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Abstract

Dynamical phase transitions are non-equilibrium phenomena characterised by the

non-analytical behaviour of some physical quantity. These processes share many

features with equilibrium transitions, first and foremost the concept of universality.

A lot of interest has been attracted in recent years by a special class of dynamical

transitions, called absorbing phase transitions. Many processes ranging from fluids

percolating through a medium to the spread of epidemics can be studied in the

framework of absorbing phase transitions. These systems exhibit a dynamical

transition from an active phase, where the order parameter fluctuates around a

non-zero value, to an inactive phase, where the system is trapped into an absorbing

state with no activity at all. In this thesis we discuss the properties of a numerical

model of two-dimensional monodisperse interacting particles that exhibits an

absorbing phase transition at high densities. The main feature of our model is

that particles self-organise on the sites of a hexagonal lattice in a specific region of

parameter space. The aim of this dissertation is to investigate the interplay between

crystallisation and the absorbing phase transition. We study the universality class

of this model by measuring several quantities and estimating critical exponents. We

then focus on the ordering transition and we discuss its similarities with equilibrium

crystallisation. Finally, we show that the non-equilibrium protocol defining our

model can generate two dimensional crystals with long-range translational order,

which cannot exist at equilibrium.

Keywords: Random organisation, self-organisation, absorbing phase transitions,

two-dimensional crystallisation
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Chapter 1

Non-equilibrium processes

When a system is in thermodynamic equilibrium nothing changes from a macro-

scopic point of view. Taking advantage of this property, equilibrium Statistical

Mechanics, proved to be extremely successful at describing physical phenomena.

Introducing a description of complex systems based on probability distributions

over ensembles has allowed to give a precise meaning to the well-known laws of

thermodynamics and, ultimately, to explain the mechanisms that govern phase

transitions [1, 2].

However, most physical systems, ranging from electrons in a wire to human

cells are out of equilibrium. These systems are notoriously more difficult to treat,

since an important part of the methods and techniques used to study equilibrium

phenomena breaks down. Nonetheless, many concepts of Statistical Mechanics

such as extensivity, symmetry breaking, scaling and universality arise from the idea

of ‘macroscopicity’ and hold even far from equilibrium [3].

In this chapter we introduce two methods that have proven to be very successful

in modeling out of equilibrium systems, by following lecture notes of David Tong

[2] and Jorge Kurchan [3]. The first method deals with the evolution of probability

distributions over configuration space, while the second one is based on stochastic
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Non-equilibrium processes

differential equations. In the last part of the chapter, we show how these two

seemingly different methods are related and we use the underlining connection to

give an insightful interpretation to the notion of detailed balance.

1.1 Markov chains and detailed balance

A classical way of describing non-equilibrium phenomena is a representation in

terms of a stochastic process over the space X of microscopic configurations. The

most famous example is the Markov chain, a discrete-time stochastic process such

that the probability to ‘jump’ from the current state Xt to the subsequent one

Xt+1 depends only on Xt. This property makes Markov processes very suitable to

describe physical systems with a finite correlation time. A Markov chain is defined

by its transition matrix

PX→X′ = P(Xt+1 = X ′|Xt = X), ∀X,X ′ ∈ X , (1.1)

with

Ø
X′∈X

PX→X′ = 1. (1.2)

Once P is specified, the probability distribution over the system’s configurations

P (X, t) = P(Xt = X) (1.3)

is determined by

P (X ′, t) =
Ø

X∈X
PX→X′ P (X, t− 1). (1.4)

2



Non-equilibrium processes
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Figure 1.1: Example of Markov chain.

1.1.1 Stationary distribution

A Markov chain is ergodic if it is possible to eventually get from every state to

every other state with positive probability [4]. If the Markov chain is ergodic, then

there exists a unique stationary probability distribution Ps such that

lim
t→+∞

P (X, t) = Ps, (1.5)

for every initial distribution P (X0, 0). Since Ps is stationary,

Ps(X ′) =
Ø

X∈X
PX→X′ Ps(X). (1.6)

This property can be rewritten as

Ø
X∈X

PX′→X Ps(X ′) =
Ø

X∈X
PX→X′ Ps(X), (1.7)

which is known as the balance condition. It means that, in the steady state,

probability currents should balance so that outgoing and incoming flows are equal

for each configuration. Notice that (1.7) does not forbid currents between different

3



Non-equilibrium processes

configurations, hence Ps can describe steady states that are out of equilibrium. In

this thesis we will be mainly interested in studying some of these non-equilibrium

steady states.

1.1.2 Equilibrium steady state

Suppose now that a Markov chain satisfies

PX′→X Ps(X ′) = PX→X′ Ps(X), ∀X,X ′ ∈ X . (1.8)

This is the detailed balance condition, which requires currents to vanish between

each pair of connected configurations and can be interpreted as a microscopic

definition of equilibrium. Of course, if a system satisfies (1.8), then (1.7) trivially

holds.

Remark. Detailed balance was first introduced as a method for efficient sampling

of equilibrium configurations in computer simulations. Since the equilibrium

probability Ps = Peq is known to be the Bolzmann distribution, (1.8) can be seen

as a rule for the transition probabilities

PX′→X

PX→X′
= Peq(X)
Peq(X ′) . (1.9)

A famous choice for PX→X′ is given by the Metropolis-Hasting algorithm, which

uses

PX→X′ = min
I

1, Peq(X ′)
Peq(X)

J
. (1.10)

1.2 The Langevin equation

In 1827 Robert Brown observed that a mesoscopic particle suspended in water expe-

riences a random jittering motion [5]. We know now this phenomenon being caused

by the constant collisions of the particle with the surrounding liquid molecules. To
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Non-equilibrium processes

model this process, consider a particle of mass m in a fluid of viscosity ζ. If the

external forces acting on the particle arise from a known potential V , its dynamics

can be described by

mẍ(t) = −ζx(t) − ∇V + η(t), (1.11)

where η is a white Gaussian noise, i.e. a random process with probability distribu-

tion

P [η(t)] = 1
N

e− 1
4B

s
R

∥η∥2 dt, (1.12)

with

N =
Ú

e− 1
4B

s
R

∥η∥2 dt Dη. (1.13)

Remark. Usually the distribution (1.12) is not specified and the noise is charac-

terised by its average and autocorrelation

⟨ηi(t)⟩ = 0 (1.14a)

⟨ηi(t1)ηj(t2)⟩ = 2B δij δ(t1 − t2). (1.14b)

Here ⟨·⟩ denotes the average over the probability distribution of the noise. This

passage is important, since it defines the expectation value of a Langevin process.

For the sake of simplicity we focus on the overdamped case of large ζ. This

passage is non trivial, since the velocity and the noise become discontinuous in time.

If the particle gets a random kick at time t, its amplitude depends on the position

at time t. Here we adopt the Îto convention, which means assuming that the

amplitude of the kick is related to the position immediately before t [3]. Neglecting

the inertial term and rescaling time as t → t
ζ

we get

ẋ(t) = −∇V + η(t). (1.15)

Since the trajectory of the particle is itself a stochastic process, we are mainly

interested in its expectation value and variance. To this end, we can formally solve

(1.15) for a particular realisation of the noise process. Then, average the result

using (1.14a - 1.14b).
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1.3 A distribution over paths

Given a fixed noise profile η and initial condition x0, the trajectory of the particle

is fully determined by the Langevin equation. This means that the probability that

the particle takes a specific path is

P [x(t)] = 1
N

e− 1
4B

s
R

∥ẋ+∇V ∥2 dt. (1.16)

Rather than considering the probability distribution of the specific path, we might

be interested in the probability that a particle that started in position x0 at time

t0 sits in xf at time t, regardless of the specific trajectory. This vocabulary should

sound much closer to that of equilibrium statistical mechanics, which is ultimately

based on probability distributions in configuration space. The difference here is

that time gets promoted to a degree of freedom. The total probability is a sum

over paths satisfying the Langevin equation that start in x0 at t0 and end xf at

t, averaged over the noise. We must also include a Jacobian J [x] to count each

solution with unit weight:

P (xf , t) =
=Ú xf

xi

det (J [x]) δ[ẋ + ∇V − η] Dx
>

=
=ÚÚ

e−
s
R

x̃·(ẋ+∇V −η) dt Dx̃ Dx
>

=
ÚÚ

e−
s
R

x̃·(ẋ+∇V −Bx̃) dt Dx̃ Dx, (1.17)

where we exploited the fact that det (J [x]) = 1 in the Îto convention and we used

the integral representation of the delta function [6]. Rescaling x̃ → x̃
B

we get

P (xf , t) =
ÚÚ

e− 1
B

s
R

x̃·(ẋ+∇V −x̃) dt Dx̃ Dx. (1.18)

The probability (1.18) has the form of a partition function at ‘temperature’ B. The

probability of going from x0 at t0 to xf at time t is dominated by the extremal

trajectories, which minimise the action

S[x, x̃] =
Ú
R

x̃ · (ẋ + ∇V − x̃) dt. (1.19)

6



Non-equilibrium processes

Solutions such that 
ẋ = −∇V

x̃ = 0,
(1.20)

are the ‘deterministic’ trajectories that the particle would follow in the absence

of noise. However, when B > 0, paths deviating from such trajectories become

available, even if their probability is exponentially suppressed [3].

1.4 Equilibrium and time-reversal symmetry

In section 1.1.2 we discussed the connection between detailed balance and a

microscopic definition of equilibrium. Here we would like to deepen this link using

the tools introduced in the last section. We can imagine to telescope (1.8) over

intermediate steps to write it in a more insightful form

P [x(t)] = P (xf , t)
P (x0, t)

P
è
x(R)(t)

é
, (1.21)

where x(R)(t) is the reversed path from xf to x0. This means that the probability

of a path x(t) is equal to that of the reversed path times a constant that solely

depends on the initial and final conditions. Stated that way, it is clear that the

microscopic definition of equilibrium is deeply related to the presence of a time-

reversal symmetry in the system. When this symmetry is broken, for example by

the action of non-conservative forces, (1.21) is no longer satisfied and the system

falls out of equilibrium [3]. Note that systems in non-equilibrium steady states still

exhibit a time translation symmetry. A particular class of systems that manifestly

violates detailed balance will be one of the main subjects of this thesis.
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Chapter 2

Absorbing phase transitions

A phase of matter is a state of a system characterised by some of its macroscopic

variables that are essentially uniform [7]. Traditionally, phases are only defined for

equilibrium systems, but this notion can be extended. Consider for example an

epidemic where infected individuals can transmit the disease to healthy ones at

rate λ and can recover at rate µ. When κ = λ − µ is large, the disease spreads

rapidly, until the fraction of infected fluctuates around a non-zero value. On the

other hand, when κ is sufficiently small, infected individuals have time to recover

before transmitting the disease and the epidemic comes to a halt. Therefore, the

parameter κ controls a transition between an ‘active phase’, where the epidemic

persists, and an ‘inactive phase’, where the system is trapped into an absorbing

state. Notice that, even in the steady state, the system is always out of equilibrium

as it violates the definition of detailed balance: once the dynamics reach the

absorbing state through a path in configuration space, the probability of the

reversed path is strictly zero, hence (1.21) no longer holds. Despite this fact,

absorbing phase transitions have much in common with continuous equilibrium

transitions: universality classes can be defined as well as scaling laws and critical

exponents that describe the physics near the critical point that separates the two

8



Absorbing phase transitions

phases. Contrary to equilibrium situations, time becomes an additional degree

of freedom that needs to be considered. The critical behaviour can thus be even

richer as new scaling laws describe the relaxation of the initial state as a function

of time [1, 8, 9].

In this chapter, we present the general features of absorbing phase transitions

by following the books by M. Henkel et al. [1] and by R. Livi and P. Politi [8].

2.1 General model

We consider a many-particle system governed by some stochastic dynamics. Each

particle is labelled by a variable ni(t) ∈ {0,1} which tells us whether it is active

(e.g. infected) or not. We define the order parameter as the fraction of active

particles at time t

ϱ(t) = 1
N

NØ
i=1

ni(t). (2.1)

In the active phase of an infinite system, ϱ reaches a constant, non-zero value,

while it vanishes in the absorbing phase. In the long time limit, we expect the

order parameter to vanish continuously with a power law as the control parameter

κ approaches zero from above

ϱ(∞) ∼ κβ. (2.2)

2.1.1 Scaling properties

The stationary state is characterised by a correlation length ξ and a correlation

time τ . Both of them are expected to diverge at the critical point

ξ ∼ |κ|−ν⊥ (2.3a)

τ ∼ |κ|−ν∥ , (2.3b)

9



Absorbing phase transitions

with different critical exponents ν⊥ and ν∥. The underlying anisotropy between space

and time is captured by the so-called dynamical exponent z = ν∥/ν⊥ , which measures

how fast local perturbations spread throughout the system. The divergence of τ

and ξ imply that, at criticality, the system is invariant under scale transformations

of both space and time. This means that if we rescale

x → ℓ−1x, t → ℓ−zt, κ → ℓ
1/ν⊥κ (2.4)

and all the other quantities according to

Q
1
ℓ−1x, ℓ−zt, ℓ

1/ν⊥κ
2

= ℓyQQ(x, t, κ), (2.5)

then the resulting configurations are statistically similar to the initial ones and

show the same macroscopic properties. For instance, in the stationary state, the

order parameter has to rescale as

ϱ
1
ℓ

1/ν⊥κ
2

= ℓyϱϱ(κ). (2.6)

If we choose ℓ = κ−ν⊥ we get

ϱ(κ) = κyϱν⊥ϱ(1) (2.7)

and comparing with (2.2) we identify yϱ = β/ν⊥.

We can use the same trick to find the dynamical scaling behaviour of ϱ as a

function of time. If we rescale according to (2.4) and we choose ℓ = t1/z we get

ϱ(t) ∼ t−α, (2.8)

with α = β/ν∥.

10



Absorbing phase transitions

Figure 2.1: Left panel: time dependence of the order parameter for bond directed
percolation starting from a fully occupied one-dimensional lattice. Right panel:
data collapse obtained by rescaling the axis. Source: [1].

Another example is the correlation function

C(r, t, κ) = ⟨n1(t1)n2(t2)⟩ , (2.9)

where ⟨·⟩ denotes the average over many realisations of the stochastic process

and, exploiting space and time translational invariance, r = ∥r2 − r1∥, t = t2 − t1.

Applying the scale transformation (2.4)

C(r, t, κ) = ℓ−2yϱC
1
ℓ−1r, ℓ−zt, ℓ

1/ν⊥κ
2

(2.10)

and comparing the result with the scaling form

C(r, t, κ) ∼ 1
rd−2+η

gC

A
r

ξ
,
t

τ

B
, (2.11)

we find

yϱ = d− 2 + η

2 , (2.12)

which gives the scaling law

β = d− 2 + η

2 ν⊥. (2.13)

11
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2.1.2 Fluctuations

In an infinite system, the fraction of active particles reaches a stationary state with

a constant value. However, if the size L of the system is finite (as in numerical

simulations), the activity fluctuates around its stationary value (see figure 2.2). In

particular, if L < ξ, finite-size effects may cause the system to reach the absorbing

state after a characteristic time, even if κ > 0. If instead L ≫ ξ, each of the

(L/ξ)d uncorrelated subsystems gives an independent contribution to fluctuations

of the activity, the sum of which is normally distributed. We can thus quantify

fluctuations by taking the variance

χ = N
1e
ϱ2
f

− ⟨ϱ⟩2
2
, (2.14)

which diverges at criticality as

χ ∼ |κ|−γ′
, (2.15)

with

γ′ = dν⊥ − 2β. (2.16)

In equilibrium phase transitions, the variance of the order parameter is related to

the response of the system to an external perturbation through the fluctuations-

dissipation theorem. This is not necessarily true out of equilibrium, hence the

critical exponents characterising the divergence of fluctuations and susceptibility

are in general different for absorbing phase transitions.

2.2 A simple example

Let us go back to the example of an epidemic. We would like to model the spread

of the disease with a phenomenological Langevin equation for the coarse-grained

average of the number of infected individuals ϱ(x, t). When two individuals meet

12
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Figure 2.2: Fluctuations of the order parameter for bond directed percolation at
steady state. Source: [1].

in (x, t), the infection occurs at a rate λϱ(1 − ρ), while the recovery rate is µϱ.

We also account for diffusive spreading by introducing a term D∇2ϱ, so that the

mean-field equation for the field ϱ(x, t) reads
∂ϱ

∂t
(x, t) = D∇2ϱ(x, t) + κϱ(x, t) − λϱ2(x, t), (2.17)

with κ = λ − µ. The homogeneous stationary solution gives ϱ(∞) ∼ κ, which

implies βMF = 1. Applying the scale transformation (2.4) we get the rescaled

equation

ℓ
−z− β

ν⊥
∂ϱ

∂t
= ℓ

−2− β
ν⊥D∇2ϱ+ ℓ

− 1
ν⊥

− β
ν⊥ κϱ− ℓ

2β
ν⊥ λϱ2, (2.18)

which is invariant if zMF = 2, νMF
∥ = 1, νMF

⊥ = 1/2 [6].

To account for fluctuations from the average value of ϱ, we introduce a noise

term that must switch off when ϱ = 0, to respect the absorbing state. The equation

becomes
∂ϱ

∂t
(x, t) = D∇2ϱ(x, t) + κϱ(x, t) − λϱ2(x, t) + η(x, t), (2.19)

with

⟨η(x, t)⟩ = 0 (2.20a)

⟨η(x, t)η(x′, t′)⟩ = γϱ(x, t) δ(x − x′) δ(t− t′). (2.20b)

13



Absorbing phase transitions

Equation (2.19) describes the critical behaviour of the so-called directed percolation

(DP) universality class, which is the ideal example of absorbing phase transitions.

Dimensional analysis shows that the noise term is irrelevant for d > 4, meaning

that duc = 4 is the upper critical dimension of DP. The system can be studied

in d < duc with field-theoretic renormalisation group method. Using the same

procedure we described in section 1.3, we can derive the corresponding dynamic

functional

S[ϱ, ϱ̃] =
Ú
Rd+1

ϱ̃
3
∂tϱ−D∇2ϱ− κρ+ λϱ2 − γ

2ϱϱ̃
4

dx dt, (2.21)

where ϱ̃(x, t) is the response field conjugated to η(x, t). Setting

ϕ =
ó

2λ
γ
ϱ, ϕ̃ =

ò
γ

2λ ϱ̃, Γ = 2
ó
λγ

2 , (2.22)

turns the functional into

S
è
ϕ, ϕ̃

é
=
Ú
Rd+1

A
ϕ̃
1
∂t −D∇2 − κ

2
ϕ+ Γ

2
1
ϕ̃ϕ2 − ϕϕ̃2

2B
dx dt, (2.23)

which correspond to the Lagrangian of the Reggeon field theory in particle physics.

Critical exponents in d < duc can be computed perturbatively from this functional

by means of an ϵ-expansion around the upper critical dimension. This formulation

reveals an important symmetry of DP, which is known as rapidity-reversal symmetry:

it is easy to see that the action (2.23) is invariant under the transformation

ϕ(x, t) ↔ ϕ̃(x,−t). (2.24)

This symmetry does not need to be present at the microscopic level, but it emerges

at the coarse-grained scale for all models belonging to the DP class.

2.3 Universality classes

In equilibrium phase transitions, universality classes are fundamentally related to

a set of symmetries that the system satisfies. A similar classification for absorbing

14
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phase transitions is not simple, since symmetries generally emerge only at a coarse-

grained level [1]. A typical example is the already mentioned rapidity-reversal

symmetry in directed percolation. However, we can still identify some relevant

parameters (such as the dimensionality of space and the presence of conservation

laws) that can help us distinguish between universality classes [8].

2.3.1 The DP conjecture

Directed percolation represents the prototype of absorbing phase transitions. Inter-

estingly, the choice of the microscopic dynamics used to model the DP process does

not affect the critical exponents, provided that these rules involve short-ranged

interaction only and do not introduce additional symmetries or conservation laws

[1]. Similarly to many equilibrium models, the macroscopic critical behaviour

of DP can be explained by the same coarse-grained description given by (2.23),

where all irrelevant microscopic details have been averaged out. As a consequence,

many processes ranging from fluids percolating through a medium to the already

mentioned spread of epidemics fall in the DP universality class. According to the

conjecture by Janssen [10] and Grassberger [11], any model that

• exhibits a continuous phase transition from a fluctuating active phase into a

unique absorbing state,

• is described by a non-negative one-component order parameter,

• includes short-ranged dynamic rules only,

• has no unconventional symmetries, conservation laws, or quenched randomness,

should belong to the DP universality class. The robustness of the DP class

seems to extend even further, as it has been found in some models with more

than one absorbing states or with non-scalar order parameters [1]. Nonetheless,
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universality classes different from DP appear in systems with additional symmetries

and conservation laws. The estimates of some of the DP critical exponents can be

found in table 2.1.

d = 1 d = 2 d = 3 Mean-field
α 0.16 0.45 0.73 1
β 0.276 0.583 0.813 1
γ′ 0.545 0.30 0.81 0
ν∥ 1.734 1.295 1.11 1
ν⊥ 1.097 0.733 0.584 1/2

Table 2.1: Critical exponents of the DP universality classes. Source: [12].

2.3.2 Conserved directed percolation

Conserved directed percolation (CDP) is a class of absorbing phase transitions

where the order parameter is coupled to a non-diffusive conserved field that has an

infinite number of absorbing states [1]. A typical example is a system where the

number of particles is conserved. As opposed to DP, CDP is less understood and it

still lacks precise quantitative results from theoretical approaches. Several attempts

have been made in this direction, including path integral representations [13], series

expansions [14] and an exact mapping to the continuum theory of disordered elastic

interfaces [15].

The simplest model belonging to the CDP class is the so-called Manna model.

In the simplest version of this model, each site of a lattice with periodic boundary

conditions can be occupied by any number n of ‘sand-grains’. At each discrete time

step, each lattice site with n > 1 is labelled as active and it redistributes all of its

grains among randomly chosen neighbours. By varying the particle density ρ this

model undergoes an absorbing phase transition from an active phase, where the
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fraction of active sites ϱ fluctuates, to an absorbing phase where ϱ = 0.

Table 2.2 contains estimates of the critical exponents of the CDP class. Notice

that, above the upper critical dimension duc = 4, the two classes exhibit the same

mean-field behaviour.

d = 1 d = 2 d = 3 Mean-field
α 0.141(24) 0.419(15) 0.745(17) 1
β 0.38(2) 0.639(9) 0.840(12) 1
γ′ 0.550(40) 0.367(19) 0.152(17) 0
ν∥ 1.88(14) 1.225(29) 1.081(27) 1
ν⊥ 1.35(9) 0.799(14) 0.593(13) 1/2

Table 2.2: Critical exponents of the CDP universality classes. Source: [1].

2.4 A model for sheared systems

In 2005 D.J. Pine and coworkers published the results of an experimental study of a

periodically driven viscous suspension of non-Brownian particles (i.e. a suspension

is made of particles that are too large to be sensitive to thermal motion) [16]. The

authors showed that, by changing the shear amplitude, the system undergoes a

non-equilibrium phase transition from an irreversible diffusive phase to a reversible

absorbing state in which all particles return to their original position after a shear

cycle [16, 17, 18].

The behaviour of a simple fluid undergoing shear at low Reynolds number Re

is expected to be reversible, as the Stokes equations governing its dynamics are

time reversible. The same equations are also expected to govern the dynamics of

non-Brownian particles at low Re, but their motion becomes chaotic (i.e. very

sensitive to initial conditions) in the creeping flow limit. While some authors

attributed the emergence of irreversibility to a growth in the Lyapunov exponent,
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which measures the separation of trajectories in phase space with ‘close’ initial

conditions, numerical models identified diverging lengthscales and timescales, which

are the hallmark of a dynamical phase transition [19, 20, 21].

In 2015 E. Tjhung and L. Berthier developed a numerical model for the experi-

ments on sheared suspensions [19], by modifying a previous model by L. Corté and

coworkers [17]. In both cases, the authors simplified the microscopic irreversibility

due to particle collisions into a much simpler discrete stochastic model, in which

overlapping particles interact through some dynamical rule.

In the model by Tjhung and Berthier (TB), they considered N spherical particles

of diameter σ in a 2-dimensional box of size L with periodic boundary conditions.

At each discrete time step t, if two or more particle overlap, they are given an

independent random displacement δ with amplitude δ uniformly distributed in the

interval [0, ϵ] and orientation distributed on a unit circle. The maximal amplitude

of the ‘kicks’ ϵ and the packing fraction

ϕ = Nπσ2

4L2 (2.25)

are the two control parameters of the model (figure 2.3).

Figure 2.3: Graphical representation of the stochastic dynamical rule used in TB.
Source: [19].

Intuitively, when the packing fraction is sufficiently large, overlaps will be present

at each time step and particles continue to move forever. On the other hand, when
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ϕ is small, the system is expected to reach an absorbing configuration with no

overlaps where all particles are frozen. This model somewhat mimics the behaviour

of the experimental suspension of non-Brownian particles, since giving a random

kick to each particle with at least one neighbour in a region near its centre is

equivalent to give a random displacement to all particles colliding during a shear

cycle. The simplification introduced by the authors amounts to considering the

interactive region to be a circle of diameter σ. Perhaps not surprisingly, the choice

of different stochastic rules for the microscopic dynamics does not seem to change

the universal behaviour observed for the original model [20, 21].

In TB, the authors reported strong evidences of an absorbing phase transition

at a critical packing fraction ϕc(ϵ), with critical exponents compatible with both

DP and CDP. This was achieved by studying the critical behaviour of the order

parameter (2.1) and its fluctuations (2.14), while measuring both static and dynamic

correlation lengths and several independent timescales. The results are summarised

in figure 2.4 and in table 2.3. All these quantities are accessible in experiments and

can be used to study the irreversibility transition in non-Brownian suspensions.

TB DP CDP
α 0.45 0.45 0.42
β 0.59(2) 0.58 0.64
γ′ 0.32(2) 0.30 0.37
ν∥ 1.26(3) 1.30 1.23
ν⊥ 0.74(3) 0.73 0.8

Table 2.3: Critical exponents of the TB model compared to the DP and CDP
universality classes in two dimensions. Source: [19].

Additionally, configurations at the critical point were found to be hyperuniform,

i.e. they exhibit anomalously small density fluctuations [22]. More specifically,

a system with volume Ld is hyperuniform if the variance of the total number of
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Figure 2.4: (A) Time dependence of the order parameter. (B-D) Critical scaling
of the order parameter, fluctuations at steady state and correlation time. (D) Phase
diagram in the (ϕ, ϵ) plane. Source: [19].

particles e
δN2

f
=
e
N2
f

− ⟨N⟩2 (2.26)

scales as e
δN2

f
∼ Ld−λ. (2.27)

The authors measured the value λ = 1 for their model at criticality, which corre-

sponds to that of a periodic lattice. Away from the critical point, hyperuniform

scaling holds up to a lengthscale ℓH , which diverges at criticality with an exponent

different from that of the correlation length (figure 2.5). This means that there

are no clear connections between fluctuations of the activity and hyperuniform

fluctuations.
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Figure 2.5: (A) Structure factor for different packing fractions ϕ > ϕc. (B)
Structure factor for ϕ < ϕc. (C) Divergence of the hyperuniform lengthscale ℓH .
Source: [19].
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Chapter 3

Two dimensional solids

We are very familiar with the solid state, which is one of the fundamental states of

matter. The constituents of a solid are generally packed together much closer than

particles in a fluid, which results in a much larger mechanical rigidity than that

of a liquid [23]. Based on the local arrangement of their particles, solids can be

distinguished into [24]

• amorphous solids, characterised by the absence of periodicity and any form of

long-range order,

• quasi-crystals, made of non-periodic but regular arrangement of constituents,

• crystalline solids, that are infinite periodic structures with long-range positional

and orientational order.

In this chapter, we briefly discuss the harmonic theory of crystalline solids and

we introduce some observables that are useful to quantify the degree of order in

a solid. Since (thermal) fluctuations tend to destroy the order of a system (think

for example of the Ising model in one dimension), we could ask ourselves whether

a crystalline solid is a stable phase at finite temperature. We will see that, at
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thermal equilibrium, the stability of a crystal depends on the dimensionality of

the system. We will then introduce the notion of topological defects in ordered

media and discuss their role in the relaxation process of a system towards its steady

state. Finally, we will give a brief introduction to the liquid-solid transition in two

dimensions.

This chapter is largely influenced by the thesis of Juliane Klamser [25] and by

the lecture notes of Leticia Cugliandolo et al. [26].

3.1 Harmonic approximation

One of the simplest models for a crystalline solid is that of an arrangement of N

spheres of mass m in d dimensions connected by ideal springs [27] (figure 3.1).

These springs are at rest when each sphere occupies its equilibrium position r0
i ,

that corresponds to a lattice site in the periodic arrangement of the crystal. At

finite temperature, the spheres oscillate around their site and their time-dependent

position can be written as

ri(t) = r0
i + ui(t), (3.1)

where ui is the displacement of particle i around its lattice site. The Hamiltonian

of the model reads

H =
Ø

i

p2
i

2m + U({ri}), (3.2)

where

U({ri}) =
Ø
i<j

V (ri − rj) (3.3)

is the interaction potential that has a minimum in the equilibrium configuration.

Assuming that ∥ui∥ ≪ a, where a is the lattice spacing, we can expand the

potential around its minimum

U({ri}) ≈ U
1î

r0
i

ï2
+ 1

2
Ø
α,β

Ø
i,j

Kjβ
iα uiαujβ, (3.4)
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Figure 3.1: Schematic representation of a two-dimensional harmonic solid on a
square lattice. Source: [25].

where

Kjβ
iα = ∂2U

∂uiαujβ

-----uiα=0
ujβ=0

(3.5)

represent the elastic constant of the spring connecting particle i with particle j.

The equations of motion for the displacements ui

müiα = −
Ø
j,β

Kjβ
iα ujβ (3.6)

form a system of dN coupled differential equations. To solve it, we introduce the

Fourier representation of the displacements

ui(t) = 1√
N

Ø
q

ûq(t) eiq·r0
i , (3.7)

with

ûq(t) = e−iωqteq. (3.8)

Substituting into (3.6) and exploiting orthogonality of plane waves we get

ω2
qeqα =

Ø
β

Dβ
α(q)eqβ, (3.9)

where

Dβ
α(q) = 1

m

Ø
ℓ

Kℓβ
0α eiq·r0

ℓ (3.10)
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are the elements of the so-called dynamical matrix. The problem has been simplified

to a system of algebraic linear equation decoupled in q. For each q, (3.9) has d

solutions corresponding to the eigenvalues ωs
q and eigenvectors es

q of the dynamical

matrix D(q) ∈ Cd×d. The general solution is given by a superposition of all modes

ûqα(t) =
Ø

s

cs
qe

s
qα e−iωqt, (3.11)

with expansion coefficients cs
q. The displacement of each atom can thus be written

as

uα(t) = 1√
N

Ø
s,q

cs
qe

s
qα ei(q·r0

i −ωqt), (3.12)

that is a superposition of Fourier components oscillating at frequency ωq.

3.2 Stability of the crystal

To check whether the infinite periodic crystal is stable with respect to thermal

fluctuations, we introduce the mean squared displacement (MSD)

MSD(t) = 1
N

Ø
i

e
∥ui(t)∥2

f
. (3.13)

If the MSD diverges in the long time limit, then particles can move far away from

their equilibrium positions, which means that the crystal is in fact not stable. We

can rewrite the MSD using (3.7) as

MSD(t) = 1
N2

Ø
α

Ø
i

Ø
q,q′

e
ûqα(t) ûq′α(t) eir0

i ·(q+q′)
f

= 1
N

Ø
q

⟨ûq(t) · û−q(t)⟩

∼
Ú Λ

2π
L

qd−1
e
|û(q, t)|2

f
dq, (3.14)

where we exploited orthogonality of plane waves and we introduced a continuous

representation with a momentum cut-off Λ ∼ 1
a
. Due to the equipartition theorem
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at equilibrium, the average energy per mode is=1
2 ω

2(q) |û(q)|2
>

= kBT

2 , (3.15)

which means e
|û(q)|2

f
= kBT

ω2(q) . (3.16)

For small q we can use the Debye approximation ω(q) ∝ q, which gives
e
|û(q)|2

f
∼ 1
q2 (3.17)

and finally, for L → +∞,

MSD(∞) ∼



L2−d, d < 2

ln (L), d = 2

const, d > 2.

(3.18)

The MSD diverges if d ≤ 2, which means that the periodic crystal is not stable in

two dimensions at equilibrium. This is a direct consequence of the Mermin-Wagner

theorem [28]. Nonetheless, since all particles are still centered around lattice sites,

the system is still a solid with non-zero shear modulus.

Despite lacking long-range translational order, a two-dimensional harmonic solid

can still have long-range orientational order [29, 30]. To see this, we introduce the

orientation field

ϕ(R) = r(R + a) − r(R), (3.19)

where R denotes a lattice site and a is a lattice vector. Since
e1

u(R + a) − u(R)
2

·
1
u(R′ + a) − u(R′)

2f
→ 0, (3.20)

for ∥R − R′∥ → +∞, it is easy to see that,

⟨ϕ(R) · ϕ(R′)⟩ → a2, ∥R − R′∥ → +∞, (3.21)

which means that correlations of the orientational field extend to the whole system.
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3.3 Order in two dimensions

The positional order can be monitored through the density field

ρ(r) = 1
N

NØ
i=1

δ(r − ri) (3.22)

and the pair correlation function

g(r) = 1
Nρ

KØ
i /=j

δ(r − rj + ri)
L
, (3.23)

where ρ = N/Ld. The physical interpretation of g(r) is that Sd−1r
d−1ρ g(r) dr is

the average number of particles within the interval [r, r + dr] from a reference

particle [31], where Sd is the surface of a d-dimensional sphere. The pair correlation

function of a crystalline solid exhibits discrete peaks at distances corresponding to

the lattice sites up to r → +∞. Instead, for a non periodic structure, g(r) → 1 as

r → +∞. In particular, the envelope of the pair correlation function of a liquid

is expected to decay exponentially at large distances, while in a two-dimensional

harmonic solid it decays as a power law. For this reason, the two-dimensional

harmonic solid is said to be characterised by quasi-long-range translational order

[32, 33].

The Fourier components of the microscopic particle density

ρ(q) =
NØ

i=1
e−iq·ri (3.24)

can be used to define the structure factor

S(q) = 1
N

⟨ρ(q)ρ(−q)⟩ . (3.25)

It is easy to see that, for homogeneous systems,

S(q) = 1 + ρ
Ú

Ld
g(r) e−iq·r dr. (3.26)
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This means that S(q) and g(r) encode the same information, but sometimes it is

convenient to study one rather than the other [34]. The structure factor can be

measured experimentally by neutron or X-ray scattering techniques.

To quantify orientational order in two dimensions we introduce the quantity

ψ6(ri) = 1
|∂i|

Ø
j∈∂i

e6iθij , (3.27)

where ∂i is the set of neighbours of particle i and θij is the angle formed by the

line that links particle i and particle j with a reference axis. To determine ∂i we

resort to the Voronoi tessellation. This is done by partitioning space into regions

(called Voronoi cells) made of all points in the plane closer to the center of a given

particle than to any other. This way the number of edges of the region enclosing

particle i corresponds to the number of neighbours |∂i| of particle i [26].

The phase of ψ6(ri) measures the local orientation of the cell enclosing particle

i. We can then define the bond-orientational order parameter

Ψ6 = 1
N

-----
NØ

i=1
ψ6(ri)

-----, (3.28)

which quantifies the global order of the solid. In a perfectly ordered solid, particles

arrange on the sites of a hexagonal lattice (see figure 3.2), so that Ψ6 = 1.

To monitor the correlations of the orientational order across the system we

define the bond-orientational correlation function

g6(r) = 1
Nρ

KØ
i /=j

ψ6(ri)ψ∗
6(rj) δ(r − rj + ri)

L
. (3.29)

The envelope of g6(r) is expected to decay exponentially in a liquid and to approach

a constant in a solid with long-range orientational order [32].
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a1

a2

Figure 3.2: Hexagonal lattice with basis vectors a1 = a(1,0) and a2 = a
1

1/2,
√

3/2
2
.

3.4 Topological defects

Topological defects are regions of space where the order parameter has a singular

behaviour that influences the medium at large distances [35, 36]. In continuous

media, a topological defect arises whenever a differential equation for the order

parameter has boundary conditions that lead to homotopically distinct solutions.

Two solutions are homotopically equivalent if there exists a continuous deformation,

called homotopy, that can transform one into the other [35]. More formally, given

a topological space X and two loops γ1, γ2 ∈ [0,1] → X, such that

γ1(0) = γ2(0) = γ1(1) = γ2(1) = x0, (3.30)

a homotopy is a continuous function F : [0,1]2 → X such that

F0(s) = γ1(s), ∀s ∈ [0,1] (3.31a)

F1(s) = γ2(s), ∀s ∈ [0,1] (3.31b)

Ft(s) = Ft(1) = x0, ∀t ∈ [0,1]. (3.31c)

Defects can be detected and classified by determining the class of an n-loop of

arbitrary size around the defect itself [35]. The simplest example of topological

defect is the domain wall, which can move and bend but cannot be removed by
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local rearrangements of the order parameter. More complex defects arise when we

consider multiple component order parameters [37] (see figure 3.3).

Figure 3.3: Topological defects in the O(n) models. Source: [8].

3.4.1 Defects in the harmonic solid

In ordered media with broken translational symmetry and a notion of both positional

and orientational order, topological defects are mis-coordinated particles with

respect to the periodic lattice [38]. The most important classes of defects in a

two-dimensional solid are:

• disclinations: They are defects generated by an isolated particle with either

5 or 7 neighbours (figure 3.4). The winding number of a disclination defines its

topological charge. The phase of ψ6 winds by −2π for a 5-disclination and by

2π for a 7-disclination, hence 5-disclinations and 7-disclinations have opposite

charges. A free disclination destroys both positional and orientational order.

This means that if free disclinations are stable, the system is in the disordered

liquid phase.

• dislocations: They are pairs of disclinations with opposite charges, similarly

to vortex-antivortex pairs in the two-dimensional XY model (figure 3.5). The

topological charge of a dislocation is determined by the direction of the Burgers

vector b, which connects the two endpoints of a path that fails to close around
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the defect. Free dislocations destroy positional order but preserve orientational

order. When two dislocations with opposite charges form a pair, they can be

enclosed by a loop with b = 0. The resulting configuration preserves positional

order away from the defect.

The interaction between defects in these two classes is the main mechanism driving

the ordering transition of a two-dimensional solid in the Berezinskii-Kosterlitz-

Thouless-Halperin-Nelson-Young (BKTHNY) theory, as we will briefly discuss in

section 3.5.

Figure 3.4: Disclinations in a hard-disk system. Source: [39].

Figure 3.5: Dislocations in a hard-disk system. Source: [39].
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3.4.2 Defects and coarsening

Topological defects play a fundamental role in the relaxation process of a system

from an initial configuration towards its equilibrium state. Suppose to quench (i.e.

rapidly change one of the control parameters) a system across a phase transition,

for example by quickly cooling a paramagnet below its critical temperature. In

this scenario, the initial state is no longer the equilibrium one, so the system will

undergo some non-equilibrium dynamics to reach the new equilibrium point. In the

late stage of the process, the dynamics develop universal features that solely depend

on very general properties of the system, such as its distinctive symmetries and

the number of components of the order parameter. Perhaps not surprisingly, the

emergence of universality is fundamentally related to the growth of a typical length

scale R(t), which can be associated with the typical size of domains of the stable

phase. If a system is quenched to T < Tc, R(t) first grows up to the correlation

length ξ, then it continues to grow as a power law

R(t) ∼ t
1/zd , (3.32)

becoming the only relevant scale of the process. We will see that we can derive

the coarsening law for R(t) by studying the energy dissipation associated to the

interactions of topological defects. For the sake of clarity, we briefly discuss the case

of continuous O(n) models following [8], but most of the results can be extended

to systems with broken translational symmetry.

Inspired by section 1.2, we introduce a phenomenological equation of motion

for the order parameter field ϕ(x, t) to describe the relaxation process in the free

energy landscape with potential

V (ϕ) = V0
1
1 − ∥ϕ∥2

22
, (3.33)

so that the dynamics minimise the coarse-grained free energy functional

F [ϕ] =
Ú
Rd

31
2 ∥∇ϕ∥2 + V (ϕ)

4
dx. (3.34)
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A reasonable generalisation of (1.15) is

∂ϕα

∂t
(x, t) = −Γ δF

δϕα

+ ηα(x, t), (3.35)

where Γ is an operator that depends on the conservation laws of the order parameter

and η is a Gaussian noise such that

⟨ηα(x, t)⟩ = 0 (3.36a)

⟨ηα(x, t)ηβ(x′, t′)⟩ = 2D Γ δαβ δ(x − x′) δ(t− t′). (3.36b)

A detailed analysis of (3.35) requires perturbative renormalisation group techniques.

Here we focus on a mean-field phenomenological description, which neglects the

effects of thermal fluctuations encoded by the noise. For simplicity, we consider

the case of a non-conserved order parameter (model A), which means setting Γ to

a positive constant Γ0 [40].

To investigate the influence of topological defects on the dynamics, we look for

time-independent, radially symmetric solutions of (3.35) in the absence of noise

∇2ϕα = ∂V

∂ϕα

, (3.37)

with ϕ(r) = f(r) ûr and boundary conditions f(0) = 0, f(∞) = 1. Exploiting

rotational symmetry, we can reduce (3.37) to the ordinary differential equation

f ′′(r) + n− 1
r

f ′(r) − n− 1
r2 f(r) = V ′(f). (3.38)

For n = 1, (3.38) describes a domain wall between two phases in a system with

Z2 symmetry, while for n > 1, it gives the profile for a general radially symmetric

defect.

If d ≥ n, the energy of the defect per unit volume in the d−n dimensional space

orthogonal to the core is

γn =
Ú

Ln

31
2∥∇ϕ∥2 + V (ϕ)

4
dx. (3.39)
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Integrating over angular variables we get

γn ∝



const, n = 1

ln
1

L
ξ

2
, n = 2

Ln−2, n > 2.

(3.40)

Because of translational invariance in the d−n dimensions orthogonal to the defect

core, the total energy Edef of the defect is just Ld−nγn. When defects are not

isolated we need to replace L with R(t), which is the only relevant lengthscale of

the system

Edef ∝



(R(t))d−1, n = 1

(R(t))d−2 ln
1

R(t)
ξ

2
, n = 2

(R(t))d−2, n > 2.

(3.41)

Since the relaxation process is driven by energy dissipation, we write

Ėdef(t) = dEdef

dR Ṙ(t). (3.42)

We can rearrange terms in (3.42) to get

Ṙ(t) = − 1
γn(R(t))d−n

d
dR

1
γn(R(t))d−n

2
. (3.43)

We can then extract the scaling relation for R(t) in the different cases

R(t) ∼



t1/2, d > n = 11
t

ln t

21/2
, d = n = 2

t1/2, d > n = 2

t1/2, d ≥ n ≥ 2.

(3.44)

The coarsening law can be generalised to the case of locally-conserved order

parameter (model B) as well as to other models with similar defect structures [41].
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3.5 Liquid-solid transition in two dimensions

We have already argued that a solid with long-range orientational order and quasi-

long range positional order can exist in two dimensions. Interestingly, this solid can

form from a disordered liquid state in a way that is very different from crystallisation

in three dimensions, which is known to be a discontinuous transition. It is now

established [42] that the ordering transition of interacting planar disks occurs in

two steps: a (weakly) discontinuous transition from liquid to hexatic phase, with

quasi-long range orientational order and short-range positional order, followed by

a continuous transition from hexatic to solid phase. Many numerical studies [26,

43, 44] confirmed that the nature of the transitions depends on the softness of the

interaction. However, given the weak discontinuous nature of the liquid-hexatic

transition, it is reasonable to study the whole process in the BKTHNY scenario,

suggested by B. Halperin, D. R. Nelson and P. Young in 1979 [45, 46]. This kind

of transition, originally proposed by V. Berezinskii, J. M. Kosterlitz and D. J.

Thouless for the two-dimensional XY model in the early 1970s, is not related to

spontaneous symmetry breaking, but it is driven by the stability of topological

defects above a critical temperature [47].

According to the BKTHNY theory, the disordered liquid state is characterised

by the presence of free disclinations in the sytem, that destroy both positional and

orientational order. As the temperature is lowered, disclinations pair into disloca-

tions, that preserve orientational order, as described in section 3.4.1. This identifies

the hexatic phase. By further reducing the temperature, pairs of dislocations with

opposite charges bound together, building a solid with quasi-long-range positional

order [26, 32].
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Random organisation at

high densities

The following two chapters are dedicated to the main part of this thesis and contain

the results of extensive numerical simulations and data analysis performed at the

Laboratoire Charles Coulomb in Montpellier. In this chapter, we introduce the

main features of our model and we discuss its absorbing phase transition in detail.

4.1 Motivation

In 2021, S. Wilken et al. modified the model by Tjhung and Berthier (TB) to

push the critical packing fraction to high values, without affecting the universality

class [20]. Interestingly, the configurations obtained for a bidisperse mixture of

particle sizes seem to be structurally identical to maximally random jammed (MRJ)

configurations (i.e. configurations that minimise some scalar order metric, subject

to the jamming constraint [48]).

Since monodisperse spherical particles easily crystallise [34, 32], it is natural to

ask whether by removing polydispersity, the model can generate ordered crystalline
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configurations. This question became even more relevant when, in March 2022,

Ghosh and coworkers studied a mono-layer of frictional granular disks under the

influence of oscillatory shear [49] (figure 4.1).

Figure 4.1: Experimental setup in the paper by Gosh et al. Source: [49].

The authors reported two dynamical phase transitions in their system:

• an absorbing phase transition from an active state, where disks do not return

to their initial position after a shear cycle, to a an absorbing reversible state

(similar to the transition described in section 2.4)

• an additional ordering transition from a disordered state to an ordered crys-

talline state.

The two transitions are found to take place at the same critical value of the

shear amplitude, as shown by the singular behaviour of the two order parameters

characterising the transitions.

Interestingly, the authors measured a set of critical exponents that are very

different from those of both directed percolation (DP) and conserved directed

percolation (CDP), claiming that this discrepancy could be explained by the

interplay between crystallisation and the absorbing phase transition.
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One of the main goals of this thesis is to build a numerical model for this experi-

mental system and to (in)validate and help interpret the experimental observations.

We have adapted the Tjhung-Berthier model in order to achieve crystallisation and

measured quantities relevant for the two dynamical phase transitions.

4.2 Methods

We consider a variant of the model by Tjhung-Berthier [19]. We generate random

configurations of N particles of diameter σ in a 2-dimensional box of size L with

periodic boundary conditions, so that the packing fraction of the particles is

ϕ = Nπσ2

4L2 . (4.1)

At each discrete time step t, if two particles overlap, their are given opposite

displacements δ and −δ aligned along the axis connecting their centers so that

particles eventually move away from each other. The amplitude ∥δ∥ of the dis-

placement is a random number uniformly distributed in the interval [0, ϵ]. If a

particle overlaps with two or more neighbours, the total displacement is the sum of

the contributions from each pairwise interaction. Notice that this microscopic rule

conserves the center of mass of the interacting particles (figure 4.2).

Figure 4.2: Graphical representation of the dynamical rule. Source: [50].

38



Random organisation at high densities

To reproduce the experimental results of Ghosh et al. [49], we tuned ϵ to be

sufficiently small (ϵ = 0.1) so that the critical packing fraction ϕc falls in a range

where Brownian particles would typically organise in an ordered crystalline state

(ϕc ≈ 0.83). This behaviour is very different from the one investigated by Tjhung

and Berthier, where smaller packing fractions are explored dynamically and lead

to disordered states only.

To check for overlaps, we keep a list of neighbours of each particle which is

updated at regular intervals, so that the algorithm does not check through all

particles at each simulation step. We implement this method through a custom

version of the linked-list cell algorithm, the computational time of which scales as

O(N) for N particles [51, 52].

We run many independent simulations for different values of the control parame-

ters ϕ and ϵ and for different system sizes. To precisely adjust the packing fraction

we fix the number of particles and we change the length of the box.

We measure several physical quantities from each simulation, such as the order

parameter at steady state and its fluctuations, the bond orientational order param-

eter, the density of topological defects, the mean-squared displacement, the pair

correlation function and the structure factors in reciprocal space.

The code for the whole project has been written from scratch using the Julia

programming language, with particular regard to performance and efficiency. Julia

combines the high performance of compiled languages with the rapid development

of the dynamic ones. This is achieved by compiling the code ‘just ahead of time’

before running it [53]. Access to local computer resources (a large Linux cluster) at

the Laboratoire Charles Coulomb makes it possible to run simulations for very long

times and allows to investigate different regions of the parameter space in parallel.

The main Julia code for the simulations is available on GitHub at this link.
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4.3 Analysis of the absorbing transition

Our model exhibits an absorbing phase transition from an active state, where

overlaps are present at each time step and the fraction of active particles ϱ fluctuates

indefinitely, to an absorbing state where all particles are frozen.

Figure 4.3 shows two snapshots of a system with approximately 2650 particles.

The typical separation between clusters of active particles can be used to define

a (static) correlation length ξ for the model, as in the original work [19]. The

correlation length increases approaching the critical density from above and is

expected to diverge at the critical point, as we discussed in section 2.1.1. The two

snapshots are taken from supplementary movies 1 and 2, which track the activity

of the particles at each time step.

Figure 4.3: Snapshots of the activity for two different packing fractions at steady
state in the active phase. Active particles are labelled red, while passive particles
are blue.

Figure 4.4 shows the relaxation of the fraction of active particles from an ordered

configuration at different packing fractions. The average ⟨·⟩ is performed over 24

realisations of the process for a system of approximately 42500 particles. Below
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the critical packing fraction ϕc, the dynamics reach an absorbing state where the

order parameter vanishes, while above ϕc, the activity fluctuates around a non-zero

value.

To characterise the transition we measure several quantities near the critical

point, in order to estimate its critical exponents.

Figure 4.4: Time dependence of the order parameter starting from an ordered
configuration. For the first five densities (absorbing phase), ⟨ρ⟩ decays to zero.
For last five densities (active phase), ⟨ρ⟩ fluctuates around its average value. The
two dashed lines represent the scaling laws ⟨ρ(t)⟩ ∼ t−α for DP (orange) and CPD
(purple) at criticality.

4.3.1 Finite-size effects

As already mentioned in section 2.1.2, fluctuations of the order parameter in the

active phase are due to the finite size of the system in a computer simulation.

In absorbing phase transitions, finite-size effects are particularly relevant, since

fluctuations may bring the system into an absorbing state even if an infinite
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system would have stayed active forever. For this reason, characterising absorbing

transitions in experiments and computer simulations is a difficult task, since one

has to consider larger and larger systems to get meaningful results near the critical

point.

In this project we consider four system sizes (L = 50, 100, 200, 300, where the

diameter σ of the particles is the unit length) with approximately 2650, 10600, 42500

and 95700 particles. For each system size and for some values of the packing fraction

near the critical point we run nsim independent simulations (usually nsim = 24)

and we keep only the packing fractions where all simulations for that system size

reached the same phase (active or absorbing) in the steady state.

Figure 4.5: Fraction of active simulations for different system sizes. The estimate
critical packing fraction decreases when the system size increases.
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4.3.2 Order parameter

To quantify the decay of the order parameter at steady state approaching the

critical point from above, we measure ⟨ϱ(∞)⟩ as follows: for each independent

simulation we consider M measurements of ϱ at steady state from tsteady to tmax,

where tsteady is defined as the first instant where the value of ϱ(t) gets ‘close’ to its

last measured value (with a tolerance of 0.005) and tmax is the number of iterations

of the algorithm. Then, we average ϱ over M nsim samples. The y-errorbar in

⟨ϱ(∞)⟩ is taken as the empirical standard deviation over these samples divided by
√
nsim − 1 (figure 4.6).

M

nsim

Figure 4.6: Schematic representation of the averaging procedure.

Moving to larger systems allows to investigate packing fractions closer to the

critical point (figure 4.7). We fit the results for the largest system with the two

power laws for DP and CDP

⟨ϱ(∞)⟩ ∼ aDP
1
ϕ− ϕDP

c

20.58
, ϕ > ϕDP

c (4.2a)

⟨ϱ(∞)⟩ ∼ aCDP
1
ϕ− ϕCDP

c

20.64
, ϕ > ϕCDP

c , (4.2b)

where aDP, aCDP, ϕDP
c and ϕCDP

c are free parameters.
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Figure 4.7: Critical scaling of the order parameter at steady state for different
system sizes. Because of finite size effects, the critical packing fraction seems to be
shifted towards higher values for smaller systems.

4.3.3 Fluctuations at steady state

Fluctuations of the order parameter at steady state (2.14) are relatively easy to

measure and can be used to estimate the critical exponent γ′. To practically

measure χ we take the variance over the same samples considered for ⟨ϱ(∞)⟩.

We fit the data with the power law

χ ∼ bTB(ϕ− ϕc)−0.49, ϕ > ϕc, (4.3)

where bTB and ϕc are free parameters and 0.49 is the value of γ′ measured in TB

with the same procedure (figure 4.8). The value of γ′ is different from that of

DP and CDP since fluctuations are measured in the canonical ensemble, where

the number of particles is not allowed to fluctuate. In the original work [19], the

authors measured χ in the grand-canonical ensemble through the partial structure
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factor and reported an exponent close to to that of DP (see table 2.3).

Figure 4.8: Critical scaling of the fluctuations at steady state.

4.3.4 Timescales

In order to determine the exponent ν∥ we measure two different timescales indepen-

dently. We define the relaxation time τr as the number of steps needed to reach an

absorbing state in the absorbing phase (ϕ < ϕc) or as the first time step where the

value of ⟨ϱ(t)⟩ gets ‘close’ to ⟨ϱ(∞)⟩ (tolerance set to 0.005) in the active phase

(ϕ > ϕc). We fit the results with the power laws

τr ∼


cDP

−

---ϕ− ϕDP
c

---−1.3
, ϕ < ϕc

cDP
+

---ϕ− ϕDP
c

---−1.3
, ϕ > ϕc

(4.4a)

τr ∼


cCDP

−

---ϕ− ϕCDP
c

---−1.23
, ϕ < ϕc

cCDP
+

---ϕ− ϕCDP
c

---−1.23
, ϕ > ϕc,

(4.4b)

where cDP
− , cDP

+ , cCDP
− , cCDP

+ , ϕDP
c and ϕDP

c are free parameters (figure 4.9).
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Figure 4.9: Critical scaling of the relaxation time in the two phases.

To measure the autocorrelation function

C(∆t) = ⟨ϱ(t+ ∆t)ϱ(t)⟩ − ⟨ϱ⟩2

⟨ϱ2⟩ − ⟨ϱ⟩2 (4.5)

we average over (M − ∆t)nsim samples at steady state for each ∆t. At ∆t = 0, the

autocorrelation is equal to 1, while it decays to zero in the limit ∆t → +∞ (figure

4.10, left panel).

We define the correlation time τc in the active phase by setting C(τc) = 1/e. To

fit the results we use the power laws

τc ∼ dDP
1
ϕ− ϕDP

c

2−1.3
, ϕ > ϕDP

c (4.6a)

τc ∼ dCDP
1
ϕ− ϕCDP

c

2−1.23
, ϕ > ϕCDP

c , (4.6b)

with the four free parameters dDP, dCDP, ϕDP
c and ϕCDP

c . As we expect, both

timescasles diverge at the critical point.
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Figure 4.10: Left panel: autocorrelation function for different packing fractions.
Right panel: critical scaling of the correlation time. Inset: comparison between the
two timescales in the active phase.

4.3.5 Critical packing fraction

To estimate the critical packing fraction we consider the values of ϕDP
c and ϕCDP

c

obtained for the different interpolations (table 4.1). The average value is ϕc = 0.8226

for both DP and CDP.

ϕDP
c ϕCDP

c

ϱ 0.82265 0.82264
τr 0.82259 0.82259
τc 0.82256 0.82256

Table 4.1: Critical packing fractions from different interpolations.
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4.4 Discussion

Our findings of both diverging lengthscales and timescales confirm the existence

of a dynamical phase transition in our model. As in the original work by Tjhung

and Berthier, the universality class of our model is compatible with both DP and

CDP. Since the two sets of exponents are very close to one another, distinguishing

between these two classes is a difficult task and would require a large numerical

effort [19]. Given the nature of both our model and TB, where the number of

absorbing states is infinite and the number of particles is conserved, it is reasonable

to expect that both models belong to the CDP universality class.

In any case, the two set of exponents are both very different from the one

measured by Gosh et al. [49]. This suggests that the ordering due to crystallisation

is irrelevant to the absorbing phase transition and confirms the robustness of the

CDP class [1, 21]. Yet, the interplay between the two dynamical transitions is

a rich and interesting phenomenon, which we will present in detail in the next

chapter.
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Chapter 5

Coupling with the ordering

transition

Unlike previous works [19, 20, 21], our model generates ordered steady state

configurations, in which particles fluctuate around the sites of a perfect hexagonal

lattice. In this chapter we analyse the ordering transition from a random initial

configuration by measuring the relevant physical quantities across the absorbing

transition. We will also discuss the stability of the crystalline state and we will

show that it behaves very differently from an equilibrium harmonic solid at finite

temperature.

5.1 Quantifying order

To monitor the ordering transition we measure some of the quantities we presented

in section 3.3 for different packing fractions and system sizes.

For each independent simulation and for each of the M samples stored from t0

to tmax we determine the Voronoi tessellation through the package VoronoiCells
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[54]. We use the set of neighbours to evaluate

ψ6(ri, t) = 1
|∂i|

Ø
j∈∂i

e6iθij , (5.1)

for each particle. In the following snapshots of the system, the phase of ψ6 is

mapped to colors according to the color scheme in figure 5.1.

Figure 5.1: Cyclic color scheme for the phase of ψ6.

For each configuration we evaluate

Ψ6(t) = 1
N

-----
NØ

i=1
ψ6(ri, t)

----- (5.2a)

Ψ|6|(t) = 1
N

NØ
i=1

|ψ6(ri, t)|. (5.2b)

The first quantity is the bond-orientational order parameter (3.28). It measures the

global orientational order of the system, which is closer to one the more perfect the

crystal. In contrast, Ψ|6| does not account for different orientations in the sample

and is close to one even in a polycrystal.

The mean value ⟨Ψ6(∞)⟩ is taken over M measurements of Ψ6 from tsteady to

tmax (see figure 4.6) for nsim independent simulations. The y-errorbar in ⟨Ψ6(∞)⟩ is

taken as the empirical standard deviation over these samples divided by
√
nsim − 1.

We define the fluctuations of Ψ6 as

χ6 = N
1e

Ψ6(∞)2
f

− ⟨Ψ6(∞)⟩2
2
. (5.3)

To practically measure χ6 we take the variance over the same samples considered

for ⟨Ψ6(∞)⟩.

For each of the nsim configurations at tmax we exploit the Voronoi tessellation

to measure the bulk fraction ρD of misaligned particles, which can be used to
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estimate the fraction of topological defects. The mean values
e
Ψ|6|(∞)

f
and

⟨ρD(∞)⟩ are simply the empirical averages of Ψ|6| and ρD evaluated at tmax over

nsim samples. The y-errorbars are taken from the empirical standard deviation

divided by
√
nsim − 1.

We measure the pair correlation function (3.23) as follow: for each stored

configuration at steady state we loop over pairs of particles and we build an

histogram hD of the relative distances with bins of length δr (usually δr = 0.02).

Then, we normalise hD as

g(r) = 2L2

πN2
1
(r + δr)2 − r2

2 hD(r), (5.4)

with r = 0, δr, 2δr, . . . , rmax. Finally, we average over the M nsim stored configu-

rations.

Similarly, we measure the bond orientational correlation function (3.29) as follow:

for each stored configuration at steady state we loop over pairs of particles and we

build an histogram hD6 of the product ψ6(ri)ψ⋆
6(rj) with bins of length δr. Then,

we normalise as

g6(r) = 2L2

πN2
1
(r + δr)2 − r2

2 Re (hD6(r)) (5.5)

and we average over the stored configurations.

To measure the structure factor (3.25) for each configuration we generate a

lattice of (nmax + 1)(2nmax + 1) points

qx = 2π
L
nx, −nmax ≤ nx ≤ nmax (5.6a)

qy = 2π
L
ny, 0 ≤ ny ≤, nmax (5.6b)

with nx, ny ∈ Z. For each point q /= (0,0) we compute

S2D(q) = 1
N

A NØ
i=1

cos (q · ri)
B2

+
A

NØ
i=1

sin (q · ri)
B2.
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Then, we average all points such that

q ≤ ∥q∥ ≤ q + δq (5.7)

and, finally, we average over the M nsim stored configurations.

5.2 Relaxation towards steady state

Starting from a random initial configuration, the approach to the crystalline state

resembles the relaxation of coarsening systems. Figure 5.2 shows three snapshots

taken from supplementary movie 3 at different times. The system initially organises

into multiple crystalline regions with different orientation, while, at large times,

the dynamics are driven by the motion of grain boundaries and by the mutual

annihilation of localised topological defect with opposite charges. The true steady

state of an infinite system is thus expected to be a perfect crystal in the active

phase, since defects are not spontaneously generated by the dynamics for our choice

of parameters (ϵ = 0.1). Note that, for larger values of ϵ, defects appear and vanish

spontaneously at steady state, leading to less ordered configurations.

5.2.1 Defect analysis

Snapshots of the system at different times show different types of defects (figure

5.3). Vacancies are fixed in place and can be removed by motile defects. Note

that vacancies have zero topological charge. Dislocations can instead move freely

along the direction of their Burgers vector. Two dislocations with different charges

can interact: if they lie on the same glide line they mutually annihilate, otherwise

they may merge into a single dislocation that conserves the topological charge (see

supplementary movie 3). Different types of more complex clusters can form and

interact with other defects. At higher packing fractions, unphysical defects appear
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Figure 5.2: Snapshots of the system at different times for ϕ = 0.83. The phase of
ψ6 is mapped to colors using the scheme in figure 5.1. Particles with less (more)
than six neighbours are coloured green (orange).

made of particles stacked on top of each other. Finally, regions with different

orientation are delimited by extended grain boundaries.
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Figure 5.3: Map of the defects in the system. From left to right: vacancy,
dislocation, cluster, grain boundary.

5.2.2 Finite-size effects

One of the greatest challenges we faced in this project has been the slowdown in

the relaxation towards steady state due to finite-size effects. In some simulations,

grain boundaries extend throughout the whole system, resulting in very stable

configurations that do not reach the steady state during the simulation time (figure

5.4). We can safely say that these configurations are an artifact of periodic boundary

conditions, since the typical size of the domains with the same orientation at a

given packing fraction grows with the system size L. This is very different from

the behaviour of the typical lengthscale of domains in the absorbing phase, as we

will discuss in the following sections. To limit this effect, we manually remove such

configurations from the samples we consider to measure relevant quantities.

5.3 Order across the transition

Figures 5.5 show the behaviour of ⟨Ψ6(∞)⟩,
e
Ψ|6|(∞)

f
and ⟨ρD(∞)⟩ for several

packing fractions and for two different system sizes near the critical point. All

three quantities exhibit a singularity at ϕ = ϕc, confirming that the absorbing and

ordering transitions take place at the same critical packing fraction. In the active

phase, we report data from only one system size, since the coarsening time of larger

systems exceeds our observation time.
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Figure 5.4: Stable configurations due to finite size effects for L = 50, 100.

5.3.1 Absorbing phase

When ϕ ≪ ϕc, the system quickly reaches a disordered absorbing state, since it

has no time to organise. In contrast, when ϕ → ϕ−
c , particles organise in multiple

domains with different orientation during the relaxation process, but at some

point the system stops moving before reaching full orientational order. When

observing different absorbing configuration at increasing ϕ ≲ ϕc, the typical size

R(ϕ) of the crystalline domains increases and it is expected to diverge at the critical

point. Contrary to the typical size of the domains due to finite-size effects, R(ϕ) is

independent of L (figure 5.6).

The behaviour of the two correlation functions g(r) and g6(r) (figure 5.7) shows

that the lengthscales characterising the orientational and translational order in the

absorbing phase are the same. The growing lengthscale R(ϕ) can thus be extracted

from the decay of one of the two correlation functions.

In the absorbing phase, ⟨Ψ6(∞)⟩ is quite small, since contributions to the phase

of Ψ6 from different polycristalline regions tend to cancel out. For this reason, we

expect ⟨Ψ6(∞)⟩ = 0 for an infinite system in the absorbing phase.
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Figure 5.5: Critical behaviour of ⟨Ψ6(∞)⟩,
e
Ψ|6|(∞)

f
and ⟨ρD(∞)⟩ starting from

random initial configurations.

On the other hand,
e
Ψ|6|(∞)

f
grows continuously from

e
Ψ|6|(∞)

f
≈ 0, when

ϕ ≪ ϕc and it approaches one when polycrystals start to emerge.

The fraction ⟨ρD(∞)⟩ of misaligned particles decreases monotonically as ϕ → ϕ−
c ,

as more and more defects have time to annihilate.
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Figure 5.6: Snapshots of several absorbing states at different packing fractions
for L = 50, 100, 200. The typical size R(ϕ) of the crystalline domains grows with
ϕ and is independent of L.

5.3.2 Active phase

As we already discussed, the active steady state of an infinite system is expected

to be a perfect crystal with no defects for our choice of parameters. In a finite-size

system, some defects may survive in the steady state (e.g. isolated dislocation that

cannot disappear without interacting with another defect). These defects frustrate

the crystal by locally increasing the packing fraction and, consequently, the activity.

However, spatial fluctuations of activity are distributed throughout the system and

57



Coupling with the ordering transition

Figure 5.7: Comparison between g(r) and g6(r) at different packing fractions in
the absorbing phase. The typical length R(ϕ) can be extracted from the decay of
the two correlation functions.

do not interact with the defect itself.

The bond orientational order parameter ⟨Ψ6(∞)⟩ reaches a maximum at the

critical point and it decreases slowly as the the packing fraction increases in the

active phase. The activity has thus the effect of perturbing the crystal, reducing

the global order.
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The behaviour of
e
Ψ|6|(∞)

f
is qualitatively the same as ⟨Ψ6(∞)⟩, since the

system is characterised by a single crystalline region with the same orientation.

In the active phase, both correlation functions g(r) and g6(r) show discrete peaks

occurring at the sites of the hexagonal lattice (figure 5.8, inset). This indicates

that the system reaches both orientational and translational order in the active

phase. The pair correlation has sharp peaks up to the maximal distance we probed

for the largest system (L = 300), which is a signal of long-range order.

Figure 5.8: Pair correlation function for L = 300 in the active phase (ϕ = 0.83).
Inset: peaks of g(r) and g6(r) corresponding to the sites of the hexagonal lattice.

5.4 Building a two-dimensional crystal

In section 3.2 we argued that a two-dimensional crystal cannot exist at equilibrium,

since long-range correlations of the displacement field (i.e. phonons) destroy the

long-range translational order. Out of equilibrium, equipartition no longer holds, so
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in principle it should be possible to create a dynamical rule distinct from thermal

fluctuations that allows long-range crystalline order in two dimensions.

To decide whether our model can generate two-dimensional crystals, we consider

the mean-squared displacement (MSD) in the active phase for different system sizes.

We showed in (3.14) that the behaviour of the MSD is related to the displacement

structure factor of the

Sû(q) =
e
|û(q)|2

f
. (5.8)

Specifically, if the structure factor converges as q → 0 (or if it diverges as Sû ∼ q−n,

with n < 2), then the MSD in the long time limit converges with the system size L.

This means that particles cannot move far away from their equilibrium positions

and that the crystal is stable.

We measure the displacement of each particle as

ui(t) = ri(t) − r0
i , (5.9)

where r0
i denotes the average position of particle i at steady state. Then, the

displacement structure factor is simply

Sû(q) = 1
N

KA
NØ

i=1
ui(∞) cos

1
q · r0

i

2B2

+
A

NØ
i=1

ui(∞) sin
1
q · r0

i

2B2L
(5.10)

at steady state, where the ensemble average is taken over many simulations with

different initial conditions (starting from the “perfect” crystal).

Figure 5.9 shows that the displacement structure factor converges at low q.

This is fundamentally related to the conservation of the center of mass in the

dynamical rule that defines our model, which constraints the total displacement

to be conserved. The value of q at which Sû reaches the plateau can be used to

identify a growing lengthscale in the system as ϕ → ϕ+
c .

The mean-squared displacement is measured as

MSD(t) = 1
N

K
NØ

i=1
∥ri(t) − ri(0)∥2

L
. (5.11)
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Figure 5.9: Displacement structure factor for several packing fractions measured
for L = 300. The legend reports the average activity for each value of ϕ.

Figure 5.10 (left panel) shows the MSD at different packing fractions. As ϕ → ϕ+
c ,

the timescale needed to reach the plateau increases, in agreement with the expected

critical slowing down near the critical point. The value of the plateau increases

slightly with ϕ, since multiple overlaps become more common at larger packing

fractions.

Figure 5.10 (right panel) confirms that the plateau of the MSD does not depend

on L and that the crystal is thus stable.

5.5 Discussion

Our results show that the two dynamical phase transitions occur at the same time

and are deeply coupled. Random organisation at high densities can thus be seen as a

non-equilibrium crystallisation process in the context of absorbing phase transitions.
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Figure 5.10: Left panel: MSD for L = 300 at several packing fractions. The
value of the plateau increases slightly with ϕ because of multiple overlaps between
particles become more common. Right panel: dependence of the MSD on the
system size for ϕ = 0.824.

A detailed analysis of the mean square displacement and displacement structure

factor establishes that our model breaks the equipartition of energy in a way that

allows two-dimensional crystals to be stable. This result is particularly interesting,

since long-range translational order cannot exist in two dimensions at equilibrium.

Despite being driven by the interaction of topological defects, the crystallisation

process in our model is very different from the equilibrium liquid-solid transition in

two dimensions, which passes through the intermediate hexatic phase.
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Conclusion

By tuning the control parameters of a simple numerical model, this work shows

that two-dimensional crystallisation can occur at the critical point of an absorbing

phase transition.

Random organisation is a rich and developing context, which provides access

to the reversible-irreversible transition in periodically driven suspensions through

experimental and numerical methods. In this work, such model has been pushed

to a region of parameter space where the self-organisation process leads to ordered

configurations, which made it possible to study the absorbing transition in the

presence of an ordering field.

Our findings show that the coupling with the ordering transition is irrelevant

to the absorbing transition, since the set of critical exponents coincides with that

of previous models. This represents further evidence of the robustness of the

(conserved) directed percolation universality class and disproves some of the results

in [49]. Yet, the ordering transition in our model has unique features fundamentally

due to the presence of an active and an absorbing phase.

In the last part of this work it is shown that the dynamical rule defining our

model can be used as a protocol to generate two-dimensional crystals with long-

range translational order. This result can only be achieved out of equilibrium, since

Mermin-Wagner theorem forbids crystallisation in two dimensions. In principle,

similar outcomes could be found in other non-equilibrium models, such as dense
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Conclusion

active matter systems.

The research activity is going to continue beyond this thesis. We are currently

studying larger systems in order to get better estimates of the critical exponents

and refine our results. This task involves a significant computational effort. We

are also developing a one-dimensional version of the model to compare with the

two-dimensional case. Large systems in one dimension are easier to analyse and

could provide new insights on both dynamical transitions.

Our findings open several opportunities to carry on the research. An exciting

option would be the introduction of polydispersity in our model, so that the

crystalline order is replaced by dense jammed configurations. In this scenario,

machine learning tools could be employed to investigate the coupling between the

absorbing phase transition and hyperuniformity.
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