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Abstract

Ischaemic or haemorrhagic strokes and injuries are the main cause of
motor or cognitive disability. Patients become incapable to performing the
most common daily activities. Treatment and therapeutic aids are an
expensive solution. Rehabilitation therapies based on the growing use of
BCIs have proven to be effective. BCIs of this type apply a repetitive
mechanical or electrical stimulus to a impaired body part. The stimulus
must be applied within a time range from the imagined movement of the
dysfunctional limb. The aim is to restore a connection between the central
nervous system and the area of the body that has lost its function. The
application of a stimulus, mechanical or electrical, within a time window,
facilitates motor recovery. Because the stimulus to be applied, a BCI must
be able to recognise the kind of movement. The aim of this thesis is the
classification of two imaginary movement using systems based on the most
innovative deep learning techniques.

The reason for using deep learning architectures is to facilitate the
recognition of imaginary motion by applying only a minimal pre-processing
strategy. The dataset used is Physionet dataset, which contains EEG signal
acquisitions from 109 subjects.

Afterwards, the EEG signal was only band-pass filtered and divided into
the time epochs containing the imaginary movement. A hybrid Deep
Learning network based on convolutional neural network and recurrent

neural network was trained to extract the spatial and temporal features.



Finally, the evaluation of the network classification was performed by
adopting the Leave-N-Subject Out method, where an evaluation is
performed on N groups of subjects that were not used to train the network.
Thus, due to the obtained performance, the proposed algorithm could be of

interest for Brain Computer Interfaces applications.



1 Introduction

Stroke, caused by an ischemic or haemorrhagic brain injury, is the main
cause of motor and functional impairment. The quality life of a person after
a stroke changes negatively. The patient requires care and support in daily
life. Moreover, treatment is not cheap either for families or for the health
care system [1] [2].

Compensation or replacement of lost motor function can sometimes help
stroke victims become more independent by modifying motor patterns or
using aids. Starting therapy immediately after stroke to exploit neuroplastic
mechanisms is the best strategy to maximise recovery [3]. New therapies
have been proposed that seek to reactivate the brain's functional plasticity
mechanisms and promote neuronal repair and regeneration in injured neural
networks. One efficient and feasible way to stimulate the central and
peripheral nervous system that could help reactivate functional plasticity
mechanisms are BCIs. A BCI translates brain signals into input by providing
a specific command as output. Thus, such a BCI can be used to stimulate
paralysed limbs of the body by establishing a link between the brain and
movement. These closed-loop neural interfaces activate neuroplastic
mechanisms (e.g. Hebbian learning) [4]. The mechanism of neuroplasticity
is relevant for stroke patients. BCI mediated motor recovery in stroke
patients could therefore induce reconnection or reactivation between the
central nervous system and peripheral pathways.

In the following chapters will be covered anatomical, physiological and

functional principles that lead to the description of the process that



generates the electroencephalographic signal. In particular, the anatomy and
functionality of microscopic structures, such as neurons and other small
structures that make up the nervous system, will then be described, through
to a description of the anatomy and functionality of macroscopic structures.

The detailed description of the microscopic structures of the brain is in-
tended to help the reader understand the mechanisms that lead to the pro-
duction of the electroencephalographic signal, while the understanding of
the macroscopic structures serves to describe the areas of the brain from a
functional point of view. Since the aim of the thesis is to study the classifi-
cation of a multi class imagery voluntary movement, the knowledge of the
cerebral cortex involved in the purpose will be further deepened. Then, based
on knowledge of brain structures, the process leading to the generation of
the EEG will be described. In addition, a description of the EEG acquisition
instruments will follow. Finally, and not by order of importance, some types
of Brain Computer Interface (BCI) will be described, deepening the
knowledge of those operating through coupling with the motor cortex that

is dedicated to the generation of voluntary movement.



2 Nervous system

A neuron, with the glial cells, is the main component of the nervous sys-
tem. Neurons, through their excitability properties, are involved in the trans-
mission of information in the nervous system and glial cells gives structural
and metabolic support.

The nervous system is made up of the Central Nervous System (CNS) and
the Peripheral Nervous System (PNS) (Figure 2.1).

CNS includes the brain and the spinal cord. It receives and process the
information coming from the external environment, which are acquired by
the sensory organs. Furthermore, receives and process also visceral infor-
mation, that are information deriving from the internal organs. After pro-
cessing the information, it sends instructions to the muscles and glands.

PNS consists of neurons that provide communication between CNS and
the organs and can be subdivided into two divisions: afferent and efferent
neurons.

Afferent neurons provide information from somatic senses (i.e. skin, mus-
cles, joints), special senses (i.e. vision, hearing, equilibrium, smell and taste),
and visceral information (i.e. blood pressure, blood pH).

Efferent neurons provide information from the CNS to the organs located
in the periphery. Also, it can be divided into two categories depending on
the muscles which innervate, that are: somatic system and autonomic system.

Somatic system regulates voluntary contractions of the skeletal muscles.

10



Autonomic system regulates involuntary organ contractions, such as sweat,
glands or blood vessels and can be divided into two branches: parasympa-

thetic and sympathetic nervous system [5].
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Figure 2.1 Schematic illustration of CNS and PNS. Blue lines represent afferent neurons and red lines represents

efferent neurons.
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2.1 Neuron

Neurons are made up of three main components: cell body or soma, dendrites

and axon (Figure 2.2).
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Figure 2.2. Example of a neuron anatomy and the coupling with another neuron. An illustration on how the sig-
nal flows from a pre-synaptic to the post-synaptic terminal neuron. The magnification represents a chemical syn-

apse.

Into the cell body are performed the same activity performed in other cells,
such as protein synthesis and cellular metabolism.

Dendrites are nervous fibers that branch out from a neuron. They receive
information from other neurons at the synaptic junctions and transfer signals
to the cell body. A synaptic junction is a gap between two neurons. It allows
communication between nerve tissue cells.

Synapses are distinguished, according to their functionality, into:

e FElectrical synapses: the signal is transmitted by direct passage of
ions between two adjacent nerve cells,
e Chemical synapses: the signal is transmitted through the passage

of neurotransmitter from the pre-synaptic terminal (axon
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terminal that release neurotransmitter) to the post-synaptic ter-
minal (dendrite, cell body of another neuron or cells of a receiving

organ).

The axon is a branch of a neuron whose task is sending information to
other neurons. Indeed, the signal flows from the cell body, propagates
through the axon and reaches the terminal side of a neuron [6].

As mentioned above, the neuron is an excitable structure, and the infor-
mation transmission is possible only through this property.

The membrane of the neuron, like that of other cells, is made up of a lipid
bilayer.

Therefore, the excitability of neurons is given by the presence of channels
onto the membrane. These constitute a passage for charged particles through
it. Some channels are voltage-gated, that are trans-membrane protein that
they pass from an open to a closed state and vice versa, due to a variation
of the potential onto the membrane [7].

The resting potential of the cell is negative and is equal to -70 mV. From
the chemical point of view, it means that, inside the cell, the concentration
of potassium K* ions are greater, while outside there is a greater concentra-
tion of sodium Na* ions.

When a trigger event inside the cell body occurs, if a threshold potential
of about -55 mV is reached, the depolarization of the cell takes place.

Therefore, an action potential originates from the axon hillock, which is a
part of the axon that emerges from the soma. The axon hillock is character-

ized from the highest amount of voltage-dependent sodium channels.
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All the action potentials have the same characteristic, that are 100 mV
amplitude and 1,5 ms duration.

Figure 2.3 shows the step of a membrane potential change when an action
potential flows along the axon. Depolarization causes the opening of the Na*
ion channels, allowing Na* influx into the cell. The increased positive charge
within the cell causes the K* channels to open. The efflux of K* ions help
to restore the membrane potential difference to the resting state, causing
repolarization and hyperpolarization.

Active Nat/K* pumps promote the return of the membrane potential to
the resting value. Consuming ATP, these pumps allow excess sodium to be
taken out of the cell by letting potassium enter it: for every 3 Na™ ions that
come out, 2 K* ions enter. In this phase, the membrane potential difference
returns to the resting state. A refractory period begins, lasting approxi-

mately 2 ms. During this period, the K+ channels are closed and the cell

cannot depolarize.

+30
=
:C.; Depolarization Repolarization
= o
=]
v
=
o
Q .
g Threshold potential
<
v
g S5p--——-——--—---9p*-"—---—--"—————--"-"-"——F—- ———-
_;5' Hyperpolarization
~ =70 /

Time

Figure 2.3. Illustration of a membrane potential trend with the flowing of an action potential
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When an action potential arrives in the pre-synaptic terminal, it causes
the release of chemicals, called neurotransmitters, contained in vesicles.

The neurotransmitter's effect on the post-synaptic neuron is determined
by the neurotransmitter receptor it binds.

When the neurotransmitter coming from a presynaptic terminal binds to
a postsynaptic terminal, a postsynaptic potential (PSP) is generated. The
postsynaptic potential can cause the opening of channels that allow positive
ions to enter, facilitating the generation of an Excitatory Post Synaptic
Potential (EPSP). As described earlier, the cell body is innervated by
multiple synaptic terminals. Pre-synaptic terminal releases a certain amount
of neurotransmitter into the synaptic cleft. If neurotransmitters released into
the synaptic cleft excites the nerve cell, EPSPs sum in space and time. If
the threshold potential is reached, an action potential is generated. In a case
which the released neurotransmitter binds to a receptors that cause the
inhibition of an action potential, negative ions entry into the cell and a post-

synaptic inhibitory potential (IPSP) is generated.

2.2 Glial cells

Glial cells constitute a large fraction of the brain components. Even if they
don’t produce electrical impulses, they still play an important role in com-
plex cognitive functions. Indeed, glial cells have the role of giving a structure
to neurons surrounding them, supplying nutrients and oxygen, insulating

neurons from each other and removing toxic components for neurons.
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Additionally, they play an important role in the preservation and consolida-
tion of memories [8].

There are two groups of glial cells: microglia and macroglia.

Oligodendrocytes, Schwann cells, astrocytes, ependymal cells and radial
glia are part of Macroglia.

Ependymal cells run though the spinal cord and ventricles of the brain.
They are involved in creating CerebroSpinal Fluid (CSF).

Radial glial cells are progenitor, and the main function is to generate other
cells, such as neurons, astrocytes and oligodendrocytes.

Astrocytes are the most abundant type of macroglia cells. They perform
biochemical control of endothelial cells that form the blood—brain barrier
(BBB), provide nutrients to the neurons, maintain extracellular ion balance
and regulate cerebral blood flow [9].

Oligodendrocytes and Schwann cells form an insulation layer across axons,
that is called myelin sheath. Oligodendrocytes form myelin sheath for CNS
neurons and gives white matter its name. Instead, Schwann cells form myelin
sheath for PNS neurons. Each Schwann cell provides myelin for only one
axon, while an oligodendrocyte can myelinate many different axons [6].

Moreover, oligodendrocytes and Schwann cells are crucial to determine
the velocity of electrical propagation of action potential in neurons. Indeed,
they form an insulating layer of myelin sheath around the axons of the neu-
rons (Figure 2.4). Myelin sheath of nerves permits the action potentials to
propagate faster and with a large amplitude with respect to neurons in mus-
cle fibers that hasn’t myelin sheath around the axon. The myelin sheath

reduces leakage of ions across the cell membrane. However, gaps within the
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myelin, called nodes of Ranvier, which contain voltage-gated sodium and
potassium channels, permit the conduction along the entire axon. Because

of this, the conduction takes a name of a saltatory conduction.

Schwann cell

MNode of Ranvier

Myelin sheath
Axon

MNucleus —‘,
=

Figure 2.4. The figure to the left shows the myelin sheaths formed by oligodendrocytes in the central nervous
system. Instead, the figure to the right shows the arrangement of myelin formed by Schwann cells in the periph-

eral nervous system. (Reproduced from [6]).

Microglia cells take care of the immune defense of the CNS. They are
morphologically, immunophenotypically and functionally related to the
monocyte/macrophage cells. They constantly search within the CNS for the
presence of plaques, infectious agents and damaged neurons or synapses in
order to remove them [10]. Furthermore, they play a key role in the search
and elimination of pathogens which, by crossing the BBB, could cause in-

flammation of the nerve tissue.
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3 Brain

3.1 Overview of the brain anatomy

In 1870 Eduard Hitzig and Gustav Fritsch applied an electrical stimulus
to a region of a dog's brain. They saw a limb performed a movement. As a
result, they found the relationship between the stimulated region and the
area of the body dedicated to that function. Based on their experiments,
Hitzig and Fritsch created a graphic representation of the primary motor
cortex [11].

Electrical stimulation has also been used by Canadian neurosurgeon Wil-
der Penfield to map brain areas of patients undergoing neurosurgery [12].
The goal is to define areas of the cortex that have been damaged and have
lost their motor or linguistic functionality. Furthermore, these studies led to
the development of the motor homunculus of Figure 3.1, which is now pre-
sent in all neurophysiology books.

Motor homunculus is a distorted map of the cortical area that generates
the movement. More sensitive areas are represented with an exaggerate parts
of the body, such as fingers and lower face. Less sensitive areas, which are
shoulders and back, are represented with a tiny area on the cortex.

In addition to the primary motor cortex, Penfield identified the pre-motor
cortex and the supplementary motor area.

In 1952, Woolsey and colleagues conducted animal experiments to map,
not only the motor cortex, but also the sensory area of the cortex [13].

In the years of Woolsey's experiments, the first recording of a potential

from a single neuron occurred on both anesthetized and awaked animals.
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The experiment was carried out by inserting the tip of a microelectrode
very close to the cortical neurons. Thus, it was possible to register the first
action potential.

These experiments led to the division of the brain into different areas based
on their functionality. Additionally, further histological and anatomical sub-

division was possible.

unig — |
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Figure 3.1. The motor homunculus derived by Wilder Penfield illustrating the effects of electrical stimulation of

the cortex of human neurosurgical patients.

From the anatomical point of view, the brain is made up of two hemi-
spheres coupled together by a large mass of nerve fibers called corpus callo-
sum. Each hemisphere is covered by a cortex, which is a 1.5 to 4 mm thick
structure and is known as grey matter. The grey colour is given by the

presence of the cell body of neurons, dendrites and axons without myelin,
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synapses and capillaries. The white matter, below the grey matter, is com-
posed of nerves that connect the various areas of the cortex and the cortex
with subcortical areas. Myelinated axons are responsible for the white colour

of the matter (Figure 3.2).

Sulei

Figure 3.2. Illustration of the grey matter (in the outer side of the brain), the white matter (inner side of the

brain), Sulci (grooves) and Gyri (ridges). (Reproduced from [16]).

Beneath the grey matter are other structures: brainstem, cerebellum, dien-

cephalon, thalamus and hypothalamus (Figure 3.3).

Dienchephalon
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Midbrain ¢
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N
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o Spinal Cord

Figure 3.3. Anatomical view of four major component which constitute the brain. (Reproduced from [16]).
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Brainstem is a connection site between the spinal cord and the rest
of the encephalon. Cranial nerves originate within it and branch out
to the muscles, head, neck, chest and abdomen.

Cerebellum is located at the back side of the brain. It is divided into
two parts. The outermost one is made up of layers of folded tissue
that contains neurons, while the innermost one contains nerve cells
that communicate information from the brain. Cerebellum consti-
tutes 10% of the total volume of the brain and contains about 80%
of neurons of the brain [14]. It plays an important role in maintaining
balance, in motor learning and in the coordination of voluntary move-
ments by coordinating the strength and timing of activation of dif-
ferent muscle groups. In addition, it is also employed in some cogni-
tive functions, such as language processing.

The diencephalon is a component of the encephalon located between
the brain and the brainstem and between the right and left hemi-
spheres. It belongs to the SNC. The diencephalon comprises other
structures, which are the thalamus and the hypothalamus.

Its functionality is to establish a passage of information between the
brain, brainstem and spinal cord. In addition, its function is related
to learning, memory, and the regulation of the sleep-wake cycle.
Hypothalamus is located below the thalamus. It regulates appetite,
thirst, satiety, blood pressure, heart rate and sleep-wake rhythm.
Thalamus is located between the brain and the brainstem and has an

associative function between different cortical areas.
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Morphologically, the cortex is made up of folds called Gyri(ridges) and
Sulci(grooves) (Figure 3.4).

Sulci are present in the cerebral cortex of more evolved mammals and
allow a greater volume of grey matter within the cerebral cortex without

varying its thickness.

\ e

Figure 3.4. Hlustration of Gyrus and Sulci

sulcus

From a functional perspective, the cortex consists of four main compo-
nents called lobes: frontal, parietal, occipital and temporal. Gyri and sulci
separate the lobes.

Particularly, a central sulcus (CS) divides the frontal and parietal lobes.
Figure 3.5 is an illustration of how the cerebral cortex is divided into four
areas based on their functionality.

Precentral gyrus and postcentral gyrus are part of, respectively, the anterior

and posterior side of CS.

e Frontal lobe is the anterior portion of CS and extends into both
hemispheres. It contains the primary motor cortex (PMC), prefron-
tal association cortex, supplementary motor area and Broca’s area.

Primary motor cortex lies along the anterior wall of CS and

22



continues into the precentral gyrus. Prefrontal area is involved in
high-order executive function including complex cognitive behav-
iours, generation of voluntary movements, speech production and
personality.

Parietal lobes are positioned posterior to the central sulcus, superior
to the temporal lobe and anterior to the occipital lobe. On the pari-
etal lobes reside the primary somatic sensory cortex, which lies along
the posterior wall of CS and continues into the postcentral gyrus,
and parietal-temporal-occipital association cortex. Parietal lobes
processing sensitive information coming from the skin.

Occipital lobe is located behind and below the parietal lobe. It con-
tains primary visual cortex and secondary visual cortex, which is
highly specialized for processing information about static and mov-
ing objects, reading, written language comprehension. It is the area
where visual stimuli are conveyed.

Temporal lobes are mapped in the ventrally sides of the brain and
border with the parietal lobes, occipital lobe and frontal lobes [15].
They are involved in higher-level visual processing, memory and au-

ditory processing.
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Figure 3.5. Dorsal (on top) and lateral views (on the bottom) of human cerebral cortex. (Reproduced from [16]).

According to a histological classification, the cerebral cortex can be fur-
ther distinguished into three layers: neocortex, paleocortex and archicortex.
The paleocortex comprises a region at the bottom of the cerebrum that
includes, but is not limited to, the olfactory cortex. The archicortex is a
structure located deep within the temporal lobes. It plays a critical role in

the formation of new memories and in spatial navigation. Lastly, the
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neocortex represents the outer layer of the brain. It is involved in processes
that include memory and learning. It is divided into six layers parallel to

the cortical surface (Figure 3.6) [15]:

e Layer I is the molecular layer and contains very few neurons and is
composed of the dendrites arising from pyramidal neurons in deeper
layers and horizontally running axons.

e Layer Il is the external granular layer and contains stellate cells and
small pyramidal cells.

e Layer III is the external pyramidal layer and contains small and me-
dium-sized pyramidal cells.

e Layer IV is the internal granular layer and contains many nonpyram-
idal neurons and receives much of the input coming from the cortex

e Layer V is the internal pyramidal layer and contains the largest py-
ramidal cells, the source of the long axons that project out of the
cerebrum, which are named efferent fibers.

e Layer VI is the multiform layer and contains the greatest variety of
cell types. It is the source of most efferent fibers which connect the

cortex to the thalamus.
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4 EEG

4.1 Sources of EEG

The electroencephalographic (EEG) signal is the graphic representation
in time of the potential difference between two different regions of the cere-
bral cortex.

The action potential and the Post-Synaptic Potential (PSP) are the two
major contributions of the EEG signal, but most of the potential is consti-
tuted by the PSPs. This statement follows from the fact that most neurons
that originate the action potential are not synchronized in time and the
resulting signal amplitude is low. Then, the postsynaptic activity of pyram-
idal neurons is the true source of the EEG signal. In fact, although the
amplitude of the PSPs is smaller, the time duration is longer (~30 ms) and
the probability of synchronization of a large amount of neurons is higher
[17].

The EEG detected on the scalp comes from cortical neurons.

The dendrites of cortical neurons arranged perpendicular to the surface of
the cortex are crossed by a current that flow perpendicular to the surface.

Scalp EEG detects the current flow perpendicular to the cortical surface.

However, scalp EEG is a two-dimensional representation of a three-di-
mensional reality, which implies that it is not possible to determine the

depth of the source [18].
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4.2 EEG frequency bands

As aforementioned, EEG signals reflects the temporal synchronization of
cortical pyramidal neurons. Due to its high spatial resolution, it is possible
to extract a large amount of information from the frequency domain, includ-
ing the presence of certain pathologies and disorders. the frequency spectrum
of the EEG ranges from 0.1 Hz to approx. 100 Hz and can be subdivided
into five non-overlapping frequency bands. The reason for the subdivision is

the reduction of the time information. The frequency bands are:

e Delta: 0,1 - 4 Hz

e Theta: 4 -8 Hz

e Alpha (also called mu): 8 - 13 Hz
e DBeta: 13 - 30 Hz

e Gamma: > 30 Hz

Each frequency band correspond to a mental state. The difference between
the bands varies between subjects, age of the subjects and in the presence
of pathologies. The phenomenon in which the areas of the cortex are syn-
chronized is called Event Related Synchronization (ERS). In this case, the
amplitude of the waves is high and the frequency is low. Conversely, if the
frequency is high, cortical areas are not synchronized. The resulting ampli-
tude value is low. The phenomenon of desynchronization of the activity of
cortical areas is related to the initiation or suppression of an action and is
called Event Related Desynchronization (ERD).

Delta band (0.1 - 4 Hz) is characteristic of infants and during sleep phases

in the adult. If in adults it occurs when awake, it could be a case of a severe
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brain disorder. In childhood, delta bands occur in the occipital lobe and, in
adults, in the frontal lobe.

Theta (4 - 8 Hz) oscillations are often observed during the transition from
wakefulness to sleep. An increase in theta power has been associated with
the processing of emotional information and during memory-related tasks.
In infants, theta frequency band is related to the expression of positive and
negative emotions, feeding, drowsiness and modulation of attention [19].

Alpha band (8 - 13 Hz) is visualized in the occipital area. It is related to
states of reflection and meditation and is most present during wakefulness.

It also occurs during eye closure.

Beta band (13 - 30 Hz) is present in the frontal region of the head. It is
related to states of attention, concentration, alertness and anxiety.

Gamma band (> 30 Hz) reflects the active maintenance of objects in
memory. It is not normally present in the EEG tracing unless evoked by
sensory stimulation.

A common scalp EEG shows frequencies until 40 Hz.

Only invasive neuronal interfaces can acquire an EEG trace with frequen-
cies covering the entire frequency band, which extends up to 100 Hz.

EEG is essential because is an efficient method to diagnose neurological
brain disorders such as epilepsy and autism spectrum disorder (ASD). For
example, an EEG after a head injury, brain tumour or epileptic seizure pre-
sents slower waves than the waves of a normal EEG.

The Alzheimer’s disease (AD) reduces the EEG complexity and changes

the synchronization of the cortex. Furthermore, AD increases activity in
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delta and theta bands and decreases activity in the alpha and beta bands
[20].

The EEG in an epileptic disorder shows an abrupt rise time, a complex
waveform and a slow-wave discharge that interrupts the continuity of the

background rhythm [21].
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5 Brain Computer Interface (BCI)

BCI systems constitute an interface between the user and the outside
world. The user's brain signals are translated into an output. The user re-
ceives feedback on this output. The feedback affects the user's brain activity
and influences the next output. Therefore, in a prosthetic arm control para-
digm, the position of the arm after each movement will influence the person's
intention for the next movement and subsequent brain signals with that

intention [16].

5.1 BCI neural interface

The neural interface of BCIs is a hardware that detects the signal and
translates it into useful information for the BCI system.

In order to be used with BCIs, they must fulfil certain characteristics. In
fact, they must be reliable, safe and the degree of invasiveness must not be
more than necessary.

Considering the above requirements, BCI neural interfaces can be divided

into three categories:

e Electrodes placed on the scalp for EEG detection. They are non-
invasive and record a low information potential from a large set of

neurons and synapses,
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e Electrocorticographic (ECoG) electrode arrays that are surgically
implanted onto the cerebral cortex. They permit to record a mod-
erate information from smaller sets of neuron and synapses,

e Microelectrode arrays surgically implanted into the cerebral cortex
and record local field potential from a localized sets of neuron and

synapses. They acquire a wide range of information.

5.1.1. Microelectrode array

Microelectrode array are devices containing several microelectrodes that
allow neural signals to be obtained or transmitted to an external device.

The best-known microelectrode array is the Utah electrode array (Figure
5.1). It consists, from the brain side, of many small electrodes which, from
the way they are arranged, are called “bed of nails”.

Invasive systems, such as the microelectrode array, are a good solution
when it must acquire signals with a high information content for controlling
prosthetic systems with high degrees of freedom, but they have some limi-
tations. Regarding biological coupling, there are some problems arising from
the use of invasive electrodes and the surrounding biological tissue.

Tissue response to implantation depends on the size of the microelectrode,
the distance between the stems, the composition of the material and the
time of insertion. Tissue response is typically divided into short-term re-
sponse and long-term response. The short-term response begins with an in-

crease in the population of astrocytes and glial cells surrounding the device.
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The recruited microglia initiate inflammation and begin a process of phag-

ocytosis of the foreign material. Over time, the astrocytes and microglia

recruited to the device begin to accumulate, forming a sheath surrounding

the microelectrode.

The sheath insulates the electrodes and increases impedance.

To minimize the negative effects of device insertion, the surface of the

device can be coated with proteins that promote neuron attachment, such

as laminin, or substances that elude drugs [22].

Implantable devices that work with invasive electrodes include deep brain

stimulators (DBS).

A

Dielectric
s

- Electrode site

s Dielectric

©/ Trace/lead

Cross-section at A-A’

20 um

i b R Bl R

— 400 um

Figure 5.1. (A) Illustration of the structural components near the distal end of a single tooth of the Utah mi-

croelectrode. The uninsulated tip is the electrode site. The insulated part of the tooth is the dielectric compo-

nent. (B) electron scanning myograph of a tooth. (C) Scanning electron micrograph of the bottom side of the

Utah microelectrode. (D) Utah microelectrode connected to a gold wire bundle. (Reproduced from [16])
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DBS are effective in treating the movement disorders of Parkinson's dis-
ease, cochlear implants which work with auditory nerve stimulation and
cardiac pacemakers [23]. The use of MEAs could help restore vision by stim-

ulating the optic nerve [24].

5.1.2. Electrocorticography (ECoG)

ECoG

White matter

Figure 5.2. Location of implantation of a ECoG electrode for the detection of a local field potential.

ECoG electrodes consist of a series of electrode plates placed on a thin
silicone sheet on the surface of the brain directly under the dura or placed
inside a groove (Figure 5.2) [25]. They are capable of acquire a local field
potential with a high SNR ratio.

The higher SNR is due to the shielding effect of the skull reducing ambient
and muscle noise and the proximity to the source of the potential.

Biological response to the implant is reduced due to location of the elec-

trodes.
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The ECoG was applied for epilepsy surgery. Also, it is possible to use the
ECoG as a monitoring system for seizures and for controlling simple cursor

movements [26].

5.1.3. Scalp EEG

Scalp EEG is a type of non-invasive EEG acquired from electrode placed
on the scalp.

EEG signal is acquired from the scalp using electrodes of varying numbers.

A multi-channel montage system consists of a minimum of 32 electrodes
mounted on a cap. Each electrode is placed at a fixed distance from the
surrounding electrodes. The distance is defined by an international standard.

For example, the most commonly used standard is 10-20 international
standard where “10” and “20” are proportional distances of respectively 10%
and 20% of the total length along contours between skull landmarks. “20”
refers to the distance between an electrode and the adjacent electrodes and
“10” refers to the distance between nasion and the first adjacent electrode
and between the inion and the first adjacent electrode (Figure 5.3). Nasion
is the point between the eyes and Inion is a point of back of the skull.

Electrode placements are labelled according to the brain areas: F (frontal),
pre-frontal (Fp), C (central), T (temporal), P (posterior), O (occipital) and
Z sites (Fpz, Fz, Cz, Oz). Z letter denotes the reference point. A letter refers
to the bone prominent behind the ears and, sometimes are used for contra-

lateral referencing. T3-T4, P3-P4 are used for seizure detection montage.
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The letters are followed by odd numbers at the left side of the head and
with even numbers on the right side.

Each electrode is an Ag-AgCl disk of 1 mm to 3 mm in diameter, with
long flexible leads that can be plugged into an amplifier [27].

It is possible to acquire EEG signal from the scalp with higher resolution

systems. In this case, the number of electrodes increase fulfilling the empty
space of the international standard system, becoming 10-10 system or 10-5
system. The amplitude of EEG signal recorded from the scalp is about 10

nV to 100 pV.
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Figure 5.3. International Standard 10-20 system

EEG deriving from the scalp has low spatial resolution and high temporal
resolution but is very useful in many applications, such as diagnoses or treat-

ment of the following disease:

e DBrain tumour
e Brain damage from head injury
e Encephalopathy

e Stroke
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e Sleep disorders

However, the EEG is not only used for clinical applications. As its use has
become more widespread, its fields of application have widened to including
cognitive neuroscience, psychiatric disease diagnosis, neuromarketing, neu-
rorobotics, sports science and human brain mapping. Recently, scalp EEG

can be used for real-time applications such as BCI and neurofeedback [17].

5.2 Existing BCls

It is common to see BCIs used in certain television scenes, where they are
depicted as an enhancement of human capabilities or, as a portal to immer-
sion within a virtual reality, as in The Matrix or Ready Player One. In
reality, BCI has a wider field of application in the rehabilitation or support

of people with disabilities or physical impairments.

5.2.1. P300 based BCI

ERPs are a manifestation of neural activity in the brain. They occur in
relation to an internal or external triggering event. Reaction to the stimulus
can be exogenous or endogenous. Exogenous reactions have a short latency
period and usually occur no more than 150 ms after the triggering event.

Their localization on the scalp, latency and morphological characteristics
depends on the type of stimulus applied.

Endogenous responses are not stimulus-dependent but are due to cognitive

activities. P300 is an endogenous response. It occurs between 250 and 750
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ms after the triggering event [28] [29] [30]. The variable latency is since the
P300 ERP is modulated by an unconscious decision process and by the dif-
ficulty of the stimulus [31]

It is originated in relation to an Oddball paradigm. Oddball paradigm
provides two classes of stimuli (visual or auditory), which are delivered
within a sequence in a non-repetitive manner. One of the two stimuli is less
frequent. The less frequent stimulus represents the Oddball stimuli.

P300 occurs in the signal taken from the scalp as a positive trend followed
by a negative trend. It is maximal on the Pz electrode and extends over the
entire posterior parietal region. BCIs based on P300 stimuli are non-invasive
and can be reparametrized within a few times.

P300 based BCIs applications are manifold. They are used to provide a
communication system for ALS patients, in the context of virtual reality or,
even in gaming application. For example, P300 based BCIs can move a cur-
sor in one of four directions instead of selecting item [32], enable control of

a mobile robot or to control a wheelchair [33] [34].

5.2.2. Sensory Motor Rhythms (SMRs) based BCIs

SMR are electrical or magnetic oscillations recorded on the sensorimotor
cortex. SMR, in the scalp EEG, falls in the mu rhythms (8-12 Hz) and beta
rhythms (18-30 Hz). In the ECoG and MEG recording it is possible to find,
respectively, electrical and magnetic activity of the sensorimotor cortex also
in the gamma frequencies (30-200 Hz). In this case, an imaginary or executed

movement is the event that determines the response. Many studies have
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shown that executed or imagined movement causes a desynchronization in
the mu/beta frequency (ERD) and a synchronization in the mu frequency
(ERS).

This means that the power of the mu/beta rhythms decreases during the
imagining or execution of the movement, while the power of the mu rhythms
increases after the execution or imagination of the movement [35].

BCI based on SMR signals have been used in various healthcare applica-
tions, such as neurological rehabilitation of a stroke brain area.

BCI systems coupled to robotic assistive devices have shown promising
results for stroke rehabilitation, however to date none of these systems are
used in clinical practice [36]

BCI working with this type of signal has led to promising results in motor
rehabilitation interventions and can be applied to patients without residual
movement [37].

Furthermore, they can be used for cursor control and robotic wheelchairs

for people who have lost the ability to walk.

5.2.3. Steady-State Visual Evoked Potentials (SSVEPs)

based BCls

Visual Evoked Potentials is a potential elicited by a visual stimulus, which
is a flashing light or the appearance of an image. The components of the
VEP are the N70 and P100, which are a negative deflection after 70 ms and

a positive deflection after 100 ms from the stimulus, respectively [38].
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Steady-State Visual Evoked Potentials (SSVEPs) are steady-state oscilla-
tions also evoked by a visual stimulus. Successive stimuli evoke the same
response, and the superposition of responses produces a steady-state oscilla-
tion.

The paradigm involves displaying different boxes flashing at a different
frequency on the screen. Each box is associated with a BCI output. The user
only selects by looking at the box that performs a specific function. The
potential is then read in the occipital region. Frequency of the stimulus is
typically equal to the frequency at which the looking box flashes. SSVEP
based BCI can control a functional electrical stimulator (FES) for knee flex-
ion or the roll position of an aircraft in a flight simulator [39].

With this type of BCI it is possible to drive a car within a map in a virtual
game environment [40]. In addition, it is possible to control an avatar in
virtual reality. The avatar's movements depend on the box in which it is

looking [41].

5.2.4. Slow Cortical Potentials (SCPs) based BCls

SCPs are slow variations of the potential. They are recorded, such as SMR,
over the sensorimotor cortex. SCPs are potentials occurring in relation to an
event. They are linked to the time and phase of particular sensorimotor
events (i.e. they occur at predictable times before, during or after certain
events). Typically, it is a negative shift of the potential that precedes an
imagination or planning of movement or a cognitive task (i.e. arithmetic

calculations). SCPs are followed by a wave called movement related
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potential. SCPs are Bereitschaftspotential (BP) and Contingent Negative
Variation (CNV).

BP is a negative SCP that occurs 500-1000 ms before a self-paced move-
ment.

CNV is a negative SCP that occurs 200-500 ms after a stimulus [42] [43]
[44].

Similar to SMRs, SCPs and related potentials over sensorimotor areas are
associated with motor imagination and real movements [45]. The paradigm
used is based on two conditions. The first is a resting condition and the
second is activity condition.

SCP-based BClIs are mainly used for cognitive tasks. Users using BCIs
based on SCPs are submitted to long training periods consisting of repetitive
sessions to enable them to control SCPs [46] [47].

An example of SCP-based BCls is controlling the direction of a ball on a
display by acquiring the signal from the Cz, C3 and C4 electrodes. Another
example is the spelling system for people with disabilities, such as ALS per-

sons [42].
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6 Thesis objective

The aim of the thesis is to classify two classes of imaginary movements
(MI) using an algorithm based on deep learning (DL). In addition, this al-
gorithm must be able to provide a good level of performance even with min-

imal pre-processing of the raw data.

7 Materials and methods

7.1 Dataset

The dataset used in the study was made public by PhysioNet and the
download was made possible through the official website (EEG Motor

Movement/Imagery Dataset v1.0.0 (physionet.org)) [48].

7.2 Montage

The EEG signal is acquired through a helmet equipped with 64 electrodes
at a sampling frequency of 160 Hz. The electrodes, as illustrated in Figure
7.1, are positioned according to the international 10-10 standard. Electrodes

(Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9 and P10) are excluded.
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Figure 7.1: Illustration of the electrode montage according to the international 10 -10 system

7.3 Experimental protocol

The dataset under consideration consists of 109 subjects, each running 14
runs. The advantage of using a dataset consisting of numerous subjects is
related to a better operation with DL networks. In fact, the numerosity of
the observations avoids the problems of overfitting the network, saving on
data augmentation operations. In addition, the large number of subjects
makes it possible to obtain a network with good generalization capabilities.

In the first two runs, an EEG signal lasting one minute each was acquired.
In the first run, the subject is asked to keep his/her eyes open while, in the
second run, the subject keeps his/her eyes closed. In the remaining runs,

lasting approximately 2 minutes, the subject is asked to perform or imagine
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a movement, according to the following protocol consisting of the following

4 tasks:

1. A target appears, for 4.1 s, on the right or left side of the screen. The
subject opens and closes the corresponding fist until the target disap-
pears. Afterward, the subject relaxes.

2. A target appears, for 4.1 s, on the left or right side of the screen. The
subject imagines opening and closing the corresponding fist until the
target disappears. Subsequently, the subject relaxes.

3. A target appears, for 4.1 s, on the upper or lower side of the screen.
The subject opens and closes, if the target is on the upper side, both
fists and, if the target is on the lower side, both feet, until the target
disappears. The subject then relaxes.

4. A target appears, for 4.1 s, on the upper or lower side of the screen.
The subject imagines opening and closing, if the target is on the upper
side of the screen, both fists. If the target is on the lower side of the
screen, the subject imagines opening and closing both feet until the

target disappears. Then the subject relaxes.

In this thesis, Movement Imagery (MI) is the object of the study. For each
subject, only those runs related to MI are considered and the runs related

to the execution of the movement are excluded. The runs studied are:

- Run 4 (R4)
- Run 6 (R6)
- Run 8 (R8)

- Run 10 (R10)
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- Run 12 (R12)

- Run 14 (R14)

Each run, excluding the two first runs, includes the annotations T0, T1 and
T2, which identify respectively resting state, beginning of movement (real
or imagined) of the left fist (LF) or both fists (LR) and beginning of move-
ment (real or imagined) of the right fist (RF) or both feet (BF).

For each run of the respective subject, observation windows of 4.1 seconds
EEG signal length were extracted. It is possible to distinguish each observa-

tion as follows:

- If the T1 annotation is contained in R04, RO8 and R12, the MI is
classified as Left Fist (LF)

- If T1 annotation is contained in R06, R10 and R14, the MI is classified
as Both Fists (LR)

- If T2 annotation is contained in R04, RO8 and R12, the MI is classified
as Right Fist (RF)

- If T2 annotation is contained in R06, R10 and R14, the MI is classified

as Both Feet (BF)

Figure 7.2 shows a schematic subdivision of the four MI mentioned above.
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Figure 7.2. Subdivision of the observations according to the annotations and to the run.

Subjects S88, S92 and S100 were excluded from the study because they
had a sampling frequency or observation window duration that did not agree

with the dataset description.

Finally, only R04, RO8 and R12 were considered for the study.
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7.4 Proposed framework

RAW EEG PRE- CHANNEL ( 2D MATRIX
. DATA PROCESSING SELECTION  CREATION

N
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NETWORK

Figure 7.3. Workflow of the thesis process

The files containing the EEG signal were provided in the standard '.edf'
format. The programming and numerical calculation platform called
MATLAB?® [49] was used to deploy the code. The first process is converting
the files from the '.edf' format to a format easily manageable by the platform,
i.e. ".mat' format. After conversion, a filtering task was performed in which,
low frequency trends and information carrying the frequency band above 30
Hz were removed. For each subject, an epoching process was performed.

Epoching consists of the extraction of time samples containing the signal
corresponding to the MI-EEG. Subsequently, in accordance with the subdi-
vision in Figure 7.2, LF and RF labels were assigned. A 2D matrix of size
N x 657 was created, where the rows contain the number of channels and
the columns the time points. In this case, N are the channels and 657 are
the time samples. Hence, the bidimensional matrix constitutes the inputs of

the neural networks.
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In addition, a study was conducted in order to evaluate the performance
of the classification in relation to the number of electrodes considered. Figure

7.3 describes, in brief, the process adopted to obtain the results.

7.5 Pre-processing

Pre-processing step is a very important activity. It allows the selection of
frequencies of interest excluding unnecessary ones. In addition, this process
removes certain artefacts. For example, eye movement and eye - blinking
generate electrical activity that constitutes an artefact in the EEG pathway.
Most of the power of ocular artefacts is in the delta and theta band and
decreases with increasing frequency, such that it is considered negligible in
the alpha and beta band. Ocular artefacts are greatest in the region close to
the eye and, as they move away from the eye, they decrease their intensity
[50].

Another artefact is generated by electrical activity in response to facial
muscle contraction. Typically, the frequency band of EMG artefacts, like
muscle facial contraction, overlaps the frequency band of the EEG, but most
of the power is above 30 Hz [51].

Electrical activity due to the QRS complex of the ECG also appears
within the EEG trace.

The change in impedance or potential between the scalp and the electrodes,
also causes artefacts that appear as slow oscillations around a frequency of

1 Hz.

48



Regarding the considerations addressed in Chapter 4 on ERD/ERS and
the above-mentioned artefacts, the frequency bands involved in MI-EEG
were isolated. Thus, the frequency band considered are those corresponding
to the mu (8-12 Hz) and beta (13-30 Hz) rhythms. However, it has been
observed that the addition of the delta and theta frequency bands leads to
better results. Bandpass filtering was performed by implementing two But-
terworth filters. The first filter performs high pass filtering with a cut-off
frequency of 0.8 Hz. The second filter performs low pass filtering with a cut-
off frequency of 30 Hz.

The Butterworth filter is an IIR filter and its use was favoured because it
has a flat frequency response curve [52].

In order to better observe the power frequency distribution, the power
spectral density (PSD) was calculated for Subject 6. Figure 7.4 shows the

PSD of the signal before filtering.

PSD of the subject S006R04
T T T

10710g10(microV2iHz)

10 20 30 40 50 80 70 80
Frequency (Hz)

Figure 7.4. PSD illustration of Subject 6 before filtering
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A power peak centred at 60 Hz can be seen. The peak corresponds to the
power line interference. Moreover, it can be seen that the power is more
distributed at low frequencies and decreases as you move away from the low
frequencies.

Figure 7.5 shows the PSD of the signal after filtering. The signal power,

after 30 Hz, i.e. after the upper cut-off frequency, decreases steeply.

PSD of the subject SO06R04
T T T

10%0g10(microV/Hz)

4
Frequency (Hz)

Figure 7.5. PSD illustration of Subject 6 after Butterworth filter (0,8-30 Hz)

7.6 Epoching

The segmentation of the EEG signal involves the extraction of time win-
dows corresponding to the duration period of the cue. A time window of 4.1
s, in which the presence of the MI was expected, was considered.

The extracted time windows constitute the inputs to the neural network.
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Thus, from the epoching, matrices of dimension [N x 657] were obtained.
N corresponds to the number of channels and 657 are the sampling point.
A 2D matrix previously created, is also called an observation.

Each observation has an associated label. According to the dataset
description, the labels are LF or RF and the total number of observations is
4748. LF was assigned for the MI-EEG of the left hand. RF was assigned

for the MI-EEG of the rigth hand imagery movement.

7.7 Channel selection

The channels selected for the study are those present on the SMR cortex.
Channels on the SMR cortex are less corrupted by ocular artefacts. In addi-
tion, considering only a few channels brings advantages to the positioning
of the EEG helmet, leading to a reduction of the electrode placement time
on the scalp. From the point of view of network training, a few numbers of
electrodes decrease the training time of the neural network. However, it may
lead the network to overfitting problems. As an opposite effect, the use of
the entire number of channels leads to an increase in training time with a
consequent increase in computational costs.

Some studies shows that different types of motor imagery have the most
impact on the signals of C3, Cz, and C4 channels. Therefore, C3, Cz, and
C4 channels was taken as the core and gradually expand the number of
channels, reaching seven groups of channels.

The detail of the groups chosen are illustrated in Figure 7.6, which is a

topographical representation of the channel groups on the scalp.
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Figure 7.6. Topological distribution of channel groups on the scalp

7.8 Model architecture

For the analysis of the MI-EEG signals, alternative approaches to Machine
Learning (ML) have been studied in recent years and are all based on the
use of Deep Learning.

In particular, its ability to learn features from raw signals has been inves-
tigated.

Architectures as Convolutional Neural Networks (CNNs) have shown

great success in the field of image and audio signal recognition [53].
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The EEG signal, in the time domain, has a high variability between trials
of the same subject (intra-subject variability) and between trials of different
subjects (inter-subject variability) [54]. These features make the networks
poorly efficient. Some studies, to solve this problem and obtain better clas-
sification results, extract features in the frequency domain and in the spatial
domain and use them as input to the neural network.

One of the main objectives is to find formulation of inputs or neural net-
works that make the features extraction process as automatic as possible.

Deep Learning networks, such as the most famous Convolutional Neural
Networks (CNNs), can do this.

In the following, a network that includes convolution layers will be called

CNN and network that includes recurrent layers is called RNN.

7.8.1. Convolutional Neural Networks (CNNs)

CNNs have been applied in several fields, which include computer vision,
speech and face recognition [55] [56].

The structure of CNNs was inspired from the structure of the human brain.
It’s based on the visual cortex [57].

A convolutional network takes its name from the convolutional layers.

A convolution layer consists of numerous neurons, which connect the in-
put images or the images coming from the output of other layers. Thus, the

layer learns the local characteristics of the image.
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For each region, the dot product of the weights with the input is performed.
A bias term is then added. A set of weights applied to the image region is
called a filter. A filter is also called kernel. A filter repeats the same proce-

dure for each region, i.e., it performs a convolution of the input (Figure 7.7).

Figure 7.7. Illustration of the kernel sliding over an input and executing the scalar product.

The step size at which a filter moves on the image is called stride. For

example, a stride of value 2 is represented as follows in the Figure 7.8.

Figure 7.8. illustration of a filter with stride of value 2 sliding along an input
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The number of weights in a filter is [b x w X ¢], where h is the height,
w is the width and ¢ is the number of channels in the filter. If the input is
a RGB image, c is equal to 3. In addition, the number of filters determines
the output channels of a convolution layer. A filter moving over the input
generates a feature map. The number of feature maps is equal to the number
of filters, and each filter has a different set of weights and biases. Hence, the
total number of parameters is[(h X w X ¢ + 1) x Number of Filters],
where 1 is the bias.

When the filter exceeds the size of the input, samples can be added to the

edge of the input (Figure 7.9). This procedure is called padding [58].

Figure 7.9. The grey rows and columns represent padding
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7.8.2. Long-Short Term Memories (LSTMs)

An example of a RNN is the LSTM network, which is able to learn long-
term dependencies between the time steps of a data sequence.

The LSTM layer has two states, which are the hidden state, also called
the output state, and the cell state. At time t, the hidden state contains the
output of the LSTM layer. The cell state contains the information from the
previous time step. At each time step, the LSTM layer adds or removes
information stored at the previous time step. The layer checks for updates
using gates.

The weights that an LSTM layer can learn are named RecurrentWeights
R and InputWeigths W and the bias b. The matrices W, R and b are con-
catenations of the weights W, R and b formulated for each component.

These matrices are as follows in Equation 7.1:

Wi R; b,
W = Wy R = Ity b= b Equation 7.1
= Wg R = Rg b= bg quation 7.
w, R, b,

The components that control the cell state are:

e Input gate (i) controls the cell state update. The Equation 7.2 de-

scribes input gates components at time step t:
iy = o,(Wx, + Rh;_; +0,) Equation 7.2
e Forget gate (f) controls level of cell state reset (Equation 7.3):

fi=0,Wex, + Rehy | +by) Equation 7.3
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e Cell candidate (g) adds information to cell state (Equation 7.4):
g =o0. Wz, +R,h,  +b,) Equation 7.4

e Output gate (o) controls the level of the cell state added to the

hidden state (Equation 7.5):

o, =o,(Wym, + R,h; 4 +b,) Equation 7.5

o, and o, denote respectively the gate activation function and the state
activation function.

Figure 7.10 is an illustration of the process of gates forgetting, updating,

and outputting cell and hidden state at time step t.

Forget Update Output

Figure 7.10. Ilustration of the process of gates forgetting, updating and outputting cell and hidden state at

time step t

7.8.3. Gate Recurrent Unit (GRU)

A GRU layer learn time series dependencies and is well suited, such as

LSTM layer, for sequence data.
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At each time step t, through gates, the hidden state that contain infor-
mation is updated.

The components that control the cell state are:

e Reset gate (r) controls level of state reset. In MATLAB, if Re-
setGateMode is set to:
o ‘after-multiplication’ or ‘before-multiplication’, the Equa-
tion 7.6 describes the components at time steps t:
ry= o,(W,a, + by, + R.h, ;) Equation 7.6
o ‘recurrent-bias-after-multiplication’, the FEquation 7.7 de-
scribes the components at time steps t:
ry = 0,(W,x;, + by, + Ry )+ bp, Equation 7.7
e Update gate (z) controls level of state update. If ResetGateMode
is set to:
o ‘after-multiplication’ or ‘before-multiplication’, the Equa-
tion 7.8 describes the components at time steps t:
zp = o,(W.x; + by, + R,hy ;) Equation 7.8
o ‘recurrent-bias-after-multiplication’, the Equation 7.9 de-
scribes the components at time steps t:
zp = o,(W.x; + by, + Rhy_ ) +bp, Equation 7.9
e (Candidate state (h) controls level of update added to hidden state
If ResetGateMode is set to:
o ‘after-multiplication’, the Equation 7.10 that describes the

components at time steps ¢:

hy = o (WyX; + by, + 7, © (R, hy ) Equation 7.10
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o ‘before-multiplication’, the Equation 7.11 describes the com-

ponents at time steps t:

hy = oWy X + by, + Ryri(r; ©Ohy_y)) Equation 7.11

o ‘recurrent-bias-after-multiplication’, the Equation 7.12 de-

scribes the components at time steps t:

hy= oWy, X, + by, +7, 0 (R, +bp,)) Equation 7.12

The weights that a GRU layer can learn are named RecurrentWeights R
and InputWeigths W and bias b. The matrices W and R are concatenations
of the weights W and R formulated for each component. These matrices are

as follows in Equation 7.13:

W, R,
W = [Wy ,R=|R, Equation 7.13
Wh Rh,

Bias b depends on the ResetGateMode property.
If ResetGateMode is ‘after-multiplication' or 'before-multiplication' the

bias vector is a concatenation of three vectors (Equation 7.14):

bW’l‘
b= |by. Equation 7.14
bWh,

If ResetGateMode is 'recurrent-bias-after-multiplication' the bias vector

is a concatenation of six vectors (Equation 7.15):

by
bWz
b
b= Wh
b Rr

sz
th,

FEquation 7.15

R indicates that the bias corresponding to the recurrent weights

multiplication.
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o, and o, indicates the gate and state activation functions, respectively.
For the hidden state, the Equation 7.16 describes the components at time

steps t:

h,=(1—2)0h +20h, 4 Equation 7.16

7.8.4. Hybrid Deep Learning (hDL) architecture

The inputs of the network are MI-EEG signals with spatial and temporal
characteristics. The channels are arranged along rows and the time samples
are arranged along the columns. Furthermore, the channels represent the
spatial characteristics, and the columns represent the temporal characteris-
tics. The implementation of the network should take this difference into
account.

To classify the two types of MI, a hybrid CNN-RNN model was imple-
mented, based on the study [59]. However, the network was modified ac-
cording to the needs.

In this thesis work, the implemented hybrid network consists of two main
blocks. The first is a convolutional block, which contains layers that apply
convolution along the rows of the input matrix and along the columns of the
feature extracted from the two previous layers.

The convolutional block has the role of extracting the spatial and temporal
characteristics of the signal. Between one convolution layer and the next,

pool layers are adopted to decrease the amount of data
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After the convolution block, the extracted features are fed to a recurrent
block, which consist of time recurrent layers that are suitable for extracting
and predicting time series data.

Finally, a Classification layer outputs the classification results of the net-
work.

The hybrid network is illustrated, in a general way, in the Figure 7.11.
The convolution block is shown in yellow, and the orange is used to represent
the RNN block.

The convolutional block consists of three convolutional layers that con-

sider the difference between the two dimensions:

e The first is a convolution layer of dimension N x 4. It performs a
convolution along the spatial dimension of the input data. The
number of convolution kernels is 10

e The second is a convolution layer of dimension [1 x 8]. It performs
a temporal convolution of features extracted from the first convo-
lution layer. The number of convolution kernels is 40.

e The thirth is a convolution layer of dimension [1 x 4]. It performs
a temporal convolution of features extracted from the previous con-
volutional layer. The main purpose is to further extract features.

The number of convolution kernels is 80.

The second block consists of an LSTM layer with 50 hidden neurons and
one GRU layer with 200 neurons. The LSTM layer works well with time
sequences. The choice of the GRU layer was made to facilitate a faster net-
work learning process. Their purpose is to classify temporal features ex-

tracted from the convolutional block.
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Figure 7.11. Illustration of the hybrid network. The convolution block is shown in yellow, while the

RNN block in orange.

Each convolution layer is followed by a Batch Normalization layer (BN

layer), an activation layer (ReLU layer) and a Max Pool layer (MP layer).

e Batch normalization layer normalizes mini batches of data across
all observations. Specifically, batch normalizes the z; elements of
the input by calculating the mean pp and variance 0%, as ex-

plained in Equation 7.17:

x, = L=bke Equation 7.17

(T2B+€
€ is a constant that improves numerical stability when the variance

is low [60].

e A ReLU layer performs a threshold operation [61]. Input element
less than zero has been set to zero, as follows in Equation 7.18:

flz) = {é’ iig Equation 7.18

e A max pooling layer performs subsampling by dividing the input
into small regions and considering the maximum for each region

created [62].
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In addition, after the LSTM block, there are two fully connected layers
(FC) consisting of 200 neurons and 2 neurons, respectively. Each FC con-
nects all the neurons of the previous layers. In addition, FC multiplies the
inputs with a weight matrix and adds a bias vector [63]. The fully connected
layer has the purpose of combining all the characteristics extracted from the
previous layers.

The last FC layer has two neurons, which correspond to the number of
output classes.

After the fully connected layers, there is another activation function,
which is called softmax function. In a classification problem, it is generally
placed before the classification layer. If the problem requires the classifica-
tion of two classes, such as in the present case, the softmax function follows

Equation 7.19:

_ P(z,6lc,)P(c,) _  expla,(x,0)) .
P(eyle,8) = S Plable,)Ple;) X5 eapl(ay(x,0)) Equation 7.19

Where:
e 0< P(x,0|c,) <1 and 2521 P(z,0)c,) =1

e a,=In(P(z,0|c,)P(c

T

), P(x,0]c,) is the conditional probability

of the sample given class r

e P(c,) is the class prior probability.

Finally, a classification layer was used. Its purpose is to calculate the cross-

entropy loss (loss function) for classification.
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The classification layer assigns each input to a class K using the cross-
entropy function.
Equation 7.20 represents the loss function, which in this case is a cross-

entropy loss function:

loss = —+ Zi\;l Zil w;t,,; Ny, Equation 7.20

Where:

e Nis the number of samples

e K s the number of classes

e w, is the weight for class i

e t,. is an indicator that the nth sample is a member of the class ith

e 1y, is the probability that the network assigns the nth input to a

class 1 [64].

In addition, to solve the overfitting problem, a dropout layer was added at
the end of the convolution block and at the end of the LSTM block.

Dropout layer randomly sets all input elements to zero with a probability
of 25%. However, as max pooling layer, it has no learning capability.

Figure 7.12 shows a detailed graphical representation of the CNN-RNN

network and its connections.
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Figure 7.12. Graphical representation of the CNN-LSTM network.

7.9 Evaluation performance

7.9.1. Leave N Subjects Out

When a model is evaluated, it is important to assess its level of generali-
sation, which means to consider how a model classifies data on which it has
not been trained. The data that is used to train the model is called the
training set. Whereas, if the model's ability to generalise is to be assessed,
the same model must be tested on a test set. The method used to test the
performance of the network is the Leave-N-Subjects Out, where N is the
number of groups. This method attempts to emulate what happens in real
situations, where the network is trained on the data of some subjects and is
run on other subjects. Finally, it is a suitable method to assess the level of
generalization of the network.

The approach of the method used is very similar to k-fold cross-validation

but is more penalizing in terms of results. In fact, unlike k-fold cross-
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validation, with the use of Leave N Subjects Out, the validation of the model
realized by the network takes place on subjects who were not seen in the
training phase. As the EEG is a signal with high variability between differ-
ent subjects and between trials within the same subject, the performance of
the model will be inferior. In fact, the subjects were divided into 5 groups
with 80 % of the subjects for the Training and 20 % of the subjects for the
Testing set. At each iteration, the network is trained and tested on different
groups of subjects. Figure 7.13 shows how the network is trained and tested.
In particular, the subjects that at iteration i were part of such Testing set,
at iteration i+1 are considered as Training subjects. The iteration continues
until the maximum number of groups considered is reached. When this hap-
pens, all subjects in the dataset are taken as both Testing and Training
network subjects. Finally, the overall accuracy of the model is the average

of the accuracy values obtained for each group.

Training Set Training Set Training Set Training Set Testing Set
Training Set Training Set Training Set Testing Set Training Set
Training Set Training Set Testing Set Training Sct Training Set
Training Set Testing Set Training Set Training Set Training Set
Testing Set Training Set Training Set Training Sct Training Set

Figure 7.13. Illustration of Leave N Subjects Out groups. Training sets are made with 80% of the total sub-

jects and Testing set are made with 20% of the total subjects.
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7.9.2. Precision, Recall and F1 score

Precision, recall and F1 score were evaluated in the following way.

Precision, recall and F1 score, in a classification task, should be applied
separately for each of the existing classes.

This means that, for assessing the ability to distinguish left-handed move-
ment from right-handed movement, the LF label was taken as the true pos-
itive value and the RF as the false value.

On the other hand, for evaluating the ability to distinguish the imagery
movement of the right hand from the left hand, the label RF is considered
as a positive value, while the label LF as a false value.

Thus, the values used for the metrics are:

e True Positive (TP), where the classifier recognises the imagery
movement of the left fist (or right fist) and the label associated
with that motor imagery is LF (or RF),

e False Positive (FP), where the classifier recognises the imagery
movement of the left fist (or right fist), but the label is RF (or LF),

e True Negative (TN), where the classifier recognises the imagery
movement of the right fist (or left fist) and the label is RF (or LF),

e False Negative (FN), where the classifier recognises the imagery
movement of the right fist (or left fist), but the correct label is LF

(or RF).

Applying these considerations to Equations 7.21, Equations 7.22, and

Equations 7.23, we obtain the results explained in the ‘Results’ chapter.
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Precision =

Recall =

Tr

TP + FP

Tr

TP+FN

_ DPrecision X Recall
F1 2 X Precision + Recall

8 Results

In this chapter, the results of the proposed model are outlined.

FEquation 7.21

FEquation 7.22

Equation 7.23

Using a laptop with an Nvidia GeForce GTX 1080 Max-Q graphics card

with 4 GB RAM, 8 GB RAM and Intel Core(TM) i7-8565U CPU @ 1.80GHz

1.99 GHz, the code was run a number of times equal to the number of

channel groups. The performance of the model, for each group, was validated

according to the Leave N Subjects Out method. Table 8.1 shows the

accuracy, precision, recall, F1 score and time required for training.

@ s 2 2 _g
s 52§ E §iag
g < § % E %
@) = = <‘£ =

z - =
A 3 65,55 + 1,51
B 6 69,51 + 1,62
C 10 72,80 £ 1,57
D 13 73,77 + 2,71

LF

67

70,07

73,77

74,96

Precision (%)

RF

64,27

68,05

71,87

72,63

69

LF

62,57

69,00

71,54

72,08

Recall (%)

RF

68,60

69,93

74,00

75,47

LF

64,71

69,58

72,64

Fl-score (%)

RF

66,36

69,44

72,96

74,02

Time (min)

13,14

13,26

18,65

23,59



E 18 75,96 + 1,31 77,21 74,76 74,25 77,68 75,70 76,19 29,15
F 21 75,61 +£0,49 76,68 74,56 74,25 T 75,44 5,77 31,82

G 64 80,6564+0,97 81,28 80,02 80,09 81,21 80,68 80,61 116,30

Table 8.1. Table below shows the mean and the standard deviation of accuracy for the five groups of folds.

Furthermore, they are displayed other parameters such as Precision, Recall, F1 score calculated for each groups.

From the following graph (Figure 8.1), it can be seen how the 64-electrode
configuration provided better classification results, reaching 80.65%
accuracy at the expense of training time, which reaches that result in 116,3
minutes (approx. 1 h 56 min). Furthermore, it can be seen that the network
achieves acceptable results already with an 18 electrode configuration.

Thus, the 18 electrode configuration (group E) is proposed to be a good

balance between performance and training time.

90 80,65 140
80 120
70 116,3
100 =
< 60 s
- w
G S0 80 %
g [
§ 40 60 %
g, :
40 £
20
10 20
0 0
A B C D E F G
CHANNELS GROUP

—O—Accuracy —O—Training time

Figure 8.1. The graph displayed shows the accuracy trend as the number of electrodes increase
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9 Conclusions

In this thesis work, two motor imagery were classified using an innovative
method based on Deep Learning.

For this purpose, a hybrid CNN-RNN network was implemented, consist-
ing of a convolution block and an RNN block. The convolution block consists
of three convolutional layers. The first one performs a convolution along the
spatial dimension of the signal. The second and third layer perform a con-
volution along the temporal features previously extracted from the first two
layers. The features extracted from the convolution block are fed to the
recurrent block formed by the GRU layer and an LSTM layer.

The layers of the recurrent block work very well in the extraction of tem-
poral sequences.

Finally, the output of the LSTM block, passing through fully-connected
layers, is fed to a classification layer, which classifies the two imaginary
movements, and outputs the classification result.

The network was trained and validated with the Leave N Subjects Out
method.

The Leave N Subjects Out method divides the entire number of subjects
into five groups. The network is trained on one group of subjects and vali-
dated on a group of subjects different from the one used for training. The
high variability of the EEG signal between different subjects makes it a
challenging method from the point of view of network classification. This
method tries to emulate what happens in real applications, where the net-

work is trained on subjects and performed on other subjects.
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In addition, a study was performed to evaluate the training time and
accuracy as a function of the number of electrodes.

From the study conducted in this thesis, it was possible to observe the
ability of Deep Learning in feature extraction. Indeed, the DL network pro-
vided good results eliminating time-consuming pre-processing and feature
extraction. This aspect represents a good generalisation ability of the net-
work, even though the task is difficult to analyse.

Furthermore, the study on the number of electrodes showed that the 64-
electrode configuration leads to excellent results (80.65% accuracy) at the
expense of a high training time, but a number of 18 electrodes placed on the
SMR cortex, is already a good compromise between training time and accu-
racy (75.96% accuracy). In addition, a smaller number of electrodes, for a
BCI using a motion imagery paradigm, would have the advantage of de-
creasing the number of electrodes to be placed on the scalp.

As a future implication, it is possible to evaluate the performance of the
network in real time. In addition, it is also possible to assess how the results
of the network changes by using inputs in a different way, i.e. as scalp maps,

each related to the other in terms of time.
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