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Abstract
With the significant increase of computation throughput required by recent application
such as machine learning, data processing or even internet of things, the reduction of
calculation time and power consumption is more and more demanding for edge devices.
Unfortunately, standard memory technologies can not stand the computing performances
expected. In this context, new architectures are explored to face this issue. In-memory
computing is one of the potential architecture that could enable to improve computing
efficiency by reducing the data movement between the memory and computing cores.
Convolution neural network is a potential application that could be run on this kind of
memory. In the context of this study, a very efficient way to compute a single convo-
lution layer have been explored starting from a first design of BLADE, an in-memory
architecture developed in ESL. The design of the controller of this memory have then
been improved in order to facilitate the communication between the central process unit
and the memory. These new design optimizations have finally been tested with convolu-
tion application and have shown a 75% reduction of time to do convolutions compared
to a RISC-V core processor.



Résumé
Alors que les applications actuelles telles que l’apprentissage artificiel, le traitement de
l’information et l’internet des objets nécessitent un débit de calcul de plus en plus impor-
tant. La réduction de la consommation d’énergie et du temps de calcul représentent des
enjeux crutiaux pour les "edge devices". Malheureusement, les mémoires standards ne
peuvent pas atteindre les performances de calcul espérées. Dans ce contexte, de nouvelles
architectures sont envisagées pour résoudre ces problèmes. L’"in-memory computing"
est l’une des architectures potentielles qui pourrait permettre d’améliorer la puissance de
calcul en réduisant le déplacement de l’information entre la mémoire et les bloc arithmé-
tiques. Les réseaux de neurones à convolution sont une application qui pourrait gagner
à fonctionner sur ce type de mémoire. Dans le context de cette thèse de master, une
manière efficace de calculer un noyau de convolution sur l’ancien design de BLADE a été
étudiée. Le design du controlleur de BLADE a ensuite été amélioré afin d’accroître les
performances de communication entre le processeur et la mémoire. Ces nouvelles opti-
misations ont enfin été testées sur des convolutions, démontrant 75% de réduction sur le
temps de convolution comparé à un processeur RISC-V.



Sommario
Con il significativo aumento della potenza di calcolo richiesta dai recenti sviluppi del
machine learning, dell’elaborazione dei dati o dell’Internet of Things, la riduzione dei
tempi di calcolo e del consumo energetico è sempre più una necessità. Sfortunatamente, le
tecnologie di memoria standard non possono sopportare le prestazioni di calcolo previste:
per affrontare questo problema vengono utilizzate nuove architetture, come l’in-memory
computing. L’in-memory computing è una delle potenziali tecnologie che potrebbero
consentire di migliorare l’efficienza del calcolo, riducendo lo spostamento dei dati tra la
memoria e le unità di elaborazione. Una potenziale applicazione che potrebbe essere
eseguita su questo tipo di memoria è legata alle reti neurali convoluzionali. In questa tesi
verrà analizzato un metodo efficiente per calcolare una singola operazione di convoluzione
partendo da un primo progetto su BLADE, un’architettura in-memory sviluppata in
ESL: il design del controllore di questa memoria sarà migliorato al fine di facilitare la
comunicazione tra l’unità di processo centrale e la memoria stessa. Infine, il design
ottimizzato sarà testato eseguendo l’operazione di convoluzione.
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Introduction

At a time when the demand for connected devices is skyrocketing in our daily life, the
need to delegate computations to edge devices is continuously increasing. The calcula-
tion performed by these devices are more and more demanding since they were previously
completed by servers or Graphic Process Unit (GPU) [1]. This new use of edge devices
requires to lower their energy consumption and improve their computation capacity. One
limitation that have been encountered by edge devices is the Von Neumann bottleneck
[2][3]. Indeed, the current computer architecture is limited by the data transfer rate.
In order to solve this issue, the idea of performing computation inside the memory has
emerged. This capacity to compute inside the memory in known as In-Memory Com-
puting (IMC). This solution minimizes data movement between memory and the Central
Process Unit (CPU), but at the cost of the need to encode calculation instructions to
meet the CPU interface protocol.

BLADE (BitLine Accelerator for Devices on the Edge) is a cache memory developed
in the Embedded System Laboratory (ESL), whose architecture enables to perform in-
SRAM (Static Random Access Memory) computing [4]. It aims to put operations in
parallel while reducing the power consumption and data movement. ESL has integrated
BLADE for the first time on Rosetta chip (Figure 1) in 2019.

Figure 1: Rosetta [5]

Figure 2: Darkside [6]

This chip comes from a partnership between ETHZ and EPFL, it is a PULPissimo
based architecture which uses the RI5CY core. The chip has been manufactured with
the TSMC 65nm technology for a clock frequency of 190Mhz. BLADE has then been
integrated in a second chip: Darkside (Figure 2), in 2021. It was the result of a new part-
nership between ETHZ’s and EPFL’s laboratories. This chip as the first one has been
manufactured with the 65nm technology of TSMC up to a clock frequency of 200MHz.
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This master thesis happens in between the receipt of Darkside and the preparation of a
new chip integrating BLADE, also the majority of the contribution of this work insert in
this context.

In the scope of this master thesis, applications had to be run on Darkside in order
to validate first the proof of concept of BLADE and then to highlight its efficiency to
run computations. Also one of the biggest challenge was to modify the controller of
BLADE in order to make it more efficient for people to run complex applications on it.
This controller was good for the proof of concept of BLADE, but with a view of run-
ning Convolution Neural networks (CNNs) algorithms, a more efficient way to transmit
instructions had to be found out. The objective was to design a new controller for the
next chip where BLADE will be integrated in November 2022. The future chip: HEEP-
pocrates will be a HEEP (Heterogeneous Energy Efficient Platform) based architecture
which use RISC-V core.

The goal of this work was first to show the energy and computation efficiency of
BLADE compared to classical architecture using CPU, memory and ALUs (Arithmetic
Logic Units). Then, some complex applications such as convolutions have been run on
the current controller of BLADE to evaluate its performances compared to a CPU. In
a second part of this study, a new controller has been designed in order to improve the
efficiency of communication between the CPU and the controller. This new design has
been compared to the existing one to prove its efficiency.
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Chapter 1

Background

1.1 BLADE
Whereas the existing SRAM capable of in-memory computation are suffering from several
issues such as their low density and their risk of data corruption, BLADE stands out
from these memories because of its special architecture that solves these issues [4]. This
architecture adds few constraints concerning the placement of data for computation. The
specificity of this architecture will be explained in next section.

1.1.1 BLADE architecture

In HEEPpocrates chip as in the previous ones, the BLADE memory is divided in 16
SubArrays (SAs) of 2kB each, for a total capacity of 32kB. Each subarray is made of an
array of 128 x 128 bitcells. The rows of the subarrays, called sets, are subdivided into
4 32-row Local Groups (LGs) with a dedicated I/O periphery that connects the local
bitlines to the Global BitLines (GBLs). Horizontally, the bitcell columns are divided into
4 interleaved ways, so that every 4 bitcell column shares one BLADE bitline logic block.
A Local Group Periphery (LGP) as depicted on Figure 1.2 is associated to each LG, it
allows to read or write one of its 128 bitcells at once. This structure enables to store 512
words of 32 bits in each subarray and these words can also be divided in 2 or 4, leading
to words of 1, 2 or 4 bytes. Figure 1.1 describes the structure of one subarray of BLADE.

The current architecture of the macro of BLADE enables mainly 5 basic operations,
including 3 bitwise operations (AND, NOR and XOR) and 2 wordwise operations (addi-
tion and the shifting of bits). These computations are possible by means of the global
bitline logic that are replicated for each bit of the words and allow operations only between
different LG to avoid data corruption within the bitcells. One LG being 128 addresses,
one word stored in an address can be implied in an operation with the 384 words of the
3 other LG. There are in total 32 global bitline logic blocks that are connected in a carry
chain. The carry chain for the addition can be cut so that these computations can be
performed on 1, 2 or 4 bytes words. It also contains a write back circuit in order to write
the result back in the memory after performing an operation. This feature enables to
keep the IMC result in memory and allows to do more complex operations, such as the
multiplications. Figure 1.3 presents a global bitline logic block.
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Figure 1.1: BLADE subarray architecture

Figure 1.2: Local group periphery [7]

Figure 1.3: Global bitline logic [7]

1.1.2 BLADE controller 1

1.1.2.1 Read/Write and IMCs

In HEEPpocrates, BLADE controller receives instructions from the CPU through the
bus. It uses the address and data sent by the CPU not only to read or write addresses
but also to decode instructions about the type of operation to be performed. Figure 1.4
explains the way the instructions are encoded in the address and the data sent by the
CPU. A first observation that can be made, is that the actual memory size of BLADE
is 32kB and every address could be accessed within only 15 bits. However,the range
of addresses necessary for BLADE is multiplied by 8 compared to the real size of the
memory. Indeed, 3 bits are used to encode the operation to be performed. On Figure
1.4, one can notice that the addresses are not increasing with the order of the memory in
the macro. This is a choice that have been made at the moment to encode the address
that will impact the way to run complex application.

In addition to this extended range of address, an other BLADE controller specificity
is that it has 2 completely different behaviours depending on the kind of operation to
be performed. Indeed, in the case of a read or write the controller becomes transparent
by adopting a combinational behaviour. In this case the data signal is directly linked
to the data input of the macro and the data is not interpreted by the controller. But
when performing In-Memory Computing (IMC), the controller becomes sequential and it
needs 4 cycles of instructions to request an IMC. This change of behaviour is set when
receiving the first instruction. The controller will first check the bits 17 down to 15, if
they are all zeros, it means it is a read or a write depending on the write enable signal.
Then, in this case, it will consider the bits 14 down to 2 that contain the information

1This section was largely inspired from [8], this document is internal to ESL and has been written
especially for me by a former PhD student.

5



31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused

Operation 
bits 

Way 
bits 

LG 
bits 

Set 
bits 

SA 
bits 

Offset 
bits 

ADDR

Width

Unused

Operation 
stride 

Operation 
repeat 

Operation 
length 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0DATA

Figure 1.4: Address and data encoding

about the address to read or write. In the case of an IMC, the only important bits
when receiving the first instruction are bits 17 down to 15. The operation is encoded
with these 3 bits and the write enable signal. Table 1.1 sums up the encoding for all
type of operations that are currently possible with BLADE. In the 3 following cycles,
the information about the addresses where to perform the IMC are sent. Each cycle will
enable to store the address of an operand or the address to store the result of the IMC.
Moreover, it is also convenient to repeat several times the same IMC in different addresses
when the data is already wisely placed in BLADE memory. Therefore hardware loops
have been implemented in BLADE controller (1.1.2.2). In order to use this feature of the
controller, the data that are sent in the 3 last cycle of configuration are used to tell the
controller how many operations in adjacent addresses are about to be executed. The 2
Most Significant Bits (MSB) of the data signal are used in the case of an addition or a
multiplication to determine the size of the carry chain. This encoding is summarized on
Figure 1.4.

Operation interpretation Operation bits Write enable signal
Write 000 W
Read 000 R
XOR 001 W
Multiplication 001 R
Shift 011 W
Load BLADE register 011 R
Write from result register 100 W
NOR 101 W
AND 101 R
Add 111 W

Table 1.1: BLADE operations Figure 1.5: CPU interface protocol [9]

The way BLADE controller receives information enables to transmit complex instruc-
tions at the cost of several cycles of CPU clock. Indeed, the interface protocol of the CPU
(Figure 1.5) makes that it can not send a new instruction until it receives the r_valid
signal from the controller, which means the instruction has been performed. Thus, send-
ing 4 different instructions to request an IMC results in 7 clock cycles: the computation
in BLADE only start when the fourth instruction is received and and each of the 3 first
instructions take 2 clock cycles (one for the request and one for the r_valid).
The number of cycle to do an operation also depends on the operation type. For a read
or a write, the operation happens in only one clock cycle. For an IMC, the operation
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take 2 clock cycles: one for the operation and a second one to write the result back in
the memory from the result register. The multiplication is an exception since it uses the
addition and shift features of BLADE. It requires 1 cycle to load the multiplier in some
specific register and then it repeat the add and shift operation and it writes back the
result in the result address.

1.1.2.2 Hardware loop

The controller of BLADE allows to repeat the same operation among a range of successive
addresses. These hardware loops articulate around 3 parameters that are set once for
each operand and that control different features:

• Length: The length value specify the number of adjacent addresses to which the
same operation will be performed. It should be noted that operands containing
shorter lengths will loop back to their initial address when their maximum length
is reached.

• Stride: In direct contrast to the immediate previous sentence, sometimes the operand
are have shorter length are expected to loop not at their initial address but at the
address added to a certain stride.

• Repeat : The repeat parameter enables to loop on the same address before incre-
menting to the next one.

1.1.2.3 Multiplications

Multiplication in BLADE is a special operation that is more complex than other IMCs
since it takes more than 2 cycles to be performed and it uses a sequence of additions and
shiftings. The number of cycles to complete a multiplication is linearly proportional to
the size of the multiplier. It takes in fact 2 cycles per bits of the multiplier, one to do the
add and shift operation and the second one to write the partial result back in the memory.
An extra cycle is necessary at the beginning of the multiplication to store the multiplier
in a special register (bladereg) of BLADE present in each SAs. At each operation cycle,
the MSB of the bladereg is considered. If it is a ’1’, the multiplicand is added to the
partial product. The sum is then left shifted by one bit and stored back to the memory,
and the multiplier is left shifted by one bit in bladereg. This loop continues until all bits
in the bladereg have been consumed. The number of cycles to perform a multiplication
is therefore 17, 33, or 65 for 8, 16, and 32 bits multiplier values, respectively. Finally,
the last cycle of the multiplication is an add without shift. As previously, the add occurs
only if the MSB of the bladereg is ’1’. Figure 1.6 illustrates this procedure for a 4-bits
multiplication.

When performing a multiplication, the Repeat parameter takes a special function.
Since the multiplier is store in bladereg, it should be noted that the multiplicand and
the multiplier are not necessarily of the same size. The multiplier size determines the
number of recurrences of the process, whereas the size of the multiplicand sets the carry
chain. Thus in one word up to 4 multipliers can be stored in the bladereg and the
Repeat parameter can enable to do multiplication with the 4 adjacent addresses of the
multipliers.
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Figure 1.6: Multiplication example [8]
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Chapter 2

Programming applications for BLADE

2.1 Basic operations
A simple way to test BLADE is to write commands in C. The test script of BLADE is
mainly composed of a sequence of command to tell the CPU to perform store or load in
the range of addresses of BLADE. Since the way to do an IMC is always the same and
the only parts that change are the addresses, the number of IMC to perform and their
type ; it was easy to create functions in C that were able to request IMCs. At first, 7
functions were coded in C to enable to do the read and write operations along with the
3 bitwise IMC, the addition and the multiplication. For the sake of easiness, the spirit
of the code optimizations will be described in the case of a read (all the functions are
available in the Annexes). The IMCs code was containing more variables and was a bit
more complex. Indeed, due to high flexibility of the controller many parameters had to
be transferred. Figure 2.1 shows the C code written to perform a read. In this code, it
should be also highlighted that a lot of computations are performed on the address and
data to be sent to BLADE. This will result after compilation in extra instructions for the
processor to accomplish. Some improvements in term of efficiency can be still done by
changing the power and multiplications by shiftings, but these changes are not solving
completely this issue. The main problem come from the fact that we encode both the
addresses and the data to request an IMC on BLADE.

1 unsigned i n t Read ( unsigned i n t addr , unsigned i n t sa )
2 {
3 unsigned i n t addr_of f se t = pow (2 , 6) ;
4 unsigned i n t s a_o f f s e t = pow (2 , 2) ;
5 unsigned i n t ∗ptrBlade = ( unsigned i n t ∗) 0x80000000 ;
6

7 ptrBlade = ( unsigned i n t ∗) ( ( char ∗) ptrBlade + addr ∗ addr_of f se t +
sa ∗ s a_o f f s e t ) ;

8 re turn ∗ptrBlade ;
9 }

Figure 2.1: C code to perform a read with BLADE

This C code is translated into assembly instructions after the compilation. The result
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is depicted on Figure 2.2. These assembly lines correspond only to the read function,
but extra lines in the main script to load the variables used in the function must also
be considered. Here, the line 564 is the one that corresponds effectively to the load
instruction. The other lines are just enabling computations to encode the information in
the address. When several reads are realized in a row, the simulations show that these
parasitic instructions can take until 20 clock cycles, thus it is not easily possible do a
serie of load in a row. The same issue is encountered with the IMCs.

Figure 2.2: Assembly instructions for the read operation

These extra instructions and cycles of clock are usually not a problem in the case of
a small application or for functional tests, but as soon as we want to write more complex
code or to measure the efficiency of BLADE as an accelerator, it can be an issue. For
these reasons, it is necessary to find a way to circumvent these instructions. 2 solutions
have then been found to avoid any unwanted instructions in the assembly code. The first
idea was to insert some assembly instruction directly in the C code. The big advantage
of writing in assembly is that there is a strong correspondence between the instruction in
the language and the machine actions. This way, it allows to be very specific about the
instructions that the machine should follow.

An other important idea to gain efficiency in the processor actions, is to write a script
in python that enables to do all the computation necessary to encode the address and
data. Then, the python script will generate a main.c file containing mainly assembly
commands reducing greatly the number of instructions processed by the CPU. Figure
2.3 shows the python code that enables a better optimization of the read operation with
BLADE.

This last piece of code is much more efficient than the previous options tested. It
avoids to spend any clock cycle for the CPU computing the next address to access and the
data to send, since all these computations are made during the python code generation.
Thus, this code enables to test BLADE efficiency to perform reads. However, the main
drawback of this code is that it forces to unroll all the program. It is not possible to
use loops in this case or functions and the entire program is a list of successive reads
and writes. The C code becomes very heavy and a lot of data and instructions have to
be stored in the CPU memory. Despite these drawbacks, the same solution has then be
applied to the code to do IMCs. Indeed since the protocol to request an IMC is to use
4 cycles of read or write in a row, the functions read and write optimized can be reused
for the IMCs.
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1 de f Read ( f , addr , sa , o f f s e t ) :
2 base_addr , o f f s e t_addr = Operat i on In i t (0 , addr , sa , o f f s e t )
3

4 f . wr i t e ( "\t__asm__ v o l a t i l e (\" lw x0 , " + s t r ( o f f s e t_addr ) + "(%[
ptrb lade ] ) \" : : [ p t rb lade ] \" r \" ( " + s t r ( "0x%08x" % base_addr ) + " ) )
; \ n\n" )

5

6

7 de f Opera t i on In i t ( op , addr , sa , o f f s e t ) :
8 blade_intermediate_addr = op ∗ c s t . op_of f se t + addr ∗ c s t . addr_of f s e t +

sa ∗ c s t . s a_o f f s e t + o f f s e t
9

10 o f f s e t_addr = blade_intermediate_addr % 2048
11 parity_addr = blade_intermediate_addr // 2048
12

13 i f parity_addr % 2 == 1 :
14 o f f s e t_addr −= 2048
15 base_addr = c s t . blade_base_addr + blade_intermediate_addr −

o f f s e t_addr
16 e l s e :
17 base_addr = c s t . blade_base_addr + blade_intermediate_addr −

o f f s e t_addr
18

19 re turn base_addr , o f f s e t_addr ;

Figure 2.3: Python code to optimize a read with BLADE

2.2 Convolutions
One of the main application considered for BLADE at the moment is its use as an
accelerator for Convolution Neural Networks. In the scope of this master thesis, a single
layer of CNN has been simulated in order to demonstrate the power and calculation
efficiency of BLADE in such an application.
In order to do this test, it has been decided to work with a convolution layer which input
data was a 32 x 32 array. The filters were composed of a set of 6 kernels of 5 x 5 size (5
kernels for the 32-bits convolution). The output is hence a 28 x 28 x 6 array (28 x 28 x 5
array for the 32-bits convolution). In order to program a convolution on BLADE, 3 main
problems have to be solved: first the distribution of data between the different SAs has
to be defined, then the algorithm of the convolution must be implemented and finally the
data placement within a SA has to be decided.

2.2.1 Data distribution between the SAs

Considering that all the 16 subarrays are performing the IMCs at the same time, the
distribution of data in the memory has to be thought in order to optimize computations.
Figure 2.4 shows the optimal data distribution between the subarrays in order to avoid
as much as possible the data movement and redundancy. Each color corresponds to the
data going in one SA. For instance, the data in green goes in the first SA, the red one in
the second SA, the orange in the third one and this logic is repeated over all the SAs. The
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total number of addresses available per SA is 512. It should then be possible in theory
to store the 6 filters in each SA, a 6 x 18 portion of the convolutional layer input leading
to 2 x 14 x 6 output. With this distribution, 150 addresses are used to store kernels, 108
are used for the input data and 168 are used to store the results. Thus, 426 addresses
in total are filled and the rest can be used for the intermediate computations. Having
the 6 filters in all the SAs enable to keep them during all the computation and limit the
data movement. As we can see on Figure 2.4 in grey, the convolution layer input has to
overlap between the different SA. This overlapping can not be avoided and is inherent to
the way to compute the convolution.

28 x 28 x 6 

14

6

2

Convolutional layer output

32 x 32 x 1 

18

6

Convolutional layer input

Figure 2.4: Data distribution in the subarrays

Indeed, to compute 2 lines of the output of the convolution, 6 lines of the input are
necessary and out of these 6 lines 4 of them will be reused in an other SA for other
computations. The same kind of overlap also applies to the columns. This figure give a
rough idea of the way to place data in the memory, it determines where the data goes
in the subarrays. However, the placement has to be defined more precisely within each
SA to ease the computation. This placement is mainly dependent on 2 factors: the data
width and the LG organisation that does not allow to make IMC inside the same LG.
This placement within the SA will be defined in Subsection 2.2.3, first the convolution
algorithm will be defined. For sake of easiness, the first test program have been written
for 32-bits convolutions. Only this algorithm will be described since the data size has a
low impact on the code.

2.2.2 Convolution algorithm

The convolution algorithm can be separated in 3 different parts: the initialization of the
memory addresses and data placement, the computations and the reading of the memory.
In this part, the indexing of the data and the principle of the convolution will be further
explained.
The choice of the index of the data is important and can ease the code for the convolution
since the address are usually the same than the index but with an offset. Figure 2.5 shows
both the way the filter is moved across the data and the indexing of data. For instance,
in order to compute the result of the first output, all the index in the red square have to
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be multiplied by all the index of the first filter. Once the data has been multiplied all the
partial result are summed, leading to the first result which will be know as output 1. In
reality, the process of multiplying and summing is a bit different to avoid to loose space
and time. In fact, each multiplication is directly summed to the result address where we
accumulate the output. Once the first computation has been finished, the red square in
the input data is shifted by one column for the new piece of computation. This square is
displaced all over the input data to compute the 28 first results and once it is done, the
same steps are repeated with the second filter and the next one until all the possibilities
of calculation have been computed.
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Figure 2.5: Indexing of the data for the convolution

In the end, the indices of the kernels goes from 1 to 25 for the first filter, 26 to 50
for the second one and until 125 for the last filter. The output indices go from 1 to 140.
These indices are also very important, since the data must not be mixed during the read-
ing of the results. Indeed, this convolution is only a small part of the CNN calculations
and should be reused for further computations, the output will then be used as an input
for the next convolution layer. For this reason, one should be able to perfectly know how
the data has been ordered.

Now, that the principle of the indexing has been defined, the algorithm for the con-
volution can be further explained. The basic block of the convolution is described by
Algorithm 1.This algorithm mainly needs to know the input index it will start with, that
is to say the upper left corner of the red square on Figure 2.5. It also requires to know
the starting index for the filter. Then an accumulation address which is the same in all
the subarrays is reset to zero performing an AND logic operation. This address must be
reset to zero in order to be the result address for the multiplication. If this address is
not set to zero at the beginning, then the result of the multiplication will not be correct.
After each multiplication, the result is added to the final result address. This way, the
result address is accumulating the partial result until the end of the computation.
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Algorithm 1 Convolution basic block
1: procedure Convolution block(start_input, start_kernel)
2: for index_i in index_input_list (start_input) and index_k in index_kernel_list

(start_kernel) do
3: Logic AND between the reset and accumulation addresses
4: accumulation = index_i * index_k
5: output = output + accumulation

The entire algorithm is made of a repetition of the previous block. Algorithm 2 ex-
plains all the steps from the initialization to the computation (the entire code is available
in the Annexes). First all the subarrays are filled with the data and the reset address are
set to zero.

Algorithm 2 Convolution
1: procedure Convolution
2: // Initialization of the SAs
3: for each subarray do
4: Place the kernel data
5: Place the input data
6: Initialize the reset addresses to zero
7: // Initialization of the result addresses
8: for i in the result addresses within a subarray do
9: Do a logic AND between the address i and the reset address

10: // Convolution
11: for filters going from 1 to 5 do
12: for start_input in start_input_list do
13: Convolution block (start_input, filters)

These reset addresses will be further used to set result addresses and accumulation
address to zero by a simple logic AND. It enables to gain efficiency since the IMC happens
in all the SAs at the same time, this way it is avoided to write 16 times zero at the same
address in all the SAs. The convolution block is then called several times using as start
the start_input_list which correspond to the indices in the blue rectangle of Figure 2.5.
This block is repeated over all the filters to complete the entire convolution. The principle
is the same whatever is the size of the data (32, 16 or 8 bits), the only thing that will
change is the placement of the data within the subarray. The complete code for the
convolution has been written in python to have a maximum efficiency in the convolution
computations, as seen in Subsection 2.1. The python code compute all the addresses
to be read or written at the compilation and it generates a C file with a list of read
and write instruction in assembly to have a maximum control on the compilation of this
second code. This way of doing enables to have a good mastery on the compiled code
but it generates very large C files (until 600 000 lines for a 32-bits convolution). The
limitation of this method will be further discussed in section 2.3.
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2.2.3 Data placement within the subarrays

The criteria for the data placement are simple to understand, but difficult to fulfill.
Ideally, it would be simpler to only use one LG for the kernels, one for the input and the
2 left for the result. This way there is no more constraint when performing IMCs, since
the operands are in different LGs. It should be also noted that the more the SAs are
filled with data the better the efficiency.

2.2.3.1 32-bits convolution

Figure 2.6 shows the first placement of the data within a SA. This figure represents
an entire SA and for the sake of understanding, the ways are not interleaved on the
schematic. That being said, each of the 16 squares represents a range of 32 addresses in
the SA. The addressing goes from 0 up to 511 starting by way 0 increasing with the LGs
and then increasing the way numbers.
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Figure 2.6: Data placement within the SAs for a 32-bits convolution

First thing to be noticed, with 32-bits data it is not possible to fit all the kernels of
the convolution in only one local group. They would actually fit in the SA, but for sake
of easiness it was better not to fill a second LG with these data. Thus, only five of the
six filters were placed inside the memory. The input data suits totally in one LG and
the results are placed in the 2 LGs left. Two addresses have been kept to accumulate the
result of the multiplication and two other one have been used as reset addresses. One of
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each kind has been placed in LG2 and LG3. Indeed, to be able to reset the accumulation
address or to add the accumulation address to the result one, the 2 addresses must be in
different local group. This placement results in the end with a important part of the SA
that is unused neither for storing data, nor for the intermediate results (26.4 %). This is a
problem for the convolution, because the size of the data input being important compared
to the size of BLADE memory, the convolution is performed in two times. First, a portion
of the input is written in the memory. Then, the result of this part of the convolution
is computed and is read. These steps have to be repeated twice to complete the entire
convolution. For this reason the unused part of the addresses is a loss of efficiency, but
it can not be easily solved in this case. If an input line is added in the SAs, it takes 18
addresses and the additional results coming from this data are using 5 x 14 addresses. It
results in the end in 88 additional addresses used and it can not fit in the SAs.

Number of clock cycles BLADE
Instructions 154 016 (11.9%)
CPU computations 654 014 (50.3%)
BLADE Computations 491 416 (37.8%)
Total 1 299 446

Table 2.1: Use of the clock cycles during the 32-bits convolution

As BLADE is being optimized for running CNN computations, it is primordial to
understand what type of operations take more time to perform and to find ways to
improve their efficiency. For the sake of designing a new controller for BLADE, it was
very interesting to have an idea on the proportion of the clock cycles that were used to
send instructions to the controller and the actual time spent for the computations. The
Table 2.1 shows the results of the convolution simulation on BLADE with a RISC-V
core CPU. This result give an idea of the limitations of BLADE with the actual version
of the controller. First, thing that should be noticed, the time devoted to the actual
computation inside BLADE is very short, only 37.8% of the clock cycles are computing
cycles. All the rest of the time is used either to do internal computation in the CPU,
to transfer information through the memory bus, or to receive instructions for BLADE.
This is an obvious weak point of BLADE that would need to be overcome for the next
version of the controller. The problem is mainly that it takes seven clock cycles to send an
instruction for any IMC. It is not a major issue if hardware loop are used and that several
IMCs are about to be executed, but in the case of a single bitwise operation, it takes seven
clock cycles to send the instructions and only two to do the computation (one cycle for the
operation and one to write back the result in the right address of the memory). To these
instruction cycles adds an overhead due to preparation of the address and data to be sent
by the CPU. This ratio between instruction time and computation time is not acceptable
for running complex applications. This loss of cycles must be solved absolutely to give
more flexibility to the future controller. An other big issue that have been faced with
the convolution is the time dedicated for the multiplication, that is much larger than any
other operation. Figure 2.7 shows the distribution of the clock cycles allocated for each
operation considering both the instruction time and the computation time. Looking at the
pie chart, it is striking that the multiplication is the longest operation. Indeed, more than
three-quarter of the operation cycles are dedicated to multiplication. It is mainly due to
the fact that multiplication is a sequential operation in BLADE, it is made of a succession
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of addition and shift. Moreover, the way multiplications have been implemented takes a
fix number of clock cycles to be performed. For 32-bits multiplications, it takes 7 clock
cycles to send the instructions and 65 to complete the multiplication. It is by far the
longest operation performed on BLADE. In order to improve the multiplication time,
one proposed option is to add the embedded shift to the design of the subarrays. The
embedded shift are consisting in way to reduce the number of cycles to complete the
multiplication by checking several bits of the multiplicand at the same time to make
several shift in a row when there are adjacent "0" in the multiplicand. Even though, the
multiplication is the slowest operation on BLADE, it must be noticed that its efficiency
to do multiplication keeps being competitive compared to a CPU, since in reality 16
multiplications are performed in parallel in all the SAs. This parallelization of operation
largely increases the throughput. In the case of this convolution, 98 000 multiplications
can be performed in 1 013 568 clock cycles which corresponds to a throughput of one
multiplication every 10.3 cycles. In order to be able to accelerate the multiplications, a
possibility is to work with 16-bits or 8-bits data, which reduces largely the number of
clock cycles required to finish the operation and increase the number of operations done
in parallel.

Figure 2.7: Clock cycles proportion per operation for the 32-bits convolution

2.2.3.2 16-bits convolution

In order to accelerate the convolution, one option that have been explored is to reduce
the data size. Indeed, the shorter the data, the less cycles it will take to complete the
multiplications on BLADE. This data width reduction is legitimate since most of the
data within a CNN are usually small and close to 0 [10]. The reduction of the data size
have an important impact on the data placement and if the data is wisely placed in the
memory, it is possible to significantly increase the efficiency to perform a convolution.
The guideline for the placement of data within the subarrays was a bit different from
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the 32-bits convolution. Unlike, in the previous algorithm, the kernels were loaded as
the multiplicand and the input data was considered as the multiplier. This choice might
seem not relevant since the multiplication is usually an associative operation, but for
BLADE it is not, as explained in Section 1.1.2.3. The decision of the multiplicand and
multiplier is crucial in this case since it enables to compute at the same time the result
of the convolution for 2 different filters. An other import decision concerning the data
placement is to put the accumulation address in the same LG than the inputs. During
the multiplication only the kernels are added to the accumulation address which avoid
any trouble because of operation between data in the same LG.
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Figure 2.8: Data placement within the SAs for a 16-bits convolution

Finally, the result addresses and the accumulation address must absolutely be placed
in different LG, since addition are performed between these addresses. Figure 2.8 shows
the placement decided for the 16-bits convolution. This figure is still representing the
entire subarray, but unlike the Figure 2.6 the squares that represent a range of 32 consec-
utive addresses have been separated into two rectangles depicting the 16 Most Significant
Bits (MSB) and 16 Less Significant Bits (LSB) of a word. The left rectangles represent
the MSB and the right ones the LSB. The addressing still increase with the ways.

Concerning the data placement, it should be noticed that for the kernels, the first
filter have been placed in the MSBs and the second filter has been placed in the LSBs of
the same word. This placement have been repeated for the 8 filters placed in the SAs.
By the way, it should be also noted that there is place for 8 filters. That is more than the
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number initially required, but more space is available when reducing the size of data. For
the input data of the convolution, since it is used as the multiplier, it has to be placed
in the MSBs of the word. The LSBs have been left unused for easiness of computations
and to avoid data redundancy. Also, it should be seen that more data have been placed
in the SA and it enabled to store all the data to do the convolution in one time. There
is no more need to load the data in 2 times. This improvement is only possible due to
the extra space available thanks to the data size reduction. Reducing the size of the
data, the place available in the SA doubles. Finally, the result of a way correspond to
the computation made with the filters of the same way for simplicity. The MSBs of the
result are related to the filter saved in the MSBs of the same way. The same logic has
been followed for the LSBs of the result.

The reduction of the data size, beside changing the data placement, has a strong
impact on the speed of the algorithm. Table 2.2 shows the simulation results of a 16-bits
convolution on BLADE with the same CPU than Table 2.1.

Number of clock cycles BLADE
Instructions 93 248 (14.3%)
CPU computations 397 258 (61%)
BLADE Computations 161 288 (24.7%)
Total 651 794

Table 2.2: Use of the clock cycles during the 16-bits convolution

It should first be noted that the total number of instructions have lowered since 2
results are computed at the same time in the same SA. The reduction of the number
of instructions sent to BLADE have mainly 2 impacts. It first obviously reduces the
number of clock cycles dedicated to the receipt of instructions by BLADE, but it also
largely decreases the number of clock cycles used by the CPU to send addresses and data
to BLADE. Reducing the size of the data is also strongly reducing the number of cycles
to perform the multiplication, which significantly impacts the number of computation
cycles. The data size reduction improves the time required for the computation but
have no direct impact on the instruction time. It highlights even more the fact that
computation time in BLADE is loosing in proportion (24.7%) when reducing the data
bit-length. As ideally, the proportion of BLADE computations should be maximized to
speed up the convolution, it shows that the way to send instructions to the controller
impacts more the efficiency of BLADE with small bit width data. Not considering the
instruction time proportion, the impact of bit width reduction on the operation cycle is
striking since the multiplication time is divided by 4 (the number of multiplication done
with one instruction is doubled and the time of execution is divided by 2).
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Figure 2.9: Clock cycles proportion per operation for the 16-bits convolution

Figure 2.9 shows the proportion of clock cycle taken by each operation. The mul-
tiplication keeps being the operation taking more time but its proportion have reduced
significantly compared to Figure 2.7. This can be explained by the increase of the through-
put. In this convolution, 117 600 multiplications are completed in 429 532 clock cycles,
this correspond to a multiplication result every 3.65 cycles. Reducing again the data
bit-length to 8 bits would again improve the efficiency by 4. These results clearly show
that one important asset of BLADE is its capacity to make in parallel a lot of operations.
This asset is however less significant when fewer operations need to be completed and
that all SAs are not filled.

2.3 Application constraints
This part of the study have enabled to find out first a way to optimize the code for
running applications on BLADE. These optimizations however show some limitations in
their efficiency. On the one hand, assembly is not the most user-friendly language to
program applications and it is very challenging to optimize application at the instruction
level. Thus, it would be a good option if it was possible to run a complete application
writing only python or C. On the other hand, the idea of writing python code to generate
a main file where all the encoding for the data and addresses are computed, efficiently
speeds up the process. However, the code length also increases drastically. The entire
code for the convolution becomes so long that it was not possible to store the complete
program in the memory of the chip that was used. The whole size of memory available
for the code was 512kB and the application size was around 1MB. This problem comes
mainly from the fact that the python code generating the main.c unrolled completely the
program and no function were written in C. For this reason, the compilation time of the
C was extremely long.
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The convolution applications also were enlightening on the hardware design limitation of
the controller. As it has been showed on Section 2.2.3, the main default of the controller
is the way it receives instructions for the IMCs. Indeed, the instruction reception that
is performed on 4 cycles is really not optimal and for the 16-bits convolution, since the
operation cycles are lower, the instruction time is proportionally increasing. This prob-
lem is even more striking for the IMCs that are performed in 2 clock cycles since the
instruction time is longer than the computation time. This limitation of the hardware
must be circumvent by finding a way to pass the instruction to the controller in only one
clock cycle.
In addition, to the inefficiency of the communication with the controller, an other issue
encountered is the impossibility to use hardware loops for the convolution applications.
The problem comes in fact from the memory mapping of BLADE that have not been
thought to enable this feature. The addressing of the memory increases within the ways
and not within the LGs. When running applications on BLADE, the operand of a same
type are often placed in the same LG to avoid problems of operations that can not be
done. Having a mapping of the memory that is ordered correctly would enable to largely
use hardware loop at least for the smallest repetitions of the convolution.
The last important point to be mentioned concerning the convolution, is the way BLADE
performs multiplications. The multiplication is done on a fix number of clock cycles that
is determined by the controller. This is not a very efficient way to make a multiplication
compared to ALUs that are optimizing the number of clock cycle to perform multipli-
cations. As it has been showed, the time for a multiplication is linearly proportional to
its multiplier width. However, this time to perform multiplication that is irreducible, is
balanced by its capability to perform several operation in parallel. Indeed, a multiplica-
tion is done at the same time in all the 16 SAs which enable to reduce the number of
clock cycles per operation by 16 if the memory is correctly filled. This parallelization of
operations can even increase more when the size of the data is reduced to 16 or 8 bits. In
the best case, until 64 multiplications can be achieved in 17 clock cycles, which leads to a
throughput of 3.76 multiplication per clock cycle. What can be noted about this way to
perform multiplications is that it really is efficient only when the subarrays filling is opti-
mized. This is a good solution with the view of running CNNs applications on BLADE,
but application must be smartly written to consider these constraints of BLADE.
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Chapter 3

A new controller design

As it has been described previously, the current version of the controller is somehow
limiting for running complex operations. Some choices that have been made were not
considering the fact that users may at some point write applications with BLADE. This
first part of the study motivated the need for a new controller that would be more
efficient for receiving instruction, more flexible and also more user-friendly. With this
new motivation, a way to ease instructions for both fine or coarse grain operation have
to be found. The idea is to find a way to communicate that would be efficient both for
a single operation or hundreds of operations in a row. This Chapter will concentrate on
the hardware design considerations.

3.1 Design specificity

3.1.1 State registers

The previous version of the controller was limited by the way to receive instructions
because they were encoded in the address and data sent by the CPU. The address was
decoded instantaneously by the controller at the output of the bus. This way of proceeding
was triggering a direct decoding and the information once decoded were stored in registers
waiting for the next instructions. Figure 3.1 shows the way the previous controller was
interfacing the bus. It had mainly 2 disadvantages. First, the range of addresses necessary
for BLADE was much larger than the real memory size due to the 3 operation bits (see
Figure 1.4). Then, the number of instructions that could possibly be passed to the
controller was limited to the data length. The solution that have been adopted for the
new controller was to integrate few state registers to the controller. These registers are
part of the range of memory and are used to be written or read by the CPU. The controller
can access at any time the value of these registers and is able to configure the operation
to perform from there. Figure 3.2 resumes the new organization of the controller. In the
end, when we compare the 2 approaches, the new one enables first to use a smaller range
of addresses for running the same operations on BLADE, it is in fact almost divided by
8 since only 15 bits are required for accessing the entire memory, we need to add only 5
extra addresses for the state registers that will enable to do the same operation than the
old controller. Now, all the addresses of the memory can be written or read as any other
memory by the CPU without encoding the addresses and data. Using these registers is
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more suited for the applications that are running on BLADE since it only requires to
write the first state register that contains the addresses of the 3 operands (operand A,
operand B and result) and the operation code to launch the operation for the controller.
The other registers (op A, op B and res) are used to store information for the hardware
loop, such as the length and the stride mentioned in Section 1.1.2.2 and the width of
the operand. The width of the operand makes sense only for the terms of the addition
and the factors of the multiplication. The result size is always defined by the size of the
first operand and the bitwise operation do not care about the size of operand. Finally,
the last register is used for a new type of operation added on the new controller that
performs a basic block of the convolution composed of a logic AND, a multiplication and
an addition. For this new operation, the information about the 3 operands used for the
other IMCs are not sufficient and 2 extra addresses must be given. The first one is the
address of accumulation previously presented in the last Chapter that is used to store
the partial result of the multiplication. The second one is the reset address where the
data is kept to "0x00000000" during the entire convolution and that is used to reset the
accumulation address before starting a new multiplication. All these registers are not
necessarily written for each new operation and only the first one has to be written to
start an IMC. This way of sending instruction find a justification by the fact that for a
convolution the operations are very repetitive and these registers are written only once
at the beginning of the application and then they keep being the same for the entire test.
This section explained the novelties found to enable a more efficient communication with
the new controller, but the controller is not made of only one file and the architecture of
BLADE peripheral will be discussed in the next section.

Figure 3.1: Previous controller interfacing
with the bus Figure 3.2: New controller interfacing with

the bus

3.1.2 Architecture of BLADE peripheral

This new controller is supposed to be integrated on the next tape out involving BLADE
and must integrate perfectly with the bus signals of HEEP. A challenge of this work
was to organise the file hierarchy in order to be able keep the structure as simple as
possible. Figure 3.3 shows the BLADE peripheral architecture. The toplevel is the file
that interface the bus of HEEPpocrates with the peripheral, all the input and output
signals are the one defined in the bus. Inside this file are instantiated all the blocks of
BLADE. The controller file manages the state registers since it is generating the gnt and
r_valid. It is more convenient to deal with the output signal in only one file to avoid
having to much logic in the toplevel file. The H tree file is responsible for the interface
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between the controller and the subarrays. It brings the signals to all the SAs and manage
the cases of read and write that apply only to one subarray. Finally, a wrapper for each
SA have been added in order the reorganise the addressing of BLADE. This new file
enables to reshape the memory mapping without having to restart all the full custom
design of the memory. This wrapper aims to have continuous addresses within the LGs
of the SAs. This reorganisation of the addresses eases the use of the hardware loops and
is supposed to ease the convolution application on BLADE. It is also possible to imagine
in the future that several way of addressing could be used depending on the application
that would be running and that they would be controlled in an other state register.
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BLADE TOPLEVEL
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Figure 3.3: New controller general architecture

3.1.3 FSM of a new controller

The global architecture being explained, a presentation of the controller file has to be
done. This file as all the others is written in System Verilog for sake of homogeneity of
the code. This code being more complex than the other file, it was relevant to organise
it differently. The idea of writing the controller HDL (Hardware Description Language)
as an FSM was an evidence. The state were simple to imagine and a first FSM has
quickly emerge. To ease the code at the beginning the choice have been made not to
directly write a controller with hardware loops since they can add on top of the basic
features of the controller. The first version of the FSM is depicted on Figure 3.4. Of
course, the working of the controller being very complex, only the condition to change
states have been sketched to make it understandable. All the output signals have been
omitted. On this first FSM, 5 states have been defined. Wait is the starting state
in which the controller returns each time it completes a computation. The four other
states are operations states that take a different number of clock cycles and they need
to be considered independently. The Read/Write state lasts only one clock cycle, so
the controller come back in the initial state right after the operation and without any
condition. The 2-cycles IMC state corresponds to all the operations that take 2 clock
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cycles (AND, NOR, XOR, Add, Shift): first computing, then writing back the result in
the memory. These operations are started when the operation code is smaller than 5.
The counter for the operation time is set to 1 in order to quit this state after 2 cycles. The
state Multiplication correspond to the multiplication as the name suggest. It is treated
separately since the multiplication takes more cycles as we explained previously in the first
Chapter. The operation code is 6 and the initialization value of the counter is dependant
on the muliplier width. The multiplication is done by a succession of "addshift" and
"writeBack". The last cycle is just an addition without shift. These elements have to be
all managed by the controller which request a good knowledge of BLADE to understand
its way to perform operations. The last state of this FSM is the Convolution block,
it is a state that performs 3 IMCs in a row. First it does a logic AND between the
reset address and the accumulation one to prepare it for the second step which is the
multiplication between the operand A and the operand B. The result is stored in the
accumulation address and finally an addition is performed between the result address
and the accumulation one. The final result is stored in the result address. This operation
state need one extra counter to count the operation step. Once both the counter of the
operation and the step counter are null, it means that the result is computed. Each time
one operation step is finished, the step counter is decreased and the running counter is
reinitialized for the next operation to perform.

Figure 3.4: FSM of the new controller without hardware loops

This solution was a first version that have been coded for the controller and one
feature: the Convolution block have been added. However, the addressing of the memory
have been changed in order to find a use for the hardware loops. This FSM have thus
been changed in order to integrate this feature. The only thing that have been removed is
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the Repeat parameter since it was less interesting for the applications. Figure 3.5 shows
the simplified diagram of this FSM. On this diagram, the same states have been used
and only one extra state have been added: IMC. This state has been added in order to
ease the implementation of hardware loops. Indeed, since this feature requires to load
specific counters, this step is done in this state and when an operation is finished if all
the length_counter for the 3 operands are not equal to 0 the finished signal stay to ’0’
and the hardware loop counter are updated in IMC state.

Figure 3.5: FSM of the new controller with hardware loops

The objective being to loose less clock cycle as possible, this state can be skipped
when the hardware loop registers are kept to ’0’. The FSM looks then more like the first
one. Concerning the Read/Write state, it is the only one that will never be impacted by
the hardware loop since it is not expected to do some loops for these operations.

3.2 RTL simulations
In the process of integrating BLADE on a new chip, the large majority of the work is to
simulate the design and verify that all the functionality expected are well implemented
and functional. In order to verify that everything was correctly working with the new
controller 2 different kind of simulations were run in which all the blocks were tested.
During the design of the controller, most of the simulations were done with System Verilog
testbenches. Indeed, these testbenches have the big advantage to enable to control all
the input signal of the block tested. A very demanding work have been then to create
testbenches for the controller file that were setting the input signal. In order to debug the
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RTL code, a lot of time have been spent to check all the internal signals of the controller
and to see if all the waves were well coordinated. This part being simulated without
the memory SAs, it is not possible to know if the instruction required were leading to
the good result, but at least it allowed to verify that the global features were running
correctly. In these simulations, for instance, the number of cycles of the multiplication
was checked along with the hardware loop. It was useful to debug roughly the most
important problems in order to be able to run more complex simulations later.
Once the first simulations with only the controller file were done, a testbench for the
toplevel have been written. This System Verilog testbench was the first one to enable
testing the entire BLADE peripheral, it was testing at the same time all the blocks of
Figure 3.3. Only the physical macro was not tested, but a Sytem Verilog file simulating
the behaviour of the memory was used in order to simplify simulation. In this part of
the simulations, it was interesting to test a maximum of IMCs in order to be sure that
all the timing between the waves were correct. For example, the result of a read must be
available when the r_valid signal is high. These are the kind of checking that were done.
A list of operation to be checked is drawn up:

• Write the entire memory.

• Read the entire memory.

• Perform a single 2-cycles IMC.

• Perform 2-cycles IMCs using length and stride to loop operations.

• Perform a single multiplication.

• Perform multiplications using length and stride to loop operations.

• Perform a single convolution block.

• Perform convolution blocks using length and stride to loop operations.
Once most of the functionalities were verified with the testbenches, the new archi-

tecture of BLADE have been integrated inside HEEPpocrates to be able to run more
complex tests such as convolutions. These applications were written in C for easiness. It
was a much more efficient way to test the features of the new controller and to be sure
that all the results were correct. The possibility to use printf on HEEPpocrates have
eased the verification avoiding to check systematically the waves. Figure 3.6 and 3.7 show
respectively the wave form for a single multiplication and for an hardware loop for an
AND operation.

Figure 3.6: Single multiplication with the new controller on HEEPpocrates
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Figure 3.7: Hardware loop on an AND logic operation with the new controller on HEEP-
pocrates

A 16-bits convolution test have been run to verify the new features added on the new
controller. This simulation have highlighted the benefits of the new design.

3.3 Benefits of the new design
This new controller aimed to reduce significantly the instruction time. This objective have
been reached by finding a new way to interface the bus to the controller of BLADE, adding
state registers that can be written from the CPU and read at any time by the controller.
Tables 3.1 and 3.2 show respectively the number of clock cycles per operation result with
the previous an the new controller. These tests have been made with testbenches and are
just simulating BLADE peripheral before its integration on HEEPpocrates. The 2-cycle
IMCs represent the operations that are performed in 2 cycles (all the operations except
reads, writes and multiplications). First thing to be noticed is that the throughput of
BLADE always increases with the bit-length of the operands thanks to the parallelization
of operations. However, the improvement is better with the multiplication than the
other operations due to the reduction of the operation time. Then , it is clear that the
new controller improve the operation throughput in any case, even though the progress
is more important for the 2-cycle IMCs (-79% of clock cycles per operation). Indeed,
the proportion of the instruction time is more important for operations that have short
computation time. Thus, the reduction of instruction cycles greatly improves the overall
operation efficiency.

Cycles per operation 2-cycle IMCs Multiplication
32 bits 0.56 4.50
16 bits 0.28 1.25
8 bits 0.14 0.38

Table 3.1: Cycles per operation with the
old controller

Cycles per operation 2-cycle IMCs Multiplication
32 bits 0.13 4.06
16 bits 0.06 1.03
8 bits 0.03 0.27

Table 3.2: Cycles per operation with the
new controller

As most of the effort in this master thesis have been done to improve the controller in
the view of running convolution on BLADE, a 16-bits convolution simulation have been
run on HEEPpocrates. This application aimed to put in context all the modifications
that had been implemented to speed up computations. Figure 3.8 presents the new
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data placement inside the subarrays. This placement differs from the one on Figure
2.8 in order to be able to use the hardware loops. Indeed, previously they were not
useful since the data addresses of the input were not continuous. By adding a wrapper
around the subarrays, the addresses are now increasing in the same way than input
indices. For the same reason result addressing are following to be able to access them
continuously. Concerning the placement of the kernels they did not change compared to
the last application, the only constraint about the filters is to have the 25 indices of each
filter continuous and it was already possible with the previous addressing of memory.

Data of the kernels

Input data for the convolution

Output data of the convolution

Accumulation address 

Reset address

Unused adresses

K1.1

K1.25

I1

I32

K2.1

K2.25

K3.1

K3.25

K4.1

K4.25

K5.1

K5.25

K6.1

K6.25

O1.9

O1.40

LG 0

LG 1

LG 2

LG 3

Way 0 Way 1 Way 2 Way 3

I33

I64

I65

I96

I97

I128

I129

I144

O2.9

O2.40

O1.41

O1.55

O3.16

O3.47

O4.16

O4.47

O5.24

O5.55

O6.24

O6.55

O1.1
O1.8

O2.1
O2.8

O2.41

O2.55
O3.1

O3.15

O4.1

O4.15

O3.48
O3.55

O4.48
O4.55

O5.1

O5.23

O6.1

O6.23

Figure 3.8: Data placement within the SAs for a 16-bits convolution

The result of the 16-bits convolution with the new controller design have been pre-
sented on the tables below. Table 3.3 shows the distribution of clock cycles during the
data placement. These results consider only the placement of the input and the filters
are already considered placed in the memory since they should not be changed between
2 convolutions. They would then be placed only once. Here it is clear that the data
placement is limited by the CPU speed to send the instructions. This is a factor that
could be probably eliminated in the future by implementing a DMA (Direct Memory
Access) that would be able to place the input data in real time while the CPU would be
in sleep mode. As the sensor would be measuring and sending data the DMA would be
placing them inside the memory. The data would be already placed inside the memory
at the end of the sensing phase. Thus, all the clock cycles that are used to place data
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inside BLADE could be neglected. Table 3.4 presents the distribution of clock cycles to
perform the convolution computation. This part is the one that have been optimized the
most during this master thesis. As it can be seen on the table, the number of instruction
is reduced to 208 which is only a tiny part of the time used for the computations. With
the addition of the convolution block operation and the use of the hardware loops it is
now possible to send one instruction that take one clock cycle to do 75 operations in a
row. This is a huge improvement compared to the previous controller design that used
7 clock cycles to send 4 instructions to do only one operation in the end. The time of
instruction have been in the end divided by 420. On the top this enhancement, the CPU
working time also reduces very significantly. Indeed, since the instructions are very few,
the communication between BLADE and the CPU are drastically decreasing. BLADE
memory is now able to compute 97.3% of the time which is an important contribution of
this work. The distribution of clock cycles during the result reading is depicted on Table
3.5. As for the writing of the data, it is obvious that this phase is limited by the CPU
working time. Once again, implementing a DMA would enable to automate this work
and would greatly reduce the time of this part. The CPU could stay in sleep mode and
the work would be almost reduced to the instruction time and BLADE computations
time. This a thing that should be thought in order to reduce at its minimum the CPU
overhead.

Number of clock cycles BLADE
Instructions 2 016 (3.4%)
CPU computations 55 255 (93.2%)
BLADE Computations 2 016 (3.4%)
Total 59 287

Table 3.3: Number of clock cycles to place
data inside BLADE

Number of clock cycles BLADE
Instructions 208 (0.1%)
CPU computations 4 140 (2.6%)
BLADE Computations 155 775 (97.3%)
Total 160 123

Table 3.4: Number of clock cycles to per-
form convolution inside BLADE

Number of clock cycles BLADE
Instructions 4 704 (4.3%)
CPU computations 99 893 (91.4%)
BLADE Computations 4 704 (4.3%)
Total 109 301

Table 3.5: Number of clock cycles to read the results inside BLADE

Figure 3.9 shows the comparison of the time taken to do the 16-bits convolution with
the old and the new controller design using a RISC-V core CPU. The time to do the
convolution have been reduced by 49.6% which is a great improvement knowing that the
computation time inside BLADE is not changed. This enhancement could even reach
74.0% of time reduction if the DMA was implemented. This implementation will be done
in the continuity of this work.
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Figure 3.9: Comparison of the 16-bits convolution with the old and new controller design

A last comparison have been made to demonstrate the efficiency of BLADE to perform
convolution for CNNs by comparing the time to do the 16-bits convolution on the CPU of
HEEPpocrates with the time necessary to do the exact same operation on the new design
of BLADE. The results of this experiment have been plotted on Figure 3.10. This figure
clearly shows that BLADE can act as an accelerator for convolution on HEEPpocrates,
leading to a 75.0% of the time reduction for a convolution. This time reduction could
also be improved until 87.1% by implementing the DMA to transfer data in the future
the future iteration of BLADE.

Figure 3.10: Comparison of the 16-bits convolution between the CPU of HEEPpocrates
and BLADE integrated inside HEEPpocrates
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Conclusion
In the context of this master thesis, that was targeting a new tape-out in TSMC 65nm
technology on which BLADE would be integrated as an accelerator for CNNs, a lot of
work have been effected.

As a starting point, the old design of BLADE have been studied and and simulated
in order to understand the way it was operating. These simulations have led to many
optimizations in the code writing, trying to write efficient C code or to write assembly in
order to keep control on the compilation of the code. Python functions have been written
to auto-generate the C code to be compiled. These software optimizations have enabled
to determine the hardware limitation to be improved in the new controller. A way to
efficiently make convolution on BLADE have been designed for 32-bits and 16-bits data
bit-widths. These convolutions have been compared and have shown that the reduction
of the data bit-width have a significant impact on the convolution time. The bottlenecks
of the old controller have been identified in order to solve them in the new design.

In a second time, a new design architecture have been thought for the new controller
of BLADE in order to improve the time dedicated to instructions. The insertion of state
registers have enabled to write and read BLADE as any other memory, leading to a bet-
ter integration in the standard architecture of processor platform. These states registers
have also greatly decreased the time spent to send instructions between the CPU and
the controller. These optimization of hardware have enabled significant improvement of
operations inside BLADE.

Finally, additional implementations have enabled to accelerate two times the convolu-
tions on BLADE. This enhancement is possible thanks to the new addressing of the
macro that have been done by adding a wrapper around the SAs and also thanks to the
convolution block that have been integrated in the controller FSM. These improvements
have enabled to reduce drastically the time used for instructions, increasing consequently
the computation of BLADE time proportion. These changes have led to important result
for BLADE showing that it could be very efficient for convolutions compared to CPUs.
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Glossary

ALU Arithmetic Logic Unit. 3, 21

BLADE BitLine Accelerator for Devices on the Edge. 2–7, 9–11, 16–28, 30–32

CNN Convolution Neural Network. 3, 11, 13, 16, 17, 21, 31, 32

CPU Central Process Unit. 2, 3, 5, 6, 9, 10, 16, 17, 19, 22, 28–32

DMA Direct Memory Access. 29–31

FSM Finite State Machine. 24–26, 32

GBL Global BitLine. 4

GPU Graphic Process Unit. 2

HDL Hardware Description Language. 24

HEEP Healthcare Energy Efficient Platform. 3, 23

IMC In-Memory Computing. 2, 4–7, 9–12, 14–16, 21, 23, 25, 27, 28

LG Local Group. 4, 12, 15, 16, 18, 21, 24

LGP Local Group Periphery. 4

LSB Less Significant Bits. 18, 19

MSB Most Significant Bits. 7, 18, 19

RTL Register Transfer Level. 26, 27

SA SubArray. 4, 7, 11, 12, 14–21, 24, 27, 29, 32

SRAM Static Random Access Memory. 2
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