
POLITECNICO DI TORINO

Master’s Degree in Computer engineering

Master’s Degree Thesis

Semi-supervised Tree-based Anomaly
Detection

Supervisor

Prof. Paolo GARZA

Candidate

Luca STRADIOTTI

October 2022

Abstract

In many real-world applications, abnormal behaviors must be detected immediately
to avoid dangerous situations. Several automated approaches have been proposed
that aim to analyze the data collection provided and identify critical and dangerous
patterns.

This task was always considered as unsupervised learning since no labeled
instances were available: obtaining training labels is extremely expensive and
requires a lot of time from experts who have to carefully read the data and provide
the labels. However, nowadays there are often few labels available, so many semi-
supervised models have been studied, which significantly improve the unsupervised
performance.

Semi-supervised models are divided into three categories depending on their
approach. One of them is composed of tree-based models that learn how to
properly classify anomalies and normal data by building an ensemble of trees.
Although these models are very powerful, they are poorly studied in the literature
due to the difficulty of using both unlabeled and labeled information during the
tree-construction phase.

Therefore, a novel semi-supervised tree-based approach is proposed in this work.
The model learns from both the available labeled instances and unlabeled data to
intelligently partition the space into regions to distinguish normal samples from
outliers.

The model is then evaluated on several benchmark datasets and its performance
is compared with available state-of-the-art algorithms. Empirically the obtained
results show that the proposed approach outperforms the unsupervised and semi-
supervised baselines for most of the datasets used.

Table of Contents

List of Tables iii

List of Figures iv

Acronyms vi

1 INTRODUCTION 1

2 RELATED WORK 3
2.1 Unsupervised algorithms . 3

2.1.1 Distance-based algorithms 3
2.1.2 Density-based algorithms . 4
2.1.3 Isolation-based algorithms 5
2.1.4 Network-based techniques 6

2.2 Semi-supervised algorithms . 7
2.2.1 Label propagation-based algorithms 7
2.2.2 Loss-based algorithms . 9
2.2.3 Tree-based algorithms . 10

3 BACKGROUND : ISOLATION FOREST ALGORITHM 12
3.1 Tree construction . 12
3.2 Anomaly score computation . 13
3.3 Important hyper-parameters . 14

4 METHODOLOGY 15
4.1 Tree construction . 16
4.2 Splitting a feature with unlabeled and only normal labeled instances 16
4.3 Splitting a feature with unlabeled and normal and anomaly labeled

instances . 18
4.3.1 Cut distribution . 19
4.3.2 Feature selection distribution 24

i

4.4 Feature and split value sampling . 25
4.4.1 An alternative for the split value selection 25

4.5 Forest construction . 26
4.6 Anomaly score computation . 26
4.7 Limitations . 26

5 EXPERIMENTS 28
5.1 Setup . 28

5.1.1 Methods . 28
5.1.2 Datasets . 29
5.1.3 Experimental setup . 31
5.1.4 Evaluation metric . 31
5.1.5 Hyperparameters . 31

5.2 Results . 32

6 CONCLUSION 42

Bibliography 43

ii

List of Tables

5.1 Number of instances, features and contamination factor for each of
the datasets used in the experiments. 29

5.2 Percentage test set AUROC improvement of the SSIF model com-
pared to the unsupervised IF considering adding 20% of labels at a
time. The results are averaged over all datasets, seeds, and folds. . . 33

5.3 Average test set AUROC rank ± standard deviation of each method
and dataset across all analyzed percentages of labels. 34

5.4 Each dataset’s average test set AUROC when no labels are provided
for IForest and SSIF model . 41

iii

List of Figures

4.1 Feature with identical unlabeled and normal labeled ranges 17
4.2 Feature with different unlabeled and normal labeled ranges 17
4.3 Cut distribution for IForest and SSIF. IForest uses a uniform dis-

tribution, while SSIF distribution is more informative: it can be
observed that some split values are much more probable than others. 19

4.4 Unlabeled component given an example of unlabeled data distribution 22
4.5 Labeled component given ax example of anomaly and normal data

distribution . 23

5.1 Each dataset’s average test set AUROC as a function of the percent-
age of labeled instances provided for each method. 33

5.2 Each dataset’s average test set AUROC as a function of the percent-
age of labeled instances provided for each value of ψ 35

5.3 Each dataset’s average test set AUROC as a function of the percent-
age of labeled instances provided for each value of λ 36

5.4 Each dataset’s average test set AUROC as a function of the percent-
age of labeled instances provided for each value of l 37

5.5 Each dataset’s average test set AUROC as a function of the percent-
age of labeled instances provided for each value of t 38

5.6 Each dataset’s average test set AUROC as a function of the percent-
age of labeled instances provided for each value of s 39

5.7 Each dataset’s average test set AUROC as a function of the per-
centage of labeled instances provided for the probabilistic and mode
split value selection . 40

iv

Acronyms

SSIF
Semi-Supervised Isolation Forest

kNNo
k-Nearest Neighbours outlier detection

OCSVM
One-Class Support Vector Machines

LOF
Local Outlier Factor

CBLOF
Cluster-Based Local Outlier Factor

IF
Isolation Forest

EIF
Extended Isolation Forest

INNE
Isolation-based anomaly detection using Nearest-Neighbor Ensembles

DeepSVDD
Deep Support Vector Data Description

SO-GAAL
Single-Objective Generative Adversarial Active Learning

vi

MO-GAAL
Multiple-Objective Generative Adversarial Active Learning

SSDO
Semi-Supervised Detection of Outliers

SSkNNo
Semi-Supervised k-Nearest Neighbours outlier detection

SSAD
Semi-Supervised Anomaly Detection

DeepSAD
Deep Semi-Supervised Anomaly Detection

HIF
Hybrid Isolation Forest

HEX
Hybrid EXtended isolation forest

vii

Chapter 1

INTRODUCTION

Anomaly or outlier detection is an important data mining technique that attempts
to find patterns in data that differ significantly from normal behaviour. These
patterns are usually referred to as anomalies or outliers and usually involve only a
small portion of the dataset. Anomalous instances must be identified immediately,
otherwise they pose major problems for a system that can cost a lot of money.

Anomaly detection applications include computer network intrusion detection[1],
where sending sensitive information to an unauthorized destination can be detected
thanks to anomalous traffic on the network, and financial transaction fraud detec-
tion[2], where anomalous transactions can indicate that a credit card or identity
has been stolen. Anomaly detection can also be useful for performing predictive
maintenance in manufacturing by detecting potential failures in advance[3], or
for detecting potential problems in health data, where malignant tumors can be
identified through anomalous MRI images[4]. The application domain is very im-
portant in anomaly detection because many contextual anomalies can be detected
based on it[5]. How well an algorithm performs on a task depends on how well its
assumptions match what is of interest from an application perspective[6].

Initially, the algorithms developed to detect anomalies were unsupervised because
a huge amount of data is constantly generated in everyday life and labeling is costly,
as analyzing the data and deciding whether the instances are normal or anomalous
requires a significant amount of effort from domain experts. These models attempt
to distinguish between anomalies and normal instances by exploiting only the
inherent structure of unlabeled data, and thus it is often too difficult to deduce
how a test instance can be correctly classified using only this limited knowledge.

Nowadays, few labeled instances are available in many applications, so several
semi-supervised algorithms have been proposed that significantly outperform unsu-
pervised methods. These algorithms are usually derived from existing unsupervised
models, which are extended by adding a suitable bias to derive knowledge from the
available labels.

1

INTRODUCTION

The basic intuition of many anomaly detection algorithms is that anomalous
instances are significantly different from normal ones and therefore easier to iso-
late[7]. These models rely on a tree ensemble to properly classify normal and
anomalous instances: this bagging strategy reduces the variance[8] and increases
the robustness of the model[9]. Although tree-based approaches perform well in
both unsupervised and semi-supervised settings, they are poorly studied in the
literature, and no model exploits labeled instances during the tree construction
phase: all the proposed models make use of the labeled instances only to improve
the scoring stage.

Therefore, in this thesis, a novel tree-based semi-supervised anomaly detection
algorithm is proposed which addresses the limited availability of labels. The method
attempts to intelligently partition space into regions using both unlabeled data and
provided labeled instances. It recursively builds an ensemble of trees by selecting
both the feature and the split value for the following split sampling from highly
informative probability distributions, using both sources of information.

The proposed algorithm is then evaluated on several benchmark datasets and
its performance is compared with state-of-the-art anomaly detection models. Em-
pirically, the model achieves good performance even when only a few labels are
available, and it outperforms the competing methods on most of the datasets used.
Moreover, the contribution of unlabeled data can be used even when labels are not
available, and experiments show that this often improves the unsupervised baseline
considered.

2

Chapter 2

RELATED WORK

This chapter discusses the most closely related work in both an unsupervised and a
semi-supervised setting. Originally, anomaly detection was based on unsupervised
models, since no labels were available. Then, thanks to a limited amount of
labeled instances, several semi-supervised models were proposed, which significantly
improved the performance of the unsupervised models by using labeled instances.
The basic assumption of this work is that a limited amount of labels is available.
Thus, unsupervised anomaly detection models can still be competitive. The main
algorithms are briefly analyzed in Section 2.1. Moreover, a few semi-supervised
approaches that deal with labeled and unlabeled data have been proposed in
the literature. The state-of-the-art methods for each category are described in
Section 2.2.

2.1 Unsupervised algorithms
Obtaining labeled training data for anomaly detection is expensive. For this
reason, the first anomaly detection algorithms developed were unsupervised. These
algorithms can be divided into four categories:

• Distance-based algorithms

• Density-based algorithms

• Isolation-based algorithms

• Network-based techniques

2.1.1 Distance-based algorithms
These models are based on the assumption that normal instances are usually very
close to each other, while outliers are very far from the other data points. For this

3

RELATED WORK

reason, they calculate an anomaly score for each instance based on the distance to
its neighbors.

k-Nearest Neighbors Outlier detection(kNNo)

kNNo[10] was one of the first algorithms developed and is one of the easiest to
understand. It stores all available instances and then classifies the new instances
based on a distance metric. Usually, Euclidean distance is used for continuous
data, while Hamming distance is used in the discrete domain, so it can handle
non-standard data types.

The anomaly score of an instance is obtained by calculating the sum of the
distances to the nearest k neighbors of the point. Based on the above intuition,
normal instances have many points close to each other, so their anomaly score is
small, while anomalies are located in a sparsely populated region, so their anomaly
score is high.

Since kNNo needs to store all available training data and compute many distances
for each test instance, it has large storage requirements and high computational
complexity. Another drawback is that this algorithm is very sensitive to the choice
of the distance metric and the hyperparameter k.

One-Class Support Vector Machines (OCSVM)

OCSVM[11] is a variation of the SVM that is used for unsupervised anomaly
detection. The goal of this model is to learn in an unsupervised setting the
boundaries of the normal-data region and all the points that lie outside this region
are classified as anomalies.

Also for this variation, kernel extensions can be used.

2.1.2 Density-based algorithms
These algorithms calculate the anomaly score for each instance based on the density
of its neighborhood. The basic assumption of these models is that outliers are
usually far from their neighbors and therefore their neighborhood is sparse, while
normal instances are concentrated in a dense region.

Local Outlier Factor (LOF)

The Local Outlier Factor[12] algorithm is based on the concept of local density,
which is estimated using the distance to the k nearest instances. For each instance,
it compares the local density of its neighborhood with that of its neighbors to find
instances that have significantly lower density compared to their neighbors. These
instances are considered outliers.

4

RELATED WORK

Thanks to its approach, this model is well suited for detecting local anomalies:
for example, an instance with a "small" distance from a very dense cluster is
classified as an outlier, while an instance within a sparse cluster could be considered
as normal since it has a similar density to its neighbors.

The problem for LOF is that there is no clear rule by which an instance is
classified as an anomaly. The threshold for splitting the anomaly scores of normal
and outlier instances depends heavily on the dataset.

Clustering-Based Local Outlier Factor (CBLOF)

The CBLOF[13] operator calculates the outlier score based on cluster-based local
outlier factor.

CBLOF generates a cluster model of the data set using a clustering algorithm and
it classifies the clusters into small and large clusters depending on the parameters
alpha and beta. Then the anomaly score is computed for each instance based on
the size of the cluster the points belong to as well as the distance to the nearest
large cluster.

Using this weighting for outlier factor based on the sizes of the clusters might
lead to unexpected behaviour: outliers close to small clusters are usually not found.
Therefore it is usually disabled and anomaly scores are solely computed based on
the distance to the nearest large cluster center.

The original paper proposes to use the Squeezer algorithm to cluster, but usually
kMeans is used by default because it provides better performances.

2.1.3 Isolation-based algorithms
The basic intuition of these models is that anomalous instances are clearly different
from normal instances and therefore easier to isolate.

Isolation Forest (IF)

The Isolation Forest[14] isolates instances by randomly selecting a feature and then
randomly determining a split value between the maximum and minimum values of
the selected feature.

Since recursive partitioning is represented by a tree structure, the number of
splits required to isolate an instance is equal to the path length from the root to the
external node. This (average) path length is used to determine the anomaly score
of a test instance. Anomaly pathways are substantially shorter than normal ones.
Thus, if a forest of random trees yields shorter path lengths for certain instances,
it is more likely that they are anomalies.

This algorithm is discussed in detail in the next chapter.

5

RELATED WORK

Extended Isolation Forest (EIF)

This algorithm is very similar to the Isolation Forest presented above. The only
difference is that during the tree construction phase, the EIF [15] algorithm splits
the space using cuts that are not constrained to be parallel to the axes of the
feature space.

Isolation-based anomaly detection using Nearest-Neighbor Ensembles
(INNE)

The nearest neighbour ensemble is used by the INNE algorithm[16] to isolate
anomalies. It uses a subsample of the data to partitions the data space into regions
and then it determines an isolation score for each region. Each region adapts to
local distribution, therefore the calculated isolation scores are local measures that
are relative to the local neighbourhood. In this way both global and local anomalies
can be detected.

INNE has linear time complexity to efficiently handle large and high-dimensional
datasets with complex distributions.

2.1.4 Network-based techniques
These techniques identify the anomalous instances thanks to the optimization of a
loss function, usually using a deep neural network in a purely unsupervised way.

The problem with these models is that they are blackbox, therefore it is very
difficult to understand their decisions.

Deep Support Vector Data Description (DeepSVDD)

Deep Support Vector Data Description[17] tries to learn useful feature representa-
tions of the data together with the one-class classification objective.

This model trains a neural network while reducing the volume of a hypersphere
that encloses the network’s data representations. This algorithm computes anomaly
scores based on the distance of a given test instance to the center.

Single-Objective Generative Adversarial Active Learning (SO-GAAL)

Single-Objective Generative Adversarial Active Learning[18] tries to generate infor-
mative potential outliers to help the classifier to learn a boundary that can properly
separate outliers from normal data.

The generator can fall into the mode collapsing problem because of the network
structure of the SO-GAAL.

6

RELATED WORK

Multiple-Objective Generative Adversarial Active Learning (MO-GAAL)

Multiple-Objective Generative Adversarial Active Learning[18] tries to prevent the
mode collapsing problem of the SO-GAAL by expanding the network structure of
SO-GAAL from a single generator to multiple generators with different objectives.
In this way, a reasonable reference distribution for the whole dataset should be
generated.

2.2 Semi-supervised algorithms
Due to the limitations and expensiveness of labeled training data, few semi-
supervised algorithms for anomaly detection exist, even though they significantly
improve upon unsupervised ones.

Semi-supervised algorithms can be divided into three main categories:

• Label propagation-based algorithms

• Loss-based algorithms

• Tree-based algorithms

2.2.1 Label propagation-based algorithms
The algorithms belonging to this category use the available labels through a label
propagation phase, whose goal is to update the anomaly scores assigned by a
prior unsupervised anomaly detection algorithm. The basic assumption of these
models is that the label of an instance is closely related to the available labels in
its neighborhood: for example, an instance is more likely to be an outlier if it is
close to an anomaly label. Therefore, the goal of the label propagation phase is
to adjust the previously calculated anomaly score of each instance based on its
distance from the available normal and anomaly labels.

These algorithms do not include a training phase where the model can learn the
hidden patterns in the data by using the labeled and unlabeled instances. They
simply start from a previous unsupervised prior and propagate the labels. This
drawback degrades the generalization of these models.

Semi-Supervised Detection of Outliers (SSDO)

SSDO applies a two-step process to determine the anomaly score of each instance.[19]
First, constraint-based clustering is performed, and each instance is given an

initial score based on its position with respect to the data distribution found. In this
step, the anomaly score can be derived in a purely unsupervised way, but if labels

7

RELATED WORK

are available, they can impose some constraints on the data clustering: a cannot-link
constraint is imposed between each anomalous and normal instance. Must-link
constraints are not considered because there are different categories of normal and
anomalous behavior. SSDO then assumes that outliers are "different" from normal
instances, and the following basic intuitions are derived: (i) an anomalous instance
deviates from its cluster centroid more than a normal one, (ii) the centroid of an
anomaly cluster deviates strongly from the other cluster centroids, and (iii) an
anomaly cluster is usually small. Based on the above intuitions, an anomaly score
is then calculated for each instance xk.

clustering_score(xk) = 1− g(point_dev (xk)× cluster_dev(xk)
cluster_size(xk) ; γ) (2.1)

where point_dev measures how much an instance deviates from its cluster centroid,
cluster_dev is the cluster centroid difference with respect to the other cluster
centroids, cluster_size indicates the relative size of the cluster to which the instance
belongs, and g represents an exponential squashing function with γ depending on
the contamination factor requested by the user.

Second, the available labeled instances are exploited in a label propagation
phase. In this step, the previously calculated anomaly scores are updated based on
the available labels.

score(xk) = 1
Z(xk)

clustering_score(xk) + α
Ø

xj∈La

g (d (xk, xj) ; η)
 (2.2)

where La represents the set of labeled outliers, while η is the k-distance. The
updates in the label propagation phase depend on the distance to the labeled
instances. Z(xk) represents a normalization to map the final score between 0 and
1, while α is a hyperparameter that controls the weight of the label propagation
phase: a low alpha value means that constraint-based clustering has a stronger
influence than the label propagation phase in determining the final score.

SSDO also uses an active learning strategy in which a domain expert is asked
for the labels of the instances for which the model is most uncertain.

Semi-Supervised k-Nearest Neighbors for Outlier detection method
(SSkNNo)

SSkNNo[20] first computes an anomaly score for each instance in a purely unsuper-
vised manner using the local data distribution. Then, this score is updated through
a label propagation phase depending on the labeled instances in the neighborhood.
The final anomaly score can be computed using the following formula:

score (xk) = (1−Wl (xk)) au (xk) +Wl (xk) al(xk) (2.3)

8

RELATED WORK

where au represents the unlabeled component using the kNNo algorithm, and al

is the labeled component based on the distance-weighted average of the labeled
instances in the neighborhood of xk. Wl is a factor that weights the two components
based on the number of labeled and unlabeled neighbors of xk that also include
the instace in their neighborhood.

2.2.2 Loss-based algorithms
The algorithms that belong to this category attempt to optimize a loss function
that uses both unlabeled and labeled instances. Usually, these algorithms are based
on SVM or deep neural networks, as they are the best models to optimize a given
loss function.

One of their main drawbacks is that they are usually very slow. Moreover, deep
learning-based algorithms are black-box, while explainable decisions are preferred
in anomaly detection, since understanding the model decisions in anomaly detection
is crucial to increase end-user confidence and trust in model predictions.[21][22]

Semi-Supervised Anomaly Detection (SSAD)

This algorithm generalizes the unsupervised One-Class SVM[23] by using both
labeled and unlabeled instances. SSAD[24] constructs a hypersphere like the
OCSVM model but incorporates labeled instances by imposing two constraints: (i)
a normal labeled instance must be located inside the sphere, while (ii) anomaly
instances must be placed outside the hypersphere. Thus, given n unlabeled instances
x1, . . . ,xn ∈ X and m labeled instances (x∗

1, y
∗
1) , . . . , (x∗

m, y
∗
m) ∈ X × Y with

Y = {+1,−1}, the optimization problem becomes:

min
R,γ,c,ξ

R2 − κγ + ηu

nØ
i=1

ξi + ηl

n+mØ
j=n+1

ξ∗
j

s.t. ∀n
i=1 : ∥ϕ (xi)− c∥2 ≤ R2 + ξi

∀n+m
j=n+1 : y∗

j

3...ϕ 1x∗
j

2
− c

...2
−R2

4
≤ −γ + ξ∗

j

∀n
i=1 : ξi ≥ 0,
∀n+m

j=n+1 : ξ∗
j ≥ 0,

(2.4)

where c and R represent the center and radius of the hypersphere, respectively, γ
controls the margin of labeled instances, and k, ηu, and ηl are trade-off parameters.
The loss function is then transformed into an unconstrained optimization problem
by some mathematical manipulations to facilitate the implementation.

The anomaly score of an instance xk is calculated based on its distance from

9

RELATED WORK

the center c of the hypersphere.

score(xk) = ∥ϕ(xk)− c∥2 −R2 (2.5)

Deep Semi-supervised Anomaly Detection (DeepSAD)

DeepSAD[25] extends the unsupervised DeepSVDD models to use labeled instances
as well. The final objective of this model consists of an unlabeled component
corresponding to the original DeepSVDD loss and a labeled component that
imposes that normal instances must be close to the hypersphere center, while
anomalies must be far from it.

The anomaly scores assigned by the DeepSAD model are calculated based on
the distance of each instance from the center.

2.2.3 Tree-based algorithms
These models build a tree ensemble that intelligently divides space into regions
using both unlabeled and labeled instances. The basic assumption of these models
is that the feature values of anomalous instances are very different from those of
normal ones, making them easier to isolate. Therefore, the expected path length of
outliers in the tree ensemble is shorter than that of normal instances. This intuition
forms the basis for the scoring function of these models.

Hybrid Isolation Forest (HIF)

The HIF algorithm[7] assumes that the given dataset consists only of normal
instances. The forest construction phase corresponds to the IForest algorithm.

The basic contribution of the HIF algorithm is an improvement of the original
IForest anomaly score calculation by exploiting unlabeled and labeled instances.

The unlabeled contribution is based on the distance to neighboring normal
instances. First, the centroid of data is calculated for each leaf of each iTree, and
then for each instance the distance δ(xk) to the centroid of the leaf on which it
ends up is calculated. The final score is calculated as the expectation of the δ(xk)
scores given by the iTrees in the forest.

su(xk) = E(δ(xk))) (2.6)

Then, if some anomaly instances are known, they are added to the corresponding
leaves of the iTrees at the end of the training phase. For each leaf, the centroid of
the anomaly instances is also calculated. At this point, the final labeled contribution
is given by the ratio between the previously calculated expected value of δ(xk) and
the expected value of δa(xk), which is the expectation over all the iTrees of the

10

RELATED WORK

distances between the instance xk and the anomaly centroid of the leaf to which
xk belongs.

sl(x) = E(δ(xk))
E (δa(xk)) = Mean iTree δ(xk, iTree)

Mean iTree δa(x, iTree) (2.7)

At this point, the standard IForest anomaly score s(xk) and the unlabeled and
labeled contribution scores are normalized to the range [0,1]. The final score is
calculated using the following linear formula.

score(xk) = α2 · (α1 · s(xk) + (1− α1) · su(xk)) + (1− α2) · sl(xk)) (2.8)

α1 and α2 are two hyperparameters for weighting the three score contributions.

Hybrid EXtended isolation forest (HEX)

Hybrid Extended isolation forest[26] tries to solve both the fact that original
Isolation Forest[14] struggles to detect anomalies encircled or overlapped by regular
points and the issue of ghost clusters or erroneous scores in score maps due to the
horizontal and vertical cut hyperplanes.

Therefore, this algorithm combines the basic ideas of the EIF[15] and HIF[7]
algorithm: the space is recursively partitioned using cuts that are not constrained
to be parallel to the axes of the feature space and a distance-based score based on
the available normal and anomaly labels is used to obtain the final anomaly score
for each instance.

11

Chapter 3

BACKGROUND :
ISOLATION FOREST
ALGORITHM

In this chapter, a brief overview of the IForest algorithm is given. IForest is
described because the model proposed in this work is inspired by it and changes
the perspective to develop a model that improves the unsupervised construction of
the tree ensemble taking advantage of the available labeled instances.

IForest[14] is one of the oldest algorithms for unsupervised anomaly detection.
It builds an ensemble of isolation trees based on the fact that anomalies represent
a minority in the dataset and their attribute values are significantly different from
those of normal instances. For this reason, outliers are much easier to isolate from
the rest of the data compared to normal instances, so the expected path in the
tree ensemble to locate an anomaly is shorter than to locate a normal instance.
The IForest scoring function assigns an anomaly score to each test instance that is
inversely proportional to its expected path length.

3.1 Tree construction
The IForest algorithm recursively builds an ensemble of isolation trees dividing the
space using only unlabeled data by randomly choosing the feature and the split
value for the following split.

Given a dataset D = {x1, ..., xn} of n instances each described by m features,
each isolation tree is recursively built by splitting D by choosing each time the
following feature and split value:

• the attribute Xq for the following split is sampled from a discrete uniform

12

BACKGROUND : ISOLATION FOREST ALGORITHM

distribution along the attributes, each attribute has the same probability.

• the split value c is sampled from a uniform distribution among the maximum
and the minimum value of the selected feature Xq.

The tree construction phase stops when either the tree reaches a height limit, D
contains a single instance or all the instances in D have the same values. Each
node has exactly zero (external node) or two daughter nodes (internal node): iTrees
have an equivalent structure to Binary Search Tree.

The implementation can be found in Algorithm 1

Algorithm 1 iTree(D, e, l)
Inputs: D - input data, e - current tree height, l - height limit
Output: an iTree

1: if e ≥ l or |D| ≤ 1 then
2: return exNode { D, e }
3: else
4: let X be the set of features
5: randomly select an attribute Xq ∈ X
6: randomly select a split value c in (min(D[Xq], max(D[Xq]))
7: Dl ← filter(D, c,Xq, <)
8: Dr ← filter(D, c,Xq,≥)
9: return inNode { Left← iT ree(Dl, e+ 1, l),

10: Right← iT ree(Dr, e+ 1, l),
11: SplitAtt← Xq,
12: SplitV alue← c }
13: end if

3.2 Anomaly score computation
The anomaly score for an instance is calculated using its expected path length
E(h(x)) in the iTree ensemble. This value is then normalized using the average
path length of unsuccessful search in Binary Search Trees[27], which for a dataset
of n instances corresponds to:

c(n) = 2H(n− 1)− (2(n− 1)/n) (3.1)

where H(i) represents the harmonic number that can be estimated by ln(i) +
0.5772156649 (Euler’s constant).

The anomaly score of an instance is calculated as follows.

score(xk) = 2−E(h(xk))
c(n) (3.2)

13

BACKGROUND : ISOLATION FOREST ALGORITHM

As can be seen from the above formula, the shorter the expected path length for
an instance, the more likely it is to be anomalous.

3.3 Important hyper-parameters
One of the most important hyper-parameters of this model is the number of trees t
in the forest. In the original algorithm, the forest consists of 100 trees, since path
lengths usually converge well before this value.

Each tree is built using a sample of the dataset, obtained by randomly selecting
instances without replacement. The basic idea is that it is easier to isolate outliers
with a small sample size ψ, and therefore each tree is built with a sample of 256
instances.

Finally, the height limit of the tree depends on the sub-sampling size ψ and is
set to:

l = ceiling (log2 ψ) (3.3)

which corresponds approximately to the average tree height.

14

Chapter 4

METHODOLOGY

The task studied in this work can be formally defined as follows:

Given: an unlabeled dataset DU = {x1, . . . , xd} and some labeled instances DL =
{xd+1, yd+1), . . . , (xn, yn)} where y = 1 refers to the positive (anomalous) class,
and y = −1 to the negative (normal) class.

Do:... develop a new semi-supervised tree-based model which divides the space using
both the unlabeled dataset and the labeled instances.

The task has two main challenges. First, obtaining labels is costly, as it requires
domain experts to analyze the data and provide the labels. In addition, even if
partially labeled instances can be used, few labels are available and they are usually
normal instances, as outliers are much rarer.

Second, there are no semi-supervised tree-based algorithms that learn to partition
the space into regions using both labeled and unlabeled instances: all tree-based
approaches available in the literature use the labeled instances only to improve
the scoring stage, the trees are always built using unlabeled data only. It is very
difficult to extract information to choose a smart feature and split value for the
following split during the tree construction by combining the unlabeled and labeled
instances.

Semi-Supervised Isolation Forest (SSIF) is a tree-based model that uses together
the unlabeled dataset and the available labeled instances to partition the space
into regions. The goal of this approach is to work properly even when the number
of available labels is very limited.

SSIF first constructs an ensemble of isolation trees using sub-samples of the data
and then calculates the anomaly score for an instance by evaluating the average
height in the ensemble of the leaves where it ends up.

15

METHODOLOGY

4.1 Tree construction
Each tree is built individually using a sub-sample of the input data. At each
splitting step, the following feature and split value are selected using labeled and
unlabeled instances in two different ways, depending on the available labels. The
tree construction phase is terminated when a leaf contains only one instance, when
a height limit is reached, or when a leaf is small enough and contains only anomaly-
labeled instances: in this case, the splitting would increase the height in the tree
for the outliers and decrease their anomaly scores.

A general high-level description can be found in Algorithm 2. The different
contributions are explained in detail in the following sections.

Algorithm 2 iTree(D, Y, e, l)
Inputs: D - input data, Y - input label, e - current tree height, l - height limit
Output: an iTree

if end condition then
return exNode{D,Y,e}

else
if only normal labels are provided then
Xq, c = onlyNormalLabelsContribution(D, Y)

else
Xq, c = withAnomalyOrNoLabelsContribution(D, Y)

end if
Dl, Yl ← filter(D, Y, c,Xq, <)
Dr, Yr ← filter(D, Y, c,Xq,≥)
return inNode { Left← iT ree(Dl, Yl, e+ 1, l),

Right← iT ree(Dr, Yr, e+ 1, l),
SplitAtt← Xq,
SplitV alue← c }

end if

4.2 Splitting a feature with unlabeled and only
normal labeled instances

Since the main purpose of a tree is to isolate anomalies as early as possible, a
realistic scenario involves having unlabeled data and only normal labels while
building the tree.

When only normal labels are available, SSIF attempts to extract information
from a combination of unlabeled and labeled instances to select the following

16

METHODOLOGY

feature and split value. The basic goal of all the tree-based approaches is to isolate
outliers as quickly as possible, but this task is much more difficult in this scenario
where only normal labels are available since anomaly instances can not be exploited
to learn about anomalous patterns. The basic intuition of this contribution is
therefore that it is more convenient to split outside the normal-labeled region,
where anomaly instances are more likely to be isolated.

Feature selection. In this setting, the subset æX of features for which the unla-
beled and normal labeled maximum and minimum do not respectively correspond
is first selected (see Figure 4.2). After this filtering, the feature Xq is uniformly
selected from æX.

Split value selection. The split value c is then chosen outside the normal-labeled
range of Xq.

c ∈ (min(DU [Xq]),min(DL[Xq])) ∪ (max(DL[Xq]),max(DU [Xq])) (4.1)

DU and DL represent the unlabeled and labeled subsets, respectively, of the data
D at that point in the tree.

Figure 4.1: Feature with identical
unlabeled and normal labeled ranges

Figure 4.2: Feature with different
unlabeled and normal labeled ranges

It should be noticed that a strong limitation of this approach is that it is blind
toward potential future optimal splits. This means that it tries to isolate anomalies

17

METHODOLOGY

as soon as possible and does not account for splits that create a better scenario for
the next iteration.

A high-level description of the attribute and cut selection in this setting is
provided in Algorithm 3.

Algorithm 3 onlyNormalLabelsContribution(D, Y)
Inputs: D - input data, Y - input label
Output: Xq - selected feature, c - selected split value

let X be the set of features
let æX be an empty list
for Xk in X do

if max(unlabeled(Xk)) /= max(labeled(Xk)) or
min(unlabeled(Xk)) /= min(labeled(Xk)) thenæX ← append(Xk)

end if
end for
select randomly an attribute Xq from æX
select randomly a split value c outside the normal labeled range of Xq

return Xq, c

4.3 Splitting a feature with unlabeled and normal
and anomaly labeled instances

Another possible scenario involves having unlabeled data and both anomaly and
normal labels during the tree construction phase. In this case, when both anomaly
and normal labels are available, the basic intuition of this model is to select a
smart feature and a smart split value for the following split in the tree construction,
extracting information from both unlabeled and labeled instances. Therefore,
the main contribution in this context is to approximate the distributions for the
selection of the following feature and split value to draw samples from highly
informative distributions, thanks to which it is easier to isolate the anomalous
samples.

Even if at some point in the tree construction labels are no longer available,
the feature and split value are selected as described in this section. Obviously, in
this case, the cut and feature selection distributions are determined only by the
unlabeled instances, since no labels are available.

It is important to note that the cut distribution does not indicate the distribution
of the data for the next split, but the distribution of the cut from which a
value is then selected as the next split value. Let C be the cut variable, in

18

METHODOLOGY

Figure 4.3 the difference between the cut distributions of the IForest and SSIF
can be observed: IForest draws the next split value c from a uniform distribution
between the minimum and maximum of the selected feature, while the SSIF model
computes a more informative distribution that uses the labeled and unlabeled
instances.

Figure 4.3: Cut distribution for IForest and SSIF. IForest uses a uniform distri-
bution, while SSIF distribution is more informative: it can be observed that some
split values are much more probable than others.

An initial high-level description of the attribute and split value selection in this
setting is provided in Algorithm 4.

4.3.1 Cut distribution

Given the data distribution of a feature Xk, the cut distribution is estimated
to properly select the following split value from a distribution that is as highly
informative as possible. This distribution attempts to estimate the distribution of
the cut variable C for the feature Xk under consideration, using both labeled and
unlabeled instances.

19

METHODOLOGY

Algorithm 4 withAnomalyOrNoLabelsContribution(D, Y)
Inputs: D - input data, Y - input label
Output: Xq - selected feature, c - selected split value

let æX be a subset of the features
for æXk in æX do
PC(æXk)← Cut_distribution(D, Y)
PF eatureSelection(æXk)← FeatureSelection_distribution(PC(æXk))

end for
select an attribute Xq given PF eatureSelection

select a split value c given PC(Xq)
Dl, Yl ← filter(D, Y, c,Xq, <)
Dr, Yr ← filter(D, Y, c,Xq,≥)
return inNode { Left← iT ree(Dl, Yl, e+ 1, l),

Right← iT ree(Dr, Yr, e+ 1, l),
SplitAtt← Xq,
SplitV alue← c }

20

METHODOLOGY

Unlabeled component

The unlabeled component is calculated using the Otsu method, which considers
only unlabeled data[28]. This method assumes that the two classes are distributed
according to a bimodal distribution, and therefore searches exhaustively for the
best threshold that minimizes the within-class variance, or equivalently maximizes
the inter-class variance, defined as the weighted sum of the variances of the two
classes.

So the unlabeled component is obtained by moving a threshold t between the
minimum and maximum values for the feature Xk and estimating the inter-class
variance for each threshold t.

unlabeled(t | Xk) = ω0(t | Xk) (µ0 − µT)2 + ω1(t | Xk) (µ1 − µT)2 =
= ω0(t | Xk)ω1(t | Xk) [µ0(t | Xk)− µ1(t | Xk)]2

(4.2)

which is expressed in terms of class probabilities ω and class means µ, where the
class means µ0(t | Xk) , µ1(t | Xk) and µT are:

µ0(t | Xk) =
qt−1

i=0 ip(i | Xk)
ω0(t | Xk) (4.3)

µ1(t | Xk) =
qL−1

i=t ip(i | Xk)
ω1(t | Xk) (4.4)

µT =
L−1Ø
i=0

ip(i | Xk) (4.5)

and the probabilities ω0(t | Xk) and ω1(t | Xk):

ω0(t | Xk) =
t−1Ø
i=0

p(i | Xk) (4.6)

ω1(t | Xk) =
L−1Ø
i=t

p(i | Xk) (4.7)

where p(i | Xk) represents the probability for the i-th bin in the histogram distri-
bution of the data.

Figure 4.4 shows how the unlabeled component turns out given an example
of unlabeled data distribution. It can be seen that the unlabeled component is
different from the unlabeled data distribution: this component is a contribution
that aims to approximate the distribution for the following split value using only
unlabeled data.

21

METHODOLOGY

Figure 4.4: Unlabeled component given an example of unlabeled data distribution

Labeled component

The labeled component is an important contribution that uses the available labels
to learn how to isolate the anomalous patterns as quickly as possible, which is
the main goal of all the tree-based anomaly detection models. Therefore, this
component modifies the information gain metric to meet this purpose.

Specifically, this component looks for split values that isolate anomalies: in
this way, the expected path length of the isolated anomalies would decrease and
consequently their anomaly score would increase. Another fundamental goal of this
component is to avoid split values that isolate normal instances, since in this case
the split would be harmful because it would decrease the expected path length of
the isolated normal instances.

Thus, the labeled component is obtained by moving a threshold t between
the minimum and maximum values for the feature Xk and estimating a score for
each threshold depending on the available labels. For the reasons just explained,
the model assigns a score of 0 if the threshold isolates instances with normal
labels; however, if the isolated instances are anomalies, the threshold receives the
highest possible score, which is equal to the initial entropy of the data distribution
h(DL | Xk). If the threshold does not isolate a class, the assigned score is equal to

22

METHODOLOGY

the resulting information gain after splitting at value t.

labeled(t | Xk) =

0 when normal instances are isolated
H(DL | Xk) when anomaly instances are isolated
IG(DL, t | Xk) otherwise

(4.8)

where DL represents the labeled instances along the previously selected attribute
Xk, H represents the entropy value and:

IG(DL, t | Xk) = H(DL | Xk)− #(DL ≥ t | Xk)
#(DL | Xk) ∗ H(DL ≥ t | Xk)

−#(DL < t | Xk)
#(DL | Xk) ∗ H(DL < t | Xk)

(4.9)

Figure 4.5 shows how the labeled component turns out using an example of
anomaly and normal data distribution.

Figure 4.5: Labeled component given ax example of anomaly and normal data
distribution

23

METHODOLOGY

Split value selection

In the end, the final score for each split value can be calculated as the weighted
sum of the two components. The labeled component is weighted more heavily to
try to get as much information as possible from the available labels.

scoreC(t | Xk) = 0.5 ∗ (#(unlabeled)
#(data)) ∗ unlabeled(t | Xk)+

0.5 ∗ (1 + #(labeled)
#(data)) ∗ labeled(t | Xk)

(4.10)

These scores are then normalized to obtain the probability distribution of the cut
variable C to allow sampling from this.

PC(t | Xk) = scoreC(t | Xk)q
t′ scoreC(t′ | Xk) (4.11)

Finally, the following split value c is sampled according to the cut distribution of
the selected feature Xq.

4.3.2 Feature selection distribution
The goal of this distribution is to select a highly informative feature Xq for the
following split. In this context, a feature is considered informative when its cut
distribution PC(Xq) may allow the isolation of anomaly instances.

First, a subset æX of the features for which the cut distribution has to be
estimated is selected. Then, the informativeness of each feature is calculated based
on its cut distribution.

To calculate this distribution, first a subset æX of the featuresX = {X1, X2, .., Xm}
is selected for which the cut distribution has to be estimated. This sampling con-
siders only the features for which the maximum and minimum of the unlabeled and
normal labeled instances do not respectively correspond (see Figure 4.2), because
for these features it is more likely that an anomaly outside the normal-labeled
range is isolated. If the ranges match in all features, they are uniformly selected
from the entire set. This sampling is done to reduce the correlation of the trees
and lower the computational complexity of the model.

At this point, the cut distribution for each feature in æX is computed. To measure
how informative each attribute is, its cut distribution is compared to the uniform
distribution. The informativeness of a feature is considered proportional to the
difference between its cut distribution and the uniform distribution because if the
former has a high peak, it is more likely that anomaly instances can be isolated
using that feature. This comparison is made by calculating the Kullback-Leibler

24

METHODOLOGY

divergence[29] between the two distributions.

DKL(PC || U | Xk) =
Ø

t

PC(t | Xk) ∗ log
A
PC(t | Xk)
U(t)

B
(4.12)

The values obtained for each attribute are then normalized to obtain a probability
distribution.

PF eatureSelection(Xk) = DKL(PC || U | Xk)q
Xk
DKL(PC || U | Xk) (4.13)

The attribute Xq for the next split is then sampled probabilistically according to
this discrete distribution.

4.4 Feature and split value sampling
As explained above, the feature Xq and the split value c for the following split
are drawn respectively from the feature-selection distribution and the cut one. To
obtain samples from non-standard discrete distributions, their cumulatives are
calculated. Then two samples uq and uc are drawn uniformly from [0,1]. The
selected feature depends on the state of the feature-selection cumulative to which
uq belongs, while the chosen split value depends on the state of cut cumulative of
uc.[30]

4.4.1 An alternative for the split value selection

As explained above, the following split value c is taken from the cut distribution of
the selected feature Xq. An alternative to this choice can be to select the threshold
t at which the cut distribution of Xq reaches the maximum value, the mode of the
distribution. When the mode is reached for different thresholds, one of them is
chosen randomly.

c = argmax(PC(Xq)) (4.14)

This alternative option may be very appropriate for the training set since the
mode corresponds to the threshold most likely to isolate outliers, given the way the
distribution is computed, but it may lead to overfitting since the choice of mode
depends heavily on the training set and may not generalize properly.

The mode selection is compared to the default probabilistic choice in the
Experiments (Chapter 5).

25

METHODOLOGY

4.5 Forest construction
The trees are then combined to build an ensemble. This bagging strategy, combining
many weak classifiers, aims to reduce the variance of the model and improve its
performance. In this way, anomalies can be better distinguished from normal
instances because the expected path length for each instance converges properly by
averaging the decision over multiple trees[14].

The construction of the forest is described in Algorithm 5.

Algorithm 5 iForest(D, Y, t, ψ)
Inputs: D - input data, Y - input label, t - number of tress, ψ - sub-sampling size
Output: a set of iTrees

let Forest be an empty list
compute height limit l
for i = 1...t do
D

′
, Y

′ ← sample(D, Y, ψ)
Forest← append(iT ree(D′

, Y
′
, 0, l))

end for
return Forest

4.6 Anomaly score computation
The anomaly scores are calculated as in the IForest algorithm[14]. They depend on
the expectation of the path length E(h(xk)) of the test instance xk on all trees in
the ensemble.

score(xk) = 2−E(h(xk))
c(n) (4.15)

where n represents the number of instances in the dataset and c(n) is calculated as
explained in 3.1.

4.7 Limitations
The model presented in this work has several limitations. First, SSIF has a high
computational cost compared to the other state-of-the-art algorithms since it has
to estimate the cut distribution for many features. Second, the model has a high
number of hyper-parameters, like all the tree-based approaches. Third, SSIF applies
a greedy strategy to select the next feature and split value, therefore the model is
blind toward possible future optimal splits. Then, it should not work well when

26

METHODOLOGY

the data are distributed according to a multimodal distribution since both the
unlabeled component when both labels are available and the contribution with
only normal labels assume a bimodal distribution.

27

Chapter 5

EXPERIMENTS

The experiments in this work answer the following four questions:
Q1: How does SSIF perform compared to IForest and semi-supervised anomaly

detection algorithms?
Q2: How do the different SSIF hyperparameters affect its performance?
Q3: Which is the best method for selecting the split value: probabilistic or

maximum selection?
Q4: Does SSIF improve unsupervised IForest even when no labels are provided?

5.1 Setup
5.1.1 Methods
In these experiments, one representative algorithm for each semi-supervised category
outlined in Section 2.2 is compared with the SSIF model. IForest is also considered
as an unsupervised baseline.

The following models are considered:

• SSIF is the method outlined in this work

• SSDO is a state-of-art semi-supervised anomaly detection algorithm based
on a label-propagation phase

• SSAD is a state-of-the-art semi-supervised anomaly detection algorithm based
on loss function optimization (one-class SVM)

• HIF is a state-of-the-art semi-supervised anomaly detection algorithm based
on a tree ensemble built using only unlabeled data and a distance-based score
using labeled instances

• IF is the considered unsupervised tree-based anomaly detection baseline

28

EXPERIMENTS

These algorithms were chosen based on extensive empirical assessments of
anomaly detection methods (see also Chapter 2).

5.1.2 Datasets
The datasets considered are benchmarks for evaluating anomaly detection
algorithms[31]. The datasets are downloaded from:

https://www.dbs.ifi.lmu.de/research/ outlier-evaluation/DAMI/

They are already preprocessed to delete duplicate instances and normalize in the
[0,1] range their attributes. where contamination factor represents the percentage

Dataset name #Instances #Features contamination factor
Cardiotocography 1861 21 0.0196

Waveform 3,443 21 0.0290
Shuttle 1,013 9 0.0128

SpamBase 2661 57 0.0500
WBC 223 9 0.0448

WDBC 367 30 0.02725
Annthyroid 6942 21 0.0500
Arrhythmia 271 259 0.0996

Stamps 340 9 0.0912

Table 5.1: Number of instances, features and contamination factor for each of the
datasets used in the experiments.

of anomaly instances in the dataset.

Annthyroid[31]

This dataset provides medical information on hypothyroidism. Normal, excessive,
and subnormal functioning are classified into three categories. Outliers in this
context were defined as classes that deviate from normal conditions.

Arrhytmia[32]

The data collection includes patient data classified as normal or as a type of cardiac
arrhythmia. Healthy persons are considered to be inliers and arrhythmia sufferers
to be outliers.

29

EXPERIMENTS

Cardiotocography[32]

Dataset pertaining to cardiac ailments. It categorizes people into three groups:
normal, questionable, and pathological. Normal patients are considered inliers,
whereas the others are considered outliers.

Shuttle[31]

In this dataset, the radiator placements of a NASA space shuttle are described
using nine attributes. The original instances were arranged in temporal order.
Classes 1, 3, 4, 5, 6, and 7 are used as inliers and class 2 is used as an outlier

SpamBase[32]

This dataset contains several emails, considered as spam (anomalies) or non-spam.

Stamps[32]

The difference between counterfeit (photocopied or scanned+printed) stamps and
genuine (ink printed) stamps is represented by this data set. The characteristics
are based on the color and print quality of the stamps. Outliers are stamps that
have been counterfeited.

Waveform[32]

This dataset contains three types of waves. Class 0 was defined as an outlier class,
and in this case it was downsampled to 100 elements.

WBC[32]

This collection contains examples of many cancers, both benign and malignant.
Cases of benign cancer are referred to as inliers, while examples of malignant cancer
are referred to as outliers. Further preprocessing is used to eliminate missing data
instances and standardize the data.

WDBC[32]

The nuclear features for breast cancer diagnosis are described in this data collection.
Again, benign cancer examples are presented as inliers and malignant cancer ones
are presented as outliers.

30

EXPERIMENTS

5.1.3 Experimental setup
The purpose of these experiments is to answer the previous research questions. To
evaluate these, the following procedure is used for each dataset:

1. 5-fold cross-validation is used, iteratively using 4 folds for training and the
remaining one for testing;

2. for each train-test split, 10 iterations are performed and each iteration uses a
different seed (0,1, ...,9) to reduce random effects;

3. for each iteration, the labels in the training set are observed incrementally
to evaluate how the models perform as more labeled information is provided.
Initially, only 5% of labels is considered and then another 5% at a time is
added until a fully labeled training set is reached.

4. for each percentage of labels the area under ROC curve (AUROC) is calculated
on the test set for the considered models

5. AUROC performances are averaged to obtain a measure where random and
bias effects are reduced

5.1.4 Evaluation metric
The AUROC is considered as evaluation metric as is standard in anomaly detec-
tion[32]. This metric is often chosen because anomaly detection algorithms usually
return a ranking of the anomaly scores and so AUROC is suitable for measuring
how the model is able to rank the instances. AUROC is also used because it takes
into account the unbalanced class distributions of outliers and normal instances.

5.1.5 Hyperparameters
SSIF has a high number of hyperparameters, like all tree-based approaches. Unless
otherwise stated, the default hyperparameters of SSIF are as follows:

• Number of trees t is set equal to 100 because path lengths typically converge
well before this value[14].

• Sub-sampling size ψ is set equal to len(D)
3 to exploit enough labeled instances

in each tree. The sampling is done without replacement.

• Number of features λ for which the cut distribution is calculated. This value
is set to max(len(X)

3 ,5)

31

EXPERIMENTS

• Height limit l is set to 2 ∗ ceiling(log2ψ). A high value is chosen because the
cut distribution tends to favor unbalanced trees: this happens because the
labeled component gets the maximum gain when anomalies are isolated and
they represent a small amount of data.

• Leaf size s is set to 5. A leaf is considered small enough to end the splitting
phase if it contains a number of instances less than or equal to this value.

For the other state-of-the-art algorithms considered in this work, the default values
of their hyperparameters are used in these experiments:

• SSDO[19] has three hyperparameters: the number of clusters nc is set to 10,
the parameter k that controls how many instances are updated for a single
label is set to 30 and α that weights the label propagation phase is equal to
2,3.

• For SSAD[24] a Gaussian kernel is considered. Then the regularizer k for the
importance of the margin and the regularization constants ηu and ηl are set
to 1.

• The HIF[7] hyperparameters α1 and α2 for weighting the influence of the
different components on the scoring function are set to 0,5.

5.2 Results
a) Q1: Figure 5.1 shows how the test set AUROC averaged over all the different

seeds and folds varies depending on the percentage of labeled instances provided
for SSIF and each baseline method. In general, all the semi-supervised baselines
perform better when more labels are provided. As can be seen in Table 5.2,
SSIF model significantly improves the unsupervised baseline. The main
performance improvement is given by the first 20 percent of labels, which is
desirable since only a few labels are usually provided for anomaly detection
tasks. SSIF also always outperforms SSAD, regardless of the percentage of
labels provided. In addition, SSIF outperforms all the baselines on six datasets
(Cardio, Shuttle, Spambase, WDBC, Annthyroid, Stamps), as can be observed
in Table 5.3.

b) Q2: In this question, 5 iterations are performed for each fold and only a subset
of the previous datasets is analyzed because of a high computational cost.
The parameter ψ controls the number of instances used to create each tree. To
assess the impact of this parameter, 5 different values of ψ are considered while
keeping all the others hyperparameters fixed. Figure 5.2 shows the average

32

EXPERIMENTS

0.6

0.7

0.8

0.9

1.0

AU
RO

C

cardio

SSIF SSDO HIF SSAD IF

waveform shuttle

0.6

0.7

0.8

0.9

1.0

AU
RO

C

spambase wbc wdbc

10 20 30 40 50 60 70 80 90

0.6

0.7

0.8

0.9

1.0

AU
RO

C

annthyroid
10 20 30 40 50 60 70 80 90

Percentage of labeled examples (%)

arrhytmia
10 20 30 40 50 60 70 80 90

stamps

Figure 5.1: Each dataset’s average test set AUROC as a function of the percentage
of labeled instances provided for each method.

SSIF’s AUROC improvement compared to IF (%)
after 20% of labels 12,79
after 40% of labels 14,79
after 60% of labels 15,47
after 80% of labels 15,82
after 100% of labels 18,14

Table 5.2: Percentage test set AUROC improvement of the SSIF model compared
to the unsupervised IF considering adding 20% of labels at a time. The results are
averaged over all datasets, seeds, and folds.

33

EXPERIMENTS

Dataset SSIF SSDO SSAD HIF IF
Cardio 1.46 ± 0.79 2.78 ± 1.13 4.86 ± 0.46 2.46 ± 0.75 3.44 ± 0.97
Waveform 3.44 ± 0.58 1.53 ± 0.60 3.69 ± 0.78 1.54 ± 0.51 4.80 ± 0.44
Shuttle 1.24 ± 0.61 3.41 ± 1.09 3.78 ± 1.03 2.12 ± 1.00 4.23 ± 0.90
Spambase 1.15 ± 0.39 4.18 ± 0.38 4.82 ± 0.40 2.04 ± 0.54 2.23 ± 1.01
WBC 2.46 ± 1.29 3.32 ± 1.55 3.55 ± 1.68 2.13 ± 1.17 2.23 ± 1.01
WDBC 1.92 ± 1.26 2.74 ± 1.47 1.94 ± 1.05 4.33 ± 1.18 2.67 ± 1.39
Annthyroid 1.00 ± 0.00 3.83 ± 0.78 4.35 ± 0.85 2.04 ± 0.25 2.65 ± 1.39
Arrhytmia 2.15 ± 1.11 3.22 ± 1.17 4.99 ± 0.11 2.05 ± 0.97 2.48 ± 0.92
Stamps 2.11 ± 0.91 2.31 ± 1.28 4.68 ± 0.92 2.17 ± 0.97 3.64 ± 0.88

Table 5.3: Average test set AUROC rank ± standard deviation of each method
and dataset across all analyzed percentages of labels.

34

EXPERIMENTS

test set AUROC for the different values of ψ as function of the provided
percentage of labels. It can be observed that the hyperparameter value has a
strong impact on the performance and in general higher values of ψ provide
better results, since in this way more labeled instances can be used in each
tree, and increase the computational complexity of the model. However, the
default value chosen represents a good trade-off between performance and
computational cost.

0.6

0.7

0.8

0.9

1.0

AU
RO

C

shuttle

max(128, len(D)3) len(D) len(D)
2

len(D)
4

len(D)
10

wdbc

10 20 30 40 50 60 70 80 90

0.6

0.7

0.8

0.9

1.0

AU
RO

C

cardio
10 20 30 40 50 60 70 80 90

stamps

 sub-sampling size

Figure 5.2: Each dataset’s average test set AUROC as a function of the percentage
of labeled instances provided for each value of ψ

The hyperparameter λ states for how many attributes the cut distribution
is estimated. To assess its influence on SSIF performances, 5 different λ
values are used while the other hyperparameters remain unchanged. Figure
5.3 shows the average test set AUROC for the different values of λ as function

35

EXPERIMENTS

of the percentage of labels provided. It can be observed that the λ value does
not affect the performance of the model. This can be due to the fact that
the λ parameter only affects the initial splits and probably in the datasets
used few features do not have corresponding ranges considering the labels
provided, therefore the number of features for which the cut distribution can
be calculated is already very limited.

0.6

0.7

0.8

0.9

1.0

AU
RO

C

shuttle

max(len(X)3 , 5) len(X) len(X)
2

len(X)
4

len(X)
10

wdbc

10 20 30 40 50 60 70 80 90

0.6

0.7

0.8

0.9

1.0

AU
RO

C

cardio
10 20 30 40 50 60 70 80 90

stamps

 number of sampled features

Figure 5.3: Each dataset’s average test set AUROC as a function of the percentage
of labeled instances provided for each value of λ

Then the height limit l is considered. It represents the height limit at which the
splitting stops. 5 different l values are considered, while the other parameters
are set to their default values. Figure 5.4 shows that l does not have much
impact on the performance of the model. It can be observed that the selected
default value is suitable, while higher values degrade the performance in 3

36

EXPERIMENTS

datasets (Shuttle, Cardio, Stamps).

0.6

0.7

0.8

0.9

1.0

AU
RO

C

shuttle

l 1
5 l

1
2 l 2l 5l

wdbc

10 20 30 40 50 60 70 80 90

0.6

0.7

0.8

0.9

1.0

AU
RO

C

cardio
10 20 30 40 50 60 70 80 90

stamps

 height limit

Figure 5.4: Each dataset’s average test set AUROC as a function of the percentage
of labeled instances provided for each value of l

t controls how many trees make up the ensemble. To evaluate its influence on
the model performance, again 5 different t values are considered, while leaving
the other hyperparameters unchanged. Figure 5.5 shows the average test set
AUROC for the different values of t as a function of the percentage of labels
provided. It can be observed that setting t = 20 or t = 50 usually results in
lower performances, since the expected path lengths are unlikely to converge
before these values. The default t = 100 is an appropriate choice.
The leaf size s represents the maximum size below which a leaf is considered
small enough to stop splitting. Its influence is evaluated as for the other
hyperparameters. Figure 5.6 shows the results. It can be observed that the

37

EXPERIMENTS

0.6

0.7

0.8

0.9

1.0

AU
RO

C

shuttle

100 20 50 200 300

wdbc

10 20 30 40 50 60 70 80 90

0.6

0.7

0.8

0.9

1.0

AU
RO

C

cardio
10 20 30 40 50 60 70 80 90

stamps

 number of trees

Figure 5.5: Each dataset’s average test set AUROC as a function of the percentage
of labeled instances provided for each value of t

38

EXPERIMENTS

value of s has a minimal impact on the performance of the model: only in the
Stamps dataset a higher s is preferable to stop splitting earlier.

0.6

0.7

0.8

0.9

1.0

AU
RO

C

shuttle

5 1 3 8 15

wdbc

10 20 30 40 50 60 70 80 90

0.6

0.7

0.8

0.9

1.0

AU
RO

C

cardio
10 20 30 40 50 60 70 80 90

stamps

 leaf size

Figure 5.6: Each dataset’s average test set AUROC as a function of the percentage
of labeled instances provided for each value of s

c) Q3: Section 4.3 explains that in the presence of both anomaly and normal
labels, the feature Xq for the following split is probabilistically selected based
on the feature-selection distribution, and then the split value c is again proba-
bilistically selected based on the cut distribution of Xq. In these experiments,
a different way of selecting the following split value c is investigated (see
Section 4.4.1). After selecting a feature Xq for the following split, the split
value c is the mode of the cut distribution of Xq; if the maximum is reached
at different points, the split value c is randomly selected among them. Figure
5.7 shows the performance comparison between the two different methods for

39

EXPERIMENTS

selecting the next split value. It can be observed that the two methods have
very similar performances in all datasets. Therefore, both of them are suitable
for selecting the next split value.

0.6

0.7

0.8

0.9

1.0

AU
RO

C

cardio

ProbSSIF MaxSSIF

waveform shuttle

0.6

0.7

0.8

0.9

1.0

AU
RO

C

spambase wbc wdbc

10 20 30 40 50 60 70 80 90

0.6

0.7

0.8

0.9

1.0

AU
RO

C

annthyroid
10 20 30 40 50 60 70 80 90

Percentage of labeled examples (%)

arrhytmia
10 20 30 40 50 60 70 80 90

stamps

Figure 5.7: Each dataset’s average test set AUROC as a function of the percentage
of labeled instances provided for the probabilistic and mode split value selection

d) Q4: When no labels are provided, SSIF may still attempt to sample the
following split value c from a more informative distribution than the uniform
one: in these cases, only the unlabeled component is used to calculate the cut
distribution for each feature. Table 5.4 shows the results for all datasets
in this unsupervised setting. SSIF outperforms IForest in four datasets
(Shuttle,Waveform,Annthyroid,Stamps) and achieves similar performance in
two others(WBC, Arrhytmia).

40

EXPERIMENTS

Dataset IF SSIF
Cardio 0.728 0.701
Shuttle 0.831 0.856
Waveform 0.710 0.753
WBC 0.964 0.964
Spambase 0.800 0.756
WDBC 0.951 0.942
Annthyroid 0.636 0.715
Arrhytmia 0.806 0.803
Stamps 0.895 0.905

Table 5.4: Each dataset’s average test set AUROC when no labels are provided
for IForest and SSIF model

41

Chapter 6

CONCLUSION

This work introduced a novel semi-supervised tree-based approach for anomaly
detection. During the tree construction, when labeled instances of both classes
are available, the model selects the feature and split value for the following split
sampling from the distributions estimated using both unlabeled and labeled in-
stances. However, when only normal labels are available, a different contribution
combining unlabeled and normal-labeled instances is used to avoid splitting within
the normal-labeled range.

The model was evaluated on nine benchmark anomaly detection datasets, and its
performance was compared with unsupervised and state-of-the-art semi-supervised
baseline algorithms. The experiments showed that the proposed approach outper-
forms the competing models on many datasets. Moreover, the unlabeled component
often improves the performance of the unsupervised IForest even in an unsupervised
setting.

The main drawbacks of this approach are the high computational cost due to
the need to estimate the cut distribution for many attributes and the high number
of hyperparameters, as in all tree-based approaches.

Future work includes a deeper investigation of the distribution of the unlabeled
data to try to improve the unlabeled component to account for class imbalance
and find good split values even when the data are distributed according to a
multimodal distribution. In addition, it might be interesting to investigate a
stronger contribution when only normal labels are provided so that the model also
considers possible future optimal scenarios in the split value selection.

42

Bibliography

[1] V. Kumar. «Parallel and distributed computing for cybersecurity». In: IEEE
Distributed Systems Online 6.10 (2005). doi: 10.1109/MDSO.2005.53 (cit. on
p. 1).

[2] Philip Chan, Andreas Prodromidis, and Salvatore Stolfo. «Distributed Data
Mining in Credit Card Fraud Detection». In: IEEE Intelligent Systems 14
(May 1999). doi: 10.1109/5254.809570 (cit. on p. 1).

[3] Kuldeep Singh. «Anomaly Detection and Diagnosis In Manufacturing Systems:
A Comparative Study Of Statistical, Machine Learning And Deep Learning
Techniques». In: vol. 11. Sept. 2019. doi: 10.36001/phmconf.2019.v11i1.
815 (cit. on p. 1).

[4] C. Spence, L. Parra, and P. Sajda. «Detection, synthesis and compression in
mammographic image analysis with a hierarchical image probability model».
In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical
Image Analysis (MMBIA 2001). 2001, pp. 3–10. doi: 10.1109/MMBIA.2001.
991693 (cit. on p. 1).

[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar. «Anomaly Detection:
A Survey». In: ACM Comput. Surv. 41.3 (July 2009). issn: 0360-0300. doi:
10.1145/1541880.1541882. url: https://doi.org/10.1145/1541880.
1541882 (cit. on p. 1).

[6] Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Ryan Wright, Alec
Theriault, and David W. Archer. «Feedback-Guided Anomaly Discovery via
Online Optimization». In: Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. KDD ’18. London,
United Kingdom: Association for Computing Machinery, 2018, pp. 2200–
2209. isbn: 9781450355520. doi: 10.1145/3219819.3220083. url: https:
//doi.org/10.1145/3219819.3220083 (cit. on p. 1).

[7] Pierre-François Marteau, Saeid Soheily-Khah, and Nicolas Béchet. Hybrid
Isolation Forest - Application to Intrusion Detection. 2017. doi: 10.48550/
ARXIV.1705.03800. url: https://arxiv.org/abs/1705.03800 (cit. on
pp. 2, 10, 11, 32).

43

https://doi.org/10.1109/MDSO.2005.53
https://doi.org/10.1109/5254.809570
https://doi.org/10.36001/phmconf.2019.v11i1.815
https://doi.org/10.36001/phmconf.2019.v11i1.815
https://doi.org/10.1109/MMBIA.2001.991693
https://doi.org/10.1109/MMBIA.2001.991693
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/3219819.3220083
https://doi.org/10.1145/3219819.3220083
https://doi.org/10.1145/3219819.3220083
https://doi.org/10.48550/ARXIV.1705.03800
https://doi.org/10.48550/ARXIV.1705.03800
https://arxiv.org/abs/1705.03800

BIBLIOGRAPHY

[8] E. Bauer and Ron Kohavi. «An Empirical Comparison of Voting Classification
Algorithms : Bagging, Boosting, and Variants». In: Machine Learning 36 (Jan.
1996), pp. 1–38 (cit. on p. 2).

[9] Yue Zhao and Maciej K. Hryniewicki. «XGBOD: Improving Supervised
Outlier Detection with Unsupervised Representation Learning». In: 2018
International Joint Conference on Neural Networks (IJCNN). IEEE, July
2018. doi: 10.1109/ijcnn.2018.8489605. url: https://doi.org/10.
1109%2Fijcnn.2018.8489605 (cit. on p. 2).

[10] Fabrizio Angiulli and Clara Pizzuti. «Fast Outlier Detection in High Dimen-
sional Spaces». In: Principles of Data Mining and Knowledge Discovery. Ed.
by Tapio Elomaa, Heikki Mannila, and Hannu Toivonen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 15–27. isbn: 978-3-540-45681-0 (cit. on
p. 4).

[11] Bernhard Schölkopf, John Platt, John Shawe-Taylor, Alexander Smola, and
Robert Williamson. «Estimating Support of a High-Dimensional Distribution».
In: Neural Computation 13 (July 2001), pp. 1443–1471. doi: 10 . 1162 /
089976601750264965 (cit. on p. 4).

[12] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander.
«LOF: Identifying Density-Based Local Outliers». In: SIGMOD Rec. 29.2
(May 2000), pp. 93–104. issn: 0163-5808. doi: 10.1145/335191.335388. url:
https://doi.org/10.1145/335191.335388 (cit. on p. 4).

[13] Zengyou He, Xiaofei Xu, and Shengchun Deng. «Discovering cluster-based
local outliers». In: Pattern Recognition Letters 24.9 (2003), pp. 1641–1650.
issn: 0167-8655. doi: https://doi.org/10.1016/S0167-8655(03)00003-5.
url: https://www.sciencedirect.com/science/article/pii/S0167865
503000035 (cit. on p. 5).

[14] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. «Isolation Forest». In: 2008
Eighth IEEE International Conference on Data Mining. 2008, pp. 413–422.
doi: 10.1109/ICDM.2008.17 (cit. on pp. 5, 11, 12, 26, 31).

[15] Sahand Hariri, Matias Carrasco Kind, and Robert J. Brunner. «Extended
Isolation Forest». In: IEEE Transactions on Knowledge and Data Engineering
33.4 (Apr. 2021), pp. 1479–1489. doi: 10.1109/tkde.2019.2947676. url:
https://doi.org/10.1109%2Ftkde.2019.2947676 (cit. on pp. 6, 11).

[16] Tharindu R. Bandaragoda, Kai Ming Ting, David Albrecht, Fei Tony Liu,
Ye Zhu, and Jonathan R. Wells. «Isolation-based anomaly detection using
nearest-neighbor ensembles». English. In: Computational Intelligence 34.4
(Nov. 2018), pp. 968–998. issn: 0824-7935. doi: 10.1111/coin.12156 (cit. on
p. 6).

44

https://doi.org/10.1109/ijcnn.2018.8489605
https://doi.org/10.1109%2Fijcnn.2018.8489605
https://doi.org/10.1109%2Fijcnn.2018.8489605
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/https://doi.org/10.1016/S0167-8655(03)00003-5
https://www.sciencedirect.com/science/article/pii/S0167865503000035
https://www.sciencedirect.com/science/article/pii/S0167865503000035
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/tkde.2019.2947676
https://doi.org/10.1109%2Ftkde.2019.2947676
https://doi.org/10.1111/coin.12156

BIBLIOGRAPHY

[17] Lukas Ruff, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert
A. Vandermeulen, Alexander Binder, Emmanuel Müller, and Marius Kloft.
«Deep One-Class Classification». In: ICML. 2018, pp. 4390–4399. url: http:
//proceedings.mlr.press/v80/ruff18a.html (cit. on p. 6).

[18] Yezheng Liu, Zhe Li, Chong Zhou, Yuanchun Jiang, Jianshan Sun, Meng Wang,
and Xiangnan He. Generative Adversarial Active Learning for Unsupervised
Outlier Detection. 2018. doi: 10.48550/ARXIV.1809.10816. url: https:
//arxiv.org/abs/1809.10816 (cit. on pp. 6, 7).

[19] Vincent Vercruyssen, Wannes Meert, Gust Verbruggen, Koen Maes, Ruben
Bäumer, and Jesse Davis. «Semi-Supervised Anomaly Detection with an
Application to Water Analytics». In: 2018 IEEE International Conference on
Data Mining (ICDM). 2018, pp. 527–536. doi: 10.1109/ICDM.2018.00068
(cit. on pp. 7, 32).

[20] Vercruyssen Vincent, Meert Wannes, and Davis Jesse. «Transfer Learning for
Anomaly Detection through Localized and Unsupervised Instance Selection».
In: Proceedings of the AAAI Conference on Artificial Intelligence 34.04 (Apr.
2020), pp. 6054–6061. doi: 10 . 1609 / aaai . v34i04 . 6068. url: https :
//ojs.aaai.org/index.php/AAAI/article/view/6068 (cit. on p. 8).

[21] Jonas Herskind Sejr and Anna Schneider-Kamp. «Explainable outlier detec-
tion: What, for Whom and Why?» In: Machine Learning with Applications 6
(2021), p. 100172. issn: 2666-8270. doi: https://doi.org/10.1016/j.mlwa.
2021.100172. url: https://www.sciencedirect.com/science/article/
pii/S2666827021000864 (cit. on p. 9).

[22] Lorenzo Perini, Vincent Vercruyssen, and Jesse Davis. «Quantifying the
Confidence of Anomaly Detectors in Their Example-Wise Predictions». In:
Machine Learning and Knowledge Discovery in Databases. Ed. by Frank
Hutter, Kristian Kersting, Jefrey Lijffijt, and Isabel Valera. Cham: Springer
International Publishing, 2021, pp. 227–243. isbn: 978-3-030-67664-3 (cit. on
p. 9).

[23] Bernhard Schölkopf, John Platt, John Shawe-Taylor, Alexander Smola, and
Robert Williamson. «Estimating Support of a High-Dimensional Distribution».
In: Neural Computation 13 (July 2001), pp. 1443–1471. doi: 10 . 1162 /
089976601750264965 (cit. on p. 9).

[24] N. Goernitz, M. Kloft, K. Rieck, and U. Brefeld. «Toward Supervised Anomaly
Detection». In: Journal of Artificial Intelligence Research 46 (Feb. 2013),
pp. 235–262. doi: 10.1613/jair.3623. url: https://doi.org/10.1613%
2Fjair.3623 (cit. on pp. 9, 32).

45

http://proceedings.mlr.press/v80/ruff18a.html
http://proceedings.mlr.press/v80/ruff18a.html
https://doi.org/10.48550/ARXIV.1809.10816
https://arxiv.org/abs/1809.10816
https://arxiv.org/abs/1809.10816
https://doi.org/10.1109/ICDM.2018.00068
https://doi.org/10.1609/aaai.v34i04.6068
https://ojs.aaai.org/index.php/AAAI/article/view/6068
https://ojs.aaai.org/index.php/AAAI/article/view/6068
https://doi.org/https://doi.org/10.1016/j.mlwa.2021.100172
https://doi.org/https://doi.org/10.1016/j.mlwa.2021.100172
https://www.sciencedirect.com/science/article/pii/S2666827021000864
https://www.sciencedirect.com/science/article/pii/S2666827021000864
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1613/jair.3623
https://doi.org/10.1613%2Fjair.3623
https://doi.org/10.1613%2Fjair.3623

BIBLIOGRAPHY

[25] Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Em-
manuel Müller, Klaus-Robert Müller, and Marius Kloft. Deep Semi-Supervised
Anomaly Detection. 2019. doi: 10.48550/ARXIV.1906.02694. url: https:
//arxiv.org/abs/1906.02694 (cit. on p. 10).

[26] Viktor Holmér. «Hybrid Extended Isolation Forest : Anomaly Detection for
Bird Alarm». In: 2019 (cit. on p. 11).

[27] Bruno Preiss. Data Structures and Algorithms with Object-Oriented Design
Patterns in Java. Jan. 2000 (cit. on p. 13).

[28] Nobuyuki Otsu. «A Threshold Selection Method from Gray-Level Histograms».
In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–
66. doi: 10.1109/TSMC.1979.4310076 (cit. on p. 21).

[29] David J. C. MacKay. Information theory, inference and learning algorithms. en.
Cambridge, England: Cambridge University Press, 2003. isbn: 9780521642989
(cit. on p. 25).

[30] David Barber. Bayesian Reasoning and Machine Learning. USA: Cambridge
University Press, 2012. isbn: 0521518148 (cit. on p. 25).

[31] Markus Goldstein and Seiichi Uchida. «A Comparative Evaluation of Unsu-
pervised Anomaly Detection Algorithms for Multivariate Data». In: PLOS
ONE 11.4 (Apr. 2016), pp. 1–31. doi: 10.1371/journal.pone.0152173.
url: https://doi.org/10.1371/journal.pone.0152173 (cit. on pp. 29,
30).

[32] Guilherme Campos, Arthur Zimek, Joerg Sander, Ricardo Campello, Barbora
Micenková, Erich Schubert, Ira Assent, and Michael Houle. «On the evaluation
of unsupervised outlier detection: measures, datasets, and an empirical study».
In: Data Mining and Knowledge Discovery 30 (July 2016). doi: 10.1007/
s10618-015-0444-8 (cit. on pp. 29–31).

46

https://doi.org/10.48550/ARXIV.1906.02694
https://arxiv.org/abs/1906.02694
https://arxiv.org/abs/1906.02694
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1371/journal.pone.0152173
https://doi.org/10.1371/journal.pone.0152173
https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1007/s10618-015-0444-8

	List of Tables
	List of Figures
	Acronyms
	INTRODUCTION
	RELATED WORK
	Unsupervised algorithms
	Distance-based algorithms
	Density-based algorithms
	Isolation-based algorithms
	Network-based techniques

	Semi-supervised algorithms
	Label propagation-based algorithms
	Loss-based algorithms
	Tree-based algorithms

	BACKGROUND : ISOLATION FOREST ALGORITHM
	Tree construction
	Anomaly score computation
	Important hyper-parameters

	METHODOLOGY
	Tree construction
	Splitting a feature with unlabeled and only normal labeled instances
	Splitting a feature with unlabeled and normal and anomaly labeled instances
	Cut distribution
	Feature selection distribution

	Feature and split value sampling
	An alternative for the split value selection

	Forest construction
	Anomaly score computation
	Limitations

	EXPERIMENTS
	Setup
	Methods
	Datasets
	Experimental setup
	Evaluation metric
	Hyperparameters

	Results

	CONCLUSION
	Bibliography

