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ABSTRACT 

Objective. This study aimed firstly to investigate structural and functional alterations 

in the brain network of frontotemporal lobar degeneration (FTLD) spectrum using 

connectome analysis with advanced diffusion-weighted MRI techniques, such as 

NODDI model, and resting state fMRI (RS fMRI). The second objective was to predict 

spatiotemporal patterns of neurodegeneration in FTLD exploring the relationship 

between selective network vulnerability and longitudinal pathological in patients, 

using a network-based model of pathology spread (NDM). 

Materials. Thirty-four behavioral-variant frontotemporal dementia (bvFTD), 11 

semantic variant primary progressive aphasia (svPPA) and 11 nonfluent variant 

primary progressive aphasia (nfvPPA) patients and 48 healthy middle-age controls 

(aged 41-85 years) were enrolled and underwent single multi-shell diffusion MRI and 

RS fMRI and longitudinal T1-weighted MRI on a 3T scanner. In order to implement 

the NDM, 48 healthy young controls (aged 20-31 years) underwent a single multi-shell 

diffusion MRI scan and a single T1-weighted MRI on a 3T scanner. 

Methods. Fractional anisotropy (FA) maps were computed. Intra-cellular Volume 

Fraction (ICVF) and Orientation Dispersion Index (ODI) maps were estimated using 

the NODDI model, providing a direct quantification of neurite morphology and its 

integrity. Graph analysis and connectomics assessed global and local structural and 

functional topological network properties and regional structural and functional 

connectivity. In particular, mean distance (MD), eigenvector centrality (EC), degree 

centrality (DC) and sum of node weights (SN) metrics were obtained. A Network 

Diffusion Model (NDM) was developed to assess whether the progression of FTLD 

pathology over time can be modeled by a spreading process, originating from a single 

regional seed and then proceeding through the healthy structural connectome. The 

connectivity measures used to create the structural connectome were FA, ICVF and 

functional connectivity. Three disease epicenters were identified from the peaks of 

atrophy of each FTLD variant: left inferior temporal gyrus (svPPA), right orbitofrontal 

cortex (bvFTD) and left supplementary motor area (nfvPPA). Correlations were tested 

between the longitudinal atrophic changes estimated by NDM and those empirically 

obtained in FTLD patients over a follow-up of 24 months, by using Pearson’s 

correlation coefficient. Finally, to assess the relationship between structural and 
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functional connectivity, Pearson’s correlation analysis was performed in each group, 

between FA and functional connectivity and between ICVF and functional 

connectivity. 

Results. Overall, widespread structural changes were observed in bvFTD patients 

relative to healthy controls. bvFTD patients showed altered structural FA network 

properties (higher MD and lower DC, SN and EC) also compared svPPA patients. 

nfvPPA patients showed altered FA properties (higher DC, SN and EC and lower MD) 

at global level compared to healthy controls. This condition was also verified at a lobar 

level, in particular in frontal, basal ganglia, parietal, and temporal areas. In contrast, 

graph analysis applied on functional matrices did not show any significant results. 

However, considering ICVF measure, a greater altered connections was detected 

compared to FA maps that allowed to find differences also between svPPA and 

nfvPPA patients. In addition, ICVF graph analysis measures also showed that svPPA 

had a lower DC and SN in the temporal lobe compared to healthy controls. The 

predictive maps obtained by NDM in young controls suggested an early spread of 

pathology to the left occipital lobe (6 months) and the left inferior frontal lobe (12 

months). At 18 months, the left parietal lobe would be reached, whereas in the right 

hemisphere only few regions in the parietal and occipital lobes would be affected at 

24 months. In the case of bvFTD, NDM showed an early spread to the frontal lobe and 

basal ganglia (6 months) and to the right sensorimotor, parietal, temporal and occipital 

lobe (12 months), with an involvement of the controlateral hemisphere between 18 and 

24 months. In nfvPPA, NDM predicted a pathology spread through all brain regions, 

except for the occipital lobe, which would be involved after 12 months. Moreover, the 

degree of atrophy predicted in each region by NDM in healthy young subjects 

connectome was significantly positively correlated with the longitudinal pattern of 

patients atrophy in all three FTLD variants (p<0.05). Overall, pathology diffusion 

predicted by NDM applied on ICVF connectome pointed out higher values of 

correlation related to atrophy predicted by NDM applied on FA maps. In addition, 

NDM applied on functional matrices also revealed significant results. In svPPA 

patients, correlations with NDM applied on functional matrices demonstrated higher 

values of correlation in respect to NDM applied on FA and ICVF connectome. Finally, 
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in all groups of subjects both structural measures FA and ICVF were significantly 

positively correlated with functional strength (p<0.05). 

Discussion. These findings suggested that conventional diffusion-tensor measures 

might be sensitive enough to highlight connections vulnerable in the FTLD spectrum. 

In contrast, functional connectivity analysis did not show significant results, 

suggesting that structural alterations may be earlier in the course of the disease 

compared to functional network abnormalities. Moreover, ICVF demonstrated to be a 

clinically relevant more specific biomarker to differentiate syndromes of FTLD 

spectrum. Specifically, the benefits emerged in the differentiation between svPPA 

patients and other groups. Moreover, the strong correlations found between the 

longitudinal atrophic changes estimated by NDM and the empirical longitudinal 

atrophy patterns support the hypothesis that the healthy architecture of the structural 

connectome might influence the spatiotemporal progression of atrophy in each FTLD 

variant. The accuracy values of each model also showed that ICVF had also a greater 

specificity than FA to model pathology spread. NDM showed significant results also 

applied on functional matrices. In addition, positive correlations between structural 

and functional connectivity suggest that structural and functional measures might be 

combined in order to predict the pathology spreading where both of them demonstrate 

higher strength connectivity in the network to obtain more relevant results. 

Conclusions. Connectome-analysis based on advanced diffusion-weighted models 

may be useful to evaluate structural disruptions with greater differentiation among 

FTLD spectrum disorders compared to diffusion-tensor derived measures. Moreover, 

the implementation of NDM to cross-sectional structural connectome data is a valuable 

tool to predict future atrophy patterns and pathology spreading in the main variants of 

the FTLD spectrum. 
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CHAPTER 1: INTRODUCTION 

1.1 FTLD 

1.1.1 FTLD spectrum 

Frontotemporal lobar degeneration (FTLD) is an umbrella term used to describe a 

spectrum of neurodegenerative diseases characterized by progressive deficits in 

behaviour, executive function, and/or language. FTLD patients show 

neurodegeneration of the frontal and/or temporal lobes with a relative sparing of 

posterior brain regions, accompanied by protein inclusions (such as tau, TDP‐43 or 

FUS) [1-3]. 

FTLD spectrum includes frontotemporal dementia (FTD) clinical syndromes, and it is 

characterized by three main syndromes defined by different early and predominant 

symptoms (Figure 1): a behavioural-dysexecutive disorder (behavioral variant of 

fronto-temporal dementia [bvFTD]), the most frequent syndrome; language variants 

(primary progressive aphasia [PPA]) characterized either by impaired speech 

production (nonfluent variant [nfvPPA]) or impaired word comprehension and 

semantic memory (semantic variant [svPPA]); and motor disorders which can present 

as atypical parkinsonisms (progressive supranuclear palsy [PSP] and corticobasal 

[CBS] syndromes) or motor neuron disease (MND).  

 

Figure 1: Clinical, pathological and genetic spectrum of FTD [1]. 
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FTLD is a strongly genetic disorder, with 10-20% of cases associated to mutations in 

the genes MAPT, GRN and C9orf72 [4]. 

Advanced MRI techniques allowed to define biomarkers able to differentiate variants 

within FTLD spectrum, examining white matter (WM) and gray matter (GM) 

impairments. 

 

1.1.2 Epidemiology 

FTLD is the second most common cause of dementia in patients younger than 65 years 

old, after Alzheimer’s disease (AD). Dementia affects an estimated 47.5 million 

people, and 7.7 million new cases are reported each year [5]. However, because the 

disorder is uncommon in a relatively large at-risk population, it is challenging to 

estimate the overall population with underlying FTD pathology. Additionally, studies 

estimating incidence and prevalence rates of FTD are limited by the inherent difficulty 

identifying FTD disorders [6]. The clinical onset of FTD typically occurs between the 

age of 45 and 65 years, with a prevalence ranging from 15 to 22 per 100,000 people, 

and incidence from 2.7 to 4.1 per 100,000 members in this age range [7]. An Italian 

study in 2019 estimated that the incidence of FTLD in the Italian population is 3.05 

per 100.000 person-years and that the bvFTD was the most common phenotype (37%) 

[8]. 

FTLD showed a median survival from diagnosis of 7-13 years in clinical cohorts and 

6-8 years in studies involving neuropathological confirmed cases. The three main 

variants of FTD - bvFTD, svPPA, nfvPPA - as well as CBS and PSP, showed nearly 

equal survival. Concerning MND cases, the life expectancy was severely reduced, with 

a median survival of 3-5 years [9, 10]. 

1.1.3 Neuropathology 

FTLD syndromes are depicted by deposition of abnormally aggregated proteins in 

neurons and glial cells, similarly to other neurodegenerative diseases such as AD and 

Parkinson’s disease (PD). Abnormal conformation of these proteins leads to a 

pathological condition. FTLD spectrum is subdivided according to the presence of one 

of the following three proteins: tau, TDP-43 and FUS. Tau and TDP-43 cause 

misfolding of same-species proteins and are able to propagate via cell-to-cell 

transmission along network connections and across synapses (“prion-like” hypothesis) 
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(Figure 2) [11]. FTLD-tau and FTLD-TDP pathologies affect most of the FTLD cases 

and are equally represented. FTLD-FUS has been less studied than the other variants 

as it is less common [12-14]. 

 

 
Figure 2: Prion-like propagation [15]. 

 
1.1.3.1 Tau 

Tau is a microtubule-associated protein (MAPT); its task is the stabilization of 

microtubules. Human Tau is encoded on chromosome 17q21 [16]. The protein occurs 

mainly in the central nervous system (CNS) axons and consists largely of six isoforms 

generated by alternative splicing [17], with a length of protein product ranging 

between 352 and 441 amino acids. They differ in the presence or absence of two near-

amino-terminal inserts of 29 residues each, encoded by exons 2 and 3, and in one of 

the repeats (R2, 31 residues) in the carboxy-terminal half [18]. Exon 10 inclusion 

results in 3-repeat or 3R tau, whereas exclusion results in 4-repeat or 4R tau. In healthy 

patients, 4R and 3R tau presence is balanced [19]. Different tauopathies demonstrate 

preferential accumulation of 3R and 4R forms, leading to an alter ability of tau to bind 

to microtubules, caused by an hyperphosphorylation mechanism, and a consequent 

abnormal tau aggregation (neurofibrillary tangles) [19, 20]. Disorders in which tau 

pathology is considered the major contributing factor to neurodegeneration are referred 

to as “primary tauopathies”, while in “secondary tauopathies”, tau aggregation is 

regarded as a response to other pathological proteins, like amyloid beta (Aβ) in AD 

[21].  
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1.1.3.2 TDP-43 

TDP-43 is a DNA and RNA binding protein involved in critical RNA processing 

mechanism [22], such as splicing, microRNA (miRNA) biogenesis, RNA transport, 

translation and stability, and stress granule formation by interacting with numerous 

heterogeneous nuclear ribonucleoproteins (hnRNPs), splicing factors and 

microprocessor proteins [23]. TDP-43 is a 414 amino acid protein that is expressed by 

the TARDBP gene on chromosome 1. It has two RNA recognition motifs (RRMs) 

before a glycine-rich, low-sequence complexity prion-like domain [24]. TDP can 

shuttle between nucleus and cytoplasm, but predominantly resides in the nucleus [25-

27]. Through an auto-feedback mechanism TDP-43 maintains its own regulation [28, 

29]. When this homeostasis fails, aggregation of abnormal phosphorylation and 

ubiquitination of TDP-43 is found in cytoplasm, with associated clearing of TDP-43 

from the nucleus [30]. Increased cytoplasmatic concentration of TDP-43 provokes 

prion-like spread, thus degenerating in gain-of-toxic properties and loss-of-function of 

TDP-43 (Figure 3) [31]. 

  
Figure 3:Above: normal health condition of TDP-42 autoregolation; Below: Illustration of disrupted TDP-43 

autoregolation and consequent prion-like propagation [31]. 
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TDP-43 is the major disease protein in FTD and ALS (Neumann et al, 2006). FTLD-

TDP pathologies are subdivided according to pattern and distribution of TDP-43 [32]: 

- type A: presence of neuronal cytoplasmic inclusions (NCI) and dystrophic 

neurites (DN) in the same proportion (commonly associated to nfvPPA); 

- type B: predominance of NCI over DN (commonly associated to FTD-ALS); 

- type C: predominance of DN over NCI (commonly associated to svPPA); 

- type D: neuronal intranuclear inclusions (NII) are the main histological finding. 

 

1.1.4 FTLD spreading 

As mentioned above, spread of FTLD pathologies might be explained by a prion-like 

mechanism: disease beginning in the gray matter with accumulation of misfolded 

protein and progressing along fiber pathways. Current studies aim to characterize 

pattern of disease neurodegeneration over time. Indeed, bvFTD demonstrated 

sequential dissemination of TDP-43 from frontal lobe to other regions, being described 

in four patterns of spreading (Figure 4) [33]. In particular, the orbital gyri, rectus, and 

amygdala are initially involved in bvFTD patients with the lowest pathological burden 

(pattern I). Lesions appeared in the middle frontal and anterior cingulate gyri, as well 

as in the superior and medial temporal gyri, striatum, red nucleus, thalamus, and 

precerebellar nuclei, with increasing disease burden (pattern II). More advanced cases 

displayed a third pattern (pattern III) with involvement of the motor cortex, bulbar 

somatomotor neurons, and the spinal cord anterior horn, while patients with the highest 

damage (pattern IV) were defined by TDP-43 accumulation also in the visual cortex 

[33]. 

Moreover, TDP-43 pathology in ALS possibly disseminates in a sequential pattern that 

permits recognition of four neuropathological stages consistent with the hypothesis 

that TDP-43 pathology spreads along axonal pathways (Figure 5) [34]. Particularly 

lesions in the agranular motor cortex, brainstem motor nuclei of cranial nerves and 

spinal cord -motoneurons were the hallmarks of ALS individuals with the lowest load 

of TDP-43 pathology (stage 1). Middle frontal gyrus, brainstem reticular formation, 

precerebellar nuclei, and the red nucleus were involved as the disease burden increased 

(stage 2). The prefrontal, postcentral neocortex, and striatum were all damaged by 

TDP-43 disease in stage 3. The hippocampus and other anteromedial areas of the 
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temporal lobe displayed TDP-43 inclusions in cases with the highest burden of ALS 

disease (stage 4) [34]. 

 
Figure 4: bvFTD pathological patterns [33]. 

 
Figure 5: TDP-43 stages in ALS [35]. 

Usually, in the two PPA variants, atrophy initially appears either in left hemisphere 

and progressively spreads. Literature showed that earliest changes in svPPA patients 

include GM loss in the inferior temporal and fusiform gyri, then progression of disease 

leads to involvement of the middle and inferior frontal gyri, posterior temporal gyrus, 

inferior parietal lobule and occipital lobe [36-38]. Whereas in nfvPPA patients, peak 



 17 

of atrophy was identified in the left supplementary motor area, and then spread in the 

inter-connected zones, involving left frontal operculum, premotor area, anterior insula, 

and superior and transverse temporal gyri [36, 38, 39]. 

 

1.1.5 Clinical presentation and diagnostic criteria 

bvFTD 

bvFTD is the most common clinical variant and accounts approximately for 70% of 

all FTD cases [7]. Overall, bvFTD patients are mainly characterized by abnormal 

behavior and personality changes. Presence of three of the following clinical features 

leading to possible bvFTD diagnosis: disinhibition, apathy, loss of sympathy/empathy, 

perseverative, stereotyped and compulsive/ritualistic behavior and 

hyperorality/dietary changes [40, 41]. Probable bvFTD diagnosis is met when patients 

demonstrate functional decline and imaging reflects the typical bvFTD frontotemporal 

degeneration. To conclude, diagnosis of definite bvFTD is reached when 

histopathological evidence of disease or a known pathogenetic mutation are detected. 

 

PPA 

PPA patients are characterized by language deficits leading to significant functional 

impairment. In the semantic variant of PPA (svPPA), patients progressively lose their 

capacity of understanding word meanings and coming up with words. The non-

fluent/agrammatic variant of PPA (nfvPPA) instead is a condition in which speech 

becomes agrammatic and effortful. Indeed, the two core features for svPPA diagnosis 

impaired confrontation naming and poor single-world comprehension [42]. Whereas, 

nfvPPA patients core features for clinical diagnosis are agrammatism in language 

production and effortful, halting speech with inconsistent speech sound errors and 

distortions (apraxia of speech). At least three of the following symptoms are required 

for svPPA clinical diagnosis: impaired object knowledge, particularly for low-

frequency or low-familiarity items, surface dyslexia or dysgraphia, spared repetition 

and speech production (grammar and motor speech). For clinical diagnosis of nfvPPA 

two of the following must be present: impaired comprehension of syntactically 

complex sentences, spared single-word comprehension and spared object knowledge. 
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Finally, svPPA or nfvPPA diagnosis is definite when the clinical diagnosis is 

associated to histopathologic changes or to the presence of a pathogenic mutation. 

 

MND 

MND encompasses several phenotypes, such as amyotrophic lateral sclerosis (ALS), 

primary lateral sclerosis (PLS) and progressive muscular atrophy (PMA). ALS is the 

most common clinical presentation of MND and is characterized by the progressive 

degeneration of both upper motor neurons (UMN) and lower motor neurons (LMN), 

whereas PLS is characterized by the progressive degeneration of upper motor neuron 

only and PMA by degeneration of lower motor neuron [43]. ALS is characterized by 

muscle weakness, limiting movements, causing muscle atrophy resulting in fatal 

respiratory failure [44]. Usually, ALS onset is localized in the cerebral cortex and 

spinal cord, with asymmetric, painless weakness in a limb (spinal onset). But in the 

20% of the case, ALS is characterized by bulbar onset, with dysarthria, dysphagia and 

tongue fasciculations [45]. ALS is diagnosed with the revised El Escorial criteria [46], 

which requires the presence of clinical, electrophysiological or neuropathologic 

evidence of LMN degeneration and clinical evidence of UMN degeneration, the 

progression of signs within a region or to other regions. Such evidence has to be 

combined with the absence of other diseases or neuroimaging evidence able to explain 

the observed signs. If there are UMN and LMN signals in the bulbar area and at least 

two spinal regions, or if there are UMN and LMN signs in three spinal regions, it is 

considered to be clinically definitive ALS. UMN and LMN signals in at least two 

locations are required for the diagnosis of clinically probable ALS, with some UMN 

signs necessarily rostral to the LMN signs [46]. PMA is characterized by clinical and 

electrophysiological evidence of progressive LMN involvement without evidence of 

UMN disease. PMA is usually asymmetric and distal and/or proximal onset can occur 

[47]. PLS is characterized by UMN disease, without LMN involvement after 4 years 

from disease onset [48].  

1.1.6 Treatments 

Nowadays, there is no disease-modifying treatment for FTLD. Currently, non-

pharmacological therapies are involved to support both patients and caregiver. It is 

necessary to develop strategies able to maintain behavior, cognition and language in 



 19 

FTLD patients [49]. Through caregiver training, with the aim to implement 

communication with the patient, not only it is improved the stress of the caregiver, but 

also patients’ behavior problems are attenuated [50-52]. Moreover, reducing noise and 

stimulation, or simplifying social situations, could be helpful in management for 

behavioral disorders (Barton C. et al, 2016). The future of FTLD treatment is to find 

an approach to target the pathologic tau protein and prevent its prion-like spread [53]. 

Possible therapeutic strategies include tau aggregation inhibitors, microtubule-

stabilizing drugs and immunotherapy [53-55]. 
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1.2 Magnetic Resonance Imaging (MRI) 

MRI technology and its clinical usage was firstly introduced in 1971 by Paul Lauterbur 

and today represents a powerful tools used in hospitals and clinics for medical 

diagnosis, staging and follow-up of diseases [56]. Therefore, in 1971 it was already 

demonstrated by Raymond Damadian that the nuclear magnetic signal from 

pathological and non-pathological tissues differed, thus motivating scientists to 

consider magnetic resonance for the detection of disease [57]. 

MRI allowed to overcome limits introduced by other imaging diagnostic methods like 

Computed Tomography (CT) and x-rays, which uses ionizing radiation harmful to the 

patients. Indeed, MRI scanners use magnetic field and radio waves and for this reason 

it imposes very little risk of the tissue damage when frequent imaging is required for 

diagnosis. Furthermore, with MRI scan it is possible to better differentiate and contrast 

soft tissue instead of CT that is commonly used to identify bone lesions or pulmonary 

metastases. To distinguish different tissues is necessary to change MRI sequences 

parameters obtaining the desired contrast of similar tissues. Chemical substances could 

be injected intravenously to enhance contrast of some tissues, such as gadolinium 

which improves the visibility of inflammations, tumors, and blood vessels. Obviously, 

not all patients tolerate the injection of this type of substances. 

Despite the advantages introduced by MRI, there are some situations where it is not 

recommended to use MRI, such as patients with ferromagnetic metals in the body (i.e., 

pacemakers), and claustrophobic patients who might not be able to tolerate the exam 

in the closed MRI scanner [58]. Moreover, due to the long-time duration of MRI scans, 

patients often move during the exam, and this causes artifacts in the images. 

However, with the advent of advanced MRI techniques, numerous investigations for 

even early diagnosis of many pathologies were identified. In order to describe the 

structural and functional changes caused by neurodegenerative disorders, MRI is 

becoming an increasingly significant tool in the research of these pathologies. 

Advanced MRI techniques might have the potential to identify the distinctive features 

of each neurodegenerative disease and support both the diagnostic process and the 

tracking of disease progression [59]. 
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1.2.1 MRI basic principle 

MRI is based on the interaction between electromagnetic field and biological tissues. 

Indeed, any moving particle with a certain mass turns around its axis generating an 

angular momentum called spin (I). The latter defines energy levels allowed to the 

particle as: 

energy levels=2I+1 

( 1 ) 

For example, hydrogen atom has a spin equal to ½, hence it is allowed spinning around 

its axis in two towards, clockwise and counterclockwise. A charged particle that spins 

around its axis induces a magnetic moment (equation 2) which is colinear with the 

direction of the spin axis.  

𝜇 = 𝛾 ∙ 𝐼 

( 2 ) 

where γ is the gyromagnetic ratio of the nucleus, which is a constant, characteristic of 

a given nucleus and it indicates the amount of magnetic field produced by the particle 

at each rotation. The strength of this magnetic moment is a property of the type of 

nucleus and determines the detection sensitivity of MR (Table 1). 1H nuclei possess 

the strongest magnetic moment, which, together with the high biological abundance of 

hydrogen in human body, makes it the nucleus of choice for MR imaging.  

Table 1: MRI properties of some nuclei. 

 

The magnetic moment of each nucleus has its own module but random direction. 

Indeed, in a volume of human tissue in a rest condition the vector addition of all 

magnetic moment will be statistically equal to zero. Vector addition of magnetic 

moments is called ‘magnetization’ (M) which represents the total tissue charge. When 



 22 

a constant magnetic field (B0, frequency = 0 Hz) is applied, the protons inside the 

tissue no longer have a random direction but the external field establishes a preferential 

direction (figure 6). Therefore, protons are aligned to the external field and the vector 

addition is no longer equal to zero, but matter has been magnetized. However, 

magnetic moments of protons in the tissue in this situation may adopt one of two 

possible orientations: alignment parallel (spin-up orientation) or anti-parallel (spin-

down orientation) to B0. 

 

Figure 6: On the left protons are in the rest condition, on the right an external static field is applied, and protons 
follow a preferential direction aligned to B0 

However, the ratio between spin-up and spin-down protons depends on Boltzmann 

statistic: 

𝑛 ↑
𝑛 ↓ = 𝑒

∆"
#$ ≈ 1 +

∆𝐸
𝐾𝑇 

( 3 ) 

• 𝑛 ↑ : numbers of protons with spin-up orientation 

• 𝑛 ↓ : numbers of protons with spin-down orientation 

• ∆𝐸 : energy difference between the two orientations 

• 𝐾 : Boltzmann constant  

• 𝑇 : Absolute temperature 

The series development of the exponential in equation 3 clearly shows how the 

relationship between the two orientations is always greater than 1. Indeed, alignment 

parallel to B0 is the lower energy orientation and is thus preferred and more protons 
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follow this orientation, while the anti-parallel alignment is the higher energy state. The 

ratio in equation 3 depends also on temperature and since the ratio must remain 

constant it is necessary to perform MRI exams in a thermostat environment. 

 The difference between the total number of parallel and anti-parallel nuclei, is known 

as the bulk net magnetization M. Net magnetization increases with the increase of B0; 

indeed, it is very important that the external field has an intense value to be able to 

drive all the protons and typically has values greater than or equal to 1 T.  

Protons are not perfectly parallel to B0 because they process around B0 (figure 7). The 

speed of precession depends on the strength of B0 and is called the “Larmor 

frequency”. The Larmor frequency is obtained by the Larmor relationship:  

𝜔	 = 	𝛾 · 	𝐵% 

( 4 ) 

where ω is 2π times the precessional frequency, B0 is the external magnetic field, and 

γ is the gyromagnetic ratio. 

 

Figure 7: Precessional motion of proton around B0 axis with Larmor angular velocity ω0 

All 1H nuclei possess the same gyromagnetic ratio, but it is necessary that the magnetic 

field is constant in time and in space so that all protons feel the same external field and 

all of them have the same Larmor frequency. Since magnetic vectors are not parallel 

to B0, they have also a transverse component but because of the precession motion of 

nuclei the vector addition of transverse component is equal to zero. Therefore, 

magnetization vector has only the component along the static magnetic field and its 

intensity is not enough to measure it and create an image. To amplify the reaction of 

tissues other external energy is provided to tissue and the condition of resonance is 

reached. Specifically, a radio frequency (RF) pulse at the system frequency, which is 
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the Larmor frequency, is applied to the particles. System goes in resonance when RF 

excitation is given, and this conceptually means that it absorbs energy from an external 

source and the particles that were in a low energy state change their quantum state 

assuming the highest energy state. The external pulse is an external field B1 whose 

frequency is in the RF band; resonance frequency is given by eq. 4 in which for 

example B0=1T and 𝛾 = 42	&'(
$

 and the precession frequency is more about 42MHz 

(RF band). The resonance phenomenon is very selective, in fact according to the 

frequency it is possible to induce resonance only in particular nuclei, for example in 

the case of MRI in 1H.  

As shown in figure 8A, B0 is a static field along z axis and B1 has only transversal 

component and lies on the xy plane. M is the magnetization vector and has longitudinal 

and transversal components. When B1 is applied, protons in spin-up orientation acquire 

energy and achieve the spin-down orientation; the longitudinal component tends to 

flag because protons with spin-down and spin-up orientation become equal, and M lies 

in the xy plane. After a while, the number of protons with spin-down orientation 

increase and M aligns the -z direction. Hence, M rotates around z axis and in the 

longitudinal direction as shown in figure 8B and 8C. The deflection angle 𝛼 is called 

flip-angle and it is calculated as follow: 

𝛼 = 𝛾𝐵)𝑡 

( 5 ) 

 

Figure 8: A) Representation of interaction between B0 , B1 and M. C) Deflection angle = 90° D) Deflection angle 
= 180° 
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In MRI pulse of interest have flip-angle equal to 90° or 180°. The net magnetization 

vector relaxes back to its B0 orientation when the RF pulse is stopped, and the particles 

return to the equilibrium ratio; the excess energy is released in the form of an 

electromagnetic signal called free induction decay (FID). Various tissues in human 

body emit FID in different time, in fact what is important in MRI is signal timing. The 

two types of energy decay are called spin-lattice decay (with time constant T1, which 

reflects the time the longitudinal component of the magnetization vector takes to return 

to the initial condition) and spin–spin decay (with time constant T2, which reflects the 

time the transversal component of the magnetization vector takes to return to the initial 

condition). Moreover, magnetic field inhomogeneity, the differences in magnetic 

susceptibility among various tissues or materials, chemical shift, and gradients applied 

for spatial encoding have a characteristic time of dephasing called T2* [60]. T2* is 

shorter than T2 as shown in Figure 9.  

 

Figure 9: Graph shows T2 and T2* relaxation curves [60]. 

The duration of these time constants, ranging from a few milliseconds to seconds, is 

determined by the type of particles and the substance in the area. More precisely, the 

spin-lattice relaxation time occurs because of an exchange of energy between the spin 

system and the lattice (tissue surrounding the protons), whereas the spin-spin decay 

causes the transfer of energy between spins.  

Different tissues have different T1 and T2 and different sequences of excitation pulses 

are used to emphasize one relaxation time at the expense of the other; an MR image is 

a conversion of time constants in shades of gray. The MRI signal evolution over time 

follows the following expression: 
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𝐴 = 𝐴%𝑒
*+
$! 	𝑒

*+
$"  

( 6 ) 

• t: timing 

• T1: spin-lattice decay 

• T2: spin-spin decay 

• A0: amplitude a t=0 

The amount of time between successive pulse sequences applied to the same slice is 

called the Repetition Time (TR). The time between the delivery of the RF pulse and 

the receipt of the echo signal is referred to as Time Echo (TE). T1-weighted and T2-

weighted scans are the most common MRI sequences in which, T1 and T2 properties 

of tissues determine the contrast and brightness of the images. For example, in tissues 

with shorter T1 values signal back quickly to initial condition producing brighter 

images, whereas tissues with longer T1 values appear darker because signal decays 

more slowly (Figure 10). 

 

Figure 10: Graph shows T1 and T2 relaxations decays. (Figure taken from: https://mriquestions.com/opposite-
effects-uarrt1-uarrt2.html) 

 

T1-weighted images are produced by using short TE and TR times relative to T2-

weighted images, having longer TE and TR times. In T1-weighted images, fluids are 
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very dark, water-based tissues are mid-grey and fat-based tissues are very bright. In 

T2-weighted images, fluids have the highest intensity, and water and fat-based tissues 

are mid-gray. Fluid Attenuated Inversion Recovery (FLAIR) is another commonly 

used sequence, which is like a T2-weighted image, but with longer TE and TR times. 

As a result, abnormalities remain bright and normal CSF is attenuated and appears 

dark. This sequence has a high sensitivity to pathology and provides a good 

differentiation between CSF and abnormalities.  

 
Figure 11: Comparison between different sequences (figure taken from 

https://case.edu/med/neurology/NR/MRI%20Basics.htm) 
 

Table 2: Comparison between different tissues appearance in T1, T2, and Flair images (table taken from 
https://case.edu/med/neurology/NR/MRI%20Basics.htm) 

 
1.2.1 T1-weighted images  

T1-weighted images provides good contrast between GM (dark gray) and WM (lighter 

gray) tissues, while CSF is void of signal (black). The longitudinal relaxation of a 

tissue's net magnetization vector is necessary to produce a T1-weighted image. Fat 

quickly realigns its longitudinal magnetization with the Bo, and it therefore appears 

bright on a T1-weighted image. In contrast, water has less transverse magnetization 

following an RF pulse because its longitudinal magnetization realignment is 

significantly slower, appearing darker. 
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T1-weighted MRI is used to investigate GM structural changes (atrophy) by using 

contrast between GM and WM provided. Indeed, it is possible to parcellate GM and 

then obtain the volume of each ROI. A detailed description of this procedure will be 

discussed in paragraph 3.3.2. 

 

1.2.2 Diffusion-weighted MRI  

Diffusion is the random thermal motion of molecules. The displacement distribution 

of molecules in a fluid depends on the time over which diffusion is being quantified, 

the fluid’s viscosity, the temperature, any concentration gradients that might be 

present, and physical barriers the molecules might encounter. The diffusion of water 

molecules is used to generate contrast in MR images. The motion of a water molecule 

that is free to diffuse obeys to the Einstein’s law: 

< 𝑟, >	= 6 ∙ 𝐷 ∙ 𝑡 

( 7 ) 

• < 𝑟, >: mean square displacement 

• 𝐷 : diffusion coefficient (mm2/s) 

• 𝑡 : diffusion time 

Since water molecules do not move freely because there are some biological barriers, 

in different tissue there is a different D and trough MRI it is possible to measure this 

value. This diffusion coefficient is often called Apparent Diffusion Coefficient (ADC). 

Water molecule diffusion patterns can therefore reveal microscopic details about tissue 

architecture, either normal or in a diseased state. In diffusion weighted imaging (DWI), 

the intensity of each image element (voxel) reflects the best estimate of the rate of 

water diffusion at that location. Because water is largely dependent on its cellular 

environment for mobility and is driven by thermal agitation, the DWI is based on the 

notion that certain findings could signify pathologic alteration. 

An MR experiment by Stejskal and Tanner [61], showed the possibility of detection 

and quantification of water diffusion in vivo. Applying a symmetric pair of diffusion-

sensitizing (bipolar) gradients around the 180° refocusing pulse, they adapted a 
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standard T2-weighted spin-echo sequence which is the basis of many DWI sequences. 

Indeed, applying a pair of gradient pulses along the same directional axis sensitizes the 

MR signal to the water diffusion process. The first gradient pulse causes molecules to 

acquire phase shifts, the second gradient pulse will cancel the phase shifts by rephasing 

the (stationary) spins. The refocusing will not be perfect for protons that have moved 

during the time interval between the pulses, and the signal measured by the MRI 

machine is reduced (signal loss) (Figure 12). The higher the degree of random motion 

(e.g. within CSF), the more MR signal loss, conversely the lower the degree of random 

motion (e.g. in GM or WM), the lower the MR signal loss.  

 
Figure 12: Phases of the signal at each site are shown by the vectors in the circles. Signal loss results from the 
second gradient's inability to properly refocus the phases if water molecules migrate between the two gradient 

applications [62]. 

This signal is given by Stejskal-Tanner equation: 

𝑆 = 𝑆%𝑒*-. 

( 8 ) 

where S0 is the signal strength without any diffusion weighting. The sensitivity of the 

diffusion sequence to water motion can be varied by changing the gradient amplitude, 

the duration of the sensitizing gradients, and the time between the gradient pair. 

The diffusion-weighting factor is named b-value and the value is given in units of 

s/mm2 by: 
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b=γ G δ (Δ−δ/3) 

( 9 ) 

 

where γ is the gyromagnetic ratio, G is the strength of the diffusion-sensitizing 

gradients, δ is the duration of the gradient pulse, and Δ is the time interval between 

these gradients. A higher b-value is achieved by increasing the gradient amplitude and 

duration and by widening the interval between the gradient lobes and this will cause a 

higher signal loss (darker image). A diffusion-weighted image with a b-value of zero 

is similar to a typical T2-weighted image; CSF is bright and grey matter is dark. As b-

values increased, there is greater signal loss in specific parts of the brain, primarily 

within the WM. This is because the water within those WM tracts is diffusing primarily 

along the direction of the tract, and the image that is generated shows correspondingly 

lower signal. Higher b-values also make the image more susceptible to image artifacts 

such as movement and magnetic currents called ‘eddies’ that cause distortions.  

However, to extract information about the value of apparent diffusion two signals are 

needed: 

 

𝑆) = 𝑆%𝑒*-!. 

𝑆, = 𝑆%𝑒*-". 

( 10 ) 

Thus, starting with a Non Diffusion-Weighted image (S1), created for example by 

setting b1 = 0, and a Diffusion-Weighted image (S2), we can perform the ratio and 

obtain the apparent diffusion coefficient as follow: 

𝑆,
𝑆)
= 𝑒*(-"*-!)𝐷 

( 11 ) 

𝐷 =
−ln	(𝑆,𝑆)

)

𝑏, − 𝑏)
 

( 12 ) 
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Diffusion measurements are needed along multiple axes and are needed at least a 

couple of measurements in each direction. The more are the measurements the better 

is in term of reconstruction of diffusivity in the space.  

 

1.2.2.1 Diffusion Tensor Imaging 

In WM, water diffusion is relatively unimpeded in the direction parallel to the fiber 

orientation. On the other hand, in directions that are perpendicular to the fibers, water 

diffusion is severely constrained. Thus, the diffusion in fibrous tissues is anisotropic 

[63]. The diffusion anisotropy is described by a diffusion tensor, whose eigenvalues 

represent the apparent diffusivity along an axis and eigenvector represent the 

direction of the gradients that were applied along an axis. Brain has preferred 

directions that correspond to WM tracts, which are thick bundles of myelinated 

neurons that connect both nearby and distant parts of the brain. The major diffusion 

eigenvector (direction of greatest diffusivity) is assumed to be parallel to the tract 

orientation in regions of homogeneous WM.  

Diffusion tensor is a symmetric matrix and the smallest one is represented as follow: 

𝐷F
𝐷11 𝐷12 𝐷1(
𝐷12 𝐷22 𝐷2(
𝐷1( 𝐷2( 𝐷((

G 

( 13 ) 

Where 𝐷11 , 𝐷22 , 𝐷(( represent diffusion calculated along principal directions (x, y and 

z), whereas off-diagonal terms represent correlations between principal axis. Once 

tensor’s eigenvalues and eigenvector are calculated, diffusion principal directions are 

obtained. 

As shown in figure 13 and 14 each voxel is fitted by a tensor, so represented by a 

combination of eigenvectors and eigenvalues, that allows for the generation of 

different types of diffusion maps, such as fractional anisotropy (FA) and mean 

diffusivity maps. FA measures the degree of diffusion anisotropy by using a 

measurement of difference among the three eigenvalues calculated as follow: 

𝐹𝐴 = 	J
1
2
K(𝜆) − 𝜆,), + (𝜆, − 𝜆3), + (𝜆3 − 𝜆)),

K𝜆), + 𝜆,, + 𝜆3,
 

( 14 ) 



 32 

 
If diffusion is isotropic (λ1 = λ2 = λ3), measure becomes 0, whereas values near to 1 

indicate high diffusion anisotropy.  

MD describes the overall diffusion and is calculated as follow: 

 

𝑀𝑒𝑎𝑛	𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 = 	
𝜆) + 𝜆, +	𝜆3

3  
( 15 ) 

Higher is MD value higher is the brain damage. Indeed, when a degeneration occurs 

in structurally organized tissue, such as WM tracts, MD increases and FA decreases 

because of a loss of the directionality of diffusion. 

 
Figure 13: visualization of tensor within each voxel [64] 

 
Figure 14: FA maps and diffusion tensor visualization. a) FA map, where higher is the FA value brighter is the 
pixel b blue colors represent fibers running along the right-left, anterior-posterior, and inferior-superior axes, 

respectively. c Diffusion tensor representation [65]. 

 
1.2.2.2 Tractography  

The directional information of DW-MRI can be used to select and follow neural tracts 

through a process called tractography [66], whose steps will be described in detail in 

paragraph 3.3.3.4. An overview of the main cerebral tracts is reported in figure 15.  
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Figure 15: Brain neural tracts. [67] 

Tractography is used to enable quantitative analysis of the structural connectivity in 

the brain’s [68], which accuracy depends on the tractography algorithm used and 

model of the diffusion signal on which it is based [69]. A summary of tractography 

approach is presented in Table 3 [69].  

Table 3: Summary of three major dimensions along which most tractography algorithms can be classified [69]. 

 

1.2.2.3 Neurite orientation dispersion and density imaging  

Neurite orientation dispersion and density imaging (NODDI) provides an 

improvement of diffusion MRI through a model which separates the signal arising 
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from three different tissue compartments: intra-neurite water, extra-neurite water and 

cerebrospinal fluid (CSF) [70]. Different tissues respond differently to different b-

values (multi-shell approach), and this can be used to better characterize cell 

compartments and fiber orientation. Figure 16 shows how signals basis form differ in 

the different combinations of tissue and b-value.  

 

Figure 16: Basis function for different combination of tissue type and b-value [64]  

The intra-neurite compartment considers the tissue component of axons and dendrites, 

the extra-neurite compartment considers the tissue component of cell bodies and glial 

cells, and the non-tissue comportment (e.g., CSF) accounts for free water (Figure 17) 

[71]. 

 
Figure 17: The non- tissue compartment that contains is modeled using isotropic Gaussian diffusion. The region 

around the neurites is described by an anisotropic diffusion model, whereas the intra-neurite compartment 
represents the neurites as orientationally dispersed sticks [71]. 
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NODDI allows to estimate neuronal density through intra-cellular volume fraction 

(ICVF), orientation dispersion through orientation dispersion index (ODI) calculated 

in the extra-cellular environment and the CSF volume fraction through isotropic water 

diffusion (ISO) index [71, 72]. Particularly, a loss of directionality in WM tracts should 

cause a decrease of ICVF measure and an increase of ODI measure. The latter reflects 

an augmented fibers orientation dispersion in WM structure. NODDI specificity might 

lead to an improvement of biomarker detection in neurodegenerative diseases at a 

microstructural level. DTI presents limitations when an image voxel contains fiber 

populations with more than one dominant orientation. FA values are lower in such 

areas because of a lower directionality of diffusion on the voxel-scale, which makes 

the interpretation of FA less straightforward [73]. Furthermore, MD in diffusion tensor 

MRI is affected by crossing fibers, in fact MD values are lower in complex fiber 

architecture than in single fiber voxels. Overall, FA and MD are non-specific [74]. 

Indeed, DTI signal is affected also by biophysical characteristics of neuronal cells [75]. 

Recent developments in diffusion MRI, like NODDI, have addressed some of the 

limitations of standard DTI and advanced capacity to characterize tissue 

microstructure. 

1.2.3 Functional MRI 

Changes in neuronal activity cause a rapidly increased need of oxygen in active 

neuron. Consequently, blood flow increases in order to meet the larger demand for 

oxygen [76]. The change in tissue perfusion causes a net increase of oxyhemoglobin 

(O2Hb) and a consequent concentration reduction of deoxyhemoglobin (HHb). This 

hemodynamic response is measured by Blood Oxygen Level Dependent (BOLD) 

signal. 

In 1990 Seiji Ogawa and colleagues showed that hemoglobin shows different magnetic 

properties: diamagnetic when oxygenated but paramagnetic when deoxygenated [77]. 

Since the quality of MRI signal is strongly influenced by the uniformity of the 

magnetic field experienced by water molecules, when HHb interferes with the MRI 

magnetic field a loss of signal occurs [78]. Brain tissue areas, where the activity occurs, 

presents lower concentration of HHb, therefore MRI signal decays less rapidly and 

brighter than areas with higher concentrarion of HHb[76]. Hence, areas with high 

concentration of O2Hb generate brighter images than areas with HHb that are darker 
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in the image. This form of fMRI is known also as BOLD imaging that represents the 

standard technique to generate functional MR images. Moreover, the MRI sequence 

sensible to the changes in the magnetic field is T2*-weighted, so it is used in functional 

MRI. 

Since fMRI scanning is very fast, it is possible to create a series of images of the brain 

based on the amount of oxy-Hb, so to track brain activity over time. A typical whole-

brain acquisition takes 5 to 10 minutes and provides 100 to 300 volumes. As mentioned 

above, during brain activity HHB concentration decreases, because blood flow 

exceeds the brain’s metabolic need. As a result, BOLD signal increases after a stimulus 

as shown in Figure 18.  

 

Figure 18: Schematic of the BOLD hemodynamic response to a brief stimulus at time zero. [79]. 

However, Biswal et al in 1995 observed that the spontaneous low frequency (f<0.1 

Hz) BOLD signal fluctuations could reveal functional connectivity between brain 

areas [80]. Hence, Resting-State fMRI (RS-fMRI) measures BOLD signal fluctuations 

in the absence of a task or stimulus [81]. Correlations between mean signal from 

different brain areas are then performed to value the connectivity between them; it is 

assumed that over time of acquisition (~5-10 minutes), the functional connections are 

not changing.  

There are several reasons to use RS-fMRI instead of task-related fMRI for clinical 

analysis [82]: 
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• Task-based fMRI is more focused on specific brain areas, while RS-fMRI 

might show a more general view of brain activations 

• RS-fMRI presents low signal to noise ratio relative to task-based fMRI 

• Many patients with cognitive or physical impairment are not able to perform 

tasks accurately in the fMRI scanner 

• Task learning could occur in longitudinal studies, giving ambiguous results 

RS-fMRI has allowed to identify networks linking regions that are anatomically 

separate yet functionally intertwined. In FTLD, the most studied networks are those 

related to cognition: default mode network (DMN), salience network (SN), speech and 

language network (SPN), executive network (EXN) [83]. DMN involves the posterior 

cingulate cortex, parietal cortex and medial temporal lobe and it was introduced as a 

“control state” or “baseline state” in functional connectivity by Marcus E. Raichle in 

2001 [84]. Moreover, the DMN is particularly vulnerable to atrophy and deposition of 

the amyloid protein, in fact, activity changes in DMN in aging and dementia are 

observed [85]. SN, composed of the anterior cingulate, insula, striatum, and amygdala 

[86], has a role in focusing attention on meaningful sensory information. Whereas SPN 

is a structure responsible for speech and langauge production that comprises the left 

inferior frontal, dorsal insular, supplementary motor and inferior parietal regions [87]. 

Lastly, EXN involves frontoparietal areas and it is responsible for high- level cognitive 

functions such as planning, decision making, and the control of attention and working 

memory [83]. 

 

1.2.4 Imaging in FTLD 

Standard neuroimaging studies analyze structural and functional activity in specific 

brain regions, as reported in the following paragraph. 

 

T1-Weighted Imaging 

Several studies investigated GM loss distribution in FTLD through T1-weighted 

imaging (Figure 19). bvFTD is generally characterized by frontotemporal atrophy, 

involving in particular the prefrontal cortex and anterior temporal regions, insula, 
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anterior cingulate [37, 88, 89]. Subcortical structures like the striatum, thalamus, 

hypothalamus and brainstem are often involved [90, 91]. 

 
Figure 19: Patterns of GM atrophy in patients with bvFTD and each PPA variant [92]. 

Whereas bvFTD is associated with wide ranging and bilateral alterations in the 

frontotemporal areas, PPA cases show more focal and asymmetric structural changes 

[93]. Indeed, svPPA is associated with commonly left‐side antero-inferior temporal 

lobe atrophy and nfvPPA with predominantly left‐sided inferior frontal and insula 

involvement [1]. Moreover, in svPPA and nfvPPA patients, loss of grey matter in the 

earliest pathology stage predominantly involves one hemisphere and spreads to the 

contralateral hemisphere over time [94]. 

Recent studies investigated grey matter loss in MND patients using T1-weighted 

imaging. However, there are conflicting results, some studies showed focal atrophy in 

motor and premotor cortex in ALS patients [95, 96], other highlighted widespread 

frontotemporal atrophy [97, 98], or even no significant atrophy [99]. These differences 

might be due to different MRI processing.  

 

Diffusion Weighted Imaging 

WM abnormalities have been studied in FTLD spectrum with DTI. Microstructural 

alterations in WM differentiated FTLD syndromes. In particular, bvFTD patients 

showed structural changes in frontal lobes and in tracts travelling though the temporal 
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lobe. svPPA patients presented WM alterations predominantly in the left temporal 

tract, whereas in nfvPPA patients WM damage was more focus in left inferior frontal 

lobe, left orbitofrontal, insula, and supplemental motor area [100-103]. However, 

longitudinal studies demonstrated that WM damage spreads over time also in the right 

hemisphere (in particular in the uncinate fasciculus) in svPPA patients and in posterior 

brain areas in bvFTD patients [104, 105]. 

FTLD is commonly associated to TAU and TDP-43 proteinopathy, and it was tested 

if FTLD-TAU and FTLD-TDP could be differentiated by DTI technique. Interesting 

results were obtained in 2013 by McMillan Corey T. and colleagues, who showed how 

FTLD-TAU presented greater WM burden (decreased FA in bilateral superior 

longitudinal fasciculus) in contrast to FTLD-TDP [106]. 

 ALS is the most common phenotype of MND, hence the most studied. Most 

significant alterations (decreased FA and increased MD) in ALS patients were showed 

in corticospinal tract [107]. Other studies put their effort in evaluating microstructural 

integrity in patients with PLS; widespread damage in motor areas were found [108]. 

More recently, ALS has been also characterized with NODDI. NODDI detected more 

neurodegenerative areas compared to DTI measure. In ALS patients, neurite density 

index decreased in the corticospinal tracts, corpus callosum and precentral gyrus [70]. 

Overall, studies have pointed out how WM lesions are more involved in FTLD 

pathologies in comparison to GM loss, supporting the progression of "prion-like" 

pathology through the WM connection, that characterize the spectrum [109].  

 

Functional MRI 

RS-fMRI might be a sensitive biomarker even for early stage of FTLD syndromes 

[110]. Studies showed decreased functional activity in the SN and an augmented 

functional activity in the DMN, in particular in the prefrontal cortex, in bvFTD patients 

[111, 112]. Hyperconnectivity in DMN in bvFTD patients could represent a 

maladaptive behavior associated with dementia [113]. svPPA patients are 

characterized by decreased functional activity in the ventral semantic network, 

involving anterior middle temporal and angular gyri, and by increased connectivity 

between the inferior frontal gyrus and the superior portion of the angular gyrus, which 

suggested possible adaptive changes [114]. Whereas in nfvPPA patients functional 
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changes involve the left inferior frontal gyrus and the left supplementary motor area, 

inferior and superior parietal gyri between both hemispheres, and striatum with the 

supplementary motor area in both hemispheres [115]. Interestingly, some studies had 

shown how functional strength can represent a biomarker predicting the evolution of 

atrophy in svPPA and nfvPPA syndromes [39, 116]. Concerning MND, ALS patients 

often show decreased functional activity in the premotor cortex and DMN [117-119]. 

ALS patients also show increased activity in inferior frontal lobe, sensorimotor cortex, 

sensorimotor lobe, parahippocampal gyrus and cerebellum as a compensatory process 

in early stage of disease, followed by functional failure with pathology spreading [119, 

120]. 
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1.3 Connectome and Graph Analysis 

1.3.1 Connectomics 

Understanding brain function by investigating connectivity of human brain might lead 

to improve comprehension of the development of neurodegenerative disorders. Brain 

function does not depend solely on the properties of individual regions, but rather 

emerges from interaction patterns across the entire network. Indeed, as at a 

microscopic level the neurons form a network, also at the macroscopic level the WM 

neuronal bundles interconnect brain areas allowing functional communication among 

them [121]. It is possible to analyze this macroscopic brain communication thanks to 

the advent of new advanced neuroimaging techniques, which allowed to reconstruct 

anatomical and functional connectivity across regions of the human brain [122]. For 

example, through diffusion MRI tractography, WM streamlines that connect 

anatomically distinct regions of GM are mapped, and it allows the construction of 

structural connectome. Moreover, with the use of fMRI it was possible to analyze the 

functional connectivity between brain areas, measuring the spontaneous co-activation 

of them in a resting situation [123]. Overall, structural and functional connectivity are 

closely related; structural connectivity is highly informative of functional connectivity 

[124].  

Hence, through the connectome, it is possible to mathematically represent human brain 

with a graph, where the nodes are modeled by the GM areas and the edges represent 

the structural or functional connections between brain regions (Figure 20). Brain 

network might be also represented by a two-dimensional connectivity matrix wherein 

the rows and columns correspond to specific brain GM regions, and the value stored 

within each element of the matrix is the computed connectivity “strength” between 

those regions corresponding to that row and column [125].  
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Figure 20: Graph theory basic principles representation [68] 

The brain connectivity matrix was firstly introduced in 2005 by Olaf Sporns and Patric 

Hagmann as the human “Connectome” [125, 126]. Connectome is an advanced MRI 

technique that might provide new insight on how brain architecture enables functional 

communication between brain areas and into how brain function is affected if the 

structural substrate is disrupted [125].  

The human connectome includes all the neuronal connections and is considered as a 

single entity, highlighting the power of the connectivity architecture that allows brain 

neuronal communication capacity and computational power [126]. 

Extracting specific features from connectome (for example graph analysis measures) 

and through specific analyses it is possible to find useful biomarker to help prediction 

of pathologies and to prevent prion-like spread. Therefore, it is possible to 

mathematically model “prion-like” transynaptic transmission of disease agents like 

misfolded tau and beta amyloid by a diffusive mechanism mediated by the brain’s 

connectivity network [127].  

 

1.3.2  Graph analysis 

Graph Theory is a branch of mathematics that defines structures that are used to 

represent system’s elements and model the interactions and relations between them 

[128]. Network models describe brain as a set of nodes and edges (Figure 20a, Figure 

21a,b). Indeed, to construct a brain graph it is necessary to choose connectivity 

measures that will serve as the network edges and to find an appropriate way to 

parcellate the brain into regions that will serve as the network nodes. Graph network 

are usually represented as connectivity matrix.  
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Figure 21: a,b: brain graph construction. c,d,e,f: illustration of some graph theory concepts [122]. 

In particular, as mentioned above, diffusion MRI tractography allows to map WM 

tracts. Before, it is necessary to define a parcellation of the brain so that streamlines 

(WM pathways) between the segmented GM nodes of the brain are selected. For each 

structural connection, the level of microstructural integrity is measured extracting the 

mean FA or MD and NODDI measures (ICVF, ODI). Each of these measures are 

inserted within the structural connectivity matrix. Structural connectome allows to 

study the integrity of the fibers and tracts that is of particular interest in the assessment 

of neurodegeneration. Indeed, FA and ICVF structural measures the directionality of 

water flow instead of ODI and MD that measure water diffusion in brain tracts.  

Whereas, functional connectivity matrices contain the Pearson correlation coefficient 

between the mean RS-fMRI time-series obtained averaging over the time-series of all 

voxels contained in a brain region. Negative correlation coefficients, whose meaning 

is uncertain, will be set to 0 to mark these brain regions as unconnected [129]. 

Functional connectivity is proposed to characterize the relationship between the 

neuronal activation patterns of physically distinct brain regions in the context of 

functional neuroimaging [123]. Indeed, different types of neurodegeneration 

differentially affect functional networks of the brain. To sum up, an illustration of 

structural and functional connectome reconstruction is shown in Figure 22. 
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Figure 22: A: DTI image on the left and RS-fMRI on the right. B: brain parcellation and definition of brain 

nodes. C: MRI tractography on the left and time-series extracted from RS-fMRI images on the right. D: 
Connectivity matrix. Typically, a threshold is used to discriminate spurious connections from real connections 

[121]. 

A graph may be classified as undirected or directed depending on whether links have 

directions or not as we can see in figure 23 [130].  

 
Figure 23: directed connectivity on the right, undirected on the left [131] 

 
Furthermore, some graph metrics can be obtained and used to describe properties of 

network’s architecture. Hereafter, the most common graph metrics will be listed. 

Degree centrality, perhaps the most popular metric employed in brain network, equates 

the number of connections at each node to that node's centrality: 
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( 16 ) 

Centrality is a concept in graph theory used to classify nodes as central, or more 

important, within a system [132]. Nodes with high degrees and an overall central 

position in a network’s topological organization are often described as hubs [121]. 

Martijn P. van den Heuvel and Olaf Sporns in 2011 showed that brain hubs form a so-

called "rich club," with a propensity for high-degree nodes to be more densely 

interconnected than nodes with a lower degree [133]. Another measure of centrality is 

eigenvector centrality that defines the importance of a node by the connection 

originating from that node [132]. The eigenvector centrality of node i is equivalent to 

the ith element in the eigenvector corresponding to the largest eigenvalue of the 

connectome. If the neighbors of a node have higher centrality it plays a more crucial 

role in mediating information transfers in the network. Additionally, path length (mean 

distance) is the minimum number of edges that must be traversed to go from one node 

to another and it is inversely related to the global efficiency of a network for the 

transfer of information between nodes by multiple parallel paths. Another metrics is 

the sum node weights, that is the sum of strength weight of each node 

𝑆𝑁(𝑖) =W𝑐(𝑖, : )
,,%

45)

 

( 17 ) 

where c(i,:) selects the i-row of the connectome. 

Nevertheless, the archetypal brain network has a short path length (associated with 

high global efficiency of information transfer), high clustering coefficient, otherwise 

high local efficiency of information transfer and robustness [134]. Indeed, this 

organization of the brain network was called “small-world” [135] architecture (Figure 

24) and it is a result of a natural process to satisfy the balance between the speed of 

information transfer and a reduced energy consumption [130]. 
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Figure 24: Regular network has high clustering coefficient (C) and high path length (L). Small-worls architecture 

has high C and low L. Random network has low C and L. [123] 

It is also possible to identify modules within a network, which contain several densely 

interconnected nodes, with few connections between nodes in different modules as 

showed in Figure 21e [134]. Modularity can be seen as the measure of functional brain 

network organization [136]. 

 

Network Based Statistics 

The graph model offers a perfect framework for identifying the structural or functional 

connections underlying a given effect or contrast of interest, such as a group difference 

in a case-control comparison, a difference brought on by shifting task requirements in 

a functional paradigm, or a correlation with a particular clinical measure. To identify 

these connections, a statistical approach called Network Based Statistic (NBS) is used 

[137]. This new approach is a method to control the family-wise error (FWE) rate 

when mass-univariate testing is performed at every connection comprising the graph. 

The purpose of NBS procedure is to show that impaired connections forming a 

connected component in a network have a greater possibility of indicating a true 

alteration than single connections that do not form a connected component [137]. A 

detailed description of NBS procedure can be found at paragraph 3.1.5. 

 

1.3.3 Structural and functional connectome in FTLD 

Structural connectivity 

Several studies analyze structural connectome in FTLD spectrum. In particular, 

bvFTD selectively affects connectome showing decreased FA and increased MD 

predominantly in frontal, temporal and parietal lobe and insula compared to controls 

(Figure 25) [138]. These findings suggested selective alterations of the structural brain 

network in bvFTD patients.  
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Figure 25: Above, connectograms of the average pattern of healthy controls and bvFTD. Below, groups 

differences (MD and FA) [138]. 

Moreover, other studies using graph theory revealed a decreased global efficiency and 

clustering coefficient in frontal and temporal lobe and posterior brain regions (i.e., 

precuneus and cuneus), which suggests a generally decreased capacity for information 

transfer (Figure 26) [139-141]. Moreover, it was demonstrated that bvFTD atrophy 

was associated with structural connectome alterations providing a possible advice to 

the typical atrophy pattern of bvFTD patients [142].  
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Figure 26: regions where behavioral variant bvFTD patients' local efficiency is lower compared to  

healthy controls [139]. 
 

In recent years, few study have analyzed structural connectome in PPA. Particularly, 

svPPA have shown asymmetrical alterations in MD and FA connectivity (augmented 

FA and decreased MD compared to healthy controls) in temporal and occipital lobes 

with the left side significantly different from controls [143]. Also nfvPPA patients 

showed changes with a major predominance in the left hemisphere, but predominantly 

involving frontal inferior regions, premotor and motor cortex, and the basal ganglia 

[143]. In these abovementioned regions, also graph metrics were found altered in these 

two PPA variants (Figure 27), offering more evidence that the neurodegenerative 

mechanisms underlying each PPA variant are associated with specific patterns of 

structural network changes [144]. 
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Figure 27: cortical and subcortical brain regions showing reduced local properties between patients and svPPA 
patients on the left, and between patients and nfvPPA patients on the right [144]. 

Graph analysis and connectomics were also applied to investigate ALS. When 

evaluating the structural brain network in ALS, the most recurrent finding is reduced 

WM connectivity (FA) within the principal motor connections and frontal cortex 

(Figure 28) [145, 146]. Additionally, overall efficiency and clustering coefficient were 

found to be decreased in ALS patients [146]. Moreover, connectome and graph 

analysis were helpful in distinguishing MND variants. Patients with PLS present 

alterations in sensorimotor network relative to ALS group and patients with ALS 

showed decreased FA relative to PMA patients within the sensorimotor network 

including precentral and postcentral gyri and frontal network [147]. These studies 

showed widespread motor and extramotor network degeneration in MND patients, 

suggesting that graph analysis and connectomics might represent a powerful approach 

to detect upper motor neuron degeneration and delivering potential prognostic 

markers.  
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Figure 28: Edge with significant reduced FA in ALS patients relative to healthy controls found through NBS 

analysis [145]. 

Functional connectivity 

It was investigated in previous studies, through connectome and graph analysis, 

whether brain functional network connectivity is disrupted in FTLD patients. Overall, 

using NBS, decreased functional strength in bvFTD patients compared to controls was 

found, including frontotemporal pathways and connections to the motor cortex and 

basal ganglia (Figure 29, 30a) [115, 148]. These findings helped to characterize 

disease-specific patterns of functional network topology and connectivity alterations 

[148]. Moreover, bvFTD selectively affected network centrality in the fronto-temporo-

insular network and subcortical regions, which is associated with high-level social and 

executive profile [115, 149]. 
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.  
Figure 29: Red connections: bvFTD<HC; Black connections: bvFTD>HC [148] 

Considering the results with linguistic variants, NBS showed more functional 

alterations in nfvPPA than svPPA compared to healthy controls, as shown in Figure 

30b,c [115]. In particular, svPPA patients were characterized by a significantly lower 

mean network degree, clustering coefficient, and global efficiency, longer 

characteristic path length compared with controls, with deficits occurring majorly in 

the left inferior and ventral temporal region and the occipital area [150]. Whereas 

nfvPPA patients showed lower clustering coefficient and efficiency within the left 

inferior frontal, dorsal insular and supplementary motor area [39]. Hence, functional 

connectivity might be a useful to identify biomarkers to distinguish also PPA variants. 

 
Figure 30: NBS results between controls and bvFTD, svPPA and nfvPPA patients from Reyes et al, 2018 [115]. 

Few studies applied connectomics and graph analysis to the assessment of functional 
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alterations in ALS patients using RS-fMRI [151, 152], demonstrating connectivity 

alterations involving frontal, temporal and occipital regions.  

Network-based analysis were applied in order to differentiate MND phenotypes, 

highlighting that PLS patients are characterized by widespread functional alterations 

encompassing both motor and extra-motor areas with a pattern resembling classic ALS 

patients (Figure 31) [108, 147, 153]. These findings suggested that graph analysis and 

connectomics might be a powerful technique for identifying extramotor brain 

alterations, upper motor neuron degeneration, and network remodeling related to these 

diseases. By contrast, PMA patients did not show any functional damages relative to 

healthy controls [147, 154, 155]. 

 
Figure 31: NBS showed functional alteration in ALS and PLS patients compared to HC [147]. 

 
1.3.4 Network Diffusion Model 

Network diffusion model (NDM) is used to mathematically model the pathology 

diffusion process across the human brain connectome. NDM was firstly introduced by 

Ashish Raj (2012) who generalizes the “network heat equation” [156]. Indeed, the 

basic concepts of network diffusive mechanism were taken from the network heat 

equation, which can be expressed as the progression of any pathology from a high 

concentration to a lower concentration until the equilibrium state is accomplished 

[157]. The principal aim of NDM was to explore selective vulnerability and 
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pathological diseases progression through healthy connectome, using a quantitative 

network-based model of pathology spread originating from a single regional seed. 

NDM was initially used to mathematically model the transmission of misfolded 

proteins (like tau and amyloid) that spreads along neuronal pathways, by a diffusive 

mechanism mediated by brain’s connectivity network [127]. It was found that NDM 

has predictability on longitudinal progression of atrophy from baseline pattern [127, 

158]. The computation of NDM’s differential equation involves an eigenvector 

decomposition and it was found that each eigenmode represents spatial patterns that 

have a strong resemblance to known patterns of different dementias [127].  

NDM was also applied on FDG-PET images to predict hypometabolism evolution in 

Alzheimer’s Disease (AD) because of the pathology progression [158]. Afterwards, 

NDM was modified by introducing a directional connectome, where the direction of 

the connections is considered. This method was applied on a rare disorder called 

progressive supranuclear palsy (PSP) and it explains PSP topography more accurately 

than non-directional transmission [159]. Moreover, NDM was also used to estimate 

the seed region where the pathology starts to spread in Parkinson’s Disease (PD) [160]. 

Finally, in other study, NDM was applied to find the disconnections in Huntington’s 

Disease (HD) as WM connections connecting the nodes with the highest amount of 

disease factors [157]. Anyway, the implementation of NDM to cross-sectional 

structural connectome data is a valuable tool to predict future atrophy patterns and 

pathology spreading in neurodegenerative disorders, simulating the hypothetical 

spread of disease-causing proteinopathy into the network. Furthermore, studies 

mentioned above suggested that NDM has greater predictability on longitudinal 

progression starting from the baseline pattern of each patient. To conclude, the model 

was then validated though a correlation between MRI longitudinal data and data 

predicted by NDM. A schematic illustration of the model is given in figure 32. 
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Figure 32: NDM procedure [127] 
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CHAPTER 2: AIM OF THE PROJECT 

FTLD is a heterogeneous group of disorders characterized by the deposition of 

abnormal proteins inclusions in neurons and glial cells [41, 161]. Starting from 

disease-specific epicenters of neurodegeneration, misfolded proteins follow a “prion-

like” trans-synaptic transmission along neuronal pathways, which can be studied in 

whole-brain structural and functional connectivity networks [127]. Moreover, MRI 

connectomics has demonstrated a close relationship between strength in brain 

connectivity and the magnitude of atrophy accumulation in FTLD disorders, 

supporting a network-based spread model of pathology [39, 87, 116]. In addition, 

pathology is more likely to spread to brain regions with functional proximity to the 

epicenters [162]; indeed, it is reasonable to model pathologies spreading both on 

structural and functional connectome. 

Therefore, MRI advanced techniques will be used to explore the role of network 

alterations in different FTLD diseases, by identifying changes in structural and 

functional connectivity at a brain-system level through the so-called ‘connectome’ 

analysis, mapping patterns of different pathologies. Finally, tracking the initial event 

and predicting the way of misfolding protein propagation across the brain would be 

valuable for identifying therapeutic targets that could be modulated before potentially 

irreversible spreading of protein pathology and neuron loss [163]. Identification of 

network biomarkers was the main objective of this study in order to use them in 

intervention trials, preventing or delaying the progression of the disease. 

To sum up, the main aims of this thesis are: 

• To investigate alterations in structural and functional brain network in FTLD 

spectrum using connectome-analysis. 

• To predict spatiotemporal patterns of neurodegeneration exploring the 

relationship between selective network vulnerability and longitudinal 

pathological progression in patients of the FTLD spectrum, using Network 

Diffusion Model. 
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CHAPTER 3: MATERIAL AND METHODS 
3.1 Participants 

A total of 176 patients with a suspected diagnosis of disorders of the FTLD spectrum 

were referred between October 2009 and April 2021 to the Neurology Unit of San 

Raffaele Hospital in Milan to perform a complete neurological work-up, as well as a 

neuropsychological evaluation and an MRI scan on a 3 Tesla scanner. MRI protocol 

included longitudinal T1-weighted MRI and single multi-shell diffusion MRI resting-

state and functional MRI (RS fMRI) sequences. Longitudinal follow-up were 

performed at 6, 12, 18 and 24 months (Table 4). Patients received a clinical diagnosis 

of FTD according to either bvFTD [164], nfvPPA or svPPA [42] clinical criteria, and 

were therefore evaluated for inclusion in the present study. Genetic patients (i.e., 6 

C9orf72, 9 GRN, 1 MAPT and 1 TREM2) were identified and excluded from the 

present study. Patients, who demonstrated a high cerebrovascular burden or motion 

artifacts on MRI, were not included in the study. Patients with at least 2 follow-up 

visits were included. After the screening process, the final baseline cohort included 74 

sporadic FTLD patients, divided into 34 bvFTD, 11 nfvPPA, 11 svPPA and 18 MND 

patients (Table 5). 

 
Table 4: number of patients included in this study at each time-point. Abbreviations: behavioral-variant 

frontotemporal dementia (bvFTD), semantic variant primary progressive aphasia (svPPA), nonfluent variant 
primary progressive aphasia (nfvPPA), motor neuron disease (MND), healthy controls (HC) 

  Baseline 6 Months 12 Months 18 Months 24 Months 
bvFTD 34 29 20 15 10 
nfvPPA 11 11 4 - - 

svPPA 11 11 8 - - 
MND 18 18 - - - 

TOT  74 69 32 15 10 

 

Forty-eight healthy controls (HC), comparable for age and sex with patients, were 

recruited among spouses of patients and by word of mouth. The controls were included 

if the following criteria were satisfied: normal neurological assessment; Mini-Mental 

State Examination (MMSE) [165] score ≥28; no family history of neurodegenerative 

diseases. All subjects were screened using the following exclusion criteria: significant 

systemic, psychiatric, or neurological diseases; any (other) major neurological, 
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psychiatric, or neurologic disorders; and other causes of focal or diffuse brain damage, 

including lacunae and extensive cerebrovascular disorders at routine MRI. 

In addition to FTLD patients and age-matched healthy controls (age range between 41 

and 85 years), 48 young healthy controls (HC-young, i.e., age range between 20 and 

30 years) were also recruited at IRCCS San Raffaele Hospital. Young healthy subjects 

represented a “gold-standard” healthy connectome for the construction of functional 

and structural connectivity matrices, and in order to implement NDM. 

Table 5: Values are reported as means ± standard deviations (min – max). The threshold of statistical 
significance was set at p<0.05. p values refer to ANOVA models followed by post-hoc, Bonferroni-corrected 
comparisons or Pearson’s chi square, as appropriate. * = statistically significant difference with HC; # = 

statistically significant difference with bvFTD; $ = statistically significant difference with MND. Abbreviations: 
CDR = Clinical Dementia Rating; CDR-sb = Clinical Dementia Rating sum of boxes; MMSE = Mini-Mental 
State Examination; ALSFRS = Amyotrophic Lateral Sclerosis Functional Rating Scale; behavioral-variant 

frontotemporal dementia (bvFTD); semantic variant primary progressive aphasia (svPPA); nonfluent variant 
primary progressive aphasia (nfvPPA); motor neuron disease (MND); healthy controls (HC). 
 

HC HC 

young 

svPPA nfvPPA bvFTD MND 

N 48 48 11 11 34 18 

Age 

[years] 

61.98±8.56 

(40.14-76.73) 

25.05±2.7

9 

(20-31) 

66.40±9.02 

(49.91±75.31) 

70.16±7.9 

(53.83-

78.98)* 

64.52±9.01 

(36.50-79.76) 

62.88±9.02 

(44-78) 

Sex 

[women/men] 

35/13# 22/26 7/4# 9/2# 24/10 9/9 

Education 

[years] 

12.08±3.92 

(5-20) 

12.01±3.7

5 

(5-20) 

12.36±3.85 

(5-17) 

9.51±4.59 

(5-18) 

11,03±3.36 

(3-19) 

11.61±3.57 

(6-18) 

Disease 

duration 

[months] 

- - 36.99±19.40 

(11.50-60.88) 

22.03±5.83 

(16,56-21.11) 

42.10±21.51 

(12.71-107.60) 

29.20±18.50 

(4.80-66.86) 

MMSE 29.29±0.87 

(27-30) 

29.81±0.3

9 

(29-30) 

20.20±8.75*$ 

(5-30) 

23.22±8.94 

(5-30) 

23.33±6.50*$ 

(6-30) 

28.67±1.70 

(24-30) 

CDR - - 0.57±0.35 

(0-1) 

0.44±0.68 

(0-2) 

1,154±0.98 

(0-3) 

- 

CDR SB - - 2.57±3.05 

(5-7) 

2.05±2.75# 

(0-8.5) 

7±5.26 

(0.5-17) 

- 

ALSFRS 

[0-48] 

- - - - - 42.37±3.28 

(36-46) 
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3.2 MRI Acquisition  

All patients and healthy controls underwent brain MRI on a 3T scanner (Philips 

Medical Systems, Best, the Netherlands) at IRCCS San Raffaele Hospital. The 

following sequences with their respective parameters were acquired:  

- 3D T1-weighted turbo field echo (TFE) (TR=7 ms, TE=3.2 ms, TI=1000 ms, 

204 sagittal slices with voxel size=1x1x1 mm, matrix=256x256, 

FOV=256x256 mm2) 

- Axial pulsed-gradient spin echo (PGSE) single shot DW EPI (3 shells at b 

value = 700/1000/2855 s/mm2 along 6/30/60 non-collinear directions and 10 b 

= 0 volumes were acquired, FOV = 240 × 233 mm, pixel size = 2.14 × 2.69 

mm, 56 slices, 2.3 mm thick, matrix=112×85, TR=5900 ms, TE=78 ms, TA = 

10 min)  

- T2*-weighted single-shot EPI for RS fMRI (TR/TE 1567/35 ms, flip angle 70°, 

FOV 240 mm2, pixel size = 2.5x2.5 mm, 320 sets of 48, 3-mm thick axial 

slices) 

A line connecting the most infero-anterior and infero-posterior portions of the corpus 

callosum was used as the reference for positioning all slices. Subjects were asked to 

remain motionless, keep their eyes closed, and not focus on anything specific while 

undergoing RS fMRI scanning. 

 

3.3 MRI Analysis 

3.3.1 Brain Parcellation 

The nodes of the brain network were identified using anatomical T1-weighted images 

(Figure 33). Grey matter (GM) was parcellated using a novel method based on 220 

similarly sized areas, which combines the requirement for a large number of equal 

sized nodes with respecting anatomical landmarks [148, 166]. The 220 regions 

included the cerebral cortex and basal ganglia, while the cerebellum was excluded. 

The 220 GM regions of interest (ROIs) were moved into the subject's space by 

calculating and concatenating the registrations between subject’s T1-weighted image 

and MNI152 standard space (linear and non-linear using FLIRT [167] and FNIRT 

[168], respectively, as implemented in FSL [FSLv5.0.9; 

http://www.fmrib.ox.ac.uk/fsl]), between subject’s RS-fMRI and T1-weighted images 
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(linear registration as implemented in FLIRT), and between subject’s DT MRI (B0 

image) and T2-weighted images (linear and non-linear using FLIRT and FNIRT). In 

order to concatenated T2-weighted images and AAL brain regions, T1-weighted and 

T2-weighted images registration was implemented in FSL (linear using FLIRT [167]). 

 
Figure 33: T1-weighted image parcellation. 

3.3.2 T1-Weighted Image Processing  

T1-weighted images of patients and healthy controls were registered to AAL atlas 

using linear and non-linear registrations (FLIRT [167] and FNIRT [168], respectively, 

as implemented in FSL). Cortical GM was segmented using SPM12, while basal 

ganglia, hippocampus and amygdala were obtained using FIRST in FSL.  

 

3.3.3 Diffusion MRI Processing 

3.3.3.1 Pre-Processing 

The diffusion-weighted data were skull-stripped using the Brain Extraction Tool 

implemented in FSL and were corrected for distortions, caused by susceptibility-

induced field and eddy currents, and movements (Figure 34). Corrections were 

implemented using more acquisitions, since it has been demonstrated that along the 

same direction but with opposite phase gradients applied, off-resonance fields change 

but diffusion signal is the same; predictions of the distortions are made along each 

diffusion direction and then averaged [169-172].  
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Figure 34: Three modes of distorsion resulting from eddy currents: contraction (top right), shift (bottom left), and 
shear [173]. 

Topup. Human body disrupts homogeneous magnetic field in the MRI scanner, 

causing susceptibility-induced off-resonance field and distortion in the images [171]. 

The topup tool in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TOPUP) was used to make 

a prediction of susceptibility induced field and then applied in eddy correction. 

 

Eddy correction. Rapidly switched diffusion encoding gradients are an additional 

source of off-resonance, inducing eddy currents. DWIs were corrected for eddy current 

induced distortions using the Eddy tool within the FSL library 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy). 

 

3.3.3.2 DTI 

The diffusion tensor was estimated on a voxel-by-voxel basis using diffusion-tensor 

imaging fit provided by the FMRIB Diffusion Toolbox 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). In particular, dtifit command fits a 

diffusion tensor model at each voxel.  

Input files required: 

- Diffusion-weighted volumes; 

- BET binary mask: A single binarised volume in diffusion space containing 

ones inside the brain and zeroes outside the brain; 

- Gradient directions (bvecs); 
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- 3 b values (bvals) – 3 shells. 

Outputs files are the 3 main eigenvectors and eigenvalues, and FA and MD maps. 

 

3.3.3.3 NODDI 

NODDI Matlab Toolbox (http://www.nitrc.org/ projects/noddi_toolbox) was used 

with default settings to estimate Intra-cellular Volume Fraction (ICVF), Orientation 

Dispersion Index (ODI) maps, providing a direct quantification of neurite morphology 

and its integrity [71, 72].  

 

3.3.3.4 Tractography 

Anatomically Constrained Tractography (ACT) method was used to generate white 

matter streamlines using MRtrix3 (http:// www.mrtrix.org/). This method allows 

generating streamlines coherent with white matter tracts, which tend to both originate 

and terminate in grey matter (Figure 35). 

 
Figure 35: Tractograpgy without ACT on the left, Tractography with ACT on the right [64] 

First, fiber orientation distributions (FODs) (Figure 36) estimation is obtained 

following the next MRtrix3 commands (http:// www.mrtrix.org/): 

- dti2response: selection of voxels to use as basis functions for each tissue type 

in response to different b-values. 

- dwi2fod: basis functions are used to create FODs for each tissue type (in figure 

36 blue represents WM, green GM and red CSF) 
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With FODs estimation, MRtrix allows for the estimation of multiple crossing fibers 

within a single voxel, and can resolve the diffusion signal into multiple directions [64, 

174]. 

 

 
Figure 36: FODs representation. 

Successively, using T1-weighted images, brain was segmented in five tissue types 

(GM, WM, subcortical regions, CSF, lesions) with 5ttgen MRtrix3’s command, in 

order to create boundaries useful for ACT algorithm (Figure 37).  

 
Figure 37: in order: GM, WM, CSF and subcortical regions segmentations. 
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After, co-registration of segmentations and diffusion weighted images. Finally, 

boundaries between GM and WM are created with 5tt2gmwmi, which are used as seed 

for streamlines.  

Tractography can be now generated with tckgen command, using ACT method (Figure 

38). A probabilistic tractography approach (iFOD2 algorithm) was used: at each voxel 

if there is high FOD amplitude along a path, streamline is more likely to follow that 

path, and rather than stepping along straight-line segments, the algorithm steps along 

a path given by arcs of fixed length (the step-size), tangent to the current direction of 

tracking at the current point [175]. It may also rarely traverse orientations where the 

FOD amplitudes are small, as long as the amplitude remains above the FOD amplitude 

threshold set to 0.06.  

 
Figure 38: Final tractography obtained with SIFT algorithm. 

The number of generated streamlines was set to 10 million, in order to reach a more 

accurate reconstruction of WM tracts. Some tracts could be over-represented because 

the fiber orientation densities are much clearer in some directions and so with more 

sights for the probabilistic algorithm. To counterbalance this overfitting, streamlines 

were then filtered through tcksift command that implement spherical-deconvolution 

informed filtering (SIFT) method. Tcksift implements a mechanism that compare FOD 

lobe integrals with streamline densities; a cost function contribution is evaluated in an 

iterative algorithm [176]. The process stops when it is achieved a target number of 
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remaining streamline (set to 1M streamlines) [176]. The tractography obtained 

presented an improved biological accuracy of a streamline reconstruction.  

 

3.3.4 Structural matrices construction 

Connectome matrices weighted by FA, ICVF and ODI measures were computed using 

MRtrix3 (http:// www.mrtrix.org/) in all groups of patients and old and young healthy 

controls. Firstly, using tcksample command, a mean FA/ICVF/ODI value per 

streamline was extracted. Then, through tck2connectome command, each streamline 

was assigned to a connectome nodes i and j and after for each connectome edge, the 

mean FA/ICVF/ODI of all streamlines assigned touching the couple i and j of node 

was calculated. 

In order to mask weighted connectomes, connectivity matrices containing the number 

of streamlines (NOS) were obtained for each healthy young control by using the 

following procedure. 220 GM nodes of the connectome were defined by DWI brain 

parcellation (see section 3.3.1 for details). After, by using tck2connectome (http:// 

www.mrtrix.org/) command, streamlines from the whole-brain tractogram touching 

each couple i and j of nodes were selected. Then, the number of streamlines for each 

of these tracts was calculated and inserted in the symmetric and zero-diagonal 

connectivity matrix. If there was no streamline connecting a couple of nodes, then a 

zero was inserted in the corresponding cell of the NOS matrix to describe the lack of 

connections between that couples of nodes. 

At this point, the averaged NOS connectivity matrix of young controls was used to 

mask FA/ICVF/ODI connectome; all connections with less than 3 NOS were set to 

zero. 

To avoid considering spurious structural connections, the connections that were 

present in less than 60% of independent controls were set to zero [177, 178]. Finally, 

cells corresponding to zero were set to “Not a Number” (NaN) values in order not to 

be included in the network [146]. 
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Figure 39: Structural connectome construction 

 
3.3.5 Resting-State fMRI Processing  

RS fMRI were pre-processed using the Statistical Parametric Mapping software 

package (SPM12; http://www.fil.ion.ucl.ac.uk/spm/) running on Matlab and FSL. 

Preprocessing included the following steps: removal of the first four volumes to allow 

for signal equilibration; minor head movement correction by volume-realignment to 

the middle volume using MCFLIRT; removal of nonbrain tissue. The REST software 

(http://resting-fmri.sourceforge.net/) was used to perform linear detrending and band-

pass filtering between 0.01 and 0.08 Hz in an effort to largely eliminate physiological 

high-frequency noise and low-frequency drifts. By regressing out the six motion 

parameters calculated by MCFLIRT, as well as the average signals of the ventricular 

cerebrospinal fluid and white matter, non-neuronal sources of synchrony between RS 

fMRI time series and motion-related artifacts, were reduced using REST. 

 

3.3.6 Functional matrices construction  

In patients and both young and old healthy controls, undirected, weighted graphs 

describing brain network functional connectivity were obtained by computing 

correlations between the 220 GM segmented ROIs (section 3.3.1). By averaging the 

signal from all of the voxels inside each region, mean time series were derived from 

each ROI. In order to consider only the voxels that correspond to the GM and prevent 

the influence of atrophy, RS-fMRI data were mask with the subject's GM map. The 

a) DW-MRI parcellation
b) Tractography

c) 
FA/ICVF/ODI 

Weights

d) Connectivity Matrix
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basal ganglia, including the bilateral caudate, globus pallidus, putamen, and thalamus, 

the hippocampus, and the amygdala, were mapped using FIRST in FSL while the 

cortical GM was segmented using SPM12. The Pearson’s correlation coefficient 

between the mean time-series of each node pair, indicating the level of functional 

connectivity between regions i and j, was enter into cell c(i,j) of the matrix. Pearson’s 

correlation coefficients were then converted to z-scores using Fisher’s r-to-z 

transformation. In addition, functional connectivity matrices were masked using NOS 

of healthy young controls and setting to zero the connections that were present in less 

than 60% of independent controls [177, 178]. Negative values were set as ‘NaN’ to 

mark these brain regions as unconnected [146]. Finally, cells corresponding to zero 

were set to ‘NaN’ values in order not to be included in the network [146]. 

 
Figure 40: Functional connectome construction. [121] 

 

3.3.7 Graph metrics 

Global and mean lobar structural and functional network characteristics were explored 

using the Brain Connectivity Matlab toolbox (http://www.brain-connectivity-

toolbox.net).  

The following metrics were extracted from both structural and functional maps: degree 

centrality (DC), Sum node weights (SN), Eigenvector centrality (EC) and Mean 

distance (MD) 

In order to investigate the network characteristics in different brain regions, the 220 

GM areas were grouped into six anatomical macro-areas: frontal lobe, sensorimotor 

area, basal ganglia, parietal lobe, temporal lobe and occipital lobe. Global and local 

metrics were compared between groups using ANOVA models adjusted for age and 

a) RS-fMRI parcellation b) Time-series
extraction from each

brain regions

c) Functional
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sex, followed by post-hoc pairwise comparisons, Bonferroni-corrected for multiple 

comparisons (p<0.05). Violin plots were used to visualize metrics distribution among 

patients in the six different macro-areas. 

 

3.3.8 Network Based Statistics 

NBS [137] were used to compare FA/ICVF/ODI and functional connectivity strength 

between patients and controls at the level of significance p<0.05.  

The NBS analysis was performed as follow: first, for each connection in the brain 

network, the mean difference in regional connectivity network data between two 

groups was tested using a two-sample t-test (leaving out zeros). Within this procedure, 

differences in connectivity with a p < 0.05 were marked as ones in an “affected 

matrix”. Then, the size of the largest connected component, which is the largest cluster 

of connections that was altered when comparing two groups, was found. At this point, 

the permutation test is used to assign a p value controlled for the FWE to the considered 

altered connectivity pattern due to the inherent massive number of multiple 

comparisons that must be performed and the great effort in testing the normality per 

each connection. At each permutation, subjects were randomly assigned to two 

different groups of the same size of the starting groups and the t-test with the NBS 

procedure was repeated estimating each time the size of the largest connected 

component. The null distribution of maximal component size was obtained and a 

corrected p-value was calculated as the number of the components that had a higher 

size value than the observed component size, to confirm the statistical significance of 

the components observed in the initial logical difference matrix. In this study, 10000 

permutations were performed for all network analyses. If such a procedure resulted in 

a corrected p value <0.05, affected connections were obtained. All the analyses were 

adjusted for age and sex. 

3.3.9 Network Diffusion Model  

NDM [127] was implemented to simulate the spread of disease into the network 

represented by the connectivity matrix (C) over time t starting from a “seed” region. 

Particularly, the diffusion model started from baseline MRI data of healthy subjects’ 

connectome C= {e, n}, where ei,j represents the pathways connecting structures i and 
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j; ni represent the ith cortical or subcortical gray matter structure. FA, ICVF and 

functional measures were used to implement the model.  

The spread of pathology between an affected brain region (R2) to an unaffected one 

(R1) is given by: 

61!
6+
= 𝛽𝑐),,(𝑥, − 𝑥))  

( 18 ) 

• x1,2: pathology concentration in region R1,2 

• c1,2: connectivity between R1 and R2 

• 𝛽: diffusivity constant (higher is the value higher is the speed of pathology 

progression); 

Pathology from all brain regions is combined into a vector x(t)={xi(t)}, and equation 

3 becomes: 

61(+)
6+

= −𝛽𝐿𝑥(𝑡)  

( 19 ) 

• x(t)={xi(t)}: represents the amount of diffusion of pathology at node i and 

timepoint t starting from an initial distribution at time t=0 (x(0)); 

• L: Graph Laplacian matrix; 

• t: time-points (arbitrary unit); 

From matrix algebra, equation (19) is satisfied by: 

𝑥(𝑡) = 𝑒!"#$𝑥(0) 

( 20 ) 

where x(0) is a vector with 1 at the index corresponding seed brain regions where it is 

thought that the pathology begins to spread, 0 at all other brain regions. Four disease 

epicenters were identified from the peaks of atrophy of each FTLD variant: left inferior 
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temporal gyrus (svPPA), right orbitofrontal cortex (bvFTD), left supplementary motor 

area (nfvPPA) and precentral gyrus (MND). 

The graph Laplacian represents the discretization of Laplacian operator and indicates 

how a graph differs at one vertex from its values at nearby vertices. It was implemented 

as follow: 

𝐿 = 𝐼	 − 𝐷!
!
"𝐶 𝐷!

!
" 

( 21 ) 

• I: identity matrix; 

• D: Diagonal matrix whose diagonal entries contain degree of each node; 

• C: Averaged connectome of healthy subjects; 

Because brain regions are not the same size and have different node degree, L in eq. 

(5) is the normalized version of graph Laplacian operator. It is a symmetric matrix and 

its eigenvector are orthonormal.  

The solution of equation (1) was mathematically implemented in Matlab by the 

eigenvalue decomposition: 

𝑥(𝑡) = ∑ (𝑒!"%##𝑢&#𝑥')𝑢&(
&)*   

( 22 ) 

- N: brain regions 

- λ: eigenvalues of matrix L 

- u: eigenvectors of matrix L  

Brain Net Viewer was used to create diffusion maps [179]. 

(http://www.nitrc.org/projects/bnv/) 

Subsequently, network vulnerability was tested through correlation between predicted 

atrophy obtained by NDM in young controls and longitudinal pattern of atrophy in 

FTLD patients. Specifically, Pearson’s correlation will be calculated between the 

estimated atrophy by the NDM in young controls and the atrophy empirically 
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calculated in different groups. The latter was calculated as follow: GM maps were 

obtained starting from T1-weighted imaging and parcellated into 220 AAL regions of 

interest, obtaining the volumes of each brain region for healthy subjects at baseline 

and from patients at each follow-up. Afterwards, t-score was implemented as follow 

[127]: 

𝑡 =
𝜇'8 − 𝜇9:+

J𝜎'8
,

𝑁'8
+
𝜎9:+,

𝑁9:+

 

( 23 ) 

• 𝜇'8: mean of the healthy controls volumes at baseline 

• 𝜇9:+: mean of the patients volumes at each follow-up 

• 𝜎'8: standard deviation (std) of the healthy controls volumes at baseline 

• 𝜎9:+: std of the patients volumes at each follow-up 

• 𝑁'8: number of healthy subjects 

• 𝑁9:+: numbers of patients 

Therefore, Pearson’s Correlation was tested between NDM prediction in young 

controls and t-score at different follow-up in patients. 

 

Figure 41: Summary of NDM procedure 

3.3.10 Structural-functional correlations 

To assess the relationship between structural and functional connections, correlation 

analysis was performed in each group (patients and both young and old controls). 
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Correlations between MRI measures were estimated using Pearson correlation 

coefficient (R), at the level of significance p < 0.05. Specifically, correlations were 

tested between FA measure and functional connectivity and between ICVF measure 

and functional connectivity, for each subjects group. 
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CHAPTER 4: RESULTS 

4.1 Graph metrics  

A summary of structural altered metrics at global, lobar and regional levels in the 

FTLD spectrum are shown in figures 42, 43 and 44. Overall, groups did not show 

significant differences in functional graph metrics within whole brain. 

bvFTD patients vs other groups  

Overall, bvFTD patients showed altered structural FA global network properties, such 

as higher MD and lower DC, SN and EC compared to healthy controls, MND and 

svPPA patients. Also in all lobes, bvFTD patients showed a reduced DC and SN, and 

longer MD relative to healthy controls and MND patients. Only in the temporal and 

occipital lobes, it was observed an increased EC in bvFTD patients compared to MND 

patients (Figure 42). ICVF and ODI measurements showed network properties similar 

to FA maps, with the exception of SN in ODI maps, which showed no significant 

results. 

nfvPPA vs other groups 

Overall, nfvPPA patients showed altered FA properties, high DC, SN and EC and low 

MD, at a global level compared to healthy controls and MND patients. This condition 

was also verified at a lobar level, in particular in frontal, sensorimotor, basal ganglia, 

parietal, and temporal lobes. ICVF and ODI metrics showed the same results as FA. 

svPPA vs other groups 

svPPA patients did not showed altered FA metrics. In contrast, ICVF graph analysis 

showed that svPPA had a low DC and SN in the temporal lobe compared to healthy 

controls and MND (Figure 43). In addition, ODI metrics distinguished svPPA patients 

from controls and MND in the temporal lobe (DC) and at a global level (EC) (Figure 

44). 

MND vs other groups 

MND patients showed an altered EC in FA maps, in the sensorimotor lobe compared 

to healthy controls. ICVF and ODI maps did not show altered metrics in MND patients 

compared with other groups. 



 
Figure 42: Violin plot of FA degree centrality (DC), sum of the node weights (SN), eigenvector centrality (EC) and mean distance (MD) of each brain lobe and global brain. 



 
Figure 43: Violin plot of ICVF degree centrality (DC), sum of the node weights (SN), eigenvector centrality (EC) and mean distance (MD) of each brain lobe and global brain. 
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Figure 44: Violin plot of ODI degree centrality (DC), sum of the node weights (SN), eigenvector centrality (EC) and mean distance (MD) of each brain lobe and global brain. 
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4.2 Network Based Statistics 

 
bvFTD patients vs other groups  

Using NBS, widespread structural changes were observed in patients with bvFTD 

relative to controls: FA decreased significantly in all brain areas. In addition, MND 

patients showed increased FA compared to bvFTD patients in all brain areas except 

the occipital lobe where fewer connections were involved. In addition, bvFTD patients 

showed marked decreased FA strength relative to svPPA patients, in particular in the 

right hemisphere, involving the whole frontal lobe, sensorimotor lobe (supplementary 

motor area), basal ganglia (putamen), parietal, temporal (superior and middle temporal 

gyri) and occipital (middle and superior occipital gyri, calcarine) lobes. However, 

considering ICVF measure, it was detected a more widespread pattern of structural 

alterations compared to FA maps in bvFTD compared to controls, svPPA, and MND 

patients (Figure 45). Furthermore, bvFTD patients presented a decreased ODI 

compared to controls, in particular in the right hemisphere, involving sensorimotor 

(precentral gyrus, supplementary motor area), basal ganglia (thalamus), parietal 

(inferior and superior parietal, and postcentral gyri) and temporal (temporal middle 

gyrus, superior temporal pole and hippocampus) lobes and insula and cingulum.  

Considering functional results, NBS analysis showed that bvFTD patients had a 

decreased functional connectivity compared to healthy controls, in particular in the 

temporal lobe (superior and middle gyri), and an increased functional connectivity in 

the occipital lobe (calcarine sulcus, cuneus) relative to MND patients. An increased 

functional connectivity of bvFTD patients was also found compared to nfvPPA 

patients, involving in particular sensorimotor and occipital areas (Figure 46).  
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Figure 45: On the left, FA NBS results involving bvFTD patients, on the right ICVF NBS results involving bvFTD 

patients. 
 

 
Figure 46: NBS results on functional connectivity matrices. 

 
nfvPPA vs other groups 

NBS analysis showed an evident decreased FA in nfvPPA patients relative to controls 

and MND patients predominantly in the left hemisphere, involving frontal lobe, 

sensorimotor (precentral gyrus, supplementary motor area), basal ganglia (putamen), 

the whole temporal lobe and insula and cingulum. Moreover, using NBS on IVCF 

matrices it was found, as in bvFTD patients, an increase number of altered connections 

were present in FA maps, allowing to differentiate also svPPA and nfvPPA patients. 

Indeed, nfvPPA patients showed a decreased ICVF compared to svPPA patients, 
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involving frontal, sensorimotor (supplementary motor area), and parietal (postcentral 

gyri) areas and insula and cingulum as shown in figure 47. While nfvPPA patients 

compared to controls showed a widespread alteration of ICVF connectivity, marked 

decrease pattern of connectivity was found only in the left hemisphere relative to MND 

patients. nfvPPA show also a decreased functional connectivity in the frontal, 

sensorimotor (supplementary motor area) and occipital (occipital superior gyrus and 

calcarine) lobes compared to bvFTD (Figure 46). Moreover, nfvPPA patients showed 

a decreased ODI compared to healthy controls involving frontal (inferior frontal gyri), 

sensorimotor (supplementary motor area and precentral gyri) and parietal (postcentral 

and supramarginal gyri) areas.  

 
Figure 47: on the left FA NBS results involving nfvPPA patients, on the right ICVF NBS results involving nfvPPA 

patients 
 

svPPA vs other groups 

svPPA patients did not showed altered FA and ICVF measures compared to other 

groups. Whereas, svPPA patients showed a reduced ODI compared to control and 

MND involving more the left hemisphere in the sensorimotor (supplementary motor 

area), superior and inferior parietal (superiorior and inferior parietal and supramarginal 
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gyri), temporal (superior and middle gyri, hippocampus, parahippocampal, and 

fusiform gyri) lobes (Figure 48).  

 

MND vs other groups 

MND patients did not showed altered structural or functional connectivity, but rather 

they preserved connectivity compared to all other patients groups except in the 

occipital lobe where NBS analysis showed a decreased functional strength relative to 

bvFTD patients (Figure 46).  

 
Figure 48: ODI NBS results. 

 
4.3 Network Diffusion Model 

The predictive maps obtained by NDM in 48 young controls are shown in Figures 49, 

50, 52, 53, 55, and 56, where pathologies progression at each time point are 

represented. The biggest sphere is in the region chosen as seed, whereas the size of the 

other spheres represent where and how much the pathology is more likely to spread. 

Overall, FA, ICVF and functional connectome showed the same pattern of spreding. 

Considering bvFTD cases, NDM showed an early spread to the frontal lobe and basal 

ganglia (caudate, and putamen) and cingulum. After 12 months also the right 

sensorimotor (postcentral gyri and supplementary motor area), parietal (postcentral 

gyrus and precuneus), temporal and occipital (calcarine sulcus and lingual gyrus) lobes 

are involved, predominantly in the contra-lateral hemisphere between 18 and 24 

months (Figure 49 and 50).  
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Figure 49: Sagittal view A) bvFTD spreading prediction by NDM applied on FA connectome B) bvFTD 
spreading prediction by NDM applied on ICVF connectome C) bvFTD spreading prediction by NDM applied on 

functional connectome. 
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Figure 50: Transversal view A) bvFTD spreading prediction by NDM applied on FA connectome B) bvFTD 

pathology spreading prediction by NDM applied on ICVF connectome C) bvFTD pathology spreading prediction 
by NDM applied on functional connectome 

 

Figure 51: Correlations between atrophy t-score and atrophy predictions in svPPA patients on FA, ICVF and 
functional connectivity (FC) matrices are represented, at 6,12, 18 and 24 months 
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In nfvPPA patients, the disease initially involves frontal, sensorimotor (precentral 

gyrus, supplementary motor area), parietal and temporal (superior and middle 

temporal gyri) lobes. Finally, after 12 months, there is an involvement of the occipital 

lobe (occipital middle gyrus) (Figure 52 and 53). 

 
Figure 52: Sagittal view A) nfvPPA spreading prediction by NDM applied on FA connectome B) nfvPPA 
pathology spreading prediction by NDM applied on ICVF connectome C) nfvPPA pathology spreading 

prediction by NDM applied on functional connectome. 
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Figure 53: Transversal view A) nfvPPA spreading prediction by NDM applied on FA connectome B) nfvPPA 

pathology spreading prediction by NDM applied on ICVF connectome C) nfvPPA pathology spreading 
prediction by NDM applied on functional connectome 

 
Figure 54: Correlations between atrophy t-score and atrophy predictions in nfvPPA patients on FA, ICVF and 

functional connectivity (FC) matrices are represented. On the left it is represented the correlation at 6 months, on 
the right at 12 months. 

6 months:

nfvPPA model – FA connectome

Frontal
Sensorimotor
Basalganglia
Parietal
Temporal
Occipital

nfvPPA model – ICVF connectome

nfvPPA model – Functional connectome

6 months:

12 months:

12 months: 12 months:

6 months:

FA

ICVF

FC

6 months:

r=0.26
p-value << 0.001

r=0.34
p-value << 0.001

r=0.33
p-value << 0.001

r=0.36
p-value << 0.001

r=0.25
p-value << 0.001

r=0.35
p-value << 0.001

12 months:



 84 

 

Maps suggested an early spread of svPPA pathology to the whole left temporal lobe, 

part of the occipital lobe (calcarine and fusiform) and insula at 6 months (Figure 55) 

and basal ganglia (amygdala, putamen) and frontal lobe (inferior frontal gyrus) at 12 

months (Figure 55).  

 
Figure 55:Sagittal view A) svPPA spreading prediction by NDM applied on FA connectome B) svPPA spreading 
prediction by NDM applied on ICVF connectome C) svPPA spreading prediction by NDM applied on functional 

connectome. 

6 months: 12 months:

svPPA model – FA connectomeA)

Left inferior temporal gyrus

Frontal
Sensorimotor
Basalganglia
Parietal
Temporal
Occipital

svPPA model – ICVF connectomeB)

svPPA model – Functional connectome

6 months: 12 months:

12 months:6 months:

C)

A) B)

C)



 85 

 

Figure 56: Correlations between atrophy t-score and atrophy predictions in svPPA patients on FA, ICVF and 
functional connectivity (FC) matrices are represented. On the left it is represented the correlation at 6 months, on 

the right at 12 months. 

In MND, NDM predicted a pathology pattern involving predominantly sensorimotor 

lobe. Other brain areas involved in the spreading are frontal lobe, basal ganglia 

(thalamus, putamen, and caudate), parietal lobe and temporal lobe (hippocampus and 

superior temporal gyrus) (Figure 57).  
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Figure 57: Saggital and transversal view A) MND spreading prediction by NDM applied on FA connectome B) 

MND spreading prediction by NDM applied on ICVF connectome C) MND spreading prediction by NDM 
applied on functional connectome 

 

 
Figure 58 Correlations between atrophy t-score and atrophy predictions in MND patients on FA, ICVF and 

functional connectivity (FC) matrices are represented. 
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FTLD patients (p<0.05), as shown in Figures 51, 54, 56 and 58. Overall, pathology 

diffusion predicted by NDM applied on ICVF connectome pointed out higher values 

of correlation related to atrophy predicted by NDM applied on FA maps (Figure 51, 

54 and 56). In addition, NDM applied on functional matrices also revealed significant 

results. Particularly, in the case of svPPA patients, correlations with NDM applied on 

functional matrices demonstrated higher values of correlation in respect to NDM 

applied on FA and ICVF connectome. Considering bvFTD and nfvPPA patients, 

atrophy correlations with NDM applied on functional matrices showed similar results 

to NDM applied on FA connectome. 

 

4.4 Structural-functional correlations 

In all the patients, structural (measured by both FA and ICVF) was significantly 

positively related to functional connectivity (Figure 58 and 59). 

 
Figure 59: A) Pearson's correlation of structural-functional connectivity in young HC. B) Pearson's correlation 

of structural-functional connectivity in old HC. On the left there is represented the correlation between FA 
measures and functional connectivity, on the right ICVF measures and functional connectivity.
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Figure 60: A) Pearson's correlation of structural-functional connectivity in bvFTD patients. B) Pearson's correlation of structural-functional connectivity in nfvPPA patients. C) 

Pearson's correlation of structural-functional connectivity in svPPA patients. D) Pearson's correlation of structural-functional connectivity in MND patients.
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

The present MRI study investigated alterations in structural and functional brain 

network in patients within the FTLD spectrum using connectome-analysis with 

advanced diffusion-weighted metrics. NODDI indices have been identified as 

clinically useful, highly specific biomarkers to distinguish FTLD syndromes. Benefits 

specifically appeared in the differentiation of svPPA patients from other groups. 

Moreover, a Network Diffusion Model (NDM) was developed to assess whether the 

progression of FTLD pathology over time might be modeled by a spreading process, 

originating from a single regional seed and then proceeding through the healthy 

structural connectome.  

Clinical changes within the FTLD spectrum result in different patterns of brain 

network reorganization, using graph analysis and connectomics to analyze structural 

and functional brain networks. Neuroimaging research has recently been focused on 

structural and functional changes at a brain-system level rather than on network-level 

in specific brain areas. Such advanced technique, the so-called "connectome" analysis, 

has already been shown to be an effective way to monitor structural and functional 

rearrangement in different neurodegenerative disorders. There are many advantages of 

such analysis approach: (i) Complex network analysis promises to reliably quantify 

brain networks with a small number of neurobiologically meaningful and easily 

computable measures [180]; (ii) Network analysis allows to explore structural–

functional connectivity relationship [181-183]; (iii) Comparisons of structural or 

functional network organization in case-control studies are likely to reveal 

connectivity abnormalities in neurological and psychiatric disorders [184-186]. In our 

work, connectome and graph analysis were performed in the early stage of diseases, 

highlighting the ability of connectome to detect brain alterations in the first phase of 

the disease. From this perspective, connectome analysis might be useful as biomarker 

to enhance prediction and to prevent prion-like spread.  

Recent evidence suggests that the spreading of pathology occurs along neuronal 

pathways rather than simply as diffusion among neighboring cells, suggesting the idea 

that functional and structural connections between regions may significantly 

contribute to pathology propagation [127, 163]. Indeed, exploring the relationship 

between selective network vulnerability in healthy young controls and longitudinal 
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pathological progression in FTLD patients, it might be possible to provide information 

on how the pathology spread. This study provided an opportunity to identify 

biomarkers for FTLD syndromes progression and clinical trials for potential 

treatments. Firstly, biomarkers are very important in clinical longitudinal studies 

spanning from early pre-symptomatic disease through symptomatic stages. In this 

way, it might be interesting to detect how pathological events start, progress over time 

and how work with clinical symptoms. Biomarkers are also important in clinical trials. 

It has been demonstrated that disease-modifying therapies presented different efficacy 

during the course of the disease. Therapies are more effective during early pre-

symptomatic or prodromal phase, before the manifestation of the neurodegeneration. 

Furthermore, the early accumulation of Tau and TDP-43 in FTLD might trigger the 

spread of cortical and subcortical pathology.  

Results of the present study suggested that conventional DTI measures might be 

sensitive to highlight connections vulnerable in the FTLD spectrum. Overall, this study 

revealed that bvFTD patients showed the greatest structural impairment, compared to 

healthy controls, MND and svPPA patients, with a predominant damage in the fronto-

temporo-parietal network, consistent with previous studies [138-141]. This finding 

supports the hypotheses that connectome architecture influences neurodegeneration, 

as network changes in bvFTD patients reflect their typical atrophy distribution, 

demonstrating that network structure shapes atrophy patterns [142, 187]. Afterwards, 

also nfvPPA patients demonstrated a widespread structural damage compared with 

healthy controls and MND, predominantly involving the left hemisphere (precentral 

gyrus, supplementary motor area and temporal lobe), as shown in previous studies [87, 

115, 143]. Such neurodegenerative pattern supports the view of the left supplementary 

motor area as the epicenter of nfvPPA degenerative process, following by pathology 

spread in the inter-connected areas [188]. In contrasts, svPPA and MND patients did 

not show altered FA measure compared to other FTLD groups, suggesting that this 

metric is unable to distinguish between different types of connection alterations.  

To our knowledge, this was the first study applying NODDI model to detect structural 

WM changes in FTLD spectrum using connectomics. Such model provided a better 

quantification of the extent of WM architecture deterioration in the FTLD spectrum, 

in terms of density and orientation dispersion, being more specific to individual tissue 
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microstructure [72, 189]. Indeed, ICVF demonstrated to be a clinically relevant 

biomarker more specific than FA to differentiate pathologies of FTLD spectrum. A 

decrease in FA may be brought on by a variety of tissue microstructural changes, 

including a decrease in neurite density, an increase in the dispersion of neurite 

orientation distribution [72, 190]. ICVF seems to overcome this issue, estimating 

neuronal density within intra-cellular compartment. In this study, the benefits emerged 

in the differentiation between svPPA patients and other groups. Indeed, graph analysis 

showed differences between svPPA patients and healthy controls and MND patients, 

in particular involving the temporal lobe. This brain region was identified as the most 

atrophic in svPPA patients in previous study [188, 191]. Moreover, NBS showed also 

a widespread decreased ICVF in nfvPPA patients compared to svPPA patients. In 

addition to NODDI specificity, also the implementation of FODs estimation algorithm 

contributes to obtain more specific indices, solving the issue of multiple crossing fibers 

within a single voxel [174, 192].  

Moreover, ODI index was found altered in WM tracts. Specifically, considering that 

ODI measures the dispersion of fibers, we expect an increased ODI in patients, where 

there is a loss of directionality. Nevertheless, research on other neurological 

conditions, such as Multiple Sclerosis, showed that the degree of dispersion was 

estimated from only a small fraction of the tissue's signal, because axonal loss was 

present (as indicated by lower ICVF in patients). It may have led to numerical 

instability in the NODDI model fit [193, 194]. These findings suggested that WM loss 

could be represented by lower values of ODI.  

Thanks to connectomics approach, a direct comparison between functional and 

structural connectivity is possible thanks to the common parcellating system and 

statistical methodology. However, only NBS analysis showed that bvFTD patients had 

a decreased functional strength compared to healthy controls, involving in particular 

the frontal, temporal and parietal lobe, in line with the current literature [101, 109, 

148]. This finding is in line with the selective, early vulnerability of fronto-insular, 

prefrontal and temporal regions to frontotemporal lobar degeneration (FTLD) 

pathology [91]. Moreover, these regions are critical for social and emotional 

processing, task control and maintenance of social decorum, which represent common 

clinical features of bvFTD patients. 
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Conversely, functional connectivity graph analysis did not show key results such as 

structural connectivity, indicating that structural changes may occur earlier in the 

course of the disease than functional network impairments. This observation is 

consistent with the previous observations in other neurodegenerative disorders [147, 

195].  

Concerning NDM results, it was possible to explain regional pattern of FTLD 

pathologies. These findings are consistent with the possibility that a single misfolded 

protein might cause the spreading of pathology affecting several brain regions [162, 

196]. In the case of bvFTD patients, predictive maps showed a pathology spread 

consistent with the four stages defined by Brettschneider and colleagues [33]. In detail, 

the first stage was characterized by widespread WM alterations in the orbital gyri, 

rectus gyrus, and amygdala, as we can see in predictive maps (Figure 52, and 53) where 

at 6 months there is an early spread to the frontal lobe. Considering the second stage, 

connectivity appeared altered in the middle frontal, anterior cingulate, anteromedial 

temporal lobe, superior, and medial temporal gyri, as showed in the predictive maps, 

where the involvement of these areas is more lateralized (right hemisphere). Whereas 

the third and fourth pattern were not yet involved in our predictive maps. Usually, in 

svPPA patients, atrophy initially appears in left hemisphere and progressively spreads. 

Indeed, the left inferior temporal lobe was identified as svPPA seed. Literature showed 

that earliest changes include GM loss in the inferior temporal and fusiform gyri, then 

progression of disease leads to involvement of the middle and inferior frontal gyri, 

posterior temporal gyrus and occipital lobe [36-38]. Our maps showed this pattern of 

spreading, but we cannot see a contralateral spread in the right hemisphere. In nfvPPA 

patients, peak of atrophy was identified in the left supplementary motor area, and then 

spread in the inter-connected areas, involving left frontal operculum, premotor area, 

anterior insula, and superior and transverse temporal gyri. nfvPPA predictive maps 

showed an initial lateralized spread, in particular in the left frontal, superior temporal 

lobes and insula, involving after contralateral areas as we expected [36, 38, 39]. 

Regarding MND patients spreading model showed typical pattern of the early stages 

of pathology [34], involving in particular frontal, sensorimotor and parietal lobes. 

Whereas the last stage of TDP-43 progression is not yet involved, indeed very few 

areas of this stage are reached (temporal superior gyrus and hippocampus). 
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The model of bvFTD progression showed a bilateral spread of pathology, compared 

to svPPA patients whose pathology seed is more lateralized in the left hemisphere. 

nfvPPA and MND, whose seed was in a medial brain region, showed a more diffuse 

damage compared to other groups.  

The strong correlations that we found with the empirical atrophy support the 

hypothesis that the healthy architecture of the structural connectome might influence 

the spatio-temporal progression of atrophy in each FTLD variant. The accuracy values 

of each model also showed that ICVF has greater specificity than FA to model 

pathology spread. NDM showed significant results also applied on functional matrices. 

For this reason, the significant correlation between structural and functional 

connectivity suggested that structural and functional measures might be combined in 

a single model to predict the pathology spreading where both of them demonstrate 

higher strength connectivity in the network to obtain more relevant results. 

 

Limitations. Our results are encouraging; however, they should be confirmed in a 

larger sample and, more importantly, in path-proven cases. Moreover, the lack of a 

reference standard for the regional parcellation of brain MR imaging can markedly 

affect graph theoretical metrics [166, 197] so that comparisons with previous MRI 

studies using different approaches can be challenging. In order to avoid a regional 

atrophy influence, MRI data were registered to and masked with GM maps; 

nonetheless, a potential partial volume effect on these results cannot be completely 

ruled out. Additionally, it has been noted that even the smallest head movements (on 

a submillimeter scale) can throw off functional connectivity analyses [198-201]. As a 

result, image preprocessing and motion correction steps have a significant impact on 

the degree and relative magnitude of network-level functional connectivity. 

Furthermore, the NDM is a first-order, linear model of diffuse spread that assumes the 

structural connection network stays constant during the progression of the illness. Even 

though all neurodegenerative disorders result in abnormal structural connections, 

constant connectomes like the ones used here typically do not significantly reduce the 

model's predictive power [202]. The next stage to better understand the atrophy spread 

mechanism should be non-linear active modeling. 
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Conclusions. Overall, connectomics and graph analysis might be useful biomarkers to 

distinguish different clinical syndromes within the FTLD spectrum. Importantly, 

connectome study was carried out in patients in the early phase of the disease, 

highlighting the potential of these advanced methods when the clinical diagnosis is 

more challenging. Moreover, connectome-analysis based on advanced diffusion-

weighted models (i.e., NODDI) may be useful to evaluate structural disruptions with 

greater differentiation among FTLD spectrum compared to diffusion-tensor derived 

measures. Finally, the implementation of NDM to cross-sectional structural 

connectome data is a valuable tool to predict future atrophy patterns and pathology 

spreading in the main variants of the FTLD spectrum.  
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Appendix 

MATLAB SCRIPTS NDM: 
 
clear all 
close all 
clc 
  
%% Network Diffusion Model (NDM) 
%% Variables initialization  
global x0 
global L 
global t 
global beta 
  
brain_regions=220; 
C=load('connectivity_HCyoung_FA.mat');  
C=C.connectivity;% Connectome 
C(isnan(C))=0; 
D=diag(sum(C));   % diagonal matrix whose elements are degree of 
each node: sum of weighted connection from the node. 
I=eye(brain_regions);  % identity matrix 
beta=1; % diffusivity: higher value --> rapidly pathology, lower 
value --> slower pathology 
t=[0,6,12,18,24]; % time points 
 
 
%% Laplacian Graph: symmetric and normalized by the sum of weigth of 
each node 
  
L=I-(D^(-1/2)*C*D^(-1/2)); 
  
%% Seed definition 
x0=zeros(brain_regions,1); %initial condition 
seeds=[1:10];  
x0(seeds)=1; 
  
%% Eigenvector solution: 
  
[eig_vec,A]=eig(L); 
eig_val=diag(A); 
  
xt=NDM(eig_vec,eig_val,x0,t,beta); % NDM prediction 
 
 
 
function [xt]=NDM(eig_vect,eig_val,x0,t,beta) 
% NDM solution à Eigenvector decomposition 
% input: eig_vect: eigen vectors of graph laplacian 
%        eig_val: eigenvalues 
%        t: time points 
%        beta: diffusion cofficient 
 
x0 = x0(:); 
x0V = eig_vect'*x0;  
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xt=[]; 
 
%predictions for each time-point 
for i=1:length(t) 
   P = x0V.*exp(-eig_val*beta*t(i));   
   xt(:,i) = eig_vect*P;  
end 
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