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Summary 

We are witnessing significant adoption of web-based audio/video communication platforms that 

run in a browser and can be easily integrated with the web environment. Most of these solutions 

are video conferencing software that follows a peer-2-peer architecture using webRTC. This is 

based on the fact that there are some hurdles and blockers when building a client-server 

videoconferencing solution that limits the software from achieving real-time, low-latency 

communication. However, the addition of the new protocols HTTP/3 and WebTransport has 

changed the way the internet works. They claim to solve the latency issues that older protocols 

were facing. So, it is interesting to see how well those new protocols will perform in an 

audio/video communication context. This master thesis focuses on analyzing the performance of 

HTTP/3 and WebTransport in a client-server audioconferencing context and discusses the 

possible advantages of adopting these protocols. 

Audio is extracted from a client’s mic, compressed and encoded, and then sent through the 

internet as a client request using the WebTransport Datagram API over HTTP/3, which ignores 

reliability. That audio is received by an HTTP/3 server, decoded, and processed in a circular 

buffer that holds all audio data for streaming purposes. Finally, audio is encoded back as a 

response to the client, who will decode the audio and play the corresponding sounds. This 

solution is being compared with another solution that implements the same architecture and the 

same design but uses a different communication protocol, HTTP/1. 

The comparison between the two approaches is carried out by considering different 

configurations of a server-side delay that’s being added to ensure good audio quality for clients, 
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measuring the round-trip latency each implementation leads to, and measuring the sound latency 

that each configuration and protocol lead to. 

The measurements showed promising results in favor of HTTP/3 and WebTransport by showing 

that the HTTP/3 server-side delay needed for good audio quality is much smaller than the one for 

HTTP/1, also by showing that the round-trip latency for HTTP/1 is significantly smaller than the 

one for HTTP/1. Finally, the sound-latency measurements showed that HTTP/3 is much more 

efficient than HTTP/1 when building real-time low-latency audioconferencing solutions. It also 

showed we can now adopt client-server architectures in real-time low-latency contexts due to 

HTTP/3 showing low sound latency results that were lower than the low-latency communication 

threshold of 300 milliseconds. 

So, we can consider that HTTP/3 and WebTransport will be a revelation for low-latency 

solutions, and they will allow the adoption of client-server architectures in low-latency contexts. 
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"Good communication is the bridge between confusion and clarity."  

- Nat Turner. 
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Chapter 1 

1 Introduction 
 

 

Technological advancements have revolutionized how and where we conduct business. Remote 

working, the globalization of business, and instant on-demand communication are significant 

examples. 

Communication with partners, internal teams, suppliers, and investors is critical to business 

growth. That is where video conferencing comes into play. Not only does it boost productivity 

and save time and money, but it also promotes overall collaboration without the need to travel 

and have face-to-face communication. 

Video conferencing is an ongoing challenge in how digital human interactions are produced, 

consumed, and distributed via the network. From a technical point of view, It is a real-time data 

web application challenge. 

There are a couple of different ways to architect and design the infrastructure of a solution that 

can help us solve this real-time challenge. We will narrow our discussion to a peer-to-peer 

approach and a client-server approach. Those two approaches represent telecommunication 
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networks that transfer information from the source to the destination without minimal 

transmission loss. 

Peer-to-peer networks follow a distributed application architecture that partitions tasks and 

workloads between peers. Peers will act as servers and clients, which poses challenges from a 

computer security perspective. This architecture works best for simple real-time data web 

applications with two to four concurrent participants. No server is needed, so the costs for setting 

up and maintaining that infrastructure are significantly lower than its competition. 

Client-server networks follow a distributed application architecture that partitions tasks or 

workloads between servers and clients. In this network, clients and servers exchange messages in 

a request-response pattern. The client will send a request, and the server will return a response. 

Due to its centralized design, it is easier to manage security, and it is easier to scale. This 

architecture will allow you to build real-time data web applications that can scale to a large 

number of concurrent participants. There is no limit to the number of participants this 

architecture can handle. The more you would like to scale, the more you would need to invest in 

your servers. However, the costs needed to set up this architecture are much higher than peer-to-

peer. 
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Figure 1.1. Client-Server vs. P2P Architecture 

We have protocols on the web that can help us build the communication layer for the models 

described above. We have HTTP1.X/2 (1) (2)and HTTP3 (3), excellent protocols that have been 

in place for over two decades now, and they have scaled tremendously, but they are primarily 

file-based. You either get an object, or you post an object that can be used to handle sequential 

flows. For interactive sequential flows, we have WebSockets (4). HTTP1.x/2 and WebSockets 

are suitable protocols, but they exhibit head-of-line blocking (5) and lack low latency (real-time) 

data transport due to their TCP-based (6) nature. For those sequential flows of real-time data, we 

have WebRTC. We can consider it a collection or a stack of many different protocols that work 

together to provide the capabilities of peer-to-peer-based communication. WebRTC (7) is a 

tightly-bound stack of peer-to-peer session establishment, control & delivery protocols, codecs, 

and logic. One essential feature WebRTC does not cover sending Secure streams of real-time 

data. Hence a new real-time transport for the web is needed. So, this is where WebTransport (8) 

comes in. 
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WebTransport solves the real-time data problem for the internet. It is a transport protocol 

(specified by IETF (9)) and an easy-to-use Web API (specified by the W3C) that enables clients 

operating under the Web security model to communicate with a remote server using a secure, 

multiplexed, real-time transport. 

WebTransport provides multiple uni-directional and bi-directional streams of reliable and 

ordered data, it also provides an unreliable flow of UDP-like (10) datagrams, and it operates over 

HTTP/3 with fallback over HTTP/2. It is essential to mention that WebTransport is not a UDP 

Socket API. While WebTransport uses HTTP/3, which uses UDP "under the hood," 

WebTransport has encryption and congestion control requirements that make it more than a basic 

UDP socket API. 

In some cases, WebTransport can be considered a replacement for WebSockets. WebSockets 

communications are modeled around a single ordered stream of reliable messages, a type of 

communication covered by WebTransport's streams APIs that provide reliable and ordered data 

transfer but more efficiently. It is more efficient because multiple WebTransport streams are 

analogous to establishing multiple TCP connections. However, HTTP/3 uses the lighter-weight 

QUIC (11) protocol under the hood so that they can be opened and closed without much 

overhead. 

In comparison, WebTransport datagram APIs provide low-latency delivery without guarantees 

about reliability or ordering, so WebTransport cannot be considered a direct replacement for 

WebSockets. 

WebTransport is also considered an alternative to WebRTC data channels for client-server 

connections. WebTransport shares many properties as WebRTC data channels, although the 
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underlying protocols differ. Generally, running an HTTP3/-compatible server requires less setup 

and configuration than maintaining a WebRTC server, which involves understanding multiple 

protocols like ICE, DTLS, and SCTP (12) to get a working transport. WebRTC entails many 

moving pieces that could lead to failed client/server negotiations. The WebTransport API was 

designed with web developer use cases in mind and should feel more like writing modern web 

platform code than webRTC/s data channel interfaces. Unlike WebRTC, WebTransport is 

supported inside Web Workers, allowing you to perform client-server communications 

independent of a certain HTML page. And since WebTransport exposes a Streams-compliant 

interface, it supports optimizations around backpressure. 

Additionally, WebTransport supports sending data unreliably via its datagram APIs. 

WebTransport Datagrams are ideal for sending and receiving data that do not need reliability. 

Individual packets of data are limited in size by the maximum transmission unit (MTU) (13) of 

the underlying connection and may or may not be transmitted successfully. If those packets of 

data were transferred, they may arrive in any order. Having said that, this makes the datagram 

APIs ideal for low-latency, best-effort data transmission. You can consider datagrams as user 

datagram protocol (UDP) messages, but encrypted and congestion-controlled. 

In this project, we will tackle the challenges that real-time data web applications face, and we 

will find, discuss and analyze different solutions and new technologies.  

We have developed two real-time data web applications to provide a solution for audio 

conferencing software. The difference between the two is the communication layer, the main one 

is using WebTransport over HTTP/3, and the other used for comparison purposes is using 

HTTP/1. 
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In the following chapters, we are going to discuss the architecture that we followed in order to 

build these solutions. We are going to discuss how we solved the real-time data challenge that 

was introduced earlier. We are going to discuss and compare the test results that were produced 

from both web applications, and finally, we are going to conclude and reason all the arguments 

that were discussed during this report.  
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Chapter 2 

2 Application Technical Design 
 

This application follows a client-server design where the client nodes represent the users of this 

app, and the server is a centralized application that connects the clients together. 

For the HTTP/3 implementation, the application’s communication layer is based on 

WebTransport over HTTP/3 with the use of its Datagram API in order to implement a secure 

low, latency real-time data exchange. 

 

Figure 2.1. Web Application Architecture  
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The front end was implemented using HTML5, CSS, and Javascript, and it’s being served over 

an HTTP Python server. The backend is an HTTP/3 python server built using the aioquic1 

library. Aioquic is a library for the QUIC network protocol. It features a minimal TLS 1.3 (14) 

implementation and an HTTP/3 stack. You can find the code used to implement the HTTP/3 

python server in annex 1.4. You can also find that code snippet in server_wrapper.py. 

We also have an HTTP/1 server next to the HTTP/3 server, which is only used for configuration. 

The clients use that server to fetch configuration values like server_sample_rate. 

We are also using the OPUS (15) library for compressing audio samples because OPUS is a 

lossy audio coding format designed to efficiently code speech and general audio in a single 

format while remaining low-latency enough for real-time interactive communication and low-

complexity enough for low-end embedded processors. 

 

2.1 2.1 - Client and Server Connection and Startup 
 

When the client node starts, it will need to connect to the server. It does that by creating a 

WebTransport instance and pointing it to the server by using the correct URI and port. The 

server, listening for CONNECT methods with WebTransport protocols on a certain port, will 

initiate a WebTransport handshake after receiving a connect request. It’s important to mention 

 
1 You can find the aioquic library in this repo: https://github.com/aiortc/aioquic 
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that since the server is an HTTP/3 server and the HTTP/3 protocol always operates using TLS, 

running WebTransport over an HTTP/3 server requires a valid TLS certificate. We generated a 

certificate and a private key using OpenSSL (16) and RSA (17) as a cryptographic algorithms. 

After a successful handshake, the client node will get metadata from the server. The most 

important things fetched now are the server_clock and the server_sample_rate. The 

server_clock and the server_sample_rate are fetched using the 

query_server_clock(target_url) function which is referenced in Annex 1.5. That 

function will make an HTTP/1 GET request and will return the server_clock and 

server_sample_rate in its response Headers, and the client will do some processing to 

estimate the correct server_clock. 

The client node will use this information to set up its inner state clock and configure its write 

clock. It’s important for all clients to have a synchronized write_clock. We will discuss this 

more in the following sections. 

 

2.2 Client-Side Request Process 
 

After successfully starting up the client and the server and connecting them together, and 

adjusting the server_clock estimation and the states, it’s time to start the low-latency audio-

conferencing functionality. For that to happen, the client will start reading audio from the mic. 

To do that, the client will add the audio-worklet.js bundle to the audio context. This 

module implements some functions that will assist us in handling audio output and input. The 
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main function that we’re using is to handle sending and playing audio processes (inputs, 

outputs)2, where inputs represent the input audio that comes from the mic, and 

outputs represent the output audio that should be played by the speakers.  

We should also mention that we’re handling stereo output by cloning mono output. 

     for (var chan = 1; chan < outputs[0].length; chan++) { 

       outputs[0][chan].set(outputs[0][0]); 

     } 

Listing 2.1. Code Snippet for Cloning Mono Output to Produce Stereo Output 

After getting the input audio from the mic, we encode and compress them using OPUS by using 

the function encode_chunk(chunk)3, and then we call the samples_to_h3_server4 

functions to encode the audio samples to 8-bit unsigned integers and send them as a datagram 

using the WebTransport datagram API.  

 let encoder = new TextEncoder("utf-8"); 

const writer = transport.datagrams.writable.getWriter(); 

writer.write(encoder.encode(totalOutputArray)); 

Listing 2.2.  Code Snippet for Opening WebTransport Datagram Writer 

The data that’s sent in the datagram contains the audio samples with some client metadata like 

user_name, write_clock and number of samples. The write_clock is used by the 

client to give directions to the server on what index to use when writing and reading audio from 

his in-memory audio store, which is a circular buffer. And finally, the number of samples is used 

for indexing and ease of programming. 

 
2 You can find that function in audio-worklet.js 
3 You can find that function in app.js, line 178 
4 You can find that function in net.js line 456 
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After the audio sample has been sent by the client, the client will now wait for a response from 

the server. And this is what we mean by a request-response model. For every request, there must 

be a response, and with every request, we are posting audio samples and metadata data to the 

server. With every response from the server, the client will receive new metadata and new audio 

samples that are the same amount of samples as the audio samples that were originally sent. 

 

Figure 2.2. Schema Showing Request and Response Metadata 

 

2.3  Server-Side Audio Sample Handling and 
Processing 

Once the client sends a request to the server with the audio samples and the metadata in its body, 

the datagram listener on the server will catch the client’s request, extract its metadata, use the 

number of samples argument to correctly extract the audio samples, and then decode them (Since 

they were 8 bit encoded) and then will decode them again using audio-decoders.  
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Figure 2.3. Reading and writing audio into the server circular buffer 

After that, the server will use the write_clock that was extracted from the request’s metadata 

and will write the audio samples inside a circular buffer using the write_clock as an index. 

After that, the server will extract audio samples from the circular buffer using write_clock 

as an index with a certain server-side delay5 as an offset, encode the data, and then 8-bit encode 

them alongside some new metadata to send them in the datagram channel. The newly sent 

metadata will contain important information. 

When the server is reading from the circular buffer, it is adding a server-side delay, which means 

when the client requests data at a certain clock (which is specified by write_clock), the 

server subtracts a constant amount of units and then using the total result to read data from the 

circular buffer. 

read_clock = write_clock - server_side_delay, 

where read_clock represents the index we use to read from the circular buffer. 

 
5 Server-side delay has been discussed with more details in section 2.2.5 
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Figure 2.4 Timlelines of Audiorequests of Client A and B according to the Server Timleline (Client A 
write_clock=Client B write_clock) 

We are doing this because when two clients have an audio-conferencing session, those two 

clients might not be able to completely hear each other. Some audio samples coming from client 

A might not get heard by client B. The reason behind this is that the clients are using 

write_clock in order to indicate at what index to write audio samples and write audio 

samples. In case client A sends a request with write_clock = t0 and client B sends 

another request with write_clock = t0 as well, and in case the request from client A 

makes it to the server before client B, client A won’t be reading the audio samples sent from 

client B because those audio samples did not arrive yet. But client B will be able to read the 

audio samples coming from client A because they were there at the time the request made it to 

the server. And since the next write_clock for both clients will be the same 

write_clock = t0 + n_samples, then the audio that was missed on the first request 

won’t be included in the second request. 
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Figure 2.5 Timelines of Audiorequests of client A and B according to the Server Timeline (Client A write_clock and 
client B write_clock have a constant  offset c) 

Since having two identical write_clocks is an extreme case that is highly unlikely to 

happen, we’re going to talk about another scenario where client A has made a request with 

write_clock = t0 and client B has made a request with write_clock = t0 + c 

where c is a constant that’s smaller than n_samples, that represents the difference in clocks 

between clients. Let’s suppose client A’s request makes it first to the server, which means client 

A will pull audio from the server, and then client B’s request arrives. On client A’s second 

request, he will have a write_clock = t0 + n_samples. But client B’s first request 

had audio samples ranging between [t0 + c; t0 + c + n_samples]. And client A is 

going to pull audio data that’s ranging between [t0 + n_samples; t0 + 

2*n_samples]. So, in that case, client A is going to hear client B’s audio data that ranges 

between [t0 + n_samples; t0 + c + n_samples], which means client A will miss 

n_samples - c audio samples. That is why we need to add a server-side delay that should 

be equal to  n_samples - c. Let’s suppose we picked a server-side delay equal to 

n_samples, then on client A’s second request, he will be pulling data that ranges between 
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[t0; t0 + n_samples], which means client A will only miss the last c samples, but 

those samples are going to be fetched in Client A’s next request. 

It’s important to mention that we are not using the actual write_clock as an index when 

accessing the circular queue. Since it’s a circular queue, it has its own mechanism for handling 

and translating indices. The function that handles reading audio samples from the circular queue 

is wrap_get(queue, start, len_vals), and the function that handles writing audio 

samples in the circular queue is wrap_assign(queue, start, vals). You can find 

both functions respectively in annex 1.1 and 1.2, and you can also find them in server.py 

lines 423 and 439, respectively. In server.py, we are calling wrap_get(audio_queue, 

write_clock - server_side_delay, n_samples)and 

wrap_assign(audio_queue, write_clock, audio). We should also mention that 

when the server is writing new audio in the queue, it’s actually summing the old audio with the 

new audio. The code that describes this behavior can be found in annex 1.3 

2.4 Client-Side Response Handling Process 

 

Figure 2.6. Reading and Writing Audio into the Client Circular Buffer 
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After waiting for a datagram response, the client will now receive a datagram from the server 

that will then be decoded (Since it was 8-bit encoded), and then the audio sample will be 

extracted and decoded again using the audio_decoders. This audio sample will be stored in a 

circular buffer that was created using the ClockedRingBuffer6 class. And then the circular 

buffers will be polled for audio, and then the sounds will be played on the speaker. 

2.5  Clock Calibration on The Client Side 
Since a client is using a write_clock to indicate the index where he wants to read or write 

audio from the server’s circular buffer, this means that all clients should operate under the same 

write_clock. To do that, all clients are going to calibrate their clocks according to the 

server’s clock. This calibration will happen one time at the start of the conferencing session. The 

client will fetch the server_clock and will use it as a reference.  

It’s also important for all clients to stay synchronized with the server because we don’t want a 

client to read audio samples far from the future in that case, that client will not be getting any 

audio from other well-calibrated clients. We don’t want a client to write in the future because the 

other clients will be hearing that client with an unnecessary and faulty delay. We don’t want a 

client to read audio that is far behind in the past because, in that case, that client will hear 

delayed audio, and we don’t want a client to write in the past because the other clients won’t be 

able to hear him. As mentioned before, we want to retain and preserve the feel of real-time, low-

latency social interaction during a call session. However, we don’t need to worry about the 

occurrence of such things because the clients will always stay well-calibrated, and the difference 

in clocks will always remain too little, so it’s not worth handling.  

 
6 You can find the code for that class in audio-worklet.js line 168 
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2.6 HTTP/1 vs. HTTP/3 Implementation 
As mentioned in the introduction section, we have developed two audio conferencing solutions, 

one using HTTP/3 and the other using HTTP/1. 

2.6.1 Main Differences in The Implementation 

The HTTP/1 implementation only differs in the communication layer. We are using HTTP/1, 

which means the client is sending POST requests with all the audio samples and the metadata in 

its body, then waiting for a server response that will contain the audio samples and some 

metadata. That means we are using TCP as a transmission layer.  

While in the HTTP/3 implementation, the client is sending datagrams that contain all the audio 

samples and the metadata using the WebTransport datagrams API, and then the client will wait 

for a datagram to be sent by the server, which will act as a response to the previously sent 

datagram and that will contain audio samples and some metadata. And that means that the 

HTTP/3 implementation uses QUIC as a transmission layer. 

2.6.2 Performance and Design Limitations 

One important thing we noticed when implementing those two solutions is that in order to make 

those two solutions work under the same environment and configuration, we had to find a 

threshold that was appealing to both. The threshold parameters include the sample rate, which is 

the number of samples that a client should send to the server in a second, and the size of a batch 

in a request in milliseconds, which we can use to calculate the number of samples that were sent 

in a request using the Sample rate. The main limitations have to do with size and rate. 

The HTTP/3 solution was highly performant, but it was limited in the size of the request that was 

being sent to the server. That is because, in the HTTP/3 solution, we are using the datagrams 
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API, which means that we are sending one datagram per request, so we need to respect the 

Datagram's MTU (Maximum Transmission Unit) size.  

To get the Datagrams MTU size, we ran the PING (18) command on a local terminal toward our 

test server. In this PING command, we used different values for the datagram size to find the 

correct MTU size. The MTU size in our environment was 1472 bytes. 

>> ping -D -s 1472 13.38.214.141   

If you try to set the datagram size to 1473, the PING command will fail and will return a 

Message too long error. 

So we couldn’t use big batch sizes, we had to use a batch size that was equal to 20 milliseconds 

under a sample rate set to 48000 Hz, which means that a request had (48000 sample/second * 20 

ms) / 1000 ms = 960 samples, and that means that we were sending 960 samples every 20 

milliseconds. 

The HTTP/1 solution was highly flexible when it came to the size of the packets that we are 

sending, but it was limited in performance. When we tried using a batch size of 20 ms with 

48000 Hz, the software was crashing. And that’s because HTTP/1 wasn’t able to support and 

handle the high rate of requests that was happening, which was 1 request that had 960 samples 

every 20 milliseconds. This configuration was really performance demanding and the HTTP/1 

protocol which uses TCP as a Transmission layer, a transport protocol that suffers a lot from 

delays due to head-of-line blocking, wasn’t able to deliver. 

WebTransport was able to support sending requests with 960 samples every 20 milliseconds, and 

that’s because it is an API that uses HTTP/3, which is built using QUIC as a transmission layer 
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instead of TCP. QUIC is kind of similar to UDP, so it will not face the head of line blocking 

problem. So that means that HTTP/3 will face smaller delays than HTTP/1. 

So by the end, in order to find a configuration that suits both protocols, we lowered the Server 

Sample rate to 8000 samples per second, and we used a batch size of 80 milliseconds. Which 

means every request will have (8000 sample/second * 80 milliseconds) / 

1000 milliseconds = 640 samples. 

 

Figure 2.7. Graph plotting the size of the datagrams sent by the client 

 

Datagram size stats  

AVG (bytes) MIN (bytes) MAX (bytes) 

901.74 534 1167 

Table 2.1. Datagram Size Stats 
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In figure 2.7, we have plotted the size of the datagram that the client sent to the server under a 

sample rate set to 8000 Hz, and a batch size equal to 80 ms.  In the x-axis, you will see the 

request number and in the y-axis, you will see the size in bytes. We also gathered the stats and 

showed them in table 2.3. Our Maximum datagram size during our tests was 1167 bytes which 

are smaller than the MTU size. So by picking those configuration values, we were able to keep 

our datagrams under the MTU size. 

 



 

 

 

 

Chapter 3 

3 WebTransport Protocol vs. HTTP/1 
 

 

WebTransport is a web API that uses the HTTP/3 protocol as a bidirectional transport. It is 

intended for two-way communications between a web client and an HTTP/3 server. So this 

thesis tackles the difference between HTTP/1 and HTTP/3. Although we have mentioned 

WebTransport several times and will mention it in all our tests, the main technical difference 

between our two applications lies in the protocol differences between HTTP/1 and HTTP/3. 

Furthermore, to go deeper into this comparison, HTTP/3 is another binding of HTTP over a 

particular transport layer. HTTP semantics are consistent across protocol versions, so HTTP/1 

and HTTP/3 have the same request methods, Status codes, and message fields. The real 

difference lies in mapping these HTTP semantics to the underlying transports. HTTP/1 uses TCP 

as its transport layer, while HTTP/3 uses QUIC as its transport layer. So again, we have 

narrowed down our technical comparison, and that new scope is the transport layer, TCP VS 

QUIC. 
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When sending data over TCP, what happens is that we are giving the data to TCP. This data will 

get divided into several blocks of data, which will then be transformed into network packets by 

adding metadata like sequence number and checksum. Those network packets are going to be 

reliably transmitted to the destination. Since it sends data reliably, it does not tolerate any 

missing data or reordering of data. When either problem occurs, TCP will order the sender to 

resend the lost or damaged network packets using an automatic repeat request, ARQ (19). 

In case of an error on a specific connection, TCP will consider this event a blocking operation. 

TCP will block all future transfers until this error is resolved, or this connection will be 

considered failed. Moreover, since HTTP/1 uses one single connection to send multiple streams 

of data, one error on one stream will block the other streams. Furthermore, that is the head-of-

line blocking issue TCP suffers from, which can add much latency during data transport. 

On top of blocking all the streams on that one connection where the error was found, in most 

cases, considerable additional data may be received before TCP even notices that there is 

something wrong, so all this data will be blocked or flushed. At the same time, TCP works on 

fixing the error in that connection. 

QUIC was initially developed to be similar to a TCP connection but with reduced latency. One 

of the most critical TCP problems that QUIC solved was the head-of-line blocking problem we 

discussed in the previous paragraph. QIUC tackled this issue by relying on understanding the 

behavior of HTTP traffic and fixing it in the HTTP context. It fixed that problem using UDP, 

which does not include loss recovery as its basis instead of TCP. QUIC exploits this property and 

layers a flexible stream multiplexing on top, in which only the content of each stream is ordered. 

So each QUIC stream is separately flow controlled, and lost data is retransmitted at the level of 
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QUIC, not UDP. This means that if there is an error in one stream, other streams inside that same 

connection will keep operating normally. The data coming from the other streams can generally 

be processed while the stream with errors is fixed. Moreover, this fix solves many of the latency 

problems that TCP has been facing. 

To make sure that this is what’s happening on our software, we monitored network activity on 

the client side using netstat (20), to check how many connections we’re opening and to check if 

we’re facing head-of-line blocking in different scenarios. First, we ran the netstat command on 

our HTTP/1 audio conferencing software. 

>> netstat -an |  awk '$5 ~ /^13.38.214.141/ && $6 ~ /ESTABLISHED/' 

Listing 3.1. netstat command for monitoring the network on a certain machine and filters by IP and state of 
connection 

We noticed that we are opening multiple connections, which means that for every new request, 

we are opening a new connection (which is the expected behavior), and the most important thing 

that we noticed is that sometimes the Send-Q (20) is high. A high Send-Q means  that the data is 

put on a TCP/IP buffer, but it is not sent or it is sent but not ACKed due to head-of-line blocking. 

After that, we ran that same netsat command when testing our HTTP/3 audio conferencing 

software, and we noticed that the software is using one connection only for all requests, and the 

Send-Q is always set to 0. This means that there is no congestion or head-of-line blocking. 

One other thing that might introduce latency to TCP transmission is including encryption in the 

communication. Since TCP was developed to act like a « data pipe » or « stream,» it has little 

understanding of the data it is transporting. So if that data has additional requirements like 

encryption using TLS, It should be handled by the TCP system. The TCP system should initiate a 

TCP connection between the client and the receiver. Then packets should be sent back and forth 
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to negotiate the security protocol that will be used during this transmission. Moreover, since 

encryption using TLS is a feature in high demand, that added latency needs to be fixed. 

QUIC aims to reduce this connection setup overhead significantly. It fixed this problem by 

making the negotiation of security protocol part of the initial handshake process. Furthermore, 

when we say security protocol negotiation, we mean the exchange of setup keys and supported 

protocols. So now, when a client opens a connection, the response packet includes the data 

needed for future packets to use encryption. This eliminates the need to set up the TCP 

connection and negotiate the security protocol via additional packets.  



	

35 

Chapter 4 

4 Results 
 

 

In this chapter we will present several results. We will focus on the analysis of the 

communication and all the factors which may influence its performance. 

We have developed the same software using the two different protocols HTTP/1 and HTTP/3 for 

the sake of proving that HTTP/3 is more efficient than HTTP/1 and that it’s the way forward for 

low latency real-time applications. 

We used WebTransport over HTTP/3 because we wanted to scope this to client/server 

architectures. And we picked HTTP/1 because we can follow the client/server architecture using 

this protocol and it’s the most commonly used protocol on the internet for the time being. 

In the following sections, we’ll be talking and discussing how we implemented and performed 

our tests, then we’ll talk about how we were able to find the best value for the sound delay that 

was added to the write_clock on the server side when the server was pulling audio samples 

from the circular buffer and finally we’ll talk about two sets of results. We are going to compare 

the round-trip performance that both these protocols present, and we are going to compare the 

performance of both software implementations. 

4.1 Implementing Tests 
To start us off, we are going to talk about how and where we performed our tests. 
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In order to properly test the HTTP/1 and HTTP/3 protocols, we had to upload our server to the 

public internet. That way, we’ll be able to include a test case that covers the head of line 

blocking, and we’ll be able to truly understand the difference of performance between the two 

protocols. So for that reason, we uploaded our server to the cloud using AWS. We created an 

EC2 instance in AWS, and we uploaded our servers there. We made sure that we can access the 

IP of the EC2 instance publicly. We also assigned a domain name for the EC2 public IP, that 

way we can use the domain name instead of the IP address. 

We ran the client UI and all the tests on the same MAC M1 machine (Memory: 16GB; Chip: 

Apple M1 Pro; Model:2021) from the Netherlands, Amsterdam. The Server was uploaded to 

AWS Paris Servers (Canonical, Ubuntu, 22.04 LTS, amd64 jammy image build on 2022-09-12; 1 

vCPU and 1 GIB Memory). 

We used Chrome web browser (Version 106.0.5249.91; Official Build; arm64) when running the 

client front end. We were limited to Google Chrome, because it’s the only browser that had a 

stable implementation for webTransport, although it was hidden behind a feature flag. 

In our implementation, we did not separate the circular buffers that stored the audio samples on 

the server. If we wanted to implement an audio conferencing software that would be used by 

others to have audio conferences, we would have implemented separate circular buffers for every 

user that’s using the software. That way every user can store his audio samples in his own 

circular buffer, and when a client requests audio samples from the server, the server will pull 

audio samples from all the circular buffers except for this certain user’s buffer. That way no user 

will hear his own voice but will be able to hear all other users. We did not do that 
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implementation in our current software because we wanted for one user to hear himself, that way 

it would make testing easier. 

During every test session, when generating results, we were gathering network stats in order to 

know how stable the network was when generating results, and how reliable those results truly 

are. To generate those network stats, we ran the PING command using the IP address of our 

server that’s on the AWS cloud as an argument. The PING command calculates round-trip times 

and packet loss statistics and displays a brief summary on completion. The statistics that are 

presented by the PING command are the maximum, minimum, average, and standard deviation 

for the round-trip duration. And they include the percentage of lost packets. 

We are also interested in knowing the bandwidth. So we ran an iPerf (21) test when gathering 

results. We ran this command on the server side, which is the EC2 instance. 

>> iperf -s 

Listing 4.1. iPerf command used on the server to gather bandwidth results 

And we ran this command on the client. 

>> iperf -c 13.38.214.141 

Listing 4.2. iPerf command used on the client to gather bandwidth results 

And what this does is give us the bandwidth between the client and the server. 

To perform our tests, we picked a Sample Rate equal to  8000 (which means that we will be 

sending 8000 samples per second), a batch size of 80 milliseconds (which means that we will be 

sending 80 milliseconds worth of audio in every request, and that means that every request will 

have 640 samples, and we will be sending a request every 80 milliseconds) and an OPUS frame 
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size equal to 10 milliseconds (which means that every batch will contain 8 OPUS frames, and 

every frame will contain 80 audio samples). 

 

4.2 Network Stats 
In this section, we’re going to show the network stats that we were able to gather before every 

test. As mentioned before, we gathered those stats using the PING command and the iPerf 

command. 

PING Stats during the HTTP/1 test 

MIN 

(milliseconds) 

AVG 

(milliseconds) 

MAX 

(milliseconds) 

STDDEV 

(milliseconds) 

PACKET LOSS 

(%) 

23.916 25.851 38.851 2.138 0 

Table 4.1. the PING State during the HTTP/1 test 

PING Stats during the HTTP/3 test 

MIN 

(milliseconds) 

AVG 

(milliseconds) 

MAX 

(milliseconds) 

STDDEV 

(milliseconds) 

PACKET LOSS 

(%) 

24.391 27.448 86.342 6.489 0 

Table 4.2. PING State during the HTTP/3 test 
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iPerf Stats during HTTP/1 tests and HTTP/3 tests 

Protocol Bandwidth 

HTTP/1 7.83 MBits/sec 

HTTP/3 7.60 Mbits/sec 

Table 4.3. Bandwidth results gathered from the iPerf command during both HTTP/1 and HTTP/3 tests 

4.3 Server-Side Delay Best Value 
As mentioned in the previous sections, we need to add some delay on the server side in order to 

allow a user to hear most of the audio that’s coming from others. This was discussed in section 

2.3. 

Finding the best value for that delay can be tricky if we wanted to find it manually by trial and 

error. So we followed an analytical approach to find the best value. What we did was gather 

some data that will help us in finding the percentage of the audio that clients are receiving from 

other clients in the function of the server-side delay that we’re introducing when clients are 

trying to read audio samples from the circular buffer that’s sitting inside the server. 

We performed the tests for both the HTTP/1 implementation and the HTTP/3 implementation, 

and in both cases, we had two clients connected to the audio-conferencing software and having a 

conversation together. Those two clients are Client A and Client B. So, for both 

implementations, we found the percentage of the audio that Client A heard from Client B and the 

percentage of the audio that Client B heard from Client B for different server-side delays. 

To gather the data, we added some code in the server that will push to an array some metadata 

whenever a client tries to read from the circular buffer that’s inside the server. 
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testResults.append({"username": user.name, "client_write_clock": 

client_write_clock}) 

Listing 4.3. Code snippet: the metadata used to gather data for calculating the percentage of heard audio  

We’re registering the username of the user because we want to get results separately for Client A 

and Client B, and we’re registering the client_write_clock because that’s how we’ll know if one 

client heard the other client. 

This is the code that we used in order to produce the stats: 
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const getStats = (factor) => { 

 const data = []; 

 

 for (let i = 0; i < jsonData.length; i++) { 

   if (jsonData[i].username === target) { 

     let total = 0; 

     //check if audio samples were heard 

     for (let j = i + 1; j < jsonData.length; j++) { 

       if (jsonData[j].username !== target) { 

         total += intersects( 

           jsonData[i].client_write_clock, //write audio 

           jsonData[i].client_write_clock + nSamples, 

           jsonData[j].client_write_clock - factor * READ_DELAY, // read audio 

           jsonData[j].client_write_clock + nSamples - factor * READ_DELAY 

         ); 

       } 

     } 

     data.push(total); 

   } 

 } 

 return data; 

}; 

Listing 4.4. Code snippet: Calculating the percentage of heard audio 
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const intersects = (targetLower, targetUpper, lower, upper) => { 

 if (targetUpper < lower) return 0; 

 if (includes(targetUpper, lower, upper)) return targetUpper - lower;  

 if (includes(targetLower, lower, upper)) return upper - targetLower;  

 if (targetLower > upper) return 0;  

}; 

Listing 4.5. Code snippet: the intersect function used by the getStats(factor) function 

4.3.1 Server-Side Delay best value for the HTTP/1 Implementation  

 

 

Figure 4.1. Received audio (%) in function of the server-side delay (ms) for Client A and Client B (HTTP/1) 
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In this graph, we have plotted the results of the HTTP/1 implementation. The x-axis 

represents the value of the server-side delay in milliseconds. The y-axis represents the 

percentage of the audio that was heard. 

The plot in yellow represents the percentage of the audio that client B was able to hear 

from client A in the function of the server-side delay and the plot in gray represents the 

percentage of the audio that client A was able to hear from client B. 

According to the results, when we had 0 milliseconds server-side delay, the percentage 

of the audio that was heard by Client A was equal to 66%, while Client B was able to 

get 32% of the audio. When we start increasing the server-side delay from 0 

milliseconds to 72 milliseconds, both plots seem to be increasing at the same rate. At 

this point, Client A is able to hear 92% of the total audio, and Client B was able to get 

68% of the audio. After this point, Client A will increase slowly to a maximum of 94%. 

However, client A stays idle for server-side delays between 72 milliseconds and 152 

milliseconds around 68% and it starts increasing pretty well after that 152 milliseconds 

server-side delay till it gets to a maximum of 91% at 312 milliseconds. 

We are mainly interested in giving the possibility to the clients to hear more than 90% 

of audio so that audio quality is considered to be good quality. We also want to have 

the smallest server-side delay value since that will add more latency to the session. 

Having said that, the best server-side delay that fits our KPIs is at 304 milliseconds 

which has Client A getting 94% of audio and Client B getting 90% of audio. 
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4.3.2 Server-Side Delay best value for the HTTP/3 implementation 

 

Figure 4.2. Received audio (%) in function of the server-side delay (ms) for Client A and Client B (HTTP/3) 

In this graph, we have plotted the results for the HTTP/3 implementation. The x-axis 

represents the value of the server-side delay in milliseconds. The y-axis represents the 

percentage of the audio that was heard. 

The plot in orange represents the percentage of the audio that client B was able to hear 

from client A in the function of the server-side delay and the plot in blue represents the 

percentage of the audio that client A was able to hear from client B. 

According to the results, when we had 0 milliseconds server-side delay, the percentage 

of the audio that was heard by Client A was equal to 18%, while Client B was able to 
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get 81% of the audio. When we start increasing the server-side delay from 0 

milliseconds to 24 milliseconds, both plots seem to be increasing at the same rate. At 

this point, Client A is able to hear 41% of the total audio, and Client B was able to get 

almost 100% of the audio. After this point, Client B will remain idle at a delay that’s 

almost 100%. However, client A keeps on increasing server-side delays ranging from 24 

milliseconds to 64 milliseconds which brings it to 77%. After that, it stays idle for 

server-side delays between 64 milliseconds and 112 milliseconds around 77% and it 

starts increasing pretty well after those 112 milliseconds till it almost gets to 100% at 

192 milliseconds. 

As mentioned, we are mainly interested in giving the possibility for the clients to hear 

more than 90% of audio while keeping the smallest server-side delay value since that 

will add more latency to the session. 

So according to the plots, the best server-side delay that fits our KPIs is at 160 

milliseconds which has Client A getting 91% of the audio and Client B getting almost 

100% of the audio. 
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4.3.3 HTTP/3 vs HTTP/1 Server-Side Delay 

 

Figure 4.3. Received audio in function of the server-side delay in milliseconds for Client A and Client B (HTTP/1 vs. 
HTTP/3) 

 

In this graph we plotted all the previously mentioned server-side delay plots all 

together. The plots in yellow and gray are the ones for HTTP/1 and the plots that are in 

blue and orange represent the HTTP/3 implementation. 

 

4.4 Round Trip Latency 
Let’s start discussing the time it takes for a client to send a request to the server and to get the 

response from the server, which we can also call round-trip latency. 
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Those tests are important because our application is involved in sending requests and receiving 

responses, so we want to know what kind of delay that includes, and we want to get a sense of 

the performance differences between the two protocols. It’s also important we do these tests 

because, in our other tests, there is lots of this request/response action going on. So it makes 

sense to check out where the delay difference is coming from, that should help us in making a 

proper analysis. 

What we did here, is that in both implementations (HTTP/1 and HTTP/3 implementations), we 

added some additional metadata to the request that is being sent from the client to the server and 

we also included those same metadata values in the response that was sent from the server to the 

client for this certain request. Those metadata include important information for this test like 

UID, which is a unique identifier for requests that we can use in order to keep track of requests. 

Metadata also includes sent_time and received_time. And those are respectively the 

time when this request was sent and the time when the response was received. In the case of 

HTTP/1, we set the value for sent_time when the POST request was called from the client, 

and we set the received_time when the POST response arrives at the client. In the case of 

HTTP/3, we set the sent_time when the datagram gets sent from the client and we set the 

received_time when the response datagram was received. How do we know that this 

response datagram was sent as a response to our certain request datagram? It’s done using the 

Unique Identifier that we were sending in the metadata. 

We are using the performance.now() function in order to get the current time. 

To calculate the round-trip latency, we are subtracting sent_time from received_time. 

The result is in milliseconds. 
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We are storing all that data inside a hashmap that we are going to use to generate the results, the 

stats, and the plots. 

4.4.1 HTTP/1 vs HTTP/3 round-trip latency 

 

Figure 4.4. Graph plotting the round-trip latency results of HTTP1 vs. HTTP/3 

In this figure, we have plotted our round-trip latency results. The plot in blue represents the 

round-trip latency results that were generated by the solution that implements the HTTP/1 

protocol, and the plot in orange represents the results that were generated by the solution that 

implements the HTTP/3 protocol. The y-axis represents the latency in milliseconds, which in this 

context is the duration of time that it took for a client to send a request to the server and then 

receive a response from the server. It’s obvious that latency includes the time it took for packets 
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to go from the client to the server, the overhead that’s being introduced by the server which 

should be negligible because the server is only going to pull audio samples from its circular 

buffer, and finally, the time it took for packets to go from the server to the client. The x-axis 

represents which packet we’re plotting the results for. 

We plotted the results for both protocols in the same graph in order to do a clear analysis of the 

results and to clearly see the differences between the two. 

According to the graph, it’s clear that the latency introduced by HTTP/1 is higher than the 

latency that’s introduced by HTTP/3. The difference in latency between the two protocols is 

around 30 milliseconds. This shows that HTTP/3 is faster than HTTP/1. 

We can also see that the latency for the HTTP/3 protocol is more stable than the HTTP/1 

protocol. In HTTP/1, the latency keeps on going up and down more frequently than the latency 

in HTTP/3, and that is because HTTP/1 suffers from the head of line blocking which means that 

some delay is going to be added to requests and responses when the network faces some hiccups. 

For the HTTP/3 request that’s around requests number 435 and 449, we can see that that’s where 

HTTP/3 hit its maximal latency of 200 milliseconds. This latency is due to a hiccup in the 

network that made that datagram take time to complete its round-trip journey. 

For the HTTP/1 request that’s around requests number 519 and 533, we can see that that’s where 

HTTP/1 hit its maximal latency of 344 milliseconds. This latency is due to a hiccup in the 

network that caused the packets to either get lost or arrive at their destination in an unordered 

manner during their round-trip journey which means that head-of-line blocking delays were 

introduced. 
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Those tests were not generated at the same time. They were generated separately. We did get the 

PING stats in order to make sure that those results are reliable. 

 

4.4.2 Round-Trip Latency Distribution 

 

Figure 4.5. Graph plotting the HTTP/1 round-trip delay distribution with a cumulative plot 

 

 

Figure 4.6. Graph plotting the HTTP/3 round-trip delay distribution with a cumulative plot 
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In those two figures, we showed the distribution of the round-trip delay for HTTP/1 and HTTP/3 

in milliseconds. In the horizontal axis, you will find the range of delays. In the vertical axis, you 

will find the amount of requests/responses that had a round-trip delay that was included in a 

certain round-trip delay range. 

According to these two histograms, we can see that most of HTTP/1 requests and responses had 

a round-trip delay in the range of (57.8, 63.1] milliseconds. While most of HTTP/3 datagrams 

had a round-trip delay in the range of [28.9, 31.8] milliseconds. So most of HTTP/3 datagrams 

were faster than most HTTP/1 requests and responses by (28.9, 31.3] milliseconds. That is 

almost 50% less. 

We can also see that the minimum delay for HTTP/3 was 28.9 milliseconds, while the minimum 

delay for HTTP/1 was 52.5 milliseconds. The maximum delay for HTTP/3 was 200 

milliseconds, while the maximum delay for HTTP/1 was 344 milliseconds. We will show more 

insights for the results in the following table. 

 

HTTP/3 round-trip latency stats  

AVG (milliseconds) MIN (milliseconds) MAX (milliseconds) 

32.51 28.9 199.4 

Table 4.4. HTTP/3 round-trip latency stats 
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HTTP/1 round-trip latency stats  

AVG (milliseconds) MIN (milliseconds) MAX (milliseconds) 

61.77 52.5 343.1 

Table 4.5. HTTP/1 round-trip latency stats 

4.5 Sound Latency 
In this third section, we want to discuss and compare the performance that was brought by the 

application that was implemented using HTTP/1 as a communication protocol and by the one 

that was implemented using WebTransport over HTTP/3 as a communication protocol. 

And in this section, the performance is judged by the amount of latency that was added to the 

audio. This audio latency is actually the sum of 

1. The latency is introduced by the process of polling audio samples from our audio input 

buffer 

2. The latency introduced when sending the audio samples from the client to the server 

(which is packet latency in the case of HTTP/1 and datagram latency in the case of 

WebTransport) 

3. The latency introduced by the server overhead (which is the time spent processing, 

writing, and reading the audio samples for and from clients) 

4. The latency introduced by the server-side delay was discussed in section 4.1 

5. The latency introduced when sending the audio samples from the server to the client 

For the first point, that latency is equal to the batch size value that we configured before testing, 

which is 80 milliseconds. 
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The latency that was introduced by the server overhead should be negligent in comparison to the 

communication latency. 

Most of the latency should be coming from the server-side delay that was introduced in order to 

ensure clients maintain good audio quality 

We did not try to calculate the mouth-to-ear latency because it includes the mic and speaker 

latency, and that should be considered out of scope from this thesis since we are more interested 

in the latency that’s introduced by the different communication protocols and how they affect the 

stability of our application, which can be inspected from within the application without the need 

for mouth to ear latency calculations. 

To calculate and get those test results, we simply added the server-side delay results that were 

discussed in section 4.1 to the round-trip results that were discussed previously in section 4.2. 
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4.5.1 HTTP/1 vs. HTTP/3 sound latency 

 

Figure 4.7. Graph plotting the sound latency results of HTTP1 vs. HTTP/3 

 

HTTP/3 sound latency stats  

AVG (milliseconds) MIN (milliseconds) MAX (milliseconds) 

272.47 240 439.9 

Table 4.6. HTTP/3 sound latency stats 
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HTTP/1 sound latency stats  

AVG (milliseconds) MIN (milliseconds) MAX (milliseconds) 

445.77 436.5 727.1 

Table 4.7. HTTP/1 sound latency stats 

In this figure, we have plotted our sound latency results. The plot in blue represents the sound 

latency results that were generated by the solution that implements the HTTP/3 protocol, and the 

plot in orange represents the results that were generated by the solution that implements the 

HTTP/1 protocol. The y-axis represents the latency in milliseconds, which in this context is the 

duration of time that it took for a client to send certain audio to the server and then receive that 

same audio from the server. The x-axis represents which packet we’re plotting the results for. 

It’s pretty obvious that the HTTP/3 implementation is much more performant than the HTTP/1 

implementation. The HTTP/3 implementation mostly sticks under the 300 milliseconds latency 

threshold which is considered to be the latency limit for an application to be considered real-time 

and low-latency. However, HTTP/1’s latency is way past the 300 milliseconds limit since its 

average latency got to 445 milliseconds. 
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Chapter 5 

Conclusion 
This master thesis aimed to illustrate how HTTP/3 can significantly enhance the audio 

conferencing world. While we only worked on audio conferencing software, those enhancements 

can also be applied to video conferencing software. 

By building two audio conferencing software, both having the same architecture but different 

communication protocols, one using HTTP/1 and one using HTTP/3, we were able to perform 

tests that showed that HTTP/3 is indeed way more performant than the HTTP/1 protocol, which 

is a protocol that is already widely used since it is currently the standard communication 

protocol. More specifically, the round-trip latency tests discussed in section 4.4 proved that 

HTTP/3 is much better than HTTP/1 when it comes to sending requests and receiving responses. 

We also showed why we were expecting that to happen in chapter 3 when we had a technical 

discussion around the architecture of HTTP/3 and HTTP/1, where we mentioned that HTTP/3 is 

a major improvement to HTTP/1 because it is built on top of QUIC instead of TCP, which means 

that it will not introduce head-of-line blocking delays which are the main source of latency in a 

real-time low latency context. We also proved the existence of this phenomenon by doing netstat 

observations on the client side, which showed that TCP connections are struggling to send 

packets due to network congestion and packet flow control issues while HTTP/3 was not facing 

any problems at all. 

By doing our sound latency tests in section 4.5, we were able to not only prove that an HTTP/3 

solution is a better choice than an HTTP/1 solution but also proved that we can build real-time 
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low-latency client-server audio conferencing software operating over HTTP/3 because we were 

able to maintain our sound delays under the low-latency threshold of 300 milliseconds which is 

considered the normal limit for audio conferencing software. And this observation is by itself a 

big revelation to the audio conferencing world because a client-server architecture is a way 

forward since it’s much more stable and scalable than its counterpart peer-to-peer. 

In conclusion, based on our research and results, it seems like HTTP/3 is the way forward. It is 

going to be a big step forward for the internet and a big step forward for how digital human 

interactions are communicated. Audio and video conferencing companies should consider 

adopting HTTP/3 in their technical infrastructure since it will give them a major technical 

advantage in a competitive market. 

All the code developed during this master's thesis is available here (22). 
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6 Annex 
Code Snippets 

6.1.1 Function used to read audio samples from the circular buffer 
in the server 

def wrap_get(queue, start, len_vals) -> Any: 

    start_in_queue = start % len(queue) 

 

    if start_in_queue + len_vals <= len(queue): 

        return np.copy(queue[start_in_queue:(start_in_queue+len_vals)]) 

    else: 

        second_section_size = (start_in_queue + len_vals) % len(queue) 

        first_section_size = len_vals - second_section_size 

        assert second_section_size > 0 

        assert first_section_size > 0 

 

        return np.concatenate([ 

            queue[start_in_queue:(start_in_queue+first_section_size)], 

            queue[0:second_section_size] 

            ]) 

6.1.2 Function used to write audio samples in the circular buffer in 
the server 

def wrap_assign(queue, start, vals) -> None: 
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    assert len(vals) <= len(queue) 

    start_in_queue = start % len(queue) 

 

    if start_in_queue + len(vals) <= len(queue): 

        queue[start_in_queue:(start_in_queue+len(vals))] = vals 

    else: 

        second_section_size = (start_in_queue + len(vals) )% len(queue) 

        first_section_size = len(vals) - second_section_size 

        assert second_section_size > 0 

        assert first_section_size > 0 

 

        queue[start_in_queue:(start_in_queue+first_section_size)] = 

vals[:first_section_size] 

        queue[0:second_section_size] = vals[first_section_size:] 

6.1.3  Function that sums the old audio with the new audio and 
writes them in a circular queue in the server 

def update_audio(pos, n_samples, in_data, is_monitored): 

    old_audio = wrap_get(audio_queue, pos, n_samples) 

    new_audio = old_audio + in_data 

    wrap_assign(audio_queue, pos, new_audio) 

6.1.4 Code that was used to create the python HTTP/3 server 

 

BIND_ADDRESS = '0.0.0.0' 
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BIND_PORT = 4433 

 

H3_DATAGRAM_05 = 0xffd277 

ENABLE_CONNECT_PROTOCOL = 0x08 

 

class H3ConnectionWithDatagram(H3Connection): 

   def __init__(self, *args, **kwargs) -> None: 

       super().__init__(*args, **kwargs) 

 

   # Overrides H3Connection._validate_settings() to enable HTTP Datagram 

   def _validate_settings(self, settings: Dict[int, int]) -> None: 

       settings[Setting.H3_DATAGRAM] = 1 

       return super()._validate_settings(settings) 

 

   # Overrides H3Connection._get_local_settings() to enable HTTP Datagram 

and 

   # extended CONNECT methods. 

   def _get_local_settings(self) -> Dict[int, int]: 

       settings = super()._get_local_settings() 

       settings[H3_DATAGRAM_05] = 1 

       settings[ENABLE_CONNECT_PROTOCOL] = 1 

       return settings 

 

class CounterHandler: 
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   def __init__(self, session_id, http: H3ConnectionWithDatagram) -> None: 

       self._session_id = session_id 

       self._http = http 

       self._counters = defaultdict(int) 

 

   def HTTP3_post_response(self, data): 

       self._http.send_datagram(self._session_id, data) 

 

   def h3_event_received(self, event: H3Event) -> None: 

       if isinstance(event, DatagramReceived): 

           do_HTTP3_POST(event.data, self.HTTP3_post_response) 

 

       if isinstance(event, WebTransportStreamDataReceived): 

           self._counters[event.stream_id] += len(event.data) 

           if event.stream_ended: 

               if stream_is_unidirectional(event.stream_id): 

                   response_id = self._http.create_webtransport_stream( 

                       self._session_id, is_unidirectional=True) 

               else: 

                   response_id = event.stream_id 

               payload = 

str(self._counters[event.stream_id]).encode('ascii') 

               self._http._quic.send_stream_data( 



	

62 

                   response_id, payload, end_stream=True) 

               self.stream_closed(event.stream_id) 

 

   def stream_closed(self, stream_id: int) -> None: 

       try: 

           del self._counters[stream_id] 

       except KeyError: 

           pass 

 

 

# WebTransportProtocol handles the beginning of a WebTransport connection: 

it 

# responses to an extended CONNECT method request, and routes the transport 

# events to a relevant handler (in this example, CounterHandler). 

class WebTransportProtocol(QuicConnectionProtocol): 

 

   def __init__(self, *args, **kwargs) -> None: 

       super().__init__(*args, **kwargs) 

       self._http: Optional[H3ConnectionWithDatagram] = None 

       self._handler: Optional[CounterHandler] = None 

 

   def quic_event_received(self, event: QuicEvent) -> None: 

       if isinstance(event, ProtocolNegotiated): 

           self._http = H3ConnectionWithDatagram( 
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               self._quic, enable_webtransport=True) 

       elif isinstance(event, StreamReset) and self._handler is not None: 

           # Streams in QUIC can be closed in two ways: normal (FIN) and 

           # abnormal (resets).  FIN is handled by the handler; the code 

           # below handles the resets. 

           self._handler.stream_closed(event.stream_id) 

 

       if self._http is not None: 

           for h3_event in self._http.handle_event(event): 

               self._h3_event_received(h3_event) 

 

   def _h3_event_received(self, event: H3Event) -> None: 

       if isinstance(event, HeadersReceived): 

           headers = {} 

           for header, value in event.headers: 

               headers[header] = value 

           if (headers.get(b":method") == b"CONNECT" and 

                   headers.get(b":protocol") == b"webtransport"): 

               self._handshake_webtransport(event.stream_id, headers) 

           else: 

               self._send_response(event.stream_id, 400, end_stream=True) 

 

       if self._handler: 

           self._handler.h3_event_received(event) 
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   def _handshake_webtransport(self, 

                               stream_id: int, 

                               request_headers: Dict[bytes, bytes]) -> 

None: 

       authority = request_headers.get(b":authority") 

       path = request_headers.get(b":path") 

       if authority is None or path is None: 

           # `:authority` and `:path` must be provided. 

           self._send_response(stream_id, 400, end_stream=True) 

           return 

       if path == b"/counter": 

           assert(self._handler is None) 

           self._handler = CounterHandler(stream_id, self._http) 

           self._send_response(stream_id, 200) 

       else: 

           self._send_response(stream_id, 404, end_stream=True) 

 

   def _send_response(self, 

                      stream_id: int, 

                      status_code: int, 

                      end_stream=False) -> None: 

       headers = [(b":status", str(status_code).encode())] 

       if status_code == 200: 
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           headers.append((b"sec-webtransport-http3-draft", b"draft02")) 

       self._http.send_headers( 

           stream_id=stream_id, headers=headers, end_stream=end_stream) 

 

def serveHttp3(): 

   parser = argparse.ArgumentParser() 

   parser.add_argument('certificate') 

   parser.add_argument('key') 

   args = parser.parse_args() 

 

   configuration = QuicConfiguration( 

       alpn_protocols=H3_ALPN, 

       is_client=False, 

       max_datagram_frame_size=65536, 

   ) 

   configuration.load_cert_chain(args.certificate, args.key) 

 

   loop = asyncio.get_event_loop() 

   loop.run_until_complete( 

       serve( 

           BIND_ADDRESS, 

           BIND_PORT, 

           configuration=configuration, 

           create_protocol=WebTransportProtocol, 
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       )) 

   try: 

       loop.run_forever() 

   except KeyboardInterrupt: 

       pass 

 

6.1.5 Function that will fetch the server_clock and the 
server_sample_rate 

 

export async function query_server_clock(target_url) { 

 var request_time_ms = Date.now(); 

 const fetch_init = { method: "get", cache: "no-store" }; 

 const fetch_result = await fetch(target_url, fetch_init) 

   // Retry immediately on first failure; wait one second after subsequent ones 

   .catch(() => { 

     console.warn("First fetch failed in query_server_clock, retrying"); 

     return fetch_with_retry(target_url, fetch_init); 

   }); 

 

 if (!fetch_result.ok) { 

   throw { 

     message: 

       "Server request gave an error. " + 

       "Talk to whoever is running things, or " + 
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       "refresh and try again.", 

     unpreventable: true, 

   }; 

 } 

 

 var server_latency_ms = (Date.now() - request_time_ms) / 2.0; 

 var metadata = JSON.parse(fetch_result.headers.get("X-Audio-Metadata")); 

 var server_sample_rate = parseInt(metadata["server_sample_rate"], 10); 

 var server_clock = Math.round( 

   metadata["server_clock"] + (server_latency_ms * server_sample_rate) / 1000.0 

 ); 

 console.info( 

   "Server clock is estimated to be:", 

   server_clock, 

   " (", 

   metadata["server_clock"], 

   "+", 

   (server_latency_ms * server_sample_rate) / 1000.0 

 ); 

 return { server_clock, server_sample_rate }; 

} 
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