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Summary

Introduction

Deep Learning (DL) has achieved cutting edge results in several medical fields, with
its applicability ranging from lesion segmentation to disease relapse prediction. Neuro-
oncology, being one of those, has seen important advancements, especially in automating
neuroradiology tasks such as brain tumor detection and segmentation. However, even if
state of the art results have been achieved by DL methods on brain tumor segmentation
on pre-operative Magnetic Resonance Imaging (MRI) scans, hardly the same can be said
of post-operative segmentation, where literature lacks of a more comprehensive study
and the few proposed models still present strong limitations regarding the scope or the
generalizability.

Goals

Gliomas account for approximately 30% of all brain and central nervous system tumors,
and 80% of all malignant brain tumors. Glioblastoma multiforme (GBM) are the most
commonly encountered and aggressive malignant primary tumor (15%) of the central ner-
vous system in adults, accounting for approximately 55% of all gliomas. Nowadays, the
standard of care treatment for GBM patients consists in surgical resection followed by ra-
diotherapy and chemotherapy, leaving then the subject untreated for the succeeding four
months. The aim of this study, in conjunction with the Molinette Hospital in Turin, is to
try making a further step in the field of automatic and semi-automatic brain tumor seg-
mentation from neuroimaging modalities via deep learning technologies on post-operative
scans.

Method

Due to the lack of available data in clinical practice, Transfer Learning (TL) has seen
a spike in popularity within the medical field, allowing to train models in absence of a
large dataset by leveraging knowledge learned from other source tasks. Still, current TL
techniques in medical imaging mostly implement knowledge transfer from natural imaging,
usually from model trained on the ImageNet dataset.
Even if some progress is done, the knowledge transferred between the two areas can be
either not sufficient to achieve promising results in the medical task or make the transfer
process quite unpredictable. This work arises upon the intuition that TL between pre-
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and post-operative brain tumor segmentation could lead to promising results by leveraging
both the closeness of source and target domains, and the fact that the knowledge transfer
process does not leave the medical field. More in detail, a nnU-Net variant will be at first
trained on the BraTS 2021 challenge dataset, a collection composed of 1251 patients – each
one presenting four scan modalities (FLAIR, T1, T1ce and T2), acquired with different
apparati and protocols from several different institutions – with the goal of becoming
the de facto benchmark for addressing the automated tumor sub-region segmentation
from pre-operative multi-parametric MRI scans. The network knowledge will then be
transferred on the smaller post-operative MRI dataset, made available by the Molinette
Hospital, which includes 166 scans from 71 patients with imaging times ranging from
immediately after the surgery (max 48h) to 12+ months after.
Following literature, the quality evaluation of the automatic brain tumor segmentation
performed by the network – both pre- and post-operative – is performed through Dice
score and the undirected 95th percentile Hausdorff distance. Since the private dataset
includes only FLAIR and T1ce as modality, an Image Modality Transfer (IMT) method
is also investigated in order to artificially synthesize the missing scans, hence trying to
leverage further contextual information. In detail, a 2D U-Net architecture is trained on
the BraTS 2021 dataset in order to learn the non-linear intensity mapping between the
T1ce modality and the missing ones. FLAIR scans are not included as input due to the
presence of non-volumetric imaging, i.e. low-res acquisitions which would eventually lead
to anatomically coarse-grained outputs.

Results

Pre-operative segmentation comprises the three classes of Whole Tumor (WT), Tumor
Core (TC) and Enhancing Tumor (ET), achieving an average Dice score of 91.09 (WT:
93.78, TC: 93.11, ET: 86.37) and an average Hausdorff95 distance of 8.22 (WT: 5.45,
TC: 5.76, ET: 13.45), in line with the top performances indicated by the authors. On
the other hand, post-operative segmentation comprises the three classes of Gross Tumor
Volume (GTV) plus surrounding Edema (ED), GTV only and Resection Cavity (RC),
achieving an average Dice score of 72.44 (GTV+ED: 76.51, GTV: 76.50, RC: 64.32) and
an average Hausdorff distance of 23.43 (GTV+ED: 10.37, GTV: 10.30, RC: 49.63). No
significant improvement in performances was observed by including the two artificially
synthesized missing MRI modalities with the proposed IMT method.
Differently from other studies in literature, this work present a first omni-comprehensive
tool for post-operative brain tumor segmentation, i.e. it does not focus on a single class
recognition (such as the resection cavity) and it does not impose any kind of exclusion cri-
teria for the dataset. Indeed, in previous studies, strong criteria for inclusion/exclusion of
MRI scans in the final dataset are often imposed, such as, among others, newly-diagnosed
GBM only, availability of all imaging modalities or resection cavity clearly present on
visual inspection. These constraints undoubtedly ease the learning process but are not
generalizable to the clinical practice where an incommensurable diverseness and variety is
present. This translates however in dealing with scans where, for example, some classes
are not present at all (brain parenchyma expanding and filling the cavity), or the same
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FLAIR T1ce Manual seg. STAPLE seg. Difference map

Figure 1. Example of pre-operative segmentation for a patient from the Molinette
Hospital dataset (in blue: Necrosis, in yellow: ET, in turquoise: ED).

FLAIR T1ce Manual seg. STAPLE seg. Difference map

Figure 2. Example of post-operative segmentation for a patient from the Molinette
Hospital dataset (in blue: CV, in yellow: ET, in turquoise: ED).

class behaves in a completely dissimilar way among different patients (hemoglobin degra-
dation). This emerges vividly in the RC segmentation, undoubtedly the Achilles’ heel
of this work, with the network either oversegmenting the cavity by mistakenly including
other hypointense regions or by completely misrecognizing it when a too heterogeneous
pattern is present. The former issue is nontheless eventually mitigated by the STAPLE
fusion and by leveraging the three overlapping prediction confidences, thus improving the
model performances.
Under this light, results are therefore in line with the literature, considering its strongly
heterogeneous nature and the reduced dimension of the dataset. While looking forward to
a publicly available multi-site dataset like BraTS, this work presents itself as an interesting
proposal and starting point in order to reduce the gap between pre- and post-operative
GBM segmentation.
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Chapter 1

Introduction

Artificial intelligence will not replace radiologists... but radiologists who
use AI will replace radiologists who don’t.

- Dr. Curtis Langlotz

1.1 AI in medical imaging: a new paradigm
Medical imaging refers to those imaging techniques which try to build visual represen-
tations of either internal or external tissues of the human body by means of physical
phenomena such as electromagnetic radiation, radioactivity, light, nuclear magnetic reso-
nance or sound via both non-invasive and invasive procedures (Zhou et al. [2020a]). The
most widely adopted imaging modalities in the clinical environment include computed to-
mography (CT), X-ray radiography, ultrasound, digital pathology and magnetic resonance
imaging (MRI). There are several traits influencing the nature and sustainability of com-
puter vision solutions in medical imaging. First, medical images not only present them-
selves in all those different medical modalities but are getting denser and denser in pixel
resolution (as an example, MRI and CT spatial resolution has reached a sub-millimeter
level) so that several complications arise then from the trade-off between pixel/voxel res-
olution and information density. Second, medical images are both isolated and acquired
in non-standard settings. But the lack of standardization and the high heterogeneity in
equipment and scanning settings are only part of the problem since, due to patient pri-
vacy and clinical data management requirements, datasets are scattered among different
locations. Third, disease patterns are numerous and the labels associated with medical
images are often sparse and noisy. Indeed, annotating is expensive and time-consuming,
and different tasks require different forms of labeling. Because of this unavoidable inner
variability inter-user and intra-user labeling consistency is low, with the establishment
of standards for medical imaging annotating still being a long way down the road. Last,
samples are both unbalanced and heterogeneous, and analysis tasks are often complex and
diverse. In the case of tumors, for example, the number of pixels/voxels belonging to such
class is usually many orders of magnitudes smaller than that of healthy tissue. Medical
imaging is nonetheless a core aspect of the medical diagnosis and treatment process since,
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Introduction

typically, both the diagnosis and the treatment are planned by the referring physicians
based on the radiologist’s report. Furthermore, medical imaging is often recommended as
part of the follow-up in order to check the successful status of the treatment. However,
human image interpretation is limited, as anticipated, by the wide heterogeneity across
interpreters. The process is often wearing and time consuming and, given the limited
time that radiologists have when reviewing the cases, actual missed findings can heavily
stretch the path to a more evidence-based personalized healthcare. In this framework, AI
and deep learning (DL) technologies can provide support by automating and standardiz-
ing a wide spectrum of tasks, from quantification of disease extent to characterization of
pathologies. Refined versions of state-of-the-art methods have been successfully adopted
for tasks such as object classification, localization, detection or segmentation. Indeed,
if sufficient data were present, the accuracy of such models often matched (if not even
surpassed) the one of expert physicians (Esteva et al. [2021]).
In order to try to summarize this heterogeneous environment, it is possible to let all
medical imaging-related deep learning tasks fall under one of the following applications:

• image reconstruction, i.e. building an image from those signals returned by medical
devices such as a CT of MRI scanner;

• image enhancement, i.e. adjusting intensity in an image to make the resulting im-
age more suitable and prone to further analysis (de-noising, bias field correction,
harmonization, etc.);

• image segmentation, i.e. assigning labels to pixels/voxels in order to form segmented
objects as components;

• image registration, i.e. aligning spatial coordinates of an input image in order to
match a common coordinate system;

• computer aided detection (CADe), i.e. localizing and bounding an object of interest;

• computer aided diagnosis (CADx), i.e. deepening the output of CADe by further
classifying the localized object of interest as either one of multiple types or as be-
nign/malignant;

• other technologies, such as automatic report generation or landmark detection.

Any of the above can eventually be regarded as a function approximation method, with a
mapping F that takes as input an image x and returns as output a task-specific y = F(x).
Because of its focus on learning rather than modeling, deep learning has been widely
adopted in medical imaging since its conception and represents a substantial departure
from previous approaches. However, it is undeniable that this new approach suffers from
lack of interpretability: the lack of evidence and interpretation for such algorithms (often
used as black-box) makes it difficult for radiologists to trust the DL model’s prediction,
especially since it is also true that interpretability is often the source of new knowledge.
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1.1 – AI in medical imaging: a new paradigm

Thoracic imaging

Lung diseases are characterized by an extremely high morbidity and mortality. Indeed,
among the top ten causes of death worldwide it is possible to observe lung cancer, pneu-
monia, tubercolosis and chronic obstructive pulmonary diseases. Moreover, pulmonary
complications are common side-effects during hospitalization. The hyper-presence of these
malignancies leads however also to an hyper-presence of chest radiography screenings, by
far the most common radiological examination. When imaging the chest, plain radiog-
raphy and CT are the two most common modalities. Automated segmentation methods
from chest CT scans have been proposed and state-of-the-art results have been achieved
by deep learning during the last few years (Gerard and Reinhardt [2019]). Another im-
portant area of applicability and research for AI in thoracic imaging is the segmentation
of the vasculature, separating into arteries and veins, and the airway tree. Moreover, the
availability of large public datasets during the last years (ChestXRay, CheXpert, MIMIC,
PadChest) has driven the research towards DL-based methods for abnormalities detec-
tion in chest X-ray scans. As an example, given the overwhelming presence of patients
in hospitals during the COVID-19 pandemic situation and the subsequent shortage of
molecular testing, AI has been adopted to analyse chest X-ray or CT scans in order to
obtain a working diagnosis.

Cardiovascular imaging

There are three main sub-fields in which deep learning impacted the field of cardiovascular
imaging: cardiac chamber segmentation, cardiac motion/deformation analysis and analy-
sis of cardiac vessels (Zhou et al. [2020a]). Cardiac image segmentation is often the first
step for many clinical applications, whose main goal is usually the segmentation of the
main chambers, bounding the two ventricles as well as the two atriums. Cardiac motion
tracking is of core importance for analyzing the actual mechanic performance of heart
chambers and combinations of recurrent neural networks (RNNs) and convolutional neu-
ral networks (CNNs) have been adopted in order to estimate both temporal and spatial
variations. Cardiac vessel segmentation consists in the segmentation of the vessels includ-
ing both the great vessels (i.e. aorta, pulmonary arteries and veins) and the coronary
arteries.

Abdominal imaging

The liver, spine and prostate are without any doubt the most accurately segmented and
most actively investigated organs by deep learning techniques. Given the promising re-
sults, recent research started investigating other organs of interest such as the pancreas,
lymph nodes and the bowel. Moreover, potentially diffuse disorders in the kidneys were
detectable by using DL strategies (Kuo et al. [2019]). Opportunistic screening for sur-
vival prediction and cardiovascular morbidity (heart attack, stroke) has been an area
of recent interest. Furthermore, deep learning methods have been applied in domains
such as visceral fat assessment, muscle volume assessment, aortic atherosclerotic plaque
quantification and bone mineral densitometry.
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Microscopy imaging

With the development of large datasets containing digital tissue slide images, a noticeable
increase in DL-based methods applications to digital pathology data has been observed.
An early application to whole slide pathology images was related to the detection and
segmentation of individual primitives such as lymphocytes and cancer nuclei. Several
studies showed indeed the utility of DL approaches in the identification of several histologic
primitives, including tubules, cancer extent and in the classification of different disease
categories related to leukemia (Janowczyk and Madabhushi [2016]). Another promising
field of applicability of AI in microscopy imaging is the one of disease grading. Specifically,
DL has been adopted to mimic pathologist’s identification of disease hallmarks – with
particular focus in cancerous ones – achieving results often comparable with the ones
of expert physicians. Some recent research focused also on the identification of specific
mutations and their association with biological pathways. As an example, it was shown
that deep learning networks are actually able to recognize several of the mutated genes in
non-small cell lung adenocarcinoma (Coudray et al. [2017]). Some attempts to apply deep
learning in survival and disease outcome prediction have also been made but, while the
studies presented above show the rising potential of DL on image analysis and classification
tasks in digital pathology, there is still some concern regarding its interpretability so that
it remain to be seen how these approaches will ultimately, eventually, translate to the
clinic (Zhou et al. [2020a]).

1.1.1 Oncology

Cancer diagnostics is the oncology-related field which artificial intelligence impacted the
most (Luchini et al. [2022]), both widening known horizons and opening new opportu-
nities. This is a huge achievement since cancer diagnostics represents the fundamental
starting point for designing both the appropriate therapeutic approach and the clinical
management. In precision oncology, this new paradigm allows to reach ground-breaking
results by integrating huge amount of data derived from heterogeneous analyses with
high-performing deep-learning techniques (Bhinder et al. [2021]). Furthermore, by 2030,
it is estimated that 13% of the world population will fall in the elderly category, with
a huge burden on the health care sector due to the higher risk in incurring into serious
diseases such as brain tumors, chest cancer, lung cancer, diabetes, hypertension or heart
failure (Parekh et al. [2011]), so AI can be of great help in lightening the situation. Figure
1.1 shows the study conducted by the Center for Medicare and Medicaid Services (CMS)
which revealed that US expenditures in health care increased nonstop year by year. Figure
1.2 shows instead the results of the systematic review performed by the authors investigat-
ing AI-based devices that have already obtained the Federal Drug Administration (FDA)
approval for entering the clinical practice in oncology (last access: 05/31/2021). Classify-
ing instead by oncology-related specialties, the authors highlighted that the field counting
the largest number of approved AI-based devices is cancer radiology (54.9%), followed by
pathology (19.7%), radiation oncology (8.5%), gastroenterology (8.5%), clinical oncology
(7.0%) and gynaecology (1.4%).
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Figure 1.1. CMS data for national healthcare expenditure per capita in the US.

Figure 1.2. AI-based devices, FDA-approved, expressed by tumor type (Luchini et al. [2022]).

There are three main clinical radiology tasks that specifically concern oncology: abnor-
mality detection, characterization and monitoring of change. Both medical and technical
skills are required when dealing with such tasks, since knowledge of both disease diag-
nosis and radiographic image processing are necessary. Human manual detection relies
on the radiologists’ perceptive skills to identify abnormalities and on their cognitive skills
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to either validate or not the findings. Automated CADe methods for processing and
identification have been proposed and utilized in the clinic (Castellino [2005]). However,
such algorithms are often task-specific and do not generalize well. Moreover, some of
this methods have still sub-human performances and little to no help is brought if the
radiologist needs to review the output from scratches. Characterization is a wide sphere
including segmentation, diagnosis and staging of a disease. This is likely the sub-field in
which artificial intelligence shines the most since, contrary to humans, computers are able
to account for more than a handful of qualitative features. Disease monitoring is essential
as it is a fundamental step in order to evaluate the goodness of treatment response. The
workflow consists in co-registering the diseased tissue across different scans and comparing
its temporal evolution (as an example, tumor size in oncology).

1.1.2 Neuro-oncology
Tumors of the central nervous system (CNS) account for a small proportion of all inva-
sive cancers (around 1%). Still, their heterogeneity is astonishing considering that both
malignant (29.7%) and non-malignant (70.3%) brain tumors present over a hundred dif-
ferent sub-types, each one of those with their own clinical and biological behaviors (Miller
et al. [2021]). Even if they are rare tumors – with an annual incidence of around 0.8% –
these malignancies bring with them a very high mortality rate, permanent disability and
high public health costs (Di Nunno et al. [2022]). Hence, researchers and clinicians in the
field of neuro-oncology have to face important challenges: among those, the prediction
of disease progression, an improved and non-invasive tumor diagnosis and the research of
new effective treatments. During the last years, deep learning has seen a noticeable rise in
popularity within the neuroimaging community. Indeed, it offers fascinating prospects for
improving both generalizability and accuracy while at the same time reducing the need
for complex processing and inference time. Convolutional neural networks (CNNs) have
especially proven themselves effective in analysis and high-level prediction tasks, reducing
the need for specific and high-level domain-related prior knowledge.

Neuroradiology

Integrating artificial intelligence (AI) into the clinical workflow as an aid to assist physi-
cians can lead to more accurate and reproducible radiology assessments (Hosny et al.
[2018]). Indeed, an integrated AI component within the medical imaging workflow would
conduct towards better efficacy, better efficiency, reducing errors and achieving objectives
with minimal human intervention. Given the high amount of data provided by examina-
tions and its non-invasive nature, neuroradiology is considered to be a thriving field for AI
and DL applicability. Accurate segmentation is indeed a fundamental starting point for
any analytic or predictive tasks done in neuroimaging. The required tasks are various and
range from brain tissue segmentation and volume estimation of white matter (WM), grey
matter (GM) and cerebrospinal fluid (CSF), to brain lesion detection and segmentation,
from cortical and subcortical segmentation, to brain extraction and deformable image
registration (Chen et al. [2017a]), i.e. co-registering different images to a given reference
system in order to analyze them across different modalities and time points. The advent of
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generative adversarial networks (GANs) and their variants has been of great importance
in neuroimaging since complex synthesis tasks – not even achievable by machine learning
methods – became feasible, and have been used ever since for resolution upscaling, cross-
modality synthesis, motion artifact reduction, and more. Still, even if DL in neuroimaging
has opened many interesting perspectives worth of investigation, certain fields still lack a
rigorous understanding, hence the upcoming years will be crucial for further investigation.

Molecular-pathological diagnosis

Even if deep learning is able to provide valuable insights to radiologists from MRI data, a
pathological assessment is still necessary before planning either surgical or post-surgical
treatment. Currently, the histomorphological diagnostic process is entirely based on the
pathologist’s expertise in the required field. This morphological and histological evaluation
is needed because it is necessary ((Di Nunno et al. [2022])):

• to verify that the sample is representative of the disease;

• to confirm the histotype and evaluate the morphological heterogeneity of the tumor;

• for the triage of the available material for molecular analysis;

• to select the most appropriate area of investigation;

• to guide the choice of the correct method.

In neuro-oncology, for example, AI algorithms have been adopted with the goal of classify-
ing glioma subtypes, which could be essential for the correct prognosis estimation since the
complexity of these histopathological analyses of brain tumor have greatly increased with
the increasing number of immunohistochemical studies that are needed to be interpreted
in parallel.

Surgery, radiation therapy and systemic treatment

Artificial intelligence could improve both the performance and the outcome of brain tumor
resection. Indeed, an adequate assessment of extension and burden is fundamental during
the pre-surgical planning stages. More generally, AI has been often applied with the aim
of automatizing and optimizing complex tasks while also increasing quality, standardiza-
tion and accuracy. Radiation therapy processes are often time-consuming and associated
with large user variability, so that accurate segmentation and optimization of radiotherapy
treatment planning are crucial steps that could be supported by AI and DL-based tech-
nologies. However, despite different studies dealing with AI in radiation oncology, none
of such technique has still been approved for clinical practice. Few are instead the studies
investigating the potential role of AI in systemic treatment for CNS malignancies. Both
the identification of promising drugs for pre-clinical testing and of the optimal dosage and
protocol of systemic treatment are tasks that are possible applications and some steps in
this direction have been made. Finally, another interesting and promising use of AI is the
one of predictive response factors identification, as an aid to evaluate the goodness of the
treatment status.
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1.2 Goals
Gliomas account for approximately 30% of all brain and central nervous system tumors,
and 80% of all malignant brain tumors (Goodenberger and Jenkins [2012]). A brain
tumor consists in an uncontrolled growth and multiplication of cells giving birth to an
abnormal mass of tissue. They are further classified by the World Health Organization
(WHO) as astrocytoma, oligodendroglioma, mixed oliogastrocyntoma, and ependymoma
(Louis et al. [2021]). Low-grade astrocytomas (WHO Grade II), differently from pilocytic
astrocytomas (WHO Grade I), often degenerate to higher grade tumors. Conventionally,
both the histological subtype and the grade are connected to the malignant potential and
the survival. Patient with Grade II astrocytomas have a survival rate at 5-year of arount
50% (Wu et al. [2010]).
Apart from the WHO histologic classification, they can be more generally grouped into
primary and secondary (metastatic) tumors, based on their origin place. More specifically,
primary tumors arise in the brain itself and can be either benign or malignant. Beningn
tumors, differently from malignant ones, grow slowly and do not spread to surrounding
tissues. However, their growth can still put pressure and compromise the brain function.
On the other side, secondary brain tumors originate from another part of the body, usually
due to cancer cells spreading to the brain (Biratu et al. [2021]).

Glioblastoma multiforme

Glioblastoma multiforme (GBM) are the most commonly encountered and aggressive ma-
lignant primary tumor (15%) of the central nervous system in adults, accounting for
approximately 55% of all gliomas. As WHO Grade IV astrocytoma, GBM present them-
selves with a vast intrinsic heterogeneity in both appearance and shape. Nowadays, the
standard of care treatment for GBM patients consists in surgical resection followed by
radiotherapy and chemotherapy, leaving then the subject untreated for the succeeding
four months (Baid et al. [2021]). Unfortunately, even if several experimental treatments
have been proposed and discussed in the last twenty years, no substantial improvement
– or difference – in patient prognosis has taken place. For brain tumor diagnosis, the
gold standard consisted in biopsy, which includes resection and pathological examination
via histologic analyses. However, such procedure is invasive and may lead to bleeding
or injury, with possible complications as problematic as functional loss. As a results,
modern neuroimaging moved towards non-invasive brain tumor diagnosis using Magnetic
Resonance Imaging (MRI) in order to characterize structural, cellular and functional prop-
erties of the tumor (Roberts et al. [2020]). Normal brain tissues in MRI are characterized
by cerebrospinal fluid (CSF), white matter (WM) and gray matter (GM). Tumorous brain
scan present instead necrosis, tumor core and edema. The necrosis is a mass of dead cells
located inside the core tumor, whereas the edema is a swelling situated near active tumor
borders, present due to trapped fluids around a tumor. In gliomas, the edema is said to
be infiltrative since it invades WM tracts of a brain.
The detailed segmentation and identification of glioma sub-regions boundaries in MRI
data has therefore high importance in many clinical situations, from monitoring to treat-
ment planning. Yet, the manual delineation of tumor sub-regions is time-consuming and
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highly dependent on the radiologist(s) implementing it, hence becoming impractical when
dealing with numerous subjects. The aim of this study, in conjunction with the Molinette
Hospital in Turin, is to make a further step in the field of automatic and semi-automatic
brain tumor segmentation from neuroimaging modalities via deep learning technologies
on post-operative scans.
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Chapter 2

Theoretical background

nnU-Net is much more than the architecture. It is a holistic framework for
automatically generating/configuring segmentation pipelines. The spirit of
nnU-Net is cross-dataset compatibility and out-of-the-box performance
without the need to fiddle with hyperparameters.

- Fabian Isensee

2.1 U-Net: the state of the art
Deep convolutional neural networks have outperformed what was the state of the art in
several visual recognition tasks. However, their success was strongly linked to the number
of available training samples and the size of the network itself and, sadly, thousands of
image samples are often beyond reach in the medical field. Moreover, the quintessential
use of convolutional neural networks is classification, where an image is taken as input and
a single class label is given back as output. Unfortunately, when dealing with biomedical
image processing, this is not often the case, where instead the desired output should
include localization, meaning that each image pixel should be classified with a class label.
A first solution to these problems was proposed by Ciresan et al. [2012], where the network
is trained with a sliding-window to predict the class of each pixel by providing as input a
fixed patch around that given pixel. Even though astonishing results were obtained, the
proposed model had two drawbacks:

1. slowness, due to the fact that the network has to be run separately for each patch,

2. a tradeoff between contextual information and localization accuracy, i.e. larger
patches allow an higher information gain but reduce localization accuracy, and vicev-
ersa.

Ronneberger et al. [2015] built a new solution upon a more refined architecture: the fully
convolutional network, whose main idea behind is to append to the usual contracting
network a serie of layers where pooling is substituted by upsampling, hence increasing
the resolution of the output. Localization turns out then to be facilitated by combining
features extracted by the contracting path with the output of the following upsampling.
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Figure 2.1. Base U-Net as depicted in the original paper by Ronneberger et al. [2015].

Figure 2.1 shows the architecture proposed (here an example for 32×32 pixels in the lowest
resolution) – called U-Net because of the “U”-shape derived from the nearly-symmetric
encoder-decoder structure – where it is observable the behaviour presented above. The
two informations combined are then assembled through a convolution layer in order to
extract a more precise and informative output.

2.1.1 U-Net variants for medical image segmentation
The fact that U-Net is able to provide solid results in image segmentation using a scarce
amount of data is the main reason behind its extensive adoption within the medical imag-
ing community. Starting from the skip connections structure between the downsampling
and upsampling paths which allows for contextual information to be preserved, several
advancements and adjustments in U-Net architecture have been implemented, giving birth
to several variants (Siddique et al. [2021]).

3D U-Net

The first advancement consisted was the enabling of 3D volumetric segmentation (Çiçek
et al. [2016]). The structure of the architecture was the same as the 2D base version,
however, all of 2D operations were replaced by 3D ones, namely 3D pooling and 3D
convolution, thus allowing for three dimensional segmentation.

Reprinted by permission from Springer Nature: Springer Nature, Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, U-Net: Convolutional Networks for Biomedical Image Segmentation, Olaf
Ronneberger, Philipp Fischer, Thomas Brox, ©2015 Springer International Publishing Switzerland (2015)
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Attention U-Net

A worthwhile trait in neural networks for image processing is the possibility of focusing
on specific regions that are considered important while ignoring areas regarded as not
worth of notice. Attention U-Net is an important step towards this ability, achieved by
the adoption of the attention gate (Oktay et al. [2018]).

Figure 2.2. Attention U-Net as depicted in the original paper by Oktay et al. [2018].

Figure 2.3. Schematic representation of the adopted attention gate (Oktay et al. [2018]).

Encoder-decoder networks such as U-Net benefit from the attention unit since it provides
more accurate and informative localized information. It can be shown that, in the specific
case of U-Net, this allows for different parts of the architecture to focus on segmenting
distinct different items.

Reprinted by permission under Creative Commons Attribution 4.0 International, Attention U-Net: Learning
Where to Look for the Pancreas, Ozan Oktay et al., ©CC BY 4.0 (2018) – no changes were made –
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Inception U-Net

Neural networks for image processing tend to be set with fixed-size filters for convolutions.
Fine tuning the algorithm to find the ad hoc filter size can be burdensome, if not compu-
tationally unfeasible. In addition, fixed-size filters are a good choice only for processing
images whose salient parts do not differ in size. In medical analysis, sadly, this is not the
case, with large variations in both size and shape in the regions of interest.
A solution to this problem, called the inception network, uses several filters with different
size on the same layer in the network, whose outputs are then concatenated and forwarded
to the next layer. The architecture is therefore able in this way to analyze images with
different regions of interest in quite an effective manner.

Figure 2.4. Dense-Inception U-Net as depicted in the original paper by Zhang et al. [2020b].

Inception components of different configurations, after the astounding results obtained in
the ILSVRC14 competition by GoogLeNet, have been adopted – applied on architectures
derived from U-Net – for medical imaging tasks.
Several medical fields, such as brain tissue mapping, cardiac segmentation, human em-
bryo segmentation, lung nodule detection and ultrasound nerve segmentation have been
benefiting from the adoption of U-Net-like inception modules. Figure 2.4, as an example,
shows an architecture presented for brain tumor detection (Zhang et al. [2020b]).

Used with permission of Elsevier Science & Technology Journals from DENSE-INception U-Net for medical image
segmentation, Ziang Zhang, Chengdong Wu, Sonya Coleman and Dermot Kerr, Computer methods and programs
in biomedicine, 192, 2020; permission conveyed through Copyright Clearance Center, Inc.
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Residual U-Net

It is a well known fact that the more layers are present in a deep neural network, the faster
will be its convergence. That said, experimental results highlight that this can eventually
lead also to saturation, possibly causing further degradation in performance (He et al.
[2015]). This variant of U-Net is based on the ResNet architecture. The advantage of
ResNet is the adoption of skip connections which forward the feature map from one layer
to another one located more deeply in the architecture. This enable the network to
preserve information and avoid unwanted behaviors such as the one presented above.
In the residual U-Net, the input to the first convolutional layers is added to the output of
the second convolutional layer using, at each block, a skip connection. Each residual unit
can be described by the following equation:

xl+1 = f
!
xl + F(xl, Wl)

"
, (2.1)

where xl and xl+1 represent the input and the output of the residual unit respectively,
F(·) is the residual fuction and f(·) is the activation function.

Figure 2.5. CRU-Net as depicted in the original paper by Li et al. [2018].

Due to the advantage derived from residual connections alleviating the vanishing gradient
problem, Residual U-Net are the ideal tool for complex image analysis. Several examples
can be found in literature, with applications in several different fields ranging from brain
structure mapping to retinal vessel segmentation, from prostate cancer to bone struc-
ture analysis. As an example, Figure 2.5 shows the deep Conditional Residual U-Net
(CRU-Net) architecture proposed by Li et al. [2018] for breast cancer, where skip residual
connections are added in each of the architecture’s seven layers.

Reprinted by permission from Springer Nature: Springer Nature, Image Analysis for Moving Organ, Breast, and
Thoracic Images, Improved Breast Mass Segmentation in Mammograms with Conditional Residual U-Net, Heyi
Li, Dongdong Chen, William H. Nailon et al., ©2018 Springer Nature Switzerland AG (2018)

29

https://link.springer.com/book/10.1007/978-3-030-00946-5
https://link.springer.com/book/10.1007/978-3-030-00946-5


Theoretical background

Dense U-Net

Even though Residual U-Net alleviates the problem of vanishing gradients, it does not
eliminate it. While it allows for deeper neural networks, its performance will eventually
degrade if the number of layers keeps increasing.
DenseNet (Huang et al. [2017]) is a deep learning architecture proposed on top of ResNet
with two main changes. First, each layer receives now the feature maps from all of its
preceding layers. Secondly, the identity maps that forward the feature maps from one layer
to the others are combined via channel-wise concatenation, so that results are dependent
on all previous layers and gradient propagation is significantly promoted.
The output for each layer in a dense block can therefore be described by the following
equation:

xl+1 = Hl

!
[x0, x1, x2, . . . , xl−1, xl]

"
, (2.2)

where Hl(·) represents the dense mapping function at layer l (usually including batch nor-
malization, ReLU and a convolution), while [·] denotes the channel-wise concatenation.
In the specific case of U-Net, each standard U-Net block is substituted by a dense block
of two (or more) convolutional layers.

Figure 2.6. Multi-path Dense U-Net as depicted in the original paper by Dolz et al. [2018].

Since dense blocks eliminate the problem of vanishing gradients, Dense U-Net can be mod-
eled even deeper, hence enabling the network to segment objects with greater distinction.
For this reason, applications of Dense U-Net can be observed in several medical imaging
fields, including retinal blood vessel segmentation, cerebral blood vessel segmentation,
melanoma, lung cancer, liver cancer, multi-organ segmentation and brain tumors. This
feature of Dense U-Net is considered extremely valuable in medical image analysis, since
objects are often extremely close and overlapping.
Figure 2.6 presents a multi-path Dense U-Net architecture proposed by Dolz et al. [2018]
for ischemic stroke lesion segmentation in multiple image modalities.

Reprinted by permission from Springer Nature: Springer Nature, Brainlesion: Glioma, Multiple Sclerosis, Stroke
and Traumatic Brain Injuries, Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation in Multiple
Image Modalities, Jose Dolz, Ismail Ben Ayed, Christian Desrosiers, ©2019 Springer Nature Switzerland AG
(2019)
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U-Net++

U-Net++ is a further U-Net-based architecture, proposed as a variant on top of the
Dense U-Net structure. Differently from its ancestor, it implements also a dense network
of residual skip connection between the contracting and the expansive paths, enabling the
network to propagate more semantic information between the two paths leading to more
accurate image segmentation (Zhou et al. [2018]). The difference is therefore that each
level is now equivalent to a dense block, so feature maps of the contracting path are no
more directly concatenated only onto the layer situated at the same level in the expansive
path. If i and j are the index down the contracting path and across the residual skip
connection respectively, and x represents the feature map, it is possible to describe the
operation of such skip connection unit as follow:

xi,j =
I

H(xi−1,j), if j = 0
H

!#
[xi,k]j−1

k=0, U(xi+1,j−1)
$"

if j > 0
, (2.3)

where H(·) represents the dense mapping function, U(·) the upsampling operation and [·]
denotes channel-wise concatentation. It is worth noticing that the number of intermediary
connection units decreases linearly going down the contracting path, thus depending on
the layer number.

Figure 2.7. U-Net++ as depicted in the original paper by Zhou et al. [2018].

Because of its features and improved performance, applications of U-Net++ include ex-
tremely specific objects of study such as cancer tissue, cardiac structures, vessels, pelvic
organs or cell nuclei. In Figure 2.7 it is possible to observed the U-Net++ architecture
as originally proposed by Zhou et al. [2018], where black indicates the original U-Net
backbone, while green and blue show dense convolution blocks on the skip pathways.

Reprinted by permission from Springer Nature: Springer Nature, Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support, UNet++: A Nested U-Net Architecture for Medical Image
Segmentation, Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh et al., ©2018 Springer Nature
Switzerland AG (2018)
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Adversarial U-Net

The adversarial structure consists in two network – respectively called generator and
discriminator – “competing” against each other in order to symbiotically improve their
performance. The goal of the discriminator is to identify whether a given input image
is either derived from the data set or is crafted by the generator. Images produced by
the generator are periodically forwarded to the discriminator, and its gradient function is
computed as a function of the one of the discriminator in order to adjust the weights based
on the output of the last. It can be shown that, if enough time is provided, adversarial
networks are able to reach the optimal state in which the discriminator always outputs a
probability of 1/2 independently of whether its input image is derived from the data set
or produced by the generator, meaning that it is no longer able to distinguish real images
from synthetic ones (Goodfellow et al. [2014]).
The Adversarial U-Net is a type of generative adversarial network (GAN) called condi-
tional GAN, whose main advantage is the production of limited band of synthetic images
by controlling its labels and input images (Mirza and Osindero [2014]). The purpose of
the generator is therefore to synthesize transformed images rather than new ones.

Figure 2.8. SegAN as depicted in the original paper by Xue et al. [2018].

Given the theoretical result of GAN convergence, Adversarial U-Net spectrum of appli-
cations is extremely wide, ranging from the segmentation of cardiac structures to breast
cancer. As an example, Figure 2.8 shows SegAN, an architecture based on the Adversarial
U-Net proposed by Xue et al. [2018] for brain tumors.

Reprinted by permission from Springer Nature: Springer Nature, Neuroinformatics, SegAN: Adversarial Network
with Multi-scale L1 Loss for Medical Image Segmentation, Yuan Xue et al., ©2018, Springer Science Business
Media, LLC, part of Springer Nature (2018)
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2.1.2 nnU-Net: one net to rule them all
Even though several U-Net variants have been proposed in medical imaging literature, it is
undeniable that the design of specialized solutions is highly dependent on both hardware
conditions and dataset properties. Indeed, despite the promising results obtained by
deep learning-based methods, their translation (generalization) to task-specific problems
is often problematic and eventually leading to large drops in performance (Litjens et al.
[2017]). Especially in 3D imaging, where successful configurations from one dataset rarely
translates to another, high levels of expertise and experience are often required. The
numerous decisions needed for either designing a well-performing algorithm or adapting
one for other tasks range from the architecture definition to data augmentation, from
training schedule to post-processing. Moreover, each one of these features is further
controlled by parameters such as batch size or learning rate, and a supplementary layer
of complexity is posed by the available hardware. AutoML (Hutter et al. [2019]) consists
in a purely empirical optimization of all those design choices in a high-dimensional space
which determines – based on the dataset – the top-performing configuration. This comes
however at the expenses of needing a higher (by orders of magnitude) number of both
training cases and computer resources, often becoming practically unfeasible in medical
imaging. In addition, the high-dimensional search space has to be anyway defined a priori,
thus still needing a lot of field-specific knowledge and expertise.
nnU-Net (Isensee et al. [2021a]) arises as a path in-between the status quo of expert-driven
approaches and the primarily data-driven AutoML methodologies. The core result is that
nnU-Net dramatically reduces the search space by generalizing the search process itself,
thus being as more task-agnostic as possible. This is possible through the following three
key points:

1. those design choices that do not depend on the dataset (i.e. do not require adap-
tation), are collected together to form a common robust configuration, the so-called
“fixed parameters”;

2. for as many as possible of the remaining decisions, explicit dependencies between
the design choices, called “pipeline fingerprint”, and the dataset specific properties,
called “dataset fingerprint”, are formulated as heuristic rules, thus enabling almost-
instant configuring based on the application;

3. the few remaining design choices, here called “empirical parameters”, are learned
empirically from the dataset.

Therefore, nnU-Net presents itself as a self-configuring deep learning-based segmentation
method for any new task, from pre-processing to training and post-processing. This
holistic property differs it from existing research methods since it enables nnU-Net to cover
the whole segmentation pipeline without any manual decision. Moreover, the configuration
of nnU-Net is fast when compared to other existing methods since only few empirical
choices have to be made. Third, the proposed model is also data efficient since the
encoding of design choices based on heterogeneous data pools lead to a strong inductive
bias when applied to limited data.
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Figure 2.9. Examples of nnU-Net application to a set of international segmentation
challenges as shown in the original paper by Isensee et al. [2021a].

The heterogeneous applicability of nnU-Net is demonstrated by the authors by its ap-
plication on 13 different datasets – resulting in a total of 53 segmentation tasks – thus
covering a wide range of image types, properties and structures, as it can be seen in
Figure 2.9. In each one of these, nnU-Net automatically configures itself without human
intervention, so that (with the exception of few empirical choices) no computational cost
is required in addition to the one necessary for training. More in detail, the automated
configuration of nnU-Net start with the generation of three different U-Net architectures:
a base two-dimensional (2D) U-Net, a 3D U-Net working at full image resolution and a
3D U-Net cascade where the first U-Net operates on a downsampled version of the in-
put image while the second refines at full resolution the results returned by the former.
Finally, nnU-Net chooses the top-scoring configuration or ensemble after cross-validation
against the dataset.
An in-depth representation as presented by Isensee et al. [2021a] of all the configuring
steps taken by nnU-Net in order to reach its final form are presented in Figure 2.10.
Given a novel segmentation task, “dataset fingerprints” (in pink) are extracted. Thin
arrows represent the set of heuristic rules adopted to model parameter interdependencies.
This rules then operate on the fingerprints to extract the “rule-based parameters” (in
green) of the pipeline. Meanwhile, “fixed parameters” (in blue) – which do not need any
kind of adaptation – are already predefined. A five-fold cross-validation is then performed
to train the three configurations and the optimal ensemble is automatically selected while

Reprinted by permission from Springer Nature: Springer Nature, Nature Methods, nnU-Net: a self-configuring
method for deep learning-based biomedical image segmentation, Fabian Isensee et al., ©2020, The Author(s), under
exclusive licence to Springer Nature America, Inc. (2020)
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Figure 2.10. Proposed nnU-Net automatic configuration for biomedical image segmen-
tation as shown in the original paper by Isensee et al. [2021a].

“empirical parameters” (in yellow) are settled to determine whether any kind of post-
processing is needed. In such a way, nnU-Net can be adopted as an out-of-the-box deep

Reprinted by permission from Springer Nature: Springer Nature, Nature Methods, nnU-Net: a self-configuring
method for deep learning-based biomedical image segmentation, Fabian Isensee et al., ©2020, The Author(s), under
exclusive licence to Springer Nature America, Inc. (2020)
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Figure 2.11. nnU-Net performances on 53 different segmentation tasks as shown in the
original paper by Isensee et al. [2021a].

learning-based segmentation tool capable of handling a wide variety of both target struc-
tures and image properties: the international challenges to which nnU-Net has been ap-
plied comprise a variety of tumors, organs substructures, lesions and cellular structures

Reprinted by permission from Springer Nature: Springer Nature, Nature Methods, nnU-Net: a self-configuring
method for deep learning-based biomedical image segmentation, Fabian Isensee et al., ©2020, The Author(s), under
exclusive licence to Springer Nature America, Inc. (2020)
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presented in two- as well as three-dimensional images acquired by magnetic resonance
imaging (MRI), electron microscopy (EM), fluorescence microscopy (FM) and computed
tomography (CT). The authors provided also an overview of the results obtained by nnU-
Net against its competitors across 53 different segmentation tasks – observable in Figure
2.11 – which highlights how, despite its generic nature, it outperformed most existing
and task-specific solutions. Specifically, nnU-Net set new state-of-the-art performances in
33 out of the 53 tasks, and performing close to top leaderboard entries in the remaining
cases. The take-home message is therefore that the strong performances of nnU-Net are
not reached by network architecture, loss function or training scheme fine tuning (hence
the name nnU-Net, “no new net”), but by “systematizing the complex process of manual
method configuration” (Isensee et al. [2021a]), which was previously addressed usually by
purely empirical approaches such as trial and error.

2.2 Transfer learning
It is a well known fact that deep learning algorithms – CNNs included – require a huge
amount of data for training. However, as already anticipated, the medical field often
presents the data scarcity problem, with few scans available for analysis mainly due to
the cost of expert-annotation (Kim et al. [2022]). A promising solution to this problem is
the one of transfer learning (TL), i.e. by leveraging knowledge learned from other source
tasks (Pan and Yang [2010]). TL derives from the cognitive conception that humans are
able to solve similar tasks by exploiting previously-learned knowledge, with such knowl-
edge being therefore transferred across similar tasks to improve performances on a new
one. Formally, the definition of transfer learning was provided by Pan and Yang [2010]:
“a domain consists of a feature space X and a marginal probability distribution P(X),
where X = {x1, x2, . . . , xn} ∈ X . Given a specific domain denoted by D = {X ,P(X)},
a task is denoted by T = {Y , f(·)}, where Y is a label space and f(·) is an objective
predictive function. A task is learned from the pair (xi, yi) where xi ∈ X and yi ∈ Y .
Given a source domain DS and learning task TS , a target domain DT and learning task
TT , transfer learning aims to improve the learning of the target predictive function fT (·)
in DT by using the knowledge in DS and TS”. In deep learning, transfer learning is the
idea that knowledge can be transferred at the parametric level. Current transfer learn-
ing techniques in medical imaging implement knowledge transfer from natural imaging,
usually from model trained on the ImageNet dataset1. Overall, two main paths to ap-
ply transfer learning have historically been delineated: feature extractor and fine-tuning.
The main difference lies in the fact that the first freezes the convolutional layers whereas
the latter updates parameters during model fitting. Still, even if some progress is done,
the knowledge transferred between the two areas can be either not sufficient to achieve
promising results in the medical task or make the transfer process quite unpredictable
(Raghu et al. [2019]). Hence, given the lack of post-operative brain scans, the idea behind
this study is to apply transfer learning from the pre-operative brain tumor segmentation

1“ImageNet large scale visual recognition challenge; ILSVRC”
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task (a research area dealt with more in depth in literature) by fine-tuning the model in
the end for the desired goal. This intuition builds itself upon two main consideration.
First, the domains are both related to brain MRI segmentation, therefore the transfer
process does not flow outside the medical area. Second, a “parallelism” between pre- and
post-operative brain MRI scan labelling can be identified, as it will be discussed more in
detail later, allowing the fine-tuning process to be more predictable.

2.3 BraTS
In the past, brain tumor datasets have remained relatively small, especially the ones pre-
senting subjects imaged at a single institution. The Brain Tumor Segmentation Challenge
(BraTS) provides the largest publicly available fully-annotated dataset for model develop-
ment in the field of brain tumor medical imaging segmentation, establishing itself during
the years as the benchmark competition for objective comparison of the several segmenta-
tion algorithms. Recent top-performing entries in the challenge are exclusively built upon
deep neural networks, specifically on encoder-decoder structures with skip connections, a
motif initially introduced by U-Net (see Chapter ??). Architectural improvements upon
U-Net have been proposed in the field of brain tumor segmentation, with auxiliary tools
such as residual connections, attention mechanisms and densely connected layers, and it
is worth noticing that winning contributions of 2018 (Myronenko [2019]) and 2019 (Jiang
et al. [2020]) are both based on the introduction of a second decoder for regularization
purposes. The RSNA ASNR MICCAI Brain Tumor Segmentation (BraTS) challenge
(Menze et al. [2015], Bakas et al. [2017]) is a project started in 2012 in conjunction with
the MICCAI conference with the goal of becoming the de facto benchmark for addressing
the automated tumor sub-region segmentation from pre-operative multi-parametric Mag-
netic Resonance Imaging (mpMRI) scans. The BraTS dataset consists in a retroactive
collection of brain tumor scans acquired with different apparati and protocols from several
different institutions, thus presenting a highly heterogeneous image quality. The mpMRI
scans present in the dataset fall under one of the following four MRI modalities: native
(T1), post-contrast T1-weighted (T1ce), T2-weighted (T2) or T2 Fluid Attenuated Inver-
sion Recovery (FLAIR). Standardized pre-processing has been applied to all the scans,
specifically:

1. conversion of the DICOM files to the NIfTI format (Cox et al. [2004]),

2. co-registration to the same anatomical template (Rohlfing et al. [2009]),

3. resampling to a uniform isotropic resolution (1mm3),

4. skull-stripping.

The annotated tumor sub-regions in the BraTS scans (Baid et al. [2021]) comprise the Gd-
enhancing tumor (ET), the peritumoral edematous/invaded tissue (ED), and the necrotic
tumor core (NCR).
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FLAIR T1 T1ce T2 Segmentation

Figure 2.12. Examples of brain slices from five BraTS 2021 patients.
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The ET is defined as the enhancing portion of the tumor which visually emerges on T1ce
MRI. An opposite behaviour in T1ce MRI is exhibited instead by the NCR, i.e. the
necrotic core of the tumor, which manifests an hypointense presence. The ED is the
peritumoral edematous and infiltrated tissue, it presents an hyperintense signal on the
FLAIR volumes and includes both the vasogenic edema and the non-enhancing tumor.
Figure 4.1 shows the same brain slice depicted in the four different MRI modalities for
five different patients retrieved from the BraTS 2021 dataset. The last column indicates
instead the ground truth segmentation of the brain tumor, with the necrotic core (NCR)
highlighted in blue, the enhancing tumor (ET) in yellow, and the edema (ED) in turquoise.

Year Total
Data

Training
Data

Validation
Data

Testing
Data Timepoint

2012 50 35 n/a 15 Pre-operative
2013 60 35 n/a 25 Pre-operative
2014 238 200 n/a 38 Longitudinal
2015 253 200 n/a 53 Longitudinal
2016 391 200 n/a 191 Longitudinal
2017 477 285 46 146 Pre-operative
2018 542 285 66 191 Pre-operative
2019 626 335 125 166 Pre-operative
2020 660 369 125 166 Pre-operative
2021 2040 1251 219 570 Pre-operative

Table 2.1. Evolution of the BraTS challenge dataset since its inception.

There are currently two guidelines regarding post-operative target definition in GBM: one
from the European Organization for Research and Treatment of Cancer (EORTC) and
the other from the Radiation Therapy Oncology Group (RTOG).
Both of them define the gross tumor volume (GTV) as the resection cavity (RC) plus the
residual enhancing tumor. According to the RTOG guideline, surrounding edema should
be included as well (Niyazi et al. [2016]). The goal of this work will be therefore to address
the problem of post-operative brain tumor segmentation in a more comprehensive way,
trying to achieve promising results in segmenting all the classes presented in the RTOG
guideline.

2.3.1 Evaluation metrics

Following literature, the quality evaluation of the automatic brain implemented through
Dice score and Hausdorff distance. Dice score is defined as

DICE = 2|Sm ∩ Sa|
|Sm| + |Sa|

= 2TP
2TP + FP + FN , (2.4)
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where Sm is the set of manually segmented tumor voxels while Sa the one of automatically
segmented voxels, TP is the number of true positive voxels, FP of false-positives and FN
of false-negatives.
The previously presented in Section 2.1.2 Hausdorff metric is instead defined as the max-
imum distance between the borders of two sets and is defined as

dH = max
;

min
pa∈Pa

d(pa, pm), min
pm∈Pm

d(pa, pm)
<

, (2.5)

where Pm is the set of vertices describing the border of the segmentation performed
manually by the radiologist, Pa the one of vertices describing the border of the automatic
segmentation, and d(pa, pm) is the distance between two vertices (if not specified, the
euclidean distance is adopted). That said, it emerges clearly that such definition is strongly
sensitive to outliers. For such reason, the undirected 95th percentile Hausdorff distance
is often taken as a more robust and informative metric. It is defined as

dH95 = max
;

95 percentile
pm∈Pm

min
pa∈Pa

d(pa, pm), 95 percentile
pa∈Pa

min
pm∈Pm

d(pa, pm)
<

. (2.6)

Figure 2.13. Qualitative visualization of the Hausdorff distance.

2.4 Automated glioma segmentation
As previously presented in Subection 2.1.2, nnU-Net has delineated itself as the state of the
art and top-ranking model in several medical challenges. Among those, the RSNA ASNR
MICCAI Brain Tumor Segmentation challenge. For this reason, the model intended to be
trained in this study on pre-operative scans, whose knowledge will then be transferred to
post-operative ones, is derived from the nnU-Net framework. Indeed, the winners of both

Reprinted by permission under Attribuzione 3.0 Unported, Example of Hausdorff distance, Rocchini, ©CC BY 3.0
(2008) – no changes were made –
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the validation and test phases for the BraTS 2020 challenge – as well as the BraTS 2021
one – are modifications obtained from vanilla applications of nnU-Net.
Subsections 2.4.1 and 4.1.1 present respectively the top-ranking model in the BraTS 2020
and 2021 challenges.

2.4.1 nnU-Net in BraTS 2020
Isensee et al. [2021b] applied the nnU-Net segmentation model to the task of the BraTS
2020 challenge. Even though the untouched nnU-Net baseline achieved good results, by
implementing task-specific modifications regarding training, data augmentation and post-
processing, performances improved substantially, enabling nnU-Net to take the first place
in the competition. nnU-Net base preprocessing consists in normalizing the brain voxels
of each image by subtracting their mean and dividing by their standard deviation (non-
brain voxels remain untouched at 0). The proposed architecture follows a standard 3D
U-Net pattern, with downsampling performed as strided convolutions while upsampling
as transposed convolutions. The input patch size is selected to be 128×128×128 with a
batch size of 2. In total, five downsampling are performed, leading to a bottleneck with
a feature size of 4×4×4. The initial number of convolutions is fixed to 32, doubling at
each downsampling step up to a maximum of 320. The decoder mirrors the encoder, and
so do all the corresponding hyperparameters (see Figure 2.14). Leaky ReLU is adopted
as nonlinearity and instance normalization is used in feature map normalization. The
training loss is obtained as the sum of Dice and cross-entropy ones, operating on the three
classes of edema, necrotic tumor core and enhancing tumor. Stochastic gradient descent
with a starting learning rate of 0.01 and a Nesterov momentum of 0.99 is implemented.
Training run for 1000 epochs, with the learning rate decaying following a polynomial
schedule. Moreover, as anticipated, nnU-Net was further developed implementing BraTS-
specific optimizations. More in detail: first, even though the provided labels are necrotic
tumor core, edema and enhancing tumor, it has been shown (Myronenko [2019], Jiang et al.
[2020]) that performances improve when segmentation is performed on the three partially
overlapping regions (i.e. whole tumor, tumor core and enhancing tumor). Second, batch
size is increased from 2 to 5 in an attempt to improve model accuracy by fitting more
accurately the training data. Third, a more aggressive data augmentation strategy to the
one proposed by default by nnU-Net is adopted on the fly, with the aim of increasing the
robustness of the model. The following changes are therefore made:

• the probability of applying both rotation and scaling is increased from 0.2 to 0.3,

• the scale range increases as well from (0.85, 1.25) to (0.65, 1.6),

• the scaling factor is set individually for each axis,

• elastic deformation is applied with a probability of 0.3,

• additive brightness augmentation is applied with a probability of 0.3,

• the aggressiveness of the Gamma augmentation is increased.
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Figure 2.14. Network architecture generated by nnU-Net for BraTS 2020 as shown in
the original paper by Isensee et al. [2021b].

Model Whole Core Enh. Mean
BL 91.60 87.23 80.83 86.55
BL* 91.85 86.24 80.18 86.09

BL*+R 91.75 87.24 82.21 86.73
BL*+R+DA 91.87 87.97 81.37 87.07

BL*+R+DA+BN 91.57 87.59 81.29 86.82
BL*+R+DA+BD 91.76 87.67 80.94 86.79

BL*+R+DA+BN+BD 91.70 87.21 81.70 86.87
BL*+R+DA*+BN 91.60 87.51 80.94 86.68

BL*+R+DA*+BN+BD 91.47 87.13 81.33 86.64

Table 2.2. Dice scores obtained by various nnU-Net versions on the BraTS 2020 training
set segmentation task with a 5-fold CV as presented by Isensee et al. [2021b].

Fourth, instead of computing the Dice score for each sample in a batch and then averaging
those values (sample Dice), the metric is computed over all samples just as if it were a
single large sample (batch Dice). This comes in handy in the case of imperfect reference
segmentation with accurate model predictions in avoiding misleading large gradients.
Tables 2.2, 2.3 and 2.4 present some segmentation metrics obtained by various nnU-Net
versions on both the training and validation set of the BraTS 2020 challenge. The different
models are identified by the following abbreviations:

Reprinted by permission from Springer Nature: Springer Nature, Brainlesion: Glioma, Multiple Sclerosis, Stroke
and Traumatic Brain Injuries, nnU-Net for Brain Tumor Segmentation, Fabian Isensee, Paul F. Jäger, Peter M.
Full et al., ©2021 Springer Nature Switzerland AG (2021)
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Model Whole Core Enh. Mean
BL 90.60 84.26 77.67 84.18
BL* 90.93 83.70 76.64 83.76

BL*+R 90.96 83.76 77.65 84.13
BL*+R+DA 90.90 84.61 78.67 84.73

BL*+R+DA+BN 91.24 85.04 79.32 85.20
BL*+R+DA+BD 90.97 83.91 77.48 84.12

BL*+R+DA+BN+BD 91.15 84.19 79.99 85.11
BL*+R+DA*+BN 91.18 85.71 79.85 85.58

BL*+R+DA*+BN+BD 91.19 85.24 79.45 85.29

Table 2.3. Dice scores obtained by various nnU-Net versions on the BraTS
2020 validation set using the five models from the training CV as ensemble as
presented by Isensee et al. [2021b].

Model Whole Core Enh. Mean
BL 4.89 5.91 35.10 15.30
BL* 4.23 6.01 41.06 17.10

BL*+R 4.41 8.80 29.82 14.34
BL*+R+DA 4.70 5.62 29.50 13.28

BL*+R+DA+BN 3.97 5.17 29.25 12.80
BL*+R+DA+BD 4.11 8.60 38.06 16.93

BL*+R+DA+BN+BD 3.72 7.97 26.28 12.66
BL*+R+DA*+BN 3.73 5.64 26.41 11.93

BL*+R+DA*+BN+BD 3.79 7.77 29.23 13.60

Table 2.4. Hausdorff95 distances obtained by various nnU-Net versions on the
BraTS 2020 validation set using the five models from the training CV as ensemble
as presented by Isensee et al. [2021b].

• BL/BL*: baseline nnU-Net (* indicates a batch size of 5 instead of 2),

• R: training with overlapping regions,

• DA/DA*: more aggressive data augmentation (* means that brightness augmenta-
tion is applied for each modality with a probability of 0.5),

• BN: batch normalization is used, as opposed to instance normalization,

Reprinted by permission from Springer Nature: Springer Nature, Brainlesion: Glioma, Multiple Sclerosis, Stroke
and Traumatic Brain Injuries, nnU-Net for Brain Tumor Segmentation, Fabian Isensee, Paul F. Jäger, Peter M.
Full et al., ©2021 Springer Nature Switzerland AG (2021)
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• BD: batch Dice is adopted, as opposed to sample Dice.

Each configuration is trained on the training set with a 5-fold cross-validation, and those
five models are then applied as an ensemble to the validation set. Inflated values can be
observed in the Hausdorff95 distance values for the enhancing tumors, which is due to the
fact that during post-processing this section of tumor is entirely removed if the volume
predicted is less than a given threshold. This strategy leads to the removal of some true
positive predictions, but in practice the net gain in robustness out-weights the losses.
Moreover, wrong enhancing tumor predictions (false positive, i.e. reference segmentation
does not present such class) are hard coded to receive a Hausdorff95 distance of 373.13,
and those outliers strongly dominate the mean aggregation.
Following the results on the validation set, the authors decided to build as final submission
an ensemble of 20 models – 5 models configured as BL*+R+DA*+BN+BD, 5 models
configured as BL*+R+DA+BN+BD and 15 models configured as BL*+R+DA*+BN –,
which lead to a final Dice scores of 91.24, 85.06 and 79.89, and Hausdorff95 distances
of 3.69, 7.82 and 23.50 for the whole tumor, tumor core and enhancing tumor (on the
validation set) respectively, allowing them to win the subsequent test phase and achieve
the first place in the competition.
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Chapter 3

State of the art

As any doctor can tell you, the most crucial step toward healing is having
the right diagnosis. If the disease is precisely identified, a good resolution
is far more likely. Conversely, a bad diagnosis usually means a bad
outcome, no matter how skilled the physician.

- Dr. Andrew Weil

3.1 Pre-operative
A lot of effort on (semi-)automatic brain tumor segmentation and classification from MR
imaging scans has been put since the late nineties, given its non-invasive nature and the
challenging and time-consuming features of manual segmentation (Biratu et al. [2021]).
This led to an ample literature focusing on segmentation, ranging from traditional machine
learning to deep learning techniques. For comparison purposes, here will be presented only
those methods operating on BraTS-MICCAI datasets (see Section 2.3) and introducing
the Dice Similarity Coefficient (see Subsection 2.3.1) as performance.

3.1.1 Machine learning

Tang et al. [2015] achieved a DSC of 96.5% on the BraTS 2012 dataset via a random forest
(RF) with intensity, similarity and blobness as features. Pre-processing included regis-
tration and normalization, while post-processing consisted in an independent connected
component analysis. Chen et al. [2017b] proposed instead a support vector machine (SVM)
having gray-level co-occurrence matrix (GLCM) and gray statistical as features, together
with simple linear iterative clustering as pre-processing, which achieved a DSC of 86.1%
on the BraTS 2013 dataset. Bougacha et al. [2018] illustrated two methods: one based on
an artificial neural network (ANN) and another on a SVM, both working on intensity and
texture as features. The former achieved – on the BraTS 2015 dataset – a DSC of 90.8%,
while the latter a DSC of 88.7%, with neither pre- nor post-processing. Ma et al. [2018]
expanded the BraTS 2015 dataset with some patient MRs from The Cancer Genome Atlas
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Publication BraTS Model DSC
Tang et al. [2015] 2012 RF 96.5

Chen et al. [2017b] 2013 SVM 86.1
Bougacha et al. [2018] 2015 ANN 90.8
Bougacha et al. [2018] 2015 SVM 88.7

Ma et al. [2018] 2015 ccRF 89.0
Hatami et al. [2019] 2015 RF 98.4
Fulop et al. [2020] 2015 RF 85.5

Table 3.1. Summary of most relevant studies regarding GBM segmentation
with ML techniques.

Glioblastoma (TCGA-GBM) collection and suggested a concatenated and connected ran-
dom forest (ccRF) with multiscale patch driven active contour as post-processing which
achieved a DSC of 89.0%. Hatami et al. [2019] proposed another random forest with noise
removal and morphological filtering which scored a DSC of 98.4% on the BraTS 2015
dataset. Fulop et al. [2020] presented a further RF model with histogram enhancement
and morphological filtering which achieved, on the BraTS 2015 dataset as well, a DSC of
85.5%. Table 3.1 gives a summarized overview of these methods.

3.1.2 Deep learning
The advent of DL drastically reduced the number of ML methods applied for brain tumor
segmentation given the astonishing results and the minor need for handcrafted features.
It is therefore noticeable an unilateral shift from one field to the other starting from 2015.
Pereira et al. [2016] proposed a custom Convolutional Neural Network (CNN) and a
pre-processing pipeline including bias field correction, intensity and patch normalization,
achieving a DSC of 88.0% on the BraTS 2015 dataset. Ding et al. [2019b] presented
instead a deep residual dilate network with middle supervision which scored a DSC of
86.0% on z-normalized data from the BraTS 2015 dataset. A stack multi-connection
simple reducing net (SMCSRNet) was proposed by Ding et al. [2019a], which achieved on
the same configuration a DSC of 83.4%. Razzak et al. [2019] introduced a model called
Two-Pathway-Group CNN to leverage both local and global contextual features, which
achieved a DSC of 89.2% on the BraTS 2015 dataset with bias correction and intensity
normalization as pre-processing. Wang et al. [2018] proposed image specific fine tuning
after a custom CNN, scoring a DSC of 86.3% on the BraTS 2015 dataset. Xu et al. [2019]
experimented with a LSTM multi-modal U-Net on the BraTS 2015 dataset, achieving a
DSC of 73.1%. Zhou et al. [2020b] suggested a model comprising cascaded 3D U-Nets,
which achieved a DSC of 89.4% on the BraTS 2017 dataset pre-processed with intensity
normalization, resizing and bias field correction. Ye et al. [2021] introduced a parallel
pathway dense neural network with weighted fusion structure able to score a DSC of
88.4% and 88.7% respectively for the BraTS 2015 and BraTS 2017 datasets. Li et al.
[2019] extended an Inception U-Net with a cascaded training strategy achieving a DSC of
89.0% on z-normalized data from the BraTS 2017 dataset.

48



3.1 – Pre-operative

Publication BraTS Model DSC
Pereira et al. [2016] 2015 CNN 88.0
Ding et al. [2019b] 2015 RDM-Net 86.0
Ding et al. [2019a] 2015 SMCSRNet 83.4
Razzak et al. [2019] 2015 2PG-CNN 89.2
Wang et al. [2018] 2015 BIFSeg 86.3

Xu et al. [2019] 2015 LSTM U-Net 73.1
Ye et al. [2021] 2015 Dense CNN 88.4
Ye et al. [2021] 2017 Dense CNN 88.7

Zhou et al. [2020b] 2017 3D U-Nets 89.4
Li et al. [2019] 2017 Inception U-Net 89.0

Ben Naceur et al. [2020] 2018 Attention CNN 86.2
Sun et al. [2021] 2018 3D FCN 90.0

Myronenko [2019] 2018 U-Net + VAE 82.2
Aboelenein et al. [2020] 2018 HTTU-Net 86.5

Sun et al. [2021] 2019 3D FCN 89.0
Ali et al. [2020] 2019 3D-CNN + U-Net 90.6

Jiang et al. [2020] 2019 Cascaded U-Net 85.3
Henry et al. [2021] 2020 U-Net + DS 87.0
Cirillo et al. [2020] 2020 3D-GAN 82.3

Yuan [2021] 2020 Attention U-Net 84.8
Jia et al. [2021] 2020 H2NF-Net 85.2

Isensee et al. [2021b] 2020 nnU-Net 85.4
Futrega et al. [2021] 2021 nnU-Net 91.6
Luu and Park [2021] 2021 Attention U-Net 91.5

Siddiquee and Myronenko [2022] 2021 Train Mod. U-Net 89.1

Table 3.2. Summary of most relevant studies regarding GBM segmentation
with DL techniques.

Ben Naceur et al. [2020] proposed another Deep Convolutional Neural Network (DCNN)
implementing a selective attention technique inspired by the Occipito-Temporal pathway
achieving a DSC of 86.2% on the intensity-normalized BraTS 2018 dataset. Sun et al.
[2021] applied a 3D Fully Convolutional Network (FCN) on z-normalized MRI scans from
both BraTS 2018 and BraTS 2019 datasets, achieving a DSC of 90.0% and 89.0% respec-
tively. Aboelenein et al. [2020] presented HTTU-Net, a hybrid two track U-Net which
scored a DSC of 86.5% on the BraTS 2018 dataset. Ali et al. [2020] proposed instead an
ensemble of a 3D-CNN and U-Net able to achieve a DSC of 90.6% on the BraTS 2019
dataset. Myronenko [2019] proposed an encode-decoder structure with an auxiliary vari-
ational auto-encoder branch which won the 1st place in the BraTS 2018 challenge scoring
a DSC of 82.2% on the testing dataset. Jiang et al. [2020] devised a novel two-stage
cascaded U-Net which won the BraTS 2019 challenge achieving a DSC of 85.3% on the
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testing dataset. Henry et al. [2021] proposed an U-Net-like architecture with deep su-
pervision and stochastic weight averaging which ranked among the top-10 entries in the
BraTS 2020 challenge with a DSC of 87.0%. Cirillo et al. [2020] introduced Vox2Vox,
a 3D-GAN for brain tumor segmentation which achieved a DSC of 82.3% on the BraTS
2020 dataset. Yuan [2021] obtained the 3rd place in the BraTS 2020 challenge by devising
SA-Net, an U-Net-like model with scale attention blocks, achieving a DSC of 84.8%. Jia
et al. [2021] ranked 2nd on the BraTS 2020 leaderboard by proposing H2NF-Net, a hybrid
high-resolution and non-local feature network which scored a DSC of 85.2%. The 1st place
was instead obtained – as presented in Subsection 2.4.1 – by Isensee et al. [2021b] with
some ad hoc modifications from the vanilla 3D U-Net returned by the nnU-Net pipeline,
with a DSC of 85.4%. Similarly, another optimized version of the nnU-Net output (pre-
sented more in detail in Subsection 4.1.1) proposed by Futrega et al. [2021] ranked 1st on
the BraTS 2021 validation leaderboard, with a DSC of 91.6%. Luu and Park [2021] ex-
tended nnU-Net as well, achieving a DSC of 91.5% on the BraTS 2021 dataset by adding
axial attention in the decoding path. Siddiquee and Myronenko [2022] supported instead
a U-Net-like architecture with some modifications of the network training process in order
to minimize redundancy under perturbations, achieving a DSC of 89.1% on the BraTS
2021 dataset. Table 3.2 gives a summarized overview of these method,

3.2 Post-operative
While many efforts have been put in order to improve the segmentation of pre-operative
scans, no comparable result has still been achieved for post-operative ones. Literature
regarding post-operative brain tumor segmentation is still scarce, and the few studies
available either focus only on the resection cavity segmentation or achieve strongly sub-
human performances due to the general lack of data and the mixed training between pre-
and post-operative scans. This is mainly due to the two following factors: first, the absence
of a wide dataset like BraTS requires researchers to deploy their model on small private
collections, hence reducing comparability and generalizability. Second, post-operative
segmentation is way more tricky than pre-operative one, with possible presence/absence
of some structures, such as the enhancing part of the tumor. For this reason, part of what
is defined as post-operative segmentation focuses on segmenting pre-operative classes in
post-operative tumor recurrence.
Zeng et al. [2017], for example, proposed a hybrid generative-discriminative model which
achieved a DSC of 59.3% for whole tumor (71.0%), tumor core (56.0%) and enhancing
tumor (51.0%) on 32 post-operative patients from the BraTS 2016 dataset. The drop is
noticeable when considering that their application on the BraTS 2016 HGG pre-operative
patients returned a DSC of 85.3%. Ghaffari et al. [2022], in a process similar to the
one implemented in this work, studied the effect of transfer learning from pre-operative
scans to post-operative ones with a Dense U-Net, achieving an average DSC of 73.3% for
whole tumor (83.0%), tumor core (77.0%) and enhancing tumor (60.0%) on 15 patients
treated with post-operative radiation therapy. Here is noticeable as well the gap between
the performances reached on pre-operative cases and post-operative ones, with the model
scoring a DSC of 83.7% on the BraTS 2020 validation dataset for whole tumor (DSC
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90.0%), tumor core (83.0%) and enhancing tumor (78.0%) subregions. As anticipated,
some studies focused also on segmenting the resection cavity only. Jungo et al. [2018]
introduced a FCNN with uncertainty estimates able to segment the cavity in 30 post-
operative patients with a DSC of 79.2%. Ermis et al. [2020] devised a DenseNet-like
architecture, observing an agreement with three raters (mean DSC 85.0%, 84.0%, 86.0%)
of DSC 83.0%, 81.0% and 81.0% respectively on 30 post-operative GBM patients. Lotan
et al. [2022] built a dataset including both pre- and post-operative scans for a total of
432 cases, achieving a DSC of 79.7% for whole tumor (83.0%), tumor core (84.0%) and
enhancing tumor (72.0%). Helland et al. [2022], in what is likely the widest study on
post-operative GBM segmentation, achieved a DSC of 88.5% in segmenting residual tumor
tissue in early post-operative MRI scans from 645 patients from 13 hospitals across Europe
and the US.
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Chapter 4

Experimental setup and
methods

If you trust software, you tend to believe it
- Enrico Coiera

4.1 Segmentation architecture

4.1.1 nnU-Net in BraTS 2021
Futrega et al. [2021], following the performances of U-Net and nnU-Net-based models
in the BraTS 2020 challenge, proposed an optimized architecture for the brain tumor
segmentation task of the BraTS 2021 challenge which won the validation phase and ended
in third place on the final leaderboard after the test phase1. Given the huge boost in the
number of patients provided by the challenge in comparison to the previous year – BraTS
2021 presents 1251 patients in the training set, juxtaposed to “only” 369 in the BraTS
2020 one – the authors decided to run extensive ablation studies in order to select the
optimal U-Net variant first (see Section 2.1.1), and the best training schedule then.
As a first step, all four modalities (FLAIR, T1, T1ce, T2) were stacked in order to get
each sample shaped as (4, 240, 240, 155), where input tensor follow the (C, H, W, D)
layout. Then, cropping was performed: zero-value voxels on the borders (redundant
background) were removed as they do not convey useful information to the network. All
volumes have been normalized afterwards, by subtracting the mean and dividing by the
standard deviation, both computed separately for each channel within the non-zero region.
This allows background voxels to keep their value at zero. As a supplement, in order to
distinguish between those voxels with value close to zero and actual background ones, an
additional input channel was created with one-hot encoding for those foreground voxels

1“NVIDIA Data Scientists Take Top Spots in MICCAI 2021 Brain Tumor Segmentation Challenge”
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Raw Orientation Crop Normalization OHE map

Figure 4.1. Preprocessing applied to each modality (FLAIR, T1, T1ce and T2 respectively).
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Figure 4.2. Final architecture proposed for the BraTS 2021 challenge as described in
the original paper by Futrega et al. [2021].

and was stacked with input data. With the aim of alleviating the overfitting problem,
data augmentation have been applied for this challenge as well. Specifically:

• a patch of dimensions (5, 128, 128, 128) was cropped randomly from the input
volume. Moreover, with probability of 0.4, it was guaranteed that some foreground
voxels with positive class in the ground truth were actually present in the cropped
region,

• a random value is sampled uniformly from (1.0, 1.4) with probability of 0.15 and the
image is resized to such sampled value times its original size with cubic interpolation,
whereas the ground truth is zoomed with nearest neighbour interpolation,

• for each axis independently, the input was flipped along that axis with probability
of 0.5,

• random Gaussian noise with zero mean and standard deviation uniformly sampled
from (0, 0.33) is sampled and added to the input with probability of 0.15,

Reprinted by permission under Creative Commons Attribution 4.0 International, Optimized U-Net for Brain
Tumor Segmentation, Michał Futrega et al., ©CC BY 4.0 (2021) – no changes were made –
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• Gaussian blurring with Gaussian kernel standard deviation uniformly sampled from
(0.5, 1.5) is applied to the input with probability of 0.15,

• brightness is modified with probability of 0.15 by sampling uniformly from (0.7, 1.3)
a random value and by multiplying for such value all input voxels,

• contrast is modified with probability of 0.15 by sampling uniformly from (0.65, 1.5)
a random value, by multiplying for such value all input voxels and by clipping them
to their original value range.

Based on the authors experiments, the top-scoring architectural U-Net variant turned out
to be the standard 3D one returned by the nnU-Net framework (see Subsection 2.4.1).
Such model was therefore selected for further exploration. Figure 4.2 shows the final
architecture proposed for the BraTS 2021 challenge. As a start, experiments showed that
increasing the depth of the encoder from 6 to 7 and changing the number of channels
from [32, 64, 128, 256, 320, 320] to [64, 96, 128, 192, 256, 386, 512] further improves
its performance. Following Isensee et al. [2021b], labels were translated into the three
overlapping regions and the loss was computed separately for each region as the sum of
binary cross-entropy and Dice score (in its batch Dice form). Focal loss with gamma
parameter set to 2 was experimented in place of binary cross-entropy but it led to worse
performances. Finally, deep supervision (Zhu et al. [2017]) was implemented by adding
two heads (in green, in Figure 4.2) at the end of the second- and third-last depth levels in
the decoding path. Computing the loss on different levels improves a network performance
by leveraging a better gradient flow. Hence, if pi is the prediction for label yi, with i being
the depth level, the loss function is computed as

L(y1, y2, y3, p1, p2, p3) = L(y1, p1) + 1
2L(y2, p2) + 1

4L(y3, p3). (4.1)

Model Standard U-Net Attention U-Net Residual U-Net
Fold 0 0.9087 0.9044 0.9086
Fold 1 0.9100 0.8976 0.9090
Fold 2 0.9162 0.9051 0.9140
Fold 3 0.9238 0.9111 0.9219
Fold 4 0.9061 0.8971 0.9053

Mean Dice 0.9130 0.9031 0.9118

Table 4.1. Experimental results as presented in Futrega et al. [2021] showing that 3D
baseline U-Net is the highest-scoring variant in the 5-fold comparison (although residual
variants have similar scores, training times were noticeably longer).

Reprinted by permission under Creative Commons Attribution 4.0 International, Optimized U-Net for Brain
Tumor Segmentation, Michał Futrega et al., ©CC BY 4.0 (2021) – no changes were made –
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Model Standard Attention Residual DS Focal
Fold 0 0.9087 0.9044 0.9086 0.9111 0.9094
Fold 1 0.9100 0.9110 0.9103 0.9115 0.9026
Fold 2 0.9162 0.9157 0.9175 0.9175 0.9146
Fold 3 0.9238 0.9234 0.9233 0.9268 0.9229
Fold 4 0.9061 0.9061 0.9070 0.9074 0.9072

Mean Dice 0.9130 0.9130 0.9134 0.9149 0.9133

Table 4.2. Experimental results as presented in Futrega et al. [2021] showing that the
only extension significantly improving the 5-fold average Dice score over the standard
U-Net was the implementation of deep supervision (DS).

Model DS Deeper Channels One-hot D+C+O
Fold 0 0.9111 0.9118 0.9107 0.9109 0.9118
Fold 1 0.9115 0.9140 0.9135 0.9132 0.9141
Fold 2 0.9175 0.9170 0.9173 0.9174 0.9176
Fold 3 0.9268 0.9256 0.9265 0.9263 0.9268
Fold 4 0.9074 0.9079 0.9072 0.9075 0.9076

Mean Dice 0.9149 0.9152 0.9150 0.9050 0.9156

Table 4.3. Experimental results as presented in Futrega et al. [2021] showing that per-
forming all modifications (deep supervision, deeper encoder, different number of channels
and additional one-hot input) further improves the network score.

In order to match the patch dimension and the output of the lower levels, nearest neighbor
interpolation was adopted. Tables 4.1, 4.2 and 4.3 try to summarize all these decisions by
highlighting the average Dice scores recorded across several 5-fold comparison experiments.
Inference is performed with the aid of a sliding window having the same size as the training
patch, i.e. (128, 128, 128), with two consecutive windows overlapping by half such a patch.
Following once again Isensee et al. [2021b], Gaussian importance weighting is applied to
average the overlapping regions prediction so that center voxels have higher importance.
Furthermore, test time augmentation is performed by creating eight different versions
of the input volume through each possible flip along the x, y and z axis combination.
Inference probabilities are then averaged across all these eight results to form one final
prediction. Since optimization dealt with the three overlapping regions of enhancing
tumor, tumor core and whole tumor, it is necessary to convert each class back to the
original classes of necrosis, enhancing tumor and edema. The following strategy have
been proposed: if the probability for a voxel of being whole tumor is less than 0.45, it is

Reprinted by permission under Creative Commons Attribution 4.0 International, Optimized U-Net for Brain
Tumor Segmentation, Michał Futrega et al., ©CC BY 4.0 (2021) – no changes were made –
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considered as background (label 0). Otherwise, if the probability for such voxel of being
classified as tumor core, the voxel is considered as edema (label 2). Finally, depending on
whether the probability of being considered enhancing tumor is less than 0.45, necrosis
(label 1) or enhancing tumor (class 4) are assigned as class respectively. Furthermore, to
avoid the case in which the model predicts some voxels as enhancing tumor while none is
present in the ground truth, a the following post-processing strategy was applied: once
detected an enhancing tumor connected component, if its size is smaller than 16 voxels
and the average probability is less than 0.9, it is replaced by necrosis voxels (so that it is
still considered as tumor core). Enhancing tumor voxels are converted to necrosis also in
the case in which there are less than 73 voxels classified as ET with an average probability
lower than 0.9. All such hyperparameters have been selected via a grid-search method to
maximize the average score on a 5-fold cross-validation.
Each experiment followed a 1000-epochs training using the Adam optimizer with a learning
rate equal to 0.0003 and a weight decay of 0.0001. A linear warm-up of the learning
rate was used during the first 250 iterations and then decreased with a cosine annealing
scheduler. For evaluation, a 5-fold cross-validation was adopted and the average highest
scores were compared.

4.2 Dataset and harmonization

The Molinette Hospital has made available a retrospectively-collected dataset comprising
71 patients suffering from Grade IV Glioma that eventually underwent surgery at the insti-
tute. All MRI scans acquired in situ were accessible by default on the hospital SYNAPSE®

Mobility PACS system. In the eventuality that some scans were imaged at a different cen-
tre, such MRs have been routinely uploaded on the BRAINLAB© neuronavigation system
available to the neurosurgery department. At the time of hospitalization, written con-
sensus for personal, biological and radiological data processing for scientific purposes was
explicitly asked and registered on the InterSystem TrakCare© information system. For
the sake of this study, all data were anonymized beforehand as instructed by the GDPR
through the apposite function available in the HOROS© DICOM image viewer. Some pa-
tients have been excluded due to one or more of the following: underage subject, absence
of either T1ce or FLAIR sequences, post-operative complications (such as hemorrages or
abscesses) that could possibly invalidate the segmentation, or GBM histologically not-yet
confirmed. Each patient presents one or more scans, with post-operative acquisition times
ranging from immediately after the surgery (max 48h) to 12+ months later. Both pre-
and post-operative segmentations have been performed semi-automatically through the
SmartBrush feature of the Cranial Planning workflow inside the BRAINLAB© neuronav-
igation system (Build 3.3.1.404). The volumetric representation is reconstructed by the
software by combining the semi-automatic segmentations in the axial, coronal and sagittal
planes. The axial view is then extracted and, if necessary, manually adjusted. The process
was carried on individually by 4 neurosurgeons, 1 neuroradiologist and 1 medical student,
all supervised by a further neurosurgeon.
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Figure 4.3. Examples of SynthStrip brain extraction from a wide variety of acquisition
modalities as presented by Hoopes et al. [2022].

Figure 4.4. Synthstrip training framework as presented by Hoopes et al. [2022].

CaPTk FLAIR SynthStrip FLAIR CaPTk T1ce SynthStrip T1ce

Figure 4.5. Qualitative comparison of the CaPTk skull-strip and SynthStrip algorithms.

Reprinted by permission under Creative Commons Attribution 4.0 International, SynthStrip: skull-stripping for
any brain image, Andrew Hoopes, Jocelyn S. Mora, Adrian V. Dalca et al., ©CC BY 4.0 (2022) – no changes
were made –

Reprinted by permission under Creative Commons Attribution 4.0 International, SynthStrip: skull-stripping for
any brain image, Andrew Hoopes, Jocelyn S. Mora, Adrian V. Dalca et al., ©CC BY 4.0 (2022) – no changes
were made –
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The segmented classes consist in necrosis, core tumor and whole tumor – similarly to
BraTS – for the pre-operative case, while resection cavity, enhancing tumor and whole
tumor (enhancing tumor + edema) for the post-operative one. Whole tumor segmentation
was performed on the FLAIR modality, whereas the remaining two classes on the T1ce
one, both for the pre- and post-operative case.
Ground truth segmentations are exported from the BRAINLAB© neuronavigation system
in their “burned-in” form, meaning that the classes overlap with the corresponding MRI
scan and emerge visually by being identifiable by those voxels with the highest intensity.
Since the model will be trained on the BraTS dataset, all scans received from the Mo-
linette Hospital need to be harmonized in a “BraTS-like” manner. There are two main
steps in order to reach such goal: co-registration to the SRI-24 template (Rohlfing et al.
[2009]) with uniform isotropic resolution (1mm3) and skull-stripping. The whole pipeline
is available through the Cancer Imaging Phenomics Toolkit (Davatzikos et al. [2018], Pati
et al. [2020]). Yet, the skull-stripping performed by CaPTk is achieved via a DeepMedic
network (Kamnitsas et al. [2016], Kamnitsas et al. [2015]) trained on the BraTS 2017
training data whose outcomes are often unsatisfactory.
For this reason, the CaPTk pipeline will be limited to the SRI-24 atlas co-registration.
Skull-stripping will instead be performed through SynthStrip, a novel and more robust
skull-stripping method recently proposed by Hoopes et al. [2022]. Figure 4.5 presents
a qualitative comparison of the two algorithms for a patient from Molinette Hospital,
highlighting how CaPTk could eventually lead also to a loss of information regarding the
tumor itself.

Skull-stripping

Skull-stripping – known also as brain extraction – consists in the act of removing non-brain
signal from MRI data. It is a useful step in further anonymizing the brain scans since it
mitigates potential facial recognition/reconstruction of the patient and a core component
of many neuroimaging pipelines. Classical skull-stripping methods are well-explored but
are unfortunately strongly tailored to images with specific acquisition properties. The
robustness of SynthStrip derives from the fact that the underlying U-Net is exposed to a
deliberately unrealistic range of contrasts, artifacts and anatomies, thus making the model
agnostic to acquisition specifics since it never samples from real data during training.
Figure 4.4 summarizes the training framework developed for SynthStrip: at each step, a
gray-scale image x with arbitrary contrast is synthesized from a randomly transformed
brain segmentation st. The 3D U-Net (see Subsection 2.1.1) receives then x as input
and predicts the thresholded signed distance transform (SDT) d representing the distance
between the skull boundaries and each voxel. The adopted loss between predictions and
ground truth is a variant of the MSE, defined as

LSDT =
q

i∈P ωi(di − d̂i)2q
i∈P ωi

, ωi =
I

b if |d̂i| > t,

1 otherwise,
(4.2)

where i represents a voxel in the image domain P , t = 5mm and b = 0.1, as optimally
determined via a grid search by the authors. Comparison between other baseline methods
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Raw N4 + LPS/RAI SRI-24 Skull-strip

Necrosis

Core

Whole

Figure 4.6. BraTS harmonization pipeline for a pre-operative Molinette Hospital patient.
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Raw N4 + LPS/RAI SRI-24 Skull-strip

Cavity

Enhancing

Whole

Figure 4.7. BraTS harmonization pipeline for a post-operative Molinette Hospital patient.
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Slice x Slice x+1 Slice x+2 Slice x+3 Slice x+4

Figure 4.8. Qualitative comparison of processed FLAIR from volumetric raw input
(above) and non-volumetric one (below).

shows that SynthStrip significantly outperforms their accuracy for nearly every cohort
test, and when this does not happen, SynthStrip matches baseline performances (Hoopes
et al. [2022]). Figures 4.6 and 4.7 show the final BraTS harmonization pipeline for the
patients in the Molinette Hospital dataset, comprising SRI-24 co-registration performed
with CaPTk and skull-stripping by SynthStrip. Since the CaPTk pipeline required the
presence of all four scan modalities (FLAIR, T1, T1ce, T2) but for the Molinette dataset
only FLAIR and T1ce were present, it was decided to pass the burned-in segmentations
as T1 (burned-in T1ce) and T2 (burned-in FLAIR) as it empirically seemed not to loose
any information. SynthStrip was then applied to extract the brain mask from the end-of-
pipeline original T1ce scan, with such mask being then adopted for all remaining scans.
Once both raw and burned-in data have been registered to the SRI-24 atlas and skull-
stripped, all classes were extracted by retrieving high-intensity regions and the complete
starting segmentation was built by joining the necrosis/cavity (respectively for pre/post-
operative scans), the enhancing tumor and the peripheral edema.
Table 4.4 presents an overview on the post-operative part of the dataset made available by
the Molinette Hospital, which includes 166 MRI scans from 71 patients. It is worth notic-
ing the peculiar behaviour of vanishing ground truth classes emerging quite frequently:
indeed, in some scans, either the resection cavity or the enhancing tumor may not be
present at all. This might be due, for example, in the case of resection cavity, to either
cerebral parenchyma expanding and filling it or tumor relapse. This might lead eventually
to some false positive classification by the network, especially regarding enhancing tumor
since it is already trained in recognizing it but its presence in a post-operative scan is way
less preponderant than in a pre-operative one. Moreover, another problem arising is the
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Number of scans Number of patients MRI scan type Total
1 22 NC: 5 | NE: 7 | C: 10 22 (NV: 4)
2 25 NC: 3 | NE: 14 | C: 33 50 (NV: 9)
3 9 NC: 8 | NE: 8 | C: 11 27 (NV: 12)

4+ 15 NC: 12 | NE: 22 | C: 33 67 (NV: 21)
Total 71 NC: 28 | NE: 51 | C: 87 166 (NV: 46)

Table 4.4. Quantitative description of the post-operative dataset made available by the
Molinette Hospital (NC: no cavity, NE: no enhancing, C: complete, NV: non-volumetric).

Fold Train. scans Train. patients Val. scans Val. patients
0 135 (NV: 46) 58 (NV: 26) 26 9
1 146 (NV: 46) 59 (NV: 26) 15 8
2 145 (NV: 46) 59 (NV: 26) 16 8
3 143 (NV: 46) 59 (NV: 26) 18 8
4 147 (NV: 46) 59 (NV: 26) 14 8

Table 4.5. Quantitative description of the 5-fold patient-based split for the
Molinette Hospital dataset.

presence of non-volumetric FLAIR scans. These scans present an extremely low resolution
– ∼20-30 slices – and the anatomical information obtained from the “upsampling” proce-
dure to interpolate the raw MR into the 155 slices required by the SRI-24 template is not
satisfactory, eventually leading to imprecise edema ground truth extrapolation. Figure
4.8 shows qualitatively the depth evolution of a processed FLAIR scan obtained from a
volumetric raw input and of a processed FLAIR scan obtained from a non-volumetric one,
with the latter being way noisier and less precise.
Non-volumetric scans are often due to old protocols or obsolete acquisitions but their pres-
ence in the clinical practice is far from being irrelevant (more than 25% in the Molinette
dataset), especially when considering that these patients are likely to be the ones with
a larger number of follow-up acquisitions. For such reason, excluding entirely these data
from the dataset would not be correct, clinically speaking. The middle ground chosen at
last is to include these data only for training, while excluding them from validation. In
this way, validation performances are not subjected to this phenomenon while information
can hopefully still be extrapolated during training.
With the aim of trying to limit the problem of false positive predictions, being those
strongly penalized by the network, segmentation will be performed on three overlapping
classes, similarly to what has been done in the pre-operative case. More in detail, the
network will segment the union of cavity and whole tumor (i.e. cavity + enhancing tumor
+ edema), gross tumor volume (cavity + enhancing tumor) and resection cavity, with the
latter being therefore the “trickiest” to segment for the reasons presented above.
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A 5-fold cross-validation will be performed on the Molinette Hospital dataset in order to
test the model performance since it is known that a k-fold cross-validation, maximizing the
use of available data, provides a more reliable estimation than a simple holdout method
(Li and Doi [2007]). Furthermore, it is good practice (and highly recommended) to split
a medical dataset at patient level, i.e. without the eventuality of having the set of scans
belonging to a single patient fractionated between training and validation set, in order
to understand how well the model generalizes on never seen before individuals. With the
current policy on non-volumetric scans, this translates in always keeping patients with at
least one such MRI scan in the training set. Having randomly excluded 4 patients for a
final visual inspection (NC: 1, NE: 1, C: 3), the 5-fold cross-validation will be performed
on those 41 patients not presenting non-volumetric imaging, adding then in the training
set those 26 patients who actually do present them. Table 4.5 quantitatively summarizes
the patients/scans distribution for the analysis included in this work.

4.3 IMT architecture
The proposed method (see Subsection 4.1.1) requires the presence of all four brain MRI
modalities, i.e. FLAIR, T1, T1ce and T2. Indeed, each one of those brings some informa-
tion which is then exploited by the network to segment the brain tumor. Unfortunately,
in clinical practice, missing sequences is a likely occurrence. Eijgelaar et al. [2020] pro-
posed a sparsified training strategy which improved the model performance on incomplete
clinical datasets but, even with such adjustment, it was shown that the best performance
was achieved only if all sequences were available. Due to the advent of deep learning,
intramodality (for example, MRI → CT) and intermodality (for example, FLAIR MRI
→ T1ce MRI) image synthesis, i.e. artificially reconstruction of the missing sequence by
receiving as input the available ones, is a promising and active field of research in both ra-
diation oncology and radiology fields.. Various network architectures have been proposed
for such task in medical imaging during the last years, but three main backbone models
established themselves since were found to achieve the best results: autoencoder, U-Net
and GAN, with the first starting to lose pace with respect to the others (Wang et al.
[2020]). Some studies tackled the problem of brain MRI intramodality synthesis. Yang
et al. [2020] proposed a method to perform image modality translation (IMT) by lever-
aging conditional generative adversarial networks (cGANs), whose generator follows the
U-Net shape by adding skip connections between mirrored layers in the encoder-decoder
network and whose discriminator is derived from a PatchGAN classifier (see Figure 4.9).
Osman and Tamam [2022] implemented instead a U-Net model aimed at learning the non-
linear mapping between a source image contrast to a target image contrast. The U-Net
architecture implemented by the authors was adapted from the standard architecture (see
Section 2.1). The main differences proposed consist in: replacing the sigmoid activation
function in the last layer with tanh, adding dropout in order to prevent overfitting, im-
plementing zero-padding before each convolution with the goal of keeping the image size
constant and substituting the up-convolutions with simple upsampling layers. Figure 4.10
shows the final architecture as proposed by the autors. BraTS 2018 was used as imaging
dataset in order to train the network. Each MR was preprocessed by removing null slices
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Figure 4.9. cGAN model for IMT as presented in the original paper by Yang et al. [2020].

Figure 4.10. U-Net model for IMT as presented in the original paper by
Osman and Tamam [2022].

(i.e. empty ones) since not all the slices provided contain anatomical information. Then,
MRI intensities were standardized to reduce the negative impact of signal variation across
different institution scanners and protocols, and normalized to have zero mean and unit
standard deviation. Intensities are then scaled within a [0, 1] range since it was shown
to improve the results (Reinhold et al. [2019]). Finally, images were resized to match the
U-Net 2D input size of 224×224 pixels by means of cubic interpolation.

Reprinted by permission under Creative Commons Attribution 4.0 International, MRI Cross-Modality Image-to-
Image Translation, Qianye Yang et al., ©CC BY 4.0 (2020) – no changes were made –

Reprinted by permission under Creative Commons Attribution 4.0 International, Deep learning-based convolutional
neural network for intramodality brain MRI synthesis, Alexander F. I. Osman, Nissren M. Tamam, ©CC BY 4.0
(2022) – no changes were made –
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Translation PSNR MAE MSE SSIM
T1 → T2 29.45±1.72 0.0124±0.0027 0.0012±0.0004 0.932±0.023
T2 → T1 29.44±1.85 0.0149±0.0050 0.0012±0.0005 0.937±0.020

T1 → FLAIR 33.25±1.55 0.0086±0.0020 0.0005±0.0002 0.946±0.013
FLAIR → T1 30.73±1.81 0.0125±0.0038 0.0009±0.0004 0.946±0.017
T2 → FLAIR 33.01±1.66 0.0089±0.0027 0.0005±0.0002 0.944±0.015
FLAIR → T2 29.57±1.78 0.0120±0.0036 0.0012±0.0005 0.936±0.022

Table 4.6. Experimental results as presented in Osman and Tamam [2022] showing
metric values for all synthesis configuration taken into account.

The U-Net model has been trained from scratch for different image translation configura-
tions (T1 → T2, T2 → T1, T1 → FLAIR, FLAIR → T1, T2 → FLAIR and FLAIR →
T2). Adam optimizer with a learning rate of 0.001 was selected to minimize the mean-
squared error (MSE) loss until convergence. Training was planned for 120 epochs but an
early-stopping technique was set to terminate it if no improvement was achieved during
a patience time of 20 epochs.
Four pixel-wise metrics were chosen in order to evaluate the quality of the generated MR
images: MAE, MSE, peak signal-to-noise ratio (PSNR) and the structural similarity in-
dex (SSIM). PSNR measures if the artificial output is a sparsely or evenly distributed
prediction by taking into account both the largest intensity value and the MSE, and is
defined as

PSNR = 10 ∗ log10

3
I2

max
MSE

4
. (4.3)

SSIM tries instead to capture the quality of the images as perceived by humans by com-
paring them. Its formula is defined as

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2) , (4.4)

where µ is the mean image intensity, σ2 is the variance of the image, σxy is the covariance
between ground truth and prediction, while c1 and c2 are constants added for division
stability.
The authors compared their U-Net results with several other models adopting BraTS
to validate their deep learning models for image modality translation. The quantitative
comparison of SSIM, PSNR and MAE metrics (see Table 4.6) indicates that such an U-
Net model behaves as good as the best-reported results in literature, achieving the best
MAE in all synthesis configurations taken into account in the study.

Reprinted by permission under Creative Commons Attribution 4.0 International, Deep learning-based convolutional
neural network for intramodality brain MRI synthesis, Alexander F. I. Osman, Nissren M. Tamam, ©CC BY 4.0
(2022) – no changes were made –
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Experimental setup and methods

Figure 4.11. Modified version of the U-Net model for IMT originally introduced
by Osman and Tamam [2022].

In order to evaluate the effect on post-operative segmentation of the additional infor-
mation present in the missing two sequences (T1, T2), the model presented by Osman
and Tamam [2022] is chosen, expanded and adopted to artificially synthesize the required
MRI modalities. More in detail, two are the main architectural modifications imple-
mented: multichannel input layer allowing for multiple modalities being stacked as input
with the goal of leveraging more contextual information and following layers presenting
four times the number of filters of the original architecture.
Hence, current implementation receives as input both available modalities – i.e. FLAIR
and T1ce – and returns as output the desired sequence. Figure 4.11 illustrates the U-
Net structure chosen for the IMT task, together with the architectural changes presented
above.

Reprinted by permission under Creative Commons Attribution 4.0 International, Deep learning-based convolutional
neural network for intramodality brain MRI synthesis, Alexander F. I. Osman, Nissren M. Tamam, ©CC BY 4.0
(2022) – channel dimensions have been altered to match custom architectural changes –
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Chapter 5

Performance evaluation

The most amazing combinations can result if you
shuffle the pack enough.

- Mikhail Bulgakov

5.1 Pre-operative segmentation
As anticipated, the goal of this study is to perform automatic post-operative brain tu-
mor MRI segmentation via transfer learning from pre-operative one. Hence, the first
step consists in reconstructing both the architecture and the training schedule in order to
achieve comparable results to the ones presented by Futrega et al. [2021] on the BraTS
2021 dataset. Therefore, following the official NVIDIA GitHub repository1, the nnU-Net
variant, the preprocessing and the training schedule as discussed by the authors (see Sub-
section 4.1.1) have been implemented. Training was performed for 150 epochs while all
other relevant hyperparameters have been kept as presented in literature.
Computational resources were provided by HPC@POLITO, a project of Academic Com-
puting within the Department of Control and Computer Engineering at the Politecnico di
Torino (http://www.hpc.polito.it). Tables 5.1 and 5.2 present the quantitative results
obtained during a 5-fold cross-validation on the BraTS 2021 dataset for Dice and Haus-
dorff95 distance metrics respectively. Results are in line with those presented by Futrega
et al. [2021] (DSC: 91.63), thus confirming the foundation of such an nnU-Net imple-
mentation for pre-operative brain tumor segmentation in magnetic resonance imaging.
Evaluation is performed for two different configurations of available scans: the “com-
plete” one, i.e. the one comprising all four modalities (FLAIR, T1, T1ce and T2), and the
“most-informative subset” one, i.e. the one comprising just FLAIR and T1ce modalities.
Figures 5.1, 5.2 and 5.3 respectively illustrate instead the trend of train and validation
losses, dice scores and Hausdorff95 distance scores on the “complete” configuration.

1https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Segmentation/
nnUNet.
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Performance evaluation

Model Available modalities Whole Core Enh. Mean
Fold 0 FLAIR, T1ce 93.59 92.56 85.52 90.56

FLAIR, T1, T1ce, T2 93.52 92.66 85.86 90.68
Fold 1 FLAIR, T1ce 93.20 92.21 85.58 90.33

FLAIR, T1, T1ce, T2 93.98 92.41 86.01 90.80
Fold 2 FLAIR, T1ce 93.12 92.31 87.31 90.92

FLAIR, T1, T1ce, T2 93.70 93.25 87.40 91.45
Fold 3 FLAIR, T1ce 93.71 95.23 87.04 91.99

FLAIR, T1, T1ce, T2 94.19 94.60 87.44 92.08
Fold 4 FLAIR, T1ce 92.90 92.83 84.50 90.08

FLAIR, T1, T1ce, T2 93.51 92.62 85.13 90.42
Mean
± Std

FLAIR, T1ce 93.30
± 0.30

93.03
± 1.12

85.99
± 1.04

90.77
± 0.67

FLAIR, T1, T1ce, T2 93.78
± 0.27

93.11
± 0.80

86.37
± 0.91

91.09
± 0.60

Table 5.1. Experimental Dice scores obtained during 5-fold cross-validation on the
BraTS 2021 dataset for the two available modalities configurations.

Model Available modalities Whole Core Enh. Mean
Fold 0 FLAIR, T1ce 7.13 6.13 11.74 8.33

FLAIR, T1, T1ce, T2 6.46 5.29 12.47 8.07
Fold 1 FLAIR, T1ce 5.40 8.32 16.54 10.04

FLAIR, T1, T1ce, T2 5.10 8.44 15.16 9.57
Fold 2 FLAIR, T1ce 5.31 3.74 10.69 6.58

FLAIR, T1, T1ce, T2 4.67 3.66 10.55 6.29
Fold 3 FLAIR, T1ce 5.25 4.94 16.11 8.77

FLAIR, T1, T1ce, T2 5.60 5.52 16.23 9.12
Fold 4 FLAIR, T1ce 5.64 5.79 12.67 8.03

FLAIR, T1, T1ce, T2 5.44 5.90 12.83 8.06
Mean
± Std

FLAIR, T1ce 5.75
± 0.70

5.77
± 1.51

13.54
± 2.35

8.35
± 1.12

FLAIR, T1, T1ce, T2 5.45
± 0.60

5.76
± 1.54

13.45
± 2.02

8.22
± 1.13

Table 5.2. Experimental Hausdorff95 distance scores obtained during 5-fold cross-vali-
dation on the BraTS 2021 dataset for the two available modalities configurations.

Results show that, if it is true, as known, that the optimal performance is obtained on the
“complete” configuration, it also true that solid outcomes are achieved by only adopting
the two most informative MRI scans. This is valuable since, in clinical practice, the
availability of all four modalities is not granted.

70



5.1 – Pre-operative segmentation
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Figure 5.1. Train and validation losses for 150 epochs on the BraTS 2021 dataset.
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Figure 5.2. Dice scores for 150 epochs on the BraTS 2021 dataset.
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5.1 – Pre-operative segmentation
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Figure 5.3. Hausdorff95 scores for 150 epochs on the BraTS 2021 dataset.
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FLAIR T1ce Manual seg. STAPLE seg. Difference map

Figure 5.4. STAPLE pre-operative segmentation on patients from Molinette institute.
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5.2 – Intermodality synthesis

Figure 5.4 shows qualitatively the pre-operative GBM segmentation of patients from the
Molinette dataset obtained fusing with the STAPLE algorithm (Warfield et al. [2004]) all
outputs retrieved from the application of the five folds trained on the BraTS 2021 dataset.
It is interesting to notice how STAPLE outperforms the noisy segmentation acquired as
ground truth after the whole data harmonization pipeline from the radiologists’ one, being
able to segment each class with an higher precision and recognize smaller portions which
are lost as reference because of interpolation.

5.2 Intermodality synthesis
Given the absence of both T1 and T2 MRI modalities, the modified U-Net structure
proposed in its original form by Osman and Tamam [2022] and presented in Section 4.3 is
implemented in order to artificially synthesize them and leverage such further information.
The network is trained for 50 epochs with mixed precision on the BraTS 2021 dataset.
The underlying U-Net requires 2D inputs, therefore each iteration a 3D scan is taken
and a random selection of 64 2D slices (possibly flipped along the two dimensions) is
extracted and fed as batch. The network is trained with the default Adam optimizer
with a learning rate of 0.0003 which decays following a cosine schedule. Output images
have shape 224×224 so post-processing is applied to resize, re-orient and pad them in
their BraTS form. Gaussian sharpening is also applied since it increases slightly SSIM
performances. Even if the model was extended to admit more than one modality as input,
actual syntheses were carried out starting with only the T1ce MRI acquisition since the
presence of non-volumetric FLAIR scans would lead to noisy and coarse-grained artificial
outputs. Table 5.3 summarized the results obtained with the two synthesis configurations
(T1ce → T1, T1ce → T2) in terms of mean-squared error, mean-absolute error, peak
signal-to-noise ratio and structural similarity index. Results are slightly worse than the
ones reported by the authors, which is due to both having the T1 contrast-enhanced
modality as single input and the increasing in acquisition protocols heterogeneity from
BraTS 2018 to BraTS 2021. Figure 5.5 and 5.7 present qualitatively the comparison
between real and synthesized T1 (and T2) MRI modalities for patients from the BraTS
2021 validation dataset. The slight difference in visual perception is due to the [0, 1]-
scaling applied as pre-processing step which modifies the voxel intensity distribution.
This difference will be eventually mitigated by the segmentation pre-processing pipeline
first, where all voxels are normalized, and by the network learning abilities then. Figure
?? illustrates instead the application of the IMT U-Net architecture to some patients from
the Molinette Hospital dataset, being that the final goal of this process.

Synthesis MSE (↓) MAE (↓) PSNR (↑) SSIM (↑)
T1ce → T1 0.0045 0.0329 23.42 0.87
T1ce → T2 0.0025 0.0225 25.99 0.87

Table 5.3. Experimental metrics results obtained for the two synthesis configuration.
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FLAIR T1ce T1 orig. T1 synth. Overlay

Figure 5.5. Qualitative comparison of synthesized T1 scans from BraTS 2021 patients.
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5.2 – Intermodality synthesis

FLAIR T1ce T2 orig. T2 synth. Overlay

Figure 5.6. Qualitative comparison of synthesized T2 scans from BraTS 2021 patients.
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FLAIR T1ce T1 synth. T2 synth. Segmentation

Figure 5.7. IMT application on post-operative scans from the Molinette Hospital dataset.
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5.3 – Post-operative segmentation
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Figure 5.8. Standard learning rate cosine decay schedule (cycles: 0.5, on the left) against
the implemented one (cycles: 0.25, on the right).

5.3 Post-operative segmentation
The architecture proposed by Futrega et al. [2021], pre-trained on pre-operative brain
tumor segmentation, is therefore extended to allow for transfer learning applicability.
Both TL philosophies – i.e. feature extractor and fine-tuning (see Section 2.2) – have
been investigated. Specifically, for the former, all configurations with frozen layers in depth
levels 1–7 have been studied but no significant improvement or relevant advancement was
observed. For such reason, the latter strategy, i.e. tuning all weights from the pre-trained
model, is chosen for the actual experiments.
Here again, both configurations (the “complete” one comprising all four MRI modalities
and the “most-informative subset” one comprising only FLAIR and T1ce) have been
explored, including as T1 and T2 the ones artificially synthesized through the 2D U-Net
IMT method described above. Training is performed for 200 epochs with a learning rate of
0.0007 which decays following a cosine schedule having 0.25 as cosine cycles parameter (see
Figure 5.8). The other relevant hyperparameters have been kept as in the pre-operative
case. A more aggressive data augmentation strategy has been adopted by increasing the
probability of applying a given transformation from 0.15 to 0.5 because it is shown to
improve the model’s generalizability if trained on a small dataset (Zhang et al. [2020a]).
Tables 5.4 and 5.5 present the quantitative results obtained during a 5-fold cross-validation
on the Molinette Hospital dataset for Dice and Hausdorff95 distance metrics respectively.
What emerges is the high volatility in metric results – distinctly regarding the resection
cavity segmentation – due to the limited size of the dataset. Indeed, precisely identifying
the cavity is often arduous even for the naked eye of an expert, which translates in either
the network oversegmenting the region by including hypointense areas or missing some
parts by undersegmenting it.
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Model Available modalities All GTV Cav. Mean
Fold 0 FLAIR, T1ce 74.45 74.52 69.77 72.91

FLAIR, T1, T1ce, T2 73.07 72.70 71.23 72.33
Fold 1 FLAIR, T1ce 77.80 74.89 54.78 69.16

FLAIR, T1, T1ce, T2 76.62 82.39 50.05 69.69
Fold 2 FLAIR, T1ce 76.10 71.41 55.93 67.81

FLAIR, T1, T1ce, T2 75.07 75.48 55.85 68.80
Fold 3 FLAIR, T1ce 77.16 81.23 71.82 76.74

FLAIR, T1, T1ce, T2 76.86 81.38 71.96 76.73
Fold 4 FLAIR, T1ce 77.02 80.43 69.31 75.59

FLAIR, T1, T1ce, T2 73.93 79.58 68.50 74.00
Mean
± Std

FLAIR, T1ce 76.51
± 1.16

76.50
± 3.75

64.32
± 7.38

72.44
± 3.49

FLAIR, T1, T1ce, T2 75.11
± 1.48

78.31
± 3.67

63.52
± 8.90

72.31
± 2.88

Table 5.4. Experimental Dice scores obtained during 5-fold cross-validation on the
Molinette Hospital dataset for the two available modalities configurations.

Model Available modalities All GTV Cav. Mean
Fold 0 FLAIR, T1ce 15.20 9.96 8.78 11.31

FLAIR, T1, T1ce, T2 14.77 10.70 12.07 12.51
Fold 1 FLAIR, T1ce 8.09 16.36 59.18 27.88

FLAIR, T1, T1ce, T2 7.99 15.87 57.70 27.19
Fold 2 FLAIR, T1ce 11.40 11.60 75.23 32.74

FLAIR, T1, T1ce, T2 13.71 12.55 75.98 34.08
Fold 3 FLAIR, T1ce 7.83 7.03 47.00 20.62

FLAIR, T1, T1ce, T2 7.83 6.59 46.30 20.24
Fold 4 FLAIR, T1ce 9.34 6.56 57.94 24.61

FLAIR, T1, T1ce, T2 10.00 6.96 58.70 25.22
Mean
± Std

FLAIR, T1ce 10.37
± 2.72

10.30
± 3.56

49.63
± 22.32

23.43
± 7.24

FLAIR, T1, T1ce, T2 10.86
± 2.88

10.53
± 3.49

50.15
± 21.27

23.85
± 7.20

Table 5.5. Experimental Hausdorff95 distance scores obtained during 5-fold cross-vali-
dation on the Molinette Hospital dataset for the two available modalities configurations.

The triplets including Figures 5.9, 5.10, 5.11 and Figures 5.12, 5.13, 5.14 illustrate instead
the trend of train and validation losses, dice scores and Hausdorff95 distance scores on
the “most informative” and “complete” configurations, respectively.
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5.3 – Post-operative segmentation
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Figure 5.9. Train and validation losses for the reduced configuration on the
Molinette Hospital dataset.
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Figure 5.10. Dice scores for the reduced configuration on the Molinette Hospital dataset.
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Figure 5.11. Hausdorff95 scores for the reduced configuration on the Mo-
linette Hospital dataset.
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Figure 5.12. Train and validation losses for the complete configuration on the
Molinette Hospital dataset.
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Figure 5.13. Dice scores for the complete configuration on the Molinette Hospital dataset.
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Figure 5.14. Hausdorff95 scores for the complete configuration on the Mo-
linette Hospital dataset.
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5.3 – Post-operative segmentation

FLAIR T1ce Manual seg. STAPLE seg. Difference map

Figure 5.15. STAPLE post-operative segmentation on patients from Molinette institute.
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Figure 5.15 shows some example of post-operative segmentation on those 4 patients ran-
domly extracted from the dataset for visual inspection. Similarly to the pre-operative
case, in order to bring back the three overlapping regions to the default ones of edema,
enhancing tumor and resection cavity, some post-processing is applied. Specifically, if the
probability for a voxel of being classified as either GTV or edema is ≤ 0.45, it is classified
as background. Instead, if the probability of being classified as GTV is ≤ 0.4, then the
voxel is classified as edema. If, on the contrary, the probability of being a GTV voxel is
> 0.4 and the same holds for the probability of being classified as cavity, then the voxel
is identified as such (or simply enhancing tumor if the latter is not true). These values
are determined via a gridsearch on the 5 folds, starting from the parameters proposed by
the authors for the pre-operative case. Moreover, similarly to what has been proposed
by the authors, in order to eliminate irrelevant segmentations, any connected component
identified as resection cavity smaller than 16 voxels with an overall probability smaller
than 0.9 is ignored and classified as enhancing tumor instead.
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Chapter 6

Discussion and conclusions

A conclusion is simply the place where you got tired
of thinking.

- Dan Chaon

6.1 Final remarks

If it was expected that the vast heterogenity that characterizes post-operative segmen-
tation (see Figure 6.1) would affect negatively the performances of the model, a slightly
further downgrading is observable for resection cavity recognition due to the extent of
MRI scans admitted in the dataset, for reasons ranging from including non-volumetric
magnetic resonances to considering a temporal range of acquisitions that goes beyond
12 months. Results are nontheless promising, when considering that this study is the
first omni-comprehensive analysis on post-operative GBM segmentation without any kind
of limitation regarding MRI scans inclusion. Indeed, current literature regarding post-
operative brain tumor segmentation often imposes strong criteria for inclusion/exclusion
of MRI scans in the final dataset such as, among others, newly-diagnosed GBM only,
availability of all imaging modalities or resection cavity clearly present on visual inspec-
tion. These constraints undoubtedly ease the learning process but are not generalizable
to the clinical practice where, as it has been shown, an incommensurable diverseness and
variety is present. Oversegmentations of resection cavities are however mitigated by the
STAPLE fusion, often able to converge towards a reasonable and less noisy segmentation.
Figure 6.2, as an example, illustrates how the STAPLE convergence is able to forget the
oversegmentation of an hypointense region as resection cavity. However, little to no help
comes from it in the case of classes missegmentation. The data scarcity problem makes
it impossible for the network to learn thoroughly how to segment each class and “outlier
patients”, i.e. those patients that present an out-of-the-ordinary behaviour with respects
to the ones present in the dataset, are wrongly segmented by a network still unable to
recognize such new patterns.
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Pre-op. Pre-op. overlay Post-op. Post-op. overlay

Figure 6.1. Visual summary of pre- and post-operative segmentation.
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6.2 – Limitations

FLAIR T1ce Fold seg. STAPLE seg.

Figure 6.2. Positive effect of STAPLE fusion for resection cavity segmentation.

FLAIR T1ce Manual seg. STAPLE seg.

Figure 6.3. Worst-case scenario of post-operative classes missegmentation.

Figure 6.3 illustrates a worst-case scenario, with a patient presenting the enhancing tu-
mor as an extremely hyperintense region (likely due to hemoglobine degradation) which is
mistakenly classified by the network as resection cavity, with peripheral edema not being
recognized at all.
Still, when considering its strongly diversified nature and the reduced dimension of the
dataset, results are in line with the literature. While looking forward to a publicly avail-
able multi-site dataset like BraTS, this work presents itself as an interesting proposal and
starting point in order to reduce the gap between pre- and post-operative GBM segmen-
tation.

6.2 Limitations
Due to the absence of a publicly available post-operative brain tumor segmentation dataset
for performance benchmarking, the current study (similarly to other works in such area)
relied on a privately collected dataset from a single institution. Literature has shown that
models developed and tested with data from one collection hardly achieve similar results
when applied to data from a different site (Liu et al. [2019]). The ideal situation would
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be therefore to collect multi-site data, assuring the data collection process to be diverse
in terms of imaging/vendor system, acquisition protocol and subject population. Studies
presenting results from data collected at a single institution are fundamental for advancing
the current state of things but those limitations have to be acknowledged (Petrick et al.
[2013]). Furthermore, image quality has a strong impact on the reported performances
so it should be good practice to follow a quality assessment program. In the current
study, performances are evaluated in the SRI-24 anatomical template space and not in
the original raw one, so that the accurate segmentation is co-registered to the template
and extracted ex post, eventually leading to slightly inaccurate anatomical segmentation.
Several studies have also underlined that reference standards based on radiologists’ opin-
ions are subjective and model performance varies when trained on different ground truth
(Revesz et al. [1983]). Ground truth for this work was usually determined by two neu-
rosurgeons, but a consensus-based model from 3+ radiologist is preferred (Petrick et al.
[2013]). A further limitation in the proposed work is the final post-processing pipeline
proposed to bring back labels to edema, enhancing tumor and resection cavity. If it is
true that the parameters are obtained averaging gridsearch outputs, it also worth noticing
that the limited amount of data makes it impossible to extrapolate solid and trustwor-
thy values. Indeed, since the network is way less confident in its predictions than in the
pre-operative case, it is plausible that such prediction confidence might not be above the
chosen threshold for some MRI scans, leading therefore to imprecise segmentations.

6.3 Future work
The ambitious aim of this work was to investigate a possible omni-comprehensive DL
tool to investigate post-operative brain tumor segmentation, in all its forms. Given the
shortage of available data, transfer learning was adopted as turnaround strategy to lever-
age the accessibility of pre-operative MRI scans. This led to interesting results but it is
nevertheless undeniable that this procedure was hardly sufficient for a deep and thorough
learning process. Increasing the dataset size, possibly with multi-site collections, would
be therefore the preferred way to go. Since in the medical field this is often hardly viable,
reducing the scope of the task might lead to more promising results, especially regarding
the resection cavity, undoubtedly the Achilles’ heel of post-operative segmentation.
Furthermore, no significant improvement was observed by moving from having only two
modalities as input to dealing with the whole configuration, likely because the synthesis
procedure led to artificial scans not precise or informative enough. It goes without saying
that the optimal situation would be the one where all acquisitions are available but it is
expected that, in the absence of non-volumetric MRI, implementing the synthesis proce-
dure feeding to the network more than the single contrast-enhanced modality would lead
to better and more meaningful reconstructions.
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