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Sommario

Il rapporto cardiotoracico (CTR) è una misurazione clinica ottenuta da immagini radio-

grafiche del torace utilizzato per stimare le dimensioni del cuore e le possibili anomalie

collegate, quale cardiomegalia. La valutazione visiva del CTR nella pratica clinica richiede

molto tempo e può presentare variazioni tra gli interpreti. Ottenere una misurazione

oggettiva del CTR in modo automatico mira a ridurre la soggettività della valutazione

del radiologo e formire un maggiore supporto alla diagnosi durante gli esami di follow-

up. L’obiettivo di questa tesi è studiare la misurazione automatica del CTR. Sono stati

proposti due approcci per il calcolo del CTR basati sulla segmentazione anatomica a par-

tire da immagini radiografiche del torace. Un primo metodo stima il CTR basandosi solo

sulla segmentazione dei polmoni, mentre un secondo metodo aggiunge la segmentazione del

cuore per la stima del CTR. Questi metodi sono stati sviluppati per essere robusti anche in

caso di polmoni parzialmente fuori dal campo visivo dell’immagine: il detettamento di tali

casi è uno dei controlli di qualità che dovrebbero essere effettuati prima di ogni valutazione

di immagini radiografiche del torace. In questa tesi, il calcolo del CTR a partire dalla sola

segmentazione polmonare ha ottenuto risultati migliori rispetto al calcolo del CTR a par-

tire da entrambe le segmentazioni polmonare e cardiaca. L’errore medio e la deviazione

standard dell’errore assoluto sono risultati pari a 0.038±0.040 quando testati su immagini

non clippate e 0.058±0.057 quando testati su immagini con polmoni clippati. Sulla base

di questo modello di segmentazione polmonare, è stato proposto un algoritmo per rile-

vare la presenza di anatomia tagliata, il quale ha mostrato risultati promettenti. Grazie

alla possibilità di calcolare automaticamente e rapidamente il CTR, è stato condotto un

breve studio di popolazione su 25369 immagini radiografiche del torace appartenenti a un

dataset pubblicamente disponibile (CheXpert dataset). Ciò ha permesso di valutare come

valori di CTR presumibilmente normali varino in base all’età e al sesso. È stato riportato

un aumento del CTR medio da 0.448 a 0.562 in pazienti da 18 anni a 90 anni, con un

aumento maggiore nelle donne rispetto agli uomini.

Parole chiave: rapporto cardiotoracico, segmentazione anatomica del torace, raggi X

del torace, anatomia tagliata
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Abstract

The cardiothoracic ratio (CTR) is a clinical criteria used to estimate heart size and pos-

sible linked abnormality, such as cardiomegaly, from chest X-ray (CXR) images. Visual

evaluation of CTR in clinical practice is time-consuming and may introduce variation

across interpreters. Obtaining the objective measurement of CTR in an automatic way

will decrease the subjectivity of the radiologist’s evaluation and will give more support to

their diagnosis during follow-up examinations. The goal of this thesis was to investigate

the automatic measurement of the CTR. Two segmentation-based approaches have been

proposed for the calculation of the CTR from CXR images. A first method estimates the

CTR based only on lung segmentation, and a second method adds the segmentation of the

heart for the estimation of the CTR. These methods were also developed to be robust to

the presence of clipped lung on the image, which is one of the quality checks that should be

observed before each CXR analysis. The calculation of the CTR from only lung segmenta-

tion obtains better results in this thesis when compared to the CTR calculation from both

lung and heart segmentations. It shows a mean and a standard deviation of the absolute

error of 0.038±0.040 when tested on non-clipped CXRs and 0.058±0.057 when tested on

CXRs with clipped lungs. Based on this lung segmentation model, an algorithm to detect

the presence of clipped anatomy is proposed, showing promising results. Thanks to the

possibility to quickly apply the automatic CTR calculation to a large number of CXRs,

a short population study was carried out on 25369 CXRs from the CheXpert dataset. It

allows to study how presumably normal CTR values change due to age and gender. An

increase in mean CTR from 0.448 to 0.562 from 18-years-old to 90-years-old patients has

been reported, with an higher increase for female than male.

Keywords: cardiothoracic ratio, chest anatomy segmentation, chest X-ray, clipped

anatomy
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Abstract—Cardiothoracic ratio (CTR) plays an important role
in early detection of cardiac enlargement related disease in
chest X-ray (CXR) examinations. However, its measurement in
clinical practice is highly subjective and time-consuming. This
thesis proposes two segmentation-based approaches for automatic
measurement of the CTR based respectively on the estimation
of CTR from only the lung segmentation mask and from lung
and heart segmentation masks. Both methods are based on
modification of the U-Net architecture [1]: a convolutional neural
network that was developed specifically for biomedical image
segmentation. The proposed methods have been developed to be
robust to the presence of clipped lung (one of the many quality
control to check before CXR’s examination) and to be able to
detect such cases. The best proposed method have been applied
to a large dataset showing how CTR usually increase with the
age of the patient, particularly in women.

Index Terms—cardiothoracic ratio, chest anatomy segmenta-
tion, chest X-ray, clipped anatomy

I. INTRODUCTION

Medical images are widely used for disease diagnosis
and response monitoring. The history of diagnostic images
began with the first radiography, in 1895 when X-rays have
been discovered. Although radiology is the oldest imaging
technique, it is still widely used nowadays. Chest X-ray
(CXR) is the most commonly performed diagnostic X-ray
examination [2]. It is used in everyday clinical practice to
analyze heart, lungs, blood vessels, airways, ribs and spine.
Its huge popularity is due to the fact that it is dose-effective
and fast compared to other imaging tools, non-invasive,
relatively cheap and high accessible. Moreover, a wide
range of pathologies can be identified from CXR evaluation,
such as cardiomegaly: a medical condition that refers to an
enlargement of the heart [3]. Although the huge progress from
1895, CXR has also been criticized for its low diagnostic
sensitivity when compared to cross-sectional techniques
[2], that needs to be counterbalanced by an accurate and
time-consuming radiologist interpretation.

Since the notoriously difficult interpretation of CXRs,
computer-aided technology has been investigated to help
clinicians in their diagnoses since the birth of artificial
intelligence. The interest in this topic increases recently
due to the availability of large amount of data and the
development of deep learning techniques [4]. Different
levels of automation exist for a system application in the
interpretation of medical images. One way to reduce the over-
reliance of the clinician on the system, is to develop systems

that produced autonomous information instead of autonomous
decision, characterized by a separation between what the
device and the clinician each contribute to the decision [5].
Instead of outputting directly the disease inferred from the
CXR, it is possible to output some measurements (as objective
as possible) that will help the clinician to formulate his/her
diagnosis. This will also help to overcome interobserver and
intraobserver variability in the subjective reading of the CXRs
[6].

An example of objective measurement is the cardiothoracic
ratio (CTR). CTR is a screening tool which allows to evaluate
the size of the heart’s silhouette and thus the presence of
cardiomegaly from CXR [7]. CXR can be done in different
possible projections but the gold-standard for CTR evaluation
is the posteroanterior projection (PA), with the X-ray beam
passing through the patient from the back to the front. This
avoids possible enlargement of cardiac silhouette, since the
heart is an anterior structure [8]. The theoretical definition of
the CTR involves measuring the maximum horizontal thoracic
diameter (Dthorax), measured at the inner edge of ribs, as
well as the maximum horizontal heart diameter (Dheart). An
example is shown in Figure 1. Consequently, the following
formula can be applied:

CTR =
Dheart

Dthorax
. (1)

In clinical practice, a visual analysis of the image is usually
considered sufficient to determine the presence of cardiac
problems related to the heart size. The precise value of
CTR is usually not explicitly calculated primarily for timing
reasons. An automatic measurement of CTR would support
the clinician’s diagnoses and decrease the subjectivity of the
evaluation.

Before carrying out such evaluations, radiologists usually
perform a qualitative assessment of the image. Specific
criteria, listed in the ”European guidelines on quality criteria
for diagnostic radiographic images” [9], need to be fulfilled.
One of those is that the image need to be a ”reproduction of
the whole rib cage above the diaphragm”. The whole lungs
need to be in the field of view of the image, otherwise the
radiograph is usually rejected.
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Fig. 1. Measurement of maximum horizontal cardiac diameter (Dheart) and
maximum horizontal thoracic diameter(Dthorax) from a CXR.

This study aims to propose a segmentation-based method
able to automatically estimate the CTR from CXRs. Most of
the publicly available segmentation algorithms are developed
to perform tasks with the underlying assumption that the
images are taken from correct acquisition. Unlike them, the
proposed algorithms, have been developed to be robust to
clipped anatomy. In this way, it would be possible to extract
information about the CTR even in suboptimal CXRs. Thanks
to the possibility of quickly applying the automatic CTR
calculation to a large number of CXRs, a population study
was carried out, showing how the average CTR increases with
age and particularly in women.

II. CTR ESTIMATION
Two different segmentation-based methods have been in-

vestigated, based respectively on the calculation of the CTR
from lung segmentation mask or lung and heart segmentation
masks. The models tried to recover the lung segmentation also
from the possible clipped part of the image by assuming their
ability to learn the general shape of the lungs.

A. CTR FROM LUNG SEGMENTATION

Starting from the CXR image, the lung segmentation mask
is extracted. From the lung segmentation mask, both Dheart
and Dthorax are extracted and the CTR is calculated as
described in equation 1. The publicly available model from
the official implementation of the work by Selvan et. al [10]
was used as a starting point to perform the lung segmentation
task. It employs a segmentation network similar to the U-
Net [1] but adds a Variational Autoencoder [11]. The released
model has been trained and validate on a total of 704 images
from Shenzhen and Montgomery hospitals [12] and has in
output a segmentation mask of the same size of the input. For
this reason, a padded version of the image is needed in input
to try to reconstruct part of the lungs that are clipped. This
model has been trained 3 different times, which differ from
the augmentation technique used:

- Model 1: with standard augmentation (rotation, flipping);

- Model 2: with block masks and diffuse noise masks in
addition to standard augmentation;

- Model 3: with clipping and padding augmentation in
addition to previous augmentation techniques.

The first two models replicate the work from Selvan et
al. [10]. Subsequently, some modifications to the U-Net with
VAE architecture have been done, to allow the output of the
model to have a field of view larger of 128 pixels on each
side with respect to the field of view of the input image. This
allows the fourth model (trained on the same dataset) to input
directly clipped images (not padded) that are more faithful to
the realistic ones. The last model can be defined as:

- Model 4: U-Net with VAE with wider output with clip-
ping augmentation in addition to augmentation techniques
used in model 2.

The four methods have been tested on 247 images from JSRT
[13] dataset. Corresponding manually generated lung (and also
heart) field masks are provided by Ginneken et al. [14]. Models
1, 2 and 3 have also been tested on a clipped & padded version
of the JSRT dataset (manually created), while model 4 has
been tested on a clipped (and not padded) version of the JSRT
dataset, to test their performances with clipped lungs. The Dice
index was used to evaluate the segmentation performances. It
measures the degree of overlap between the ground truth mask
(G) and the predicted segmentation mask (P) and it is defined
as:

Dice(G,P ) =
2|G ∩ P |
|G|+ |P | . (2)

Dice index was calculated for left and right lung separately.
The best performance on clipped CXRs have been obtained
with model 4, which has also shown good results on non-
clipped images. Results are shown in Figure 2.

Fig. 2. Dice indexes of the four lung segmentation models developed, tested
on clipped and non-clipped JSRT dataset.

From the lung segmentation masks obtained applying model
4, the CTR values of clipped and non-clipped testing images
have been calculated, following equation 1. Dheart in this
case has been defined as the maximum horizontal distance
between the two lungs above the vertex of the cardiophrenic
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angle (angle between the heart and the diaphragm) of the right
lung. This approximation is done because, for its gold standard
definition, the lung segmentation contour should follow the
contour of the surrounding anatomical parts including the
heart. Dthorax is defined as the maximum horizontal width
of the lungs mask. An illustration of CTR calculation from
lung segmentation mask is shown in Figure 3. Results are
shown in Table 1. Most of the results achieved with the
proposed method are in the same order of magnitude of the
state-of-art method based on the estimation of CTR from lung
segmentation prediction [15].

Fig. 3. Illustration of CTR calculation from lung segmentation mask.

B. CTR FROM LUNG AND HEART SEGMENTATION

Since the strict definition of the CTR involves also the
heart boundary, improvement in CTR calculation is expected
when the cardiac diameter is extracted from the segmentation
mask of the heart mask itself, instead of from the lung mask.
For this reason, the CTR estimation from lung and heart
masks have been investigated. This approach is the same
followed in the majority of works in literature related to this
topic, such as [16].

Starting from CXR images, the lung and heart segmentation
masks are extracted. Two methods have been investigated:

A Lung segmentation masks are obtained applying model
4 described in the previous section. A new model have
been trained to output heart segmentation mask: model 2
described in the previous section have been retrain from
scratch using CXRs and associated heart masks. With this
approach two different U-Net with VAE architectures are
used to output heart and lung masks.

B Model 4 described in the previous section was modified
to allow multi-label outputs. The already trained lung
segmentation model was fine-tuned with heart segmen-
tation masks. With this approach one U-Net with wider
output with VAE was used to obtain both lungs and heart
segmentation masks.

To train the heart segmentation model from method A and
to fine-tune model B, the Wingspan dataset [17] was used. It
contained 259 CXRs with lung and heart masks annotation.
Both the methods were tested on JSRT dataset. For the
heart segmentation, model B was demonstrated to work
better in terms of Dice index: it seems to be able to derive
information on the relative position between the heart and

the lung. Model B was then tested both on clipped and
non-clipped JSRT images, showing a decrease in the heart
segmentation performance in clipped lung images, supporting
the hypothesis that, in this case, the segmentation of the lung
also influences the segmentation of the heart.

Subsequently, the CTR was calculated from lung and
heart segmentation masks obtained from model B. The
performances are reported in Table 1 and compared with the
results from the previous section. Absolute error and root
mean square error get worse when also the heart segmentation
is considered in the estimation of the CTR. This results are
not in line with the initial hypothesis. However, it was
possible to notice that heart masks of JSRT dataset are more
”circular shaped” when compared to the Wingspan’s heart
masks that are more ”triangular shaped”. This could be due
to the radiologists using different way of performing the
annotation and could be the main reason of this decrease in
performance.

To overcome this issue a different metric related to the
CTR have been proposed: the Rotational Invariant CTR (RI

CTR). It is defined as the CTR in equation 1, but Dheart and
Dthorax have a different meaning. Dheart is now defined as the
diameter of the maximum circle inscribed in the heart mask,
while Dthorax is now defined as the maximum horizontal
width of the rotated lung. Lung have been rotated to remove
possible wrong orientation of the patient. Performance of
this metric are reported in Table 1. RI CTR seems to be
less dependent on different ways of annotating heart masks,
since correlation coefficient with the RI CTR calculated from
ground truth segmentation masks is much higher. However,
its clinical relevance is yet to be observed and could be the
direction of future works. For this reason, the most promising
results in this thesis for the CTR calculation have been shown
by the calculation of the CTR only from lung segmentation
masks. An illustration of both CTR and RI CTR calculation
from lung and heart segmentation masks is shown in Figure
4.

TABLE 1

AE (mean ± std) RMSE Corr. Coeff.
CTR Lung 0.038 ± 0.040 0.055 0.677

CTR Lungs and Heart 0.062 ± 0.059 0.086 0.558
RI CTR 0.024 ± 0.021 0.031 0.754

Performance of different methods used for CTR estimation on JSRT dataset
in terms of Absolute Error (AE), Root Mean Square Error (RMSE)

and Correlation Coefficient.

III. CLIPPING DETECTION
Assuming a clinical application of the automatic CTR

measurement, informing clinicians if the predicted CTR comes
from clipped or non-clipped CXRs would be useful informa-
tion to give an idea about the reliability of the estimated CTR.
For this reason, a possible method to automatically detect the
presence of clipped lung in CXRs has been proposed by ex-
ploiting the ability of the U-Net with VAE with wider output.
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Fig. 4. Illustration of CTR and RI CTR calculation from lung and heart
segmentation masks. The yellow arrow represents the mayor axis of the lung
mask.

From the binary segmentation of the lung obtained from model
4 described previously, the bounding boxes of both the lungs
were obtained. The distances of the corresponding bounding
boxes from the border of the initial field of view of the input
image is calculated. The maximum distance found have been
compared with a fixed threshold to classify if the lung is
clipped or not. The best threshold has been found on a training
dataset formed by Shenzhen and Montgomery datasets, 50% of
which have been randomly clipped to simulate clipped lungs.
When tested on a dataset formed by clipped and non-clipped
JSRT images, this method obtained an accuracy of 0.97.

IV. HOW CTR CHANGES WITH AGE AND GENDER
It is generally accepted that the upper limit of normal

heart size corresponds to the 50% of thoracic size. However,
available literature demonstrates that the CTR threshold for
cardiomegaly can vary when related to age and gender. These
types of population studies are usually difficult to carry out
on large scale, because of the need of clear and structured
radiologists annotations for each CXR. The automatic
calculation of CTR can make this process faster and easily
accessible.

The best method discussed in this thesis to predict CTR
from CXRs was model 4 described in subsection II.A. This
method has been applied on a subset of the CheXpert dataset
[18]: a large public dataset with CXRs labeled for the presence
of 14 observations. In this subset (called in this research
CheXpertCTR dataset):

- only PA images are extracted,
- images labeled as positive to cardiomegaly and enlarged

cardiomediastinum are excluded.
It results in 25369 CXRs with 34% female and 66% male,
from 18 to 90-year-old. The mean age is 56.5±17.1.

From the CheXpertCTR dataset an average CTR of 0.498
± 0.089 was reported. A general increase in mean CTR is

reported as the age of the patients increases: from 0.448
in 18-year-old to 0.562 in 90-year-old patients, showing an
increase of the 25%. A mean value and a standard deviation
of 0.507 ± 0.094 and 0.492 ± 0.085 has been reported for
female and male respectively, showing a slightly higher mean
CTR for females. This difference has been demonstrated to be
significant (p-value < 0.5). Since a significant difference was
reported, CXRs of males and females have been considered
separately. Figure 5 shows how the predicted CTR changes
according to age and gender. Both the trends appear to be
fairly linear, showing similar mean values for younger patients,
while females reach higher mean CTR values with increasing
age.

Fig. 5. Predicted CTR as a function of patient age on female and male CXRs
from CheXpertCTR dataset.

The results obtained reflects the observations of preliminary
studies on age and gender dependency of CTR measurements.
In their work, Brakohiapa et al. [19], reported a significant
difference in the overall CTR between male and female too,
with a slightly higher mean CTR for female. A comparable
result has been reported by [6]. In addition, Brakohiapa et al.
[19] reported a higher increase in mean CTR values for female
as age increases, which also reflects the obtained results.

V. CONCLUSION
This thesis proposed a method to automatically calculate

CTR from CXR images. The best method found in this
research is based only on lung segmentation. The obtained
results have errors in the same order of magnitude of the
errors of the state-of-art methods based on the estimation of
CTR from lung segmentation prediction, with the advantage
that the proposed method also deals with clipped anatomy. A
promising method to detect such clipped anatomy cases has
been proposed. Moreover, the automatic measurement of the
CTR has allowed to easily perform a population study on a
large dataset. This study reflects that the proposed method
could be suitable for such population studies and shows how
choosing a fixed and unique threshold to detect cardiomegaly
would not be consistent with the normal variation that the CTR
shows to have between age and genders.
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ratio in evidence-based medicine,” Journal of Clinical Medicine, vol. 10,
no. 9, p. 2016, 2021.

[8] D. G. Lloyd-Jones, “Chest x-ray quality projection.” Salisbury NHS
Foundation Trust UK - www.radiologymasterclass.co.uk.

[9] J. H. E. Carmichael, “European guidelines on quality criteriafor diagnos-
tic radiographic images,” Officer for Official Publication of the European
Communities, 1996.

[10] R. Selvan, E. B. Dam, N. S. Detlefsen, S. Rischel, K. Sheng, M. Nielsen,
and A. Pai, “Lung segmentation from chest x-rays using variational data
imputation,” 2020.

[11] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
[12] S. Jaeger, S. Candemir, S. Antani, Y.-X. J. Wáng, P.-X. Lu, and
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Chapter 1

Introduction

1.1 Motivation

Chest radiography is the most commonly used modality in clinical practice to detect lung

and heart pathologies. However, it is one of the most difficult to interpret exams. For

this reason, many studies are focused on automatic interpretation of chest X-rays (CXRs)

to help clinician’s evaluation by showing directly the detected disease. However, such

systems can cause an over-reliance on the technology and the tendency to blindly accept

the algorithm’s output. A possible way to cope with this problem is to provide clinicians

with algorithms that output objective measurements from CXRs, leaving the interpre-

tation to them and increasing the interaction between their opinion and the algorithm’s

findings. One of the most important measurements from CXRs is the calculation of the

cardiothoracic ratio (CTR). Increased CTR often indicates abnormalities and cardiac en-

largement related diseases. The automatic estimation of this objective measurement from

CXR would be beneficial for a number of aspects:

- helping the clinician in the diagnosis of the patient;

- helping the clinician during the follow-up of the patient by allowing an easily com-

parison;

- decreasing the subjectivity of the evaluation;

- allowing the calculation of such measurements in a short time, enabling population

studies on large datasets.

Moreover, a quality check of the image is always done by first the radiographers and

then by the radiologists prior to any clinical interpretation and specifically in this case to

assure that the whole lungs are in the field of view of the image, otherwise the radiograph

is usually rejected and repeated. A CTR estimation algorithm robust to clipped anatomy

would allow the extraction of useful information also from such suboptimal CXRs.
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1.2 Objective

This thesis focuses on the automatic calculation of the CTR from CXRs. The aim is to

propose a method that minimises the CTR error and that is able to estimate the CTR

when clipped anatomy occurs in addition to detecting such cases. The last goal is to apply

the proposed method on a large dataset to perform a short population study evaluating

how the CTR changes with age and gender.

1.3 Description of the remaining chapters

The thesis is organized as follows.

Chapter 2 describes the fundamental concepts underlying radiographic images focusing

then on CXRs. The problem of objective measurements obtained from CXRs is addressed

and the definition of CTR measurements is given. An overview of works related with the

topic of this thesis is presented, together with a list of publicly available datasets related

to the problem of anatomical segmentation for CTR estimation. Chapter 3 describes

four different methods to obtain lung segmentation mask and how to calculate CTR using

only the lung segmentation. The best method that addresses also the problem of clipped

anatomy is determined. In Chapter 4 the segmentation of the heart is introduced since

it was expected to improve the performance of CTR estimation. An alternative metric

correlated to the CTR is also proposed. Subsequently in Chapter 5 a method to detect

the presence of clipped anatomy is discussed, based on lung segmentation model described

in Chapter 3. Chapter 6 describes the application of the automatic CTR measurement

on a large dataset, showing how normal CTR values change with the age and gender of

the patient. Lastly, conclusions can be found in Chapter 7, while some supplementary

information about ethical aspects that apply to this research is described in Appendix

A.
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Chapter 2

Background

As mentioned in Chapter 1, the work presented here is focused on performing a measure-

ment in CXR images. Before going into the technical details, some background informa-

tion related to CXR imaging is presented in this chapter. First, general information about

medical imaging is presented, followed by CXR in particular. Then, the definition of the

measurement is laid out. Lastly, a list of related research is reviewed.

2.1 Chest X-ray Imaging

2.1.1 Introduction to medical imaging

A medical image is defined as a figure related to the anatomy or physiology of internal body

parts. Various technological and physical approaches are now employed to obtain images

of living creatures’ anatomical structures for diagnostic purposes. Diagnostic imaging

is the medical discipline concerned with the application of these techniques. Diagnostic

images are utilised for two distinct purposes: disease diagnosis and response monitoring

[11]. In specific situations, diagnostic images are used for screening applications, namely

for identifying diseases prior to clinical manifestations, i.e. before the development of

symptoms and signs.

The history of diagnostic imaging began in 1895, when German scientist Wilhelm

Conrad Röntgen discovered X-rays (1845-1923) [12]. Radiography, the diagnostic imaging

technology based on X-rays, was the beginning of a series of discoveries and inventions

that culminated in the 1970s with the development of the first diagnostic image recon-

struction system based on computers. Godfrey N. Hounsfield developed this technique,

which was known as computed axial tomography (usually abbreviated as CT, computed

tomography) [12]. Numerous medical imaging techniques are now available apart from con-

ventional radiography and CT, such as magnetic resonance imaging (MRI), ultrasound,

nuclear medicine techniques, positron emission tomography (PET) and single photon emis-

sion computed tomography (SPECT). All imaging tools have one common element: they

appropriately exploit the interaction of some kind of energy with the human body. This
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interaction can be of different types: absorption, diffusion or reflection and the medical

image will represent only a partial view of reality, resulting from this specific interaction

between a form of energy and a tissue property.

Computers have played such an important part in the field of medical imaging that it

is now almost completely dependent on computer technology for data collecting and pro-

cessing, as well as patient data management, storage, retrieval, and transfer. Computers

can also help with the interpretation of diagnostic images, which is still primarily done by

expert examiners. In practice, there is no field of clinical care where diagnostic imaging

does not provide useful information.

2.1.2 The physics of radiology

Although radiology is the oldest imaging technique, it is still the most widely used today.

X-rays are a type of ionising radiation. Radiation is defined as the emission or transmis-

sion of energy in the form of waves or particles through space. A radiation is said to be

ionising if it possesses the ability to break atomic and molecular bonds of the target cell

and release energy. The energy released by ionising radiation inside the body is expressed

by the dose: this is measured in Gray (1 Gy = 1 J/kg) [13]. However, since not all types

of radiation produce the same biological effect, the effective dose is often used instead of

the absorbed dose, and it is measured in millisievert (mSv) [13]. It takes into account the

different sensitivity of tissues to radiation. The effective doses in the most commonly used

X-ray examinations (bone, chest, mammography, digestive system, etc.) are between 0.05

and 3 mS, while in highly demanding examinations such as CT scans of large districts

(chest, abdomen) or arteriography effective doses are several times higher [14].

X-rays are ionising radiations since they are high-energy electromagnetic waves. Wave-

length of X-rays is much shorter than for example that of radio or visible light waves and

belongs to the band between 0.001 and 10 nm (as shown on Figure 2.1). Such short

wavelength is related to an high energy thanks to Planck’s hypothesis [15]. For Plank’s

hypothesis, all the electromagnetic radiation, such as the X-rays, occur in finite ”bundles”

of energy called photons. Each photon has a precise energy (E ) given by the product

between the Plank’s constant h= 6.96261 x 10−34 Js and the frequency of the waves υ.

This relationship can be summarized in the following equation:

E =
hc

λ
= hυ[16], (2.1)

where c = 3x108 m/s is the speed of light and λ is the wavelength.
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Figure 2.1: Electromagnetic spectrum [1].

When an X-ray passes through a material with thickness s there is a loss of this

incoming energy intensity I0 by absorption:

I = I0exp(−µs). (2.2)

Equation 2.2 is known as the Lambert-Beer law [17] and it is at the base of imaging with

X-rays. µ represents the linear attenuation coefficient. It is mostly not uniform: it is

the product of the density and the mass-absorption coefficient, which depend on the local

element composition. This loss of energy from the X-ray beam is what happened when it

pass trough the body during an X-ray examination. The usual X-ray set up is shown in

Figure 2.2. The X-ray beam, created from an X-ray source is directed trough the patient,

which is positioned in front of an X-ray panel. The X-ray panel will collect the remaining

intensity as the beam passes through the patient [18]. From the collected remaining

intensity, it is possible to reconstruct the mapping of the attenuation coefficients, creating

the X-ray image. The intensity of the beam, in fact, will gradually decrease when passing

through material due to the attenuation mainly caused by photoelectric absorption and

Compton scattering.

Figure 2.2: Illustration of the set up of an X-ray exam [2].

Low energy photons will be almost completely absorbed by the patient and will not

contribute to the projection image. They will contribute only to the dose of the patient.

Therefore these low energy photons are preferentially absorbed before hitting the patient

in order to reduce the dose. This is achieved by placing a plate of dense material (typically
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aluminium) between the X-ray and the patient, called filter. A second component also

reduces the dose to the patient: the collimator. It limits the area of the patient that is

irradiated.

The effect of X-rays on matter is ionisation of atoms with formation of free radicals.

In a resting condition, most body tissues are neutral. When irradiated with X-rays, the

presence of induced charge can be seen. The presence of charged ions in the circulation,

if in large amounts, can cause:

- long-term effects: examples of long-term effects can be solid tumors (somatic cell

mutations), non-solid tumors (lymphomas, leukemias), germline mutations.

- acute effects: immediately occurring effects from high radiation include cell necrosis

(especially on the skin), premature aging, and death.

Every individual is capable of non-hazardously absorbing a certain dose, which is interna-

tionally normed. X-rays used with diagnostic purpose caused a limited dose, that is not

dangerous for the patient. However, radiologists should always follow the ALARA princi-

ple: patients should always receive radiation doses ”As Low As Reasonably Achievable”

[19].

2.1.3 Chest radiography

The chest radiography is used in everyday clinical practice to analyze heart, lungs, blood

vessels, airways, ribs and spine. It is the most commonly performed diagnostic X-ray

examination: it represent around 30-40% of all X-ray examinations performed [20].

The main advantages of using CXRs are:

- the speed at which they can be acquired;

- the wide range of pathologies that can be identified [21];

- the low cost;

- being non-invasive;

- being dose-effective compared to other imaging tools [22]: a single chest X-ray ex-

poses the patient to about 0.1 mSv, which is about the same amount of radiation

people are exposed to naturally in about 10 days [23];

- the high accessibility (e.g. under-resourced regions of the world that also have to

face a heavy burden of infectious diseases, such as tuberculosis (TB), commonly use

CXR as frontline diagnostic imaging due to lower infrastructure setup, operational

costs, and portability [24]).
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From 1895, CXR has faced a huge progress but has also been criticized for its low

diagnostic sensitivity, when compared to cross-sectional techniques [20] which have di-

agnostic superiority and increasing availability. The limitation that comes from the use

of such a simple technology, needs to be counterbalanced by an accurate, detailed, and

time-consuming radiologist interpretation. CXRs are, in fact, one of the most complex

imaging modalities to interpret and the interpretation is linked to the level of training

and experience of the physician: in one study it was demonstrated how discrepancy rate

was higher in less experienced physicians [25]. Since the clinical outcome is based on the

complete understanding of the CXR, emerging computerized tools try to help in improving

diagnosis and simplify clinicians work. These computer-aided diagnosis (CADx) systems

try to automatically interpret CXRs and assist medical practitioners in decision-making.

2.1.4 CXR views

CXR is usually done in different possible views or projections depending on the relative

position between the patient and the X-ray beam. Most common positions are:

- anteroposterior projection (AP): it can be performed with the patient in an erect

position but also on the bed. X-rays pass from the anterior (the front) to the posterior

(the back) of the patient. Since the heart is an anterior structure within the chest,

it will be magnified by an AP view [26]. The same occurs with the mediastinum.

For bedside imaging, this view has the advantage to be performed also outside the

radiology department thanks to mobile X-ray units.

- posteroanterior projection (PA): it is the standard for CXRs. It is performed with the

patient in an erect position with the X-ray beam passing through the patient from

posterior (the back) to anterior (the front). Patient is in full inspiration, hugging

the detector to keep them from overlapping with lung field. It allows a technically

excellent visualisation of the mediastinum and lungs. In this case, magnification will

not occur resulting in an accurate assessment of heart size [26].

- lateral projection: performed with the patient standing upright with the left side

of the thorax adjacent to the image receptor. The patient is asked to raise hands

over their head. It may be performed as an adjunct in cases where there is diag-

nostic uncertainty. The lateral chest view can be particularly useful in assessing the

retrosternal and retrocardiac airspaces [21].

An example of the different views is shown in Figure 2.3.
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Figure 2.3: From left to right: AP view chest radiograph, PA view chest

radiograph, lateral view chest radiograph.

2.1.5 Chest Anatomy in CXRs

When approaching a CXR, either frontal (AP/PA) or lateral projection, a systematic ap-

proach need to be used to evaluate the visual appearance of all the anatomical structures.

A popular method to do this is called the ’ABCs’ rules. The following anatomical com-

partment can be analyze from a CXR [27, 28, 29]:

A. Airway: airway can be inspected analyzing the trachea and mainstream bronchi.

Airways have a lower density if compared with the surrounding soft tissues because con-

tain air. Thus, they appear darker on a CXR.

B. Bones: the bones visible on a CXR include clavicles, ribs, part of the spine, scapula

and the proximal humeri [3].

C. Cardiomediastinal region: defined as the area between the lungs, formed by blood

vessels, trachea, muscular esophagus, thymus gland and the heart. Most of the cadiomedi-

astinal region are not clearly visible on CXR, except the heart. Cardiomediastinal profile

is important to diagnose various diseases and to assess the size and the contour of the

cardiac silhouette.

D. Diaphragm: the diaphragm’s shape can also reveal a significant information about a

patient’s present health. The right hemidiaphragm is higher than the left because it rests

on top of the liver. The diaphragm is typically curved. The patient may have persistent

asthma or chronic obstructive lung disease if the diaphragm appears flattened [3].

E. Edges: it should be easy to see the cardiophrenic and costophrenic angles. The

costophrenic angles are formed by contours of the chest wall and diaphragm. On the

frontal CXR the costophrenic angles should form acute angles. The area in the lower

edges of the lungs which contact the diaphragm is called costophrenic recesses. The car-

diophrenic angle is the angle between the heart and the diaphragm.

F. Fields, Foreign bodies: the presence of opaque masses, consolidation, or fluid can

be checked on the lung field.

G. Great vessels, gastric bubbles: aorta and pulmonary vessels can be assess. The

aortic knob should be visible. Under the left diaphragm, a typical gastric bubble is usually
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visible.

H. Hilium: it is what connects the lungs to their supporting structures and where pul-

monary vessels enter and exit the lungs. The left hilum is normally higher than the right

one.

The visualisation of different structures on CXRs is shown on Figure 2.4.

Figure 2.4: Visualisation of different structures on CXRs: Airways (A), Bones

(B), Cardiac silhouette (C), Diaphragm / Edges: cardiophrenic angles /

Gastric bubble (D,E,G), Edges: costophrenic angles (E), Field of the lung (F),

Grand vessels and aortic knocke (G), Hilium (H) [3].

2.1.6 Lung and heart shapes on CXR

Since the lung and the heart are the organs of interest for this thesis, a more in depth

analysis of their shape on CXR is presented. Right and left lungs are located on either

side of the heart near the backbone. The heart is usually tilted to the left: for this

reason, the left lung has an indentation called the cardiac impression to accommodate

the heart. This will lead to the left lung to be smaller, narrower and longer compared

to the right lung which is wider and shorter [30]. Another difference between the two

lungs is their base: the right lung’s base is more concave than that of the left lung [30].

Furthermore, the human heart can appear as a variety of shapes as for example elliptical,

round, conical or trapezoidal. The shape of the cardiac silhouette can also be used as clues

to the underlying disease: a ”water bottle” configuration can be linked with pericardial

effusion or generalized cardiomyopathy; left ventricular or ”Shmoo” configuration describes
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lengthening and rounding of the left heart border with a downward extension of the apex

causing a left ventricular enlargement; ”straightening” of the left heart border is linked

with rheumatic heart disease and mitral stenosis [31]. Examples of these possible cardiac

shapes are shown in Figure 2.5

Figure 2.5: Three types of abnormal cardiac silhouette. From left to right: water

bottle silhouette [4], ”Shmoo” silhouette [5], ”straightening” of the left heart

border [6]

It is important to notice how a large variability in the heart silhouette reflects a large

variability in the lung silhouette, with more impact on the left lung, for the reasons ex-

plained before.

Despite what normally occurs, in some patients the heart can be positioned on the right

side because of abnormalities such as dextrocardia or dextroposition. Dextrocardia is an

intrinsic cardiac positional anomaly in which the heart is located in the right hemithorax

with its base-to-apex axis directed to the right. Dextrocardia is often misinterpreted as

cardiac dextroposition, which also refers to a displacement of the heart to the right, but

in this case it is due to extracardiac abnormalities such as right lung hypoplasia, right

pneumonectomy, or diaphragmatic hernia [32].

2.1.7 Cardiomegaly

A large variety of cardiothoracic abnormality can be observed from a CXR which are

mainly heart and lung pathologies, e.g., atelectasis, consolidation, pneumothorax, pleu-

ral and pericardial effusion, cardiac hypertrophy and hyperinflation [22]. Many of these

pathologies are clearly visible due to the deformation of heart and lung region: structural

cardiac abnormalities and cardiac enlargement has been shown to be associated with func-

tional status and adverse clinical outcomes [33]. ”Cardiomegaly” is the term that refers to

an enlarged heart. Cardiac enlargement can either refer to the dilation of a heart chamber

or the hypertrophy of the heart muscle. If the heart chamber dilates, the heart muscle is

stretched, causing the chamber to grow larger. In cardiac hypertrophy, the heart’s mus-

cular fibers actually increase in size, which causes the chamber to enlarge. The overall

number of heart muscle fibers does not grow during cardiac hypertrophy; rather, each fiber
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gets bigger [34]. The cardiac enlargement itself is not a disease but rather a sign of possible

conditions such as: congenital heart defect, damage from a heart attack, cardiomyopathy,

pericardial effusion, heart valve disease, hypertension, pulmonary hypertension, anemia,

thyroid disorders, hemochromatosis or cardiac amyloidosis [35]. An enlarged heart can

lead to high risk of complication such as heart failure, blood clots, leaky heart valve or

even cardiac arrest [35]. In Figure 2.6 an example of CXR of a patient with enlarged heart

is shown with the follow-up for the same patient after medication that reveal a restoration

of a normal heart size.

Figure 2.6: (A) A chest radiograph taken on admission revealed mild cardiomegaly

and pulmonary congestion. (B) After methylprednisolone pulse therapy, chest

radiography showed that the heart was of normal size and the lung parenchyma of

normal appearance [7].

Usually to detect cardiomegaly the CTR is evaluated: it refers to the transverse di-

ameter of the heart, relative to that of the rib cage. Although there is still no general

consensus, in the literature an indicative threshold of 0.5 is often used to detect the pres-

ence of cardiomegaly, regardless of the patient’s age, gender and race [36].

2.2 Measurements on Chest X-rays

Since the notoriously difficult interpretation of CXRs, computer-aided technology has been

investigated to help clinicians in the diagnoses since the birth of artificial intelligence (AI).

The first articles about computer analysis of radiographic images appeared in the 1960s

while techniques specifically designed for computerized detection of abnormalities in chest

radiographs began to appear in the 1970s [37]. Nowadays, due to the availability of large

amount of data and the development of deep learning techniques [38], interest has been

stimulated in applying deep learning to medical imaging tasks (including cardiomegaly

detection).

Studies have shown that the detection accuracy for the chest disease is improved when

using X-ray CAD system as an assistant for the radiologist [39]. However, there are many

side effect to radiologists relying too heavily on new AI technologies. A study has doc-
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umented possible ”automation bias” effects in CAD that degrade radiologists’ decision

making [40]. Automation bias is referred to the over-reliance on the technology and the

tendency to blindly accept AI output. The danger is when the system does not generalize

well to unusual cases. This reliance on technology may reduce attention and perceptive

skills of clinicians [40]. It is indeed important that technology’s design supports an high

level of interaction between them and the system. The AI should supplement and not

replace their work. Since different levels of automation exists for a system application

in clinical field, one way to reduce the automation bias is to use systems that produce

autonomous information instead of autonomous decision, characterized by a separation

between what the device and the clinician each contribute to the decision [40]. For ex-

ample, instead of outputting directly the disease inferred from the CXR, it is possible

to output some measurements (as objective as possible) that will help the clinician to

formulate his/her diagnosis. This will also help the clinicians to overcome interobserver

and intraobserver variability in the subjective reading of the CXRs [41]. Some examples

of objective measurements are the cardiac transverse diameter, the cardiac volume using

both the frontal and lateral view, or the CTR. The CTR, in particular, as mentioned in

the previous subsection, refers to the size of the heart compared to the size of the thoracic

cavity. Reporting only the CTR is an example of autonomous information, while reporting

the clinical diagnosis linked with this information (that in this case would be the presence

of cardiomegaly) is an example of autonomous decision.

Later in this chapter, the prerequisites to extract valuable measurements from a CXR

are presented, followed by a clinical and a more theoretical approaches for the calculation

of the CTR.

2.2.1 Quality checks on CXRs: clipped lung detection

The evaluation of the image quality is critical before interpreting a CXR. A deviation from

quality standards may lead to misdiagnosis and hold legal risk [42]. Specific criteria are

listed in the ”European guidelines on quality criteria for diagnostic radiographic images”

[43]. It reports that the image has to fulfill the following criteria:

- ”performed at full inspiration (as assessed by the position of the ribs above the di-

aphragm — either 6 anteriorly or 10 posteriorly) and with suspended respiration”,

- ”symmetrical reproduction of the thorax as shown by central position of the spinous

process between the medial ends of the clavicles”,

- ”medial border of the scapulae to be outside the lung fields”,

- ”reproduction of the whole rib cage above the diaphragm”,

- ”visually sharp reproduction of the vascular pattern in the whole lung, particularly

the peripheral vessels”,
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- ”visually sharp reproduction of the trachea and proximal bronchi, the borders of the

heart and aorta, the diaphragm and lateral costo-phrenic angles”,

- ”visualisation of the retrocardiac lung and the mediastinum”,

- ”visualisation of the spine through the heart shadow”.

Usually, radiographers execute the quality assessment procedure visually, which is in-

herently subjective. Since the visual quality judgement process is subjective, radiographic

technologists may disagree on whether to reject and retake an image [44]. A method to

automatically quantify the quality of the CXRs has been proposed by Von Berg et al. [42],

where the aspect of collimation, patient rotation and inhalation state of PA CXRs were

taken into account as defined as the three most relevant quality aspects. These factors

are particularly important for the evaluation of the CTR. For this measurement, a PA

projection is the standard projection used, for the reasons explained in Section 2.1.4. It

is possible to evaluate the CTR also from AP projection, but it is needed to take into

account that the heart will appear enlarged due to magnification effect. Moreover, wrong

positioning of the patient may cause the repetition of the acquisition when part of the

Region Of Interest (ROI) is outside the field of view of the image resulting in clipped

anatomy. For CXRs, the ROI is the whole lung: as stated before in this subsection, the

CXR should be a reproduction of the whole rib cage above the diaphragm. In clinical

practice, no information is extracted from a clipped CXR and the acquisition is always

retaken [44, 45].

2.2.2 CTR measurements

CTR is a screening tool to evaluate the size of the heart’s silhouette. The most straightfor-

ward definition of the CTR involves measuring the maximum horizontal thoracic diameter

(Dthorax), measured at the inner edge of ribs, as well as the maximum horizontal heart

diameter (Dheart) [8, 46, 45]. An example is shown in Figure 2.7. After recognizing the

contours of these two anatomical structures, the following formula can be applied:

CTR =
Dheart

Dthorax
. (2.3)

The range of the CTR values that indicates a normal condition are usually between 0.42

and 0.50 [46]. Values greater than 0.50 are generally linked with pathological condition

such as cardiomegaly, even if there is no consensus for optimal threshold [22], as mentioned

in Section 2.1.7. In fact, numerous criticisms have been made to the use of CTR as

cardiomegaly indicator itself. It has been demonstrated by Brakohiapa et al. [36] that

the CTR threshold for cardiomegaly can vary when related to age and gender. In their

study, the mean CTR increases gradually with age and males usually have a slightly lower

mean CTR than females. In addition, it is important to remember that CXR are only a
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2D section of 3D structures: other advanced methods exist and can provide more useful

detailed information about heart size (such as CT). Despite the criticisms, CXRs are still

used as the easiest way to detect cardiomegaly thanks to the advantages described in

Section 2.1.3.

Figure 2.7: Horizontal heart diameter (A) and horizontal thoracic diameter

(B) measured on a PA CXR for CTR calculation [8].

2.2.3 CTR in clinical practice

In everyday clinical practice, the precise value of CTR is usually not calculated. A visual

analysis of the image and a great deal of knowledge in CXR evaluation turns out to

be sufficient to determine the presence or absence of cardiac problems related to the

heart size. Radiologists usually perform a qualitative evaluation of the image, taking

into account the history of the patient. The follow-up of the patient and the evaluation

of how the size of the heart has changed over time has more clinical relevance than the

CTR value. Even if this specific CTR value is not calculated in clinical practice mainly

due to timing reasons, it is still clinically interesting to calculate this measurement in

an automatic and fast way. It can be useful in clinical practice and may lead to certain

advantages. Besides being time efficient for the radiologists, showing the actual value of

the CTR helps radiologists to make more objective comparison in patient follow-up. A

comparison between the CTR value detected in the follow-up of the patient and the CTR

value from the previous examination would result in a more objective evaluation of how

the size of the heart has changed through time. This could lead to a decreased subjectivity

of the evaluation, when conducted by different radiologists.

2.3 Related Research

Earlier methods for automated CTR calculation used traditional image manipulation tech-

niques.

Becker et al. [47] in 1964 proposed to estimate the maximum diameters of heart and rib

cage by vertical intensity histogram analysis. Later, almost all the works regarding CTR

estimation were segmentation-based solution, where heart and lung boundary were de-
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tected [46, 33, 45]. It was demonstrated that the correctness of the CTR value is directly

proportional to the correctness of the segmentation [48]. Some works as [49, 50], based

the calculation only on the segmentation of the lung region, with the assumption that it

is possible to extract heart’s shape information from the lung contour. The gold standard

for lung boundary detection, in fact, follows the contour of the surrounding anatomical

parts including the heart (as shown in Figure 2.8). From the segmented lung field, it is

possible to detect the vertex of the cardiophrenic angle (see Section 2.1.4), usually better

detectable on the right lung. The maximum diameter of the heart, Dheart can be searched

above this point (point C on the right lung in Figure 2.8), as the maximum distance be-

tween the two lungs. The maximum diameter of the thorax, Dthorax can be calculated

from maximum horizontal width of the lungs segmentation mask.

Figure 2.8: Example of lung boundary definition [9].

Nowadays, deep learning (as a type of machine learning) is leading medical imaging

analysis. Convolutional neural networks (CNNs), as a popular deep learning technique,

has demonstrated to be a powerful method for image processing [33]. It automatically

learn mid- and high-level abstractions derived from unprocessed data. Many works are

based on the application of deep learning to segment anatomical structures used for CTR

estimation. Between deep learning methods, U-Net[10] models show excellent results to

extract anatomical boundaries: they use expanding and contracting paths, where an en-

coder part performs feature extraction from the input, while a decoder part reconstruct

the output mask processing the features, as shown in Figure 2.9. These pathways are

also linked with each other with skipped connections: these are perhaps the most inno-

vative component of U-Net, that enable the network to restore spatial information that

was lost during downsampling operations. With the promising performance of medical

image segmentation with U-Net, a series of CTR estimation approaches using U-Net to

segment lung and heart fields has followed. The first was done by Que et al. where they

used the classical U-Net on a limited dataset, showing promising results. Inspired by that

approach, Li et al. [33] developed U-Net inspired model in 2019. A similar technique was

developed by Chamveha et. al [51]. In their work a U-Net [10] architecture with VGG-16

Encoder [52] was used.
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Many works related to the heart size assessment from CXRs subject used deep learning

to directly detect the presence of cardiomegaly [53, 22, 54]. The factors that influence the

linking of the size of the heart to the presence of cardiomegaly (such as age or gender as

discussed in Section 2.2.2.) makes the explainability of this detection more questionable.

Since the diagnosis of cardiomegaly involved complex interaction between various factors

related to sensitive patient information, this topic is excluded from the scope of this thesis.

In relation to CTR measurement from CXRs with clipped anatomy, at the time of the

thesis writing no works have been found in the literature.

Figure 2.9: The structure of U-Net architecture from

Ronneberger et al. [10]

2.3.1 Public datasets

Multiple CXR datasets are publicly available, but only few of them has lung or heart

masks annotations. The datasets with lung or heart masks annotation used in this work

are described below and summarized in Table 2.1

Two X-ray datasets of PA chest radiographs are made available by the U.S.National

Library of Medicine [55] and curated for tuberculosis (TB) detection [56, 57]. The radio-

graphs were acquired from the Department of Health and Human Services, Montgomery

County, Maryland, USA and Shenzhen No. 3 People’s Hospital in China. Both datasets

contain normal and abnormal CXRs with manifestations of TB and include associated

radiologist readings. Details are as follows:

- Montgomery County X-ray set : developed in 2014, it includes 138 frontal

CXRs from the Montgomery County TB screening program, of which 80 are normal
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and 58 show signs of TB. Images come in PNG format and have a 12-bit grey

level. The size of the X-rays is either 4,020×4,892 or 4,892×4,020 pixels. Binary

lung masks are available separately for the left and the right lungs. Lung were

segmented under the supervision of a radiologist, following anatomical landmarks

such as the boundary of the heart, aortic arc/line, pericardium line and a sharp

costophrenic angle that follow the diaphragm boundary [55], as shown in Figure 2.8.

Both posterior and anterior ribs are readily visible in the CXRs. The area behind

the heart and the diaphragm was excluded as the ”gold standard” segmentation is

defined. It is possible to download the dataset from the National Institute of Health’s

web page 1.

- Shenzhen chest X-ray set: captured within a one month period, mostly in

September 2012, as part of the daily routine at Shenzhen No.3 People’s Hospi-

tal, Guangdong Medical College, Shenzhen, China. It contains 662 frontal CXRs, of

which 326 are normal cases and 336 are cases with manifestations of TB. The X-rays

are provided in PNG format. Their size can vary but on average it is approximately

3K × 3K pixels. Manually segmented masks are available thanks to Stirenko et al.

[58].

Other datasets used are:

- JSRT dataset [59]: this dataset of CXRs with and without lung nodule was devel-

oped in 1998 by the Academic Committee of the Japanese Society of Radiological

Technology (JSRT). It contains 247 images from scanned films: 154 X-rays with lung

nodules and 93 without a nodule. All CXR images have a size of 2048 × 2048 pixels

and a gray-scale color depth of 12 bits. Manually generated lung and heart field

masks are provided by van Ginneken et al. [60] in the Segmentation in Chest

Radiographs (SCR) dataset [60]. Even if the annotated ground truth of the

CTR is not available for this dataset, since both heart and lung masks are present,

it is possible to calculate it from the segmentations. The assumption that all the

CXRs are well oriented is made after visual inspection since no CXR shows a signifi-

cant rotation of the patient orientation. The ratio between the maximum horizontal

width of the heart and the maximum horizontal width of the lung was calculated for

each sample and the obtained CTRs were used as the ground truth.

- Wingspan dataset[49]: it is provided by a private research institute, Wingspan

Technology. The dataset contains 221 grayscale CXRs for adult patients with an-

notated CTR. The extended version of Wingspan dataset includes 38 additional

annotated images, for a total of 259 images. Each image was annotated by two

licensed radiologists independently, and the annotations were accepted by both an-

1https://data.lhncbc.nlm.nih.gov/public/Tuberculosis-Chest-X-ray-Datasets/Montgomery-County-

CXR-Set/MontgomerySet/index.html
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notators and an independent reviewer. The de-identified data were collected from

6 hospitals, which have different imaging protocols. The image sizes, pixel spacing

and clinical setup vary for each CXR.

Table 2.1: Summary of available datasets used in this work.
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Chapter 3

Estimate CTR from Lung

Segmentation

In the literature, many approaches to automatically extract the CTR from CXRs exist

and almost all of them are based on an anatomical structures’ segmentation. In this chap-

ter, an approach of CTR estimation from lung segmentation is presented. To obtain the

segmentation of anatomical structures from CXRs, a wide range of possibilities is open.

Cadmir et al.[24] classified the segmentation algorithms into 5 groups: (1) rule-based meth-

ods, (2) pixel classification-based methods, (3) model-based methods, (4) hybrid methods

(which are a combination of the previous ones), and (5) deep-learning methods. After a

large study of the rich literature, they concluded that hybrid methods and deep learning

methods surpass the algorithms in other categories and have segmentation performances

as good as inter-observer segmentation performance. This means that recent works using

deep learning approaches can provide a more abstract learning, resulting in better perfor-

mances and higher accuracy compared to traditional image processing methods [61].

Several segmentation algorithms are publicly available. However, they all have the spe-

cific task of obtaining the segmentation of specific anatomical structures, e.g. the lungs.

Most of the algorithms are developed to perform the segmentation task with underlying

assumption that the images are taken from correct acquisitions. The computation of CTR

in case of clipped anatomy is a mostly unknown subject. The presence of the area of

interest in the image is normally not in dispute. Wrong positioning of the patient is one

possible cause of the presence of clipped lungs in the image: it will cause the current

approaches to fail.

In this chapter, four different models that produce lung segmentation masks and a

method to extract CTR from them are presented. With the aim of obtaining a CTR

measurement in the most robust and accurate way, the models tried also to recover the

lung segmentation from the clipped part of the image by assuming that they can learn the

19



general shape of the lungs. CTR can be then calculated from the lung contours.

The objective of this chapter is described in Section 3.1. A description of the four

models and CTR calculation are described in Section 3.2, followed by the implementation

details in Section 3.3. The different models are tested on clipped and non-clipped datasets:

details about the experiments and discussions are shown in Section 3.4. On Section 3.5

the conclusion can be found.

3.1 Objective

This research aims to develop a method to extract the variables to compute CTR from

CXRs starting from lungs segmentation. During the computation of CTR, clipped lung

will be an issue since part of the lung is out of the field of view. In case X-ray image

retake is not possible, the goal for the algorithm should be to reconstruct the part of the

lung that is clipped.

Four models have been developed and applied on both normal and clipped datasets.

The goal was to test their robustness to the presence of clipping and to see if the accuracy

obtained on clipped images improved between different models while remaining good on

unclipped images.

3.2 Methodology

To extract the CTR from CXR images, the approach has been split into two parts:

1. Getting the binary segmentation of the lung.

2. Computing the CTR from the binary lung segmentation. Based on the medical

definition of CTR as mentioned in Section 2.2, two variables need to be known:

maximum diameter of the heart and maximum diameter of the chest.

Figure 3.1: Overview of the methodology (estimate CTR from

lung segmentation).
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The publicly available model from the official implementation of ”Lung Segmentation

from Chest X-rays using Variational Data Imputation”, from Selvan et al. [62] was used as

a starting point. The aim of their work was to segment lungs with pulmonary opacification

that render regions of lungs imperceptible. Although opacification is not within the scope

of this research, their work was selected as a starting point because clipped lung involves

the problem of missing information, which in a sense is of similar nature to opacification.

It employs a segmentation network similar to U-Net[10] but adds a Variational Autoen-

coder (VAE)[63]. Autoencoders are used as an efficient way to code unlabelled data in

unsupervised learning. Input data are mapped to a latent representation with very low

dimension. An encoder network will output a single value for each encoding dimension,

while a decoder will reconstruct the latent representation back to input space, trying to

minimise the loss. To do so, the most important features variations need to be learnt by

the network. Figure 3.2 shown an example of autoencoder architecture.

Figure 3.2: Autoencoder illustration.

VAEs are a specific type of autoencoders that rather than outputs a single value to

describe each latent state attribute, they will describe a probability distribution for each

latent attribute. Assuming that the input and the latent space are random variables, the

latent variables are sampled from the distribution. Figure 3.3 shown an example of VAE

architecture.

Figure 3.3: VAE illustration.

In their work, a latent representation of the data was used to impute high opacification

regions on CXRs.

The released model of Selvan et al. [62] had been trained using CXR datasets from

21



Shenzhen and Montgomery hospitals (see Section 2.3). From 704 images, the 75% was

used for training and 25% for validation purposes, but the indexes for the splitting were

not available. For this reason, a random splitting with the same percentage of training

and validation was done and the model was retrained from scratch on the same datasets.

Starting from their work, two models have been replicated (Model 1 and Model 2), which

differ in augmentation techniques used. To improve the segmentation of the clipped region

of the lung, a third model was trained using a new augmentation technique, namely

Clipping augmentation (Model 3). In these 3 models, the field of view of the segmented

mask is always the same field of view of the input CXR. For this reason, a padded version

of the image is necessary in input to predict the clipped part of the lung, as it will be

better described later in this chapter. Subsequently, the idea was to have an algorithm

capable of producing an output with a greater field of view than the initial image in order

to input clipped images that are more faithful to the realistic ones (without padding in

the input image). This leads to the last proposed model (Model 4). The architecture and

the augmentation techniques used for this four models are summarised in Table 3.1 and

will be better described in Section 3.2.2 and Section 3.2.3.

Table 3.1: Summary of lung segmentation models.

All the four methods were tested on both normal and clipped datasets. As a last step,

the CTR was calculated from cardiac and thoracic diameter extracted from the binary

output of the models.

3.2.1 Dataset

Different datasets were used for training, validation and test purposes.

The dataset used for the training and validation was formed by combining Montgomery

County X-ray set and Shenzhen chest X-ray set, described in Section 2.3.1. The splitting

of the dataset follows the same structure as the one used by Selvan et al. [62]. From the

combination of the two datasets, 704 images are selected: 528 CXRs are used for training

while 176 are used for validation purpose. To test the performances for both the lung

segmentation and the CTR calculation, the JSRT dataset (also described in Section 2.4.1)
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was used.

To evaluate the performances of different models on clipped lungs, it was necessary to

build appropriate test sets. As discussed in Section 3.2, the output of models 1, 2 and

3 have the same field of view as the input images. To detect the segmentation of the

clipped part of the lung, it is necessary to test them on padded images. For this reason,

the clipped & padded JSRT dataset was created. The padding of input is not necessary

for the U-Net with wider output model (model 4) to predict the clipped part of the lung.

For this reason, to test this model the Clipped JSRT dataset was created.

- Clipped&padded JSRT dataset: Starting from the JSRT dataset (with corre-

sponding masks from SCR dataset), the idea is to crop one side of the image in

order to obtain a clipped lung. From each label, the bounding box of the lungs was

identified; a random side of the image was chosen and, on this side, starting from the

border of the bounding box, a percentage between 5 and 10% of the width or height

of the lung was cropped. The image is then padded on all the sides, with 102 pixels

(20% of the dimensions of the width and height of image, which were 512x512). The

label is also padded with the correct number of pixels on each side, in order for the

lung masks to be in the correct position with respect to the augmented image. A

visual example of the clipped&padded JSRT images is given in Figure 3.4.

Figure 3.4: Example of image and label from JSRT clipped and

padded dataset. The red dotted rectangle represents the initial

field of view of the image

- Clipped JSRT dataset: Starting from JSRT dataset (with SCR masks), cropped

CXR images with clipped lung are obtain as described in Clipped&padded JSRT.

The mask of each image is positioned in the center of a black wider background

image (with the same dimension of the label + 128 pixels on each side). The central

masks is then translated on the background with an offset equal to the number of

pixels that have been cropped on the corresponding image, on the same side. In this

way, the field of view of the cropped CXR will always remain in the center of the

label. An illustration of these steps is shown in Figure 3.5.
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Figure 3.5: Example of JSRT image (a), its corresponding mask (b); cropped

version of the image (c) and its corresponding wider mask (c). The green dotted

rectangle outline the field of view of the cropped image.

3.2.2 Data Pre&Post-processing and Augmentation Techniques

To obtain the lung segmentations, all images are pre-processed by following these steps:

1. input images are rescaled to 640x512 pixels,

2. the histogram of the images are equalized in order to improve the contrast.

Post-processing steps on lung masks are as follow:

1. connected component analysis is used to exclude small erroneous regions,

2. binary morphological closing is done to fill holes up to 10 pixels in the segmentation.

3. since the output of every model is the segmentation of both the lungs, left and

right lungs are identified by searching for the first and second-largest connected

component. In some cases, when the algorithm does not work as it would, it is

possible to obtain only one connected component in output, where a bridge is present,

usually between the top of the two lungs. The segmentation is then cut in two parts:

a vertical line is searched in the central part of the image (between the 2/5 and 3/5

of the width of the image). The vertical pixels of this region are summed in a vector,

where the lowest value is searched to find the best position for the vertical line to

obtain left and right lungs.

The pre-processing steps and steps 1 and 2 of the post-processing were already imple-

mented in the work by Selvan et al. [62].

Data augmentation is essential to overcome the constraints of image data collections

such as the limited number of collected data. Any proposed machine learning models may

be less accurate if there is a shortage of data or erroneous labelling. The main advantages

24



of data augmentation are that it’s cheaper than regular data collection and labelling and

it helps in having less overfitting problems [64].

As mentioned in Section 3.2, different data augmentation techniques has been used to

train different methods. To train the U-Net with VAE model [62] the following techniques

were used:

- Standard augmentation: random rotation, vertical flipping and horizontal flipping.

- Block and diffuse augmentation: whitish masks are applied to vertically or hori-

zontally cover one-half of the image, while to simulate high opacification regions,

random sets of disks of varying radii smoothed with a Gaussian kernel are applied

(200 precomputed masks were already available to be randomly applied on input

images).

- Clipping augmentation: one side of the image is cropped to obtain a lung with a

percentage of clipping between 5 and 10%. The result is then padded on all the sides

with a number of pixels equal to the 20% of the width or the height of the image.

To train the wider-output U-Net model, the following technique has been used:

- Realistic augmentation: one side of the image is cropped to obtain a lung with a

percentage of clipping between 5 and 10%. The central masks were then translated

on a black wider background (with the same dimension of the label + 128 pixels on

each side) with an offset equal to the number of pixels that have been cropped on

the corresponding image, on the same side. The field of view of the cropped CXR

will always remain in the centre of the label.

The different types of augmentation are summarised on Figure 3.6.

Figure 3.6: From left to right, examples of: standard augmentation, block and

diffuse augmentation, clipping augmentation, realistic augmentation

3.2.3 U-Net Architecture and Variational Autoencoder

The architecture of models 1, 2 and 3 is an adaptation of the method by [62], which is

the U-Net with VAE. Input of size 640 x 512 with 1 channel is used. The structure is
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similar to the original U-Net[10] (Ronneberg et al., 2015) with some modifications. An

illustration of the proposed architecture is presented in Figure 3.7. It operates at four

resolutions, consisting of the repeated application of two 3x3 convolutions, each followed

by the ReLu [65], and an average pooling operation. In this model, the first two resolution

are obtained with a scaling factor of 4 and the other two by a factor of 2. The additional

autoencoder used for data imputation has a similar structure with the encoder: it also

operates at four resolutions, obtained with a scaling factor of 2. The 2D feature maps

are then passed to a series of 4 1D convolutional layers to predict the variational density

N (µ, σ2), where N is a normal distribution with mean µ, and variance σ2. The latent

vector is then sampled from the distribution, with a latent dimension of 8. Results from

the latent representation of the VAE are concatenated with the output of the encoder

and both shared the same decoder. Skipping connections between the encoder and the

decoder allow the U-Net constructs an image in the decoder part using fine-grained details

learned in the encoder part. In this model, the output will have the same size as the input,

resulting in a 640 x 512 mask with 1 channel.

Figure 3.7: Architecture overview of U-Net with VAE model: the yellow part

represents the encoder, the blue part represents the VAE and the red part

represents the shared decoder.

Some modifications to the decoder path and to the skipped connection from the previ-

ous model have been done to build the U-Net with wider-output model (model 4). With

an input of size 640 x 512 x 1, the segmentation will have a larger field of view of 128 pixels

on each side of the image, for a total output size of 896 x 768 x 1. Skipped connections are

made possible by padding with the correct number of pixels the output of each encoder

layer (respectively for each layer: padding with 128, 32, 8, 4, 2 pixels). An illustration of

the proposed architecture is shown in Figure 3.8.
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Figure 3.8: Achitecture overview U-Net wider-output with VAE model: the yellow

part represents the encoder, the blue part represents the VAE and the red part

represents the shared decoder.

3.2.4 CTR estimation

It is possible to calculate the CTR from the contour of the lungs, as Dong et al. [49] did in

their work. Starting from the segmented lungs, the maximum diameter of the heart and

the maximum diameter of the lungs are extracted, then the CTR is calculated. To extract

the maximum diameter of the heart and the lungs, two horizontal lines are positioned on

the CXRs as shown in Figure 3.9.

Figure 3.9: Example of cardiac and thoracic diameter

identification from a lung mask.

They are respectively:

- the cardiac diameter (Dheart from equation 2.3): searched above the vertex of the

cardiophrenic angle of the right lung (point C from Figure 2.8). It is defined as the

maximum horizontal distance between the two lungs. The point that defines the

vertex of the cardiophrenic angle is calculated as shown on Figure 3.10, using the
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following steps, as Dong et al. [49] did in their work:

1. Find the contour of the right lung mask;

2. Find the convex hull of the right lung mask to obtain points on the right lung

boundary;

3. Find the maximum horizontal width in the right lung;

4. From the output points of step 2, select the points whose distance to the right-

most one is at least 2/3 of the width of the right lung;

5. Between these points, select the lowest one.

Figure 3.10: Steps to detect the vertex of the cardiophrenic angle.

- the thoracic diameter : defined as the maximum distance between the rightmost and

the leftmost point on the lung segmentation chosen on the same horizontal line.

The CTR is then calculated as the ratio between the two obtained diameters, as

described in equation 2.3.

3.3 Implementation details

Both U-Net with VAE models described in Section 3.2.3 are developed in PyTorch. The

same parameters used by Selvan et al. [62] in their proposed methods are chosen: during

the training a batch size of 12 is used, with a learning rate of 10−4, with Adam optimizer

for a maximum of 200 epochs. The loss function used is composed of two parts: a ”re-

construction loss” that helps in the segmentation and a ”latent loss” with a regularisation

effect that helps with data imputation [62]. Binary cross-entropy loss has been used as

the reconstruction loss while KL divergence loss [66] has been used as ”latent loss”. Con-

vergence is assumed when there is no improvement in validation loss for 20 consecutive

epochs. The model with the minimum validation loss is used for testing. In each model,

the probabilities of standard augmentation, block masks augmentation and diffuse masks

augmentation are settled at 0.1. In case of rotation, the degrees of rotation is randomly

chosen between 0 and 15 degree. The probability of clipping augmentation in model 3 is

settled to 0.9. The probability of realistic clipping augmentation in models 4 is settled to
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0.9. This means that model 3 and 4 are trained mainly on clipped lung CXRs. For the

CTR estimation, the convex hull of the right lung mask was obtained using convexHull()

function from OpenCV python library.

3.4 Experimental Results and Discussions

The two U-Net models described in Section 3.2.3 were tested both on clipped and not

clipped images from JSRT dataset.

To evaluate the segmentation performances of the proposed methods, the Dice similar-

ity coefficient is used. It measures the degree of overlap between the ground truth mask

(G) and the predicted segmentation mask (P), and can be written as follows:

Dice(G,P ) =
2|G ∩ P |
|G|+ |P | . (3.1)

From the output of every model, left and right lungs were identified. In this way, it

is possible to evaluate separately the performance of the models on the two lungs. The

separate analysis was done since they have different anatomical shapes and different vari-

ability, as described in Section 2.1.6.

Lung segmentation performance on non-clipped lungs

Firstly, the different models are evaluated on the 247 original images of JSRT dataset

(not clipped). The main purpose of this experiment is to see if the performances on non-

clipped images will be degraded going from the first model to models trained more and

more specifically on clipped lungs. From this experiment, it is also possible to evaluate the

differences in performances between the two lungs. The results are visualised in Figure

3.11.

Figure 3.11: Dice coefficient of left (blue) and right (orange)

lungs segmentation using different models.
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The best mean Dice index is obtained by model number 2. Improvements are shown

from using only standard augmentation: this trend replicate the results obtained by Sel-

van R. et al. [62] in their work.

It is interesting to notice how performance decreases when models more trained on

clipped anatomy (models 3 and 4) are evaluated on non-clipped images, but there is not

a huge drop: performances never go under a mean value for the Dice index of 0.914.

It is also possible to notice how the mean value of the Dice index of the left lung is slightly

lower for all the models. To prove if the differences between left and right Dice indexes are

significant, a paired Z-test was used: a one-sample Z-test was performed on the differences

between right and left Dice indexes. The null hypothesis (H0) states that the differences

between the right and left indexes is zero, while the alternative hypothesis (H0) states

that the index of the left lung is lower than for the right lung. To summarise:

H0 : µ = 0;H1 : µ > 0, (3.2)

where µ represents the difference between the mean right dice index and the mean left dice

index. The significance level (α) is set at 0.05. It is the probability of the study rejecting

the null hypothesis, given that the null hypothesis is true. The probability value (p-value)

for each model is calculated and it shows the probability of obtaining a result at least as

extreme, given that the null hypothesis is true. The result is statistically significant when

p ≤α . Results can be visualised in Table 3.2.

Z-test

Model number p-value

1 0.0017

2 3.01*10-13

3 1.55*10-39

4 4.216*10-18

Table 3.2: Z-test: p-values for each model tested on non-clipped lungs

For all the models, the probability value was really low and always less than the alpha

value, showing that the null hypothesis can be rejected with a degree of confidence of 95%.

This difference can be interpreted as a greater difficulty for the models to segment left

lung due to the higher variability in its shape, as described in Section 2.1.6.

To understand if the algorithm is learning the presence of anatomical differences be-

tween the two lungs or if it is treating them in the same way, another test is conducted.
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Dice indexes of left and right segmentation masks of JSRT images are compared to Dice

indexes of the same images but horizontally flipped. Model 4 is applied to obtain the

segmentation masks. Results are shown in Figure 3.12. The performances are almost

the same when the test set is flipped. This means that the algorithm does not learn the

anatomical differences between the two lungs.

Figure 3.12: Dice indexes of flipped and non-flipped JSRT

images.

Lung segmentation performance on clipped lungs

Secondly, the different models are evaluated on the clipped datasets. As discussed in

Section 3.2.1, since the U-Net used in models 1, 2 and 3 has the same field of view both

in input and in output, padded input images were needed to test the ability to predict

also the shape of the clipped part of the lung. For this reason, these models were tested

on clipped&padded JSRT dataset, while models 4 is tested on only clipped JSRT dataset.

The performances of the different models on clipped lung datasets are visualised in Figure

3.13 and an example of segmented lung masks, using the four different models in shown

in Figure 3.14.

To see if the difference between left and right Dice indexes are still significant (as in the

lung segmentation performances on non-clipped lungs) a pair Z-test is performed. This

statistical test has the same structure of the one presented in the previous experiment

with non-clipped lungs, but it is applied on the performance of models on clipped lungs.

Results can be visualised in Table 3.3. For models 1, 3 and 4 the probability value is

less than the alpha value: the null hypothesis (that indicates that there is no difference

between Dice index of the left and the right lung) is rejected. In model no. 2 the null

hypothesis is accepted because it is higher than the alpha value set at 0.05. The difference

between left and right indexes is not statistically significant in this case.
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Figure 3.13: Dice coefficient of lungs segmentation using different

models

Z-test

Model number p-value

1 1.16*10-36

2 0.0667

3 5.29*10-6

4 0.0140

Table 3.3: Z-test. p-values for each model tested on clipped lungs

From this experiment, it is possible to make several observations:

- Mean performance of model 1 is really low (Mean Dice Left=0.329; Mean Dice

right=0.629) and falls outside of the range of the graph in Figure 3.11: most of the

time the lung is completely mistaken with the padded region. Shapes of the lungs are

usually elongated and far from the original (see Figure 3.14). This model has never

seen cases in which part of the lung or part of the image is covered with uniform

regions during the training time.

- It is for the same reason that it is possible to observe a huge increment in performance

between model 1 and model 2. In model 2 blocking masks were used as augmentation

techniques. By simulating high opacity regions, these masks will start to simulate

also a first example of missing part of the lung. The model is still susceptible to

the presence of a uniform black padding region in the input image: prediction of the

lungs were often elongated also in the padded region.
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- Performances increase a little when going from model 2 to model 3. In this case,

input images are more similar to training samples since it is trained on images that

were also padded.

- The best performances are obtained with model number 4. Note that this model was

tested on only clipped JSRT (without padding), since it is able to predict a wider

field of view. It is possible to assume that the increment in performances is caused

by the removal of the padding region because in this way we are preventing some

types of segmentation errors:

– black padding of the image was often misunderstood as lung in the previous

models;

– the presence of an outlined border in the image, where there is a large variation

in pixel intensity, often caused the clipped part of the lung not to be recognized.

- The differences between segmentation of left and right seems to decrease.

Figure 3.14: Example of segmented lung masks obtained by applying

four different models.

CTR measurement performance

Since the objective of this thesis is not the segmentation of the lung itself but the

evaluation of the CTR, the CTR calculated from the segmentation of the lung (as described

in Section 3.2.4) was evaluated. The ground truth CTR is calculated according to the steps

in subsection 3.2.4 based on the lung mask label from the JSRT dataset. These values are

compared to the CTR calculation performed based on the predicted lung mask using the

best model obtained so far (described in Section 3.2 as model 4). The evaluation is done

in terms of Absolute Error (AE):

AE = |yj − ŷj |, (3.3)
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by measuring its mean and standard deviation, and Root Mean Square Error (RMSE)

RMSE =

vuut 1

n

nX
j=1

(yj − ŷj)2. (3.4)

The mean value of the AE (MAE) measures the average magnitude of the errors in

a set of predictions, without considering their direction. It is the average of the absolute

differences between prediction and actual observation, where all samples have equal weight.

Also the RMSE measures the average magnitude of the error. It is the average of squared

differences between prediction and actual observation.

In this context, the MAE shows, on average, how far the prediction of the CTR is

from the ground truth. The RMSE has a similar aim but the higher errors between the

CTR prediction and the ground truth are amplified because of the squared term: it will

highlight methods with the most significant errors. Both metrics can range between 0 and

∞ and are indifferent to the direction of error.

The results obtained from the best method obtained so far (described in Section 3.2

as model 4) are shown in Table 3.4.

JSRT non-clipped JSRT clipped

AE (mean± std) 0.038± 0.040 0.058 ± 0.057

RMSE 0.055 0.082

Table 3.4: Evaluation of CTR on JSRT clipped and not-clipped images.

As expected, increased error is observed from the results from clipped JSRT dataset

compared to the non-clipped dataset. An example of performance from the best segmen-

tation model on clipped and non-clipped image is shown in Figure 3.15. In this case it is

possible to see an absolute error of 0.023 for the non-clipped image and an absolute error

of 0.034 for the clipped image.

It is not straightforward to compare these results with the best result found in literature

for CTR estimation from lung segmentation prediction since different method might use

different test dataset. However, to have an idea of how the proposed method performs,

the state-of-art results are shown as follows. The method of Dallal et al. [50] currently

shows the best results in literature. The results from their method come from testing 103

images from a private dataset. RMSE and Percentage Error (PE) are evaluated. The PE

of a test image j is defined as

PEj =
ŷj − yj

ŷj
∗ 100%. (3.5)

The mean and the standard deviation of the PE are calculated on the results of the

proposed method both on JSRT clipped and non-clipped images. The results, showed
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Figure 3.15: Example of performance from the best segmentation model on

the same clipped and non-clipped image.

on Table 3.5, are not directly comparable but they show most of the results achieved

with the proposed method are in the same order of magnitude. Only the PE on clipped

images is slightly above the next order of magnitude, however this result was expected as

performance on clipped lungs is lower in general due to the missing information.

PE RMSE

Proposed method on non-clipped images 8.5 ± 9.1 % 0.055

Proposed method on clipped images 12.9 ± 13.4 % 0.082

Dallal et al. [50] method 7.9 ± 9.1 % 0.06

Table 3.5: PE (mean ± standard deviation) and RMSE for CTR estimation.

The proposed method based on lung segmentation algorithm to estimate CTR achieved

good performances. It does not require manually segmented heart mask dataset. However,

some limitations are present:

- the calculation of the CTR from horizontal diameters is based on the assumption

that the orientation of the CXR image is correct. The obtained results are from a

dataset that does not contain high rotation of the patient in CXRs. Performances

will expect to drop in case of incorrect positioning of the patient.

- the predicted lung region outside the field of view of the input image should be

taken with caution: shape is just assumed by the algorithm based on the shape of

the lungs seen in training phase and does not generalize well when new data with

different variations, due to disease or acquisition, are present.

- the calculation of CTR is made using only lung masks. It deviates from the original
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strict definition of the CTR. For this reason, the idea was to extract the CTR from

both the segmentation masks of lung and heart, as mainly seen on literature, to see

if better performances can be achieved.

3.5 Conclusion

A method to estimate the CTR from lung segmentation mask is presented in this chapter.

The performances of the proposed method are in the same order of magnitude compared

to other state-of-art method that computes CTR from lung segmentation. However, the

methods in the literature do not consider the case where the lung field in the image is

clipped and would likely to fail handling those cases. In contrast, our proposed method

takes clipped anatomy into account. Four different models have been developed for this

purpose. The best performances for clipped lung images have been obtained using a

modified U-Net with VAE architecture that output segmentation mask with a wider field

of view than the input. It allows the algorithm to reconstruct the clipped part of the lung.

The CTR is then calculated from the lung segmentation. Performance of the proposed

method are promising, although only the lung is taken into account. Since the strict

definition of the CTR involves also the heart boundary, improvement in CTR estimation

is expected when the cardiac diameter is extracted from the segmentation mask of the

heart itself instead of from the lung mask. For this reason, the CTR estimation from lung

and heart masks is investigated in the next chapter.
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Chapter 4

Estimate CTR from Lung and

Heart Segmentation

As discussed in Section 2.3, almost all the works regarding CTR estimation are segmentation-

based solutions, where the heart and the lung boundary are detected. The calculation of

the CTR, consequently, follows its stricter definition as stated in equation 2.3 where it

is obtained by calculating the cardiac diameter from heart segmentation mask and the

thoracic diameter from the lungs segmentation mask. One issue with this approach is

the absence of large public CXRs databases with heart segmentation annotation from ra-

diologists to train a heart segmentation model. A method to overcome this issue is the

fine-tuning of the already described lung segmentation model to output also the segmen-

tation of the heart, that way limited number of labeled data with heart segmentation can

be used. The segmentation of the heart is expected to improve the segmentation of the

lungs since they are bordering each other. The addition of the heart segmentation will

thus allow the trained model to have additional information about the mutual position of

heart and lung masks.

The objective of this chapter is described in Section 4.1. A description of the methods

for heart and lung segmentation and CTR calculation are described in Section 4.2, followed

by performance evaluation of the new proposed method in Section 4.3. On Section 4.4 the

conclusion can be found.

4.1 Objective

The aim of the work presented in this chapter is to propose a method to estimate the

CTR from lung and heart segmentation and to evaluate if the introduction of the heart

segmentation for the calculation of CTR can be beneficial when compared to the results

from Chapter 3. Moreover, since the actual CTR definition is sensitive to rotation of

the patient, a new metric, correlated with the CTR, has been proposed to evaluate the

enlargement of the heart in a different and more robust way.
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4.2 Methodology

To extract the CTR from CXRs images, a similar approach to the one used in the previous

chapter has been followed. It mainly differs in the calculation of the cardiac diameter. The

cardiac diameter is calculated now from the segmentation of the heart and not from the

segmentation of the lung. The approach can be summarized as follow:

1. Getting the binary segmentation of the lungs and the heart

2. Obtain the maximum cardiac diameter Dheart from the heart segmentation mask

and the maximum thoracic diameter Dthorac from the lung segmentation mask (as

described in equation 2.3).

Figure 4.1: Overview of the methodology (estimate CTR from lung and

heart segmentation)

To obtain lung and heart segmentation masks, two possible methods are proposed:

A. Lung segmentation masks are obtained applying model 4 described in Section 3.2.

A new model has been trained to obtain the heart segmentation. For this purpose,

the same U-Net with VAE from Selvan et al. [62] (described in Section 3.2.3) was

trained from scratch with CXRs and heart masks. It replicates model 2 of Section

3.2.3, with the difference that it is now trained on heart masks instead of lung masks.

B. The U-Net wider-output with VAE (described in Section 3.2.3 as model 4) was

modified to have multi-label outputs. The already trained lung segmentation model

was fine-tuned with heart segmentation masks. A more detailed description of this

architecture is proposed in Section 4.2.2. With this approach, one U-Net wider

output with VAE is used to obtain both the lungs and the heart segmentation.

In model B, the segmentation of the heart is influenced also by the segmentation of

the lungs since they are bordering each other. For this reason, the presence of clipped

lungs can presumably influence the segmentation of the heart. To evaluate this, model B

has been applied both on clipped and non-clipped images.
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Subsequently, the CTR (following its definition in equation 2.3), was calculated on the

lung and heart masks obtained with the best performing segmentation method. Since this

classic definition of CTR is very sensitive to rotation of the patient on the image, a new

metric has been proposed to evaluate the anatomical accuracy of the segmentation. This

new metric, called in this research ”rotational invariant cardio-thoracic ratio” (RI CTR)

is described in section 4.2.3.

4.2.1 Dataset

Wingspan and JSRT dataset (described in Section 2.3.1) are the only public dataset with

both lung and heart mask segmentations found in the moment of writing this thesis.

From visual analysis of Wingspan dataset some errors have been found. In the down-

loaded dataset there were three folders respectively with left lung masks, right lung masks

and heart masks. In left lung folder, four ”heart shaped” masks have been recognised,

while the corresponding masks in the heart folder had ”left lung shape”. This was pre-

sumably due to errors in the way the masks were stored. These detected errors were

corrected, putting the images in the correct folder before using the dataset. Furthermore,

it is possible to visually notice a difference in how the segmentation of the heart has been

performed in annotations of the JSRT and Wingspan datasets. In general, the heart an-

notated masks of the JSRT are more ”circular shaped” when compared to the Wingspan

heart annotated masks that are more ”triangular shaped” (as shown on Figure 4.2). This

could be due to the radiologists using different way of performing the annotation.

Figure 4.2: Four examples of heart mask from the Wingspan dataset (first

row) and four examples of heart mask from the JSRT dataset (second row).

To train model A and to fine-tune model B, the corrected Wingspan dataset was

used: from 259 images, the 75% was used for training purpose and 25% for validation

purpose. The splitting was done randomly. Similar to the experiment that was presented

in Chapter 3, the JSRT dataset was used as test set. In this way, the results for CTR will
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be comparable with the results from Chapter 3. To evaluate the influence of clipped lung

on heart segmentation in model B, the Clipped JSRT dataset (described in Section 3.2.1)

was used.

4.2.2 Multi-label U-Net with VAE Architecture

As stated before, the architecture of model B is a modification of the U-Net wider-output

with VAE (described in Section 3.2.3 as model 4). In contrast to that one, now the last layer

of the decoder is divided in two parts to allow multiple outputs: the lungs segmentation

mask and the heart segmentation mask. An illustration of the architecture is shown on

Figure 4.3. The initialisation of the weights comes from model 4 of Section 3.2, which

was trained and validated on a total of 704 images with lung masks from Montgomery

and Shenzhen datasets. As for models described in Chapter 3, the loss function used is

composed of two parts: a ”reconstruction loss” that helps in the segmentation and a ”latent

loss” with a regularisation effect that helps with data imputation [62]. KL divergence

loss [66] is still used as ”latent loss” while, differently from Chapter 3, a multiple-binary

cross entropy loss is used as the ”reconstruction loss”. The multiple-binary cross-entropy

represents the sum of the binary cross-entropy for lung mask prediction task and the

binary cross-entropy for heart mask prediction task.

Figure 4.3: Architecture overview of multi-label U-Net with VAE model: the

yellow part represents the encoder, the blue part represents the VAE and the red

part represents the shared decoder. The green rectangles on the outputs represents

the original field of view of the image.
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4.2.3 CTR estimation

Starting from the segmentation of the lung and the heart, the CTR is directly calculated

from the maximum horizontal width of lung segmentation mask and maximum horizontal

width of heart segmentation mask, as done in the majority of works in literature related

to this topic, such as [45].

When the segmentation method is tested on JSRT dataset (see Section 4.3), is no-

ticeable how the general outline of a heart mask from the ground truth is different from

the one from the model prediction. This is likely due to the differences in radiologist’s

annotations described in chapter 4.2.1 between Wingspan dataset (used during training

phase) and JSRT dataset. This manifests as heart segmentation mask output being more

’triangular’ rather than ’circular’ causing the CTR to become less accurate. Since the

classic definition of CTR is very sensitive to rotation, a different, rotational-invariant, way

to evaluate the enlargement of the heart was used: RI CTR. In RI CTR, cardiac diameter

and thoracic diameter are calculated as follow:

- cardiac diameter : the maximum circle inscribed in the heart mask is obtained and

the diameter of the circle is used as cardiac diameter,

- thoracic diameter : the orientation of the lung mask is derived by finding the mayor

axis of the mask and orient it to 0 degrees, and lungs are rotated to remove possible

wrong orientation. Maximum horizontal width of the rotated lungs is calculated and

used as thoracic diameter.

A visualisation of CTR and RI CTR is shown on Figure 4.4.

Figure 4.4: Visual illustration of CTR and RI CTR calculation.

The yellow arrows represent the major axis orientation of the

lung mask
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4.3 Experimental Results and Discussions

Heart segmentation models evaluation

Firstly, the ability to obtain accurate heart segmentation masks from models A and B

(described in Section 4.2) was tested on JSRT dataset. The heart segmentation masks

were evaluated using the Dice index defined in equation 3.1. Results are visualised in

Figure 4.5. As expected, the model based on multi-label segmentation works better. This

model seems to be able to derive information on the relative position between the heart

and the lungs during training and thus obtain more accurate heart segmentation despite

the limited dataset it is trained on. For this reason, all the next experiments are based on

model B.

Figure 4.5: Dice indexes of heart segmentation of JSRT dataset

using model A and model B.

Heart segmentation performance on clipped and non-clipped lungs

Secondly, model B has been applied also on Clipped JSRT and the heart segmentation

performances were compared between clipped and non-clipped datasets. Results, in terms

of Dice indexes, are shown on Figure 4.6. Performances on clipped dataset seems to get

worse. To prove if the difference is significant, a paired Z-test was used: a two-sided Z-

test was performed on the differences between Dice indexes from clipped and non-clipped

CXRs. The null hypothesis (H0) states that the differences between them is zero, while

the alternative hypothesis (H1) states that a difference is present:

H0 : µ = 0;H1 : µ ̸= 0.

The significance level (α) is settled at 0.05. A p-value of 1.23*10-15 was obtained. It is

thus possible to demonstrate that there is a statistical difference between Dice index of

clipped images and the Dice index of nonclipped images since the p-value is much lower

than α value. This difference of performance for the heart masks, shows that the presence

of clipped lungs influences also the segmentation of the heart in the multi-label model
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described, presumably due to higher errors in segmented lungs.

Figure 4.6: Dice indexes of heart segmentation using model B on normal

JSRT dataset (blue) and Clipped JSRT dataset (orange).

CTR evaluation

Subsequently, the CTR was calculated from the lung and heart segmentation masks ob-

tained from the proposed multi-label model, model B. The performance on non-clipped

images are compared with the CTR performance from only the lung segmentation de-

scribed in Chapter 3 and reported in Table 3.4. From Table 4.1, it is possible to notice

that AE and RMSE get worse when also the heart segmentation is used in the estimation

of the CTR. Furthermore, from the calculation of the correlation coefficients it is possible

to notice that the method with also heart segmentation yields numbers that correlates

worse with the ground truth CTR. This result is likely due to the limited dataset with

heart masks used during the training and the differences in the way the heart mask is

annotated between training and test datasets, as described in Section 4.2.1.

CTR AE (mean ± std) RMSE Corr. Coeff.

from only lung segm. 0.038 ± 0.040 0.055 0.677

from lung and heart segm. 0.062 ± 0.059 0.086 0.558

Table 4.1: Performance of different methods used for CTR estimation on

JSRT dataset.

Rotation-invariant CTR evaluation

To overcome this issue, the RI CTR, described in Section 4.2.3, has been calculated from

lung and heart segmentation masks. Results have been compared with RI CTR calculated

from ground truth annotation of lung and heart masks of JSRT dataset. Results are listed

in Table 4.2. Using this new metric, the correlation coefficient is a lot higher than with
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the traditional definition of CTR.

AE (mean ± std) RMSE Corr. Coeff.

CTR 0.062 ± 0.059 0.086 0.558

RI CTR 0.024 ± 0.021 0.031 0.754

Table 4.2: Performance of CTR and RI CTR from lung and heart

segmentation masks from JSRT dataset.

4.4 Conclusion

A method to estimate the CTR from lung and heart segmentation mask is presented in

this chapter. From a small dataset, it was shown that a multi-label classification of lungs

and heart improves the segmentation performance of the heart when compared to a seg-

mentation model that has the heart as the only output. However, with this model, clipped

anatomy’s presence also affects the segmentation of the heart.

The heart segmentation was expected to help the CTR calculation being closer to its

clinical definition. The results obtained are not in line with this hypothesis: worse per-

formance was obtained in the estimation of the CTR. The CTR went from a MAE=0.038

when calculated using lung segmentation alone, to a MAE=0.062 when calculated using

heart segmentation as well. However, this degradation is presumably mainly due to dif-

ferent ways of annotating the segmentation of the heart between the training and test

datasets.

An alternative rotational-invariant method to calculate the CTR, RI CTR is proposed.

This new metric is strongly related to CTR, although not exactly the same. It seems to be

less dependent from the different ways of annotating heart masks since the performance of

the proposed method using this new metric on JSRT dataset in terms of AE, RMSE and

correlation coefficient are higher. However, its clinical relevance is yet to be assessed.

44



Chapter 5

Clipping detection

The methods proposed in the previous chapters for the automatic calculation of the CTR

allow it to be performed even when the lungs are clipped e.g., due to poor patient posi-

tioning during image acquisition. Assuming the clinical application of this tool, informing

clinicians if the predicted CTR comes from clipped or non-clipped CXRs would be useful

information to give an idea about the reliability of the estimated CTR. Moreover, an al-

gorithm that is able to detect clipped lung on CXRs can find other possible applications.

Some of them are listed below:

1. It could be used to assess the quality of CXRs, as mentioned in Section 2.2.1. This

quality assessment could be used to inform the clinician before its evaluation but

could also be used as an internal tool for hospitals to obtain data about the quality

of the radiographs that they performed.

2. It could be used as a tool for training of radiologists, by giving direct feedback when

clipped anatomy is detected.

3. Since in common clinical practice each CXR is usually retaken in case of clipped

anatomy, it can be used to automatically reject such cases directly after the acqui-

sition, saving time for clinicians from having to call the patient back at another

time.

4. An automated rejection algorithm would also be useful in research field: in the

work of [45] cases of clipped anatomy are manually excluded from their dataset.

They stated that an automated rejection would be a useful tool and a good research

direction.

There are some methods in the literature that address the issue of clipped anatomy in

CXRs. First is by Wu et al. [67], who developed an AI model to interpret CXR based on

72 technical and anatomical core findings, including lungs not fully included in the image.

Second is by Kashyap at al. [68], who proposed an automatic deep-learning method to

detect ”left costophrenic angle not included” and ”lungs not fully included” together with
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19 other technical deficiencies. Berge et al. [42], instead, address the problem of positioning

of the lung area by calculating the distances of the lung region from the borders of the

image. When there is no distance between the lung region and the border of the image,

this approach may be in a sense a similar topic to clipped anatomy.

The objective of this chapter is described in Section 5.1. A description of the method

used to detect clipped lung on CXRs can be found in Section 5.2. The method is then

applied to clipped and non-clipped CRXs: details about the experiments and discussions

are shown in Section 5.3. On Section 5.4 the conclusion can be found.

5.1 Objective

The aim of the work presented in this chapter is to develop a method to automatically

detect the presence of clipped lung in CXRs by exploiting the ability of the U-Net with

wider output (described in Section 3.2.3 as model 4). This model is able to predict the

shape of the clipped part of the lungs even outside the field of view of the input image.

Consequently, instances where the lung lies outside the field of view of the input image

can be detected.

5.2 Methodology

The approach used to detect the presence of clipped lungs is shown in Figure 5.1 and can

be summarized as follow:

1. Obtain the binary segmentation of the lung with a wider field of view with respect

to the input image;

2. Obtain the bounding boxes of both lungs;

3. Calculate the distances of the corresponding bounding boxes from the border of the

initial field of view of the image. When the border of the bounding box is outside the

field of view the distance is taken as positive, while when the border of the bounding

box is inside the field of view the distance is taken as negative;

4. Compare the maximum distance found with a fixed threshold, to classify if the lung

is clipped or not.

To obtain the binary segmentation of the lungs, model 4 described in Section 3.2 was used,

since it shows the best performance between the lung segmentation models discussed in

this thesis. The choice of the threshold used for the classification is discussed later in

Section 5.3.
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Figure 5.1: Overview of the methodology (clipping detection).

5.2.1 Dataset

The dataset used to train the lung segmentation model is described in Section 3.2 and it

corresponds to the 75% of the 704 images from Shenzhen and Montgomery datasets (see

Section 2.3.1), resulting in 528 CXRs. Starting from the same dataset, 264 CXRs (50%)

have been randomly clipped, using the method described in Section 3.2.2. The remaining

50% is left unchanged. This balanced dataset has been used with training purpose to find

the optimal threshold for clipping detection.

The dataset used for testing consists of 50% of non-clipped CXRs from JSRT dataset

(described in Section 2.3.2) and 50% of clipped CXRs from Clipped JSRT dataset (de-

scribed in Section 3.2.1), for a total of 256 CXRs.

5.3 Experimental results and Discussion

Initially, steps 1, 2 and 3 of the proposed method have been applied to a train dataset

with 50% of clipped CXRs and 50% non-clipped CXRs (as described in the previous

section). It results in a vector of 528 distances, 264 corresponding to clipped images and

264 corresponding to non-clipped images. The complete Receiver Operating Characteristic

(ROC) curve which involves all possible classification thresholds [69], has been obtained.

The ROC curve is shown in Figure 5.2. It plots the true positive rate (TPR) as a function

of the false positive rate (FPR) at different thresholds. The TPR is the rate at which an

actual clipped CXR will test as clipped and it is ideally equal to 1. The FPR is the rate

at which a non-clipped CXR will test as clipped and it is ideally equal to 0. They are

defined as:

TPR =
TP

TP + FN
, (5.1)

FPR =
FP

FP + TN
, (5.2)

where TP, TN, FP, FN are the number of true positive, true negative, false positive and

false negative respectively. Following the most intuitively definition of clipped anatomy

and setting the threshold to zero, a TPR=0.875 and an FPR=0.019 are obtained. However,
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based on the ROC curve, different thresholds can be considered as optimal. Giving the

equal cost to a FN error and a FP error, it was chosen to maximize the accuracy of the

model. The accuracy of the model is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (5.3)

The threshold that maximizes the accuracy has been found equal to -5 and it is highlighted

on the ROC curve. Using this threshold, a TPR =0.98 and a FPR=0.03 are obtained.

The new threshold allows the accuracy of the method to increase from 0.93 to 0.98 on

the training set. To better quantify the numbers of correct predictions and errors, the

confusion matrix corresponding to the application of the two thresholds have been reported

in Figure 5.3.

Figure 5.2: ROC curve of the training set of the clipped lung detection

method. The threshold that maximizes the accuracy of the method is

highlighted.

Figure 5.3: Confusion matrix of the training set with threshold

equal to zero (left) and threshold equal to -5 (right).
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Subsequently, this method has been tested on 256 CXRs with balanced percentage of

clipped and non-clipped images. The consistency of the method can be observed with the

Area Under the ROC Curve (AUC). This is a robust method to evaluate the performance

of a classifier since it relies on the complete ROC curve. The ROC curve obtained from

the application of proposed method on the test set is visualised in Figure 5.4. The corre-

sponding AUC is equal to 0.99. Applying the best threshold, a TPR=1 and a FRP=0.05

have been found. To better quantify the numbers of correct predictions and errors, the

confusion matrix of the test set have been reported in Figure 5.5.

Figure 5.4: ROC curve of the test

set for the clipped lung detection

method.

Figure 5.5: Confusion matrix of the

test set for a threshold of -5.

5.4 Conclusion

The completeness of the CXR anatomy is normally verified by the clinicians before the

radiographic interpretation. Clipped anatomy might make it difficult to interpret the

image correctly, mainly for measurement such as CTR which requires the visualisation of

the entire lung region. A method to automatically detect the presence of clipped lung

in CXR is presented in this chapter. The proposed method was able to recognize all the

clipped lung present in the test set, showing an optimal TPR, while 7 CXRs out of 128

non-clipped CXRs have been misclassified as clipped. The AUC presents a very high

value, equal to 0.99, which shows good ability of a classifier to distinguish between two

classes. In regard to clinical application of automatic CTR estimation in case of clipped

anatomy (discussed in Chapters 3 and 4), this method would give useful information for

the clinicians to better understand the reliability of the estimated CTR.
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Chapter 6

How CTR changes with age and

gender

As mentioned in Section 2.2.2, it is generally accepted that the upper limit of normal

heart size correspond to the 50% of thoracic size. However, available literature states

there are differences in normal CTR due to age and gender. Brakohiapa et al. [36], in

their study analyzes 1047 CXRs of adults aged 21 to 80 years, showing significant age and

gender-related differences in cardiac size parameters obtained from routine, frontal chest

radiographs. Oberman et al. [70] reported a distinct increase of heart size with age until

about 50 years after which the heart size appears stable, in a study of 3985 subjects aged

20 years or more, from Tecumseh, Michigan. These type of population studies are usually

difficult to carry out on large scale, because of the need of clear and structured radiologists

annotation for each image. For this reason, the automatic calculation of CTR can make

this process faster and easily accessible.

It is important to clarify that the studies mentioned before consider only adult patients,

even if CXRs is an important and valuable diagnostic tool also for pediatric population.

Algorithms for automated CTR calculation trained on adults CXRs, however, may not

accurately perform on pediatric case. The first reason is the anatomical shapes of lung and

heart in pediatric patients: lungs appear smaller, and the cardiac silhouette is relatively

larger, reaching values of CTR that in infants can approach the 0.6 [24]. Moreover, pedi-

atric CXRs are usually noisier when compared to adult CXRs. This noise can be due to

mother’s handholding, an increased difficulty to obtain a good positioning of the patient

[24], and also the tendency of using lower dose for younger patients. Since the work for the

CTR estimation method described in the previous chapters does not takes into account

variations in pediatrics’ radiography, only adult patients are taken into account for this

study.

The objective of this chapter is described in Section 6.1. In Section 6.2 the details
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about the dataset used are given while in Section 6.3 the discussion of the obtained results

can be found.

6.1 Objective

The aim of this study is to investigate the variation in CTR values according to age and

gender, on a large dataset. The aim of this research is also to propose an application of

the automatic CTR estimation method already discussed in this thesis.

6.2 Dataset

Many public large datasets with CXRs exist and among them the CheXpert [71] dataset

was selected for this study. CheXpert is a large public dataset for chest radiograph in-

terpretation, consisting of 224,316 chest radiographs of 65,240 patients. The CXRs and

their associated radiology reports were retrospectively collected from Stanford Hospital

from acquisitions performed between October 2002 and July 2017 in both inpatient and

outpatient centers. A detailed description of the dataset is presented in [72]. Each re-

port was labeled for the presence of 14 observation (12 different pathologies in addition

to no finding and support devices) as positive, negative, or uncertain. The labels are

extracted from the free text radiology report thanks to an automated rule-based labeler.

The patient biological sex and age are available for each image, along with the information

whether the image is frontal or lateral. For frontal images, the information on the pro-

jection type is reported (AP or PA, described in Section 2.1.4.). The dataset is available

in two versions: a large version (440 GB) with DICOM images and a small version (11

GB) with JPEG images. The small version has been used in this research. Each image is

downsampled to approximately 390 × 320 pixels and grayscale downsampled to 256 levels.

In CheXpertCTR, a subsample of the whole CheXpert dataset was selected to be

suitable for the population study in this research. It has ideally no enlargement of the heart

and images taken on the gold standard CXR projection for the evaluation of CTR. For this

reason, only PA images were extracted, and images labeled as positive to cardiomegaly and

enlarged cardiomediastinum were excluded. It results in 25,369 CXRs, with 34% female

and 66% male. The age of the patients raged from 18 to 90 years, with a mean of 56.5 ±
17.1. Number of images per age and per gender is shown in Figure 6.1.
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Figure 6.1: Number of CXRs per age and gender in the

CheXpertCTR dataset.

6.3 Experimental results and discussion

The best method discussed in this thesis to predict CTR has been applied to the CheX-

pertCTR dataset. The method is described in Chapter 3, and it is based on a lung

segmentation model (U-Net architecture with VAE, able to output a wider field of view

compared to the CXR input, called model 4 in Chapter 3). From the lung segmentation

mask, cardiac and thoracic diameter are extracted and the CTR is calculated as described

in Section 3.2.4. This method showed an AE on the calculation of the CTR of 0.038±
0.040 (as reported in experiments from Section 3.4).

To evaluate how the predicted CTR changes with age, CTR values from CheXpertCTR

dataset (described in Section 6.2) have been calculated. One downside of using this dataset

is that only the 21% of the selected CXRs presents ”No Finding” label marked as true,

meaning that no pathology is classified as positive or uncertain. The remaining CXRs have

at least one pathology marked as positive or uncertain and could potentially influence the

quality of the visualisation of the chest’s anatomical structures and thus the quality of the

CTR automatic estimation. The robustness of the proposed model, to such variations in

fact, has not been tested and could be the scope of future research. However, pathologies

directly correlated with an enlargement of the heart region have been excluded from the

initial CheXpert dataset, trying to select CXRs with presumably a normal range of CTRs.

The CTR from all the 25,369 CXRs from CheXpertCTR, reported a mean and a

standard deviation of 0.498 ± 0.089. A general increase in mean CTR is reported as the

age of the patient increases: from 0.448 in 18-year-old patients to 0.562 in 90-year-old

patients, showing an increase of the 25%. (as illustrated in Figure 6.2). The increase of

CTR appears to be linear. A linear interpolation shows a correlation coefficient of 0.98.

This increment agrees with the work of Brakohiapa et al. [73], that showed how CTR

increased statistically with age of patients.
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Figure 6.2: Predicted CTR as a function of patient age on

CheXpertCTR dataset.

The distributions of male and female CTR values are shown in Figure 6.3. A mean

value and a standard deviation of 0.507 ± 0.094 and 0.492 ± 0.085 has been reported for

female and male respectively, showing a slightly higher mean CTR for females. A Z-test

has been performed to see if there was a statistical difference between the two groups

and a p-value of 2.14 ∗ 10−36 has been found. Since the p-value is much lower than the

alpha-value set to 0.5, it is possible to conclude that there is a significant difference in the

two distributions. This result agrees with the work of [36] who also reported a statistically

significant difference in the overall CTR between female and male. In their work a mean

value and a standard deviation of 0.448±0.037 and 0.447 ± 0.037 have been reported for

female and male respectively. A slightly higher mean CTR value for female then male has

been reported also by [74], who considered the heart size of 306 patients.

Figure 6.3: Boxplot of predicted CTR on female and male CXRs

from CheXpertCTR dataset.
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Since a significant difference was reported between the CTR values of male and female,

the two groups were considered separately to study the relationship between the CTR value

and age. CTR values from males and females reported slightly different trends with age

in this work. Figure 6.4 shows how the CTR changes according to age and gender. Both

the trends appear linear, and show similar mean values for younger patients while females

reach higher mean CTR values as age increases. This trend agrees with the results from

the work of Brakohiapa et al. [73]. In their study, the CTR in males increased from the

21-40 years group (0.464 ± 0.040) to the 41-60 years group and increased again minimally

in the above 60 years group (0.474 ± 0.048). The CTR in females increased more, from

the 21-40 years group (0.0464 ± 0.045) to the above 60 years group (0.0517 ± 0.037).

Figure 6.4: Predicted CTR as a function of patient age on female

and male CXRs from CheXpertCTR dataset.

6.4 Conclusion

An automatic CTR calculation method has been applied on a large CXRs dataset to

evaluate how this measurement, linked with the cardiac enlargement, changes with age

and gender. Tested on 25,369 CXRs, an increment from 0.448 to 0.562 on mean CTR value

from 18 to 90-year-old has been found, with an overall mean value of 0.498. A significant

difference between male and female CTR values has been reported. The difference between

the mean CTR value for males and females becomes more important as age increases,

showing higher values of mean CTR for female patients. The conclusion obtained on

this study reflects the observations of preliminary studies on age-dependency of CTR

measurements by supporting the hypothesis that the proposed method for CTR evaluation

could be reliable for a large dataset study. Moreover, this study shows the that a general

threshold of 0.5 to detect cardiomegaly would not be consistent with normal variations

between different ages and genders that the CTR can have.
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Chapter 7

Conclusion

CXR has shown to be one of the most complex imaging modalities to interpret, with an

high inter-reader variability which could have been caused by varying years of experience

of the clinicians. For this reason, many CAD systems have been found in the literature

to help clinician’s evaluation by showing directly the detected disease. However, such

systems can cause an over-reliance on the technology and the tendency to blindly accept

the CAD system output.

In order to cope with this problem, methods to perform objective measurement from

CXRs have been studied, focusing on the estimation of the CTR, which correlates the size

of the heart to the size of the chest and can be an indicator of cardiomegaly when the value

is too high. Before doing any evaluation, a quality check of the image is always done by

radiologists to assure that the whole lungs are in the field of view of the image, otherwise

the radiograph is usually rejected and repeated. The extraction of CTR information when

clipped anatomy occurs, is also investigated.

Similar to most of the work in the literature, segmentation-based approaches are

proposed in this work. Two segmentation-based approaches were developed. The first

segmentation-based solution assumes the possibility to calculate the CTR using only the

lungs segmentation. It showed the possibility to calculate the CTR with errors in the same

order of magnitude as the state-of-art method for CTR estimation from lung segmentation

prediction in the literature, with the advantage that it also deals with clipped anatomy.

Subsequently, the heart segmentation has been added in the model to calculate the CTR

following its medical definition. However, it showed a decrease of performance for the CTR

evaluation due to the variation found in the labeling of the training and testing dataset.

As previously mentioned, quality check is an important step prior to computing CTR

from a CXR. Based on the first segmentation based solution, a method to automatically

detect the presence of clipped lung in CXR have been proposed showing promising results.
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This quality check can be presented as additional information to the clinicians to warn

them when the CTR was computed from CXR with clipped anatomy. Consequently, a

new metric is proposed as an alternative to the classical CTR. The new metric, RI CTR is

a rotation-invariant version of the CTR where the heart size is measured by the diameter

of the largest inscribed circle of the heart mask and the thorax diameter is taken from the

largest span of the major axis aligned lung masks. It seems to be less dependent from the

different ways of annotating heart masks since the performance of the proposed method in

terms of AE, RMSE and correlation coefficient are higher. However, its clinical relevance

is yet to be assessed.

As a practical application, the proposed automatic evaluation of CTR has been applied

on a large dataset to study the dependency of CTR measurement on age and gender. An

increment on mean CTR value from 18 to 90-year-old has been observed, starting from

0.445 to 0.562. A statistical difference between male and female CTR values has been

reported. This difference becomes more important when age increases, showing higher

vales of CTR for female patients.

7.1 Future works

One possible step on the future work of this subject could be improving the calculation

of the CTR from lung and heart segmentation, since it theoretically better reflects the

evaluation carried out by clinicians. To do so, it would be necessary to obtain training

and testing set that are annotated in a consistent way or improve on the generalization

of the heart segmentation methods. The RI CTR proposed in Chapter 4 calculated from

heart and lung segmentations, is a metric strongly related to CTR, that seems to be less

dependent on heart annotation by having a high correlation coefficient when calculated

between the ground truth and the predicted segmentation masks. A study on its clinical

relevance would be a possible research direction. Moreover, the proposed CTR estimation

from lung segmentation method has some limitation that can be addressed in future works.

First of all, it is applicable only to adult CXRs due to the availability of only adult CXR

datasets with lung and heart segmentation. Secondly, the proposed algorithm considers

only the case of clipped anatomy but many other quality issues (such as performed at

fully inspiration, correct patient orientation, positioning of the shoulder blades the lung

field, etc.) need to be checked and could be taken into account by the algorithm before

assessing the CTR from a CXR (as listed in Section 2.2.1).
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Appendix A

Ethics and ethical implications of

the work

Ethic refers to the moral principles that govern the conduct of certain activities or a

person’s behavior. One possible application of ethic is research ethic: it involves the ap-

plication of fundamental ethical principles to research activities. Research ethic firstly

includes ethical principle such as the protection of the right, dignity and welfare of any-

one involved in the research. Moreover, the research must be conducted in a transparent

and independent manner. Ethical considerations fall into the research of integrity (RI).

Research integrity is a framework that discusses the attitude of researchers according to

appropriate ethical, legal and professional frameworks, obligations and standards. The

European Code for Research Integrity [75] or ALLEA code provides full guidance for re-

searchers, describing an approach for conducting good scientific work.

The main ethical implication of this work regards ethical principle on AI. At European

level the “EU ethic guidelines for trustworthy AI” [76], prepared by the High-Level Expert

Group on Artificial Intelligence (AI HLEG), have been recognized as the guiding ethics

principle on AI. The most important and applicable key requirements listed in the EU

ethic guidelines are taken into account and discussed.

The primarily application of the automatic CTR calculation method discussed in this

thesis, would be a decision support system for clinicians. The output of the algorithm

would influence human decision-making process and consequently someone’s health or

well-being. To follow the ethic guidelines, the AI system must support human decision

making by enabling users to make informed autonomous decisions. This refers to the

principle of human agency and oversight and it has been taken into account since the

initial idea of the project: the system output the CTR value, without inferring any au-

tonomous decision regard the presence or absence of related diseases, such as cardiomegaly.

Moreover, for a system to be trustworthy it should be able to explain why it behaved a
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certain way and provided a given output. This is still an open challenge for system based

on neural network such as the one proposed. However, the proposed method for estimating

the CTR is based on the calculation of both the cardiac and thoracic diameter on the CXR

image: it is possible, in a practical application of the method, to show to the clinician both

the diameters as lines superimposed on the newly acquired CXR image. The correctness

of the proposed heart and thoracic diameters can be checked by the clinician. This will

increase the degree of interaction between user and AI application by support situation

awareness and potentially reduce unwarranted over-reliance on AI. A system to detect

cases in which the CTR has been estimated from clipped lung CXRs has been proposed,

with the aim of informing the clinician about the reliability of the CTR estimation. This

information would also increase the ability of the clinician to make informed autonomous

decisions.

Privacy and data protection throughout the system’s life-cycle is a second element

to consider, following the ethic guidelines. However, the presented work does not involve

primary data collection. The datasets used for training, validation and testing purpose

were downloaded from publicly available datasets. Any reference to the datasets can be

found in the thesis.

All the information about the method of training the algorithm, including which input

data was selected, together with the information about the data used to test and validate

can be found in the thesis, with the aim of carry out a transparent research.

Lastly, the environmental impact of the AI system development is another aspect

that should be considered following the European guidelines. It has not been directly

measured but some considerations can be done. The heaviest step should be the develop-

ment of the segmentation model since it involves neural network training. As discussed

in this thesis, the proposed segmentation-based method is a modified version of the work

by Selvan et al. [62]. The environmental impact of the proposed method can be assumed

to be almost comparable to the environmental impact of their work. They reported an

average CO2 footprint of developing and training their baseline and proposed model of

around 7.3 Kg (equivalently about 60 km traveled by a car).
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