, identity and so on. Blockchains base their functioning on a con-
sensus protocol, a series of rules users commit to follow to grant the right performance
of the network. The most used is the Proof of Work protocol, but it fails to achieve the
blockchain trilemma, that is at the same time it must possess the properties of decentral-
ization, security and scalability; indeed, a blockchain must not be controlled by a central
authority, it must ensure users’ privacy and, because of its ever-increasing fame, it must
be able to process a lot of information. An alternative to the Proof of Work protocol is the
Proof of Stake one, which seems to be better at resolving the trilemma. The aim of this
thesis is the study of one of the most important blockchains, Ethereum, specifically of its
Proof of Stake consensus protocol Gasper. In this first chapter, the concept of blockchain
is presented along with its main cryptographic tools. Then a generic description of the
differences between Proof of Work and Proof of Stake is stated. Eventually, a description
of the two most important blockchains, Bitcoin and Ethereum, is served.

Blockchain is a Distributed Ledger Technology: the database or its copies are shared
among different physical locations, nodes, like in a classic distributed database; this se-
cures the network from informatic attacks, because it is more difficult and extremely
expensive to attack a system with multiple breach points. The blockchain is referred to as
a particular type of distributed ledger technology because of three fundamental aspects:

1. the control of the database is decentralized. There is not a central authority that
grants the reliability and integrity of data and transactions, but those are achieved
by applying a specific consensus protocol. Because of its decentralized nature, all
the decisions are made by the entirety of users, so a single user or a group of them
cannot make changes in the network.

2. This consensus protocol renders the blockchain reliable in trustless environments
even if the users do not completely trust one another.

3. To grant both decentralization and reliability in all environments, the ledger uses
cryptographic techniques.
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In a blockchain data are saved in different blocks, each one connected to the other by
cryptographic tools. This dependence of each block from the previous ones makes it im-
possible to retroactively alter the database, rendering it a "perpetual chain of immutable
records"[2].

Figure 1.1. Difference between centralized and distributed ledger: (a) there is only one
copy of the database owned by the central authority that rules over every user; (b) each
user has its own copy of the database and there is no central authority [21].

Blockchains have found wide use in many fields, from art to finance, and their functioning
is based on cryptocurrencies. The term cryptocurrency refers to a digital representation
of value based on cryptography: unlike traditional money, it does not exist in physical
form and is not managed by a central authority. Notions on cryptocurrency transactions
are registered in a decentralized digital ledger, typically based on blockchain technology.
To manage the cryptocurrency, a wallet is needed. Various types of wallets can be distin-
guished as follows:

• Hot wallets: the private keys are stored online.

– Desktop wallet is a software installed on the user’s computer necessary to man-
age the bitcoin wallet.

– Mobile wallet is the most common one and consists in the installation of an
application on a smartphone. This type of wallet is lighter and simpler, but
often it is not a ’complete’ wallet because there are fewer possible actions with
this kind of wallet than with a desktop one.

– Web wallet is accessible by the browser, without the need to download any
software.
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• Cold wallets: the private keys are not stored online, but in offline places.

– Hardware wallet is a mobile device that can be connected to a computer to
manage a wallet.

– Paper wallet consists in the storage of the login credentials on paper.

Obviously, the security of the wallet depends not only on the type of wallet used, but also
on the user itself. The keys can be obtained from the seed, but it is extremely important
not to lose this seed. If a user loses it, he will no longer be able to access the wallet.
Wallets can be either non deterministic or deterministic. All keys of a non deterministic
wallet are generated independently from each other, hence there is no link between them.
This means that if the owner of the wallet forgets one of these keys, he looses access to
the wallet. Thus, a backup is continuously needed, generating storage problems.
Deterministic wallets use keys generated from a common master key, which is derived
from a seed. With this type of wallets, the problem of forgetting a key does not present
itself because every key can be derived from the seed. It is extremely important not to
loose this seed, so the user is asked to remember a series of English words from which it
can be easily derived. A Hierarchical Deterministic (HD) wallet is the most used process
to derive keys. It is based on a tree structure where each key can be obtained from the
previous one through cryptography. Through a fixed phrase, the list of words to remember
is generated; from these the seed is derived and then the master key is obtained from it.
The master key is at the base of the generation of the various parent keys, from which
descend the child keys, and so on. In this way, it is possible to generate a sequence of
public keys even without knowing the respective private keys. This increases the security
of the wallet, because the private key can be stored in a cold wallet without ever being
entered online.

All the keys of a HD wallet are identified through a path, a sequence of symbols sep-
arated by /; each one of these symbols classifies a distinct level of the tree. BIP-44 is the
standard utilized to define a path; it generates a path with five levels of depth of the tree:

m or M/44′/CoinType′/Account′/Change/AddressIndex

• m if the key is derived from the private master key, M if it is derived from the public
master key;

• 44 because the standard utilized is BIP-44;

• Coin Type represents the specific cryptocurrency involved;

• Account identifies the different accounts run by a user: one for donations, one for
investments, and so on;

• Change is 0 if the address is needed to receive a transaction; it is 1 if it is needed to
send a transaction and receive the corresponding change;

• Address Index represents the specific address of the account.
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Finally, we can distinguish two kinds of users on a blockchain: light nodes and full nodes.
Full nodes store the entirety of the blockchain and manage every aspect of the protocol,
such as the validation of new transactions. Light nodes do not save the whole blockchain,
but they connect to a full node to retrieve information about transactions. They can vali-
date new transactions, but first they have to ask a full node to give them the information
needed for the verification.

1.1 Elliptic Curve Cryptography
The integrity of the chain and the validity of transactions are assured by cryptography.
In 1976, asymmetric key cryptography, also known as public key cryptography, was in-
vented. In this case the key generator produces a pair of keys, kp and ks, for each user:
kp is the public key, which is known by everyone and is used by the owner to encrypt a
message; ks is the secret key, known only by its assigned user and needed to decrypt the
message.
First suggested independently by Miller [15] in 1986 and Koblitz [11] in 1987, the use of
elliptic curves revolutionized public key cryptography. To better understand how Elliptic
Curves Cryptography (ECC) works, first a brief introduction on elliptic curves has to be
done.

1.1.1 Elliptic curves
Definition 1.1.1 An elliptic curve EK defined over a field K of characteristic /= 2, 3 is
the set of solutions (x, y) ∈ K2 of the equation

y2 = x3 + ax+ b, a, b ∈ K (1.1)

together with the point at infinity, identified with O [11].

The curve must be non-singular, so it is required that

4a3 + 27b2 /= 0.

If the field K has characteristic = 2 or 3, the equation of the curve changes. For example,
if char(K) = 2, the equation of the curve is

y2 + cxy + dy = x3 + ax+ b, a, b, c, d ∈ K. (1.2)

This is a generalization because it is possible to obtain the specific case of equation (1.1)
by setting c = d = 0 in equation (1.2).
The set of points belonging to the curve EK forms a group with respect to the sum, with
identity element O: it is possible to carry out operation on elliptic curves such as com-
puting the opposite of a point, adding two different points or calculating multiples of a
given point.
Let us consider the elliptic curve EK with equation (1.1) and two points P = (xP , yP )
and Q = (xQ, yQ) belonging to it.
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The opposite of point P is the second point belonging to EK having the same abscissa as P .

Taking both P and Q different from the point at infinity and neither of them the op-
posite of the other, we can easily compute the sum R = P +Q such as

xR = λ2 − xP − xQ

yR = λ(xP − xR)− yP

(1.3)

where
λ = yQ − yP

xQ − xP
. (1.4)

This could also be done geometrically if K represents the real numbers: first we draw the
secant line passing through P and Q that intersects the curve in a third point, then we
take R as the opposite of the intersection point.

Figure 1.2. Sum of two different points on an elliptic curve.

Let us observe that if P or Q are the point at infinity, for example Q = O, then
P +Q = P +O = P and that if Q = −P , then P +Q = P + (−P ) = O.

If P = Q, then calculating R = P + Q equals computing R = 2P , so a multiple of
P . In this case, the formulas become:

xR = λ2 − 2xP

yR = λ(xP − xR)− yP

(1.5)

where
λ = 3x2

P + a

2yP
. (1.6)
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Geometrically, doubling a point means considering the tangent line to the curve in P ,
which is unique because of the hypothesis of regular curve, and then taking the opposite
of the point of intersection between the tangent and the curve.

Figure 1.3. Doubling of a point on an elliptic curve.

Using the addition formulas, we can calculate a multiple kP of the point P in the same
computing time that it takes to compute the exponential ak, that is with O(log k) dou-
blings and additions, with the so-called Fast Exponentiation Algorithm. For example, if
k = 9 and we want to compute R = kP , we can consider it as R = 9P = 20P + 23P =
P + 8P = P + 2(2(2P )) :

1. first we compute 2P = P + P with (1.5) and (1.6);

2. then we obtain 4P = 2P + 2P ;

3. then we calculate 8P = 4P + 4P ;

4. finally we get 9P = P + 8P.

So we used an addiction and three doublings instead of eight addictions.

It must be noted that if EK is a curve of equation (1.2), then the formulas (1.2, 1.4,
1.5, 1.6) become: 

xR = λ2 + cλ− xP − xQ

yR = λ(xP − xR)− yP − cxR − d , if P /= Q

λ = yQ−yP

xQ−xP

(1.7)
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xR = λ2 + cλ− 2xP

yR = λ(xP − xR)− yP − cxR − d , if P = Q

λ = 3x2
P +a−cyP

2yP +cxP +d

(1.8)

We are interested in elliptic curves defined on finite fields ❋p.

1.1.2 Text encoding on elliptic curves
The use of ECC is complicated by the problem of text encoding. In classic public key
systems, a text is divided in blocks that are processed with coding functions: the message
becomes a sequence of integer numbers that can be decrypted to obtain the plaintext.
Elliptic curve cryptography raises the problem of how to codify integers into points of a
curve. To avoid this problem, probabilistic coding systems with an extremely low proba-
bility of failure are used.
Let us report an example of probabilistic encoding of a text.

Given an elliptic curve of equation (1.1) defined on ❋p with p ≡ 3 mod 4 and given
a message m, we need to find the corresponding point Pm on the curve and vice versa.
Since p ≡ 3 mod 4, calculating quadratic residues in ❋p means to compute the power
(p + 1)/4. We cannot simply take Pm = (m, (m3 + am + b)(p+1)/4), because we are not
sure that the y−coordinate is a quadratic residue. To solve this problem:

1. first we define k appending three digits to m until we find one for which k3 + ak+ b
is a quadratic residue. By doing so, we are increasing our possibility of finding an
appropriate point, because from a single integer m we obtain 1000 values k (m|000,
m|001, . . . , m|999).

2. Now we can fix Pm = (k, (k3 + ak + b)(p+1)/4).

3. To carry out the inverse procedure, that is to decode the point Pm in the integer m,
we simply have to remove the three least significant digits from the x−coordinate of
point Pm.

The algorithm fails only if none of the values k is a quadratic residue.

As previously said, the set of points belonging to a curve forms a group; therefore, after
coding a message m into a point of the curve Pm, it is possible to use all the encryption
systems operating on groups to encode Pm on another point of the curve and then to
decrypt it.

1.1.3 Elliptic Curve Discrete Logarithm Problem
The safety of elliptic curves schemes is assured by the Elliptic Curve Discrete Logarithm
Problem (ECDLP): given an elliptic curve E, defined over a field K, and two points
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P,Q ∈ E, find x such that Q = xP . It is the analogue of the Discrete Logarithm Problem
(DLP) on finite fields. ECDLP is much more difficult than DLP, in fact the strongest and
fastest techniques used to solve the latter seem to not be applicable to solve the elliptic
version: it is possible to choose smaller fields for elliptic curve cryptography than those
needed for cryptosystems based on the discrete logarithm problem. This translates into
high security guaranteed even using much smaller keys.

1.2 Hash functions
One of the main characteristics of a blockchain, its immutability, is guaranteed by an
extremely important cryptographic tool: hash functions.
Any function that maps inputs of arbitrary size to fixed-size outputs can be considered a
hash function. In mathematical terms:

Definition 1.2.1 Indicating with Σ the alphabet and with Σ∗ the set of all possible words
of arbitrary length obtainable with the alphabet, we define hash function the transfor-
mation

h : Σ∗ → Σn,

with n being a fixed integer corresponding to the length of the output.

Hash functions typically find their main application into the informatic field, hence the
most common used alphabet is the binary one Σ = {0,1} with n = 160, 256, 384 or 512.
If x is the input, the output h(x) is said hash or digest of x.

We will now analyze some properties of hash functions.

Property 1.2.1 The avalanche effect entails that even the smallest change in the input
of the hash function generates a completely different digest.

We will consider as cryptographic hash functions only those for which this effect is valid.

Property 1.2.2 A hash function h is a one-way function: given a digest z, finding x
such that h(x) = z must be a computationally infeasible problem.

The previous property states that it must be easy to hash an input, but doing the inverse
must be extremely difficult.

Property 1.2.3 A cryptographic hash function must operate at a reasonable speed
because, in many algorithms, it is necessary to compute the digests quickly.

Definition 1.2.2 A pair of elements (a, b) ∈ Σ∗, a /= b, such that h(a) = h(b) is a
collision.

Property 1.2.4 A hash function h is weakly collision-free if fixed a ∈ Σ∗, finding
b /= a such that h(a) = h(b) is a computationally infeasible problem.

Property 1.2.5 A hash function h is strongly collision-free if finding any collision
(a, b) is a computationally infeasible problem.

14
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Due to the finite size of the set of possible digests compared to the dimension of the set of
all possible inputs, it is obvious that a collision must exist. From this derives the necessity
of the existence of these last two properties, which shield the function from brute-force
attacks: a person should not be able to try all the possible inputs and find the correct
digest in a computationally acceptable time, lest he breaks the hash function.

Let us consider the SHA (Secure Hash Algorithm) family, composed of six different
hash functions, developed since 1993 by the National Security Agency and published by
the National Institute of Standard Technology: SHA−0, SHA−1, SHA−224, SHA−256,
SHA−384 and SHA−512. SHA−0 is the first version of SHA−1, changed briefly after
its publication because of a flaw in its algorithm; function SHA−1 produces a digest of
160 bits and it has been broken; the other four functions, referred collectively as SHA−2,
produce digests of length equal to the number in their names. These functions have not
been broken yet. In 2012 the hash function SHA−3 has been added to the family; it is a
version of the Keccak function where some parameters are changed.

Hash functions have several fundamental uses in blockchains, such as granting the identity
of a user or even creating the structure of the blockchain itself.

1.3 Digital Signatures
In cryptography, it is of fundamental importance to be able to prove that you are the true
sender of a message; for example, if Alice sends a message to Bob, the latter must be able
to verify that Alice is truly the one that sent the message. This is the aim of a digital
signature: it guarantees the identity of the person who performs an action. The digital
signature was created to prevent an attacker pretending to be another person sending
a message, because in public key cryptography everyone knows a person’s public key, so
they can use it to impersonate someone else. In blockchains this act of prevention becomes
crucial.

1.3.1 Elliptic Curve Digital Signature Algorithm
One of the most diffused digital signature system is the Digital Signature Algorithm
(DSA), because it is more efficient and it uses shorter signatures. DSA also has an
analogue on elliptic curves: Elliptic Curves Digital Signature Algorithm (ECDSA). The
algorithm is composed of the following steps.

• An elliptic curve defined on a finite field ❋p, a point G of the curve, the prime
number n of points of the curve and a hash function h must be given.

• Each user chooses its private key d and generates its public key as the point P = dG
on the curve.

• The signature protocol is the following:

– the sender computes the hash of the message M : h = h(M)
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– he randomly chooses a value k ∈ ❩n

– then he calculates the point of the curve kG = (x, y)
– he fixes r ≡ x mod n and finally computes s = (h+ rd)/k mod n.
– The signature is the pair (r, s).

• To verify the signature the recipient:

– calculates the inverse of s: w = s−1 = k/(h+ rd)
– then u = wh and v = wr

– finally he computes the point Q = uG+ vP.

– The recipient accepts the signature if and only if r ≡ xQ mod n.

• The protocol works because

Q = uG+ vP = whG+ wr(dG) =
1 kh

h+ rd
+ krd

h+ rd

2
G = kG = (x, y).

It is important to note that only the real addresser knows his private key d, so only he
can determine the signature (r, s). Furthermore, the signature is also determined using
the message digest h = h(M), so it cannot be used by an attacker to sign other fraudulent
messages.

1.3.2 Boneh-Lynn-Schacham Signature Scheme
Another important digital signature algorithm is the Boneh-Lynn-Schacham (BLS) sig-
nature scheme; it was conceived in 2001 and is based on a pairing between elliptic curves.
It is also known as short signature due to its dimension of only 32 bytes.

In the 90s, some researchers discovered the Pairing, an operation that could map the
Elliptic Curve Discrete Logarithm Problem into the Discrete Logarithm Problem on a
finite field, in polynomial time. This function, at the start of the millennium, was used to
build safe cryptographic protocols.

Definition 1.3.1 (Pairing) Given two abelian groups (G1,+) and (G2, ·), a pairing is a
bilinear, non-degenerate and computationally efficient map

e : G1 ×G1 → G2.

Bilinear means that

∀P,Q ∈ G1, ∀ a, b ∈ ❩, e(aP, bQ) = e(P,Q)ab.

Non-degenerate means that

if e(P, P )m = 1, then mP = 0.

16



1.3 – Digital Signatures

Some properties of the pairing are useful to better understand the functioning of the BLS
signature scheme.

Property 1.3.1 A pairing is symmetric.

Indeed, if G is a generator of G1 and P,Q are public keys with respective private keys
p, q, then:

e(P,Q) = e(pG, qG) = e(G,G)pq = e(G,G)qp = e(qG, pG) = e(Q,P ).

Property 1.3.2 With pairings, quadratic constraints can be checked.

On elliptic curves, only linear constraints could be verified; pairings add the possibility of
also verifying quadratic ones. For example, checking that e(P,Q)e(G,5G) = 1 is equivalent
to check that pq + 5 = 0. In fact,

e(P,Q)e(G,5G) = e(G,G)pqe(G,G)5 = e(G,G)pq+5 and 1 = e(G,G)0.

Property 1.3.3 Due to its bilinearity, a pairing is such that

e(P +Q,R) = e(P,R)e(Q,R) and e(P,Q+R) = e(P,Q)e(P,R).

The existence of this type of function is greatly problematic due to the following theorem.

Theorem 1.3.1 If e : G1 × G1 → G2 is a pairing, then an algorithm that efficiently
solves the Discrete Logarithm Problem on G2 does so even on G1.

This means that if a pairing between an elliptic curve G1 and a finite field G2 can be
found, then solving the DLP on the latter results in solving it on the former. This feature
could break many cryptographic algorithm based on the ECDLP.

The BLS signature scheme is built on a Gap Group. Before defining what a Gap Group
is, the following definitions are needed.

Definition 1.3.2 The Decisional Diffie-Hellman (DDH) problem consists in verifying
that cG=abG, knowing G, aG, bG and cG.

Definition 1.3.3 The Computational Diffie-Hellman (CDH) problem entails computing
abG given G, aG and bG.

Theorem 1.3.2 If a pairing exists between (G1,+) and (G2, ·), then the DDH problem is
trivial on G1.

It is possible now to define what a Gap Group is:

Definition 1.3.4 (Gap Group) A Gap Group is a cyclic group where the CDH problem
is unfeasible, while the DDH problem is trivial.
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The Boneh-Lynn-Schacham signature algorithm is the following:

• A pairing e between two groups G1 and G2 must be given. Both groups must have
order p, with p prime. G1 must be an elliptic curve defined on the finite field ❋p,
with generator G. G2 must be a finite field.

• Each user chooses d ∈ ❋p as its private key and computes its public key as the point
P = dG of the curve.

• The signature protocol is the following:

– the sender computes the hash of the message M : H = h(M). Then, this hash
is coded into a point of the curve, that is H = αG for some α ∈ ❋p

– the sender computes the point S = dAH of the curve, which will be the signa-
ture.

• To verify the signature the recipient simply checks if e(PA, H) = e(G,S).

• The protocol works because

e(PA, H) = e(dAG,αG) = e(G,G)dAα = e(G, dAαG) = e(G, dAH) = e(G,S).

The algorithm uses a pairing for the verification of the signature, that is a point of an
elliptic curve. The protocol is completely deterministic, nothing is randomly chosen and
every parameter is chosen by the signer.

A multi-signature scheme is a cryptographic protocol that permits a certain number of
users to share control over a single account, each with the same importance. The signature
is a combination of the signatures of all the participants rather than a collection of them;
this is done to increases safety. If the total number of participants is n, then a scheme
where everyone is needed to sign a message is said to be a multisig n-of-n scheme; if not
everyone is needed, but only a fixed number m < n of participants is, the scheme is called
a multisig m-of-n scheme. The latters are not always efficient due to the need to keep
trace of all possible combinations of the multiple public keys; thus, they are built only on
certain digital signature protocols. One of the main merits of multi-signature schemes is
that the signature algorithm changes, but the verification process is the same; therefore,
a multisig signature is indistinguishable from a classical signature.

The BLS signature allows to generate multi-signature n−of−n schemes easily.

• Compute the sum of all the n digital signatures and public keys, multiplied for a
number ai = h(Pi||P1|| . . . ||Pn), depending on all the public keys: Ssum =

qn
i=1 aiSi,

Psum =
qn

i=1 aiPi.

• The verification of the signature is easy; it implies checking that e(G,Ssum) =
e(Psum, H).
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• The protocol works because:

e(G,Ssum) = e(G, a1S1 + · · ·+ anSn) = e(G, a1S1) . . . e(G, anSn) =

= e(G, a1d1H) . . . e(G, andnH) = e(a1d1G,H) . . . e(andnG,H) =

= e(a1P1 + · · ·+ anPn, H) = e(Psum, H)

The BLS signature is one of the few that allows to build a multisig m−of−n scheme,
m < n. These schemes are based on other cryptographic systems such as the Shamir
Secret Sharing algorithm [18].

To use a digital signature based on a pairing, the signature algorithm must be based
on a pairing friendly curve, a property deriving from the embedding degree.

Definition 1.3.5 The embedding degree of a curve is the smallest k ∈ ❩ such that, given
the number N of points of the curve and the cardinality q of the finite field on which the
curve is defined, it is true that N divides qk − 1.

It can be shown that, if k ≤ 6 then the DLP can be solved efficiently on the field G2 = ❋qk ,
with G1 = E(❋q) and that if k is too big, the pairing is computationally inefficient.

1.4 Block structure
The fundamental unit of a blockchain is the block. A blockchain is a series of blocks
in which transactions, metadata and other useful information are stored. Each block is
connected to the previous one, up until the first block called the genesis block. Blocks
have a particular structure consisting of two parts: the header and the body.

1. In the header we can find general management fields like

• the hash of the block, computed with the data stored in the block itself;
• the hash of the previous block header, used to connect the current block to the

prior one;
• a timestamp to know exactly when the block was created;
• the version of the currently used protocol;
• the Merkle root, a value used to verify the validity of a transaction.

We can also find certain fields depending on the specific blockchain, such as

• a difficulty parameter measuring the complexity of the creation of the block
in relation to the genesis one; this parameter is often changed to guarantee a
constant interval between the creation of two consecutive blocks.

• The nonce and the target that are two particular values used in specific protocols
to create a new block.
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2. In the body we find the list of transactions stored in the block: their number may
vary according to their size and to the settings of the specific blockchain.
It has to be noted that blocks have a fixed maximum dimension.

Some of the information that can be found inside the block are of utmost importance for
the management of the network.
As mentioned above, each block carries the hash of the previous block header; this creates
an actual chain which cannot be modified without everyone being aware of it. This is due
to the avalanche property of hash functions: if an attacker wants to change a valid block
n, with a fraudulent one n′, the hash of the header of block n′ will be different from the
one of block n, so there will not be correspondence between the field -hash of the previous
block header- contained in block n+ 1 and the hash of the header of block n′.

Figure 1.4. Fraudulent attempted block replacement.

Great importance is held by the Merkle root field: this value is calculated by combining
the hashes of the transactions contained in the block, generating the so called Merkle tree.
Each pair of hashes of adjacent transactions are concatenated and hashed to generate a
layer of intermediate hashes; if the number of transactions is odd, with one remaining
pairless, the following hash is computed duplicating the odd transaction and combining
it with its copy. This process is carried out until only a pair of hashes remains in the last
layer. Finally, these two hashes are combined to calculate the Merkle root.
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Figure 1.5. Example of Merkle tree with five transactions.

The Merkle tree can be used to verify the presence of a transaction in a block without
having to compute the hashes of every transaction inside the block: it is sufficient to
know the hash of the transaction to be verified, along with the hashes of the adjacent
transaction and those on the path leading from the one in doubt to the Merkle root. For
example, if we want to verify the presence of transaction TB, we need the hashes HA,
HCD and HEEEE to easily compute the missing ones needed to get to the root HABCDE

stored in the header of the block.

Figure 1.6. Verification process with Merkle tree.
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1.5 Consensus protocols
After understanding the structure of a block, the next thing to analyze is how said block
is created; this process is one of the most important and difficult concepts related to
blockchains. We may recall that the main goal of a blockchain is to create a network
between unknown people that do not necessarily trust each other. Hence, the decision
regarding who creates a new block, how to include it in the chain, and also the achievement
of an agreement on the network’s current state, can be extremely problematic. This is
why blockchains use consensus mechanisms or protocols: an algorithm used to approve fair
transactions and reject fake or fraudulent ones. The algorithm is previously established
and depends on the blockchain; which protocol a blockchain uses is of public knowledge,
so a user that wants in in a blockchain must accept the protocol before entering the
network. The algorithm is run when a new block must be added to the chain: this is how
the blockchain gets updated. These protocols are often used as methods of issuing new
currencies on the blockchain: the reward in the form of currency is an additional value to
incentivize those involved to keep the network safe.
There are different protocols, each with its own strengths and flaws; we will focus our
study on two of them: Proof of Work (PoW) and Proof of Stake (PoS).

1.5.1 Proof of Work
Proof of Work is the oldest and most widely used protocol; it is performed by miners that
mine new blocks. They generate a block with a specific structure, with the peculiarity of
having the so-called coinbase as the first transaction. The coinbase has two main goals: to
fix the reward that the miner of that block will receive if the block is added to the chain
and to increase the number of cryptocurrency in the market. Indeed, mining a block is
the only way to produce new units of cryptocurrency.
Each transaction has an established fee: the amount of currency the author of the transac-
tion is willing to pay to have it inserted in the blockchain. These fees are useful to prevent
a Denial of Service attack: ill-intentioned users could flood the network with a huge num-
ber of transactions; by demanding a fee for each one, malicious actions are scarce.
A transaction must be verified before it can be inserted in a block: all users sharing the
same copy of the blockchain must verify that the sender of the transaction actually has
the funds to cover its costs. Once verified, the transaction can be added to a block.

Now the block must be validated.

All the verified transactions are stored in a registry from which miners choose which
ones to insert in their block. The size of a block is often limited, so miners choose which
transactions to insert according to their fees: if the block will be validated and entered
in the chain, the miner would receive not only the reward established in the coinbase
transaction, but also all the fees of all the transaction in the block.

Now the Proof of Work begins. Miners have to generate a value computing the hash
of the whole block; the output digest must be lower than a fixed target value. If the hash
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of the block is not appropriate, the miner varies the nonce and tries again. This nonce is
a value that can be found in the header of the block and is used only once. Due to the
properties of hash functions, the miner cannot know the right input to use to obtain a
valid output; therefore, to solve the PoW miners have to make a process of trial-and-error,
hence they have to spend a lot of computational resources and energy. This discourages
a malicious miner to try and validate one or more fraudulent blocks.

The first miner that solves the PoW sends its block to the network that accepts it as
valid and all users have to update the chain adding it to their copy of the database. Once
a block is mined, miners move on to the new block and begin to work on the next one. If
two blocks are generated at the same time, be it for casualty or for lagging of the network,
a fork is created. Most PoW based blockchain choose to work on both branches up until
one becomes longer: at that point the longer branch is chosen to be the continuation of
the main chain and the other branch is abandoned.
Every two weeks the target value is updated to keep the insertion speed of new blocks
under control. Indeed, the goal is to assure that a new block will be mined on average
every 10 minutes, whatever computational power the miner holds.
One of the strengths of PoW is its security and the fact that it has been used since the
beginning. However, this protocol presents two great flaws: a huge waste of energy and
the danger of centralization. In fact, miners that do not have a sufficient computational
power gather into a single mining pool to combine all their assets to increase their prob-
ability of gaining the reward for mining a block. Proof of Work is becoming increasingly
difficult to solve, so that fewer and fewer users have the necessary resources to participate;
as a consequence, those who have enough resources could gain control of the network.

1.5.2 Proof of Stake
Proof of Stake is the second best known consensus mechanism. While in PoW miners
exploit energy to mine blocks, in PoS validators commit a stake to attest blocks. Validators
have two tasks: to propose and to attest blocks on a blockchain.
To become a validator, a user must stake a certain amount of the blockchain currency on
the network, that is to freeze it hoping to earn more by proposing a winning block.
There are several mechanism to choose a validator based on:

• randomness, in which the probability of being chosen increases with the amount of
currency staked;

• seniority, which represents the relation between the coins owned and the time for
which they were owned: seniority is annulled once the validator adds a block and
lapses if the tenure time becomes excessive;

• velocity, intended as the rate of use of the currency.

Once chosen, the validator proposes a block that must be attested to by a selected com-
mittee: a set of randomly chosen validators that attests to the block. If a sufficient number
of members of the committee attests to that block, it is added to the chain. Only after
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the block is attested and appended, the validator and the attesters earn their reward.
Validators are punished if they do not act on their task when they are selected. For ex-
ample, if a validator is offline when selected, it is penalized, because to grant an adequate
level of scalability of the blockchain the majority of nodes must always be active. These
penalties are mild, hence the amount becomes significant only if the validator is offline for
the majority of the time.

In a PoS based systems the penalties for misbehaving are higher than with the PoW
protocol: users that act maliciously are slashed, meaning that they are deprived of a por-
tion, or even the totality, of what they staked.
PoS based blockchains are more decentralized then PoW ones, because every user that
owns a computer and internet connection can be a validator, without the need to spend
a lot of money on extremely powerful machines, like in PoW. It is, however, true that
they have to stake a certain amount of currency, and for some people the amount could
be too high. There are other ways one can get rewards from adding a block even without
staking the whole sum: staking pools. Users that cannot or do not want to stake the
entirety of the amount needed to become a validator can give a portion of it to a node
that collects different percentages of the sum from several users. If that node is chosen to
be a validator and its block is attested and added to the chain, all the users that staked a
certain amount of currency in it get a reward proportional to how much they have staked.
One of the main problems of PoS is the nothing-at-stake problem: when a fork is gener-
ated, a validator could try to work on both branches because he has stakes on both and it
is free. In this way, this validator could try to trick the network and, for example, spend
the same currency simultaneously in two different transactions.

1.6 Forks

As already mentioned, if two blocks are generated roughly at the same time, a fork is
created: because of the asynchronous nature of the network it is not possible to determine
which block was generated a moment before the other.
Each blockchain has a specific rule to solve forks. Both blocks generating a fork are valid
and have the same height; each user works to add a block after the one it receives first.

Figure 1.7. Regular fork. Blue blocks are the ones preceding the fork, in green are the
accepted ones, in red the orphan blocks.
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Usually regular forks resolve themselves fairly quickly because, even if at the start each
branch is valid, the moment a new block is appended to one or the other, all users start
working on the longer chain, abandoning the other one which is no longer valid.
The blocks that compose the abandoned branch are called orphan blocks and the trans-
actions they store are not valid.

A fork is not always generated by the contemporary creation of different blocks. For
example, if a group of users proposes to alter the protocol, there are three possibilities:

1. if the entirety of the network accepts the changes, no fork is formed, the protocol is
updated and everything works with the new rules;

2. there can be a soft fork: the innovators propose a new protocol; there is a period of
time in which both the old and new protocols coexist, until everyone changes to the
new one. A soft fork is not a real fork, because the blockchain remains unique.

Figure 1.8. Soft fork. Blue blocks are the ones preceding the fork, in green
are the blocks that still have to update their system, in yellow the ones already
following the new protocol.

3. If the innovators want to drastically change the protocol or if, after a soft fork, some
users refuse to exchange protocols, an hard fork takes place. After this type of fork
there are two different blockchains that continue to develop independently and only
share the blocks prior to the fork.

Figure 1.9. Hard fork. Blue blocks are the ones preceding the fork and the one that
remains in the starting chain; red blocks are the one that separate from the main
chain and form a new blockchain.
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1.7 Types of blockchains
Blockchains can be permissionless, hybrid or permissioned. In permissionless blockchains,
also called public or trustless, everyone can operate as a full node and validate a block
using the specific consensus protocol of that blockchain. Everyone can become a user of a
public blockchain without the need to be authorized by a central authority. Examples of
permissionless blockchains are Bitcoin and Ethereum. Permissioned or private blockchains,
instead, can only be accessed by specific users that need to have a special kind of per-
mission. These users can only do specific actions that are granted to them by the central
administration that runs the blockchain. For example, Ripple is a permissioned blockchain
because it was designed to be used only by mainstream banks. Hybrid blockchains try to
use the best features of both permissioned and permissionless blockchains: they are pri-
vate, but they still guarantee integrity, security and transparency. An example of hybrid
blockchain is XDC.
Two of the most important blockchains are Bitcoin and Ethereum.

1.7.1 Bitcoin
Bitcoin (B) is a digital, anonymous and distributed cryptocurrency developed in 2009
by an anonymous inventor known with the pseudonym of Satoshi Nakamoto. Bitcoin
is managed by a peer-to-peer network, it is completely decentralized and its value only
depends on its supply and demand. On January 3rd 2009 the genesis block was created
and nine days later the first transaction between Satoshi Nakamoto and Hal Finney was
registered. This cryptocurrency is managed by a shared permissionless blockchain with
the same name. Bitcoin’s blockchain is made of blocks with the structure explained before.

Bitcoin does not really have a checking account, because all the transactions are pub-
lic, so everyone would know the exact amount of bitcoin another user possesses. Each
Bitcoin user creates an address and the transactions are simply exchanges of bitcoins
from one address to the other. The secrecy and the validity of the transactions are as-
sured by elliptic curve cryptography on the curve y2 = x3 + 7 (Secp256k1) defined on the
field ❋p with p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.

For example, if Alice wants to transfer 1 BTC to Bob, first Alice must have received
that bitcoin from another person, then she must inform Bob that she wants to send him
a bitcoin. Bob creates a pair of keys and computes his address with his public key and
sends it to Alice. Alice writes the transaction setting Bob’s address as the output address
and hers as the input address, where she previously received the bitcoin. Alice sends the
transaction to Bob, signed with ECDSA; Bob can now prove to anyone that Alice sent
him a bitcoin.

One of the main problems regarding Bitcoin is that it is a blockchain based on a Proof of
Work protocol. Bitcoin’s miners have to generate a hash value, starting from the nonce,
that begins with a fixed number of zeros. This is a really difficult task, hence there is a
huge consumption of energy and costs.
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Figure 1.10. Total Bitcoin electricity consumption. Chart taken from Cambridge
Center for Alternative Finance.

Another problem is the scalability of the blockchain and its slowness: blocks have a
maximum dimension of 1 MB and on average only one block every ten minutes is added to
the chain. This implies that if there is a high demand, the blockchain could not manage
it in a reasonable time. To fix this problem there are two different solutions:

1. to increase the maximum dimension of a block, to process more transaction at a
time; this could translate in a greater centralization because the blockchain could
become too big to let common users store its entirety;

2. to decrease the interval in which a block is added to the chain, but this could lead
to longer forks that could result in security problems.

1.7.2 Ethereum
First mentioned in the Bitcoin Magazine in 2013 and then in the White Paper from its
co-founders Vitalik Buterin and Gavin Wood in the same year, Ethereum’s first version
was published for the first time on July 30th 2015. It is considered a blockchain 2.0.

Ethereum is a permissionless blockchain with its own cryptocurrency Ether (ETH). This
cryptocurrency can be used as bitcoin to make transactions and trading, but more impor-
tantly it is used to aid Ethereum’s main goal: to create a distributed platform in which
Smart Contracts can run. Once a Smart Contract is launched, it cannot be stopped or
changed.
Common web applications are used by different users in various places, but the applica-
tion runs on a central server which contains all the necessary data. A Smart Contract is
an application run on a peer-to-peer decentralized network. The main characteristic of
Smart Contracts is the decentralized code that runs over thousands of servers and is run
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in parallel: if a node fails or refuses to run the code, it is still run on the computers of
all the other users of the network. Blockchains, with Smart Contracts, assure that all the
users of the decentralized network run the same applications with the same data; at the
same time, they also guarantee that all users obtain the same output. Smart Contracts
transform the terms of an agreement into algorithms that are automatically executed
when the terms of the agreement are met. Therefore, trust is no longer necessary for a
contract to be fully respected by all parties.

Figure 1.11. Common apps VS decentralized apps. Picture taken from the Cryptonomist.

Ethereum provides a virtual machine (EVM, Ethereum Virtual Machine) used to carry
out the scripts. EVM is an emulator that can perform on any computer and allows to
run applications designed specifically for this environment. There are various languages
used to program a Smart Contract within EVM, the most popular being Solidity and
Vyper. Even on Bitcoin it is possible to run scripts, but these are simple and with scarce
possible operations, while EVM does not have limits. Indeed, loops are not programmable
on Bitcoin, while EVM is Turing complete. Because of this characteristic, Ethereum is
susceptible to attacks aimed at blocking the network, which are prevented by charging a
tax, gas, to execute a Smart Contract: it can be carried out as long as there is gas avail-
able. Each operation consumes a specific amount of gas, proportional to the amount of
computational work required to carry it out; for example, a simple ETH transfer consumes
21000 units of gas. The maximum amount of gas that can be used by a Smart Contract
is bounded by the blockchain itself; users determine how much gas they are willing to
pay to carry out their Smart Contract and define it in the Smart Contract itself: if the
operations contained in the code consume a quantity of gas that is less than or equal to
what the user is willing to pay, then the contract is carried out and the difference between
what was available and what was consumed is returned to the user; if the user establishes
a maximum amount that is not sufficient to carry out the whole contract, it is interrupted
and the user can decide either to raise it or abandon the Smart Contract.
Gas is used to measure the computational cost of an operation carried out by the EVM.
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There is a 1:1 correspondence between gas and ether: the latter is converted into gas just
to carry out the operation; then, if there is an excess of gas, it is turned into ether and
given back to the user.

A Decentralized Application (dApp) is an application composed of a collection of Smart
Contracts that run on a distributed platform without a central authority.

Starting an organization with unknown people is not easy, trust must be established and
money has to be exchanged without any guarantees; thus, this is a natural environment
for blockchains, especially for Smart Contracts. Trust between people is not needed, trust
in the Smart Contract is enough. This is where Decentralized Autonomous Organizations
(DAOs) come into focus: a DAO is an organization owned by a collective of people, who
share the same goal, controlled by a blockchain and ruled by Smart Contracts. The spe-
cific Smart Contract is public for everybody to see and check; once it is online, it cannot
be changed, except through a vote. The Smart Contract also administrates the funds of
the DAO, so no one can transfer money without everyone’s permit. If a DAO generates a
profit, it is divided intro equal parts to all the member of the organization.

Two types of account are tied to the Ethereum platform: user accounts and contract
accounts. User accounts are externally owned ones (EOA), managed by private keys;
they can send messages both to other externally owned ones and to contract ones: if
the message is sent between two users account, it consists simply in a transaction which
must be signed with the algorithm ECDSA in order to be valid; if the message is sent
from an externally owned account to a contract one, it activates the contract’s code and
enables it to perform different actions. An EOA address always starts with 0x and then
presents the last 20 bytes of the hash function Keccak−256 of the public key, obtained
from the private key with ECDSA. Contract accounts are Smart Contracts, controlled by
the contract code they contain and are the only ones with an associated set of functions;
they cannot create new transactions and they can only send messages in response to the
transactions they received. The contract address is assigned only when the contract is
sent into the network; it is of the same format of the user ones but it is generated from
the creator’s address and the number of transactions he sent.

A wallet is always needed to handle a cryptocurrency tied to a blockchain. This is also
the case of ether on Ethereum. Wallets are not storage units, because ETH are not really
saved in them, they are just software needed to manage the keys of the accounts contain-
ing the cryptocurrency. A user can, at any time, switch wallet providers; some wallets
also allow to use multiple Ethereum accounts on the same application.

Since the beginning, Ethereum’s development was organized into four phases, each one
representing a major update from the previous version, therefore each one can be consid-
ered a hard fork.

1. Frontier phase. The main goal of this phase was to launch the network and provide
it with two basic functions: to mine new ether and to run Smart Contracts. In this
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phase a soft fork happened, called Frontier Thawing, whose purpose was to limit gas
costs to prevent centralization.

2. Homestead. Frontier’s security problem was brought to light by the DAO hack:
DAO was an idea to allow users to store funds but, due to a bug in its Smart Contract,
ill-intentioned users stole the organization’s funds. Therefore the Homestead hard
fork was made to increase network security.

3. Metropolis. This phase was aimed at improving Ethereum’s security, privacy and
scalability. Because of its complexity, this update was performed in two steps:
Byzantium and Constantinople. The first introduced the so called Ethereum im-
provement protocols; the latter, in addition to fixing small problems of Byzantium,
introduced the basis for the transition from PoW to PoS.

4. Serenity. The goal of this phase is to render the network more scalable, secure
and sustainable. This phase involves the actual passage to Proof of Stake, to reduce
the waste of resources of PoW, and the introduction of shard chains, to divide the
workload of the network on different chains running in parallel.

Up until the start of September 2022, Ethereum was referred to as execution layer and
was based on a Proof of Work protocol named Ethash. As for Bitcoin, Ethereum’s blocks
contains a block header and a certain number of transactions; the protocol for validating
them consisted in finding two information that had to be stored in the block’s header: the
mixHash, a 256-bit hash, and the nonce, a 64-bit value. Combining these two quantities
one could prove that a sufficient amount of work had been carried out on that block. The
algorithm was composed by the following steps:

1. calculation of a seed for each block;

2. use of this seed to compute a pseudo-random cache, a small memory from which
high-speed retrieval is possible;

3. generation of the DAG, starting from the cache: a dataset where each element de-
pended on a small number of data from the cache, chosen pseudo-randomly. To
become a miner, a user had to generate the whole dataset that grew linearly with
time;

4. generation of the mixHash through the combination of multiple hashes of different
subsets of the dataset;

5. confrontation of this mixHash with the target nonce: if the mixHash was smaller
than the nonce, the latter was considered valid and the block could be added to the
chain; if it was not, the process had to be repeated.

Ethereum’s blocks also stored a list of ommer block headers: headers of blocks whose par-
ent had the same height of the current block’s parent’s parent; they were also informally
referred to as uncle blocks.
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Due to Ethereum’s structure, the average block time is low, circa 12 seconds, unlike
Bitcoin’s one that is approximately 10 minutes. Therefore, Ethereum’s miners process
transactions way faster than Bitcoin’s ones: this feature could cause multiple blocks to be
generated at the same time, hence, many orphaned blocks. To avoid wasting miners’ work,
ommer blocks were introduced: their main goal was to reward miners for including these
blocks, even if they did not get chosen to be part of the main chain. These blocks had to
be valid, hence they could not be an uncle of a block with more than six child blocks; after
reaching the sixth generation, the ommer block could no longer be considered. Miners got
a smaller reward for mining an ommer block than a full block; this reward was regulated
by the GHOST protocol.

This version of the network has always been a transitional one: the main purpose was to
generate one aimed at resolving the trilemma of blockchains, that is achieving decentral-
ization, scalability and security, known as consensus layer. Its launch takes place in three
main steps:

1. the Beacon Chain;

2. the Merge;

3. fully functioning shards.

On December 1st, 2020, the Beacon Chain was created: a separate Proof of Stake
blockchain that runs in parallel to the Proof of Work Mainnet one. At first, its task
was to register the addresses of all active validators and keep track of their account bal-
ances and it did not enter into the merits of processing Mainnet transactions. To become
a validator, a user must stake exactly 32 ETH; staking more than 32 ETH in a single
validator is not useful: the probability of being chosen of a validator with a balance of 32
ETH is the same of one with a balance of 64 ETH. If a user wants to stake more than 32
ETH, it is better if he stakes it activating a separate validator.
Together with the Beacon chain, we can introduce a temporal division of the blockchain.
The period of time in which a block can be proposed by a validator is a slot and it amounts
to, approximately, 12 seconds. An epoch is composed of 32 slots, so it takes circa 6.4 min-
utes to go through one. At the start of each epoch, validator committees are regrouped and
each validator is assigned new responsibilities, for security reasons. During each epoch,
the chain has the possibility of being finalized, meaning that a set of transactions prior to
the time of finalization cannot be changed or reverted. A validator committee is a group
of at least 128 randomly chosen validators, whose duty is to validate blocks in each slot.

At 8:45 of September 15th, 2022, the Merge was completed and the PoW consensus mecha-
nism was replaced with a Proof of Stake one. This transition reduced energy consumption
by ∼ 99.95% and rendered the network significantly more secure and decentralized. This
process consisted in the merging of the original Ethereum Mainnet and the Beacon Chain
in a single chain. After the unification, the Beacon Chain became the centre of blocks
production.
To help in this changeover from a Proof of Work based blockchain to a Proof of Stake
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one while minimizing the risks, Casper The Friendly Finality Gadget (Casper-FFG) was
introduced. It is a Proof of Stake finality system that is paired with a Proof of Work
based proposal mechanism.
In a Proof of Work based network, ommer blocks were useful to prevent a prolonged fork:
if miners got rewards from mining ommer blocks, they would be more accepting of the
fact that their block would not be appended to the main chain. Under Proof of Stake, the
network will know automatically which branch of a fork is the appropriate one. We note
that, even if greatly rare under PoS, reorganization of the network could always occur
due, for example, to latency.

The last step for the complete realization of the consensus layer is the introduction of
shard chains. The main problem in scalability that every blockchain faces is that each
node must verify each and every transaction. Sharding could help solve this problem:
the idea is to place side by side the Beacon Chain with these shard chains, secondary
chains used for the verification of certain transactions only. These shard chains operate
simultaneously and communicate with each other through specific Smart Contracts. The
possibility of working on different transaction simultaneously could help increase the scal-
ability of the chain. Shard chains are expected to be fully functioning in 2023.

Figure 1.12. The Merge.

The centre of our work is to understand the functioning of the Gasper protocol: a Proof
of Stake consensus mechanism deriving from the combination of LMD-GHOST, a variant
of the GHOST fork choice algorithm, and Casper-FFG.
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Chapter 2

Greedy Heaviest-Observed
Sub-Tree

With time, blockchains are gaining importance and consensus; this is why one of their
main problem is scalability: more and more people use blockchains to make safe trans-
actions, so the throughput a network is subject to is always bigger. Consequently, the
need to process an ever-increasing number of transactions in a short period of time rises.
Another problem that emerges is the synchronization of the network: if a node receives
two conflicting blocks a fork is generated. The goal of this chapter is to present the first
element that composes Ethereum’s Gasper Proof of Stake protocol, the Greedy Heaviest-
Observed Sub-Tree fork choice rule. It is an alternative algorithm to solve forks, which
also eases the scalability problem of the network.

Same as Bitcoin, Ethereum’s execution layer utilized the fork choice rule consisting in
the selection of the longest chain, determined by the chain’s total mining difficulty. With
the introduction of the Beacon Chain, which represents the start of the Proof of Stake era
for Ethereum, the GHOST fork choice rule was adopted.
One of the problem the longest chain rule led to is the 51% attack: if an attacker holds at
least 51% of the total mining power of the network, he would be able to generate a fork
with a chain longer then the one created by the honest nodes, which hold less than the
50% of the total power. Thus, the malicious chain would be longer than the honest one
and would be adopted as the main one by the protocol.
With the introduction of a Proof of Stake consensus protocol, Ethereum stopped using the
longest chain rule and started following the Greedy Heaviest-Observed Sub-Tree (GHOST)
rule: instead of choosing the longest chain, the one corresponding to the heaviest sub-tree
is chosen.
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Figure 2.1. Comparison between chains: the longest chain is composed of the
genesis block, block 1B and then the green blocks; the attacker’s chain is composed
of Bgenesis and then the red blocks; the GHOST chain is composed of the genesis
block and the blue blocks.

This change was necessary because it helped solve the scalability problem, making it
possible to safely increase the number of transactions processed in the network in a short
period of time and fix the 51% attack, giving importance not only to the blocks on the
main chain, but also to the ommer blocks, which contribute to the heaviness of the sub-
tree.

It can be proved that a blockchain that follows the longest fork choice rule, like Bitcoin, is
more vulnerable, in case of high transaction flow, than one that follows the GHOST rule,
like Ethereum.

It is possible to verify the rightfulness of the previous claim with the following reasoning.

Bitcoin’s network can be modeled as a directed graph G = (V,E), where V is the set
of users v and E is the set of edges e between users. Each user v ∈ V possesses a per-
centage pv of the total computational power of the network. These shares must be such
that Ø

v∈V

pv = 1.

The whole network inserts new blocks following a Poisson process with rate λ; therefore,
each individual user’s creation rate is proportional to the percentage of computational
power held, that is pvλ.
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Definition 2.0.1 For every edge e ∈ E, the delay de is the time needed to send a block
along that specific edge.

Definition 2.0.2 Given a block B, time(B) is its creation time t; subtree(B) is the tree
rooted in B; depth(B) is its depth in the network tree.

Let T = tree(t) be the network state at time t, with set of validators VT and set of edges
ET . The deepest leaf in tree T at time t is indicated by longest(t).

Definition 2.0.3 A function s(·) that maps the tree T to a block B ∈ VT represents the
policy by which each node chooses a parent block, i.e. block B, for the new block it has
just created.

Definition 2.0.4 The time required for the length of the tree to change from n − 1 to n
is defined as a random variable τn.

This random variable represents the needed time to add a block to the tree. It is possible
to define τ as:

τ = lim
n→∞

1
n

nØ
i=1

τi.

Defining the following parameters

Definition 2.0.5 λ as the rate of block addition to the tree and β = 1
E[τ ] as the rate of

block addition to the main chain.

Denoting with b the maximal block size, measured in KB, the number of transactions per
second is

TPS = β(λ, b) · b ·K,

where K is the expected number of transaction per KB.

Suppose that an attacker possesses a block creation rate equal to qλh, with 0 < q < 1 and
λh being the creation rate of honest users.

• If qλh > β, the attack is always successful, given enough time, despite the length of
the actual main chain the attacker has to surpass, by The Law of Large Numbers.

• If qλh < β, the attack never succeeds, because the probability of the malicious chain
surpassing the honest one goes to zero exponentially with the growth of the honest
chain’s length.

Therefore, the quantity β
λh

serves as a safety threshold.

The network throughput is influenced by both the block creation rate λ and the max-
imal block size b. To increase it, one could think to raise both these parameters, but this
leads to a security problem, due to the increased fork generation rate. Indeed:
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• if b is increased, this leads to a bigger delay time de for each edge e; therefore, a
block will need more time to be broadcast across the entire network. However, in
this period of time nodes not aware of the already existing block will generate new
ones, so a large number of forks will be generated;

• if λ is increased, nodes will generate a lot of blocks in the time required from one to
be sent across the entire network; this will lead to multiple valid blocks, causing the
generation of many forks.

Both cases raise the number of generated forks and therefore a decrease of security: the
main chain will be shorter, so an attacker will need less computational power to generate
a longer, malicious chain.

This is why the GHOST protocol is so important: it can be proved that GHOST will
increase the throughput of transaction processed by the network, increasing both block
size and block creation rate, without affecting the security of the system.

2.1 GHOST protocol
GHOST - Greedy Heaviest-Observed Sub-Tree - is a new parent selection policy with se-
curity threshold β

λh
= 1. It is based on the concept that even ommer blocks can contribute

to the importance of a subtree making it heavier, in the sense of the total computational
power spent in there.
Given a block B in tree T and being ChildrenT (B) the set of blocks belonging to T ,
whose direct parent is B, the protocol adopts the following algorithm:

1. set B as the genesis block

2. if ChildrenT (B) = ∅ then return(B) and exit

3. else update B with arg maxC∈ChildrenT (B)
--subtreeT (C)

--
4. go to line 2.

The algorithm starts at the genesis block and goes on choosing the block that leads to the
heaviest chain, until finding a leaf; this leaf will be the new parent block. For example, in
the case of figure 2.1 the process is the following:

1. set B = Bgenesis as the genesis block

2. ChildrenT (B) /= ∅, so continue to the third step

3. update B with the node that is parent to the heaviest sub-tree, that is B = 1B

4. go back to step 2

2. ChildrenT (1B) /= ∅, so continue to the third step

3. update B = 2C
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4. go back to step 2

2. ChildrenT (2C) /= ∅, so continue to the third step

3. update B = 3D

4. go back to step 2

2. ChildrenT (3D) /= ∅, so continue to the third step

3. update B = 4B

4. go back to step 2

2. ChildrenT (4B) = ∅, so the end of the algorithm has been reached: the parent of the
new block will be block 4B.

One of the main properties of a blockchain that follows the GHOST protocol is the Con-
vergence of History, which states that all nodes of the network will, ultimately, adopt the
same history, which is the canonical chain.
Defining the collapsing time ψB of a fork at block B as the earliest moment in which the
block is either accepted or abandoned by the whole network, the following property holds:

Property 2.1.1 (Convergence of History) P (ψB <∞) = 1 and E [ψB] <∞.

The property also states that the collapsing time is finite.

Previously, it has been stated that the security threshold of the GHOST protocol is equal
to 1; this is the main advantage of this protocol: it is safe even with a high throughput of
transactions. This is due to the following property:

Property 2.1.2 (Resilience to 51% attack property) Suppose that the block creation
rate of the honest nodes is λh and that of an attacker is qλh, with 0 ≤ q < 1. The prob-
ability of block B being abandoned from the main chain after time(B) + τ , given that it
was accepted on it at time(B) + τ , goes to zero as τ grows to infinity.

This property reports that, after a time τ sufficiently higher than the block creation time,
the likelihood of the block being abandoned, after being previously adopted, can be made
arbitrarily small.

It is possible to give an estimation of the rate of collapse in GHOST from the length
of a fork’s point of view. If we consider the case of a network with only two forks, each
one having equal computational power, the following theorem is valid:

Theorem 2.1.1 Consider a network with two nodes, u and v, that equally create blocks
at a rate of λ

2 , which are connected by a single link with delay d. For any block B,
E [nB] = (dλ)2

8 + dλ
2 , where nB := subtreeT (B) for T = tree(ψB). [19]

The theorem gives an upper bound for the size of a subtree in the worst case possible
of only two nodes. In a realistic scenario, collapses occur faster than what the theorem
estimates.

37



Greedy Heaviest-Observed Sub-Tree

2.2 Comparison between longest chain rule and GHOST
To give an appropriate comparison between the longest fork choice rule and GHOST,
parameter β must be analyzed in both protocols. It represents the growth rate of the
main chain. Since this value is highly influenced by the topology of the network, which
can be either unknown or quite difficult to measure, first a lower and an upper bound
to the growth rate are given, then the protocols must be tested with randomly sampled
topologies and the resulting networks must be measured.

Consider a section of the network composed by a set of greatly connected nodes, with
delay diameter D, that owns a portion 0 ≤ α ≤ 1 of the total computational power. In
this section of the network, due to the connectedness of the components, blocks travel at
great speed from a node to another; thus, there is a tight lower bound for both the longest
chain and the GHOST rules.

Let G = (V,E) be the considered subgraph of the entire network and assume that G
produces blocks at a rate λ′ = αλ.

• If the longest chain rule is applied, then the longest chain grows at a rate
β(λ) ≥ λ′

1+λ′D .

This can be deduced from the following reasoning: after block B, with depth(B) = n,
is created, it is sent to the whole network in D seconds. It has to be expected that
another block B′ will be created after 1

λ′ seconds; due to the fact that the creator of
block B′ already received block B, block B′ must have depth at least equal to n+ 1.
This means that the longest chain grows at a rate that can be bounded by 1

D+ 1
λ′

,
that is λ′

1+λ′D .

• If the network adopts the GHOST rule, then the longest chain grows at a rate
β(λ) ≥ λ′

1+2λ′D .

Due to the fact that GHOST does not choose the longest chain, but the heavi-
est one, a growth rate lower that the longer chain rule’s one can be expected. A
formal demonstration of this follows from the claim that the expected waiting time
for the creation of the last child of a block is upper bounded by 2D+ 1

λ′ . This means
that the growth rate is lower bounded by 1

2D+ 1
λ′

, that is λ′

1+2λ′D .

The system reaches the exact lower bound if it is a complete network composed of n nodes,
with n→∞, where each edge has exactly a delay equal to D and possesses a fraction of
1
n of the total computational power. This would be the case of an ideal total decentralized
network where all nodes have the same computational power.

As aforementioned, the network’s topology is of little knowledge: it could be very dif-
ficult to compute, in real cases, or it could be constantly changing - for example, nodes
can be either connected or disconnected in different instants. This limited knowledge can
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be useful to build a system with a specific desired security; indeed, if a network that
follows the longest chain rule has a block creation rate of αλ, block size b and delay di-
ameter D(b), then the protocol achieves both a high number of TPS and an high security
threshold, for appropriate choices of λ and b.

A network using the GHOST choice rule has a security threshold always equal to 1. This
could lead to think that there is no limit to the maximal throughput the system could
be subject to. However, this is not true: a high number of TPS consumes bandwidth,
hence, reduces the efficiency of the system. To keep track of this important characteristic
of the network, the ratio between the block size and the block creation rate is taken into
consideration.

The upper bound is the same for both the longest chain rule and GHOST. Taking two
partitions, S, T ∈ V , of the entire set of nodes with different portion of computational
power, pS /= pT , and such that ∀s ∈ S and ∀t ∈ T , d{s,t} ≥ d, it can be shown that the
growth rate β can be bounded as follows:

β(λ) ≤ (pSλ)2 epSλ2d − (pTλ)2 epT λ2d

pS λ epSλ2d − pT λ epT λ2d
.

The equality is reached only by a network with only two nodes.

Running some tests on made-up systems following Bitcoin’s model, it can be observed
that the security threshold for GHOST is, actually, always 1, while that of the longest
chain rule greatly decreases even when the block creation rate is slightly increased. Also,
the difference in efficiency using the GHOST protocol or the longest chain rule is rather
small.

Figure 2.2. Transaction per seconds and security threshold in relation to block
creation rate. Graphs taken from [19].
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Chapter 3

Casper the Friendly Finality
Gadget

The Gasper protocol contemplates, besides a fork choice rule, a mechanism to establish
valid blocks that will not change their status over time. This mechanism is Casper the
Friendly Finality Gadget. To better understand Casper’s functioning, firstly a basic ver-
sion of it is explained, with just the property of accountability; secondly, a dynamic set
of validators is introduced, to improve the link between the theoretical mechanism and
reality. Lastly, defenses against two types of attack are presented as a result of Casper’s
properties.

Casper is a Proof of Stake finality system whose goal is to finalize blocks generated by
a proposal mechanism based on a Proof of Work consensus protocol. Casper follows the
Byzantine Fault Tolerant (BFT) based Proof of Stake school of thought, introducing new
features not necessarily owned by classical BFT protocols.

Property 3.0.1 Byzantine Fault Tolerance is the property of a system to withstand fail-
ures derived from the Byzantine Generals Problem.

The BFT intervenes in systems where it is necessary to reach a consensus between dif-
ferent information that can conflict with each other. The link existing between BFT and
blockchains becomes clear: in the latter it is fundamental to reach a distributed consensus
regarding validation of new blocks and selection of a single chain, in situations where users
of the network can be malicious.
The Byzantine Generals Problem is an hypothetical scenario in which a certain number of
troops of the Byzantine empire’s army surrounds an enemy region. Troop’s generals must
reach consensus on either attacking or retreating. To avoid complete failure, the majority
of them have to perform the same action. The problem rises because different generals
communicate with each other only through a messenger that could be captured; thus, the
message could never be delivered. Another problem could be if some generals would be
traitors and send different messages to different honest generals. To solve this problem,
Lamport, Shostak and Pease [12] developed the Oral Messages (OM) algorithm. For the
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algorithm to work it is necessary that once sent, each message reaches its rightful receiver,
the addressee must exactly know who is sending the message and it must be possible to
know when a message is missing.
Lamport, Shostak and Pease came to the conclusion that the problem is solvable if the
following theorem holds.

Theorem 3.0.1 Given m malicious generals, the OM algorithm reaches consensus if the
number of total generals is > 3m.

Byzantine Fault Tolerance based Proof of Stake is a particular protocol in which several
staked users, those who stake part of their balance to participate in the protocol, are
selected to propose a block. Once all blocks are proposed, all staked users must attest
to the block they want to add to the canonical chain; several rounds of voting may be
necessary before a block is chosen. This variation of the protocol adds complexity to the
classical Proof of Stake because all staked users have an active role on the selection of
each new block added to the network.

As previously said, Casper is a gadget used on a Proof of Work proposal mechanism;
the latter is responsible for the liveness of the network, the property that ensures that
something good will eventually happen; meanwhile, Casper is in charge of the safety of
the system, the property that assures that something bad will not happen.
The liveness property can be referred to as termination in a network where the main goal
is to reach consensus: each staked user, at the end of the voting process, will decide on a
block. This property cannot be violated because that ’something good’ can still happen
afterwards. The safety property can be referred to as agreement, meaning that in the
network there will never be the case where two blocks are decided upon.

Casper is not a classical BFT based PoS; indeed it introduces four main properties to
the protocol: accountability, dynamic validators, defenses and modular overlay.

Property 3.0.2 (Accountability.) It is always possible to know if a user violates a rule.
If this happens, the system will always know which user acted maliciously.

The accountability property enables the network to penalize malicious validators, with the
slashing of its currency, fixing the nothing-at-stake problem. Slashing means to deprive a
malicious user of part or the totality of their balance.

Property 3.0.3 (Dynamic Validators.) The set of validators may not be static, indeed
it can change over time.

With this property, Casper introduces the possibility for a validator to leave the network
or to join in at various time. It is important to note that once a validator leaves the
network, he could not join the system again later, it is permanent, because its public key
will be forever banished from the set of validators’ keys.

Property 3.0.4 (Defences) The protocol is protected against long range attacks and
catastrophic crashes.
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Casper introduces resolutions for these two types of attack, rendering the network safer.

The last property is intrinsic in Casper’s definition itself:

Property 3.0.5 (Modular overlay) Casper is a gadget: it is used as an overlay system
over an already existing consensus protocol.

3.1 The Casper Protocol
Since Ethereum was first born as a Proof of Work based blockchain, Casper’s first version
is a hybrid PoW/PoS system: blocks are proposed by Proof of Work and finalized by
Casper. With Ethereum’s passage to Proof of Stake, Casper must be adapted to be used
with a Proof of Stake proposal mechanism.

3.1.1 Simple version
The simple version of the protocol considers a fixed set of validators and a Proof of Work
proposal mechanism.

Under normal circumstances, the proposal mechanism generates, for each parent block,
only one child block; it can happen that, under attack or because of network latency, the
mechanism proposes two child blocks for a single parent one: Casper’s duty is to choose,
through a fork choice rule, one of these two child blocks.

The enunciation of this rule must be preceded by some definitions.

Definition 3.1.1 A checkpoint is the first block validated in each epoch.

For efficiency, Casper considers only the subtree of checkpoints.
An absolute principle is that the genesis block is a checkpoint, because it is the first block
of the slot 0 in epoch 0; thus, it is the root of the checkpoint tree.

Property 3.1.1 If m is the spacing between checkpoints, every block with height block
equals to a multiple of (m+ 1) is a checkpoint.

The spacing m should be big enough to reduce the overload of the algorithm but small
enough to assure an efficient computational time. The number k for which m+ 1 is mul-
tiplied is the checkpoint height of that specific checkpoint, i.e. the number of blocks in
the chain from the root to the checkpoint itself - not counted.

The deposit of a validator is the amount of coins deposited; this quantity can be in-
creased through rewards and decreased with penalties for acting badly. In each voting
round, validators cast a vote +

v, s, t, h(s), h(t)
,
.

Each vote consists in a message containing four information:
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1. a checkpoint s denominated the source;

2. a checkpoint t called the target. It must be chosen such that s is one of its ancestor,
lest the vote be invalid;

3. h(s), that is s’ height;

4. h(t), that is t’ height.

There exists two reasons for which a vote could be invalid: either s is not an ancestor of
t, or the public key of the validator that casts the vote is not in the validator set.

Definition 3.1.2 A supermajority link is an ordered pair (a, b), also symbolized by a→ b,
such that a set of validators who owns, together, at least 2

3 of the total deposit have cast a
vote with a as source and b as target.

Definition 3.1.3 Two checkpoints a and b are said to be conflicting if and only if neither
a nor b is one the ancestor of the other, hence they belong to two different branches of the
tree.

Definition 3.1.4 A checkpoint c is justified if it is the root or if there exists a superma-
jority link c′ → c between c and a justified checkpoint c′.

Definition 3.1.5 A checkpoint c is finalized if it is the root or if there exists a superma-
jority link c→ c′ between the justified checkpoint c and one of its direct children c′.

This means that checkpoint c is finalized if and only if it is justified, there exists a super-
majority link between c and a checkpoint c′, non-conflicting with c, for which it is valid
that h(c′) = h(c) + 1

Casper’s safety is based on two Commandments, also referred to as slashing conditions.
Any validator that violates one of these conditions gets its deposit slashed. The two
slashing conditions are:

I. no validator can cast two different votes+
v, s1, t1, h(s1), h(t1)

,
and

+
v, s2, t2, h(s2), h(t2)

,
(3.1)

where the targets have same height, that is h(t1) = h(t2);

II. no validator can cast two distinct votes for which the following inequality holds

h(s1) < h(s2) < h(t2) < h(t1); (3.2)

If a validator violates either of these slashing conditions, another validator can send the
proof of this violation to the network as a transaction, and the validator’s whole deposit
is taken away. The validator that submitted the proof of the malicious action receives a
reward.

Casper’s main properties are :
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Property 3.1.2 Accountable safety. Two conflicting checkpoints am and bn cannot
both be finalized, unless at least 1/3 of validators by weight1 violates one of the two slashing
conditions.

Property 3.1.3 Plausible liveness. Supermajority links can always be created to gen-
erate new finalized checkpoints, as long as the finalized chain can be extended.

This last property connotes the ever-present possibility of finalizing new checkpoints if at
least 2/3 of validators follow the protocol without violating any slashing condition.

Assuming that less then a third of validators violates one of the commandments, from the
slashing conditions immediately follows that:

1. if (s1, t1) and (s2, t2) are two distinct supermajority links, then necessarily the targets
have different height, h(t1) /= h(t2), and the inequality h(s1) < h(s2) < h(t2) < h(t1)
cannot be verified;

2. for any fixed height n, there exist at most one checkpoint of that specific height; also
there exists at most one supermajority link where the target has height n.

Casper’s fork choice rule can be enunciated through the following theorem:

Theorem 3.1.1 Follow the chain containing the justified checkpoint of the greatest height.

This rule is correct by construction because it is based on the plausible liveness property:
the set of finalized checkpoints will always grow so that one with greatest height will
always exist.

Note that with the introduction of the Gasper protocol, this rule was changed. This
shift is described in the next chapter.

3.1.2 Inclusion of the dynamic set of validators
It is extremely important to be able to enable a dynamic set of validators in the Casper
mechanism, because in real systems users can be online for some time and then decide to
leave the network. Therefore, a new validator should be able to join and an existing one
should be able to leave.

Definition 3.1.6 Dynasty of a block B is the number of finalized checkpoints from the
root to B’s parent.

When a new validator wants to join the set, it must send a deposit message. If this message
is included in a block with dynasty d, then the validator officially joins the set at the first
block with dynasty d+ 2. That is, indicating with DS(v) the validator’s start dynasty,

DS(v) = d+ 2.

1The term validators by weight indicates validators that own a certain portion of the total deposit.
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Similarly, when an existing validator wants to leave the network, it has to send a withdraw
message. If this message is included in a block with dynasty d, then the validator officially
leaves the set at the first block with dynasty d + 2. Hence, indicating with DE(v) the
validator’s end dynasty,

DE(v) = d+ 2.

Once a validator v leaves the set, its public key is forever banned from the validator set,
meaning it cannot join again.

Definition 3.1.7 The withdrawal delay is a long period of time, at the start of the val-
idator’s end dynasty, in which a validator’s deposit is locked.

If during this time the validator violates at least one of the commandments, its deposit is
slashed.

Definition 3.1.8 For any given dynasty d, we can define

• the forward validator set as

Vf (d) ≡ {v : DS(v) ≤ d < DE(v)};

• the rear validator set as

Vr(d) ≡ {v : DS(v) < d ≤ DE(v)}.

Note that, by construction, we have Vf (d) = Vr(d+ 1).

3.1.3 Defenses against attacks
Casper provides defenses against two of the main attacks regarding Proof of Stake: long
range revisions and catastrophic crashes.

Long range revisions

Introducing the withdrawal delay at the start of the end dynasty of a validator calls for
a synchronicity assumption to be made: suppose that a group of validators, that once
possessed more than 2/3 of the deposit, withdraws its deposit; these validators can use
their once owned supermajority power to finalize conflicting checkpoints without fear of
being slashed, because they have already withdrawn their deposit. This is the so called
long-range revision attack.

This type of attack is prevented both by the property for which a finalized block can
never be reverted and the supposition that each user will receive, at some fixed frequency,
a complete up-to-date copy of the chain. Finalized blocks older than a certain amount
will simply be ignored because all users will have already seen a finalized block with that
specific height.
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Catastrophic crashes

Assume that more than a third of validators are not connected to the network due to
different reasons, from computer failure to malicious nature. In this scenario, it is not
possible to finalize any more checkpoints, because it is impossible to reach at least 2/3
of the consensus. To fix this problem, an inactivity leak is instituted: the deposit of any
logged-off validator is slowly drained, until the deposit size of the validators that are active
on the network is greater than 2/3 of the total. When this quote is reached, the network
is able to finalize new checkpoints.

The drained coins are either burned or returned to the validator after a few days.

This solution for catastrophic crashes is not optimal, because it introduces the possi-
bility of finalizing two conflicting checkpoints. Indeed, if a subset VA of validators votes
on chain A and a subset of validators VB votes on chain B, it is obvious that on chain A
VB’s deposits will be drained, and vice versa, so VA will have the supermajority of power
on chain A and VB will have the supermajority on chain B. This will lead to two finalized
conflicting checkpoints without anyone being punished.
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Chapter 4

Gasper

Since the beginning, even if Ethereum was born as a Proof of Work based blockchain,
its developers’ aim was to build a Proof of Stake protocol to rule the network. They
conceived the Gasper protocol, a Proof of Stake consensus protocol based on the GHOST
fork choice rule and on some of Casper’s concepts. The transition to the PoS protocol was
made official on September 15th, 2022 with the Merge. This chapter’s goal is to present
the Gasper protocol and how Casper and GHOST are implemented in it. At first, some
basic information are presented; then the main protocol is described. After that, the fork
choice rule actually utilized in Gasper is described and the safety and liveness property
are demonstrated. Finally, how to incorporate a dynamic set of validators in the Gasper
protocol is shown.

Gasper is a Proof of Stake consensus protocol obtained by combining Casper FFG and
LMD GHOST. Casper is used as a gadget, a finalization mechanism over an already-
existing proposing protocol, to mark certain blocks as finalized, so that even a user with
partial information knows for sure if a block belongs to the main chain or not; LMD
GHOST is a fork choice rule that is slightly different from GHOST and that is used to
solve forks. The aim of the Gasper protocol was to replace the Proof of Work consensus
protocol that characterized the execution layer, and to be carried out on the consensus
layer.

4.1 Basic background knowledge
The goal is to create a consensus protocol, that is a series of rules and actions, formerly
established, that all users of the network must follow. The participants of the network
are called validators, because their prime task is to validate data in the Ethereum Beacon
chain.
Definition 4.1.1 An honest validator is a participant that follows the protocol, a byzan-
tine validator does not.
Validators exchange messages, packets of data, written in some chosen language, regarding
the network, with one another. With messages, validators can have various purposes:
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they can propose blocks; they can make attestations to a precise block, voting for it; they
can activate another validator in the network; they can also state another validator is
a byzantine, proving its malicious actions and slashing it. Regarding this last type of
messages, the following property is essential.

Property 4.1.1 Once a message is sent from an honest validator to another one, it is
broadcasted across the entire network. Also, all messages are digitally signed by their
sender.

This property, indeed, states that there is no possibility of a message being sent to only
a section of the network, unless a validator is a byzantine. Furthermore, the author of a
fraudulent message will always be recognized through the digital signature. This prevents
the network from being vulnerable to attacks in which byzantine validators pretend to
be honest ones. A dependency is a message appended to an already existing one; each
message can have none or multiple dependencies.

Definition 4.1.2 A message is said to be accepted if and only if all its dependencies are
accepted.

The genesis block, the first block of the blockchain, represents a blank state, whereas the
following blocks are descriptions of the state transitions. Each user shares the genesis
block, Bgenesis, as its initial state, and proceeds to update this state with messages he
sees. Due to network latency and to byzantine users, different validators may not always
simultaneously see the same state of the network; this justifies the following definitions.

Figure 4.1. View of blocks with respective attestations. The yellow block is the genesis
one; blue blocks are accepted blocks; green circles are attestations.
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Definition 4.1.3 The view of validator V, at a fixed time T, is the set of accepted mes-
sages the validator sees at that given time. It is referred to as view(V,T) or, to make
writing easier, as view(V).

Definition 4.1.4 The network view is the set of all the accepted messages on the network,
seen by a virtual validator at time T, with no latency. It is symbolized by view(NW,T) or
view(NW).

Given that each block, with the exception of the genesis one, refers to its parent block,
view(V ) can be seen as an acyclic graph, with root in Bgenesis, in which there is an edge
B ← B′ if B is the parent of B′. In this case, we say that B′ descends from B an that
the latter is an ancestor of the former. Two different blocks, B and B′, are conflicting if
neither is an ancestor of the other. So, each block B defines a chain, chain(B), which goes
from Bgenesis to B, that is the same in every view that includes B.

Figure 4.2. Only blocks are represented in this view. They form a tree with root in the
genesis block; the arrows represent parent-child edges; blocks C and D are conflicting; E
and D are conflicting too; chain(C) = (Bgenesis, A, B, C).

Time is measured in slots, a constant number of seconds, and in epochs, a fixed amount
C of slots. Epoch j of slot i is symbolized by1

ep(i) = j =
7
i

C

8
.

1⌊·⌋ is the floor function; it returns the integer number immediately lower that the input.
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Blocks belonging to epoch j have slot numbers jC + k, k ∈ {0,1, . . . , C − 1}. The genesis
block has slot number 0 and is the first block of epoch 0.

As previously mentioned, validators can have different views of the network at the same
time, be it because of latency or due to malicious actions made by byzantines. Different
systems can have different synchrony conditions:

Definition 4.1.5 A synchronous system is characterized by fixed upper bounds for time
needed to broadcast a message from one node to another.

Definition 4.1.6 An asynchronous system does not have set upper bounds for time needed
to broadcast a message among nodes.

Definition 4.1.7 A partial synchronous system is either:

1. a system in which the upper bounds exist but are not prior known

2. a system in which the existence of these upper bounds is known only at a certain
undefined time T .

A Proof of Stake protocol is based on the idea that each validator has a voting power
proportional to their stake in the network. To create the wanted Proof of Stake protocol,
the following hypothesis is made.

Hypothesis 4.1.1 Assume that the system is composed of N validators, V = {V1, . . . , VN},
each with a respective real and positive quantity of stake w(Vi), ∀i = 1, . . . , N . Then, the
average amount of stake of each validator is equal to 1, so that the total amount is N .

This hypothesis is not restrictive, because the various function in the protocol in which
the stake is utilized will be linear.

Definition 4.1.8 A blockchain is said to be p-slashable if a validator with the network
view can slash a byzantine that holds a total stake of pN .

Two of the main properties of the defined protocol are safety and liveness.

Property 4.1.2 (Safety) A protocol possesses safety if two conflicting blocks can never
be finalized, in any view.

Property 4.1.3 (Plausible liveness) A protocol has plausible liveness if the set of fi-
nalized blocks can always grow, regardless of previous circumstances.

Property 4.1.4 (Probabilistic liveness) A protocol has probabilistic liveness if it is
probable that the set of finalized blocks may grow, in spite of previous events.

Since in a Proof of Stake system proposing blocks is free, additional tools that prevent
from perverse behaviour are needed.

A fork choice rule is needed to solve forks: it receives in input a view G and gives as
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output a leaf B, which will become the head of the chain in view G. This is GHOST’s
role.

The GHOST - Greediest Heaviest-Observed Sub-Tree - rule is a fork choice rule pro-
posed to replace the longest chain one. It states that the head of the chain is the leaf
belonging to the heaviest subtree, computed taking into consideration also ommer blocks.
The Latest Message Driven Greediest Heaviest-Observed Sub-Tree rule (LMD GHOST)
is a slightly different protocol that is "correct-by-construction".

Definition 4.1.9 Given a view G and a set of the latest attestations M, one per validator,
the weight w(G,B,M) is the sum of the stake of validators whose latest attestation is either
block B or one of its descendants.

Figure 4.3. Example of LMD GHOST fork choice rule. The number in each block repre-
sents the weight of that block, computed as the sum of all attestation to that block, each
with unit weight; the red blocks belong to the main chain, according to LMD GHOST.
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The LMD GHOST rule obeys the following algorithm:

Given a view G in input

1. set B as the genesis block

2. set M as the set of latest attestations of the validators, taking one from each one

3. while B is not a leaf in view G do

4. update B with arg maxB′∈ChildrenT (B) w(G,B′,M)

5. ties are broken in favour of the block with smaller hash of the block header

6. return B

Other tools needed are the concept of finalization and slashing conditions; both are given
from Casper FFG: Casper the Friendly Finality Gadget. It is a gadget used on a preex-
isting block proposal protocol, regardless of it being a Proof of Work or Proof of Stake
mechanism. Casper looks at trees made of only checkpoints, blocks whose height is a
multiple of a certain fixed number H. Casper defines the concepts of justification and
finalization. Defining with J(G) the set of justified blocks in view G and with F (G) the
set of finalized block in view G, F (G) ⊂ J(G), then:

Definition 4.1.10 In a view G, a block is justified if it is a descendant of a justified block
and if the attestations that go from the justified parent block to the considered one have a
weight of at least 2

3 of the total stake; this last condition can be expressed as the existence
of a supermajority link between the parent block and the current one.

Definition 4.1.11 In a view G, a block is finalized if it is justified and if there exists a
supermajority link from the block to one of its direct descendants. That is:

A ∈ J(G) and ∃ A J−→ B such that h(B) = h(A) + 1 =⇒ A ∈ F (G).

Casper also provides the slashing conditions 3.1 and 3.2, needed to recognize a byzantine
and punish it.

4.2 HLMD GHOST fork choice rule
The Gasper protocol actually uses an hybrid version of LMD GHOST. The definition of
the Hybrid Latest Message Driven Greediest Heaviest-Observed Sub-Tree (HLMD GHOST)
algorithm must be preceded by some basic definitions that explain how the Gasper protocol
implements Casper’s concepts of justification and finalization.
The Gasper protocol applies these concepts not to checkpoints, but to pairs. These pairs
are the epoch boundary pairs.
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Definition 4.2.1 (Epoch boundary pairs) One or more blocks are chosen from each
epoch to be a checkpoint in Casper. Due to the fact that a block can be selected multiple
times as a checkpoint, in different epochs, the ordered pair (B, j) is defined as the epoch
boundary pair, where B is the chosen block and j is the epoch in which the block is a
checkpoint.

It is now possible to define the notions of justification and finalization on epoch boundary
pairs.

Definition 4.2.2 (Justification) The set of justified pairs J(G), in a fixed view G, is
defined as the set of pairs connected to a justified pair by a supermajority link, plus the
pair (Bgenesis,0).

Definition 4.2.3 (Finalization) A pair (B0, j) is k-finalized, in a fixed view G, if (B0, j) =
(Bgenesis,0) or if there exists an integer number k ≥ 1 of blocks, B1, B2, . . . , Bk ∈ view(G),
such that (B0, j), (B1, j+1), . . . , (Bk, j+k) are all justified pairs, adjacent epoch boundary
pairs in chain(Bk) and there exists a supermajority link between (B0, j) and (Bk, j + k).

Finalization is an extremely strong concept, much more than justification: once a pair
(B, j) is finalized in any view, in some epoch j, then in no other view a block conflicting
with B can be finalized, unless the network is 1/3-slashable.

For every block B and epoch j, the following concepts can be defined:

Definition 4.2.4 The j-th epoch boundary block of B, EBB(B,j), is the block whose slot
number is higher than that of all the others, but still lower or equal to jC, where C is the
number of slots that compose an epoch.

For example, EBB(B,0) = Bgenesis, because j = 0, hence, the slot number of the epoch
boundary block must be lower or equal to 0, but the only block that can satisfy this re-
quest is the genesis one, because Bgenesis is the only block in epoch 0 that has slot number
equal to 0.

It is also important to notice that each block B, whose slot number is equal to jC,
for some epoch j, is an epoch boundary block in all the chains that contain B.

Definition 4.2.5 The latest epoch boundary block of block B, LEBB(B), is the latest epoch
boundary block belonging to chain(B).

Definition 4.2.6 Given a block B, view(B) is the set of B and all its ancestors, with all
their dependencies; view(B) concentrates on chain(B). The FFG view of B, ffgview(B),
is the set of ancestors of LEBB(B), that is view(LEBB(B)), the view of the latest epoch
boundary block of B; it is a frozen picture of view(B), taken at the time the last checkpoint
is produced.

To better understand the HLMD GHOST fork choice rule, a prototype version is first
given.
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This function consisted in starting from the last justified block in a given view G and then
in running LMD GHOST.

The prototype of HLMD GHOST algorithm is the following:

Let the input be a view G

1. set the pair (BJ , j) as the justified pair with greater attestation epoch j

2. set block B = BJ

3. generate M , the set of latest attestations, taking one from each validator

4. while ChildrenG(B) /= ∅ do

5. update B with arg maxB′∈ChildrenG(B) w(G,B′,M)

6. ties are broken in favour of the block with smaller hash of the block header

7. return B

This version was not optimal because it had two problems. The first regards the different
concept of two main ingredients of the algorithm: the latest justified pair in a view can
be seen as a pair in a non-changing chain, fixed at the start of each epoch; meanwhile,
the pair (BJ , j) can change many times during the same epoch. To solve this problem, a
variant of the pair (BJ , j), that does not change during an epoch, is used.
The other problem arises with forks, because the last justified pairs in the view of the
two forking blocks can differ. To solve this problem, the algorithm generates an auxiliary
view G′ from G that does not carry the tricky blocks. To create this auxiliary view, first,
time is frozen at the start of each epoch to define the pair (BJ , j). This means defining
the pair considering the FFG view of a block leaf Bl, rather than the entire view. Second,
the algorithm shuns the branches that contain a block leaf Bl such that its last justified
pair is not caught up with (BJ , j), yet.

The HLMD GHOST algorithm is the following:

Given a view G in input

1. generate the set L of leaf blocks Bl in G

2. set the pair (BJ , j) as the justified pair with greater attestation epoch j in J(ffgview(Bl)),
with Bl ∈ L

3. generate the set L′ of leaf blocks Bl ∈ G such that the pair (Bj , j) ∈ J(ffgview(Bl))

4. create the view G′ as
t

Bl∈L′ chain(Bl)

5. set B = BJ

6. generate M as the set of latest attestations, taking one from each validator
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7. while ChildrenG′(B) /= ∅ do

8. update B with arg maxB′∈ChildrenG′ (B) w(G′, B′,M)

9. ties are broken in favour of the block with smaller hash of the block header

10. return B

4.3 Main protocol
Finally, the Gasper protocol can be described. It consists of two phases.
Firstly, validators are split up into committees in each epoch, one for each slot that
composes that epoch. This is done to distribute the various responsibilities they must
take. The committees are generated by a random permutation of fixed length, ρj , that is
a specific function that can be used only in epoch j. This permutation is assumed to be
provided by an external oracle. ρj ’s role is to pseudo-randomly split validators, in each
epoch, into C committees S0, S1, . . . , SC−1 of equal size, assuming that the total number
of validators can be divided by C. If N is the total number of validators,

Sk is the set of N
C

validators Vρj(s), where s ≡ k mod C.

These sets form, in each epoch, a partition of the set of validators.

Secondly, validators must perform the task they have been assigned to. In a commit-
tee, validators have two roles: proposing a block and attesting to one.

1. One validator per slot is chosen to propose a block by adding a corresponding propos-
ing message to its own view and then broadcasting it to the entire network.
In more specific terms:
at the beginning of each slot, with slot number i = jC + k, permutation ρj selects
a validator Vρj(k) as the proposer for that slot. This validator becomes the first
member of the committee Sk of epoch j. Vρj(k) calculates the canonical head of the
chain, i.e. block B′, through the HLMD GHOST function, using as input its own
view(Vρj(k), i). Then, Vρj(k) proposes block B sending a proposal message, including:

• the slot number i = slot(B);
• an indicator to the parent block B′ of the proposed block B, P (B) = B′;
• a set, newattests(B), of pointers to all the attestations Vρj(k) has already ac-

cepted that are not included in any set of attestations of ancestors of B yet;
• the transactions the validator wants to add to the main chain.

2. The other validators of the committee have to attest to the block they see as the
head of the chain; they have to add a message, an attestation, to their views and
then send them to the whole system.
In detail:
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at slot i+ 1
2 = jC + k+ 1

2 the other validators of committee Sk compute a block B′,
the block they see as the canonical head of the chain, with function HLMD GHOST,
using as input their view at time i+ 1

2 . Then, each validator V sends an attestation
α, a message containing:

• slot(α), that is the slot during which the validator is making attestation α;
• the block α attests to, B′ = block(α); note that slot(block(α)) ≤ slot(α);
• a checkpoint edge between the last justified pair and the last epoch boundary

pair of α, that is LJ(α) V−→ LE(α), considered a "FFG vote".

Definition 4.3.1 The last justified pair of an attestation α, LJ(α), is the justified pair
that has highest attestation epoch j, that is, the last justified pair in ffgview(block(α))=
view(LEBB(block(α))).
The last epoch boundary of an attestation α is LE(α)=

!
LEBB(block(α)),ep(slot(α))

"
.

The slashing conditions 3.1 and 3.2, given by Casper, can be formalized with a notation
more suited to the contest they are applied to. The conditions become:

I. No validator can make two different attestations α1 and α2, in the span of the same
epoch.

II. No validator can share two different attestations α1 and α2, such that

aep(LJ(α1)) < aep(LJ(α2)) < aep(LE(α2)) < aep(LE(α1)).

Validators either receive a reward for acting good or a penalty for misbehaving. Rewards
can be due to the inclusion, in a proposed block, of valid attestations, proposer reward;
for attesting to the block that will be justified and finalized, attester reward; for proving
the faultiness of a byzantine. Penalties can results from laziness, that is if a validator is
often offline, or from being caught acting badly.
The protocol is based on the assumptions that honest validators, those who follow the
protocol, will never erroneously violate a slashing condition and will always slash a caught
dishonest validator.

4.4 Proving safety and liveness
It can be proved that the described protocol grants safety, plausible liveness and proba-
bilistic liveness.

4.4.1 Safety
The property of safety follows from the following theorem:

Theorem 4.4.1 A given view G is 1
3 -slashable if some finalized pair changes its status,

becoming not finalized, when G is updated, or if a finalized pair (B, j) is composed of a
block that does not belong to the canonical chain of the view.
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To prove this theorem, first the following lemma is needed.

Lemma 4.4.1 Given, in a view G, a justified pair (BJ , j) and a finalized pair (BF , f),
with f < j, then either BF ∈ chain(BJ) or the network is 1

3 -slashable. That is, there exist
two subsets of validators, V1 and V2, where validators belonging to both transgress one of
the two slashing conditions.

Now, it is possible to demonstrate Theorem 4.4.1.

Proof. A network is not 1/3-slashable if a finalized pair remains so, even when the view
is updated. This follows directly from the definitions of the sets of justified and finalized
pairs. From the HLMD GHOST algorithm, it is evident that the justified pair with high-
est attestation epoch always belongs to the canonical chain. From Lemma 4.4.1, it follows
that also the finalized pair with highest epoch always belongs to the canonical chain. So,
to prove the second condition of Theorem 4.4.1, it is sufficient to demonstrate that two
finalized blocks are never conflicting, thus they all belong to the same chain. Assume that
two finalized pairs (B1, f1) and (B2, f2), f2 > f1, are composed of conflicting blocks; then,
the system must necessarily be 1/3-slashable. Since (B2, f2) is a finalized pair, it is also
a justified pair; applying Lemma 4.4.1, this means that B1 must be an ancestor of block
B2, but this is impossible because of the conflicting nature of the blocks. So, the lemma
attests that the view is 1/3-slashable.

■

4.4.2 Plausible liveness
Theorem 4.4.2 Assuming a total of N validators, if at least 2N/3 of stake is held by
honest validators, than it is always possible for new blocks to be finalized, in spite of
previous events.

To prove this theorem, first the definition of a stable chain is needed.

Definition 4.4.1 Given a block B in epoch j, chain(B) is said to be stable at epoch j if
LJ(EBB(B, j))=(B′, j − 1), for some block B′.

Now, it is possible to prove the theorem.

Proof. Starting at epoch j, the first slot number is i = jC. Assuming that the net-
work possesses adequate synchronicity, it is reasonable to assume that all validators have
the same view of the network. In slot i, a possible honest proposer proposes block B
as the child of the block obtained with the HLMD GHOST function. Introducing the
proposed block in the adjourned view G and defining c = chain(B), it is likely that c is
made to be stable at epoch j+1, by the next block added to the chain; indeed, due to the
hypothesis of having at least two third of honest validators, they attest either for block
B or one of its descendants. This creates the supermajority link LJ(B) J−→ (B, j), that
justifies B. In the next epoch, j + 1, it is plausible that the new proposed block, B′, with
slot number (j + 1)C, contains all these attestations, because of the good synchronicity

59



Gasper

assumption. This means that LJ(B′) = (B, j) and chain(B′) is stable at the current
epoch. Hence, it is possible for the chain of the first epoch boundary block of the new
epoch to be stable. But this means that it was possible to consider the starting chain c
stable from the beginning. So, going back to epoch j, there existed a supermajority link
(B′, j − 1) J−→ (B, j) in ffgview(B). Thinking recursively, for the next epoch, it is not
wrong to think that the next epoch boundary block B′′, with slot number (j + 1)C, is
also stable, with supermajority link (B, j) J−→ (B′′, j + 1), that finalizes the pair (B, j).

■

4.4.3 Probabilistic liveness
It is best to treat probabilistic and plausible liveness separately because, even if the former
implies the latter, probabilistic liveness needs some strong assumption to be valid, while
plausible liveness does not. So it is best to separate the two to emphasize that even if the
hypothesis for probabilistic liveness do not hold, plausible liveness is still valid. Indeed,
in order to be valid, probabilistic liveness needs fragile probabilistic assumptions, such as
good network synchrony and an equal stake for all validators. These assumptions can be
easily not satisfied.

The proof of probabilistic liveness is divided into three steps, forming a sequence, so
that each one would remain valid even if some assumptions were changed.

1. The first step aims to demonstrate that, under favorable assumptions, honest val-
idators would likely find a block with a high number of attestations after the first
slot, that is, with a high weight.

2. The second step shows that if in the first step, after the first slot, a block with high
weight is found, then this block’s weight keeps growing in the following slots of the
epoch. Thus, the block or one of its descendants is probably going to be justified.

3. The third and last step proves that with a high probability of a block being justified
in every epoch, as shown in the previous step, the probability of at least a block
being finalized grows with the number of epochs.

4.5 Dynamic set of validators
It must be noted that assuming a static set of validators is a restrictive hypothesis, be-
cause validators may want to exit or enter the set in a subsequent time. So, a dynamic set
of validators must be introduced. This introduction influences the safety property of the
network, reducing the number of validators that can be punished for violating a slashing
condition: a byzantine could act maliciously and immediately exit the set of validators,
without being slashed.

Considering a dynamic set of validators, it is possible to define two distinct subsets:
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Definition 4.5.1 Given two sets of validators V1 at time t1 and V2 at time t2, with
t1 < t2, then the set A(V1,V2) is the set of validators who activate at time t2, that is they
belong to V2 but not to V1; similarly E(V1,V2) is the set of validators that deactivate after
time t1, that is they belong to V1 but not to V2.

The safety property is still based on a lemma, similar to Lemma 4.4.1:

Lemma 4.5.1 Assuming having a dynamic set of validators, if there are two conflicting
finalized pairs (B1, f1) and (B2, f2), in a view G, then the network must be 1/3-slashable.

This means that there must exist two justified pairs (BL, jL) and (BR, jR) in view G and
two sets of validators V1 ∈ V(BL) and V2 ∈ V(BR) with at least 2/3 of the stake of the
corresponding attestation epoch, where validators belonging to both violate one of the
two slashing conditions.

The following theorem gives a lower bound for the size of slashable validators of two
conflicting blocks.

Theorem 4.5.1 Consider a parent block B0 ∈ G with validator set V0 and two of its
children, the conflicting finalized blocks BL, BR ∈ G, with respective set of validators VL

and VR. Defining ai as the weight of the set of validators that are active in Vi but not in
V0, that is ai = w

1
A(V0,Vi)

2
, for i = L,R, and ei as the weight of the set of validators

that are active in V0 but not in Vi, that is ei = w
1
E(V0,Vi)

2
, for i = L,R.

The size of slashable validators must be at least equal to

max
1
w(VL)− aL − eR, w(VR)− aR − eL

2
− w(VL)/3− w(VR)/3.

Note that in the case where there is a static set of validators, ai = ei = 0 for i = L,R and
we obtain the usual limit w(VL)/3 = N/3.

The strength of the constraint depends on the rules that dictate the activation and the
exit of the validators. Fixing T0 as the time at which block B0 was published, and Tn as
the time at which BL and BR were published, then ai and ei can be controlled by the
difference between these two times.

If in every epoch new validators can be activated/deactivated up until a constant limit of
stake, then

ai ≤ k1(Tn − T0) and ei ≤ k2(Tn − T0), for i = R,L.

If in every epoch new validators can be activated/deactivated proportional to the validator
stake, then

ai ≤ w(V)(1 + k1)(Tn−T0) and ei ≤ w(V)(1 + k2)(Tn−T0), for i = R,L.

Obviously, if the difference between the two times becomes too big, the bound is not
useful, like in the case of a set of validators completely different from the one where there
was the byzantine.
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Chapter 5

Practical Features

The practical implementation of the consensus layer differs from the theoretical expla-
nation of the protocol. This last chapter aims at describing technicalities of Ethereum’s
network and at presenting changes that its developers needed to make to avoid problems.

At the moment, November 11th, 2022 at 10:50 pm, the market price for ether is of 1265.46
dollars, with a market capitalization of 154.8 billion dollars. Ether’s total offer is of 122.4
million and it is the second cryptocurrency in the market by capitalization. Ethereum’s
current Annual Percentage Rate (APR) is 4.4%; it represents the annually obtained in-
terest from the initial investment. Ether’s price decreased by 4.82% in the last 24 hours
- values taken on November 11th, 2022 at 10:50 pm.

Figure 5.1. Ether’s price from August 2015 to November 2022. Graph taken from Eherscan.
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Ethereum’s Beacon Chain, after the Merge, counts a total of more than 464 thousands
validators with only almost 20 thousands nodes.

Figure 5.2. Number of validators on the Beacon Chain from December 1st, 2020 to
November 11th, 2022. Chart taken from beaconcha.in

With the transition to PoS, Ethereum said goodbye to uncle blocks. This is shown by
the following graph representing the trend of daily ommer blocks produced from December
1st, 2020 to November 11th, 2022.

Figure 5.3. Chart taken from Etherscan.
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5.1 – How to become a validator

5.1 How to become a validator
There exist different ways users could become validators, based on how much they are
willing to stake. It is already been said that to activate a validator software 32 ETH are
needed. User can stake the whole sum or a portion of it and still take part to the PoS
protocol.

A user can stake the whole sum of 32 ETH and activate a validator individually, in
the so-called Solo home staking. Besides the ETH stake, an hardware connected to the
internet is needed; it must run both an execution client and a consensus client. This kind
of staking ensures the whole reward going to the user, improves decentralization of the
network and does not require any trust in a third party. There are risks that results from
solo home staking, such as the fact that the whole sum of 32 ETH is at stake, the necessity
of being almost always online in order to not being punished for being offline and the pos-
sibility of having a large amount of ETH slashed due to malicious behaviour. Particular
abilities are not necessary because there exist some tools that simplify the process.

A user can stake the whole 32 ETH sum, but delegate an external provider to run the
hardware, in the Staking as a service process. The user gets the whole reward, minus a
monthly provider fee; the risks are the same as solo staking, with the addition of having
to trust a third entity. There are only two requirements: staking the 32 ETH and safely
storing the keys needed to access the provider.

If a user does not have or does not want to stake the entirety of 32 ETH, there are
solutions that allow the user not to stake the whole quota, but only a part, and to receive
rewards proportional to this quota. These are the staking pools. The biggest staking pools
of ETH are Lido, Coinbase, Kraken and Binance.

• Lido is the biggest staking pool and owns almost 130 thousands validators, 27.79%
of the total number of validators. Joining Lido, users receive a token that represents
their ether on the Beacon Chain. A token is an asset that lives on its own blockchain,
which can be used to make economic exchanges and investments. The system applies
a 10% fee, split between those who control the node and Lido DAO, which manages
the system’s funds. Independent validators, those who stake the entirety of 32 ETH
and run the validator software alone, are almost 110 thousands and make up 23.44%
of the total number.

• The second biggest staking pool is Coinbase, with about 60 thousands validators,
12.73% of the total validators. Coinbase works as a standard staking pool, taking
the stakes of different users and rewarding them with a proportional share. Coinbase
does not establish a minimum amount of ETH that one can stake, but there is a
fixed maximum amount, that changes over time, to not clog the network.

• Kraken staking pool is the third bigger one and counts little more than 35 thousands
validators, 7.72% of the total. Kraken weekly rewards users with a variable rate,
while the annual reward rate is fixed between 4% and 7%.
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• Binance is the fourth largest staking pool and has circa 27 thousand validators, for
a percentage of 5.83% of the total validators. After staking ETH on Binance, the
user receives a BETH token. An user will be able to obtain its ETH only after 6-12
months after the Merge.

Figure 5.4. Staking pools distribution. Chart taken from beaconcha.in

5.2 Additional keys for validators
With the passage to a Proof of Stake consensus protocol, Ethereum needed another type
of keys for users to stake ETH and run validators. This was made to improve scalability,
in order to make the network even faster in reaching consensus. In fact, these new keys use
the Boneh-Lynn-Schacham digital signature scheme, which allows to generate m−of−n
threshold signatures. Therefore, there is no longer the necessity of reaching an absolute
totality of agreement.
The BLS scheme is based on a pairing friendly curve. However, the usual keys are gener-
ated on the Secp256k1 elliptic curve, defined on the field ❋p with p = 2256 − 232 − 29 −
28 − 27 − 26 − 24 − 1. This curve is not suitable for pairings so, to use the new keys, one
could think it would be necessary to change the curve. This would cause many problems
with the ’old’ keys, problems that can be solved using a Smart Contract. There is no
need to change the curve, but the network asks a specific Smart Contract to verify these
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5.3 – Differences between Gasper and implementations

signatures built on the pairing friendly curve.
Before the Merge, users only needed a key to get access to their wallets; after the Merge,
users that wanted to participate in the protocol activating a validator software needed
two additional keys: the validator key and the withdrawal key. The former consists in
a validator private key used to sign proposal messages and attestations, and a validator
public key used to stake ETH to activate a validator software. This public key is also used
by the network to identify the validator itself. The withdrawal key is not used yet; it will
be used when the Shanghai upgrade hits, to move the validator funds. It also consists in
a private and a public key. If this key is lost, the validator looses access to its balance.
Considering two keys for every 32 ETH staked, the problem of managing the keys goes out
of control, especially if a user runs multiple validators. To avoid this problem, multiple
validator keys are made to be derived from a single seed, known to many. Different keys
are identified with different paths, so there is no ambiguity.

5.3 Differences between Gasper and implementations

While describing the Gasper protocol, the blockchain’s network was modeled as a graph
and validators were thinking entities with infinite computational power. In the practical
implementation, validators do not see the network as a graph, but each one runs a software
to analyze the structure and return information. This software saves the ’store’, which
is a representation of the view, and updates it whenever new blocks or attestations are
received.

In the Gasper protocol, the validator chosen to propose a block must include all the
attestations in its view; furthermore, a validator that attests to a block must run the
HLMD GHOST fork choice rule using as input the view containing all the attestations.
Developers included some restriction to prevent some type of attacks.

In practice, a validator that proposes a block does so including all attestation that were
made at least a fixed number of slots before. This number is the attestation inclusion
delay. This needs to be done to prevent centralization of the network: for example, if
the duration of a slot is slim, well-connected nodes of the network might be able to see
and publish attestations way faster than common nodes, centralizing the system. The de-
velopers decided to calibrate this attestation inclusion delay on information coming from
the real world: a small delay improves the transaction processing time, raising network’s
scalability, a large delay enhances the decentralization of the system.
Developers decided to put limits to the attestations that a validator can consider while
running he HLMD GHOST function. Indeed, a validator that has to attest to a block
belonging to slot N must consider only attestation made up until the previous slot, which
is slot N − 1. This is done to prevent byzantine taking control of the chain. Indeed,
the Gasper protocol establishes that validators can attest to a block of slot N only after
half of the slot has already passed. This means that, if a slot is composed of s seconds,
validators that have to attest to a block belonging to slot N can start doing so only at
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the time s(N + 1/2). If a byzantine does not wait this time and starts making attesta-
tions before everyone else, he has more chances of gaining control of the network. This
could be done because attesting before the right time is not a slashable action, and also
malicious validators could easily fake timestamps to make the others believe they signed
their attestation at the rightful time.

Another difference from the theoretical Gasper protocol is in the definition of a final-
ized pair. Definition 4.2.3 defines a finalized pair considering k subsequent justified pairs.
The practical implementation is made to consider only the last 4 epochs. For example,
if B1, B2, B3 and B4 are the last four epoch boundary blocs of four consecutive epochs,
with B4 being the last, then:

1. if B1, B2, B3 are justified blocks and the attestations that justify B3 have as the last
justified block B1, then B1 is finalized

2. if B2, B3 are justified blocks and the attestations that justify B3 have as the last
justified block B2, then B2 is finalized

3. if B2, B3, B4 are justified blocks and the attestations that justify B4 have as the last
justified block B2, then B2 is finalized

4. if B3, B4 are justified blocks and the attestations that justify B4 have as the last
justified block B3, then B3 is finalized

68
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5.4 Weak subjectivity
Consensus protocols can be categorized into two main groups, based on the degree of
social information needed.

Definition 5.4.1 (Objective) A consensus protocol is objective if a node that joins the
protocol, knowing only the protocol, the set of all blocks and other important published
information about it, can reach the same conclusion on the network current state as every
other node already belonging to the system.

Definition 5.4.2 (Subjective) A consensus protocol is said to be subjective if different
nodes reach different conclusions on the network current state, when joining the system.

Proof of Work is an objective protocol: the main chain is unique, so the network current
state is obvious to every node, even to those who join the network later. There cannot be
mistakes, because the longest chain is always recognizable.
Blockchains that use a social system as consensus set are subjective. A new node, when
joining the network, must trust another node to give reliable information about the net-
work current state. Different nodes can give different information, so the main chain is
not unique and there can be various valid chains.

Proof of Stake seems to be subjective, but that is not quite the case. Vitalik Buterin
introduced the concept of weak subjectivity to represent a requirement for PoS based
blockchains.

Definition 5.4.3 (Weakly subjective) A protocol is weakly subjective if a node, enter-
ing the system knowing only the protocol, the set of all blocks, other important published
information about it and a provably valid state of the network, lacking at most the latest N
nodes, reaches the same conclusion about the network current state as all the other nodes.

This model perfectly describes the Proof of Stake: the protocol prevents nodes from mod-
ifying a block that is more than N positions behind. Thus, if a state is proved valid and
becomes an ancestor of more than N valid states, then a subsequent state that is not a
descendant of the first one can be valid.

This process is carried out on Ethereum by defining weak subjectivity checkpoints: blocks
that provably belong to the main chain. These serve as revert limits, because blocks older
than a weak subjectivity checkpoint cannot be altered. This property weakens long-range
attack, by simply rejecting long-range forks. Assuring a smaller interval between two con-
secutive weak subjectivity checkpoints than the withdrawal period of a validator assures
that a byzantine cannot act maliciously forking the chain and then leave without being
slashed.

The difference between weak subjectivity checkpoints and finalized blocks stands in the
way those are treated by the protocol. If a node receives two conflicting finalized blocks,
there is no way to choose the one certainly belonging to the canonical chain, because both
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are valid; therefore, consensus is not reached. Contrariwise, if a node receives a block con-
flicting with a weak subjectivity checkpoint, the block is immediately rejected, because
the checkpoint represents the absolute truth of the state of the network that cannot be
changed.

The probability of establishing an incorrect weak subjectivity checkpoint is extremely
low, because their validity can be verified through comparison with an external source,
like a block explorer or other nodes.

Weakly subjective protocols work quite well because:

• nodes that are always online are not affected by weak subjectivity, but for them it is
equivalent to objectivity: they will always recognize the network current state and
will not need external information about it;

• nodes that are offline, but log-in in intervals of N nodes will not be affected because
they will always be able to obtain an updated version of the network current state;

• nodes that join the network at a later time or that are offline for a long period rely
heavily on weak subjectivity: they will have to retrieve from a node, an external
provider or a block explorer, the hash of a recent block and insert it into their view
as a weak subjectivity checkpoint.
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Blockchain is a new technology that could be useful in many fields, indeed it is gaining
more and more importance in the society.
In 2009, the first blockchain, Bitcoin, was developed by an anonymous inventor, Satoshi
Nakamoto. Bitcoin is a shared, permissionless blockchain, based on the homonymous
cryptocurrency, whose structure and integrity are based on a Proof of Work (PoW) pro-
tocol. Proof of Work implies that miners have to prove they have done a certain amount
of work by hashing a chosen variation of a given value and finding a quantity that must
be lower than a fixed target. Proof of Work leads to a certain centralization of the net-
work, due to the ever-increasing difficulty of the task: users group into mining pools in
order to combine all their computational power in a single miner. Also, because of the
great amount of computational power needed to solve it, the Proof of Work has a great
negative environmental impact. Because of these problems, another type of protocol was
created: Proof of Stake. This protocol does not consist in miners solving a very difficult
task, but its actuators must stake a portion of their cryptocurrency to activate a validator
software. These validators both propose and attest to blocks to choose which one might
join the canonical chain of the blockchain. This is the protocol that Ethereum adopted
on September 15th, 2022. Proof of Stake is based on the idea that all those who take
part in the protocol have a decisional power proportional to the amount of ether staked.
The PoS protocol used by Ethereum is Gasper, obtained combining Casper and GHOST.
Casper is a finalization gadget used to mark certain blocks as finalized, so that even a
user with only partial information can be sure of the validity of the chain previous to
that specific block. GHOST is based on the idea that ommer blocks, valid blocks that
share a parent with a block belonging to the main chain, contribute to the heaviness of a
branch. The chosen chain in a fork will no longer be the longest one, as in Bitcoin, but the
heaviest one. The Gasper protocol combines these two elements in a complete Proof of
Stake mechanism. Validators are split into committees in each slot of each epoch. In each
slot a validator is randomly chosen to propose a block, while the others must attest to it.
If the block receives at least two thirds of attestations it is finalized and added to the chain.

For a very long time it has been discussed whether Proof of Stake is really better than
Proof of Work. The objection that has been made, among others, is that validators must
stake their money and lock it up for a certain amount of time. It is true that freezing
an amount of capital could be inefficient for users, but keeping it locked will increase the
cryptocurrency value in the market. This is due to the fact that a cryptocurrency value
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increases when its availability in the market decreases. Also, PoS can establish a level of
security way higher than the one assured by PoW by slashing byzantine validators, while
security on a Proof of Work protocol is only based on the reward system.
In conclusion, Proof of Stake algorithms can be built to be extremely safe, with weak sub-
jectivity being a necessary and sufficient condition to solve the nothing-at-stake problem;
also, it is plausible to believe that Proof of Stake protocols are way more economically
efficient that Proof of Work ones.

Ethereum’s future is based on the introduction of the shard chains: secondary chains that
will be introduced, probably in 2023, to verify specific transactions alongside the Beacon
Chain. Their main goal is to make transaction processing time faster, thus increase the
scalability of the network.
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