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Abstract: 

In order to encourage people to use alternative transport solutions while reducing the disproportional use 
of cars, studies that could provide relevant information to stakeholders and policymakers are required. 
This is due to the excessive use of cars and its negative externalities, such as traffic congestion and the 
production of high levels of carbon dioxide (CO2). Therefore, one strategy is to improve public transport 
by providing a fair level of access to it for the people to encourage them to have a multimodal behavior 
regarding transport. 

This thesis proposes a methodology to assess public transportation accessibility inequity of land parcels 
served by transit systems in metropolitan areas. The methodology is based on the classic analysis tools of 
Lorenz curves and Gini indices, but the novelty resides in the fact that it can be easily applied in an 
automated way to several cities around the world, with no need for customized data treatment. Indeed, our 
equity metrics can be computed solely relying on open data, publicly available in a standardized form. We 
showcase our method by studying public transportation territorial equity in Paris, Madrid, Sydney, and 
Boston, and compare our findings with another recently proposed approach. 

The above issue is related to the configuration of the transit offer in urban areas. Current transit suffers 
from an evident inequity: the level of service of transit in the suburbs is much less satisfying than in city 
centers, especially when budget constraints are tight. Consequently, private cars are still the dominant 
transportation mode for suburban people, which results in congestion and pollution. To achieve 
sustainability goals, transit should be (re)designed, placing equity among the main optimization 
objectives. To this aim, it is necessary to (i) quantify the "level of equity" of transit and (ii) identify the 
transit lines that are the most important to equity, which would then be the ones where the operator should 
invest the most in increasing service level (frequency or coverage) in order to reduce inequity in the 
system.  

To the best of our knowledge, we are the first to tackle (ii). We propose efficient computational methods 
that rely solely on open data, allowing us to analyze the whole transit networks in Aachen, Berlin, 
Budapest, Helsinki, Manchester, Turin, and Vienna. Our method can be used to guide large-scale iterative 
optimization algorithms toward the goal of improving accessibility equity. 

 

 

 

 

 

 



 

Abstract (Italiano): 

Al fine di incoraggiare le persone a utilizzare soluzioni di trasporto alternative riducendo l'uso 
sproporzionato delle automobili, sono necessari studi che potrebbero fornire informazioni pertinenti alle 
parti interessate e ai responsabili politici. Ciò è dovuto all'uso eccessivo delle automobili e alle sue 
esternalità negative, come la congestione del traffico e la produzione di alti livelli di anidride carbonica 
(CO2). Pertanto, una strategia consiste nel migliorare il trasporto pubblico fornendo un livello equo di 
accesso ad esso per le persone per incoraggiarle ad avere un comportamento multimodale riguardo ai 
trasporti. 

Questa tesi propone una metodologia per valutare la disuguaglianza di accessibilità al trasporto pubblico 
nelle diverse zone delle aree metropolitane. La metodologia si basa sui classici strumenti di analisi delle 
curve di Lorenz e degli indici di Gini, ma la novità sta nel fatto che può essere facilmente applicata in 
modo automatizzato a diverse città del mondo, senza necessità di un trattamento personalizzato dei dati. 
In effetti, le nostre metriche di equità possono essere calcolate esclusivamente basandosi su dati aperti, 
pubblicamente disponibili in una forma standardizzata. Mostriamo il nostro metodo, studiando l'equità 
territoriale nell’accesso al trasporto pubblico a Parigi, Madrid, Sydney e Boston e confrontiamo i nostri 
risultati con un altro approccio recentemente proposto. 

Questa problematica è collegata alla configurazione dell’offerta di trasporto pubblico nelle aree urbane, 
Gli attuali sistemi di trasporto pubblico soffrono di un'evidente diseguaglianza: il livello del servizio nelle 
periferie è molto meno soddisfacente rispetto ai centri urbani, specialmente quando i vincoli di bilancio 
sono stringenti. Di conseguenza, le auto private sono ancora il mezzo di trasporto dominante per le persone 
che vivono nelle aree suburbane, il che si traduce in congestione e inquinamento. Per raggiungere gli 
obiettivi di sostenibilità, il trasporto pubblico dovrebbe essere (ri)progettato, ponendo l'equità tra i 
principali obiettivi di ottimizzazione. A tal fine è necessario (i) quantificare il "livello di equità" del 
trasporto pubblico e (ii) identificare le linee più importanti per l'equità, che sarebbero poi quelle in cui 
l'operatore dovrebbe investire di più in aumentare il livello di servizio (frequenza o copertura) al fine di 
ridurre le disuguaglianze nel sistema. 

A quanto ci risulta, siamo i primi ad affrontare (ii). Proponiamo metodi computazionali efficienti che si 
basano esclusivamente su dati aperti, consentendoci di analizzare l’intera rete di trasporto pubblico ad 

Aquisgrana, Berlino, Budapest, Helsinki, Manchester, Torino e Vienna. Il nostro metodo può essere 
utilizzato per guidare algoritmi di ottimizzazione iterativa su larga scala verso l'obiettivo di migliorare 
l'equità dell'accessibilità. 
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1. Chapter 1: Introduction  
 

Public transport is one of the most important services in the cities, and it plays an undeniable role in 
people's travel from one place to another. Nowadays, because of the movements of the countries toward 
sustainability, authorities are trying to encourage and persuade people to use this system, considering that 
using private cars, especially by the suburban population, is among the leading causes of pollution in cities 
(Grelier, 2018). Therefore, reducing this car dependency is an essential purpose for the sustainability of 
urban transportation. Thus, authorities should enhance this system so that cars are not favored over public 
transport (Turcotte, 2008). 

Transportation demand in the suburbs is too low, unlike in the city center, therefore it is not efficient to 
have a public transport service with a high frequency and a high number of stops, even if public transport 
is still needed in those areas also for social reasons. Consequently, suburban public transport users 
experience walking times and waiting times much higher than the city center's population. This inequality 
(Calabrò et al., 2021) is structural in public transport and increases car dependency in suburban areas 
(Welch and Mishra, 2013). 

Accessibility can be described as the capacity of cities to allow people to move efficiently by guaranteeing 
equity and equal access to personal and professional opportunities. According to the previous discussion 
and as noted by (Biazzo et al., 2019), it is important to study equity. Transportation equity can be assessed 
by the geographical distribution of the chosen accessibility metric; if there is a big difference between 
accessibility in the city center and the suburb, this indicates high inequality. 

Due to the rich datasets needed to study this accessibility inequality in the area under the study, e.g., 
households income and employment, one needs to contact the responsible authority. The lack of a standard 
format is another issue, because any country reports these data in their own specific format and their own 
language. Therefore, these data also need some data processing which is a time-consuming process or 
even infeasible. For this reason, most of the work on this matter focuses on one or two scenarios. 
Consequently, we based our method solely on open source and available data to be capable of replicating 
the method on multiple cities. 

1.1. Objectives 

The objectives of this thesis are presented in the following list: 

a) To measure the inequality in the transportation level of service in the spatial distribution of the 
level of service of public transport 

b) To find the lines of public transport that are affecting the most the level of inequality in different 
cities 

c) To keep our method solely based on open data, like in the original (Biazzo et al., 2019) work, to 
have our methodology easily replicable in any city 
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d) To provide some suggestions on the better implementation of our method and proposal of future 
work. 

1.2. Thesis structure 

Chapter 1 gives a brief introduction about our motivations to follow this topic and inequality in public 
transport. Then, the main objectives of this research are shown. Finally, the thesis structure has been laid 
out with a brief description of each chapter in the following. 

Chapter 2 shows the background on the accessibility and different ways of measuring it alongside with 
the advantages and disadvantages of each method. The last part is devoted to the background on equity in 
transport especially in public transport accessibility. 

Chapter 3 explains the methodology of this research and database used. First, the input open data which 
are GTFS (General Transit Feed Specification) and population grid are introduced. And then for the 
methodology part we explain the work of (Biazzo et al., 2019) and how we replicate their method in our 
work to find the spatial accessibility distribution in different cities. Additionally, we explain the Lorenz 
curve and Gini coefficient and how we used them to catch the level of inequality. Finally, the last part of 
this chapter devoted to the methodology to find the most important transit lines for equity. 

Chapter 4 shows all results of accessibility scores in different cities. And then talk about their general 
description and inequality in their geographical distribution. Additionally, we will trace the Lorenz curve, 
compute Gini indices, and compare our findings with (Biazzo et al., 2019). Finally, we will show the 
results of transit line scoring and discuss the methodology used. 

Chapter 5 provides conclusions for the methodologies that we have adopted with explanation of the results. 
In addition, some suggestions are also provided for future implementation of methodology and future 
research.  
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2. Chapter 2: Background 

2.1. Accessibility definitions 

Accessibility is one of the main important subjects in transport planning and specifically in Public 
transport. It was first defined as 'the potential of opportunities for interaction' by (Hansen, 1959), which 
can also see the role of transport systems and land use in the mobility of people (Geurs and Van Wee, 
2004). There are other definitions of accessibility in the literature but, in general, accessibility is labelled 
as the physical access to goods, services, and destinations. In the context of urban economics and 
geography, accessibility, which is one of the most important outcomes of the transportation system, is 
characterized as the facilitation in accessing a specific area or location (Mavoa et al., 2012). It is a measure 
of the advantage of the location of a zone or area compared to the other zones and areas (Biosca et al., 
2013).Moreover, accessibility can be viewed from two perspectives: location-based accessibility, which 
includes mobility and land use, and individual-based accessibility, which focuses on the individual level 
(Miller, 2005). In addition, there are other perspectives like infrastructure-based accessibility, which 
focuses on mobility, and utility-based, which sees from an economic view (Geurs and Van Wee, 2004). 
According to the definitions above and considering a location based definition which is not completely 
depends on the specific area or location to be accessed and just considers the whole city to be accessed, 
accessibility can be described as the capacity of cities to allow people to move efficiently by guaranteeing 
equity and equal access to personal and professional opportunities (Biazzo et al., 2019). 

Urban public transport system (PT) has drawn more attention recently due to its potential to enhance 
sustainability and urban life quality. If the transport infrastructure is not capable of meeting the demands, 
this causes an increase in waiting times and congestion in public transport and streets because people are 
more interested to use private cars (Lodovici and Torchio, 2015). So, the goodness of accessibility of 
public transport can improve the accessibility of other transport systems like private cars. Because, if we 
provide an accessible public transport system, the number of people who use the public system because it 
is beneficial for them increases. And, it causes less congested streets and provide faster paths for those 
who have to use their private cars (Abreha, 2007). 

2.2. Accessibility measures 

As we are going to focus on location-based accessibility, different metrics have been proposed in the 
literature to quantify location-based accessibility for various application scenarios. Although there are 
many different accessibility metrics, they may generally be divided into four groups (Handy and Niemeier, 
1997, Kwan, 1998, Miller, 2020): 

 Distance to the nearest location which could be a subway station, shopping center, medical center, 
etc. 

 Opportunities that can be reached cumulatively within a certain access distance or travel time 
threshold (isochrones method) 

 Gravity or entropy methods 
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 Random utility based measures 

In order to describe these measures, first we have to define some terms which are used in these measures. 
The first term is the travel impedance. The impedance metric used in the most basic accessibility 
measurements is distance. This distance could be calculated as the simple straight-line (Euclidean) 
distance between two points, the right-angled (Manhattan) distance traveled along a rectangular grid 
network from point to point, or the network distance, typically computed as the shortest-path from point 
to point through the actual network, depending on the application. 

However, travel time is a much better indicator of the effort or expense associated with traveling by car, 
public transportation, or even a bicycle. It doesn't really matter if a trip is 10 km or 15 km long as long as 
it takes to get there; if both trips take 30 minutes to complete, then access to both destinations should be 
the same (assuming they are equally desirable). 

Additionally, travel time is a variable that is sensitive to policy (i.e., improvements in the performance of 
the transport system will result in shorter travel times, improving accessibility, and vice versa), whereas 
distance is depending on land use patterns that are less under the control of public authorities which in 
any case can change them only in the long run and less easily. Because they allow for the computation of 
accessibility implications of various policies and alternatives, travel-time based measurements are often 
considerably more valuable variables to include in planning analysis and evaluation. 

The second needed term to define is location attractiveness. The most straightforward and typical 
approach to determining a location's attractiveness is to use a size variable of some kind, such as the 
number of jobs in a given zone for employment accessibility or the number of stores (or retail floor space 
or retail employees) in a zone for shopping accessibility. It is conceivable to use more sophisticated 
representations that include additional activity location characteristics that influence their suitability for 
prospective interaction (such as the quality and price of goods for shopping accessibility). However, in 
reality, these more in-depth descriptions of attractiveness are rarely applied, most likely as a result of data 
shortages and the resulting increase in analytical complexity. 

Noting that factors like store opening/closing hours and levels of facility congestion (e.g., a popular 
restaurant may be fully booked and not available without a prior reservation) may also affect how 
appealing and/or accessible a given activity place is during the course of the day. 

The third expression is person level heterogeneity in accessibility. Because everyone has different tastes 
and preferences, as well as different resources and constraints, it is reasonable to expect that the (dis)utility 
of travel to a particular location and the evaluation of the location's attractiveness as a potential destination 
will vary subjectively from person to person. Due to their larger spending power, those with higher 
incomes typically have access to a considerably wider variety of goods, services, and activities than those 
with lower incomes. People who have access to vehicles will be able to engage in a larger variety of 
activities than those who do not possess cars or who are unable to drive. 

And, the last term is location choice set. The question of what locations are to be included in a given 
accessibility calculation is inherent in all accessibility measures. 
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In case of distance to the nearest location method, the measure can be expressed mathematically as: 

𝑎𝑖𝑝 = (𝑑𝑖𝑗)𝑗∈𝐿𝑝
𝑀𝐼𝑁  

Where: 

 𝑎𝑖𝑝 is accessibility of zone 𝑖 to the location of type 𝑝. 
 𝐿𝑝 is set of locations of type 𝑝. 
 𝑑𝑖𝑗 is distance or travel time for a given mode from 𝑖 to a location 𝑗 in set 𝐿𝑝. 

This measure has two limits: 

a) it does not take into account the size or attractiveness of the closest place, thereby regarding all 
locations as equally attractive. 

b) It does not take into account the cumulative effect of several accessible locations (for instance is a 
zone that is within 2.1 Km of two subway stations is lesser than he one within 2 Km of one single 
station?). 

This metric is in line with a very straightforward location model where the closest place is always selected 
with probability 1.0. Which is: 

𝑃𝑗
𝑖𝑝 = 1 𝑖𝑓 𝑑𝑖𝑗 = 𝑑𝑖𝑗′𝑗′∈𝐿𝑝

𝑀𝐼𝑁 ; = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where 𝑃𝑗
𝑖𝑝 is the probability of choosing location 𝑗 for purpose 𝑝 given that one is located in zone 𝑖. Except 

in special cases, this is not a realistic choice model. Subway stations or highway junctions (only used if 
they are on the best route for a particular trip to the actual destination) or activity locations (for which 
there generally will be many competing locations of varying attractiveness). Therefore, this measure is 
more suitable as an explanatory variable in models for transportation or residence choices than as an 
independent measure of accessibility.  

The second mentioned accessibility metrics mentioned above is isochrone, or cumulative count measures 
which is probably the most used accessibility measures in practice (Miller, 2020) which is defined by the 
following equation: 

𝑎𝑖𝑝 = ∑ 𝑋𝑗
𝑝

𝑗∈𝐿
𝑇|𝑖
𝑝

 

Where: 

 𝐿𝑇|𝑖
𝑝  is set of locations of type 𝑝 that are within a maximum distance or travel time 𝑇 of zone 𝑖. 

 𝑋𝑗
𝑝 is size of activity type 𝑝 (number of stores, jobs, etc.) at location 𝑗. 

This measure is consistent with the location choice model of the form: 
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𝑃𝑗
𝑖𝑝 =

𝑋𝑗
𝑝

∑ 𝑋
𝑗′
𝑝

𝑗′∈𝐿
𝑇|𝑖
𝑝

 𝑖𝑓 𝑗 ∈ 𝐿𝑇|𝑖
𝑝 ; = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The main advantage of this measure is it is easy to compute and understand especially using the 
Geographic Information System (GIS) software and databases. However, there are some serious 
theoretical and methodological problems that undoubtedly severely limit its general use, as detailed below. 

First, the measure assumes that users are unconcerned about travel distances/times to competing places as 
long as they all fall under the threshold 𝑇. While it is debatable if individuals are indifferent to slight 
changes in short distances/times (e.g., whether one needs to travel 20 or 22 minutes to rival places), the 
notion that people would rather spend less time/effort traveling than more is key to travel behavior theory. 
Consider two extreme but still important edge cases: one in which a particular collection of places is 
exactly 30 minutes from a specific zone (for a situation where 𝑇 = 30 minutes) and one in which these 
same places are 5-10 minutes distant from the zone. Clearly, the latter instance provides a higher level of 
accessibility than the former. 

Second, and similarly, the measure implies that any sites placed outside the threshold (even by an 
infinitesimal amount 𝜀) are irrelevant to location 𝑖's accessibility and that the chance of visiting these 
locations is zero. There are no places. This is definitely incompatible with travel behavior theory. Consider 
the edge situation (again with 𝑇 = 30 minutes) in which one scenario consists of a group of places all 
located 29.9 minutes from zone 𝑖 and another in which this identical set of locations is placed 30.1 minutes 
distant. Is zone 𝑖's accessibility truly zero in the second example (or is it significantly different than in 
case one)? The obvious response is no. 

Consider the scenario when all locations within a certain distance are the same size, X. The chance of 
selecting a location in this situation is simply 1/N for any location within the threshold (where N is the 
number of locations) and zero otherwise. A far more behaviorally realistic (and empirically verifiable) 
model is one in which the chance of choosing a place decreases as distance/travel time increases. This 
drop may begin slowly (relative indifference across places with similar, short distances/time), then 
accelerate in the vicinity of some threshold (at which point the travel impedance becomes progressively 
and discernibly onerous), and finally become vanishingly tiny beyond some point. Clearly, an accessibility 
metric that is compatible with this behavior should be favored over the unrealistic isochrone behavioral 
assumption. 

The third mentioned measure was gravity or entropy measures which is linked back to (Hansen, 1959). In 
their simplest form the can be expressed as: 

𝑎𝑖𝑝 = ∑ 𝑋𝑗
𝑝

𝑗∈𝐿𝑖𝑝
𝑓(𝑑𝑖𝑗) 

Where: 

 𝐿𝑖𝑝 is set of locations of type 𝑝 in the choice set for zone 𝑖. 
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 𝑓(𝑑𝑖𝑗) is the impedance function; 𝜕𝑓

𝜕𝑑𝑖𝑗
< 0 

Two key differences between isochrone and gravity approaches are: The gravity technique weights the 
attraction of places by the impedance function: nearby locations are weighted more strongly than farther 
distant locations. Rather than an arbitrary cut-off criterion, the choice set, 𝐿𝑖𝑝 determines the set of 
locations evaluated in the accessibility computation. Thus, the isochrone measure is a special case of 
gravity measure in which 𝑓(𝑑𝑖𝑗) = 1 and 𝐿𝑖𝑝 = 𝐿𝑇|𝑖

𝑝  

So, the gravity measure equation is consistent with a location choice model of the form: 

𝑃𝑗
𝑖𝑝 =

𝑋𝑗
𝑝𝑓(𝑑𝑖𝑗)

∑ 𝑋
𝑗′
𝑝𝑓(𝑑𝑖𝑗′)𝑗′∈𝐿𝑖𝑝

 

From a behavioral standpoint, this equation generates a constantly declining choice probability with 
increasing distance/time and so provides a major improvement over the isochrone technique. 

The last important category of accessibility measure taken into consideration comes from random utility 
theory. The modeling of discrete choices is addressed by the extension of neo-classical microeconomic 
theory known as random utility theory, which takes into account the probabilistic character of these 
choices from the modeler's perspective. Predicting a person's selection of one alternative from a group of 
plausible discrete options is the main challenge. Classic instances of this issue in travel demand models 
include selecting a particular travel mode and/or destination. 

The multinomial logit model (MNL), which has the following general form for the case of a destination 
choice model, is by far the most prevalent type of random utility model. 

𝑃𝑗
𝑖𝑝 =

𝑒𝑉𝑗

∑ 𝑒
𝑉𝑗′

𝑗′∈𝐿𝑖𝑝

=
𝑒𝛽𝑍𝑗

∑ 𝑒
𝛽𝑍𝑗′

𝑗′∈𝐿𝑖𝑝

 

Where: 

 𝑉𝑗 = 𝛽𝑍𝑗  is the systemaic utility of alternative 𝑗 
 𝑍𝑗 is the vector of explanatory variables 
 𝛽 is the (row) vector of parameters 

The actual perceived utility by a decision maker is: 

𝑈𝑗 = 𝑉𝑗 + 𝜀𝑗  

Where 𝜀𝑗 is the individual’s idiosyncratic deviation in terms of how they perceive the utility of alternative 
𝑗 relative to the population average utility 𝑉𝑗. The person chooses the alternative that generates the 
maximum perceived utility 𝑈𝑗. 
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This actual perceived maximum utility is unobservable, but, for the case of the MNL model, it can be 
shown (Ben-Akiva et al., 1985) that the expected maximum utility (𝐼𝑖𝑝) associated with this choice is 
given by: 

𝐼𝑖𝑝 = 𝐸[𝑀𝐴𝑋𝑗(𝑈𝑗)] = ln( ∑ 𝑒𝛽𝑍𝑗

𝑗∈𝐿𝑖𝑝

) 

That is, it is the natural logarithm of the denominator of the logit choice model (commonly referred to by 
the term “logsum”). Further, it can also be shown that this expected maximum utility is the consumer’s 

surplus for this choice. Thus, it is a standard measure of economic benefit. Given this, (Ben-Akiva et al., 
1985) argue that it also provides a behaviorally and economically sound definition of accessibility: 
“accessibility for a given activity is the expected utility that would be derived from participation in this 

activity, which is also the consumer surplus associated with this participation”. That is: 

𝑎𝑖𝑝 = ln( ∑ 𝑒𝛽𝑍𝑗

𝑗∈𝐿𝑖𝑝

)   

(Geurs and Van Wee, 2004) show how an accessibility measure should contain numerous essential factors 
to provide a complete evaluation, such as the layout of the transportation system, the distribution of houses 
and activities, and the time and economic constraints on journeys, in their accessibility review. They also 
show variations in accessibility throughout peak and off-peak hours, rivalry for activities (for example, if 
accessibility is assessed for more job-seeking people than available employment), and variance in the 
population's capacity to use the transportation system. Such a comprehensive evaluation might be 
impossible to compute and express. They conclude that it is necessary to be aware of the diverse nature 
of accessibility. However, select a less sophisticated measure to assess challenges when one feels the 
chosen measure represents the significant or knowable difference while understanding its limits. 

2.3. Connection between accessibility and equality 

Accessibility equity can be seen in two terms: horizontal and vertical equity. They are extensively used in 
the literature. Horizontal equity is when everyone gets their fair portion of the pie. Vertical equity refers 
to equality among unequal, in which equity is measured between groups based on socio-economic factors 
that may influence group members' need for or usage of public transportation, such as income, automobile 
ownership, age, and activity status. Horizontal equity, for example, might refer to inhabitants (of any 
socio-economic position) living within a reasonable walking distance of their first public transportation 
station. Vertical equity, on the other hand, assesses whether low-income households have the same 
walking distance as high-income inhabitants.  

There are examples of horizontal and vertical equity in the literature on accessibility equity. (Lucas, 2012, 
Banister, 2018) persuasively argue that when analyzing the situation for the most disadvantaged, it is 
critical to examine the compounding impacts of variables such as poverty, disability, economic and social 
exclusion, disposable time, and unemployment. This suggests that sophisticated metrics or combinations 
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of measures to represent accessibility are desirable when capturing vertical equity. Horizontal equity, on 
the other hand, might be measured using more easy accessibility indicators. 

Public transport accessibility is one of the main issues in urban planning. In the design phase of the transit 
network, researchers are often more focused on minimizing the operator and user costs and less on access 
and equity (Murray and Berwick, 2003). Availability of infrastructure, simplicity of information, and cost 
and time minimization are the critical factors in designing attractive public transport and door-to-door 
access (Yatskiv et al., 2017). 

Because the lack of access to public transit might imply social exclusion, land use and transport policies 
focus on accessibility to enable people to reach their destinations at a reasonable time and cost (Hawas et 
al., 2016). So, performing good, efficient, and accessible public transport is one of the main aims of 
policymakers and planners worldwide (Saghapour et al., 2016). 

In our work we are going to focus on horizontal equity. We use Lorenz curve (Lorenz, 1905) to examine 
the distribution of accessibility and the Gini (Gini, 1912) scalar to obtain a single value reflecting the 
unevenness of the distribution which is completely described in 3.2.2.1 and 3.2.2.2. However, there is a 
large body of literature on Gini index, conceptualized by (Gini, 1912) with derivations by . 

There are also tools to assess vertical inequity like the Suits coefficient. Suits (Suits, 1977) showed that 
by ordering the population on the x-axis by increasing income as in Figure 2-1, rather than by the amount 
of share of accessibility received as in Figure 2-2, one can construct a measure of how income-
discriminatory a distribution is, i.e., if the distribution is benefitting low-income members more than high-
income members of the population. In Figure 2-1 shows an example of how a Lorenz curve can look like 
when the population is ordered as Suits suggests. Note that in this setting the Lorenz curve can go above 
the diagonal OB since members of the population can receive high values of share of accessibiliy but be 
ordered to the left due to their low incomes. If 𝐾 is the area of the triangle OAB, and 𝑃 is the area under 
Lorenz curve contained by OAB, then the Suit index can be formulated as: 

𝑆 =
(𝑃 − 𝐾)

𝐾
= −1 +

𝑃

𝐾
 

This formula takes values between − 1 and 1. Positive Suits values indicate a progressive distribution of 

accessibility, while negative values indicate a regressive distribution. In the progressive extreme case, all 
accessibility is received by the member with the lowest income, making L trace a line through OCB, 
yielding Suits = − 1 + 2 = 1. Alternatively, in the extreme regressive case, the member with the highest 

income receive all the share of accessibility and the Lorenz curve trace the line through OAB with Suits 
= − 1 + 0 = − 1. When L traces the diagonal OB, 𝑃 is equal to 𝐾 and Suits = − 1 + 1 = 0 which is the 

proportional case, i. e., the amount of accessibility that a group has is proportional to the groups share of 
the population and different for different income levels. 
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Figure 2-1 Lorenz curve for computing the Suits coefficient (Rubensson et al., 2020) 

 
Figure 2-2 Lorenz curve for computing the Gini coefficient (Rubensson et al., 2020) 

 

However, equality is not the only priority for policymakers. In the supply of accessibility and distribution, 
there are many other quality and performance considerations. What should the public transportation 
system look like and its goals? Aside from horizontal and vertical equality, the transportation system 
should run smoothly with a reasonable fare box recovery. It should also provide a dependable alternative 
for vehicle traffic during peak hours in the most congested areas. Proposed policy changes should be 
acceptable from a cost-benefit analysis (CBA) and an equality standpoint (Niehaus et al., 2016). (Golub 
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and Martens, 2014), as previously mentioned, present an example of how to evaluate a policy proposal in 
the latter meaning. Another approach is proposed by (Wei et al., 2017), which addresses the problem of 
maximizing operational efficiency while also increasing public transportation stop coverage 
(accessibility) for several disadvantaged groups (elders, children, carless households, unemployed, 
disabled, poor, nonwhite).  
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3. Chapter 3: Database and Methodology 

3.1. Open-access input data 

3.1.1. General Transit Feed Specification (GTFS) 

The General Transit Feed Specification (GTFS) is a data standard that enables public transportation 
providers to publish transit data in a format many software applications can ingest. As a result, thousands 
of public transportation operators now employ the GTFS data standard. The GTFS system is divided into 
two parts: a schedule component with timetable, fare, and geographic transit information and a real-time 
component with arrival estimates, vehicle locations, and service alerts (Google Transit Feed, 2022). 

GTFS file of one city is a ZIP file containing comma-delimited text files that reflect fixed-route schedule, 
route, and bus stop data. The necessary text files list and what they show are in Table 3-1 (Google Transit 
Feed, 2022). GTFS data for cities of our interest can be downloaded from OpenMobilityData1 by only 
searching the city of interest and choosing the respective authority of transport as an example in Figure 
3-1 for Turin. 

Table 3-1 GTFS Files Definition 

Filename Required or not? Short description 

agency.txt Required Transit agencies with service represented in this dataset. 

stops.txt Required Stops where vehicles pick up or drop off riders. Also defines 
stations and station entrances. 

routes.txt Required Transit routes. A route is a group of trips that are displayed to 
riders as a single service. 

trips.txt Required Trips for each route. A trip is a sequence of two or more stops 
that occur during a specific time period. 

stop_times.txt Required Times that a vehicle arrives at and departs from stops for each 
trip. 

calendar.txt Conditionally required 
Service dates specified using a weekly schedule with start and 
end dates. This file is required unless all dates of service are 

defined in calendar_dates.txt. 

calendar_dates.txt Conditionally required 
Exceptions for the services defined in the calendar.txt. 

If calendar.txt is omitted, then calendar_dates.txt is required and must 
contain all dates of service. 

feed_info.txt Conditionally required Dataset metadata, including publisher, version, and expiration 
information. 

                                                 
1 https://transitfeeds.com/ 
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Figure 3-1 How to Download GTFS data for Turin 

 

As it can be seen, the GTFS data of a particular urban area consists of several files, among which 
"stops.txt" shows the exact location of each transit stop (either bus stop or metro/train station) and 
"stop_times.txt" shows which line is serving each stop and at which time, which allows reconstructing the 
trajectory of each transit vehicle 

3.1.2. Population Grid 

3.1.2.1. Population density of European cities 

The JRC-GEOSTAT 2018 is a regular grid map of 1 × 1 km pixels that shows the number of people living 
in Europe in 2018 in each square of the grid. It was created in the second part of 2020 by the European 
Commission Joint Research Centre, at the request of DG REGIO, with the help of Eurostat, as a follow-
up to Eurostat's previous GEOSTAT editions from 2006 and 2011. The need to update population 
distribution information at high spatial resolution and insight into recent population changes at the local 
level was a significant motivator for the JRC-GEOSTAT 2018 2 (Eurostat, 2018). 

3.1.2.2. Population density of non-European cities 

The Gridded Population of the World, Version 4 (GPWv4): Demographic Density, Revision 11 contains 
estimates of human population density (number of people per square kilometer) for the years 2000, 2005, 
2010, 2015, and 2020, based on counts congruent with national censuses and population registries. The 
population counts were assigned to 30 arc-second grid cells (i.e., squares of about 1 km at the equator) 

                                                 
2 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat 
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using a proportionate allocation gridding technique that utilized about 13.5 million national and sub-
national administrative units. The population density raster was constructed by dividing the population 
count raster for a specific target year by the land area raster. The data files were created as a global raster 
with a resolution of 30 arc seconds. The 30 arc-second count data were aggregated to 2.5 arc-minute, 15 
arc-minute, 30 arc-minute, and 1-degree resolutions to generate a density raster to enable quicker 
worldwide processing and help research communities (SEDAC, 2020)3 

3.1.3. Employment Data 

3.1.3.1. Italy 

The Italian National Institute of Statistics (Istat; Italian: Istituto Nazionale di Statistica) is the country's 
primary official data source. Population censuses, economic censuses, and a variety of social, economic, 
and environmental surveys and analyses are among its many operations. Istat is Italy's major generator of 
statistical data and a participant in the European Statistical System, which Eurostat oversees. The data of 
the general population and housing censuses and the industry and services censuses are published, which 
can be associated, through connection codes, with the partitions of the system of territorial bases (ISTAT, 
2011)4. The description of the data used is in Table 3-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11/data-download 
4 https://www.istat.it/it/archivio/104317  →  𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖 𝑐𝑒𝑛𝑠𝑢𝑎𝑟𝑖𝑒  

https://www.istat.it/it/archivio/104317
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Table 3-2 Metadata of industry and service 

Field name Short description 

TIPO_SOGGETTO NP ': non-profit institution -' IP ': public institution -' IM ': companies 

CODREG Numeric code that uniquely identifies the region within the national territory 

REGIONE Denomination of the region. 

CODPRO Numeric code that uniquely identifies the province within the national territory. 

PROVINCIA Name of the province. 

CODCOM 
 Numeric code that uniquely identifies the municipality within the provincial territory. 

COMUNE 
 Name of the municipality. 

PROCOM 
 

"Numeric code that uniquely identifies the municipality within the national territory. 
The value is obtained by concatenating the CODPRO field with the three-digit CODCOM field. " 

SEZ2011 
 

"Numeric code uniquely identifies the 2011 census section within the national territory. 
The value is obtained by concatenating the PROCOM field with the 7-digit NSEZ field. " 

NSEZ 
 A number that uniquely identifies the 2011 census section within the municipal area. 

ACE 
 A number that uniquely identifies the census area within the municipal area. 

CODLOC 
 "Numeric code that identifies the 2011 location within the municipal area. 

CODASC 
 

Numeric code that uniquely identifies the sub-municipal area, where present, within the municipal 
area. 

NUM_UNITA 
 The number of local units. 

ADDETTI 
 Number of employees 

ALTRI_RETRIB 
 Number of other paid workers 

VOLONTARI 
 Number of volunteers 
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3.1.3.2. Île-de-France 

Employment data about Île-de-France can be directly downloaded from the open data portal website of 
the region5. Within the definition of the population census, the employed working population comprises 
those who have a job and therefore fall into one of the following categories (Île-de-France, 2017): 

- exercise a profession (salaried or not) even on a part-time basis 
- help a family member with their work (even without pay) 
- be an apprentice, a paid intern 
- be a student or retired but working 
- contingent soldiers (as long as this situation existed). 

Unemployed people looking for a job are therefore excluded. 

3.2. Methodology 

3.2.1.  Methodology of accessibility assessment from (Biazzo et al., 2019) 

3.2.1.1. Isochronic maps 

According to the definition given in 2.1, accessibility of a particular place measures how easy it is for a 
passenger to travel by using transit, starting from that place and going to a random place (Note that the 
destination in this definition is not the opportunities in the city and all of the places can be considered as 
a destination and they could be accessed). The more connected a place to public transport services, the 
higher its accessibility. The overall accessibility of a place is the key to defining its cohesion and viability. 
Indeed, high accessibility allows for a better socio-economic organization at the local level, with a 
significant impact on urban life, including employment opportunities, training, and education. In this 
sense, accessibility is closely linked to populations' social cohesion and well-being. A connected place, 
close to stations where several lines pass and with high service frequency, will benefit more than others. 
To quantify the accessibility, we resort to (Biazzo et al., 2019).  

The accessibility measure is given in (Biazzo et al., 2019) is based on isochronic maps. The same authors 
have also developed a python script named ”public-transport-analysis” which is openly available on 
Github6 we also used it to develop the following analyses. We partition the area under the study with a 
hexagonal tessellation 𝜆 ∈ Λ each of 1 Km per side different from the original work of (Biazzo et al., 
2019) that is 0.2 Km and this task is because by increasing the side from 0.2 to 1 Km, we could decrease 
the computation time drastically. The isochrone 𝐼(𝜏, (𝜆, 𝑡0)) is the area reachable from the center of the 
hexagon 𝜆 with the maximum travel time 𝜏 and the departure time 𝑡0. It is important to note that hexagons 
do not cover the entire territory of the city. They cover all sections of a city with at least one public 
transportation station and all places reachable from any public transportation stop with a walking path less 
                                                 
5 https://data.iledefrance.fr/explore/dataset/population-active-occupee-des-communes-dile-de-france-donnee-
insee0/information/?location=11,48.93242,2.3909&basemap=jawg.streets 
6 https://github.com/CityChrone/public-transport-analysis 
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than 15 minutes, as in Figure 3-2. In order to compute the walking path between the center of hexagons 
and the public transportation stop, we use the backend version of the open-source routing machine 
(OSRM) (the description of implementing the tool in Python is available on Github7)(Luxen and Vetter, 
2011). The OSRM uses the OpenStreetMap network of the city where the analysis is being carried out to 
calculate the shortest walking pathways on each city's urban networks. In order to find the population of 
hexagons, we entered the population density data described in section 3.1.2 into the above introduced 
”public-transport-analysis” script. These population density data applied to coarse-grained squares having 
a surface area of 1𝐾𝑚2. To match the size of the hexagons (about 2.6 𝐾𝑚2) with the square's population 
density size, we split each square's population proportionately to the fraction of overlapping surface among 
the overlapping hexagons. As in Figure 3-3, we can see how hexagons and the population grid overlap. 
This process is done automatically by the above-mentioned python script from (Biazzo et al., 2019). 

Figure 3-2 Process of Tessellation of the city of interest 

 

                                                 
7 https://github.com/Project-OSRM/osrm-backend 
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Figure 3-3 Population grid and hexagons overlap 

 

The final stage in producing isochronic maps is to combine the coarse-grained depiction of a city with the 
schedule of its public transportation system and compute journey times between any two hexagons of the 
tessellation at different times of day and/or different days of the week. The algorithm that has been used 
here is a modified version of the connection scan algorithm (CSA)(Dibbelt et al., 2013) which is called 
the Intransitive connection scan algorithm (ICSA). This algorithm is fully implemented in (Biazzo et al., 
2019) work and the related pseudo-code implementation scheme is shown in Figure 3-4. Thanks to this 
modified algorithm, all the shortest-time paths linking the centers of every pair of hexagons in the 
tessellation at various starting times for a typical weekday can be computed. Each of these shortest-time 
paths will consider using public transit between two hexagons and the possibility of walking to 
neighboring hexagons to reach public transportation service locations within a particular area (Biazzo et 
al., 2019). The algorithm shown in Figure 3-4 works like the below: 

 For each stop, we have a 1 × 𝑛 matrix, and 𝑛 is the number of stops in the city; at first, we assign 
infinite to all arrays of this matrix 

 Then, sort the connection file that comes directly from the "stop_times.txt" of the GTFS file that 
shows which line is serving each stop and at which time with the departure time. 

 By a loop, we check that starting from our stop (a) which transit line we can take as soon as 
possible, and we take it, and we assign arrival time to the next stop (b) in the matrix of stop (a). 

 Now, we check is it possible to go to stop (b) by walking with less time than using public transport. 
If yes, we assign the arrival time to reach stop (b) using walking in the matrix of stop (a) 
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 Again, with the loop, we check starting from stop (b) which connection we can take as soon as 
possible, and then we take it and arrive to stop (c) and assign the arrival time to the matrix of stop 
(a) and also check the walking for shorter time path and so on. 

 Finally, we have a matrix for stop (a), which shows how much it takes to reach from this stop to 
all other stops. 

 We repeat the same procedure for other stops of public transit network. 

 

Figure 3-4 Intransitive Connection Scan Algorithm (Biazzo et al., 2019) 

 

3.2.1.2. Accessibility scores  

As in (Biazzo et al., 2019), we have two types of accessibility metrics that make comparing different parts 
of the city or the cities easier, namely velocity score and sociality score. In addition, we have defined 
another score also to consider the opportunities in the cities called attraction score. Accessibility scores 
aim to quantify the operation of public transit to connect places and people.  

3.2.1.2.1. Velocity score 

Velocity score 𝜈(𝜆) can be defined as the speed of expansion, i.e., the average speed at which it is possible 
to move from the center of the hexagon and go toward a random direction using public transportation. The 
movement of people can be described by an origin-destination matrix (ODM). The computation of the 
velocity score assumes a uniform ODM.  In order to compute the velocity score, consider the isochrone 
𝐼(𝜏, (𝜆, 𝑡0)) which is centered at hexagon 𝜆 at the time 𝑡0 corresponding to travel time 𝜏. The covered area 
𝐴(𝜏, (𝜆, 𝑡0)) of isochrone at time 𝜏 will be the area within the 𝐼(𝜏, (𝜆, 𝑡0)). In order to have the average 
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traveled distance �̅�  from the center of hexagon 𝜆 toward a random direction, we approximate the area of 
isochrone 𝐴(𝜏, (𝜆, 𝑡0)) by a circle (Figure 3-5). 

�̅�(𝜏, (𝜆, 𝑡0)) = √
𝐴(𝜏, (𝜆, 𝑡0))

𝜋
 

 
And then, by dividing the average travel distance �̅� by the travel time 𝜏, we can compute the average 
expansion speed at time 𝜏 of a circular isochrone with the same area as the real one. This quantity can also 
be considered the average trip velocity of duration 𝜏 toward a random direction from the center of the 
hexagon 𝜆. This quantity can be computed for any departure time 𝑡0, travel time 𝜏 and for any hexagons 
of the tesselation. Therefore, the velocity score can be computed by averaging over departure time 𝑡0.  
Additionally, it is important to define a new variable 𝑇 as the maximum possible travel time in order to 
consider all the possible travel time between 0 and 𝑇 and using integration and not only consider one 
specific travel time.  

𝜈(𝜆) =  
∑ ∫ 𝜈(𝜏, (𝜆, 𝑡0))𝑑𝜏

𝑇

0

𝑡𝑒𝑛𝑑
𝑡0=𝑡𝑠𝑡𝑎𝑟𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑠
 

Here velocity score indicates a measure of the average speed at which an individual can move away from 
a hexagon 𝜆, in a randomly chosen direction starting with departure time 𝑡0. 

Figure 3-6 and Figure 3-7 show an example of the spatial distribution of the Velocity score in Île-de-
France for illustrative purposes, whereas the full results will be presented entirely later.  

 

Figure 3-5 Isochrones with hexagonal tessellation at different times(Biazzo et al., 2019) 
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Figure 3-6 Velocity Score of Île-de-France 

 
 

 

Figure 3-7 Zoomed Version of Velocity Score of Île-de-France 

  
 

3.2.1.2.2. Sociality score 

The above-mentioned velocity score measures how well the public service facilitates the rapid exploration 
of urban space. However, there is a strong interplay between the population density and the efficiency of 
public transport. Therefore, while improving service in densely populated areas is common, low-density 
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locations run the danger of being underserved by public transit. The second score has been introduced to 
take into account this interplay, which quantifies the goodness of public transit in connecting people. Here 
we consider 𝑃(𝜏, (𝜆, 𝑡0)) as the population residing in the isochrone 𝐼(𝜏, (𝜆, 𝑡0)). Consequently, like what 
we have done for the velocity score, the sociality score obtain as 

𝑠(𝜆) =  
∑ ∫ 𝑃(𝜏, (𝜆, 𝑡0))𝑑𝜏

𝑇

0

𝑡𝑒𝑛𝑑
𝑡0=𝑡𝑠𝑡𝑎𝑟𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑠
 

 

Here the sociality score indicates the number of individuals that may be reached in a single trip starting 
from hexagon 𝜆 at departure time 𝑡0 and with the duration of 𝜏. for example, in Figure 3-8, an individual 
start his/her trip from the hexagon highlighted in green in 𝑡0 and with the travel duration of 𝜏 he/she can 
reach the hexagons highlighted in orange, so the number of individuals that is possible to reach is the sum 
of the population of the green hexagon and orange hexagons. 

Figure 3-9 and Figure 3-10 show an example of the spatial distribution of the sociality score in Île-de-
France, and the full results will be presented entirely later.  

Figure 3-8 presentations of one possible trip 
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Figure 3-9 Sociality Score of Île-de-France 

 

 
Millions of 
inhabitants 

 

Figure 3-10 Zoomed version of Sociality Score in Île-de-France 

 

 
Millions of 
inhabitants 
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3.2.1.2.3. Attraction score 

We have also added another score to the work of (Biazzo et al., 2019) called the attraction score. By 
considering the population in sociality score, we consider the individuals that may start a trip from their 
place of residence but do not consider the opportunities in the city that may be interesting for those 
individuals to start their trip. Because, according to 2.1 most of the definitions of accessibility depends 
also on the type of the opportunities. So, in order to also consider these opportunities in our computation, 
we also introduced the attraction score. Here we consider 𝐷(𝜏, (𝜆, 𝑡0)) as the number of jobs in the 
isochrone 𝐼(𝜏, (𝜆, 𝑡0)). Consequently, like what we have done for the other two scores, the attraction score 
obtain as 

ℛ(𝜆) =  
∑ ∫ 𝐷(𝜏, (𝜆, 𝑡0))𝑑𝜏

𝑇

0

𝑡𝑒𝑛𝑑
𝑡0=𝑡𝑠𝑡𝑎𝑟𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑠
 

Therefore, the attraction score indicates the number of workplaces that may be reached in a single trip 
starting from hexagon 𝜆 at departure time 𝑡0 and with a travel time of 𝜏. 

Figure 3-11 and Figure 3-12 shows an example of the spatial distribution of the attraction score in Île-de-
France, and the full results will be presented entirely later. Trip definition is same here as 3.2.1.2.2, but 
instead of population, we sum the number of jobs. 

 

Figure 3-11 Attraction Score of Île-de-France 
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Figure 3-12 Zoomed version of Attraction Score of Île-de-France 

  
 

3.2.1.2.3.1. Data processing for Attraction score 

Here, we show the procedure for Turin. As described in 3.1.3.1, we can download the data from (ISTAT, 
2011). One problem is that the website is in Italian (at least the page for the census data). Like in Figure 
3-13, we should download the data about industry and services (Censimento dell’industria e dei servizi8). 

                                                 
8 https://www.istat.it/it/archivio/104317 
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Figure 3-13 ISTAT Census data webpage 

 

The downloaded data is in old Excel format, which is not working in ArcGIS software. So, we have to 
convert this data to CSV format and extract the part about Piemonte. Then, we can add this file to the 
ArcMap software. Unfortunately, this file does not have any accurate geographic data about the Census 
sections as in Figure 3-14. 

Figure 3-14 Head row of the industry and services in Piemonte 

 

 

Therefore, we use another data from ISTAT: territorial bases census sections of Piemonte9. There are two 
similar columns in these two data: "SEZ2011” and by using this column, we can join these two layers and 

have the job places data for Turin, and at the end, we can add this finalized shapefile to the ”public-
transport-analysis” (Biazzo et al., 2019). 

3.2.2. Assessing accessibility inequality 

3.2.2.1. Lorenz curve 

Lorenz curves are a graphical depiction of the population's cumulative distribution function of wealth in 
economics (Lorenz, 1905). Figure 3-15 is an example of the Lorenz curve. The dashed line depicts a 
population with fully equal benefit distribution; the solid curved line depicts an inequitable wealth 
distribution (for example, approximately 80% of the population owns around 40% of the total benefits, 

                                                 
9 https://www.istat.it/it/archivio/104317 



27 
 

and the other 20% owns the remaining 60% of benefits). The smaller the distance between the Lorenz 
curve and the perfect-equality curve, the more the equity of the benefit distribution. 

Figure 3-15 Example of Lorenz curve 

 

Lorenz curves are also used for any quantity that can be aggregated over a population, not simply 
income. And in our case, we will use it for accessibility distribution among the population, and for this 
aim, we define two types of Lorenz curves below. 

3.2.2.1.1. Hexagon-based Lorenz curve 

Let us denote 𝑎(𝜆)  the accessibility of the hexagon 𝜆. Here we consider each hexagon as a stakeholder; 
we order the hexagons from the worst to the best in terms of accessibility. Therefore, 𝑎(𝜆𝑖)  ≤ 𝑎(𝜆𝑖+1). 
We now build a plot where we put such hexagons 𝜆1, 𝜆2, … , 𝜆|Λ| on the x-axis and the corresponding 
cumulative values of the velocity score of each hexagon, according to the above defined order, the y-axis 
(Figure 3-16). It is then possible to derive from such plot a Lorenz curve, which simply represents the 
normalization between 0 and 1 of the values on both axes of (Figure 3-16 For each hexagon, the 
corresponding value of the Lorenz curve is 

𝐿
𝑎10

ℎ𝑒𝑥(𝜆𝑖) =
1

𝐾
∙ ∑ 𝑎(𝜆𝑗)

𝑖

𝑗=1

 

Constant 𝐾 is the normalization factor; therefore, the Lorenz curve goes from 0 to 1 . i.e.  

                                                 
10 Please consider that the corresponding value for the Lorenz curve which is in terms of accessibility score can be velocity or 
sociality score. As you see in Figure 3-17, we showed velocity score just as an example. However, the exact same graph can 
be also produce for sociality score and you will see in results and discussion chapter. 
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𝐾 = ∑ 𝑎(𝜆𝑗)
|Λ|

𝑗=1
 

We finally normalize the x-axis, so it goes from 0 to 1. Here the normalization factor is the number of 
hexagons. The final result is shown in (Figure 3-17).  

Figure 3-16 Hexagon based on its Velocity score in a cumulative way for Paris 

 
Figure 3-17 Hexagon-based Lorenz curve for Paris 
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3.2.2.1.2. Individual-based Lorenz curve 

In order to solve the limitation of the hexagon-based Lorenz curve, that is, we give the same weight to all 
of the hexagons no matter the amount of their population, we also compute the second type of Lorenz 
curve, which is the Individual-based Lorenz curve.  

This time we consider an individual as a stakeholder. Let us consider an individual 𝑝 living in hexagon 𝜆 
(we indicate this with 𝑝 ∈ 𝜆). We assume that all the individuals living in any hexagon 𝜆 ∈ Λ enjoy the 
accessibility of that hexagon, i.e., 𝑎(𝑝) = 𝑎(𝜆) ∀𝑝 ∈ 𝜆. Let us denote 𝑃 the set of all individuals. We 
order the individuals 𝑝1, 𝑝2, … , 𝑝|𝑃| such that 𝑎(𝑝𝑖) ≤ 𝑎(𝑝𝑖+1). If we browse individuals in such an order, 
we will first encounter all individuals in the worst hexagon (the one with the smallest accessibility), then 
the second worst and so on. We put the individuals 𝑝1, 𝑝2, … , 𝑝|𝑃| on the x-axis, and the corresponding 
value for each individual 𝑝𝑖 the Lorenz curve is 

𝐿
𝑎11

𝑖𝑛𝑑(𝜆𝑖) =
1

𝐾′
∙ ∑ 𝑎(𝑝𝑗)

𝑖

𝑗=1

 

And, similarly as before 𝐾′ is the normalization factor to have the values of the Lorenz curve from 0 to 1. 
So, the normalization factor is  

𝐾′ = ∑ 𝑎(𝑝𝑗)
|P|

𝑗=1
 

We also normalize the x-axis by the study area's population as in Figure 3-18. 

In principle, Lorenz curves could be derived for any of the three scores introduced in subsection 2.2.1.1. 
However, given the lack of data for all considered cities, we computed hexagon-based and individual-
based curves only for velocity and sociality score, thus four types of Lorenz curves in total (section 4.2) 

As we know Lorenz curve is a curve used to see inequality visually. However, to have a mathematically 
correct number to be capable of comparing the inequality in different cities in the next section, we are 
going to define the Gini coefficient. 

                                                 
11 Please consider that the corresponding value for the Lorenz curve which is in terms of accessibility score can be velocity or 
sociality score. As you see in Figure 3-18, we showed velocity score just as an example. However, the exact same graph can 
be also produce for sociality score and you will see in results and discussion chapter. 
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Figure 3-18 Individual-based Lorenz curve for Paris 

 

3.2.2.2. Gini index 

 Gini coefficient is a single simple mathematical metric that represents the overall degree of inequity. The 
area between the line of equality and the observed curve is divided by the entire area under the line of 
equality to get this ratio. With this index, the distributions of two separate Lorenz curves can be compared 
numerically (Gini, 1912). A Gini coefficient of 0 expresses perfect equality, where all values are the same 
(i.e., everyone has the same share of benefits). A Gini coefficient of 1 (or 100 %) expresses maximal 
inequality among values (i.e., for many people where only one person has all the benefits and all others 
have none, the Gini coefficient will be nearly one). The Gini coefficient is difficult to calculate 
mathematically; however, it may be approximated using the following formula(Delbosc and Currie, 2011)  

𝐺 = 1 − ∑(𝑋𝑘 − 𝑋𝑘−1)(𝑌𝑘 − 𝑌𝑘−1)

𝑛

𝑘=1

 

Where 𝑋𝑘 is the cumulated proportion of the population variable, for 𝑘 = 0, … , 𝑛 with 𝑋0 = 0, 𝑋𝑛 = 1 
and 𝑌𝑘 is the cumulated proportion of the benefits that here are represented by the accessibility score, for 
𝑘 = 0, … , 𝑛 with  𝑌0 = 0, 𝑌𝑛 = 1. Figure 3-19 is an example of the Lorenz curve and Gini index. 

Finally, by having the accessibility scores for each hexagon in the city, we can derive the Lorenz curve 
and also compute the Gini coefficient. The reason behind using the Lorenz curve and Gini coefficient 
together is because with the Lorenz curve, we have just a visual presentation of the distribution of 
accessibility among the population and this cannot help us to compare different cities inequity. However, 
by computing the Gini index, we arrive at a specific number for each city which can be compared in 
different cities. 
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Figure 3-19 Example of Gini Index 

 

3.2.3. Public transportation system improvement toward equity 

3.2.3.1. Motivation and terminology 

The calculation of accessibility scores explained in 3.2.1.2 is based on General Transit Feed Specification 
(GTFS) explained in detail in 3.1.1. 

Let us denote with ℒ the set of transit lines. Thanks to this information, starting from the center of any 
hexagon 𝜆 ∈ Λ, with the departure time of 𝑡, we can compute all the hexagons that can be reached within 
the time range T. An isochrone is then calculated to include the reached hexagons. The accessibility score 
𝑎(𝜆, 𝑡, ℒ) could be both velocity and sociality scores according to 3.2.1.2 .  This methodology uses the 
“public-transport-analysis” script in 3.2.1 as a base to be capable to studying the concept of lines in the 
accessibility scores, to which other scripts were developed and added as we are going to describe in 
following sections. 

It is easy to show that the more lines available, the more the accessibility. Fixing any 𝜆 and 𝑡, 𝑎(𝜆, 𝑡, ℒ) is 
an increasing set function, i.e., 𝑎(𝜆, 𝑡, ℒ′) ≤  𝑎(𝜆, 𝑡, ℒ) if  ℒ′ ⊂ ℒ. 

3.2.3.2. Definition of a score for equity 

Let us consider the set of lines 𝑙 ∈ ℒ, either bus, metro, or commuter rail. We want to associate an equity 
score to any line 𝑙, to measure how significant its contribution is to the overall transit equity. 
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To this aim, we compute the contribution of line 𝑙 to the Gini index. As we previously mentioned, passing 
from ℒ\{𝑙} to ℒ undoubtedly improves the accessibility of all hexagons. However, it is essential to 
understand how such an improvement is distributed across hexagons. i.e., for which hexagons this 
improvement is considerable and for which others it is instead negligible. 

Suppose that, when passing from ℒ\{𝑙} to ℒ, the most considerable accessibility improvement is observed 
in the "unfortunate" hexagons, i.e., those suffering from low accessibility. Therefore, this means that 𝑙 has 
a beneficial impact on equity. Observe that the unfortunate hexagons correspond to the population on the 
left of the Lorenz curve (Figure 3-15). So, in this case, the left part of the Lorenz curve "inflates" while 
the right part deflates due to its scaling to 1. As a result, the Lorenz curve approaches the perfect equity 
curve as geometrical evidence, and the Gini index decreases. Therefore, in this case, we can say that 𝑙 is 
positively contributing to equity. 

If, instead, the most considerable improvement is observed in the "fortunate" hexagons. i.e., the ones 
enjoying high accessibility, the opposite consideration holds that in this case, line 𝑙 is not beneficial to 
equity, and the Gini index increases. In this case, it would not mean that it does not help improve equity 
(although it may improve average accessibility or overall travel time). This would not mean that 𝑙 has to 
be eliminated but that, if a transit authority has a limited budget to improve its offer, it should invest in 
improving other lines rather than 𝑙, e.g., by increasing frequency or introducing advanced technology like 
automation. 

We have thus shown that the change in the Gini index when passing from ℒ\{𝑙} to ℒ indicates its 
contribution to equity. This means that if the Gini index increases a lot, 𝑙 worsens inequity. Otherwise, 𝑙 
positively contributes to equity. More formally, let us denote with 𝐺(ℒ, 𝑡) the Gini index when all lines 
are active, considering departures at time 𝑡. Let us denote with 𝐺(ℒ\{𝑙}, 𝑡) the Gini index without line 𝑙. 
We define the equity score as 

∆𝐺(𝑙 , 𝑡) = 𝐺(ℒ\{𝑙}, 𝑡) − 𝐺(ℒ, 𝑡)  

If ∆𝐺(𝑙 , 𝑡) is largely positive, then 𝑙 is important for equity at time 𝑡, while if ∆𝐺(𝑙 , 𝑡) is small or negative, 
that line is irrelevant in terms of equity. The equity score, as defined before, might be difficult to compute 
as it requires a relatively large amount of computation, which may become prohibitive in large cities. 

3.2.3.2.1. Proof of computational complexity of equity score 

Let us fix a specific departure time 𝑡. In order to compute the Gini index 𝐺(ℒ, 𝑡), we need to compute the 
Lorenz curve, which in turn requires computing the set of all accessibility values {𝑎(𝜆, 𝑡, ℒ)|𝜆 ∈ Λ}. In 
order to get these values, we have to compute the earliest arrival path from hexagon 𝜆 to 𝜆′ with departure 
time 𝑡 is the sequence of movements that allow arriving at 𝜆′ As soon as possible. A movement can be (i) 
to walk from one hexagon to another, (ii) to wait at a stop, (iii) to board a vehicle (bus, train, or metro) up 
to a specific other stop, (iv) to alight. Observe that one can alight a vehicle and board another on another 
line. We thus need to compute |Λ| ∙ |Λ| earliest arrival paths. We take the computation of the shortest 
arrival times from (Biazzo et al., 2019) and the algorithm described in 3.2.1.1. 
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To compute {∆𝐺(𝑙 , 𝑡)|𝑙 ∈ ℒ}, we need to compute 𝐺(ℒ\{𝑙}, 𝑡) for all lines 𝑙 ∈ ℒ, in addition to 𝐺(𝑙 , 𝑡). 
Therefore, the computation of the earliest arrival paths must be repeated ℒ + 1 times. 

This computational complexity is very impractical if the computation of equity scores is used within an 
optimization loop, in which lines are iteratively modified to get, at the end of the loop, a transit structure 
with better equity. We thus propose in the following subsection a method to compute an alternative 
approximate score for each line 𝑒(𝑙 , 𝑡), ∀𝑙 ∈ ℒ, more computationally efficient than ∆𝐺(𝑙 , 𝑡), while 
preserving its meaning. i.e., indicating the contribution of each transit line toward equity. 

3.2.3.3. Line importance function 

We instrument the earliest arrival path algorithm with an importance function 𝑖(𝜆, 𝑙 , 𝑡) which we initialize 
to 𝑖(𝜆, 𝑙 , 𝑡) = 0, ∀𝜆 ∈ Λ, 𝑙 ∈ ℒ. While constructing the earliest arrival time paths from 𝜆 to any other 
hexagons, departing at time 𝑡 and within travel time T, we increment 𝑖(𝜆, 𝑙 , 𝑡) by the distance traveled via 
line 𝑙 (0 in case 𝑙 is never used). In this way, we give more weight to the lines that take a user departing 
from hexagon 𝜆 as furthest as possible. Indeed, such lines are likely to be those that contribute the most 
to the accessibility of 𝜆. Therefore, at the end of the earliest arrival path computation, we obtain, with 
practically no additional computational cost, the importance function 𝑖(𝜆, 𝑙 , 𝑡), telling how significant the 
contribution of each line 𝑙 is for the accessibility of any hexagon 𝜆 ∈ Λ, considering departure time 𝑡. 

We now order hexagons 𝜆 = 1, … , |Λ| from the "worst" (the one with the lowest accessibility) to the "best" 
(the one with the highest accessibility). We define the cumulative importance function as  

𝐼(𝜆, 𝑙 , 𝑡) = ∑ 𝑖(𝜆′, 𝑙 , 𝑡) 

𝜆

𝜆′=1

 

It expresses the importance of line 𝑙 for the 𝜆 worst hexagons, which are 𝜆′ = 1, … , 𝜆, following the order 
above. We depict an example in Figure 3-20, which used the new approach for computing the equity score 
of two public transport lines in Turin, namely Train SFM1 and Tram line 13. 
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Figure 3-20 Cumulative importance function for two lines  𝐼(𝜆, 𝑙1 , 𝑡) and 𝐼(𝜆, 𝑙2 , 𝑡) as a function of 𝜆 in Turin 

 

 

It is evident that a line whose cumulative importance is very high for the worst hexagons (𝑙1 of Figure 
3-20) is beneficial for equity, as it allows people in disadvantaged hexagons to go relatively far. On the 
contrary, a line whose cumulative importance function remains low for the worst hexagons and only 
increases for the best hexagons does not contribute to equity. For instance, in Figure 3-20 line 𝑙2 does not 
contribute at all to the accessibility of the worst 300 hexagons. Usually cumulative importance functions 
are all convex like the above depicted two, which eases their comparison in order to unequivocally 
understand which line is mostly contributing to equity. 

3.2.3.4. Extraction of the worst hexagons 

According to 3.2.3.3, we have arrived at the formula that computes the line importance value for the worst 
hexagons, and those worst hexagons are the ones located in the suburbs. To be capable of selecting and 
extracting the hexagons that are both relevant to analyse and located in the suburbs, we need to define two 
different criteria. Population criterion 

As we know, we may have computed the importance function value for a hexagon that, in reality, no one 
lives there. So, in order to remove these types of errors, we remove those hexagons whose population 
density is not significant (less than 100 people per 𝐾𝑚2). 

3.2.3.4.1.  Suburb criterion 

In order to select those hexagons located in the suburbs, we experimentally define the following criteria. 
We denote 𝑅 as the maximum distance from the center of the city (the distance between the farthest 
hexagon and the center of the city) and 𝑟 as the distance of a certain hexagon from the center. The 
considered criteria are as follows: 
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i. Consider hexagons with  
𝑟

𝑅
≥

1

3
 

ii. Consider hexagons with  
𝑟

𝑅
≥

1

6
 

iii. Consider hexagons with  
𝑟

𝑅
≥

1

12
 

iv. Sort the hexagons from worst to the best based on the sociality score and take the first 40% of the 
hexagons. 

v. Sort the hexagons from worst to the best based on the sociality score and take the first 65% of the 
hexagons. 

vi. Sort the hexagons from worst to the best based on the sociality score and take the first 90% of the 
hexagons. 

vii. Consider hexagons with a sociality score of less than 25% of the maximum sociality score. 
viii. Consider hexagons with a sociality score of less than 50% of the maximum sociality score. 

ix. Consider hexagons with a sociality score of less than 75% of the maximum sociality score. 

 

Figure 3-21 Suburb criterion - Radius 

 

As in Figure 3-21, for instance, if we choose criterion (i), we will get those hexagons located at a distance 
from the center  𝑟 ≥ 1/3 ∙ 𝑅. 
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Figure 3-22 An example for suburb criterion using sociality score 

 
Figure 3-23 Sociality score and distance from the center dependence for Turin 

 

As in Figure 3-22, the hexagons are sorted based on their sociality score, and for instance, if we choose 
the criterion (iv), we will get the first 40% of hexagons, roughly the first 400 hexagons in this example 
that also have low sociality score and according to the example in Figure 3-23 as much as we go from the 
center to the periphery the sociality score decreases. So, those hexagons with low sociality score are the 
ones located in the periphery. 

Finally, for the last three criteria, we catch the maximum sociality score in the city, and we select those 
hexagons with a sociality score lower than, for example, 25% of the maximum sociality score as in 
criterion (vii). 

The choice of the best criterion is case-specific and it will therefore be discussed in when presenting the 
results. 



37 
 

3.2.4. Considered cities 

We consider two distinct sets of cities to run experiments. The first part, which is the comparison of the 
results of accessibility equity between our method based on section 3.2.2 and the results from (Biazzo et 
al., 2019) considers Paris, Boston, Sydney, and Madrid. This selection is because in the (Biazzo et al., 
2019) report, the accessibility equity results for Paris, New York, Madrid, Montreal, Sydney, and Boston 
and between those, we selected the four cities above. 

In the second part, which is the finding of the most important lines of the transit system for equity, we 
considered Turin, Aachen, Manchester, Helsinki, Vienna, Budapest, and Berlin. The reason behind this 
selection and the difference between the cities in the first part and second part is that the four cities in the 
first part have high number of stops in their transit network, increasing the computation time 
supernumerary. Finally, because each city has to do the computation as many times as the number of lines, 
we have to consider cities with a reasonable number of stops. 

3.2.5. Scripts for computation of line importance function 

The script for computing the line importance function reported in Appendix D. However, if the reader 
wants to run the code on his/her machine the code for computing the line importance function and also 
the accessibility scores with description is available on Github 12 (Figure 3-24). 

Figure 3-24 Github Webpage containing the needed scripts 

 

                                                 
12 https://github.com/amirhesam1995/public-transport-analysis 
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4. Chapter 4: Results and discussion 
 

The development of this chapter will carry out in two parts. In the first part, we will show the results of 
accessibility scores of ,Paris, Boston, Sydney, and Madrid. And then talk about their general description 
and inequality in their geographical distribution; finally, we will trace the Lorenz curve, compute Gini 
indices, and compare our findings with (Biazzo et al., 2019). In the second part, we will show the results 
of transit line scoring and discuss the methodology used. 

According to what we have described in 3.2.1.2 for the two defined scores, which are velocity and sociality 
scores, we have arrived at the following formulas: 

𝜈(𝜆) =  
∑ ∫ 𝜈(𝜏, (𝜆, 𝑡0))𝑑𝜏

𝑇

0

𝑡𝑒𝑛𝑑
𝑡0=𝑡𝑠𝑡𝑎𝑟𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑠
 

𝑠(𝜆) =  
∑ ∫ 𝑃(𝜏, (𝜆, 𝑡0))𝑑𝜏

𝑇

0

𝑡𝑒𝑛𝑑
𝑡0=𝑡𝑠𝑡𝑎𝑟𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑠
 

We have two variables here which are the departure time 𝑡0 and maximum travel time 𝑇. These two 
variables have to be set as an experimental value, and to do so, for the departure time, we considered 6 
AM until 10 PM every two hours in order to include all the different departure times in a day that public 
transit works more or less at a reasonable frequency and also we can include the different peak times of a 
day in this interval. So now, according to the formula, by averaging over different departure times, we can 
reach one specific number for accessibility of each hexagon that more or less shows the accessibility in 
one specific day. 

The second experimental variable that has to be set is the maximum travel time 𝑇. According to (Worx, 
2017) and Figure 4-1, more than half of European respondents (56.8%) say that, on average, they take less 
than an hour to get to and from work each day. One-third of them (29.8%) takes less than half an hour a 
day, while 27% take between 30 minutes and an hour. Of the countries surveyed, the British spend the 
most time traveling, with 28.8% claiming to take 90 minutes or more on their commute. So as an average 
and also to consider the confidence interval here, we consider 1 hour. 

Figure 4-1 Time for commuting to and from work (Worx 2017) 
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4.1. General description of accessibility scores 

As described in 3.2.1.2, we have computed the accessibility scores using the python script “public-
transport-analysis” of the work (Biazzo et al., 2019). According to the visualization in Figure 3-6 and 
Figure 3-9, we can see the unequal distribution of accessibility among the population residing in the center 
of the city and the periphery population. However, to have a mathematically correct number and 
visualization beside our eyes to quantify this inequity, we resort to the Lorenz curve and Gini index 
described by the methodology in 3.2.2.1 and 3.2.2.2.  

4.2. Quantify the level of inequity in accessibility distribution 

We compared Paris, Madrid, Boston, and Sydney, among the analyzed cities from (Biazzo et al., 2019). 
They quantify the inequality by two metrics: 

 The ratio between the average accessibility of the best 1% hexagons and the average of the other 
99% of hexagons  

 The ratio between the average accessibility of the best 1% population and the average of the other 
99% of the population 
 

The above-mentioned inequality metrics, we feel, are unreliable. Indeed, there is no compelling reason to 
select the top 1% of scores. In fact, if a different proportion is utilized (say, 5%), inequality results may 
be drastically different. Therefore, we have decided to use the Gini index on Lorenz curves to measure 
inequality. The Gini index is more general than the two metrics mentioned above. Moreover, it does not 
require arbitrary choosing of any parameter. 

Table 4-1 Types of Lorenz curve or Gini indices 

Notation 
Gini 

Index 

Notation 
Lorenz 
Curve 

Description Unit of analysis Accessibility 
score 

𝑮𝒗
𝐡𝒆𝒙 𝐿𝑣

ℎ𝑒𝑥(𝜆𝑖) Hexagon-based Lorenz curve or Gini index of the velocity 
score Hexagons Velocity 

𝑮𝒔
𝐡𝒆𝒙 𝐿𝑠

ℎ𝑒𝑥(𝜆𝑖) Hexagon-based Lorenz curve or Gini index of the sociality 
score Hexagons Sociality 

𝑮𝒗
𝒊𝒏𝒅 𝐿𝑣

𝑖𝑛𝑑(𝜆𝑖) Individual-based Lorenz curve or Gini index of the velocity 
score Individuals Velocity 

𝑮𝒔
𝒊𝒏𝒅 𝐿𝑠

𝑖𝑛𝑑(𝜆𝑖) Individual-based Lorenz curve or Gini index of the sociality 
score Individuals Sociality 

 
We denote the Gini indexes computed on the respective Lorenz curves as 𝐺𝑣

ℎ𝑒𝑥, 𝐺𝑠
ℎ𝑒𝑥,𝐺𝑣

𝑖𝑛𝑑 , 𝐺𝑠
𝑖𝑛𝑑 . 
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As in Table 4-1, We have four types of Lorenz curve and Gini Index as well. In what is reported in Figure 
3-4, Figure 3-5, Figure 3-6 and Figure 3-7 each type of Lorenz curve is depicted for all four considered 
cities. 

The Gini indexes we calculated are reported in Table 4-2. Recall that the lower the Gini index, the better 
the equity. To allow easier comparison between cities, we normalize each column via mean normalization 
by the formula:  

𝑥′ =
𝑥 − average (𝑥)

max(𝑥) − min (𝑥)
 

 Moreover, we report the results in Table 4-3. For a more straightforward interpretation, we plot in Figure 
4-6. If the corresponding Gini index in each column was below the average, the normalization number is 
negative, which is highlighted in green, and if the Gini index is higher than average, the normalized value 
will be positive and highlighted in red. 

Figure 4-2 Hexagon-based Lorenz curves of the velocity score  𝐿𝑣
ℎ𝑒𝑥(𝜆𝑖) 
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Figure 4-3 Hexagon-based Lorenz curves of the sociality score 𝐿𝑠
ℎ𝑒𝑥(𝜆𝑖) 
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Figure 4-4 Individual-based Lorenz curves of the velocity score 𝐿𝑣
𝑖𝑛𝑑(𝜆𝑖) 
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Figure 4-5 Individual-based Lorenz curves of the sociality score 𝐿𝑠
𝑖𝑛𝑑(𝜆𝑖) 

  

  
 

 

Table 4-2 Gini indices of four mentioned cities 

City 𝑮𝒗
𝒉𝒆𝒙 𝑮𝒔

𝒉𝒆𝒙 𝑮𝒗
𝒊𝒏𝒅 𝑮𝒔

𝒊𝒏𝒅 

Paris 0.3868 0.4777 0.3809 0.4259 

Madrid 0.3762 0.4436 0.3584 0.3803 

Boston 0.3721 0.4306 0.3713 0.4166 

Sydney 0.3757 0.5208 0.371 0.4232 
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Table 4-3 Normalized Gini indices of four considered cities 

City 𝑮𝒗
𝒉𝒆𝒙 𝑮𝒔

𝒉𝒆𝒙 𝑮𝒗
𝒊𝒏𝒅 𝑮𝒔

𝒊𝒏𝒅 

Paris 0.62 0.11 0.47 0.32 

Madrid -0.10 -0.27 -0.53 -0.68 

Boston -0.38 -0.42 0.04 0.11 

Sydney -0.14 0.58 0.03 0.26 

 

Figure 4-6 Normalized Gini indices (the larger, the higher inequity) 
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Figure 4-7 Velocity Score of four considered cities 

  
Paris 

 
Madrid 

  
Sydney 

 
Boston 
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Figure 4-8 Sociality Score of four considered cities (Millions of Inhabitants) 

 
Milions of 
inhabitants 

 
Paris 

 
Madrid 

 
Milions of 
inhabitants 

 
Sydney 

 
Boston 

 

We first notice that Paris suffers the most from high inequity, with most of the four different types of the 
Gini coefficient used. Because, as in Table 4-3 in the first column, Paris is the only one that has a value 
higher than the average that shows the most inequitable city, and then in the second column, which is 
hexagon-based velocity score Gini index Paris and Sydney have the value higher than average. However, 
the value of Paris is lower than Sydney, which shows Sydney is the most inequitable city. for the third and 
fourth column, Paris, Madrid, and Sydney has value higher than average, but the value for Paris is higher 
than others, so it is the most inequitable city. Overall, we can say that in three of the four metrics used, 
Paris is the most inequitable city. On the contrary, Madrid enjoys the best equity. This is confirmed by 
visually comparing the geographical distribution of the accessibility scores from the two cities in Figure 
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4-7 and Figure 4-8. It is evident that the accessibility gap between the center and suburbs is way more 
significant in Paris, while in Madrid, accessibility is more evenly distributed. 

As you may see in Figure 4-7 for the velocity score we have hexagons with velocity score higher than 
even 10 Km/h in Paris and Madrid but we have not hexagons with these high numbers in Boston and 
Sydney. This difference is because the overall level of public transport and speed of moving with it is 
higher in Paris and Madrid. Similarly in Figure 4-8 for the sociality score again because the overall level 
of public transport is better so it can moves much higher number of people in Paris and Madrid. 
Consequently, we expect higher numbers in these cities. 

We can order cities from the worst (high inequity) to the best (high equity) based on the four metrics 
defined in (Biazzo et al., 2019) and based on our four Gini-index-based metrics. We do this in Table 4-4. 
Note that all metrics confirm the general trends, but there are differences. For example, if we focus on the 
hexagon-based inequity of (Biazzo et al., 2019) velocity scores (first two rows of Table 4-4), based on our 
metric, Madrid is better than Sydney, in contrast to (Biazzo et al., 2019), that claim the opposite. However, 
visual inspection (Figure 4-7 shows that our claim is correct. Instead of sociality scores (Figure 4-8), our 
Gini-index-based metrics do not seem to be more accurate than (Biazzo et al., 2019). 

Table 4-4 Comparison of the ranking of cities from (Biazzo et al., 2019) and the ranking based on our computation (Figure 4-6) 

Metric Worst city 2nd worst 2nd best Best 
Velocity score  

(top 1% hexagons) Paris Madrid Sydney Boston 

𝐺𝑣
ℎ𝑒𝑥 Paris Sydney Madrid Boston 

Sociality score 
(top 1%hexagons) Paris Boston Sydney Madrid 

𝐺𝑠
ℎ𝑒𝑥 Sydney Paris Madrid Boston 

Velocity score  
(top 1% individuals) 

Paris Boston Sydney Madrid 

𝐺𝑣
𝑖𝑛𝑑 Paris Boston Sydney Madrid 

Sociality score 
(top 1% individuals) Boston Sydney Paris Madrid 

𝐺𝑠
𝑖𝑛𝑑 Paris Sydney Boston Madrid 

 
Our results reported in italic. Each ranking orders the cities from the one that suffers the highest inequity, to the one that enjoys 

the highest equity. Green background indicates that the two rankings correspond. 
 

Overall, one reassuring finding emerges: all metrics manage to capture the evident differences in 
Accessibility equity from one city to another. This encourages the possibility of automating equity analysis 
across cities, with no need for visual inspection, only based on open data. 
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4.3. A brief consideration of Attraction Score 

The attraction score was the third score we showed to also consider the opportunities in the city as 
described in 3.1.3 and 3.2.1.2.3. However, here we want to show this score for just two cities among the 
considered cities in 3.2.4, Paris and Turin, because, as we described in 3.2.1.2.3.1, it is hard to get the data 
about workplaces for different cities. First, we show the spatial distribution of the attraction score. Then, 
by the Lorenz curve and computing the Gini index compares the level of inequity in these two cities. 

As we can see in Figure 4-9, the distribution of attraction score is entirely different in these two cities, and 
this makes sense because the number of jobs in Paris is far higher than in Turin. Consequently, we see the 
highest attraction score in Turin is around 0.3 million of jobs but in Paris is around 3 million of jobs.   

Figure 4-9 Attraction Score of Paris (left) and Turin (right) 

   
 

 

The next step is to depict the Lorenz curve and also compute the Gini index and compare the results (recall 
that according to 3.2.2.1, we have two Lorenz curve types: Hexagonal-based Lorenz curve and Individual-
based Lorenz curve) (Figure 4-10). 
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Figure 4-10 Lorenz curve of the two considered cities (Paris and Turin) 

 
Turin Hexagonal based Lorenz curve 

 
Paris Hexagonal based Lorenz curve 

 
Turin Individual based Lorenz curve 

 
Paris Individual based Lorenz curve 

 

 

Table 4-5 Gini indices of two considered cities (Turin and Paris) 

City 
Hexagonal 

Attraction Score 

Individual 

Attraction Score 

Turin 0.49 0.29 

Paris 0.73 0.40 

 

According to the Gini numbers that we can see in Table 4-5, no matter the metrics used, Paris is more 
inequitable than Turin, and this could also be shown in section 3.2 that Paris was the most inequitable 
among the considered cities. 
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The concept of attraction score is presented to show that it is possible to compute accessibility with 
employment data like the sociality score with the population grid. A single index reflecting the two ends 
of a journey would be required for a proper accessibility measurement in the transportation sector. 
However, as we noted in the introduction, these data are challenging to get, and we do not have 
employment data for all considered cities in 3.2.4. As a result, we exclusively used available data in our 
methodology and based it on the population grid to find the lines contributing to accessibility. 

4.4. Finding transit lines that benefit the equity in cities 

According to 3.2.3.2, we defined the equity score, but the computation of this score requires a very high 
computation time as in 3.2.3.2.1. So, because of this computational complexity, we use the line importance 
function according to 3.2.3.3. However, to be capable of comparing the values for both equity score and 
line importance function, we will first show the results for both of them and then talk about their 
correlation and how we can move from one to the other. 

4.4.1. Results for the equity score and line importance function 

, When computing the accessibility score for different cities in 3.2.1, we took different departure times 
from 6AM up to 10PM. On the other hand, here we consider the departure time equal to 8AM for the 
computation of equity score and importance function, because we have to compute the Gini index, which 
is the basis of the equity score, each time we remove a line. Consequently, considering different departure 
times makes our computation time much longer, and it was impossible to do it in our case. So, we have to 
consider just one departure time, and between all those possible departure times, 8AM can more or less 
capture the peak in the morning. Moreover, also for the importance function we have to consider also 
8AM in order to be capable to correlate the results between equity score and line importance function. 

As in 3.2.3.2, equity score for each line of the transit system is computed using the Gini index. To better 
understand this way of computing, we depict the result of equity score for the best and worst five lines of 
public transit in terms of equity for Turin in Table 4-6, and the same results for other cities will report in 
the Appendix B. The Transit lines highlighted in green are the ones with the lowest score, and those are 
lines that are less important for equity, and the ones highlighted in red are those which are the most 
important for equity. 
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Table 4-6 Four types of equity score for the five best and five worst lines in Turin 

Rank Transit Line Hex 
Sociality 

Transit 
Line 

Pop 
Sociality 

Transit 
Line 

Hex 
Velocity 

Transit 
Line 

Pop 
Velocity 

1st Metro Line -0.0081 Tram Line 
10 -0.0008 Metro 

Line -0.0044 Metro 
Line -0.0071 

2nd Bus Line 2 -0.0015 Metro 
Line -0.0007 Bus Line 

62 -0.0015 Bus Line 
2 -0.0011 

3rd Tram Line 
10 -0.0006 Bus Line 

57 -0.0005 Bus Line 
2 -0.0009 

Train 
Line 

SFM1 
-0.0007 

4th Bus Line 
60 -0.0004 Train Line 

SFM6 -0.0004 Tram 
Line 4 -0.0008 Tram 

Line 10 -0.0007 

5th Bus Line 
58 -0.0004 Bus Line 

58 -0.0004 Bus Line 
5 -0.0008 Tram 

Line 4 -0.0005 

5th to last Bus Line 
59 0.0055 Bus Line 

1091 0.0025 Bus Line 
70 0.0006 Bus Line 

1510 0.0012 

4th to last Bus Line 
1511 0.0064 Train Line 

SFM2 0.0030 Bus Line 
1511 0.0008 Bus Line 

30 0.0016 

3rd to last Bus Line 
30 0.0070 Bus Line 

1432 0.0032 Bus Line 
3096 0.0012 Bus Line 

1511 0.0017 

2nd to last Bus Line 
1432 0.0082 Bus Line 

3107 0.0034 Bus Line 
30 0.0016 Bus Line 

1432 0.0020 

Last Bus Line 
3107 0.0131 Bus Line 

62 0.0046 Bus Line 
3107 0.0026 Bus Line 

3107 0.0028 
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Figure 4-11 Probability distribution function of four types of equity score in Turin 

  

  
 

As in Table 4-6 for Turin, we can see that depending on the metrics that we use, the equity score ∆𝐺(𝑙 , 𝑡) 
and the ranking of the lines that we get could be different. The same data for other considered cities 
reported in Appendix B. 

As in Figure 4-11, we depict the histogram of different equity scores for Turin. In hexagonal and individual 
velocity equity scores, most of the scores gathered around the 0, which are the lines with a very low impact 
on accessibility equity. On the other hand, for the hexagonal and individual sociality, most scores gathered 
a little higher than zero, due to a much longer right tail of the distribution compared to the two velocity 
scores. To sum up, depending on the metric, the results could be different. The same data as in Figure 
4-11, for other considered cities reported in Appendix B. 

Similarly in Table 4-7 for hexagonal velocity equity score the 2nd and 3rd quartile are both equal to zero 
which means 50% of the scores are equal to zero. Likely for individual velocity and hexagonal sociality 
equity scores the 1st and 2nd quartile are both equal to zero which means 50% of the scores are equal to 
zero. But, for the individual sociality equity score only the 1st quartile is equal to zero which shows 25% 
of the scores are equal to zero. We can say by choosing the individual sociality equity score we probably 
can better catch the lines that have impact on accessibility equity. 

 

  



53 
 

 

Table 4-7 Average and quartile values of the equity scores 

 Hex Sociality Pop Sociality Hex Velocity Pop Velocity 
Average 0.00052 0.00037 -4.5E-05 1.09E-05 

Quartile 1 0 0 -0.00013 0 
Quartile 2 0 0.00001 0 0 
Quartile 3 0.00051 0.00032 0 0.0001 
Quartile 4 0.00645 0.00303 0.00076 0.0016 

 

As for the line importance function, the results for the different combinations mentioned in 3.2.3.4 is 
reported in Table 4-8. As much as the importance function value is higher, the line is more important for 
equity. And, as in Table 4-8 the ranking of the lines depending on the combination can be different.  For 
instance, for combination (i) the best line is bus line 3107 but for combination (ii) the best line is Train 
SFM1. In Table 4-8, the bottom five lines are highlighted in green, and the top five lines are highlighted 
in red. 
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Table 4-8 Top and bottom five Importance function value for different combinations for Turin 
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Repeating the same procedure for equity score here for the line importance function leads us to nine 
histograms as in Figure 4-12. The same data as in Figure 4-12, for other considered cities reported in 
Appendix C. 

A concrete example in Turin is given in Figure 4-13, where we have on the left a line positively 
contributing to equity. Note that both ∆𝐺(𝑙 , 𝑡) and 𝑒(𝑙 , 𝑡) are higher for line on the left than on the right. 
The same example for other considered cities shown in Appendix A. 

Note also that the ∆𝐺(𝑙 , 𝑡) numbers show by removing a specific line from the city public transport 
network how much the value of the Gini index changes. If the line is important for equity, the value of the 
Gini index goes up, which shows that by removing that line, the area between the Lorenz curve and the 
perfect equity line has been increased and vice versa. For the line importance, the value of 𝑒(𝑙 , 𝑡) increases 
every time that individual use that line. In other words, the distance an individual travels between two 
consecutive stops of that specific line will be added to the line importance of that line. 

 

Figure 4-12 Probability distribution function of nine types of Line importance in Turin 
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Figure 4-13 Example of equity score and line importance function in Turin 

 

Turin, line important for equity. 
(Train SFM1) 

∆𝐺(𝑙 , 𝑡) = 1.3 ∙ 10−3, 𝑒(𝑙 , 𝑡) = 2.8 ∙ 106 

 

Turin, line not contributing to equity. 
(Tram line 13) 

∆𝐺(𝑙 , 𝑡) = −2.2 ∙ 10−4, 𝑒(𝑙 , 𝑡) = 3.6 ∙ 105 
 

4.4.2. Correlation between the results from equity score ∆𝐺(𝑙 , 𝑡) and the line 
importance function 𝑒(𝑙 , 𝑡) 

We select the hexagons of our interest which are those in suburbs based on the nine combinations 
described in 3.2.3.4.1 and the results shown in 4.4.1.In order to find the correlation between the results 
from equity score and line importance function, we have to define a new combination that considers the 
nine combinations defined in 2.2.3.4.2 and four different types of Gini index for equity score. The obtained 
combinations are reported in Table 4-9. In order to use these combinations to quantify the correlation, we 
resort to the Pearson coefficient and 𝑝-values. To better understand, for example, in combination number 
8, we correlate the results of equity score of hexagons based velocity score of the city and the results of 
line importance function considering the combination (ii) originated from 3.2.3.4.1.  
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Table 4-9 Different combinations between equity score and line importance function 

Combination 
number 

Definition of combination 

1 Considering hexagon based sociality score and combination (i) from 3.2.3.4.1 
2 Considering hexagon based sociality score and combination (ii) from 3.2.3.4.1 
3 Considering hexagon based sociality score and combination (iii) from 3.2.3.4.1 
4 Considering individual based sociality score and combination (i) from 3.2.3.4.1 
5 Considering individual based sociality score and combination (ii) from 3.2.3.4.1 
6 Considering individual based sociality score and combination (iii) from 3.2.3.4.1 
7 Considering hexagon based velocity score and combination (i) from 3.2.3.4.1 
8 Considering hexagon based velocity score and combination (ii) from 3.2.3.4.1 
9 Considering hexagon based velocity score and combination (iii) from 3.2.3.4.1 
10 Considering individual based velocity score and combination (i) from 3.2.3.4.1 
11 Considering individual based velocity score and combination (ii) from 3.2.3.4.1 
12 Considering individual based velocity score and combination (iii) from 3.2.3.4.1 
13 Considering hexagon based sociality score and combination (iv) from 3.2.3.4.1 
14 Considering hexagon based sociality score and combination (v) from 3.2.3.4.1 
15 Considering hexagon based sociality score and combination (vi) from 3.2.3.4.1 
16 Considering hexagon based sociality score and combination (vii) from 3.2.3.4.1 
17 Considering hexagon based sociality score and combination (viii) from 3.2.3.4.1 
18 Considering hexagon based sociality score and combination (ix) from 3.2.3.4.1 
19 Considering individual based sociality score and combination (iv) from 3.2.3.4.1 
20 Considering individual based sociality score and combination (v) from 3.2.3.4.1 
21 Considering individual based sociality score and combination (vi) from 3.2.3.4.1 
22 Considering individual based sociality score and combination (vii) from 3.2.3.4.1 
23 Considering individual based sociality score and combination (viii) from 3.2.3.4.1 
24 Considering individual based sociality score and combination (ix) from 3.2.3.4.1 
25 Considering hexagon based velocity score and combination (iv) from 3.2.3.4.1 
26 Considering hexagon based velocity score and combination (v) from 3.2.3.4.1 
27 Considering hexagon based velocity score and combination (vi) from 3.2.3.4.1 
28 Considering hexagon based velocity score and combination (vii) from 3.2.3.4.1 
29 Considering hexagon based velocity score and combination (viii) from 3.2.3.4.1 
30 Considering hexagon based velocity score and combination (ix) from 3.2.3.4.1 
31 Considering individual based velocity score and combination (iv) from 3.2.3.4.1 
32 Considering individual based velocity score and combination (v) from 3.2.3.4.1 
33 Considering individual based velocity score and combination (vi) from 3.2.3.4.1 
34 Considering individual based velocity score and combination (vii) from 3.2.3.4.1 
35 Considering individual based velocity score and combination (viii) from 3.2.3.4.1 
36 Considering individual based velocity score and combination (ix) from 3.2.3.4.1 
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We can show the correlation result for all 36 combinations for the seven considered cities that were listed 
in subsection 3.2.4 in Table 4-10 and Table 4-11. In these tables, we can see the value of the Pearson 
coefficient is from -1 to +1. When we have a negative Pearson coefficient value, this number is saying the 
equity score does not increase with the increase of line importance function and this is something against 
our assumption. As in Table 4-10 and Table 4-11 we do not have a negative Pearson coefficient for Vienna 
but for the rest of the cities, for example combination 7, for Helsinki and Berlin we have a very high 
negative value of Pearson coefficient and also, the 𝑝-value is significant. So, we can say although this 
combination is not beneficial for us but it still shows a good correlation between two scores. 
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Table 4-10 Different combination Pearson coefficient and 𝑝-value for all of the considered cities (part1) 
  

Turin Aachen Manchester Helsinki Vienna Budapest Berlin 
Comb 1 Pearson Coeff 0.5363 0.3359 0.5862 0.3687 0.3432 0.3838 0.3827 

𝒑-value 8.2E-17 8.7E-11 4.9E-60 1.5E-16 1.4E-08 2.7E-11 1.1E-42 
Comb 2 Pearson Coeff 0.2871 0.2346 0.1836 -0.0835 0.3668 0.1451 0.2922 

𝒑-value 2.7E-05 8.2E-06 3.1E-06 2.3E-01 1.1E-09 1.5E-02 8.4E-25 
Comb 3 Pearson Coeff 0.2316 0.1428 -0.0708 -0.1120 0.3804 0.1273 0.2916 

𝒑-value 7.9E-04 7.1E-03 7.4E-02 1.1E-01 2.4E-10 3.3E-02 1.1E-24 
Comb 4 Pearson Coeff 0.6291 0.1531 0.5529 0.6351 0.4369 0.4775 0.6314 

𝒑-value 3.3E-24 3.9E-03 2.8E-52 8.9E-25 1.7E-13 2.1E-17 4.8E-133 
Comb 5 Pearson Coeff 0.5917 0.3500 0.2833 0.5825 0.4700 0.4021 0.6383 

𝒑-value 6.2E-21 1.2E-11 3.2E-13 3.3E-20 1.2E-15 2.4E-12 7.6E-137 
Comb 6 Pearson Coeff 0.5754 0.3555 0.0198 0.5681 0.4852 0.4015 0.6367 

𝒑-value 1.2E-19 5.6E-12 6.2E-01 4.3E-19 1.1E-16 2.6E-12 6.2E-136 
Comb 7 Pearson Coeff -0.1084 -0.0981 -0.0467 -0.4707 0.2141 -0.1237 -0.6148 

𝒑-value 1.2E-01 6.5E-02 2.4E-01 3.1E-27 5.2E-04 3.8E-02 2.5E-124 
Comb 8 Pearson Coeff -0.3417 -0.4281 -0.5279 -0.6052 0.2348 -0.3801 -0.6819 

𝒑-value 4.7E-07 3.3E-17 5.3E-47 3.3E-48 1.4E-04 4.3E-11 3.8E-163 
Comb 9 Pearson Coeff -0.3735 -0.5861 -0.6234 -0.6252 0.2456 -0.3801 -0.6757 

𝒑-value 3.0E-08 4.9E-34 7.3E-70 3.1E-52 6.5E-05 4.4E-11 3.8E-159 
Comb 10 Pearson Coeff 0.0679 -0.0289 0.1697 0.0978 0.2676 -0.0581 -0.3716 

𝒑-value 3.3E-01 5.9E-01 1.7E-05 3.4E-02 1.3E-05 3.3E-01 3.6E-40 
Comb 11 Pearson Coeff -0.1393 -0.1691 -0.3310 -0.1149 0.3032 -0.3231 -0.4321 

𝒑-value 4.5E-02 1.4E-03 9.5E-18 1.3E-02 6.6E-07 3.0E-08 3.5E-55 
Comb 12 Pearson Coeff -0.1633 -0.2977 -0.4870 -0.1534 0.3197 -0.3153 -0.4193 

𝒑-value 1.9E-02 1.1E-08 3.0E-39 8.6E-04 1.4E-07 6.7E-08 9.8E-52 
Comb 13 Pearson Coeff 0.6765 0.3254 0.6239 0.3309 0.3554 0.3850 0.6039 

𝒑-value 4.8E-29 3.6E-10 5.3E-70 1.9E-13 4.0E-09 2.3E-11 7.1E-119 
Comb 14 Pearson Coeff 0.4806 0.2709 0.4411 0.2449 0.3434 0.1885 0.3755 

𝒑-value 2.3E-13 2.3E-07 1.0E-31 7.8E-08 1.4E-08 1.5E-03 4.7E-41 
Comb 15 Pearson Coeff 0.2581 0.1356 0.0239 0.2089 0.3691 0.1218 0.2860 

𝒑-value 1.7E-04 1.1E-02 5.5E-01 5.1E-06 8.9E-10 4.1E-02 8.8E-24 
Comb 16 Pearson Coeff 0.4727 0.2609 0.2195 0.3632 0.4039 0.2203 0.3644 

𝒑-value 6.4E-13 6.4E-07 2.2E-08 4.5E-16 1.4E-11 2.0E-04 1.4E-38 
Comb 17 Pearson Coeff 0.3056 0.1650 -0.1115 0.2307 0.3398 0.1299 0.2874 

𝒑-value 7.5E-06 1.8E-03 4.8E-03 4.4E-07 2.0E-08 2.9E-02 5.3E-24 
Comb 18 Pearson Coeff 0.2344 0.0986 -0.1577 0.2069 0.3646 0.1303 0.2907 

𝒑-value 6.8E-04 6.4E-02 6.4E-05 6.3E-06 1.5E-09 2.9E-02 1.5E-24 
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Table 4-11 Different combination Pearson coefficient and p-value for all of the considered cities (part2) 
  

Turin Aachen Manchester Helsinki Vienna Budapest Berlin 
Comb 19 Pearson Coeff 0.5523 0.3472 0.5176 0.6112 0.4226 0.5168 0.5900 

𝒑-value 6.3E-18 1.8E-11 6.1E-45 1.4E-22 1.2E-12 1.4E-20 3.2E-112 
Comb 20 Pearson Coeff 0.6237 0.3400 0.4727 0.5817 0.4392 0.4162 0.6566 

𝒑-value 1.0E-23 5.0E-11 9.1E-37 3.9E-20 1.2E-13 3.4E-13 2.6E-147 
Comb 21 Pearson Coeff 0.5776 0.3494 0.1200 0.5677 0.4755 0.3951 0.6394 

𝒑-value 8.2E-20 1.3E-11 2.4E-03 4.7E-19 5.2E-16 6.1E-12 2.0E-137 
Comb 22 Pearson Coeff 0.6260 0.3412 0.3054 0.6178 0.4460 0.4324 0.6553 

𝒑-value 6.4E-24 4.2E-11 3.2E-15 3.5E-23 4.6E-14 3.1E-14 1.5E-146 
Comb 23 Pearson Coeff 0.5879 0.3509 -0.0267 0.5747 0.4315 0.3937 0.6407 

𝒑-value 1.2E-20 1.1E-11 5.0E-01 1.4E-19 3.6E-13 7.5E-12 3.6E-138 
Comb 24 Pearson Coeff 0.5744 0.3414 -0.0768 0.5672 0.4705 0.4048 0.6378 

𝒑-value 1.4E-19 4.1E-11 5.3E-02 5.1E-19 1.1E-15 1.7E-12 1.6E-136 
Comb 25 Pearson Coeff 0.1889 -0.2822 0.1099 -0.5530 0.2603 -0.1157 -0.3683 

𝒑-value 6.4E-03 6.6E-08 5.5E-03 6.5E-39 2.2E-05 5.3E-02 1.9E-39 
Comb 26 Pearson Coeff -0.1738 -0.4041 -0.2886 -0.6037 0.2260 -0.3488 -0.6476 

𝒑-value 1.2E-02 2.5E-15 1.1E-13 6.6E-48 2.4E-04 1.8E-09 4.4E-142 
Comb 27 Pearson Coeff -0.3591 -0.6009 -0.5946 -0.6254 0.2371 -0.3874 -0.6855 

𝒑-value 1.1E-07 4.1E-36 3.7E-62 2.9E-52 1.2E-04 1.7E-11 1.6E-165 
Comb 28 Pearson Coeff -0.1835 -0.4127 -0.4890 -0.5318 0.3234 -0.3231 -0.6544 

𝒑-value 8.1E-03 5.4E-16 1.4E-39 1.3E-35 1.0E-07 3.0E-08 4.8E-146 
Comb 29 Pearson Coeff -0.3299 -0.5765 -0.6309 -0.6119 0.2265 -0.3887 -0.6876 

𝒑-value 1.2E-06 9.8E-33 5.2E-72 1.6E-49 2.4E-04 1.4E-11 6.7E-167 
Comb 30 Pearson Coeff -0.3725 -0.6255 -0.6376 -0.6277 0.2348 -0.3755 -0.6753 

𝒑-value 3.3E-08 7.9E-40 5.6E-74 9.5E-53 1.4E-04 7.7E-11 7.0E-159 
Comb 31 Pearson Coeff 0.3324 -0.0244 0.2744 -0.0270 0.2886 -0.1185 -0.0977 

𝒑-value 9.9E-07 6.5E-01 1.8E-12 5.6E-01 2.3E-06 4.7E-02 7.5E-04 
Comb 32 Pearson Coeff 0.0018 -0.1479 -0.0486 -0.1170 0.2790 -0.3093 -0.3872 

𝒑-value 9.8E-01 5.3E-03 2.2E-01 1.1E-02 5.1E-06 1.2E-07 9.4E-44 
Comb 33 Pearson Coeff -0.1561 -0.3181 -0.4314 -0.1558 0.3088 -0.3268 -0.4370 

𝒑-value 2.5E-02 9.1E-10 2.9E-30 7.1E-04 4.0E-07 2.0E-08 1.5E-56 
Comb 34 Pearson Coeff -0.0050 -0.1536 -0.2782 0.0038 0.3393 -0.2881 -0.3976 

𝒑-value 9.4E-01 3.8E-03 8.7E-13 9.3E-01 2.1E-08 9.0E-07 3.0E-46 
Comb 35 Pearson Coeff -0.1337 -0.2943 -0.5079 -0.1349 0.2747 -0.3341 -0.4408 

𝒑-value 5.5E-02 1.7E-08 4.4E-43 3.4E-03 7.3E-06 9.4E-09 1.3E-57 
Comb 36 Pearson Coeff -0.1636 -0.3485 -0.5290 -0.1579 0.3044 -0.3094 -0.4174 

𝒑-value 1.9E-02 1.5E-11 3.3E-47 6.0E-04 5.9E-07 1.2E-07 3.1E-51 
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𝑝-value can be seen as the probability of observing the measured correlation “by chance”, under the 
hypothesis that there is actually no dependency between 𝑒(𝑙 , 𝑡) and ∆𝐺(𝑙 , 𝑡). As an experimental setting, 
we consider the cut-off 𝑝-value equal to 0.05, which means when 𝑝-value is higher than 0.05, the 
correlation is considered totally “by chance”.As in Table 4-10 and Table 4-11, 𝑝-values with the value 
below 0.05 highlighted in red, and with a value higher than 0.05 are highlighted in green. Consequently, 
the red values shows that the probability that our Pearson correlation coefficient result be random are 
insignificant. Which means our Pearson coefficient shows the correlation which is not random. 

In order to find the best combination, one methodological choice could be to exclude those combinations 
with negative Pearson coefficient and 𝑝-value higher than the cut-off value, which is 0.05 in at least one 
city. by doing so, we reach combinations 1, 4, 5, 13, 14, 16, 19, 20, 21 and 22. 

Table 4-12 Remained combination after exclusion those with negative Pearson coefficient or high 𝑝-value in at least one city 

Combination 
number 

Definition of combination 

1 Considering hexagon based sociality score and combination (i) from 3.2.3.4.1 
4 Considering individual based sociality score and combination (i) from 3.2.3.4.1 
5 Considering individual based sociality score and combination (ii) from 3.2.3.4.1 
13 Considering hexagon based sociality score and combination (iv) from 3.2.3.4.1 
14 Considering hexagon based sociality score and combination (v) from 3.2.3.4.1 
16 Considering hexagon based sociality score and combination (vii) from 3.2.3.4.1 
19 Considering individual based sociality score and combination (iv) from 3.2.3.4.1 
20 Considering individual based sociality score and combination (v) from 3.2.3.4.1 
21 Considering individual based sociality score and combination (vi) from 3.2.3.4.1 
22 Considering individual based sociality score and combination (vii) from 3.2.3.4.1 

 

In an effort to select one combination among the above mentioned ones, we have to exclude the 
combinations one by one to reach to the best. In the first step, between the combination 1 and 4 we exclude 
combination 1. Because according to 3.2.2.1.1 and 3.2.2.1.2, the individual-based sociality score is scaled 
by the population of each hexagon but the hexagon-based is not scaled by the population of each hexagon. 
In the next step, between combinations 13 and 19 based on the same reason as before we exclude 
combination 13. In the third step, between combination 14 and 20 we exclude combination 14. In the last 
step, between 16 and 22, we exclude combination 16. 

Between the remaining combinations, we also exclude combinations 4 and 5. Because, they are based on 
𝑟

𝑅
 which is a measure not fit for cities that are not mono centric. Finally, we have combinations 19, 20, 21, 

and 22 which between them is hard to select just one combination. 

Another way to select best combination is to compute the average for each combination among different 
cities as in Table 4-13. The two maximum averages in the table are for combinations 4 and 20.  
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Table 4-13 Different combination’s Pearson coefficient and average over all cities 

Combination 
Number 

Average 

1 0.4195 
2 0.2037 
3 0.1416 
4 0.5023 
5 0.4740 
6 0.4346 
7 -0.1783 
8 -0.3900 
9 -0.4312 

10 0.0206 
11 -0.1723 
12 -0.2166 
13 0.4716 
14 0.3350 
15 0.2005 
16 0.3293 
17 0.1924 
18 0.1668 
19 0.4983 
20 0.5043 
21 0.4464 
22 0.4892 
23 0.4218 
24 0.4170 
25 -0.1086 
26 -0.3201 
27 -0.4308 
28 -0.3244 
29 -0.4284 
30 -0.4399 
31 0.0897 
32 -0.1042 
33 -0.2166 
34 -0.1113 
35 -0.2244 
36 -0.2316 

 

Combination 4 is the correlation between the equity score of the individual-based sociality score with the 

line importance function value of the hexagons with 
𝑟

𝑅
≥

1

3
, whereas combination 20 is the correlation 

between the equity score of the individual-based sociality score with the line importance function value 
of the first 65% of hexagons sorted by increasing sociality score. 
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Here we will choose combination 20 because it has the highest average Pearson correlation and very small 

𝑝-values. Moreover, it does not depend on 
𝑟

𝑅
 , so it can be applied in cities that are not mono-centric, it 

also considers the population which is hidden in the computation of sociality score. So, now we use the 
combination 20 to replicate our method in different cities, which means the formula from 4.4.2 updates as 
follows: 

𝑒(𝑙 , 𝑡) = 𝐼(𝜆65𝑡ℎ, 𝑙 , 𝑡) = ∑ 𝑖(𝜆′, 𝑙 , 𝑡) 

𝜆65𝑡ℎ

𝜆′=1

 

We now empirically confirm that 𝑒(𝑙) captures the same information of ∆𝐺(𝑙) in a much more 
computationally efficient way. The correlation between the two equity scores ∆𝐺(𝑙 , 𝑡) and 𝑒(𝑙 , 𝑡) appears 
in the scatterplots of Figure 4-14, where each point corresponds to a line 𝑙, whose x coordinate is ∆𝐺(𝑙 , 𝑡) 
and the y coordinate is 𝑒(𝑙 , 𝑡). To generalize this observation, Table 4-14 lists the selected combination 
Pearson’s correlation coefficient between the values ∆𝐺(𝑙 , 𝑡) and 𝑒(𝑙 , 𝑡), for all lines 𝑙 ∈ ℒ in all seven 
considered cities, we observe a relatively strong correlation. The fact that the two scores carry very similar 
information is confirmed by extremely low 𝑝-values.  
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Figure 4-14 Correlation between two equity scores for all of the considered cities 
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Table 4-14 Correlation between 𝑒(𝑙 , 𝑡) and ∆𝐺(𝑙 , 𝑡) 

City Pearson Coeff p-value 
Manchester 0.62 6E-18 

Turin 0.34 2E-11 
Aachen 0.47 6E-45 
Vienna 0.58 1E-22 
Helsinki 0.43 1E-12 
Berlin 0.42 1E-20 

Budapest 0.66 3E-112 
 

4.4.2.1. Computational gain 

Computing 𝑒(𝑙 , 𝑡) is several hundred times faster than ∆𝐺(𝑙 , 𝑡). To give an idea of the order of magnitude 
of computation time, we report in Table 4-15 the time needed to compute the Gini index 𝐺(ℒ , 𝑡), the time 
needed to compute the set of all equity scores ∆𝐺(𝑙 , 𝑡) and to compute the set of all line importance 
function 𝑒(𝑙 , 𝑡). The results are obtained on a virtual machine using 32 AMD EPYC 7532 CPUs and 
64GB of memory. Note that the time to compute {∆𝐺(𝑙 , 𝑡)|𝑙 ∈ ℒ} is estimated (multiplying by |ℒ| the 
time for computing 𝐺(ℒ , 𝑡)). It is evident that for bigger cities like Paris, computing {∆𝐺(𝑙 , 𝑡)|𝑙 ∈ ℒ} into 
an optimization loop would be impractical. In smaller cities, one should wait some hours or days to get 
{∆𝐺(𝑙 , 𝑡)|𝑙 ∈ ℒ}, which might be acceptable in some cases. However, it would be impossible to tolerate 
such high times if one wants to use the information about equity score in some optimization loops for 
network design. In this case, if metaheuristics, e.g., generic algorithms, or artificial intelligence, e.g., 
reinforcement learning, are used, these optimization iterations could be hundreds or thousands. In this 
case, it would be impossible to compute {∆𝐺(𝑙 , 𝑡)|𝑙 ∈ ℒ} and we could resort to {𝑒(𝑙 , 𝑡)|𝑙 ∈ ℒ}, which is 
several orders of magnitude faster to compute. 

 

Table 4-15 Computation time 

 𝑮(𝒕) {𝜟𝑮(𝒍, 𝒕)|𝒍
∈ 𝓛} 

{𝒆(𝒍, 𝒕)|𝒍
∈ 𝓛} 

Manchester 300 sec 2.2 days ~5 min 
Turin 60 sec 3.5 hours ~1 min 

Aachen 90 sec 8-9 hours ~90 sec 
Vienna 40 sec 2.9 hours ~40 sec 
Helsinki 95 sec 12.3 hours ~ 95 sec 
Berlin 210 sec 2.8 days ~4 min 

Budapest 50 sec 3.9 hours ~ 50 sec 
Paris 720 sec 15 days ~12 min 
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5. Chapter 5: Conclusions 
 

This work has developed a method to assess public transportation accessibility equity and to evaluate the 
contribution of individual transit lines to achieve better equity through an open data based approach. Thus, 
in the first part of the work, to capture the inequality in the city, we have proposed a methodology to 
compute equity in the distribution of transportation quality, which can be fully automated and easily 
performed for several cities worldwide. This is guaranteed by the fact that the computation only relies on 
open data in a standardized form. We performed a comparative analysis of four cities, and our results 
confirm previous work findings, in some cases better capturing the accessibility equity differences 
between cities. 

In the second part, we have proposed a methodology to find the most important lines to improve equity 
for the population in suburbs. The proposed line importance function can be used to guide the investment 
choices of transit operators. Indeed, if the budget were infinite, achieving a good accessibility distribution 
would be easy: massive investment could be dedicated to increasing all lines' frequency (and thus the 
fleet). However, due to the limitedness of the budget, operators need to make choices and prioritize certain 
lines over others. We advocate that such prioritization choices should not be (solely) made to improve 
average or total accessibility or social welfare. We believe instead that it is fairer to prioritize those lines 
that favor accessibility. 

By looking at the results in 4.4.1, and especially for Turin in Figure 4‑13, if we want to find an 

observational reason to say a line is more important than another for equity, most of the time, the lines 
that touch the periphery of the city has more influence on the equity because that line could be used for 
the mobility of the residence people in a suburb like train SFM1. On the other hand, Tram line 13, since 
it does not touch the periphery, does not have a high line importance function value and is less important. 
However, please note that this observational procedure can be used just for the lines whose scores have a 
high difference and one of them touches the periphery. If we want to compare two lines that both serve 
the periphery, we should rely just on the proposed method. 

According to the above discussion, the limitations of the methodologies are the following: 

1. Considering the center of the hexagon as the destination point, that can influence the accuracy of 
results 

2. The accessibility measures do not take into account the demand. We proxy the demand by 
considering the population, which is not the actual demand, although it surely influences it. 

3. We face the edge effect by considering the city as our area of study. Because the extension of 
hexagons ends somewhere more or less at the city's border, however, there could be some 
individuals that live out of the area of study but work in the city, and they should be considered in 
the computation. 

4. This methodology would not be helpful in cities where just some part of the city is serve by public 
transport like the center and the other parts are not served or serve by scattered stations. According 
to the methodology in 3.2.1.1, we remove those hexagons with a walking path higher than 15 
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minutes. Consequently, we eliminate those hexagons that are far from any public transit stop and 
some accessible hexagons remains, and we get a very equitable city because, the remaining 
hexagons are those with high accessibility score and parts of the city without public transport 
service are out of the computation. However, this limitation makes us realize that the walking path 
is another experimental setting that could be different in different cities to capture all the 
individuals, even those far from any public transit stop. 

5. It is good to consider also vertical equity, which is equality between unequal based on 
socioeconomic characteristics like using Suits coefficient according to what we described in 2.3.  

Despite this study's limitation, the results can be a step forward in deepening our knowledge about inequity 
in the provision of transit services. Furthermore, finding the lines most contributing to the accessibility 
equity of the network can be a guide to distinguishing them and choosing the best countermeasures to 
improve the equity. 

Nevertheless, this study is just an onset to provide a methodology to assess the transit network to find the 
most important lines for inequity. According to the literature, there were no previous studies about this 
matter. However, further research could study the optimal design of future transit, in which demand-
responsive buses co-exist with classic fixed lines. The proposed method will guide selecting which fixed 
lines to keep and which could be replaced by demand-responsive buses. When available, it would also be 
possible to consider how to enrich accessibility computation with additional (no-public) data, like 
employment, business locations, and types. 
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Appendix A: lines mostly and lastly contributing to equity in the considered 
cities 

 

 

Aachen, line important for equity. 
(Local Bus Line 15) 

∆𝐺(𝑙 , 𝑡) = 3.3 ∙ 10−5, 𝑒(𝑙 , 𝑡) = 1.6 ∙ 104 

 

Aachen, line important for equity. 
(Local Bus Line 13B) 

∆𝐺(𝑙 , 𝑡) = −2.2 ∙ 10−4, 𝑒(𝑙 , 𝑡) = 4 ∙ 103 

 

Berlin, line important for equity. 
(Rail Line S5) 

∆𝐺(𝑙 , 𝑡) = 7.6 ∙ 10−4, 𝑒(𝑙 , 𝑡) = 8.0 ∙ 106 

 

Berlin, line important for equity. 
(Bus Line 100) 

∆𝐺(𝑙 , 𝑡) = 7.3 ∙ 10−7, 𝑒(𝑙 , 𝑡) = 2.0 ∙ 106 
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Budapest, line important for equity. 
(Train Line H6) 

∆𝐺(𝑙 , 𝑡) = 3 ∙ 10−3, 𝑒(𝑙 , 𝑡) = 1.5 ∙ 106 

 

Budapest, line important for equity. 
(Bus Line 76) 

∆𝐺(𝑙 , 𝑡) = −5.6 ∙ 10−5, 𝑒(𝑙 , 𝑡) = 1.3 ∙ 105 

 

Helsinki, line important for equity. 
(Train Line U) 

∆𝐺(𝑙 , 𝑡) = 1.3 ∙ 10−3, 𝑒(𝑙 , 𝑡) = 4.3 ∙ 106 

 

Helsinki, line important for equity. 
(Tram Line 5) 

∆𝐺(𝑙 , 𝑡) = 4.6 ∙ 10−5, 𝑒(𝑙 , 𝑡) = 1.7 ∙ 104 
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Manchester, line important for equity. 
(Bus Line X50) 

∆𝐺(𝑙 , 𝑡) = 1.3 ∙ 10−3, 𝑒(𝑙 , 𝑡) = 9.6 ∙ 104 

 

Manchester, line important for equity. 
(Bus Line X50) 

∆𝐺(𝑙 , 𝑡) = −1.2 ∙ 10−4, 𝑒(𝑙 , 𝑡) = 6.9 ∙ 103 

 

Vienna, line important for equity. 
(Tram WLB) 

∆𝐺(𝑙 , 𝑡) = 1.5 ∙ 10−2, 𝑒(𝑙 , 𝑡) = 3.5 ∙ 106 

 

Vienna, line important for equity. 
(Bus Line 96A) 

∆𝐺(𝑙 , 𝑡) = 2.8 ∙ 10−6, 𝑒(𝑙 , 𝑡) = 1.1 ∙ 105 
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Appendix B: Histograms of four types of equity score and the value for the five 
best and worst lines and in the considered cities 

Figure 0-1 Vienna 

  

  
 

Table 0-1 Vienna 

Rank Transit Line HexSociality Transit Line PopSociality Transit Line HexVelocity Transit Line PopVelocity 

1st Bus Line 20B -0.0002 Bus Line 57A -0.0004 Metro Line U6 -0.0008 Metro Line U6 -0.0009 

2nd Tram Line 18 -0.0002 Tram Line 5 -0.0003 Tram Line 26 -0.0004 Metro Line U3 -0.0003 

3rd Bus Line 11B -0.0001 Bus Line 13A -0.0001 Tram Line 2 -0.0003 Bus Line 57A -0.0003 

4th Tram Line 5 -0.0001 Bus Line 14A -0.0001 Tram Line 25 -0.0003 Tram Line 5 -0.0003 

5th Bus Line 57A -0.0001 Bus Line 11B -0.0001 Metro Line U3 -0.0003 Tram Line O -0.0002 

5th to last Bus Line 79B 0.0032 Tram Line 11 0.0015 Bus Line 89A 0.0012 Bus Line 66A 0.0008 

4th to last Bus Line 16B 0.0035 Bus Line 66A 0.0018 Bus Line 60A 0.0013 Bus Line 60A 0.0008 

3rd to last Bus Line 50A 0.0036 Bus Line 15A 0.0020 Bus Line 32A 0.0017 Bus Line 15A 0.0009 

2nd to last Bus Line 32A 0.0043 Tram Line 26 0.0027 Bus Line 25A 0.0018 Bus Line 32A 0.0010 

Last Tram Line WLB 0.0155 Tram Line WLB 0.0039 Tram Line WLB 0.0103 Tram Line WLB 0.0040 
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Figure 0-2 Manchester 

  

  
 

Table 0-2 Manchester 

Rank Transit Line HexSociality Transit Line PopSociality Transit Line HexVelocity Transit Line PopVelocity 

1st Tram Line 5i -0.0025 Tram Line 2o -0.0034 Bus Line 471 -0.0010 Tram Line 5i -0.0010 

2nd Tram Line 2o -0.0024 Tram Line 4o -0.0029 Tram Line 5i -0.0009 Tram Line 4o -0.0008 

3rd Tram Line 4o -0.0020 Bus Line 192 -0.0026 Bus Line 471 -0.0008 Tram Line 5o -0.0008 

4th Bus Line 192 -0.0018 Tram Line 5i -0.0024 Bus line 17 -0.0007 Bus Line 8 -0.0007 

5th Bus Line 59 -0.0016 Bus Line 53 -0.0016 Tram Line 5o -0.0007 Bus Line 582 -0.0007 

5th to last Bus Line 199 0.0021 Bus Line 330 0.0018 Bus Line 88 0.0004 Bus Line 375 0.0005 

4th to last Bus Line 352 0.0024 Bus Line 10 0.0020 Bus Line 358 0.0004 Bus Line 352 0.0005 

3rd to last Bus Line 125 0.0031 Bus Line 125 0.0023 Bus Line 375 0.0005 Bus Line 125 0.0006 

2nd to last Bus Line 1 0.0032 Bus Line 464 0.0025 Bus line 1 0.0006 Bus Line 464 0.0008 

Last Bus Line 464 0.0048 Bus Line 1 0.0028 Bus Line 199 0.0009 Bus Line 1 0.0013 
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Figure 0-3 Helsinki 

  

  

 
Table 0-3 Helsinki 

Rank Transit Line HexSociality Transit Line PopSociality Transit Line HexVelocity Transit Line PopVelocity 

1st Bus Line 54 -0.0016 Bus Line 57 -0.0005 Train Line K -0.0017 Bus Line 54 -0.0010 

2nd Metro Line 2 -0.0009 Bus Line 70 -0.0005 Bus Line 560 -0.0014 Train Line I -0.0010 

3rd Bus Line 57 -0.0007 Bus Line 506 -0.0004 Train Line P -0.0014 Metro Line 2 -0.0010 

4th Bus Line 550 -0.0007 Bus Line 280 -0.0004 Bus Line 550 -0.0013 Train Line P -0.0008 

5th Train Line A -0.0003 Bus Line 500 -0.0003 Metro Line 1 -0.0013 Bus Line 550 -0.0008 

5th to last Bus Line 841 0.0025 Bus Line 544 0.0026 Bus Line 907 0.0009 Bus Line 171 0.0007 

4th to last Bus Line 246T 0.0025 Train Line E 0.0028 Bus Line 961 0.0011 Bus Line 21 0.0008 

3rd to last Train Line K 0.0031 Bus Line 560 0.0034 Bus Line 246T 0.0011 Train Line R 0.0010 

2nd to last Bus Line 345 0.0032 Metro Line 1 0.0057 Bus Line 987A 0.0012 Metro Line 1 0.0011 

Last Bus Line 844 0.0037 Train Line K 0.0076 Bus Line 788K 0.0019 Bus Line 641 0.0012 
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Figure 0-4 Budapest 

  

  
 

Table 0-4 Budapest 

Rank Transit Line HexSociality Transit Line PopSociality Transit Line HexVelocity Transit Line PopVelocity 

1st Tram Line 1 -0.0023 Metro Line 2 -0.0028 Metro Line 2 -0.0032 Metro Line 2 -0.0061 

2nd Metro Line 2 -0.0019 Bus Line M3 -0.0009 Tram Line 1 -0.0029 Metro Line 4 -0.0024 

3rd Bus Line M3 -0.0015 Metro Line 1 -0.0008 Metro Line 3 -0.0014 Bus Line M3 -0.0020 

4th Bus Line 8E -0.0007 Bus Line 72 -0.0006 Metro Line 4 -0.0013 Bus Line 99 -0.0013 

5th Bus Line 20E -0.0006 Tram Line 6 -0.0006 Bus Line M3 -0.0010 Tram Line 6 -0.0012 

5th to last Bus Line 169E 0.0033 Bus Line 200E 0.0027 Bus Line 169E 0.0013 Bus Line 169E 0.0008 

4th to last Bus Line 138 0.0038 Tram Line 1 0.0034 Train Line H8 0.0017 Bus Line 26 0.0009 

3rd to last Train Line H7 0.0041 Bus Line 151 0.0036 Bus Line 63 0.0018 Train Line H8 0.0009 

2nd to last Train Line H5 0.0066 Train Line H7 0.0038 Train Line H5 0.0018 Train Line H6 0.0015 

Last Bus Line 200E 0.0069 Train Line H5 0.0046 Train Line H6 0.0032 Train Line H5 0.0018 
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Figure 0-5 Berlin 

  

  
 

Table 0-5 Berlin 

Rank Transit Line HexSociality Transit Line PopSociality Transit Line HexVelocity Transit Line PopVelocity 

1st Train Line U8 -0.0016 Train Line RB10 -0.0011 Train Line U7 -0.0032 Train Line U7 -0.0029 

2nd Train Line U9 -0.0013 Train Line S42 -0.0009 Train Line U6 -0.0023 Train Line U9 -0.0028 

3rd Train Line S41 -0.0009 Train Line U8 -0.0007 Train Line U9 -0.0015 Train Line U6 -0.0021 

4th Train Line S42 -0.0008 Train Line U2 -0.0005 Train Line U8 -0.0013 Train Line U8 -0.0019 

5th Train Line S45 -0.0007 Train Line S41 -0.0004 Train Line U5 -0.0010 Train Line S42 -0.0015 

5th to last Bus Line 222 0.0020 Train Line RB13 0.0020 Bus Line 614 0.0005 Bus Line 197 0.0005 

4th to last Train Line S1 0.0020 Train Line S1 0.0021 Bus Line 951 0.0006 Bus Line 136 0.0005 

3rd to last Train Line S8 0.0022 Train Line S25 0.0024 Bus Line 806 0.0006 Bus Line 222 0.0005 

2nd to last Train Line S5 0.0025 Train Line U5 0.0028 Bus Line 950 0.0007 Bus Line 806 0.0007 

Last Train Line S2 0.0029 Train Line U7 0.0049 Bus Line 671 0.0010 Bus Line 62 0.0007 
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Figure 0-6 Aachen 

  

  
 

Table 0-6 Aachen 

Rank Transit Line HexSociality Transit Line PopSociality Transit Line HexVelocity Transit Line PopVelocity 

1st Bus Line 54 -0.0023 Train Line RE6 -0.0023 Bus Line 51 -0.0013 Train Line RB20 -0.0018 

2nd Train Line RB20 -0.0019 Bus Line 45 -0.0016 Bus Line SB63 -0.0010 Netliner Bus -0.0016 

3rd Bus Line 47 -0.0015 Bus Line 34 -0.0013 Train Line RB20 -0.0010 Bus Line 54 -0.0016 

4th Bus Line 25 -0.0012 Bus Line 2 -0.0012 Bus Line SB66 -0.0010 Bus Line 2 -0.0012 

5th Bus Line 34 -0.0012 Bus Line 3B -0.0008 Netliner Bus -0.0010 Bus Line SB63 -0.0012 

5th to last Bus Line SB63 0.0035 Bus Line 51 0.0036 Bus Line EK1 0.0004 Bus Line 216 0.0008 

4th to last Train Line RB21 0.0036 Bus Line 11 0.0042 Bus Line 298 0.0005 Bus Line 286 0.0009 

3rd to last NetLiner Bus 0.0039 Bus Line 28 0.0057 Netliner Bus 0.0007 Bus Line 28 0.0013 

2nd to last Bus Line 298 0.0061 Bus Line 296 0.0058 Bus Line 475 0.0008 Bus Line 296 0.0016 

Last Bus Line 14 0.0074 Bus Line 44 0.0076 NetLiner2 Bus 0.0009 Bus Line 44 0.0025 
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Appendix C: Histograms of nine types of line importance in the considered 
cities 

Figure 0-1 Vienna 
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Figure 0-2 Manchester 
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Figure 0-3 Helsinki 
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Figure 0-4 Budapest 
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Figure 0-5 Berlin 
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Figure 0-6 Aachen 
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Appendix D: Python scripts developed to compute the line importance function 
 
 

import sys 

from tqdm import tqdm 

import warnings 

 

warnings.filterwarnings('ignore') 

 

sys.path.insert(0, './library/') 

import zipfile 

import os 

import time 

import pymongo as pym 

import pandas as pd 

import folium 

import numpy as np 

import requests 

import numba 

from shapely.geometry import Polygon, LineString, asShape, mapping, Point 

import math 

import geopy 

from shapely.geometry import Polygon, MultiPolygon, Point, mapping 

from geopy.distance import geodesic, great_circle 

from folium.plugins import FastMarkerCluster 

from datetime import datetime 

from geopy.distance import geodesic, great_circle 

 

from libAccessibility import arrayTimeCompute, ListFunctionAccessibility 

from libHex import area_geojson 

from scipy.sparse import coo_matrix 

import math 

import time 

import numpy 

 

inf = 10000000 

 

from numba import jit, int32, int64 

 

city = 'Budapest'  # name of the city 

urlMongoDb = "mongodb://localhost:27017/";  # url of the mongodb database 

 

client = pym.MongoClient(urlMongoDb) 

gtfsDB = client['PublicTransportAnalysisBudapest'] 

 

 

def setPosField2(gtfsDB, city): 

    pos = 0 

    for route in gtfsDB['routes'].find({'city': city}).sort([('_id', 

pym.ASCENDING)]): 

        gtfsDB['routes'].update_one({'_id': route['_id']}, 

                                    {'$set': 

                                        { 
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                                            'pos': pos 

                                        } 

                                    }) 

        pos += 1 

        print('{0}'.format(pos), end="\r") 

    gtfsDB['routes'].create_index([("pos", pym.ASCENDING)]) 

 

 

setPosField2(gtfsDB, city) 

 

from tqdm import tqdm 

 

for j in tqdm(gtfsDB["routes"].find({'city': city}).sort([('_id', 

pym.ASCENDING)])): 

    gtfsDB['connections'].update_many({'route_id': j['route_id']}, 

                                      {'$set': 

                                          { 

                                              'pos': j['pos'], 

                                          } 

                                      }); 

    # print('{0}'.format(j["pos"]), end="\r") 

    gtfsDB['connections'].create_index([("pos", pym.ASCENDING)]) 

 

stoppss = gtfsDB['stops'] 

 

from tqdm import tqdm 

 

toal = gtfsDB['connections'].find({}).count() 

for k in tqdm(gtfsDB['connections'].find({'city': city}).sort([('_id', 

pym.ASCENDING)]), total=toal): 

    timeStart0 = time.time() 

    gtfsDB['connections'].update_one({'_id': k['_id']}, 

                                     {'$set': 

                                         { 

                                             'distance': 

round(geodesic((stoppss.find_one({'pos': k["pStart"]})[ 

                                                                             

'point']["coordinates"][1], 

                                                                         

stoppss.find_one({'pos': k["pStart"]})[ 

                                                                             

'point']["coordinates"][0]), 

                                                                        

(stoppss.find_one({'pos': k["pEnd"]})[ 

                                                                             

'point']["coordinates"][1], 

                                                                         

stoppss.find_one({'pos': k["pEnd"]})[ 

                                                                             

'point']["coordinates"][0])).meters) 

                                         } 

                                     } 

                                     ) 
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    gtfsDB['connections'].create_index([("distance", pym.ASCENDING)]) 

 

timeList = [8]  # [7,10,13,16,19,22] # List of starting time for computing the 

isochrones 

# timeList = [7,10,13,16,19,22] # List of starting time for computing the 

isochrones 

hStart = timeList[0] * 3600 

lenroute = gtfsDB['routes'].find().count() 

 

 

def makeArrayConnections2(gtfsDB, hStart, city): 

    print("start making connections array") 

    fields = {'tStart': 1, 'tEnd': 1, 'pStart': 1, 'pEnd': 1, '_id': 0} 

    typeMatch = {'city': city, 'tStart': {'$gte': hStart}, 

                 'tStart': {"$type": "number"}, 'tEnd': {"$type": "number"}, 

                 'pStart': {"$type": "number"}, 'pEnd': {"$type": "number"}, } 

    pipeline = [ 

        {'$match': {'city': city, 'tStart': {'$gte': hStart}}}, 

        {'$sort': {'tStart': 1}}, 

        {'$project': {'_id': "$_id", "c": ['$tStart', '$tEnd', '$pStart', 

'$pEnd', '$pos', '$distance']}}, 

    ] 

    allCC = list(gtfsDB['connections'].aggregate(pipeline)) 

    print("done recover all cc", len(allCC)) 

    allCC = np.array([x["c"] for x in allCC]) 

    print("cenverted") 

    # arrayCC = 

np.full((gtfsDB['connections'].find({"city":city,'tStart':{'$gte':hStart}}).cou

nt(),4),1.,dtype = np.int) 

    # countC = 0 

    # tot = 

gtfsDB['connections'].find({'tStart':{'$gte':hStart},'city':city}).count() 

 

    print('Num of connection', len(allCC)) 

    return allCC 

 

 

arrayCC = makeArrayConnections2(gtfsDB, hStart, city) 

 

# ### List of list of the points and stops neighbors 

 

# In[ ]: 

 

 

from libStopsPoints import listPointsStopsN 

 

arraySP = listPointsStopsN(gtfsDB, city) 

 

 

@jit((int32[:], int32[:], int32, int64[:, :], int32[:, :], int32[:, :], 

int32[:, :], int32[:, :], int32), 

     nopython=True) 

def coreICSA2(timesValues, timeP, timeStart, arrayCC, S2SPos, S2STime, P2SPos, 

P2STime, lenroute): 
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    # print 'inter' 

    # global arrayCC 

    # arrayCC = CC 

    # global S2SPos 

    # global S2STime 

    count = 0 

    pointRoute = [0.] * lenroute 

 

    routee = [] 

    timesValuesN = numpy.copy(timesValues) 

    for c_i in range(len(arrayCC)): 

        c = arrayCC[c_i] 

        Pstart_i = c[2] 

        if timesValues[Pstart_i] <= c[0] or timesValuesN[Pstart_i] <= c[0]: 

            count += 1 

            Parr_i = c[3] 

            if timesValues[Parr_i] > c[1]: 

                timesValues[Parr_i] = c[1] 

                if c[1] <= timeStart + 3600: 

                    # if distn[Parr_i] == 1: 

                    routee.append((Pstart_i, Parr_i, c[4], c[5])) 

                for neigh_i in range(len(S2SPos[Parr_i])): 

                    if S2SPos[Parr_i][neigh_i] != -2: 

                        neigh = S2SPos[Parr_i][neigh_i] 

                        neighTime = timesValuesN[neigh] 

                        if neighTime > c[1] + S2STime[Parr_i][neigh_i]: 

                            timesValuesN[neigh] = c[1] + 

S2STime[Parr_i][neigh_i] 

                    else: 

                        break 

 

    for i, t in enumerate(timesValues): 

        if t > timesValuesN[i]: 

            timesValues[i] = timesValuesN[i] 

 

    for (org, des, lin, dis) in routee: 

        pointRoute[lin] += dis 

 

    return pointRoute 

 

 

def coumputeTimeOnePoint(point, startTime, timeS, timeP, arrayCC, P2PPos, 

P2PTime, P2SPos, P2STime, S2SPos, 

                         S2STime, lenroute): 

    timeS.fill(inf)  # Inizialize the time of stop 

    timeP.fill(inf) 

    posPoint = point['pos']  # position of the point in the arrays 

    timeP[posPoint] = startTime  # initialize the starting time of the point 

 

    for neigh_i, neigh in enumerate( 

            P2PPos[posPoint][P2PPos[posPoint] != -2]):  # loop in the point 

near to the selected point 

        neigh = neigh 
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        timeP[neigh] = P2PTime[posPoint][neigh_i] + startTime  # initialize to 

startingTime + WalkingTime all near point 

 

    # loop in the stops near to the selected point 

    for neigh_i, neigh in enumerate(P2SPos[posPoint][P2SPos[posPoint] != -2]): 

        neigh = neigh 

        timeS[neigh] = P2STime[posPoint][neigh_i] + startTime  # initialize to 

startingTime + WalkingTime all near stops 

 

    # timeSInit = timeS.copy() 

    startTime = numpy.int32(startTime) 

    arrayCC = arrayCC.astype(numpy.int64) 

 

    routeee = coreICSA2(timeS, timeP, startTime, arrayCC, S2SPos, S2STime, 

P2SPos, P2STime, lenroute) 

 

    return routeee 

 

 

def computeAccessibilities(city, startTime, arrayCC, arraySP, gtfsDB, 

lenroute): 

    timeS = arraySP['timeS'] 

    timeP = arraySP['timeP'] 

    S2SPos = arraySP['S2SPos'] 

    S2STime = arraySP['S2STime'] 

    P2PPos = arraySP['P2PPos'] 

    P2PTime = arraySP['P2PTime'] 

    P2SPos = arraySP['P2SPos'] 

    P2STime = arraySP['P2STime'] 

 

    maxVel = 0 

    totTime = 0. 

    avgT = 0 

    tot = len(timeP) 

 

    count = 0 

 

    for point in gtfsDB['points'].find({'city': city}, {'pointN': 0, 'stopN': 

0}, no_cursor_timeout=True).sort( 

            [('pos', 1)]): 

 

        timeStart0 = time.time() 

 

        # Inizialize the time of stop and point 

        # print("starting computation") 

        routee = coumputeTimeOnePoint(point, startTime, timeS, timeP, arrayCC, 

P2PPos, P2PTime, 

                                      P2SPos, 

                                      P2STime, S2SPos, S2STime, lenroute) 

 

        a_list = list(routee) 

 

        score = {} 

        for i, m in enumerate(a_list): 
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            score[i] = m 

 

        score = {str(k): round(float(v), 2) for k, v in score.items()} 

 

        totTime += time.time() - timeStart0 

        avgT = float(totTime) / float(count + 1) 

        h = int((tot - count) * avgT / (60 * 60)) 

        m = (tot - count) * avgT / (60) - h * 60 

 

        gtfsDB['points'].update_one({'_id': point['_id']}, {'$set': {"Score": 

score}}) 

        count += 1 

        print( 

            'point: {0}, time to finish : {1:.1f}h, {2:.1f} m'.format( 

                count, h, m), 

            end="\r") 

 

 

computeAccessibilities(city, hStart, arrayCC, arraySP, gtfsDB, lenroute) 

 

 


