
Master thesis project 2021-2022

Grenoble INP-PHELMA
Nanotech

Implementation and verification of an in-SRAM
computing subarray in 65nm CMOS technology

Presented by : Clément CHONE
clement.chone@epfl.ch

Examining Committee :

PHELMA Tutor :
Prof. Lorena ANGHEL, lorena.anghel@phelma.grenoble-inp.fr

EPFL supervision team :
Prof. David ATIENZA, david.atienza@epfl.ch

Dr. Alexandre LEVISSE, alexandre.levisse@epfl.ch

Dr. Davide SCHIAVONE, davide.schiavone@epfl.ch

Mr. Marco RIOS, marco.rios@epfl.ch

Done at : Embedded System Laboratory (ESL)
Address : ELG building (EPFL), Route cantonale 1015 ECUBLENS (SUISSE)
Confidentiality : No

21 February 2022 — 13 August 2022

Acknowledgements

I would like to express my sincere gratitude to my research supervisors Dr. Alexandre
LEVISSE, Dr. Davide SCHIAVONE and Marco RIOS for their help and advice during
this internship as well as all the knowledge they provide me about Analog and Digital
circuit design.

Besides my supervisors, I would like to thank Prof. David ATIENZA, director of the
Embedded System Laboratory, who welcomed me in his laboratory for this internship.

Finally, I would like to thank all people who contributed to the success of this study
in any way.

Abstract

With the growing interest of applications relying on Artificial Intelligence, Convolu-
tional Neural Network gained in popularity because of their high potential in terms
of performance, energy efficiency and security. However, because of their high energy
consumption, their integration inside embedded systems remains difficult and, by con-
sequences, many efforts are made to built low power accelerators. In that purpose,
In-Memory Computing promises great improvements since it allows the acceleration
of the processing speed by reducing the data transfer between the memory and CPU
in addition to remarkable energy savings. The aim of this project is to implement and
validate an improved version of a 2kB memory subarray for building an in-SRAM com-
puting memory based on the EPFL BLADE architecture Bitline Accelerator for Device
on the Edge, that will be implemented in an upcoming tapeout in 65nm. Throughout
this study, we will first explore a new architecture based on the used of Embedded
shift in order to accelerate up to 4 times the multiplication step. In addition, a power
gating strategy is proposed to reduce the memory power consumption of idle blocks.
Results show that the proposed implementations will enable us to save up to 30% of
energy. Finally, an Analog-Mixed-Signal (AMS) design flow will be proposed so as to
assure the proper integration of the full-custom memory with its digital, standard-cell
based controller.

Résumé

Avec l’intérêt croissant des applications reposant sur l’utilisation de l’intelligence ar-
tificielle, les réseaux de neuronnes convolutifs ont gagné en popularité de par leur fort
potentiel en termes de performances, d’efficacité énergétique et de sécurité. Cepen-
dant, leur intégration au coeur de systems embarqués reste difficile à cause de leur forte
consommation énergétique et, par conséquence, de nombreux efforts sont réalisés afin
de construire des accélérateurs basse consommation. Dans cet objectif, l’In-Memory
Computing promet un progrès significatif puisqu’il permet une amélioration de la
vitesse de calcul grâce à la réduction des movements de données entre le CPU et la
mémoire ainsi que des gains énergétiques considérables. Le but de ce projet est donc
d’implémenter et de valider une version améliorée d’un sous-réseau mémoire de 2 Ko
afin de construire une mémoire SRAM calculatoire basée sur l’architecture BLADE
(Bitline Accelerator for Device on the Edge) créée par l’EPFL et qui sera intégrée dans
une prochaine puce. Au cours de cette étude, nous allons exploré en premier lieu une
nouvelle architecture basée sur l’utilisation d’Embedded Shift dans le but d’accélérer
jusqu’à 4 fois la multiplication. De plus, une stratégie de power-gating sera pro-
posée afin de réduire la consommation d’énergie des parties inactives de la mémoire.
Les résultats obtenus montreront que les implémentations proposées nous permettra
d’économiser jusqu’à 30% d’énergie. Enfin, un flux de conception Analog Mixed-signal
sera proposé afin d’assurer l’intégration de la mémoire avec son contrôleur digital.

Sommario

Con il crescente interesse per le applicazioni basate sull’intelligenza artificiale, le reti
neurali convoluzionali hanno guadagnato popolarità grazie al loro elevato potenziale
in termini di prestazioni, efficienza energetica e sicurezza. Tuttavia, a causa del loro
consumo energetico, la loro integrazione in sistemi embedded rimane difficile e, di con-
seguenza, vengono fatti molti sforzi per costruire acceleratori a bassa potenza. A tal
fine, l’In-Memory Computing promette grandi miglioramenti grazie all’accelerazione
della fase di elaborazione, riducendo il trasferimento di dati tra memoria e processore,
che risulta in notevoli risparmi energetici. L’obiettivo di questo progetto è imple-
mentare e convalidare una versione migliorata di un subarray di memoria da 2kB per
la creazione di una memoria di calcolo in-SRAM basata sull’architettura BLADE,
Bitline Accelerator for Device on the Edge, che sarà implementata in un prossimo
tapeout. Durante questo studio, prima una nuova architettura basata sull’uso di Em-
bedded shift per accelerare fino a 4 volte la fase di moltiplicazione verrà esplorata.
Quindi, alcune ottimizzazioni nella funzionalità del subarray in modo da ridurne il
consumo energetico oltre allo sviluppo di una strategia di power gating per ridurre la
potenza consumate da elementi silenti verranno proposte ed implementate. I risultati
mostrano che le implementazioni proposte consentono di risparmiare fino al 30% di
energia. Infine, verrà proposto un flusso di progettazione Analog-Mixed-Signal (AMS)
in modo da assicurare la corretta integrazione della memoria full-custom con il suo
controllore basato su standard-cell nel prossimo tapeout.

Contents

1 Introduction 5

2 Background 7
2.1 In-Memory Computing for edge devices . 7
2.2 BLADE : a smart In-SRAM Computing architecture 7
2.3 PULP, Rosetta and Darkside . 9

3 BLADE characterization and computation optimization 12
3.1 Design exploration for calculation optimization 12

3.1.1 Embedded shifts : a multiplication accelerator 12
3.1.2 Embedded negation . 14
3.1.3 Verification and area overhead estimation 16

4 Power optimization 19
4.1 Bitcells characterization . 19

4.1.1 Bitcells Static Noise Margin . 19
4.1.2 Bitcells leakage . 21

4.2 Intrinsic power optimization . 22
4.2.1 Precharge and way optimization . 22
4.2.2 Control signals optimization . 25

4.3 Power gating and Sleep Mode . 26
4.3.1 Power domains and modes . 27
4.3.2 Implementation . 27

5 AMS verification flow 31
5.1 AMS flow of verification . 31
5.2 Results . 33

6 Conclusion 37

7 Glossary 38

References 39

8 Annexe 41
8.1 Technical part . 41
8.2 Embedded System Laboratory (ESL) . 43

1

List of Figures

Figure 1 Organisation of the different blocks inside a 2kB subarray 8
Figure 2 Architecture assuring the bitwise NOR and AND operation between

the activated bitcells [5] . 9
Figure 3 Pulpissimo architecture [12] . 10
Figure 4 Timing diagram of successive read operations [14] 10
Figure 5 Rosetta and Darkside chip [6] [7] 11
Figure 6 Example of multiplication performed by BLADE between the bi-

nary numbers a = 001001102 = 3810 and b = 100112 = 1910 12
Figure 7 Schematic of the control structure for the multiplication [15] 13
Figure 8 Schematic of 4 Embedded Shift inserted inside a LGP (only one side) 14
Figure 9 Example of multiplication between 2’s complement number in fixed

point format [16] . 14
Figure 10 Schematic view of the new LGP with 4 Embedded Shift and em-

bedded negation . 15
Figure 11 LGP block diagram corresponding to bit 5 with 4 Embedded shifts 16
Figure 12 Block view of 8 bit words. Bit 7 needs 10 MUX since 4 pairs are

needed to replicate this bit and the last two are needed for the
embedded negation. 16

Figure 13 Simulation verifying the logic behaviour of the architecture "Em-
bedded Shift + in-situ negation" . 17

Figure 14 Example of Hold, Read and Write SNM extraction realized on a 6T
SRAM bitcell at 1.2V and 25C . 20

Figure 15 Hold, Read and Write SNM characterization for a 6T SRAM bitcell
for different temperatures . 21

Figure 16 Determination of VDD_min retention 21
Figure 17 (a)Leakage estimation of a 2kB array in function of temperature

and supply voltage, (b) Energy savings made when reducing the
supply voltage from 1.2V to 0.6V 22

Figure 18 Schematic view of the implemented gates 22
Figure 19 Logic verification of the implemented gates for precharge optimization 23
Figure 20 Energy comparison between the three implementations 24
Figure 21 Logic used for optimizing ways precharge 25
Figure 22 Energy consumption of the block "Array+IO" for the 3 implemen-

tations with respect to Darkside . 25
Figure 23 Schematic view composed of the rising edge detector followed by a

long chain of inverters. Each block being composed of 20 inverters. 26
Figure 24 Schematic representation of the 4 power modes 27
Figure 25 Layout views of the interface Array/IO before and after NWELL

separation . 28
Figure 26 Isolation cell used for the memory outputs 28
Figure 27 Block diagram of a LDO [22] . 29
Figure 28 Simulation’s result of our LDO obtained with spectre simulator . . 30
Figure 29 Schematic view of the testbench used for the verification of the

behavioural model of the memory 32
Figure 30 Example of VEC file used for an AMS simulation 32
Figure 31 Schematic view of the testbench used for the verification of the

interface controller(RTL)/memory 33

2

Master thesis 2022

Figure 32 Simulation verifying the functionality of the memory and its be-
havioural model for the addition step 34

Figure 33 Different endianness used for signals definition 34
Figure 34 Short circuited netlist . 35
Figure 35 GDS view of Darkside showing a pin inversion on different signals . 36
Figure 36 Layout views related to the precharge optimization 41
Figure 37 Simulation verifying the functionality of the memory and the con-

troller in its HDL description (Part1) 42
Figure 38 Simulation verifying the functionality of the memory and the con-

troller in its HDL description (Part2) 42

Page 3

List of Tables

Table 1 Tests realized in order to verify the functionality of the architecture
"Embedded Shift + in-situ negation" 17

Table 2 Area overhead estimation . 18
Table 3 Energy consumption estimation realized for 100 clock cycles with

Tclk = 5ns . 26

4

Master thesis 2022

1 Introduction

With the intensive development of applications relying on Artificial Intelligence such as self-
driving cars, image recognition and surveillance systems, a growing interest has emerged
for Convolutional Neural Network (CNN) over the past few years since they provide many
advantages in terms of performance, energy efficiency and security [1]. However, due to
their high energy consumption and large resources requirement, their integration in edge
devices for embedded systems remains the main issue. As a solution, engineers developed
new architectures based on In-Memory Computing (IMC) to reduce data movement be-
tween the CPU and the memory, which is generally the main source of energy consumption
for such applications. Thus, intensive data workload can be achieved directly on IoT edge
devices, improving the security and the energy efficiency of the system by suppressing the
tranfer of a huge quantity of data towards other networks (Fog, Cloud...) [2] [3].

Within this context, a new architecture using In-Memory Computing called BLADE is
being developed by the ESL laboratory in EPFL since 2019. Relying on the use of Local
Groups (LG) and Bitline computing, it boosts the performances of a traditional mem-
ory computing architecture in terms of area, frequency of operation and computational
complexity [4] [5]. A first version was implemented inside Rosetta [6] in 2019, a chip co-
designed with the Integrated System Laboratory in ETH Zurich. Two years later, an im-
proved version of BLADE was implemented in a second collaborative chip named Darkside
[7]. Currently, the ESL Laboratory is working on a third tapeout named HEEPpocrates in
which further optimizations regarding the power consumption of the array proposed in this
Thesis, as well as the computing process, will end with a promising accelerator architecture
for the integration of CNN in IoT edge devices.

The goal of the proposed Thesis is to improve the power and energy efficiency of a 2KB
SRAM-based in-memory computing subarray implemented in TSMC 65nm based on the
EPFL Blade architecture. Such macro is then instantiated 16 times and interfaces with
a digital controller to build a 32KB memory block. Furthermore, an extensive, multiple-
steps, and multiple EDA tools Validation flow is implemented to verify the logical and
electrical connectivity, as well as the timing constraints between the digital controller and
the subarrays. The flow relies on multiple EDA tools and checks the functionalities at
several levels of the implementations as:

• the HDL description (SystemVerilog) of the digital controller and the behavioral
model of the subarrays;

• the synthesized digital controller (Verilog model of the standard cells) and the be-
havioral model of the subarrays;

• the synthesized digital controller (Verilog model of the standard cells) and the extracted-
from-layout spice model of the subarrays;

• the spice model digital controller (spice model of the standard cells) and the extracted-
from-layout spice model of the subarrays.

The aforementioned steps were performed with both Cadence and Synopsys EDA tools
to further increase the validation coverage.
After a brief introduction around the BLADE architecture in Section 2, Section 3 details
the exploration and integration at schematic level of new hardware implementations imag-
ined by our research group in order to improve the computation efficiency of BLADE in

Page 5

Master thesis 2022

the scope of building a powerful CNN accelerator. Then, Section 4 explains the different
methods investigated and implemented for reducing the energy consumption of the subar-
ray. Because of some issues related to the testing step of Darkside which came back from
fabrication at that time of the project, we decided to suspend temporarily this step and
concentrate our efforts on the verification of Darkside. Thus, Section 5 details the im-
plementation of an Analog Mixed-Signal flow of verification in order to test the interface
linking the analog and digital world in Darkside.

Page 6

Master thesis 2022

2 Background

2.1 In-Memory Computing for edge devices

With the continue increased amount of data that have to be processed in a shorter time,
the data access time of memories remains the main barrier for processing data quickly and
efficiently and impedes the use of CPUs to their 100% capacity. In order to assess this
issue commonly named CPU-memory bottleneck or "Von Neumann bottleneck", scientist
have started to develop architectures enabling them to process the data directly inside the
memory [8]. For Edge devices and time critical applications, this idea promises breathtak-
ing performances since it enables a huge reduction in terms of data movement resulting
in a faster and more power efficient data treatment. Indeed, Edge devices often lack of
resources available for computation and therefore require the use of external servers for
processing data creating latency and power hungry applications. The insertion of com-
putation capabilities closer to the memory addresses the main constraints of edge devices
(latency and power consumption) and may open the path toward bigger data workload
such as AI-related computations[9].

Thus, many data-centric architectures such as In-Memory-Computing (IMC) and Near-
Memory Computing (NMC) have been developed so as to bring the computation unit
closer to the memory array in order to increase the performances of modern architectures
limited by memory access, power and delay (also called "memory wall") [10]. The data
computation in such architectures is usually performed in the periphery of the memory
and the results are then written back directly inside the array from there without the use
of the processor. This feature makes them usually less dense than classical Read/Write
memories but offers a great opportunity to run memory intensive applications at the edge.

2.2 BLADE : a smart In-SRAM Computing architecture

BLADE, standing for BitLine Accelerator for Device on the Edge, is a 6T in-SRAM com-
puting architecture developed for low-power devices like embedded systems which are often
powered by batteries. Relying on IMC, it performs some bitwise and arithmetic operations
without the use of an external Arithmetical Logic Unit (ALU) in order to reduce data
movement between the memory and the processor. BLADE is a 32kB memory composed
of 16 subarrays. Each subarray is composed of 4 different blocks having different duties as
shown by Figure 1 :

• Array : composed of bitcells storing the data and organized in words of 32 bits in
addition to some logic enabling their access (precharge, read port ...);

• Decoder (DEC) : allows to decode the type of operation to execute (Read, Write,
IMC) and the address;

• Controller (CTRL) : handles the control signals and their activation during a clock
cycle for the proper operation of the memory;

• IO logic : allows to compute the result of the operation and output it towards
registers. The result can be then written back in the memory at the next clock cycle.

Page 7

Master thesis 2022

Figure 1: Organisation of the different blocks inside a 2kB subarray

To perform arithmetic computations, the BLADE architecture relies on Bitline Com-
puting which consists in activating two wordlines at the same time. This results in the
discharge of two pairs of local bitlines which then activate the discharge of the Global Read
Bitlines (GRBLs) thanks to the Local Read Port. The GRBLs being bitwise shared by all
the bitcells, the data is merged on these latter so as to compute a bitwise NOR and AND
operation between the values read from the two activated bitcells as explained by Figure 2.
Based on these two signals, additional logic has been added underneath the bitcells array
in order to perform a XOR bitwise operation as well as more complex operations like Shift,
ADD, ADD+SHIFT, subtraction or greater/less than. The XOR operation is done with
a NOR gate between the 2 GRBLs whereas a carry ripple adder (CRA) is used for the
addition and shifts. The same hardware can be also used to perform the subtraction since
this latter can be achieved by the addition of the first operand with the 2’s complement
version of the second operand. The former is obtained by taking the values on the LBLb to
which we add the binary value 1 thanks to the carry chain (carry_in equal to 1). Finally,
Greater/less than operation can be achieved by subtracting two operands and checking the
value of the MSB.

Page 8

Master thesis 2022

Figure 2: Architecture assuring the bitwise NOR and AND operation between the activated
bitcells [5]

The specificity of BLADE compared to other in-SRAM Computing memory architec-
tures relies in the use of Local Groups and Local Bitlines. These characteristics enable to
both limit the risk of data corruption due to the simultaneous activation of two wordlines
and to keep a good density of bitcells inside the array. Indeed, if two activated bitcells
belong to the same bitlines, it may happen that the content of one bitcell flips the other one
because of process variation during fabrication or bitcell degradation. However, another
study conducted by K.C Akyel and al. shows the possibility of in-SRAM computing with-
out the use of additional bitlines to prevent data corruption. It has been done through the
addition of two read ports in each bitcell. This feature enables to secure the data stored
inside the bitcells but they have to pay the price of some area overhead [11]. Nevertheless,
it has to be mentioned that the use of local bitlines and local groups inside BLADE induce
a constraint in data placement since data have to belong to different local groups in order
to perform operations.

2.3 PULP, Rosetta and Darkside

In 2019, BLADE was first integrated inside Rosetta, a low-power 65nm chip designed in
common by the Integrated System Laboratory (ISS ETH Zurich), the Telecommunication
Systems laboratory (EPFL) and the Embedded System Laboratory (EPFL) [6].
Rosetta is based on the single core platform Pulpissimo which is able to perform several
RISC-V ISA extensions such as Single Instruction Multiple Data (SIMD) operations, hard-
ware loops, MAC and fixed point operations thanks to its vector processing core RI5CY
[12]. The chip is constituted of 512kB of L2 memory in order to process traditional com-
putations requiring high memory capacity as well as a 64kB xSRAM. This latter is an
improved version of SRAM able to perform in-memory vector boolean operations (NAND,
NOR, IMP and XOR) and used for simultaneous program execution [13]. Finally, a 32kB
version of BLADE was implemented inside Rosetta as a Tightly-Coupled-Data-Memory
(TCDM) in order to accelerate data-intensive applications. These memories use a protocol
based on a simple request-acknowledgement process. Regarding BLADE, a request signal
(req) is sent from the processor to BLADE’s controller and a grant signal (gnt) is set to

Page 9

Master thesis 2022

Figure 3: Pulpissimo architecture [12]

1 in the next cycle. This confirms that the request was indeed taken into consideration.
Then the controller decodes the information it received from the processor and sends to the
memory the required signals to perform the operation (address (add), byte enable (be),
wordline enable (wen), opcode "op"). These later are then latched by the memory
subarray in order to be properly set at the next rising edge of the clock. The operation
is processed by BLADE during a certain number of clock cycles depending on the type of
operation to execute given by the opcode. After the computation, the result is saved in
the memory and outputted via a signal r_data. Meanwhile, a r_valid signal is asserted
by the controller in order to tell the processor that the operation is done and the result is
available. A timing diagram can be seen on Figure 4.

Figure 4: Timing diagram of successive read operations [14]

Unfortunately, this first version of BLADE turned out to be defective. In 2021, an
improved version of BLADE based on Rosetta design was inserted inside Darkside, the
second collaborative chip between ETH Zurich and EPFL. This chip integrates 8 different
RISCV cores and new IPs in order to accelerate the computation time for Deep Neural
Network. The integration of BLADE inside that chip will enable in-situ additions that can
be chained to perform multiply-accumulate operations, achieving up to 64 1-byte (or 16
4-bytes) multiplications in parallel. [7]. The fabricated chip should come back in mid-2022
for testing.

Page 10

Master thesis 2022

Figure 5: Rosetta and Darkside chip [6] [7]

Page 11

Master thesis 2022

3 BLADE characterization and computation optimization

As mentioned in the previous section, the concept of In-Memory Computing consists in
performing some arithmetic operations directly inside the memory so as to reduce data
movement between the memory and the processor. Thanks to the logic embedded inside the
memory periphery, we are able to perform arithmetic operations directly inside BLADE.
To increase its computation efficiency in the scope of convolutional neural networks (CNN),
a recent structure named "Embedded Shifts" has been designed by a PhD student of the
ESL Laboratory. This optimization is mostly related to the multiplication step since it is
the most used arithmetic operation in such applications. Thus, I will detail in this first
section the exploration of the design space through the implementation and verification at
schematic level of this new structure that i realized with the help of his inventor.

3.1 Design exploration for calculation optimization

3.1.1 Embedded shifts : a multiplication accelerator

Being a complex operation, multiplication is usually decomposed at hardware level in a
succession of sub-operations like additions and shifts. This solution is compliant with
heterogeneous bitwidth and usually easier to implement physically since a multiplier is a
complex and big structure. The choice of sub-operation to execute is done by checking
successively the bits of the multiplier starting from the most significant bit (MSB). In case
the binary value ’1’ is read on the bit checked, an addition followed by a shift is performed
at the result address, otherwise the result address is only shifted (logic "0"). An example
of multiplication is shown on Figure 6.

Figure 6: Example of multiplication performed by BLADE between the binary numbers
a = 001001102 = 3810 and b = 100112 = 1910

The multiplication implemented in BLADE is done in the following way. On one side,
the multiplier is stored in a 32 bits register file where its MSB is checked progressively
while being shifted. On the other side, the multiplicand is stored in the array as well as
the accumulator (result) which has been initialized to the value 0. Those latter need to be
stored in two different LGs for the good operation of the memory.

However, the data used in CNN often contain several series of 0s and therefore the
current implementation of BLADE is using many clock cycles to shift the data which
is inefficient. That’s why we would like to find a way to reduce the number of cycles
used by BLADE to perform the multiplication. The solution found by our research group

Page 12

Master thesis 2022

[15] consists in checking several bits of the multiplier at the same time so as to perform
several shifts in one cycle in case a pattern containing several 0s is detected. For the
implementation done in this work, we decided to check the first four MSB of the register file
since it has been proved from a previous study to be the best trade-off between energy, area
overhead and performances [15]. A schematic of the structure controlling the multiplication
steps is shown on Figure 7.

Figure 7: Schematic of the control structure for the multiplication [15]

In order to shift the data read from the LBL and LBLb, we need to include some
additional logic structure named "Embedded shift" in the local group periphery (LGP)
of BLADE. An embedded shift is a simple structure composed of two NMOS transistor
in series as shown by Figure 8. The transistor M28 (respectively M26, M24 and M22) is
activated whenever a logic 0 is read on the bitlines and allows us to discharge the Global
Read BitLine through the ground if the transistor M29 (respectively M27, M25 or M23) has
been activated by its respective control signal coming from the control structure (Figure
7). For instance, signal SH<1> corresponds to an assignment of "1 Shift + 1 Add", signal
SH<2> to "2 Shift + 1 Add" etc...

Page 13

Master thesis 2022

Figure 8: Schematic of 4 Embedded Shift inserted inside a LGP (only one side)

3.1.2 Embedded negation

Although the previous implementation will allow us to save many clock cycles while per-
forming multiplications, its main issue lies in the accuracy of the result we will get. Indeed,
as we are dealing with words of 32 bits, we theoretically need 64 bits to avoid some overflow
issues. Therefore, with only 32 bits, we can only perform the multiplication on 16 bits if we
don’t want to lose accuracy. To use our memory at its full potential, we need to perform
the multiplication in 2’s complement and fixed point format notation as proposed by our
research group [16]. This feature enables us to deal with numbers ranging from -1 to 1
which will suppress any risk of overflow while keeping a good accuracy. In that purpose,
we need to perform a new operation on the data which consists in producing a negated
version of those latter as shown by Figure 9.

Figure 9: Example of multiplication between 2’s complement number in fixed point format
[16]

As during a read operation we are reading both the data and its complement, we can
simply add a second multiplexer so as to chose the value either on the LBL or LBLb after

Page 14

Master thesis 2022

the multiplexer choosing the way to be read. A schematic view of the implementation (ES
+ in-situ negation) is shown on Figure 10.

Figure 10: Schematic view of the new LGP with 4 Embedded Shift and embedded negation

Contrary to the multiplication performed in section 3.1.1, the bits have to be right
shifted instead of left shifted. This change is done thanks to a proper wiring on the Em-
bedded Shifts. Moreover, in order to keep the versatility of BLADE, we need to include
other multiplexers in order to perform multiplications on 32, 16 and 8 bits. Indeed, when
right shifting the data, the MSB of each word needs to be replicated for the correctness of
the operation. The number of multiplexer added will depend on the bit position inside the
memory.

Taking a word of 8 bits as example :
Bit 7 can be shifted 4 times at maximum and needs to be replicated for every type of shifts
(1, 2, 3 or 4 times). Therefore, we will need 4 pairs of multiplexers for those 4 conditions.
Bit 6 needs to be replicated if we are performing a number of shift higher than 1 (ie 2, 3 or
4). Therefore, we will need 3 pairs of multiplexers. Following this logic, Bit 5 will need 2
pairs, bit 4 only one and bits 3, 2, 1 and 0 don’t need any since we don’t need to replicate
them. Using words of 32 bits in BLADE, this block of 8 bits has to be replicated 4 times.

For simplicity, only the block diagram corresponding to Bit 5 of the previous example
is shown on Figure 11. A block diagram of a 8 bit word can be found on Figure 12.

Page 15

Master thesis 2022

Figure 11: LGP block diagram corresponding to bit 5 with 4 Embedded shifts

Figure 12: Block view of 8 bit words. Bit 7 needs 10 MUX since 4 pairs are needed to
replicate this bit and the last two are needed for the embedded negation.

3.1.3 Verification and area overhead estimation

Since we determined the way to implement the embedded shifts and in-situ negation at
schematic level in the previous section, we can now proceed with some logic verification. In
order to simulate its behaviour, a spice netlist of the proposed memory has been generated
from the schematic view and HSPICE has been used as logic simulator. For the generation
of the inputs, a vector file has been generated and incorporated in the main simulation
file. The different operations tested as well as their expected result are summarized in the
following table.

Page 16

Master thesis 2022

Tests
Operation Operand A Operand B Expected

result
Add 16 bits 900A 900A F008 F008 8012 8012

Add 16 bits + A shifted 3
times right

900A 900A F008 F008 E209 E209

Add 16 bits + B negated and
shifted 2 times right

900A 900A F008 F008 9407 9407

Table 1: Tests realized in order to verify the functionality of the architecture "Embedded
Shift + in-situ negation"

The result of the simulation is displayed on Figure 13. After a writing phase of the
two operands, we execute the three operations in the next 3 cycles. The first operation
tested is a reference in order to see if we can perform correctly the addition on 16 bits
(no carry propagation between different words). Concerning the second operation, we are
testing if data A is correctly shifted (becoming A = F201 F201) and added to operand
B. Finally, the last operation is testing the simultaneous use of the embedded shifts and
the negation on operand B (becoming B = 03FD 03FD). As the results obtained in out-
put (data_out) corresponds to those expected in Table 3, we can conclude on the correct
functional behaviour of our implementation.

Figure 13: Simulation verifying the logic behaviour of the architecture "Embedded Shift
+ in-situ negation"

An another thing that can be interesting to know is the area overhead caused by the
additional hardware in the LGP. Indeed, this allows us to get an estimation of how difficult
it is to integrate those improvements in BLADE. Based on the layouts of a multiplexer and
the read port (2 NMOS transistors), a rough estimation can be done. The estimation has
been realized for two versions of implementation : the first one contains 4 embedded shifts
as presented previously and the second one has only one ES in order to propose a lighter
solution since we expect a huge area overhead due to the insertion of 4 ES and several
multiplexers.
The results are summed up in Table 2.

Page 17

Master thesis 2022

Area Overhead
Cells Number of in-

stances
Total area (µm2)

Multiplexer 1 7.64
Embedded Shift 4 NMOS 3.70
LGP (Darkside) 1 20.46
LGP_V1 (max) 4 ES + 10 MUX 111.6
LGP_V1 (min) 4 ES + 2 MUX 50.51
LGP_V2 (max) 1 ES + 4 MUX 54.7
LGP_V2 (min) 1 ES + 2 MUX 39.4

Table 2: Area overhead estimation

As expected, the first version is almost 6 times bigger than the original one whereas the
second version is only three times bigger. On one side, the first version (the most efficient
one theoretically) will be really hard to implement inside the memory subarray since it will
deal with LGPs having a large difference of size. This will create some heterogeneity inside
the array and may make it fail. On the other hand, the second version is less efficient since
we can only shift the data once but the LGPs involved in this solution have similar size
which will ease its implementation at layout level. It has to be noted that we considered
only the use of "real multiplexer" for this study. The advantage of this choice is that
we can directly use the cells provided by the foundry but it involves a large number of
transistors resulting in a huge area. For further work, we may think about implementing
the same kind of multiplexer we used for selecting the way so as to only have 2 PMOS
transistors instead of a dozen.

Page 18

Master thesis 2022

4 Power optimization

In the scope of edge computing, devices are relying on the use of batteries and by conse-
quences, power saving is an important feature that has to be taken into account by the
designer. We have seen in the previous section that energy can be saved through the
amelioration of the hardware which enables a better computation efficiency. However, this
amelioration is not sufficient for low power devices and additional improvements are often
required. Thus, after the evaluation of the main responsible sources of energy consumption
in the subarray, we identified and implemented other hardware optimizations that we will
present in the following section. In addition, another way to save energy is to power only
the instances and modules that are needed for the circuit to run and to deactivate the
remaining instances. This technique is intensively used in integrated circuit design under
the name of "Power Gating" and allows designers to reduce the power consumption and
the leakage of a chip. Thus, in a second phase, we will detail a new floorplan in order to
integrate a "Power gating" strategy in the subarrays. Finally, a third way to reduce the
power consumption can be done by decreasing the supply voltage since we should theoret-
ically decrease the source and gate leakage of transistors. However, decreasing the supply
voltage of the bitcells during retention mode may provoke their failure and may result in
data loss. That’s why, the first part of this section will aim at characterizing the stability
of our bitcells by evaluating their Static Noise Margin (SNM) so as to see if we can combine
this idea with the previous ones.

4.1 Bitcells characterization

4.1.1 Bitcells Static Noise Margin

In order to be on the safe side, we only want to lower the supply voltage of the bitcells
when they will enter the retention mode (see section 4.3 regarding power gating) and use a
maximum supply voltage equal to 1.2 V when we will write and read the bitcells. Thus, we
will first evaluate the Hold, Read and Write SNM at 1.2V over a wide range of temperature
in order to check the stability of the bitcells during different operating conditions. The
Hold SNM will be then characterized for different supply voltages and for several tempera-
tures in order to determine the minimum retention voltage VDD_min_ret of the bitcells.

The Hold margin of a 6T SRAM bitcell represents its ability to keep the data with
respect to a voltage perturbation occuring at one of its storage nodes. To evaluate this
situation, we conducted a DC analysis by applying a voltage ramp from 0 to VDD on the
storage nodes and then extracted the Voltage Transfer Characteristics (VTCs). Plotting
them on the same graph, we can extract the Hold SNM which corresponds to the side of
the maximum square we can fit inside the VTCs. In order to be robust against various
Process, Voltage and Temperature (PVT) conditions, a Monte-Carlo study of 1k runs has
been conducting for different temperatures. In a similar way, the Write and Read margin
of the 6T SRAM bitcells have been extracted. A DC voltage ramp has been applied to
both storage nodes successively and the VTCs obtained during the Monte-Carlo study
have been plotted on the same graph. The results are depicted on Figure 14 and 15. We
can observe on Figure 14c the typical "butterfly" curve usually obtained for bitcells as
well as a degraded version for the Read operation on Figure 14b. This is due to the fact
that the wordline and both BL and BLb are set to logic ’1’ which put the bitcell in its
weakest state [17]. According to Figure 15, the SNM for the three operating conditions is
decreasing when the temperature is increasing and this is probably due to an increase in

Page 19

Master thesis 2022

the leakage of the bitcells which make them weaker. However, since we obtained a decent
SNM for each condition (>50 mV), we can affirm that our 6T SRAM bitcells are robust
against PVT variations at 1.2V which should guarantee the good operation of the bitcells.

(a) Write (b) Read

(c) Hold

Figure 14: Example of Hold, Read and Write SNM extraction realized on a 6T SRAM
bitcell at 1.2V and 25C

To study the capacity of retention of the bitcells for different voltages, we conducted a
10k runs Monte-Carlo study covering a wide range of temperatures (from -40C to 125C).
The results have been gathered in Figure 16. We can observe a degradation of the Hold
margin when the temperature is increased and the voltage supply is decreased. In addition,
we can see that the impact of the temperature is insignificant compared to the one produced
by the reduction of the supply voltage. This is the reason why we decided at the beginning
to keep the voltage as high as possible for Read and Write operations of the memory in
order to prevent possible issues due to SNM degradation. However, since we obtained a
Hold SNM greater than 50mV for the range of voltages studied, we can conclude that the
bitcells are stable for low voltages until 0.4V. In order to be on the safe side, we decided
to pick 0.6V as value for VDD_min_ret. This voltage provides us a good SNM (150 mV)
which allows us to recover easily the values stored in the memory after waking up as well
as providing us a good reduction of energy when the memory is not used.

Page 20

Master thesis 2022

Figure 15: Hold, Read and Write SNM characterization for a 6T SRAM bitcell for
different temperatures

Figure 16: Determination of VDD_min retention

4.1.2 Bitcells leakage

In this section, we are aiming to get an estimation of the static consumption of a 2kB
array of BLADE using the previously characterized 6T SRAM bitcells. To determine the
total leakage of the array, the leakage of one bitcell has been determined using a generated
netlist of a bitcell and simulated through HSPICE. The leakage of a transistor depending
mostly on the temperature and the voltage supply used to bias it, the leakage has been es-
timated for various conditions of temperature and for two supply voltages (0.6V and 1.2V).

Figure 17a shows an exponential behaviour of the leakage with the increase of the
temperature for both supply voltages which is coherent with the theory since the current
due to thermal agitation is increasing exponentially with T. Over the range of temperature
studied, dividing the voltage supply by a factor of 2 allows us to reduce the leakage by a
factor of 5 on average according to Figure 17b. To conclude, reducing the supply voltage

Page 21

Master thesis 2022

(a) (b)

Figure 17: (a)Leakage estimation of a 2kB array in function of temperature and supply
voltage, (b) Energy savings made when reducing the supply voltage from 1.2V to 0.6V

of the bitcells is a good approach to reduce their static consumption.

4.2 Intrinsic power optimization

4.2.1 Precharge and way optimization

Relying on bitline computing and the use of local groups, one of the main source of power
consumption of BLADE corresponds to the precharge of its global and local bitlines. Be-
cause of their high number and high capacity, a huge amount of energy is indeed consumed
for the precharge of those wires and is done at the beginning of each cycle. In its current
implementation, all bitlines are precharged at the beginning of each cycle regardless the
local groups involved in the operation. Knowing that the worst-case scenario is only in-
volving 2 different LGs (during an IMC operation), we can easily deduce that more than
50% of the energy used for the precharge can be saved for each cycle if the precharge was
carefully designed. The logical path implemented in BLADE is currently composed of a
single signal pre_charge going through a simple inverter so as to activate the precharge
block of the LBLs and GRBLs. Despite its simplicity, this implementation wastes a lot
of energy since we actually don’t need to precharge the GRBLs and LBLs during a write
cycle as well as a part of the LBLs during a read cycle.

Figure 18: Schematic view of the implemented gates

In order to improve this architecture, inverters have been replaced with a NAND3 and

Page 22

Master thesis 2022

NAND2 in association with some control signals as shown in Figure 18. The signal OP<0>
allows us to know if we are doing a write operation (logic 0) or an operation involving a
read in the memory like during an IMC or a simple read (logic 1). On its side, en_lg<0>
tells us if the data required is belonging to the first local group or not.

The logic behaviour has been verified using HSPICE as spice simulator and a netlist
of the implemented gates. The result of the simulation is shown on Figure 19. We can see
on this latter that we obtained the desired effect that is no precharge on write cycles and
we activate only the precharge of useful LGs during Read cycles.

Figure 19: Logic verification of the implemented gates for precharge optimization

Since the logic has been checked, we can now try to estimate the energy saved by our
implementation. To do so, the three following test cases have been implemented (where
W=Write and R=Read) :

• Pattern 1 : Start - W1 - R1 - R2 - Wait_1ms - R1 - R2

• Pattern 2 : Start - W1 - W2 - R1 - R2 - Wait_1ms - R1 - R2

• Pattern 3 : Start - W1 - R1 - Wait_1ms - W1bar - R1

The first two patterns allow us to highlight the energy savings that we made during a read
operation after a waiting time symbolizing an unused period of the subarray (SA). Pattern
1 is reading the data in the same LG whereas Pattern 2 is reading the data in different
LGs. Finally, Pattern 3 aims at highlighting the benefits obtained for a write operation.
The results are summarized in Figure 20 for each pattern.

Figure 36a and 36d show an energy reduction by 4 regarding the energy spent for the
precharge of the LBLs compared to the previous implementation. This reduction was the
one expected theoretically since we are now precharging only the local group that contains
the data to be read and no more the four LGs constituting the subarray. Nevertheless, a
35% increase of the energy is noticeable during the second read cycle of Pattern 2 in order
to precharge the LBLs. This effect is due to the fact that we didn’t precharge all the LBLs
of the subarray at the first Read cycle contrary to the previous implementation. However,
the energy spent to precharge the LBLs of a LG is approximately equal to the energy spent
for maintaining to VDD the LBLs of the entire SA and this little artefact will be largely

Page 23

Master thesis 2022

(a) Pattern 1 (b) Pattern 2

(c) Pattern 3

Figure 20: Energy comparison between the three implementations

compensated by the savings of the first cycle.
On the other side, Figure 36c shows the energy spent for the precharge of the LBLs and
GRBLs for a Write cycle followed by a Read cycle for the two implementations. By dis-
abling the precharge on Write cycle, a huge quantity of energy can be saved while being
able to write correctly the data but we still have to pay the price of precharging the un-
precharged LBLs at the next Read cycle.

In the same manner, we can push further this idea at the way level in order to save more
energy. Indeed, each time we are reading a data, only one way is selected out of 4. Thus,
if we are able to only precharge the ways needed, we could reduce theoretically the energy
spent by a factor of 16 compared to the implementation of Darkside (4 ways and 4 LGs
per subarray). To this purpose, we can simply add an inverter followed by a NAND2 gate
on the path of the signal pre_charge_lbl as shown by Figure 21. This implementation has
to be repeated 16 times since we need to control the precharge of each way independently
by using their own activation signal LG_way_en. This implementation has been logically
verified in the same way as the previous study and tested on the same 3 patterns. The
results are reported in Figure 20.
This time, the energy used during the first read cycle of Pattern 1 and 2 has been reduced
by a factor of 14.4. The difference with the 16x factor expected from the theory may be
explained by the large number of inverters and NAND2 gates that we added for this im-
plementation as well as the additional leakage current coming from those gates. Moreover,
we can also notice an improvement in the energy consumption during the second read of
Pattern 1, 2 and 3. This is due to the fact that we are now precharging only one way of
local bitlines out of the four we discharged during the previous Read cycle.

To better compared the two optimizations discussed previously, Figure 22 summarizes

Page 24

Master thesis 2022

Figure 21: Logic used for optimizing ways precharge

the total energy spent for the blocks "Array+IO" with respect to the implementation of
reference (Darkside).

Figure 22: Energy consumption of the block "Array+IO" for the 3 implementations with
respect to Darkside

As expected, the third implementation is the one that allows us to save the maximum
amount of energy (around 30%). However, considering the number of additional gates
that was implemented, the second one appears to be a good trade-off between efficiency
and easiness of implementation. Indeed, the downside of the second solution relies on its
implementation inside BLADE. This solution requires a lot of gates that need to be added
in the controller of the SA and will imply lots of changes in the wiring of signals between
the controller and each local group periphery (LGP) as well as inside this latter. As we
are looking for regularity and homogeneity inside the array, we decided to implement the
first solution in the layout of BLADE. (available in Annexe)

4.2.2 Control signals optimization

In order to decrease the power consumption of the array, another point that we found
interesting to study is the generation of the control signals performed by the control part
of the SA (Timing generator in Figure 1). This part is in charge of the generation of all
control signals present in the subarray for its good operation such as the precharge signals,
read and write enables, wordline activation, latch signals.... Currently, the timing of all

Page 25

Master thesis 2022

those signals is set through the use of a long chain of inverters which is responsible of the
delay between the different signals as shown by Figure 23. With a fine characterization of
the delay caused by a predefined number of inverters, this implementation is quite easy to
implement but its main issue lies in this huge number of inverters (more than 200 in series)
which have a high switching frequency since the delays are generated at each clock cycle.

Figure 23: Schematic view composed of the rising edge detector followed by a long chain
of inverters. Each block being composed of 20 inverters.

At it is, this implementation causes a lost of energy when we are not using the memory.
To solve this issue, we decided to modify the design of the rising edge detector which triggers
the whole chain of inverters at each rising edge of the clock. A simple AND gate has been
added at the beginning in order to generate the control signals only when the subarray is
enable (SA_EN=1).
In order to evaluate the efficiency of this optimization, we first evaluated the energy cost
of the "Timing generator" block with and without the optimization for 100 clock cycles
(Tclk = 5ns) mimicking an unused period of the subarray. The consumption of these blocks
has been then compared to the consumption of the SA in the same conditions. The results
are shown on Table 3.

Control signals optimization
Darkside Timer Timer optimized Darkside subarray

Energy 64.3 pJ 57.6 fJ 116 pJ

Table 3: Energy consumption estimation realized for 100 clock cycles with Tclk = 5ns

As shown by Table 3, we managed to suppress the consumption of the Timer generator
since we reduced it by a factor of 1000 approximately. This consumption represented
approximately 55% of the whole energy consumption of the subarray. Thus, this little
modification will enable us to save a huge amount of energy when the subarray is inactive.

4.3 Power gating and Sleep Mode

Being an in-SRAM computing memory, BLADE belongs to the group of volatile memo-
ries. This means that we cannot stop to supply our SA without losing the data stored
inside. Even if this characteristic may prevent the use of Power gating for such memories,
many studies [18] [19] demonstrated that a good compromise was to split the memory

Page 26

Master thesis 2022

into different power domains so as to be able to control them independently. A memory
being composed of the array that stores the data and some pure combinational logics, the
combinational part can be disconnected from the power supply while the array is not. This
state is usually called "Sleep mode" by memory designers and it allows them to save a lot
of energy when the memory is not accessed.

4.3.1 Power domains and modes

As we have seen previously, "Power gating" can be applied to our subarray but only under
some conditions. The peripherals (decoder, controller and IO) needs to be separated from
the array in order to be biased independently. In order to save power at best, we thought
about implementing 3 main power modes (ON/Sleep/OFF) for the SA which allow us to
save energy accordingly to its usage. The Sleep mode will disconnect the peripherals from
the power supply while keeping it for the array. This will save a lot of energy since it
will reduce the power consumption of the memory to the leakage of the bitcells during
this mode. However, since we demonstrated in section 4.1.2 that bitcells leakage reduces
with the voltage supply, we can think about implementing a fourth mode, called Deep-
Sleep, in which the peripherals are disconnected from the supply voltage and the voltage
supplying the bitcells is reduced to VDD_min_ret, the minimum voltage that keeps bitcells
in retention state. Those four modes are represented on Figure 24.

Figure 24: Schematic representation of the 4 power modes

In order to determine VDD_min_ret, we need to analyse the Hold Static Noise Margin
(SNM) of the bitcells constituting BLADE. This step has been done during the bitcell
characterization in section 4.1 and we found out that a voltage of 0.6V would ensure us a
good SNM in order to be on the safe side. Thus, we will use that voltage for our Deep-Sleep
mode.

4.3.2 Implementation

In order to implement the four modes described in the previous section, we need first to
create different power domains in our memory as we need to supply them with different
VDD. By consequence, we need to separate the NWELL of the peripherals and the array
to make them independent. This implies to enlarge the whole design since we need to
put additional TAP cells in order to properly biased the circuit as well as to respect the

Page 27

Master thesis 2022

(a) Previous layout (b) New layout

Figure 25: Layout views of the interface Array/IO before and after NWELL separation

DRC rules regarding adjacent NWELLs. The modifications done at the layout level are
highlighted on Figure 25.

Once the NWELLs have been properly separated, we can control independently the
supply voltage of each block. However, doing such implementations, we need to be sure
that disconnecting the peripherals from the memory and the outside world will not disturb
the rest of the circuit and especially our array which contains data. Thus, we need to add
some "isolation cells" in order to control the value of the floating signals that may activate
some parts of the circuit against our will. By consequences, those cells has to be placed at
the interface Peripherals/Array and Peripherals/Outside.

On one hand, the control of the output signals at the interface Peripherals/Outside can
be simply done by adding a NOR2 gate at each output where one of the input is tight to
a control signal "Sleep" that takes the binary value 1 when we want to go in Sleep mode
(cf. Figure 26). Therefore, this gate is transparent during "ON" mode and ensures a "0"
output value during Sleep mode, preventing any fluctuation at the output of the memory.

Figure 26: Isolation cell used for the memory outputs

On the other hand, we need to control also the control signals that come from the pe-
ripherals towards the array such as Write and Read enable signals, precharge signals, WL
enable, etc... Before reaching the array, those signals are going through huge inverters in
order to be able to drive the huge capacitances coming from the long metal lines crossing

Page 28

Master thesis 2022

the array. Those inverters impede us to add a gate as we did before for the output of the
memory since we would kill the driving force of those latter. The solution found was to
add a minimal size NMOS transistor with the source tight to the ground after the inverters
so as to drive the signals to logic 0 (ie. WLs, write_en, read_en) or a minimal PMOS
transistor when the signal needs to be maintained at VDD (ie. precharge).

As everything is set up to safely biased the different power domains of the SA, we can
think about a way to bring the different voltages needed. To do so, we had two possibil-
ities : either the different voltages (VDD=1.2V, VDD_min=0.6V and some intermediate
voltages) are produced outside of the SA and brought inside with the help of some addi-
tional pins or we can try to implement a voltage manger directly inside the SA in order to
reduce the number of signals that has to be managed by the controller of BLADE. For this
work, we decided to investigate into the second option. According to the literature, several
possibilities are existing in order to build a voltage manager : it can be achieved through
the use of stacked PMOS [20], mock cells [21] or with a Low Drop-Out regulator (LDO)
[22]. For this work, we decided to explore the last option because of its simplicity, low
area and ability to reach voltages close to the supply voltage compared to other structures.
Indeed, a LDO is a DC linear voltage regulator simply composed of a differential Amplifier
and a PMOS sleep transistor as shown on Figure 27. The differential amplifier compares a
voltage reference to a reference voltage Vref and adjust it through the Drain-Source voltage
VDS of the PMOS thanks to a negative feedback-loop.

Figure 27: Block diagram of a LDO [22]

The main advantage of this structure is its tiny area so it can be easily inserted inside
the layout of the decoder. However, its simplicity makes it harder to design so as to cover
a wide range of voltages and to be robust against PVT variations. On figure 28, we can see
that our initial implementation is able to follow accurately intermediate values of voltages
but struggles to reach 1.2V and 0.6V. Because of the some issues related to the testing
phase of Darkside which came back from fabrication at that time of the project, we decided
to focus our attention on the verification of the chip and keep the improvements explained
previously for a next iteration. By consequence, this is still an ongoing work that I would
like to continue in the future. For instance, a more complex structure may be investigated
in order to replace the differential amplifier. We may lose in terms of area but this will help
us to gain in precision as well as robustness against PVT variations. As it can be noted on
Figure 28, the current implementation does not allow yet a precise voltage tracking inside
the array, specifically at low voltages. Thus, this specific point still needs some follow-up

Page 29

Master thesis 2022

works.

Figure 28: Simulation’s result of our LDO obtained with spectre simulator

Page 30

Master thesis 2022

5 AMS verification flow

In preparation of the next BLADE’s tapeout named HEEPpocrates expected for the end
of 2022, we decided to concentrate our efforts on the verification of the connection between
the analog and digital domains involved in BLADE. Indeed, this interface is more likely
to be defective since it doesn’t have a well established flow of verification compared to
others instances (BLADE’s controller and subarrays). Since BLADE’s controller has been
designed using a digital flow and the memory macro with Full-custom one, this interface
has to be verified using an Analog Mixed-Signal (AMS) approach. Thus, at that point
of my project, my work consisted in implementing an AMS flow of verification for the
interface controller/memory in order to highlight and correct possible mistakes that may
occur due to the use of two independent design flows.

5.1 AMS flow of verification

In order to perform a complete and systematic verification of the interface, we will start
the verification by checking the logic behaviour at the interface and we will progressively
replace the instances with more accurate models in order to end up with a system close to
the reality.

Thus, the first step of the flow will consist in performing an intensive verification of
the behavioural model of the subarray that has been used to design the controller. To
that purpose, we decided to realize several tests. Each test tries to verify one functionality
of the memory and is composed of two parts. The first one aims at verifying that the
model and the memory are able to output the right result when the inputs are correctly
set whereas the second part tries to verify that the memory is not working when the inputs
are wrong. Indeed, the fact that the memory is working when it should not means that we
may have done something wrong during its design and it may cause some trouble in the
future. In case of a perfect match of behaviour with the real memory, this step will ensure
us that any fault we may find out in the next steps are not coming from the design of the
memory. The simulation will be carry with the AMS simulator of Virtuoso proposed by
Cadence. In order to use it, a "config" view (similar to a schematic view) gathering the
behavioural model and the designed memory has to be created. In addition, a vector file
will be used in order to generate the inputs for both instances.
A schematic view of the testbench used to compare the model and the subarray as well
as an example of VEC file are available on Figure 29 and Figure 30. As we can see on
Figure 29, a XOR gate has been added at the outputs of the model and the memory so
as to provide a logic ’1’ if the outputs differs. This feature will ease the checking step and
save a lot of time since a lot of tests have to be performed.

Once the behavioural model is verified, we can insert the controller of BLADE in the
testbench so as to create the interface understudied. The controller will be first tested in
its digital form (RTL) in association with the memory macro. Once again, we need to run
AMS simulations in the same way as previously since we want to transmit a digital signal
coming from the controller to an analog instance (the memory). A vector file will be used
to generate the inputs of the controller.
The testbench used for this simulation is available on Figure 31.

In order to get closer to the reality, the third and last step of this verification flow will

Page 31

Master thesis 2022

Figure 29: Schematic view of the testbench used for the verification of the behavioural
model of the memory

Figure 30: Example of VEC file used for an AMS simulation

consist in simulating the controller synthesized with a spice netlist of the memory. The
synthesis step will convert the RTL design of the controller into a netlist of logic gates.
This simulation will better mimic the reality since it will associate to each gate described
in HDL a real gate associated to its timing and input capacitances. To perform this task,
we used Design Compiler from Synopsys. In order to run the synthesis, we need to provide
the tool with the following files :

• The physical libraries in LEF format for the 65nm TSMC standard cells and BLADE.
These files contain information about the technology process used for the routing
layers (name, pitch, size, spacing...).

• Timing libraries in LIB format for the standard cells and BLADE. They contain
timing information (set up/hold, delay ...) for different PVT corners. We will use a
worst and best case to verify timing constraints.

Once the synthesis is done, we obtain in output a verilog netlist of the synthesized
controller. This netlist is then converted into a spice netlist in order to be simulated with
HSPICE later. We use the tool v2cdl from Cadence for the translation and the simulation
is run with HSPICE. We also validated the functionality of this flow with fast spice simula-
tors such as Finesim in order to reduce the simulation time by several order of magnitude

Page 32

Master thesis 2022

Figure 31: Schematic view of the testbench used for the verification of the interface con-
troller(RTL)/memory

(estimated between 10x and 100x). Even if those simulations are less precise than HSPICE
simulations, it provided a great help during the debugging phase.

5.2 Results

As mentioned in the previous section, the first step of this verification flow consisted in
verifying the correctness of the behavioural model of the memory. To that purpose, a lot
of cases have been tested but, for the sack of this thesis, we are going to describe only
one. This latter was aiming to check the functionality of the addition step. Thus, after a
writing and reading phase of two operands (0F0F 0F0F and 0101 0101) in different LGs
as well as the initialisation to 0 of the result address, the operation between the operands
is realized two times in a row. In the first one, the control signals are set correctly whereas
the signal double_address is not activated for the second addition in order to mimic a
defective behaviour. A XOR gate has been added between the outputs of the memory
and the model so as to ease the checking step (Figure 29). The result of the simulation is
available on Figure 32.
First of all, we can see that the behavioural model and the memory are giving the same
outputs since the signal OUT (output of XOR gates) remains at logic "0" during the
whole simulation. Looking now at the output model_out, we can see that the result is
only correct when the signal double_addr is asserted since the memory outputs only the
first operand otherwise. Thus, we can conclude that the memory and its model are working
in this situation. After several simulations as the one described previously, we concluded
that the memory and its model were working as expected.

Since the behavioural model and the memory are behaving the same way, we decided to
start the verification of the interface controller/memory. Thus, we first simulated the HDL
description of the controller with a HSPICE netlist of the memory on Cadence Virtuoso.
For this simulation, we tested a set of operation composed of bitwise operations such as
XOR and NOR as well as more complex operations (ADD, ADD + SHIFT). The testbench
used for this step is shown on Figure 31. As previously, this simulation turned out to be
correct and confirmed the good functionality of the interface at that point. The result of
the simulation is available in Annexe.

Page 33

Master thesis 2022

Figure 32: Simulation verifying the functionality of the memory and its behavioural model
for the addition step

Finally, to simulate an interface closer to the one implemented on-chip, the controller has
been synthesized with Design Compiler. This step provided us a verilog netlist that we
translated into spice. We added this latter to the spice netlist of the memory so as to create
the interface and simulated this file with HSPICE. Results showed that the interface was
not working : some signals arriving in the subarray were either incoherent or inverted.

At that point, we suspected that a different endianness has been used between the
controller outputs and the subarray inputs. Looking into the files used for the synthesis
of the controller, we found out that 5 signals have been defined from the LSB to the MSB
in one of them whereas those same signals have been defined from MSB to LSB in the
subarray(Figure 33).

Figure 33: Different endianness used for signals definition

Thus, to verify if this can be the source of the problem, we did again the synthesis
step with the corrected endianness and launch another simulation. Unfortunately, the
simulation failed as well but we suspected this time an issue related to the translation of

Page 34

Master thesis 2022

the netlist from verilog to spice since we obtained different errors when running twice the
netlist translation step with the same input file. This hypothesis was very hard to verify
because we assumed that v2cdl identical nets verification was working properly. However,
we later noticed that the identification of identical nets was defective and responsible of
the errors previously detected. For instance, we can see on Figure 34 that node n729 has
been correctly distinguished from node N729_no_collide but not n731 and N731 which
results in a short circuit.

Figure 34: Short circuited netlist

For further work, we can try to solve this issue through one of the following options :

• Investigate into the options of Design Compiler to remove the use of uppercase in
the generation of the verilog netlist;

• Investigate into the options of v2cdl to detect all the conflicts;

• Change the translator for the one of Synopsys (netTran) so as to keep the same
provider for the synthesis step and the netlist translation;

• If none of the above options work, we can write a python script which detects con-
tentious nodes and solves conflicts;

Page 35

Master thesis 2022

Figure 35: GDS view of Darkside showing a pin inversion on different signals

Meanwhile, we managed to receive the gds view of Darkside from ETH and we had the
confirmation that some pins have been indeed inverted during the Place&Route step as
depicted by Figure 35. This error was not detected during the second step of the flow
because the tool from Cadence was able to correctly do the connection even if different en-
dianness were used. Thus, depending on the tool used, different interpretations are possible.

To conclude this section, we have seen that many differences (endianness, case sensi-
tivity) are existing between the tools coming from different providers and may cause the
failure of a circuit. So, we need to be really careful when we use tools from different
providers in a design flow and a good practice during the conception of a design would
be to keep the same endianness for all design levels, specifically at the interface between
full-custom and digital design since, according to the tool used, a different interpretation
is possible.

Page 36

Master thesis 2022

6 Conclusion

As a conclusion, BLADE is an In-Memory Computing architecture with a great potential
for AI applications. Throughout this study, we tried to propose a solution to the main
design constraints such as latency and power consumption which still constitute nowadays
a barrier for the integration of Convulational Neural Network (CNN) in IoT edge devices.

On the one hand, the latency issue was assessed through a design exploration at schematic
level of new logical instances aiming at accelerating the computation efficiency of multipli-
cations. We demonstrated indeed that we could increase the computation speed up to 4
times thanks to the use of Embedded Shift and Embedded Negation inserted inside each
Local Group Periphery. However, as a general rule in circuit design, the improvement of
one figure of merits always implies some trade-off. In our case, we saw that we should
accept some area overhead to the benefit of the computation rate.
On the other hand, we proposed as well different solutions in order to improve the power
consumption of BLADE. We first proposed two new designs for optimizing the precharge
of the LBLs and GRBLS resulting in an energy saving between 25% and 30%. Then, we
proposed a new subarray floorplan in order to obtain a power-gated array with four dif-
ferent states. The bitcells have been characterized to propose an optimal implementation
of the retention state with a good trade-off energy-robustness. However, some work need
still to be done on the implementation of the voltage manager in order to bias correctly
and precisely the different power domains.

Finally, we designed an Analog Mixed-Signal (AMS) flow for validating the interface be-
tween the full custom 2kB subarray and its digital controller. This flow will help us to
carefully implement the new version of BLADE inside HEEPpocrates that will be fabri-
cated in the end of 2022.

Page 37

Master thesis 2022

7 Glossary

AI : Aritficial Intelligence

AMS : Analog Mixed-Signal

BLADE : BitLine Accelerator for Device on the Edge

CNN : Convulational Neural Network

CPU : Central Process Unit

ES : Embedded Shift

GRBL : Global Read Bitline

HDL : Hardware description Language

IMC : In-Memory Computing

LBL : Local Bitline

LG : Local Group

LGP : Local Group Periphery

LRP : Local Read Port

LSB : Least Significant Bit

MSB : Most Significant Bit

MUX : Multiplexer

PVT : Process Voltage Temperature

RTL : register Transfer Level

SA : Subarray

SNM : Static Noise Margin

SRAM :Static Random Access Memory

Page 38

Master thesis 2022

References

[1] F.Tsimpourlas and al. “A Design Space Exploration Framework for Convolutional
Neural Networks Implemented on Edge Devices”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems PP (July 2018), pp. 1–1. doi: 10.
1109/TCAD.2018.2857280.

[2] C.Chae and al. “A Multi-Bit In-Memory-Computing SRAM Macro Using Column-
Wise Charge Redistribution for DNN Inference in Edge Computing Devices”. In:
2021 18th International SoC Design Conference (ISOCC) (2021), pp. 421–422. doi:
10.1109/ISOCC53507.2021.9613934.

[3] R.Gauchi and al. “Memory Sizing of a Scalable SRAM In-Memory Computing Tile
Based Architecture”. In: 2019 IFIP/IEEE 27th International Conference on Very
Large Scale Integration (VLSI-SoC) (2019), pp. 166–171. doi: 10.1109/VLSI-SoC.
2019.89203734.

[4] W.Simon and al. “BLADE: A BitLine Accelerator for Devices on the Edge”. In:
GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA (2019). doi: 10.1145/
3299874.3317979.

[5] W.Simon and al. “BLADE: An in-Cache Computing Architecture for Edge Devices”.
In: IEEE Transactions on Computers 69.9 (2020), pp. 1349–1363. doi: 10.1109/TC.
2020.2972528.

[6] ETH Zurich. The IIS Chip Gallery : Rosetta. url: http://asic.ethz.ch/2019/
Rosetta.html. (accessed: 24.07.2022).

[7] ETH Zurich. The IIS Chip Gallery : Darkside. url: http://asic.ethz.ch/2021/
Darkside.html. (accessed: 24.07.2022).

[8] Memorism Processor. Glossary. url: https://aot-slid.com/en/explanation/
terms/. (accessed: 26.07.2022).

[9] Embedded. In-memory compute enables more efficient edge processing. url: https:
//www.embedded.com/in- memory- compute- enables- more- efficient- edge-
processing/. (accessed: 26.07.2022).

[10] R. Gauchi and al. “Memory Sizing of a Scalable SRAM In-Memory Computing Tile
Based Architecture”. In: 2019 IFIP/IEEE 27th International Conference on Very
Large Scale Integration (VLSI-SoC) (2019), pp. 166–171. doi: 10.1109/VLSI-SoC.
2019.8920373.

[11] K.C. Akyel and al. “DRC2: Dynamically Reconfigurable Computing Circuit based on
memory architecture”. In: 2016 IEEE International Conference on Rebooting Com-
puting (ICRC) (2016), pp. 1–8. doi: 10.1109/ICRC.2016.7738698.

[12] ETH Zurich. Github : pulp-platform/pulp. url: https://github.com/pulp-platform/
pulp. (accessed: 24.07.2022).

[13] A. Agrawal and al. “X-SRAM: Enabling In-Memory Boolean Computations in CMOS
Static Random Access Memories”. In: IEEE Transactions on Circuits and Systems
I: Regular Papers 65.12 (2018), pp. 4219–4232. doi: 10.1109/TCSI.2018.2848999.

[14] Francesco Conti. Hardware rocessing Engines release 2.0. url: https://hwpe-doc.
readthedocs.io/_/downloads/en/latest/pdf/. (accessed: 24.07.2022).

Page 39

https://doi.org/10.1109/TCAD.2018.2857280
https://doi.org/10.1109/TCAD.2018.2857280
https://doi.org/10.1109/ISOCC53507.2021.9613934
https://doi.org/10.1109/VLSI-SoC.2019.89203734
https://doi.org/10.1109/VLSI-SoC.2019.89203734
https://doi.org/10.1145/3299874.3317979
https://doi.org/10.1145/3299874.3317979
https://doi.org/10.1109/TC.2020.2972528
https://doi.org/10.1109/TC.2020.2972528
http://asic.ethz.ch/2019/Rosetta.html
http://asic.ethz.ch/2019/Rosetta.html
http://asic.ethz.ch/2021/Darkside.html
http://asic.ethz.ch/2021/Darkside.html
https://aot-slid.com/en/explanation/terms/
https://aot-slid.com/en/explanation/terms/
https://www.embedded.com/in-memory-compute-enables-more-efficient-edge-processing/
https://www.embedded.com/in-memory-compute-enables-more-efficient-edge-processing/
https://www.embedded.com/in-memory-compute-enables-more-efficient-edge-processing/
https://doi.org/10.1109/VLSI-SoC.2019.8920373
https://doi.org/10.1109/VLSI-SoC.2019.8920373
https://doi.org/10.1109/ICRC.2016.7738698
https://github.com/pulp-platform/pulp
https://github.com/pulp-platform/pulp
https://doi.org/10.1109/TCSI.2018.2848999
https://hwpe-doc.readthedocs.io/_/downloads/en/latest/pdf/
https://hwpe-doc.readthedocs.io/_/downloads/en/latest/pdf/

Master thesis 2022

[15] M. Rios and al. “An Associativity-Agnostic in-Cache Computing Architecture Op-
timized for Multiplication”. In: 2019 IFIP/IEEE 27th International Conference on
Very Large Scale Integration (VLSI-SoC) (2019), pp. 34–39. doi: 10.1109/VLSI-
SoC.2019.8920317.

[16] F. Ponzina and al. “A Flexible In-Memory Computing Architecture for Heteroge-
neously Quantized CNNs”. In: 2021 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI) (2021), pp. 164–169. doi: 10.1109/ISVLSI51109.2021.00039.

[17] B. Alorda and al. “Static-noise margin analysis during read operation of 6t sram
cells”. In: DCIS Proceedings (2009).

[18] Y. Wang and al. “A 4.0 GHz 291 Mb Voltage-Scalable SRAM Design in a 32 nm
High-k + Metal-Gate CMOS Technology With Integrated Power Management”. In:
IEEE Journal of Solid-State Circuits 45.1 (2010), pp. 103–110. doi: 10.1109/JSSC.
2009.2034082.

[19] H. Pilo and al. “A 450ps Access-Time SRAM Macro in 45nm SOI Featuring a Two-
Stage Sensing-Scheme and Dynamic Power Management”. In: 2008 IEEE Interna-
tional Solid-State Circuits Conference - Digest of Technical Papers (2008), pp. 378–
621. doi: 10.1109/ISSCC.2008.4523215.

[20] M. Huang and al. “An Energy Efficient 32-nm 20-MB Shared On-Die L3 Cache for
Intel® Xeon® Processor E5 Family”. In: IEEE Journal of Solid-State Circuits 48.8
(2013), pp. 1954–1962. doi: 10.1109/JSSC.2013.2258815.

[21] C. Dray and al. “A 40nm low power SRAM retention circuit with PVT-aware self-
refreshing virtual VDD regulation”. In: 2010 IEEE International Memory Workshop
(2010), pp. 1–4. doi: 10.1109/IMW.2010.5488323.

[22] C.F. Lee and al. “On-Chip VDC Circuit for SRAM Power Management”. In: 2007 In-
ternational Symposium on VLSI Design, Automation and Test (VLSI-DAT) (2007),
pp. 1–4. doi: 10.1109/VDAT.2007.372757.

[23] ESL. ESL | Embedded Systems Laboratory. url: https://www.epfl.ch/labs/esl/.
(accessed: 19.08.2022).

Page 40

https://doi.org/10.1109/VLSI-SoC.2019.8920317
https://doi.org/10.1109/VLSI-SoC.2019.8920317
https://doi.org/10.1109/ISVLSI51109.2021.00039
https://doi.org/10.1109/JSSC.2009.2034082
https://doi.org/10.1109/JSSC.2009.2034082
https://doi.org/10.1109/ISSCC.2008.4523215
https://doi.org/10.1109/JSSC.2013.2258815
https://doi.org/10.1109/IMW.2010.5488323
https://doi.org/10.1109/VDAT.2007.372757
https://www.epfl.ch/labs/esl/

Master thesis 2022

8 Annexe

8.1 Technical part

(a) Previous LBL precharge (b) New LBL precharge

(c) Previous GBL precharge (d) New GBL precharge

Figure 36: Layout views related to the precharge optimization

Page 41

Master thesis 2022

Figure 37: Simulation verifying the functionality of the memory and the controller in its
HDL description (Part1)

Figure 38: Simulation verifying the functionality of the memory and the controller in its
HDL description (Part2)

Page 42

Master thesis 2022

8.2 Embedded System Laboratory (ESL)

Being part of the Institute of Electrical and Micro Engineering at EPFL, the Embedded
System Laboratory focuses on the definition of system-level multi-objective design meth-
ods, optimization methodologies and tools for high-performance embedded systems and
nano-scale Multi-Processor System-on-Chip (MPSoC) architectures targeting the Internet-
of-Things (IoT) Era[23]. Currently, the head of the lab is composed of David ATIENZA,
director of the ESL laboratory, and two other professors. The lab is currently counting 11
post-docs researchers and more than 20 PhD students coming from all around the world
in order to assess today’s challenges related to embedded systems. My internship was
conducted inside the "BLADE" team overseen by Alexandre LEVISSE and Davide SCHI-
AVONE. A Gantt diagram can be found in the following in order to have an outlook of
how this internship ran through.

2022

Feb Mar Apr May Jun Jul Aug

Bibliography

BLADE understanding

Design exploration

Power optimization

AMS verification flow

Report writing

Page 43

	Introduction
	Background
	In-Memory Computing for edge devices
	BLADE : a smart In-SRAM Computing architecture
	PULP, Rosetta and Darkside

	BLADE characterization and computation optimization
	Design exploration for calculation optimization
	Embedded shifts : a multiplication accelerator
	Embedded negation
	Verification and area overhead estimation

	Power optimization
	Bitcells characterization
	Bitcells Static Noise Margin
	Bitcells leakage

	Intrinsic power optimization
	Precharge and way optimization
	Control signals optimization

	Power gating and Sleep Mode
	Power domains and modes
	Implementation

	AMS verification flow
	AMS flow of verification
	Results

	Conclusion
	Glossary
	References
	Annexe
	Technical part
	Embedded System Laboratory (ESL)

