
POLITECNICO DI TORINO

Master’s Degree in INGEGNERIA INFORMATICA
(COMPUTER ENGINEERING)

Master’s Degree Thesis

Delivering Remote Desktop Services to
Remote Users: A QoE Perspective

Supervisors

Prof. Fulvio RISSO

PhD Marco IORIO

M.Eng. Federico CUCINELLA

Candidate

Guido RICIOPPO

October 2021

Summary

The 2020 pandemic accelerated some changes and introduced a lot of innovations
destined to reshape long-lasting habits. As an example, while university
exams and laboratory exercises evolved a lot in the method and contents,
the laboratory and tools used to carry out them never changed in decades.
Pandemic-related restrictions introduced the necessity to move services, tools,
and resource-intensive programs from university laboratory workstations to
students’ personal devices.

CrownLabs was born to solve this intricate puzzle. The open-source project
was started in late 2020 by a group of students at the Polytechnic University of
Turing with the aim to provide a remote desktop environment to let students
experience remote laboratories. It was extended in 2021 to make it suitable for
a large number of users and to become a remote-exam platform.

This thesis work consists of an extension of the CrownLabs ecosystem
with the intent to increase the overall remote-exams QoE. The developed
observability extension enriches examiners’ experience with extended metrics
over the exam instances, while students are equipped with non-invasive tools
to track at any time the connection towards the remote environment and its
health status.

The work spans from the design of a monitoring infrastructure that perfectly
fits the existing CrownLabs architecture, to the practical implementation and
integration with multiple monitoring frontends. During the development phase,
production-grade cloud technologies have been used, together with Git for
open-source contribution processes.

ii

After an initial test phase, the CrownLabs infrastructure, extended with
monitoring features, has been used to carry out the Computer Science exam
during the July and September 2022 PoliTO exam session.

iii

Table of Contents

1 Introduction 1

1.1 Goal . 2

1.2 Structure of this thesis . 2

2 Background 4

2.1 Related works . 4

2.1.1 VLAIB . 5

2.1.2 Prometheus and cAdvisor 5

2.1.3 Commercial products . 6

2.2 Virtual Machines VS Containers 7

2.3 Remote Desktop Protocols . 9

2.4 Container isolation by means of Cgroups 9

2.5 Docker engine and Dockershim 10

2.6 Kubernetes . 10

2.6.1 Kubernetes resources . 11

2.6.2 Kubernetes components 15

2.6.3 Kubernetes resource metrics pipeline 17

2.7 CRI-API . 18

v

2.7.1 CRI Stats . 18

2.8 PoliTO Exam platform . 19

2.8.1 Moodle . 19

2.8.2 Computerized exams in presence 19

2.8.3 Remote exams . 20

2.8.4 Existing monitoring tools 20

3 Design 22

3.1 CrownLabs operators-based infrastructure 22

3.2 Kubernetes-powered back-end 23

3.2.1 CrownLabs Resources 24

3.3 Remote desktop management 27

3.4 Exam Agent . 27

3.5 Exams monitoring infrastructure 28

3.5.1 Metrics collection . 28

3.5.2 Metrics aggregation . 29

3.5.3 Frontend monitoring tools 30

3.5.4 Microservices approach 32

4 Implementation 34

4.1 Instmetrics server: metrics scraper 34

4.1.1 Scraping metrics from CRI-API 35

4.1.2 Implementing a CRI-API client 38

4.1.3 Docker Engine API . 39

4.1.4 Caching mechanism . 40

4.1.5 Instmetrics exposed API 40

vi

4.1.6 Instmetrics daemon architecture 41

4.2 CrownLabs container Instances infrastructure 42

4.2.1 Sidecar container infrastructure 43

4.2.2 Application container . 44

4.2.3 Remote display server 44

4.2.4 Browser-based remote desktop 45

4.3 Metrics aggregation . 47

4.3.1 Centralized access to Instance metrics 47

4.3.2 Metrics sharing steps . 48

4.3.3 Tracking Websockify connections 48

4.4 Monitoring Frontend . 50

4.4.1 noVNC monitoring add-on 50

4.4.2 Examiner Dashboard . 51

5 Validation 55

5.1 Testing conditions . 55

5.2 Measurements . 57

5.2.1 Metrics scraping performances 57

5.2.2 Production results . 57

5.2.3 Instmetrics Memory impact 60

5.2.4 Network usage . 60

6 Conclusions 64

vii

Chapter 1

Introduction

Organizing a university exam has become increasingly difficult in recent years: in
addition to the usual logistical problems, modern university courses introduced
new requirements to provide students with modern working environments.

It is often required for each student to access, during the exam, the same
services, tools and programs used in practice workshops and home study, most
of which are licensed and need powerful machines to run. Moreover, the lack
of university laboratory workstations and COVID-19 pandemic restrictions
introduced the necessity to move such exam tools to their same personal devices.

Most of the time, cloud technologies are the best solution to this intricate
puzzle: they allow the delivery of remote desktop services to a heterogeneous
plethora of devices by offloading the program execution, hence the computa-
tional power requirements, to remote servers. While lots of existing open-source
and commercial Virtual Desktop Infrastructure (VDI) products provide a quick
solution to the problem, they are far from being well-integrated with the wide
exams ecosystem.

This thesis focuses on providing a QoE perspective on such remote desktop
tools, increasing the observability of the remote exam environment for both
users and maintainers through the implementation of ad-hoc monitoring tools.

1

Introduction

1.1 Goal
The thesis has been developed at the Polytechnic University of Turin and
consists on the extension of CrownLabs, a project started in 2020 during the
COVID-19 pandemic and developed by Ph.D. students and master’s degree
students in Computer Networks and Cloud Computing courses. The initial aim
of the project was to enable students of the networking courses to continue on
carrying out laboratory sessions in a remote manner but kept on growing and
generalizing. In 2021 it was enriched with scalability capabilities, in order to
support university exams with secure remote desktop environments.

CrownLabs exams QoE extension has been tested during the 2022 summer
exam session in a "bring your own device" scenario, requiring students to connect
to a remote desktop via a browser, either from home or from a classroom.

This thesis work aims on developing additional tools to support examiners
and users with observability of the remote desktop environment status. By
providing such feedback, examiners will enrich their experience with additional
control over the exam instances, monitoring at different levels of detail the
exam instances’ health status. They will be enabled to bind each instance to
an exam attendee and to track instances’ network activities to avoid fraudulent
behaviors. Students, on the other hand, will be equipped with non-invasive
tools to understand at any time if their connection towards the remote system
is healthy, and if they are making the best use of the available resources.

1.2 Structure of this thesis
The initial part of this thesis contextualizes technologies and background aspects
which are needed to better understand the reasons for this work.

The following design section summarizes how the general infrastructure has
been set up and why.

The implementation section consists of the operative steps that have been
taken in order to achieve the main goals.

The validation section is a discussion of the results, along with different
metrics collected.

2

Introduction

The last conclusion part illustrates the final thoughts and suggests further
steps that could be done to improve and further expand this kind of project.

3

Chapter 2

Background

To provide CrownLabs monitoring capabilities to the different remote exam
actors, a variety of tools and technologies have been used. Most of them concern
cloud computing and distributed systems programming.

This chapter helps in understanding the outcome of the thesis discussed in
Chapter 4, presenting some existing tools related to the problem statement and
the different technologies and protocols on which the ad-hoc solution is based.

2.1 Related works
Providing monitoring capabilities on virtualized or containerized remote envi-
ronments is not an uncharted problem. In one way or the other, every container
or virtual machine orchestration technology provides tools to observe the overall
system status in varying degrees of detail: from the overall server hosting the
workload to the container or VM instance executing a job. CrownLabs is not
an exception: the cluster maintainers have access to tools to monitor a variety
of resources on different details.

However, such tools are often unavailable to the service users, and in case of
an exam, to the examiner. Even if they were, moreover, they would most of the
time be incomprehensible, being designed for cloud and system administration
experts.

4

Background

The following sections give an overview of several products that could be
related to CrownLabs and other aspects of this thesis work. In general, all of
them provide some form of remote experience.

2.1.1 VLAIB
Polytechnic of Turin technical department developed Virtual LAIBs (VLAIBs)
on top of an on-premise cluster equipped with VMware Horizon 1. Its purpose
is to provide the same environment present in the terminals offered by a
LAIB (the university base computer science laboratories): remote desktops
delivered by this system provide the same large package of appliances present
in physical LAIBs, which students can use remotely through a web browser.
This technology can also be used to solve product license, compatibility, or
performance issues that students might encounter.

VMware Horizon administrators can monitor their end-user computing
environments using the ControlUp add-on. The framework provides a com-
prehensive dashboard for real-time monitoring, and scripts can be instantiated
to proactively avoid or reactively remediate issues with remote desktops and
hosting servers.

Such a complete tool, however, is available only for university system admin-
istrators and it is not extensible to provide the same metrics to the end-users.

2.1.2 Prometheus and cAdvisor
The remote-desktop environments provided by CrownLabs are based on Ku-
bernetes: an open-source orchestration platform working with containers (see
Section 2.6. Kubernetes offers some built-in monitoring capabilities, including
cAdvisor : an open-source agent that monitors resource usage and analyzes the
performance of containers. Kubernetes requires such metrics to actively monitor
the health of containers (Liveness and Readiness Probes) and to automate Pod
scalability (Horizontal Pod Autoscaler).

Cadvsor provides metrics with variable frequency and with a customizable

1https://www.vmware.com/products/horizon.html

5

Background

level of granularity: CPU, memory, and network metrics can be obtained down
to the level of a single container.

Metrics providers like cAdvisor can export data as Prometheus metrics2

Database entries, messages, or via a REST API. In that case, a Prometheus
metrics server will scrape and store metrics on a stateful Time Series DB. The
collected metrics can be consumed by a variety of clients, the most famous
being Grafana.

The union of cAdvisor rich metrics and Prometheus may seem the perfect
solution to the problem stated in Section 1.1: a student-oriented client ad
an examiner dashboard may consume the stored metrics offering an ad-hoc
solution using mainly Kubernetes built-in tools. Unfortunately, cAdvisor does
not fit the real-time feedback requirement. It periodically gathers container
stats, but the collection interval can not be personalized. Moreover, the same
interval is dynamically adapted depending on how active the watched container
is, in order to reduce resource usage. Intervals may vary from 4s up to 20s3.

2.1.3 Commercial products

Several commercial products can be deployed on container orchestration plat-
forms in order to discover, map, and monitor applications and microservices.
Most of them can be integrated directly on public cloud provider platforms, such
as Amazon Web Services(AWS) or Microsoft Azure, or can improve consolidated
technologies in the same field as Prometheus.

It is likely but not certain that mixing the capabilities of public cloud
providers with commercial monitoring tools would have allowed achieving
the same outcome of this thesis. Most public cloud providers offer personal
environments remotely accessible and most monitoring frameworks can be
accessed by rich REST API, enabling infinite client solutions.

Such an approach, however, would have had a low impact on the open source
community and would have required the purchase of several paid licenses.

2https://prometheus.io
3https://github.com/google/cadvisor/issues/2660

6

Background

Dynatrace

Dynatrace uses OneAgent, a unique agent to collect and unify performance
metrics for servers, containers, applications, services, databases, and more. It
is integrated with most of the leading enterprise cloud ecosystems that support
dynamic container orchestration.

Datadog

Datadog is a wide framework that offers infrastructure, network, and container
monitoring. It automatically discovers and provides real-time visibility of
containerized environments.

2.2 Virtual Machines VS Containers
The typical approach to provide remote users with software or platform services
is to instantiate a Virtual Machine (VM) on a server. A VM is a software
compute resource running a full-fledged “guest“ Operating System (OS) on
top of a physical “host“ machine. VMs have historically been used for server
virtualization, making the most of their computing resources by their consoli-
dation. From the user perspective, QoE is guaranteed by the transparency of
virtualization: the experience is not different from using a regular Operating
System on a physical machine.

When it is the case to access the guest OS remotely, virtualization is per-
formed by a Virtual desktop Infrastructure (VDI) that takes care to implement
desktop virtualization with Remote Desktop connection Protocols discussed in
Section 2.3. Usually, the guest OS is initialized with uncontrolled root access, so
additional software is required to handle security, alongside the main software
the VM was intended to be shipped with.

VDIs fit the requirements needed for remote exams and laboratories, either
from home or with a bring your own device (BYOD) approach. In fact, the
same CrownLabs was initially born to run remote environments based on VMs.

Unfortunately, despite of being easily usable and flexible, VMs present
several drawbacks, especially related to performance and scalability. One of the
major issues is given by the overhead that virtual machines need in order to

7

Background

be functional. Allocated CPU and memory resources can become conspicuous
when the infrastructure needs to scale up.

Another issue is related to the resources which generally need to be allocated
and reserved wholly to the virtual machine and cannot be shared among other
instances.

These issues can be almost completely solved by switching to containers. A
container mainly consists of process isolation techniques that enable software
to run on a physical machine but in sandboxed environments whose access
to system resources is limited to well-defined sets. In particular, storage,
networking, and memory access are restricted to reserved areas which cannot
be (easily) circumvented by the isolated process or external ones.

By eliminating the entire guest OS and reusing the existing host kernel, only
needed system processes are left alive (see Fig. 2.1), significantly reducing the
resource allocation overhead.

With scalability in mind, CrownLabs support for remote exams delivers
container-based instances, each running the main application only.

HOST OPERATING SYSTEM

HYPERVISOR

GUEST

OS

APP

GUEST

OS

APP

GUEST

OS

APP

HOST OPERATING SYSTEM

CONTAINER ENGINE

APP
 APP
 APP

VIRTUALIZATION VS. CONTAINERS

Figure 2.1: VM vs Container architecture

8

Background

2.3 Remote Desktop Protocols
Regardless of the technology used to build the virtualized desktop environment,
the protocol which enables the actual remote control is a common point. There
are several protocols and infrastructures which can be used, whether they are
open source or proprietary.

Remote desktop protocols enable viewing (usually inside a window of the
client device) and controlling (by interacting with such window) a remote
desktop, be it a physical or virtual one. This generally works thanks to a bi-
directional, asymmetric communication: the client receives the screen content
of a remote machine and sends the commands (mostly mouse and keyboard
input) to the remote environment.

Such protocols generally let the possibility to set parameters for the connec-
tion, such as compression and quality levels, which result in different usage
of bandwidth and compute resources, in order to achieve the best trade-off
between user experience and resource costs.

2.4 Container isolation by means of Cgroups
The two Linux technologies that make up the foundation of building and
running containers are cgroups and namespaces. This section focuses on
cgroups (short for control groups), being the technology handling accounting
and the distribution of processor time and memory between tasks.

When a container is created, it has potential access to all physical resources
of the server (i.e. CPU, memory). Without some form of limitation, a single
containerized process could tear down an entire server simply by allocating a big
chunk of memory or snatching CPU time from other processes. Cgroups allow
isolating containers placing the specific processes in control groups embedded
in the system. This is done by defining resource limits that regulate the access
to the overall system resources.

Cgroups also take care of accounting: every time a process confined in a
group allocates some memory or uses CPU time, an accounting subsystem
registers the usage statistics on the related control group files. This is why every

9

Background

monitoring tool, like the one discussed in Section 2.1.2, directly or indirectly
uses cgroup subsystem information to retrieve usage statistics to provide to
clients as metrics.

2.5 Docker engine and Dockershim
Docker is one of the most popular tools for application containerization. It
is based on a client-server architecture: a Docker client talks to the Docker
daemon called dockerd, which interacts with the Linux host to build, run and
manage containers.

The docker daemon itself is in charge of collecting the metrics regarding
the managed containers. It supports CPU, memory usage, memory limit and
network IO metrics. Those metrics can be accessed either from a CLI or from
the provided SDKs for different programming languages, like Go and Python.
The SDK allows developers to create custom monitoring systems that can be
integrated natively with other services.

It is worth noticing that despite being Kubernetes born initially upon the
Docker container runtime (see Section 2.6), the two tools are not compatible
anymore. To use both, Kubernetes was integrated with a piece of software
shim called Dockershim, filling the gaps of incompatibility.

Referring to the date of this writing (2022), PoliTO CrownLabs’ deployment
is based on a Kubernetes cluster using Dockershim.

2.6 Kubernetes
This (rather new) technology plays an important role in the infrastructure from
the beginnings of CrownLabs. It has been initially developed by Google and its
purpose is to provide a way to manage a cluster4 and enable it to host cloud
native software.

Kubernetes practically consists of an orchestrator for containers5: through

4A set of servers which share certain conditions, such as the network
5Thanks to additional software like KubeVirt, which is used also in CrownLabs from its

10

Background

specially crafted configuration files it is possible to declaratively define the
status of the cluster in terms of running applications, network connection,
exposition of services, security and other aspects of the cluster; Kubernetes
will keep such configuration as a reference in order to make the cluster state
reflect it.

2.6.1 Kubernetes resources
Each aspect of a Kubernetes cluster is defined by a resource of some kind. There
are several predefined resource kinds, that will be discussed in the following
paragraphs.

Node

A Node represents a machine (which could be either physical or virtual) part
of the cluster. Through taints, it is possible to define what a Node can and
cannot do (for example, Nodes that take part in the control plane by default
will not be used for scheduling workloads).

The actual machines identified by Nodes run the effective components which
make Kubernetes work.

Namespace

While some kinds of resources are considered “global” within the cluster (they
are said cluster-wide, other kinds are namespaced. A Namespace represents a
partition of the cluster, which is insulated by certain means. The Namespace
resource itself is clearly cluster-wide.

Namespaced resources might refer, from within their specification, to other
resources: cluster-wide resources can generally be accessed with no issues, while
namespaced resources need to be part of the same referring namespace, in order
for the reference to work. Interesting use-cases are when the cluster should be
shared by different users or to run different applications (in order to further
decrease possible attack surfaces). It is also possible to insulate networking
between namespaces.

beginnings, it is possible to schedule and run also virtual machines instead of just containers.

11

Background

The following kinds of resources are all namespaced.

Pod

The minimal Kubernetes workload unit is represented by a Pod. A Pod is a
way to define and model the desired set (which often consist of a single entry)
of containers.

Conventionally (although there is no actual distinction within the Pod
specification), when more than a container is present inside a Pod, one of the
containers is considered the main one, while the other(s) are called sidecars.
All the containers inside a Pod share the same network namespace and can
possibly mount the same volumes which can be associated with the Pod. A
Pod will be entirely scheduled within the same node (i.e. a sidecar will not be
run in a different node than the main container).

Each Pod has its own network namespace which is bound to a unique IP
address within the cluster, which avoid conflicts with port bindings and possible
routing issues. IP addresses assigned to Pods are ephemeral and thus should
not be used to contact Pods. In order to properly access Pods, it is necessary
to define a Service.

Service

A Service represents a backend (usually made of Pods) that becomes accessible
through different techniques (e.g. a unique internal IP address within the
cluster or a specific port of any node).

Such backend is referenced by means of label selectors. Labels are key/value
metadata that can be associated with any Kubernetes resource and can also be
used to refer to a certain group of those. When more Pods share the same set
of labels, this can be used as selectors, so that any request to the Service can
be forwarded to one of those Pods. There is no need to manually create the
different Pods though: the ReplicaSet resource can automatize such behavior.

ReplicaSet and Deployment

ReplicaSets purpose is to maintain a stable set of running replicated Pods: this
is often used to guarantee the availability of a given application by making sure

12

Background

that the desired number of Pods stays up and running, for example in case
a pod is deleted, another one will be created. ReplicaSets work by assigning
label selectors to the Pods it manages in order to keep track of them.

Deployments are a higher level management mechanism for ReplicaSets and
serve to manage what happens to the ReplicaSet. This ease the management
of application scaling (if the number of replicas has to be scaled up or down),
upgrades (when a new version has to be rolled out), and rollbacks (when it is
necessary to undo an upgrade).

These resources perform any operation to try to keep the availability of a
service: in case of an update, replicas are not updated at once. Each of the
Pods running the old version of a deployment gets terminated only when a new
replica becomes ready to replace it.

Volume, Persistent Volume and PVC

Filesystem in Kubernetes containers provides ephemeral storage, by default:
a restart of the pod will remove any data on such containers, therefore, it is
not suitable for applications that require to have a persisted state. Within the
specification of a Pod, it is possible to define Volumes6: they provide persistent
storage to the pod itself. Volumes can also be used as shared disk space for
containers within the pod. Volumes are mounted at specific mount points
within the containers, defined inside the pod configuration, and cannot mount
onto other volumes or link to other volumes. The same volume can be mounted
at different points in the filesystem tree by different containers.

Volumes can be backed up by different technologies:

• an emptyDir is backed up by an insulated folder on the physical node
which exists for the lifetime of the Pod: it gets removed once the Pod is
deleted.

• Network shares (such as NFS or iSCSI) enable using different kinds of
existing network attached storage systems as backing stores for Pods.

6A Volume is not an actual Kubernetes resource. It is part of the Pod specification.

13

Background

• Persistent Volumes Claims (PVCs) instead are native Kubernetes (names-
paced) resources that are provided by some underlying technology (such
as Ceph or again file sharing network protocols) and exist independently
in the cluster. Cluster admins can allocate space (using a Persistent Vol-
ume, which is a cluster-wide resource) on a certain mean (defined by a
StorageClass) and cluster users can claim such space by binding a PVC
to the PV. Pods within a certain namespace can use PVCs in the same
namespace as Volumes.

ConfigMap and Secret

A common application challenge is to decide where to store and manage config-
uration information, some of which may contain sensitive data. Configuration
data can be anything, from individual properties to entire configuration files or
JSON/XML documents.

Kubernetes provides two closely related mechanisms to deal with this need:
ConfigMaps and Secrets, both of which allow for configuration changes to
be made without requiring rebuilding the whole application. Data stored in
ConfigMaps and Secrets is be made available to every Pod to which these
objects have been bound to and is only sent to a Node if a Pod on that Node
requires it, keeping it in the memory on that Node. Once the Pod that depends
on the Secret or ConfigMap is deleted, the in-memory copy of all bound Secrets
and ConfigMaps are deleted as well. The data itself is stored inside Kubernetes
database.

The main difference between a Secret and a ConfigMap is that the content
of the data in a secret is base64 encoded. Recent versions of Kubernetes have
introduced support for encryption to be used as well. Secrets are often used to
store data like certificates, passwords, access tokens, pull secrets (credentials to
work with image registries), and so on.

Custom Resources Definition

As mentioned, Kubernetes works by means of resources. Different pieces of
software, called operators, monitor resources and the cluster state in order
to make the desired state actual in the cluster. While integrated Kubernetes
resources (such as those depicted up to now) are managed by components

14

Background

embedded into the Kubernetes engine itself, it is possible to specify and install
custom kinds of resources by using CRDs.

A CRD is a cluster-wide resource itself and defines the format that user-
defined resources must be compliant to. It is then possible to build software to
monitor and actualize custom resources that might require it.

2.6.2 Kubernetes components

The following sections illustrate the most important Kubernetes components
and behaviors.

etcd

etcd is a consistent and highly-available key value store used as Kubernetes’
backing store for all cluster data

When deployed with a distributed configuration, etcd implementation favors
consistency over availability in the event of a network partition: this means
that in case some of the different etcds instances cannot communicate, the
database stays consistent but will not be functional until the connection is
recovered. This consistency is crucial for correctly scheduling and operating
services.

Another interesting feature of etcd is its watch API : clients can subscribe
to events that may occur on entities on the database. The Kubernetes API
Server exploits such possibility to monitor the cluster and roll out configuration
changes or simply restore any divergences of the state of the cluster back to
what was declared. For example, if the desired state of an application has been
configured so that it has to have three replicas running on the cluster, it might
happen that the actual state is not the desired one (e.g. one of the replicas
crashed): such difference is detected and an action will be taken to actualize
the desired state (e.g. starting one more replica). In case the operation is not
successful, it will be retried more times, usually by adding a back-off time: the
delay between retries will be incremented with every failed retry.

15

Background

API server

The API server is another key component of Kubernetes: it serves the Kuber-
netes API using JSON over HTTP, providing both an internal and external
interface to Kubernetes. This means practically every request done by users or
an internal agent (for example, an operator) will have to be done through the
API server. It processes and validates REST requests, then updates the state
of the API objects in etcd. This allows clients to set (and get) the desired state
which has been mentioned above.

Scheduler

The scheduler is a pluggable component that selects which node(s) have to be
used in order to persist some kind of configuration. Basically, it chooses which
nodes workloads have to be distributed in.

Given that each pod has a set of resources (requested and reserved) associated
with it, the scheduler tracks actual resources usage on each node to ensure that
workload is not scheduled in excess of available resources. Different strategies
can be adopted depending on which scheduler is used and how it is configured:
apart from user-provided resource constraints, directives can be used to “suggest”
or “make sure” how the scheduling should be done. Examples include quality
of service policies, the fact that some pods have to be scattered across different
nodes (anti-affinity) or concentrated in the least number of nodes (affinity),
“proximity” to data (in case there some nodes can have some kind of eased
availability to certain types of storage).

Controller manager

The controller manager’s main goal is to run the reconciliation loop for the
default Kubernetes resources. Such a process is the procedure that drives the
actual cluster state toward the desired one, communicating with the API server
in order to create, update, and delete the resources it manages.

Kubelet

Kubelet is responsible for the actual scheduling operations on each node and
reporting the status of each operation (together with the status of the node

16

Background

itself) to the API server. It operates by requesting to the underlying Container
Runtime API the creation, modification or creation of a container.

This component is also a node agent for managing container resouces, exposed
by the kubelet API endpoints.

kubectl

While the previous components are part of the cluster itself, kubectl is the
official Kubernetes tool to interact with a Kubernetes cluster. As a command
line tool, it practically consists of a REST client which is designed to talk to
the API server, mostly for getting, updating, and deleting resources.

For instance, as Kubernetes resources (while they are written locally) are
generally stored on YAML or JSON files, kubectl is particularly useful for
applying such resources. The apply operation basically first checks the existence
of a resource with a given name (within a namespace, if namespaced), then
the resource is either created (if it does not exist on the cluster) or patched in
order to be updated with the contents of the YAML/JSON file.

2.6.3 Kubernetes resource metrics pipeline

Kubernetes embeds a system able to offer a basic set of metrics, used to support
automatic scaling and similar use cases. Indeed the Metrics API and the
metrics pipeline that it enables, only offers the minimum CPU and memory
metrics to enable automatic scaling up.

Basically, the metrics pipeline is composed of a metrics-server deployed as a
Cluster add-on component, that collects and aggregates resource metrics pulled
from each kubelet. The aggregated metrics are finally exposed by the Metrics
API.

As mentioned in Section 2.1.2, each kubelet refers to the cAdvisor daemon
to collect container metrics. This makes it difficult to use the metrics-server
to implement a personalized monitoring tool, since the scraping interval and
variety of collected metrics are not flexible as needed.

17

Background

2.7 CRI-API

At the lowest layers of a Kubernetes node is the Container Runtime, a piece of
software that, among other things, starts and stops containers. In the early
days of Kubernetes, the only supported container runtime was Docker Engine.
Not much later, new container runtimes began to emerge and gain notoriety.

To allow flexibility, the CRI (short for Container Runtime Interface) was
released. It is a plugin interface that enables the kubelet to use a wide variety of
container runtimes, without having a need to recompile the cluster components.
Each node of a cluster needs a working container runtime so that the kubelet
can launch Pods and their containers.

The CRI defines a standard API that allows Kubernetes internal or external
clients to connect the container runtime via gRPC.

2.7.1 CRI Stats

In Kubernetes 1.8, the CRI-API was enriched with new functions to let the
kubelet get container stats from the CRI. This move is intended to reduce the
dependency of the kubelet from cAdvisor, since it is a separate open-source
project and requires each container runtime to add the additional corresponding
package to support tracking metrics.

With CRI being the new standard, it was a natural progression to augment
the API to serve container metrics to eliminate a separate integration point.

However, up until Kubernetes 1.24, the Kubelet still relies on cAdvisor to
track resource usage at the pod level. It only uses the CRI-API to obtain
container-level metrics. The API supported today includes the two gRPC
endpoints ContainerStats and ListContainerStats to gather cumulative
memory and CPU usage of a set of containers.

This particular enrichment of the API opened a wide range of possibilities
for cloud-native developers, since it is an effective and well-designed way to
obtain rich container metrics at the desired frequency.

18

Background

2.8 PoliTO Exam platform
The Polytechnic University of Turin adopted the Moodle platform as part
of its didactic web services. The area in which Moodle is most used is for
computerized exams.

2.8.1 Moodle
Moodle is a free and open-source learning management system written in PHP.
It can be used for blended learning, distance education, flipped classroom,s and
other e-learning projects in schools, universities, workplaces and other sectors.

The learning system was integrated into the Polytechnic University of Turin
infrastructure to enable computerized exam management. Moodle, in fact, also
includes a powerful quiz module among its features. It enables professors to
easily build surveys which can be made of several kinds of questions (like single
or multiple choices, free text inputs, file uploads and much more) then have
students answer compile the quiz in a suitable environment to have the legal
validity for being considered exams.

2.8.2 Computerized exams in presence
Up to before the Covid-19 pandemic, exams in PoliTO have always been done
in presence. Such exams have always been delivered through computers LAIBs.
Most of the exams were based on Moodle quizzes which started in a controlled,
full-screen browser window which prevented students from distractions and
cheating. A minor part of the computerized exams required the actual use of
applications installed on the laboratories terminals.

Exams on Moodle, compared to those which require using actual applications,
tend to be preferred by professors for several reasons. During the exam, in
case of a crash of the physical machine or any other issue which might occur,
the exam can always be resumed simply by logging in on another machine.
Moreover, collecting files produced by students through native applications can
be nontrivial.

The implementation of Moodle with CrownLabs allowed the evolution of
2022 post-pandemic physical exams to a Bring Your Own Device modality,

19

Background

delivering the same LAIBs services through containerized instances. This
upgrade made it possible to remove the limit of simultaneous exam participants
due to the limit of LAIB workstations.

2.8.3 Remote exams

The lockdown which began with the 2020 pandemic and the subsequent pre-
vention measures taken by the Italian government and the university, required
exams to be taken remotely, for the first time.

First of all, this required adopting proctoring tools that could be installed on
students’ computers in order to avoid cheating and distraction. Subsequently,
the Moodle infrastructure needed to be improved to support a larger number
of sessions.

Subsequently, from 2021, Moodle was enriched with a plugin that enables
the instantiation of CrownLabs containerized instances in support of students.
The implementation allowed exam participants to come back to the experience
delivered through LAIBs computers, but bringing the services to remote-desktop
environments instead of physical ones.

2.8.4 Existing monitoring tools

The implementation of the PoliTO exam platform with CrownLabs capabilities
also comes with a basic form of cluster monitoring tools. These tools are not
intended to be used by examiners or students, but are an effective way to
provide system administrators with the information to observe communications
and interoperability between various nodes of the cluster.

CrownLabs monitoring is achieved with the following set of instruments.

Prometheus already discussed in section Section 2.1.2.

Thanos is an open-source extension of Prometheus storage format that stores
cost-efficiently historical metric data in any object storage while retaining fast
query latencies.

20

Background

Figure 2.2: Example of Grafana Dashboard in CrownLabs

Grafana is an open-source platform for monitoring and observability. It
glues the information scraped by Prometheus and stored by Thanos allowing
the user to query, visualize, and explore metrics. The visualization is provided
by creating dynamic and reusable dashboards (see Fig. 2.2).

While being effective for the cluster developers and administrators, those
metrics tools are hardly accessible and understandable for sporadical users.

21

Chapter 3

Design

Increasing QoE when dealing with remote-desktop environments used to deliver
online exams is a quite general problem. Consequently, a solution may be based
on a general component, despite the different implementations.

Yet, most of this thesis work focused on the design of an architecture that
could fit inside a bigger existing project called CrownLabs. In order to
understand some design choices, it may be useful becoming familiar with the
general architecture that enables “cloud grade“ remote exams.

This chapter starts with an overview of the Kubernetes backend used by
CrownLabs infrastructure, focusing thereafter on an architectural extension
that aims to improve the monitoring system in the context of mass-scale remote
exams.

3.1 CrownLabs operators-based infrastructure
From the user point of view, CrownLabs is not different from other services
accessible from a web browser: a dynamic web page uses a specific API to
control the backend implementing the business logic. However, CrownLabs
infrastructure is by no means “traditional“: the entire system is built up using
components from the Kubernetes ecosystem, extended with custom software
implementing the core business logic.

22

Design

The frontend page provides access to Custom Resources interacting directly
with the Kubernetes API server: it allows final users to spawn new environ-
ments, and connect to their instances, similarly as kubectl does from CLI (see
Section 2.6.2).

Following a design aimed at automation, the application components’ inte-
gration directly into the Kubernetes infrastructure is done by means of CRDs
(Section 2.6.1). The business logic, instead, is implemented according to the
operator pattern.

Fig. 3.1 shows an overall view of CrownLabs’ frontend and backend design.
It is possible to notice how the architecture is composed both of standard
Kubernetes components and extensions managed by operators.

Operator pattern The Operator pattern aims to capture the key aim of
a human operator who is managing a service or set of services. The operator
software implements a custom Kubernetes controller to control the life-cycle of
custom resources on behalf of Kubernetes users.

3.2 Kubernetes-powered back-end
The management and development complexity of CrownLabs backend is reduced
delegating as many tasks as possible to the Kubernetes infrastructure. The
main entities involved in the CrownLabs infrastructure are mapped to Custom
Resources, so that the user can interact with them by sending requests directly
to a Kubernetes API server, either via kubectl command or using the graphical
interface provided on the website.

Regardless of the used client, users can experience remote computing per-
forming the following operations:

• create Instances by applying the relative resource YAML;

• obtain information on how to access Instances from the state of the created
instance once it has been started;

• stop Instances (by changing a property in the Instance specification, if
supported by the type of instance);

23

Design

• delete Instances;

• retrieve and change information about the associated Tenant;

• manage other Tenants, in case the user is a manager for a given Workspace.

In addition to the latter general-usage operations, a new exam-specific
workflow was recently added. Using the moodle plug-in, a student can:

• create an exam-binded Instance with a persistent working directory;

• access the Instance from the Moodle interface via a special type of question
within the quiz;

• stop Instances by terminating the quiz. This same action triggers a
submitter Job that collects the content elaborated by the student and
uploads it to a specific endpoint;

3.2.1 CrownLabs Resources
The following section illustrates the main custom resource kinds that make the
whole infrastructure work.

Instances The Instance represents the actual core of CrownLabs: a running
environment. The instance specification references a Template that describes
which environment has to be run; the instance also includes a status that shows
useful information about the running instance, such as how/where it can be
reached. Each instance can possibly have more than a single environment
associated with it. Each environment can be either graphical or text-based. In
the second case, it is generally reachable through ssh.

Templates A Template can be seen as a “model” that describes what an
instance should consist of. Its specification holds information relative to the
image to be used in the instances created from that template, if the instance
will be based on a virtual machine or on a container, the maximum amount of
resources that will be available for the environments, and other details.

Tenants A Tenant represents a CrownLabs user, whether they are students,
professors, or administrators. Each user has an associated namespace in

24

Design

Home Page Login Page

Front-end
Remote
Desktop

Load Balancer
+

Ingress Controller

OIDC Server
(Authentication)

Personal Storage
& File Sharing

CRDs

RBAC
(Authorization)

API Server GraphQL
Relay

AttachesEnvironment
(VM/Container)

Instance
Operator

Instance Business Logic

Templates Get

Instances

Get – Watch

Create

Templates

Refers to

Sp
aw

ns

Tenant
Operator

Tenant Business Logic

Tenants
Get – Watch

C
on

fig
ur

es
Owns

Fr
on

te
nd

:
W

eb
Br

ow
se

r
B

ac
ke

nd
:

K
ub

er
ne

te
s

C
lu

st
er

Figure 3.1: Overall schema

Kubernetes, an account on the identity provider system, and reserved space on
an internal file manager. Thanks to the identity provider association it is also
possible to access the Kubernetes cluster using the Tenant credentials.

Workspaces A Workspace often overlaps with the concept of a course.
It mostly consists of a collection of Templates. Tenants have one or more

25

Design

Workspaces associated with them, so they can start Instances based on the
Templates that they belong to those Workspaces only. A Tenant can be a User
or a Manager for a given Workspace.

Containerized graphical instances

An Instance component architecture is composed of multiple elements. In
order for the environment to be served on a remote-desktop page, the single
Application container is not enough. Two other support processes are needed:
a Display Server that hosts the desktop environment on which the application
window is hosted, and an intermediate component (proxy) between the browser
and the display server arbitrating the bi-directional communication. The latter
is needed because of the sandbox nature of web browsers.

Fig. 3.2 shows the described architecture. Further implementation details
can be found in Chapter 4.

Browser

Remote Desktop page
files

Instance

Application container

Display Server

Proxy

1 2

Figure 3.2: Containerized instance architecture

26

Design

3.3 Remote desktop management
In the case of graphical environments, the user can interact with a remote
desktop. Each running Instance, in its status, indicates the URL on which its
remote desktop is accessible. The web-based frontend automatically shows a
button that opens the remote desktop in a new window.

The remote desktop through enables full mouse integration and almost
complete integration with the keyboard (some combinations of keys would
interfere with both the client operating system and browser and cannot be
directly forwarded to the remote environment).

3.4 Exam Agent
As already mentioned, CrownLabs capabilities have been integrated with
Moodle throughout a plug-in in order to deliver remote exams to Polytechnic
of Turin students. This section illustrates the exam infrastructure that is put
beside an existing CrownLabs deployment.

Landing

The Landing component is an interface between the Kubernetes cluster and
Moodle. It is also called examAPI. Students are not allowed to access directly
the Instance from the quiz page. Instead, when they try to access the Instance,
they contact the Landing component:

• if the Instance related to the student is ready, the user is redirected to the
remote desktop environment;

• if the Instance is starting, a loading spinner is displayed to the student
until the instance becomes ready;

• if the Instance does not exist, the instance is created on demand;

The examAPI is an interface that opens infinite gates to future exam-related
tool implementation, since it can be used to obtain a list of running instances
related to the exam, create new ones or delete existing ones. It also provides
information about the student bound to each instance, the exam termination
date, and if the persistent folder has been already submitted.

27

Design

Content downloader

When an Instance is created from a Template, this component is in charge to
populate the persistent folder on which the student is supposed to work on.
Examples of downloaded content are a PyCharm project folder or a Blender
library.

Terminator

The Terminator is a daemon running a control loop during the entire duration
of the exam session. Once the Moodle attempt is closed, the Terminator is in
charge to stop the associated instance.

Submitter

This component includes a Job dedicated to the collection of the content of
each persistent working folder and then upload to a specific endpoint defined
in the Template of the Instance.

3.5 Exams monitoring infrastructure
Despite the integration between an exam management system and CrownLabs
remote computing capabilities, the whole architecture lacks a monitoring com-
ponent that could help students and examiners to obtain an overall view of the
system.

This thesis work focused on the design and implementation of such compo-
nents, in order to improve the QoE of the different exam actors. The following
sections illustrate some of the design choices made as a result of the discussed
requirements.

Fig. 3.3 shows an architectural overview of the monitoring infrastructure.

3.5.1 Metrics collection
The first step to provide observability to users is the retrieval of information
regarding the environment they are working on. In the context of CrownLabs

28

Design

exams, the working environment is an Instance for the student and the list of
instances with their exam-related status for the examiners.

The monitoring system was designed to use the information already present
in the infrastructure as much as possible. For this reason, there was no need to
reinvent a component binding exam-related information to the right Instance,
since the Landing component already provides a complete overview of the state
of exam Instances.

Taking into consideration the state of an Instance, instead, a lack of informa-
tion emerged: there is no high-level component already existing in Kubernetes
or implemented in CrowLabs able to provide real-time statistics about an
Instance. Moreover, existing services doing a similar job do not fit inside the
existing CrownLabs exam architecture, so a set of new components has been
designed and developed.

Instmetrics

An Instmetrics server (short for Instance Metrics Collector) has been added to
the existing architecture. This component is a daemon watching for existing
containerized Instances and in charge of scraping the stats for each Application
container belonging to a containerized Instance (see Fig. 3.2).

Being a daemon, at least one Instmetrics server is required for each node
of the Kubernetes cluster. Which metrics are collected for each Application
container depends on the information available on the Kubernetes backend;
later in the implementation chapter a possible CrownLabs-compatible approach
will be discussed.

The Instmetrics server will serve metrics to the proxy component of each
containerized Instance: this will form a service chain.

3.5.2 Metrics aggregation
It is useful for metrics clients to rely on a single source of truth, instead of
collecting information from different sources on their own. This also helps
with accounting and regulating the access to monitoring features, which often
contain sensitive information like a connections register.

29

Design

Metrics aggregator

A metrics aggregator is located inside the Proxy component of each Instance:
it connects to the Instmetrics server to enable monitoring on the specific
instance. The component increases the transparency of the CrownLabs backend
architecture: the client performing monitoring can retrieve metrics from the
same endpoint used to connect to the remote desktop environment of the
Instance. The retrieval of metrics can be activated or disabled by an option
after the connection to the Instance.

An important aspect intended to increase Instance observability is the
monitoring of network performance and connections. In this regard, the metrics
aggregator itself is in charge to track connections to the remote environment
and analyze network parameters for each active connection.

The overall Instance metrics will be provided both to the remote-desktop
users and to a summary dashboard used by the examiners. Regarding the type
of client, separation of concerns must be performed: the student is interested
in his connection stats only, while the examiner needs wider visibility. It could
be useful to track the source of each connection and details about concurrent
connections to the remote environment.

3.5.3 Frontend monitoring tools

The applications of monitoring tools are potentially endless: once the metrics
of interest are obtained, they can be represented on different frontends in a
way that fits the user.

For the sake of this thesis work, the actors interested in enriching visibility
over the Instance or the wider system are:

• students actively making use of the remote desktop environment. They
want to be aware of the real-time usage of the Instance resources and their
connection quality;

• examiners, often professors, monitoring the exam course. They want to
know how every Instance is behaving and who is connected from where;

30

Design

Remote desktop add-on

A view can be provided to students in several ways: a new browser page, a
metrics strip on the same remote desktop page, or an extensible add-on that
can be closed when not used.

The design choice, in this case, fell on the add-on tool. This allows students
to be always focused on the same page, avoiding distractions. It is important,
still, to avoid the additional tool being invasive on the exam page; this is why
it was decided to design a draggable element, extensible when required.

Also, a discussion about the content of the add-on was held. Usage metrics
are subject to high variance; care must be taken not to attract student attention
when not necessary. This is why the implementation following this design choice
will require a study of typical users’ behaviors, making a distinction between
real critical situations and false alarms.

Examiner dashboard

The examiner dashboard has been designed as a single-page application acces-
sible from the exam management system. It is wanted to guarantee a seamless
experience to the dashboard users as well: the monitoring page must be link-
able from Moodle, giving the perception of being an additional Moodle plugin
provided by CrownLabs.

The dashboard is composed mainly of a tabular layout in order to strictly
every piece of information in a defined space. This decision was made in order
to avoid users drowning in information. At PoliTO, exams with more than
200 booked students are not uncommon; in such cases, relevant information
shouldn’t be overshadowed by the number of rows.

The table must show brief stats about each instance: punctual resource
usages, for example, are not relevant. Examiner attention must be triggered
only when trend values of resources go wild or unexpected connections are
taking place. Having the possibility to sort columns is also useful.

Basically, information of interest for examiners during the exam can be
summarized in the following columns:

• student name and its university ID;

31

Design

• Instance overall status. This field must trigger the examiner’s attention
if the CPU, memory, connections, or network are having a long-standing
warning state.

• CPU usage trend. Providing instantaneous values when required may be
also useful;

• memory usage trend. Same as CPU about the real-time usage;

• network connections quality. This field must fall in a warning state when
the connection’s Round Trip Time does not guarantee a smooth experience
for Instance users;

• active connections number and their classification. Since the user may be
not familiar with IP addresses, each address must be labeled and associated
with a source location. Providing the connection time may be also useful;

• connections history. It must be a register of active or past connections;

The dashboard should provide also the possibility to jump to each specific
remote desktop environment as a spectator.

3.5.4 Microservices approach
The components described above enable observability over Instances imple-
menting a service chain. This approach follows the fundamentals of the
Microservice architecture pattern:

• being CrownLabs an open-source project, multiple developers worked on
the application;

• new developers quickly become productive, since the introduction of a new
feature requires understanding only a small subset of existing components;

• services in the chain are loosely coupled: they communicate via the network
and each component has very little knowledge about others’ inner logic;

• services are highly coherent: each component relies on others in order to
deliver a feature. For example, the Proxy element inside an Instance is not
able to provide utilization metrics to the remote desktop or the Dashboard
by itself: it requires a running Instmetrics server;

32

Design

Kubernetes Node

Examiner Dashboard
Remote Desktop

EnvirontmenRemote Desktop
Environtmen

Instance

Proxy

Display Server

Application Container

Instmetrics Server

Instance

Proxy

Display Server

Application Container

Kubernetes
Engine

Figure 3.3: Monitoring infrastructure overview

33

Chapter 4

Implementation

Defined an architecture for the exams monitoring infrastructure in Crown-
Labs, the thesis work focused on implementing the needed components.

Despite the requisites being well defined during the design phase, the follow-
ing implementation was definitely not linear: in Kubernetes, the same feature
is often provided on different levels of abstraction. The more abstract the
development interface, the easier to understand but the harder to personalize.

4.1 Instmetrics server: metrics scraper
The first step in developing a monitoring service is the retrieval of metrics. The
implementation depends on which information needs to be collected and how
frequently.

In order to provide a rich QoE to different actors of CrownLabs exam
infrastructure, the following requisites have been defined:

• application container stats:

– CPU usage;

– Memory usage;

• connections tracking:

34

Implementation

– connections source;

– active connections counter;

– total connections counter;

• customizable metrics update granularity up to 1s;

The Instance Metrics Collector server (abbreviated as Instmetrics), is re-
sponsible for the collection of containers’ CPU and memory stats, with
customizable frequency.

This section deep dives into implementation details and describes the tools
used to implement the Instmetrics service.

4.1.1 Scraping metrics from CRI-API
What is CRI

The Container Runtime Interface (presented in Section 2.7) enables the Ku-
bernetes kubelet to use a wide variety of container runtimes 1.

Currently, CrownLabs is deployed in the Polytechnic University of Turin
upon two Kubernetes clusters paired to form a multi-cluster using Liqo 2.
The first cluster nodes use Docker as container runtime with the Dockershim
component for CRI compatibility, while the other one relies upon containerd
as the container runtime, eliminating the middle man.

Through CRI introduction, this kind of flexibility is made possible, where
the same Kubernetes-based software (like CrownLabs) can use a wide variety
of container runtimes without the need to recompile.

However, knowing the infrastructure under the abstraction was recommended
during development, since the plugin API of CRI does not provide always a
seamless experience.

Fig. 4.1 shows how Docker actually uses Containerd as the underlying

1A container runtime is the process that does the actual work of creating, running, and
destroying containers.

2https://liqo.io

35

Implementation

container runtime. Switching to Containerd as a container runtime eliminates
two layers of intermediation.

container

CRI
kubelet

dockershim Containerd

CRI
Instmetrics

CRI
kubelet

CRI
Instmetrics

Docker

Containerd 1.1

CRI
plugin
 Containerd

container
container

container

container
container

Figure 4.1: Dockershim vs. Containerd CRI Architecture

Services provided by the CRI-API

The CRI-API includes two gRPC services (more on gRPC on Section 4.1.2):
ImageService and RuntimeService. The ImageService provides Remote Pro-
cedure Calls (RPC) to pull an image from a repository, inspect, and remove
images. The Instmetrics uses the second service, called RuntimeService, which
contains RPCs to manage the lifecycle of the pods and containers, as well as
calls to interact with containers (exec/port-forward/retrieve stats).

Below are some exposed RPCs in protobuf format.

36

Implementation

Listing 4.1: Runtime Services exposed by CRI-API.

1 service RuntimeService {
2 // Sandbox operations .
3 rpc RunPodSandbox (RunPodSandboxRequest) returns (←↩

RunPodSandboxResponse) {}
4 rpc StopPodSandbox (StopPodSandboxRequest) returns (←↩

StopPodSandboxResponse) {}
5 rpc ListPodSandbox (ListPodSandboxRequest) returns (←↩

ListPodSandboxResponse) {}
6

7 // Container operations .
8 rpc CreateContainer (CreateContainerRequest) returns (←↩

CreateContainerResponse) {}
9 rpc StartContainer (StartContainerRequest) returns (←↩

StartContainerResponse) {}
10 rpc StopContainer (StopContainerRequest) returns (←↩

StopContainerResponse) {}
11 rpc ListContainers (ListContainersRequest) returns (←↩

ListContainersResponse) {}
12 rpc ContainerStatus (ContainerStatusRequest) returns (←↩

ContainerStatusResponse) {}
13

14 // Container metrics operations .
15 rpc ContainerStats (ContainerStatsRequest) returns (←↩

ContainerStatsResponse) {}
16 rpc ListContainerStats (ListContainerStatsRequest) ←↩

returns (ListContainerStatsResponse) {}
17

18 // Sandbox metrics operations .
19 rpc PodSandboxStats (PodSandboxStatsRequest) returns (←↩

PodSandboxStatsResponse) {}
20 rpc ListPodSandboxStats (ListPodSandboxStatsRequest) ←↩

returns (ListPodSandboxStatsResponse) {}
21 }

In the case of Instmetrics, the most important information is provided in
ContainerStatsResponse, which contains:

• cumulative CPU usage gathered from the container. The value is measured
in cores usage nanoseconds;

37

Implementation

• memory usage gathered from the container. This metric is of gauge type;

• usage of the filesystem writable layer;

• a list of container attributes;

4.1.2 Implementing a CRI-API client
CRI consists of a Protocol Buffer and gRPC API. To exploit the exposed
services, the Instmetrics (as the Kubelet) communicates with the container
runtime over Unix sockets implementing a gRPC client (Fig. 4.2).

Remote Procedure Call

Remote Procedure Call (RPC) is an inter-process communication technique
that allows nodes in a distributed environment to execute a subroutine in a
different address space (usually another computer). The client accesses the
services or resources as they are local, easily calling a function.

In reality, however, the server providing the services is the only one im-
plementing the logic of the procedures. After receiving a request whit the
related parameters, it computes and sends a response back to the client over
the network.

In order to simulate the implementation of actual procedures, the client
contains a stub of code that represents the remote procedure code. When
the procedure call is issued, the stub receives the request, and the related
middleware forwards it to the remote server.

The specification of provided services and the structure of the resources are
described by an Interface Definition Language (IDL). Client and server may
be running on different operating systems and using different programming
languages. That is why a common language to describe shared structures is
required.

gRPC framework

gRPC is a robust open-source RPC framework used to build scalable and fast
APIs. Its development was started by Google in 2015, which needed an RPC
framework to link many microservices created with different technologies.

38

Implementation

Protobuf or Protocol buffer is the Interface Definition Language used by the
framework. It includes a serialization/deserialization protocol and enables the
easy definition of services and auto-generation of client libraries. gRPC services
and messages (see the example in Section 4.1.1) are defined in proto files.

Protoc is a Protobuf compiler that generates client and server stub code.

gRPC relies on HTTP/2, which supports binary framing, bidirectional
full-duplex streaming, and flow control mechanisms.

While HTTP natively supports mediators for edge caching, gRPC calls use
the POST method, hence the responses can’t be cached through intermediaries.
However, to overcome this problem in the CrownLabs exams monitoring infras-
tructure, both the Instmetrics (gRPC server) and Websockify (gRPC client)
implement custom caching mechanisms.

4.1.3 Docker Engine API
As mentioned in Section 4.1.1, the current CrownLabs deployment uses both
Dockershim and Containerd as container runtime.

The first development iteration of the metrics scraper component inside
the Instmetrics foresaw the use of the CRI-API only for metrics collection.
Unfortunately, despite being compatible with CRI, Dockershim does not fulfill
all the requirements as expected: not all the fields of ContainerStatsResponse
are correctly populated.

This inconvenience required an ad-hoc implementation in the case Docker
is used as the underlying container engine. In such cases, container stats are
extracted using the Docker Engine API to interact with the Docker daemon.

Being the Instmetrics service written in Go, the Docker Go SDK has been
used. Depending on whether Dockershim runtime endpoint is provided or not,
the DockerMetricsScraper or the CRIMetricsScraper will be used by the
service.

Yet, a connection to the CRI-API is still required, since the service needs
to identify an Application Container ID from the Pod ID provided by the
Instmetrics client.

39

Implementation

Fig. 4.2 shows the different elements and communication protocols composing
the Instance Metrics Collector infrastructure.

WebsockifyWebsockify
gRPC

HTTP

Instmetrics

Container runtime

Docker

Container
Instance

Websockify

Display Server

Application Container

gRPC
gRPC
server

gRPC
client

Figure 4.2: Instmetrics infrastructure

4.1.4 Caching mechanism
Since gRPC does not natively include caching mechanisms, each request for
ContainerMetrics from the client results in the execution of a procedure
server-side. One single Instmetrics server is deployed in each Kubernetes Node,
so the server is potentially subject to a high number of requests in short
timeframes.

For this reason, a caching mechanism has been implemented inside the
Metrics Scraper: metrics are collected from CRI or Docker always with the
same frequency, ideally in the order of 1s, and results are saved on a state
Map<PodName, Metrics>. When a request arrives, a response is assembled
from the cached information.

4.1.5 Instmetrics exposed API
An Instmetrics server exposes collected metrics through a gRPC API. The
service listens for gRPC connection on the (personalizable) port 9090 and

40

Implementation

responds to metrics requests given a specific Pod name.

Listing 4.2: Services and Resources defined by the Instmetrics component.

1 service InstanceMetrics {
2 rpc ContainerMetrics (ContainerMetricsRequest) returns (←↩

ContainerMetricsResponse) {}
3 }
4

5 message ContainerMetricsResponse {
6 float cpu_perc = 1;
7 uint64 mem_bytes = 2;
8 uint64 disk_bytes = 3;
9 }

10

11 message ContainerMetricsRequest {
12 string pod_name = 1;
13 }

The logic of the exposed interface is quite simple:

1. a client, usually a metrics aggregator, provides the Pod name of a Crown-
Labs container Instance. He is interested in the Application Container-
related metrics;

2. on the basis of the information the metrics scraper saved, the InstMetrics
server can respond with:

(a) current CPU percentage, memory, and disk usage if metrics related to
the Pod are found in cache;

(b) an error if the Pod name is not known to the metrics scraper;

For the sake of simplicity, the provided CPU percentage is relative to a CPU
unit. The client will need to normalize the value given the actual CPU units
available to the Application Container of the Instance.

4.1.6 Instmetrics daemon architecture
One single Instmetrics scraper is in charge of the collection of all Containerized
Instances metrics in a Kubernetes node with very little use of resources. That

41

Implementation

component is highly efficient, so it has been decided to run only one Instmetrics
per Node.

The service has been deployed as a Kubernetes DaemonSet, which ensures
that all Nodes run a copy of the Instmetrics Pod, and as nodes are added to
the cluster, a new Pod is added to them.

Communicating with the daemon Pod

The first idea was to expose the server on the NodeIP and a known port.
This approach facilitates traffic routing from clients to the server. Since each
Instmetrics only knows about metrics of Instances running on its same Node,
it is important for the client to contact the Instmetrics server on its same host.
Using the NodeIP, the client only needs to know the host machine IP to reach
the correct server.

This approach, however, does not comply with Kubernetes and CronwLabs
guidelines, which state to abstract applications’ exposition using a Service
resource. When a Service is used, each Instmetrics Pod automatically gets its
own IP address and a DNS name, and the Kubernetes networking plugin takes
care of routing.

The service type ClusterIP has been used for security reasons: the Service
is exposed on an internal IP in the cluster. This makes the Instmetrics server
only reachable from within the cluster.

Yet, to meet the requirement of routing traffic inside the Node, an Internal
traffic policy has been used. Setting the traffic policy as Local, all traffic
destined for the Instmetrics ClusterIP is only routed to ready node-local
endpoints. If no ready server is found, traffic is dropped.

4.2 CrownLabs container Instances infrastruc-
ture

This section describes some implementation details of the CrownLabs container-
based Instances. Instead, Section 4.3 and Section 4.4 will show how some of
the existing components in this area have been extended to support monitoring

42

Implementation

and observability.

4.2.1 Sidecar container infrastructure
A CrownLabs container-based Instance consists of a Pod running three different
sidecar containers.

Sidecar containers pattern consists of a Pod running a main container sup-
ported by other containerized processes called sidecars. This pattern allows the
extension and enhancement of the functionality of the main container without
changing it.

In this case, as depicted in Fig. 4.3, an Application container runs along
with Websockify and a Display server.

Ingress

controller

Browser

noVNC

runtime files image

 1

Instance Pod

X+Vnc Server

Desktop environment

Application container

Websockify

 X server protocol

 VNC (tcp) protocol

 2

 VNC in WebSocket

Figure 4.3: Container based Instance infrastructure components

43

Implementation

4.2.2 Application container
Application containers are simple processes that have been isolated in a con-
tainerized environment. Theoretically, any process can become an Application
container simply by writing a self-contained Containerfile3 for the application
layer.

To run an application that features a graphical user interface (GUI), all
graphical dependencies must be provided in order to display content. Following
the general Docker guidelines, which recommend one concern per container,
a sidecar container will be needed to host the display server. In the case of a
remote desktop environment, a virtual screen must be used as a display client:
this may require an additional sidecar.

4.2.3 Remote display server
Typically, all graphical Linux applications connect to an X Display server to
show graphical data on the monitor of the computer. The display server is a
component of the X Window Sistem (often called x): a client/server windowing
system for bitmap displays.

The X server is the program that displays the windows and handles input
devices such as keyboard and mouse. In the case of the container Instance, the
server is needed to elaborate client inputs and send the Application Container
graphical output to multiple clients.

Remote display

In order to access the X server from a virtual screen, an interface layer is
needed: the application will communicate the data to render to the X server,
but remote clients will connect to a VNC server.

Xvnc has been used to this end. It includes two servers in one; the X server
used by the application to display itself, and a VNC server accessed from remote
clients using the VNC protocol. CrownLabs uses TigerVNC to implement this

3A Containerfile is a text document containing all the commands a user could call on the
command line to assemble an image. A container engine can build images automatically by
reading the instructions from a Containerfile.

44

Implementation

type of server. TigerVNC strictly fulfills its motive; it can only be used for
remote displaying interfaces, but won’t work with a physical screen.

VNC
viewer
 X protocolVNC

protocol

Xvnc Graphical

Application

Display server

container

Application

container

Figure 4.4: Remote display infrastructure

VNC (Virtual Network Computing) is a graphical desktop-sharing system
used to remotely control another computer. It transmits the keyboard and
mouse input from one computer to another, relaying the graphical-screen
updates, over a network. Typically, VNC uses TCP as its transport protocol,
so a VNC client is not natively compatible with running within a web browser.

4.2.4 Browser-based remote desktop
CrownLabs provides access to Instances via a web browser, eliminating the
necessity for external software to use its remote computing services.

noVNC

In order to enable remote desktop control from a browser, CrownLabs uses
noVNC : a web implementation of a VNC client. It is both an HTML VNC
client JavaScript library and a web application built on top of that library.

noVNC includes a minimal, expandible user interface featuring clipboard
sharing and managing of the VNC connection. Thanks to a WebAssebly
implementation of the Remote Frame Buffer(RFB) protocol4, it delivers high
performances with a low footprint on the client CPU, memory, and network.

4Remote Frame Buffer is an open-source protocol for remote access to graphical user
interfaces.

45

Implementation

noVNC follows the standard VNC protocol, but since browsers do not
support native access to TCP sockets, it does require WebSocket support.

WebSocket

WebSocket (RFC 6455) is a standard protocol that enables a web browser or
client application and a web server to communicate by using one full-duplex
connection layered over TCP. The protocol is designed to work over HTTP
ports 80 and 443 as well as to support HTTP proxies and intermediaries.

WebSocket was born to enable browser-based applications with two-way
communication without relying on HTTP polling. Alternative solutions that
involve existing HTTP technology to accomplish seamless interactive communi-
cations are cumbersome and inefficient. Examples are polling or opening two
HTTP connections that handle one-way traffic only.

With WebSockets, instead, after an HTTP request-response sequence to
establish the connection, data are written and read over one channel only in
an asynchronous full-duplex manner. Thanks to the WebSocket JavaScript
API, developers are provided with easy tools to send messages to a server and
receive event-driven responses.

Websockify

In order to be compatible with noVNC, VNC servers need to use a WebSocket
to TCP socket proxy. Websockify is a noVNC side-project that provides a
simple such proxy.

Websockify accepts the WebSocket handshake, parses it, and then begins
forwarding traffic between the client and TCP server in both directions. This
tool allows a browser to seamlessly communicate with any remote TCP server
simply using the WebSocket API.

WebSocketBrowser VNCWebsockify Xvnc

Figure 4.5: Remote-desktop interaction model

46

Implementation

In CrownLabs, Websockify runs inside an Instance Pod as a sidecar container,
along with the VNC server and the Application container. Configuration is made
very easy by sharing the same network namespace with the Xvnc container.

Given the “proxy“ role of the Websockify container in the container Instances
architecture, Websockify has been effortlessly extended to supply metrics
aggregation for the exams monitoring infrastructure.

4.3 Metrics aggregation
Many actors can take advantage of CrownLabs exams monitoring features.
Such features are accessible from a unique, secure interface delivering well-
defined structures, regardless of the expected use from the client.¡

4.3.1 Centralized access to Instance metrics
The monitoring infrastructure for CrownLabs exams relies on multiple sources
of truth: the Instmetrics server provides real-time resources utilization metrics,
while Websockify holds network information and keeps track of the connections
towards the container Instance.

The CrownLabs architecture is designed to be expansible and able to evolve.
It is important to not compromise compatibility with metrics clients when the
monitoring backend evolves. For these reasons, monitoring capabilities are
delivered to clients from a single place hiding the business logic used to scrape
metrics.

Websockify has been extended in order to aggregate and proxy access to
metrics. The monitoring service is exposed from the same endpoint providing
the VNC and noVNC content. While connecting to the remote desktop
environment, clients can decide to enable metrics retrieval simply by inserting
a parameter in the HTTP request. After the feature expansion, websockify can
deliver three different service modes:

• remote desktop proxy only. This is the traditional mode, used to retrieve
noVNC page HTML content and forward VNC socket data to a websocket;

• remote desktop and monitoring. In this case, the client wants to access

47

Implementation

the remote desktop environment, and retrieve metrics in order to increase
visibility over the Instance he is working on. This mode provides the client
also with networking information regarding his connection to the Instance,
in order to observe his connection quality;

• monitoring features only. This mode is useful for clients interested in
observing from the outside the state of the Instance, without exploiting
remote computing. A client example is an examiner visualizing the state
of an Instance used by a student to carry out an exam. In this case, the
client will receive a track of the active and closed connections, besides
Application container resource utilization;

4.3.2 Metrics sharing steps
Metrics are shared with web clients using a websocket. This allows pushing
resources and connection updates to users, eliminating the need for HTTP
polling mechanisms, which turned out to be highly inefficient.

The sequence diagram in Fig. 4.6 depicts the steps to provide the noVNC
page with Instance status observability:

1. the user requires access to the remote desktop environment;

2. along with the HTML/JS page content, Websockify includes a connUID
to use when requesting monitoring for the specific connection;

3. noVNC requires the VNC content and the monitoring feature for the
specific connUID, indicating how often new metrics must be received;

4. Websockify opens the VNC-related and monitoring websockets;

4.3.3 Tracking Websockify connections
When a connection to the Instance is opened, Websockify identifies the IP
address the request is coming from and keeps track of the connection quality
measuring the Round Trip Time of a VNC (websocket) packet.

Such measures are stored in the cache in order to be provided as metrics,
together with other Instance status information scraped from the Instmetrics.

48

Implementation

noVNC
Page

Work on Instance

Check Instance status

Websockify

Get metrics <connUID, updatePeriod>

Open VNC connection

connUID

Get ContainerMetrics

ContainerMetrics

Remote page content

Instmetrics

Connect remote Desktop

Metrics ws connect

VNC ws connect

Get ContainerMetrics

ContainerMetricsMetrics

Student

Metrics

Figure 4.6: Monitoring request steps

X-Forwarded-For Header

The connection origin is carried by the HTTP header X-Forwarded-For (XFF):
the de-facto standard header for identifying the originating IP address of a
client connecting to a web server through a proxy server.

Every HTTP request coming from the Internet and headed to a CrownLabs
service, such as Instances, crosses the Kubernetes cluster Ingress. The Ingress
runs an Ingress Controller that performs the load balancing of traffic. The
CrownLabs ingress controller has been configured to set the XFF header.

It is worth noticing that the request source IP received by the Ingress
Controller is often unreliable. For example, it can be modified by intermediary
HTTP proxies and, when the Ingress follows a NAT, it can only see the
translated IP address.

49

Implementation

Measuring Round Trip Time

The Round Trip Time is the amount of time it takes for a ping packet to be
sent to the browser inside the VNC websocket channel, plus the amount of
time taken by the pong to reach Websockify. Please note that while most of
the latency is likely to come from the network, it may be also influenced by
client or server overhead. It is, therefore, a reliable indicator of user Quality of
Experience.

4.4 Monitoring Frontend
During the design phase of this thesis work, the main actors interacting with
CrownLabs exams have been identified and each one has been associated
with a set of requirements aiming to increase observability (see Section 3.5.3).
Two frontend views have been implemented: a noVNC page add-on and a
monitoring dashboard. The implementation aimed to integrating those new
tools into the existing infrastructure as much as possible, in order to enrich
users’ experience with observability in the most intuitive way.

4.4.1 noVNC monitoring add-on
The noVNC page is designed to deliver a VNC browser-compatible client. The
HTML and JavaScript content of the page, however, can be extended to deliver
new features to the web page user.

The existing page content has been extended to increase observability over
the Instance. Whit the introduction of the monitoring add-on the student is
aware of the resource utilization and connection quality, always while interacting
with the remote desktop environment. If his remote experience is somehow
degraded, he can quickly identify a possible cause and try to recover to an
acceptable state for himself.

To reduce the invasiveness of the tool on the page, the Instance health
indicator is reduced to a small icon while the student is working on the remote
application. The add-on can be moved over the page simply by dragging and
dropping it. Fig. 4.7 shows three possible states of the small, semi-opaque,
visibility tool, while Fig. 4.8 presents the extended information displayed when

50

Implementation

the mouse hovers over the add-on.

Figure 4.7: Small monitoring view examples

Figure 4.8: Expanded monitoring view examples

Displayed information ar received from a websocket periodically pushing
updates:

• the NET value refers to the RTT time taken by a packet transmitted on
the VNC websocket to go back and forth from the server to the browser;

• them CPU and MEM values shows the current resource usage percentages on
the Application container the student is working on (see Section 4.2.2);

4.4.2 Examiner Dashboard

The second frontend monitoring implementation is a Dashboard providing
wider visibility over the Instances involved in a remote exam. This monitoring
view is intended to be used by professors issuing a CrownLabs-featured exam
on Moodle.

51

Implementation

The dashboard is built using ReactJS5 and, despite being an independent
page, it is well-integrated into the existing CrownLabs infrastructure. The web
page is hosted on the CrownLabs cluster and it can be reached from a link
button on the Moodle exam management page.

In order to provide a summary overview of the exam Instances, the dashboard
needs to interact with two CrownLabs components: the examAPI provided
by the Exam Agent (see Section 3.4) and the Instance Metrics Aggregator
discussed in Section 4.3. Fig. 4.9 shows the interactions between the new
dashboard and the existing infrastructure.

Dashboard
Exam API
Exam API

GET /api/instances

Instance 1

Instance 2

Instance 3

Instance 4

 Instance 1

 Instance 2

 Instance 3

Websockify

Websockify

Websockify

WebSocket

CrownLabs Cluster

WebSocket

WebSocket

WebSocket

List

 Instance 4Websockify

Figure 4.9: Exams Dashboard interactions

Exam Agent API

The CrownLabs examAPI returns the list of existing Instances associated with
an exam, creates them, or modifies their state. The Dashboard uses the API to
extract the list of Instances associated with a particular exam. Among others,
the following useful information is retrieved for each Instance:

5React is an open-source frontend JavaScript library used to develop single-page web
applications. It is based on dynamic state management representing the desired rendering
outcome of the Document Object Model (DOM).

52

Implementation

• Instance ID;

• whether the Instance is running or not. The running state is displayed
on the Dashboard to check if the student is still working on the remote
environment or if he terminated the quiz;

• the particular phase of the running instance. It is useful to check whether
the Instance is still starting or is ready for connections;

• submission state of the exam project. It will allow examiners to be always
aware of which exam terminated with a successful submission;

• student ID associated with the remote computing environment;

• Instance URL. This allows the dashboard to connect to the Metrics Ag-
gregator in order to retrieve monitoring information. The same URL can
be used to jump on the remote desktop environment directly from the
dashboard;

Metrics retrieval

For each listed Instance, the dashboard will display a monitoring view. Metrics
are retrieved from the Metrics aggregator included in the Instance’s Websockify
component: thanks to a websocket connection, updated metrics are periodically
pushed towards the dashboard. Every update will include the following data:

• list of active and past connections to the Instance. The origin IP address
is always included, while active connections are associated with their RTT
value. These values enrich the network overview provided on the dashboard:
examiners will monitor students’ connection quality and associate each
connection origin to a location.

• current CPU usage of the Instance Application container. This allows
observing real-time CPU utilization of the remote environment. In addition
to the instantaneous values, the dashboard displays a resource quality
indicator computed over past values;

• current memory usage of the Instance Application container;

53

Implementation

Figure 4.10: Exams Dashboard page

54

Chapter 5

Validation

The whole software infrastructure, modified to support monitoring features,
has been tested upon an existing Kubernetes cluster. Test results in various
conditions have been collected to understand the feasibility of the proposed
solutions, in terms of resource utilization, performance, and scalability.

After some pre-production measurements, the CrownLabs infrastructure has
been used to carry out real university exams, held during July 2022 PoliTO
exams session.

5.1 Testing conditions
CrownLabs runs on a bare-metal Kubernetes cluster made of 6 physical servers
with the following specifications:

• 4 Dell PowerEdge R740x servers, each one with

– 1 Intel Xeon (28 virtual cores),

– 256 GiB of RAM,

– 1 TB of SSD storage;

• 2 Dell PowerEdge R740x servers, each one with

– 2 Intel Xeon (64 virtual cores each),

55

Validation

– 512 GiB of RAM,

– 8 TB of SSD storage;

• 1 QNAP TES-1885U offering iSCSI storage (used for backups);

• 1 Cisco SG350X switch providing 1 Gbps interfaces for maintenance
purposes;

• 1 Cisco SG350XG switch providing 10 Gbps interfaces for the data plane.

Overall the cluster provides 336 virtual cores, 2 terabytes of RAM, and 20
terabytes of SSD storage. Each server is connected with aggregated 10 Gbps
links to the data plane switch and with 1 Gbps to the maintenance switch. The
two switches are then connected to the Campus network, respectively with a
10 Gbps link and a 1 Gbps link. The overall structure is depicted on Fig. 5.1.

The machines are physically installed inside the university and are managed
by the CrownLabs team.

Cisco SG350X
(1Gbps)

Cisco SG350XG
(10Gbps)

To Campus Network

6x Dell
PowerEdge R740x

Maintenance Network

QNAP TES-1885U
(backup)

Figure 5.1: Physical infrastructure

The presented infrastructure has been enlarged in a multi-cluster manner.
However, most of the tests and operations have been carried out on the main

56

Validation

cluster depicted above. Only some CRI-related validation required using the
aggregated cluster.

It is worth noticing that the above cluster’s nodes run Kubernetes 1.23
based on Dockershim, while the aggregated cluster runs Kubernetes 1.22 with
Containerd as container runtime.

5.2 Measurements
This section presents some test results, as well as a discussion about differences
in performance depending on varying implementations.

5.2.1 Metrics scraping performances
CrownLabs’ exams monitoring infrastructure introduces an Instmetrics server
collecting resource-related metrics. This component can use both the CRI-API
and Docker Engine to scrape container stats (see Section 4.1.1). Which one
to use depends on what container runtime the Kubernetes node is based on.
Both the implementations have been tested, presenting very different results.

While both solutions scale up well and are subject to similar time increase
when the number of watched containers raises, the Docker Engine response
performances are bounded-below by a time of 1s. This limitation is inevitable,
since the Docker metrics scraping logic presents a hard-coded process sleep
lasting 1s.

To test scalability and performances of the two solutions, 55 Instances have
been started on the same node. The test has been repeated on a containerd
and dockershim node. Fig. 5.2 and Fig. 5.3 show the respective results.

5.2.2 Production results
The infrastructure has been used to carry out the Computer Science exam.
The total number of students booked for the exam session was around 1000,
and 938 terminated Instances have been counted at the end of the day.

Given the lack of big-enough classrooms, and to avoid an untested overload

57

Validation

Figure 5.2: Containerd-based CRI-API scraping time

Figure 5.3: Docker Engine API scraping time

of the system, the exam has been divided into 4 rounds. Therefore, the multi-
cluster experienced a maximum of 250 Instances active at the same time.

58

Validation

Please notice that the analyzed data refers only to the main cluster presented
in Section 5.1, running on average 150 Instances per exam turn.

During the exam day, all other CrownLabs users’ authorizations to create
personal instances have been disabled.

The resources limit for each Application container has been set as follows:

• CPU limit to 1 virtual core, with 0.75 virtual cores reservation base;

• Memory limit to 2 Gigabytes, with the same 2GB memory reservation;

Instmetrics CPU impact

Fig. 5.4 shows the overall CPU usage over the cluster in terms of threads
number: as expected, the main overhead comes from running Instances. It
is clear that the start of each exam round characterizes a load peak, since
PyCharm, the Application container used for the exam, performs intensive I/O
operations during startup, like indexing the project code.

From the Instmetrics processes perspective, Fig. 5.5 shows how each exam
round matches with a CPU usage increase, roughly twice the usual usage when
few Instance metrics are scraped. However, the CPU impact of the Instmetrics
component is negligible compared to Instances load.

Figure 5.4: Overall CPU usage in July exam session

Focusing on some Instmetrics numbers: the worker-6 metrics process’ went
from 0.003 to a peak of 0.024 virtual CPUs usage, watching respectively 3 and
37 Instances.

59

Validation

Figure 5.5: Instmetrics CPU usage on July exam session

5.2.3 Instmetrics Memory impact
Also in terms of memory, the Instmetrics daemon had little impact on the
overall cluster memory usage. Fig. 5.6 and Fig. 5.7 show respectively the total
memory usage and the amount used by Instmetrics.

It is interesting to note how not all the allocated memory is released at exam
end from the Instmetrics. Although the scraper clears the cache for un-watched
containers, this operation may be delayed by the Go garbage collector, since
only 15% of the 150Mib requested memory is used.

Figure 5.6: Overall memory usage in July exam session

5.2.4 Network usage
An Instmetrics process under load receives on average 3.5kB/s and sends
2.7kB/s. The metrics scraper component receives highly detailed information
from the CRI-API; data is then filtered and stored on the cache. This is the
reason why the received data flow is higher than the transmitted one.

The network usage, in this case, is comparable with an Instance, which re-
ceives 10kB/s but sends on average 200kB/s. The high transmission bandwidth

60

Validation

Figure 5.7: Instmetrics memory usage on July exam session

of the Instance is due to the VNC data for the remote display.

Fig. 5.6 and Fig. 5.7 show respectively the total receive/transmit badwidth
of Instances and Instmetrics processes.

61

Validation

Instances Receive Bandwidth

Instances Transmit Bandwidth

Figure 5.8: Instances bandwidth usage on July exam session

62

Validation

Instmetrics Receive Bandwidth

Instmetrics Transmit Bandwidth

Figure 5.9: Instmetrics bandwidth usage on July exam session

63

Chapter 6

Conclusions

After the production deployment, feedbacks coming from both students and
examiners have been collected. Students made non-intensive usage of the
remote desktop environment add-on while being focused on the exam. They
appreciated the non-invasive nature of the tool and the decision to expose
few but concrete metrics. Examiners, on the other hand, extensively used the
monitoring dashboard. For the first time, they had a complete view over the
exam Instances, being able to catch suspicious behaviors thanks to the provided
resources and connection warnings.

Based on the provided feedbacks, finetuning work has been planned for
the dashboard and regarding the provided metrics and their format. Metrics-
scraping procedures have proven to be fast, lightweight, and resilient also
under high loads. The client-server architecture designed to distribute instance
metrics, instead, can be increased in efficiency with the introduction of a
centralized broker distributing information for multiple instances.

Given the effectiveness of the extension, the solution has been confirmed to
be used in future exam sessions.

In addition to its original intent, this thesis work has also proven the
flexibility of modern cloud-native infrastructures. Multiple components have
been inserted in an existing production-grade project like CrownLabs with little
effort and without compromising the overall architecture.

64

Conclusions

65

	Introduction
	Goal
	Structure of this thesis

	Background
	Related works
	VLAIB
	Prometheus and cAdvisor
	Commercial products

	Virtual Machines VS Containers
	Remote Desktop Protocols
	Container isolation by means of Cgroups
	Docker engine and Dockershim
	Kubernetes
	Kubernetes resources
	Kubernetes components
	Kubernetes resource metrics pipeline

	CRI-API
	CRI Stats

	PoliTO Exam platform
	Moodle
	Computerized exams in presence
	Remote exams
	Existing monitoring tools

	Design
	CrownLabs operators-based infrastructure
	Kubernetes-powered back-end
	CrownLabs Resources

	Remote desktop management
	Exam Agent
	Exams monitoring infrastructure
	Metrics collection
	Metrics aggregation
	Frontend monitoring tools
	Microservices approach

	Implementation
	Instmetrics server: metrics scraper
	Scraping metrics from CRI-API
	Implementing a CRI-API client
	Docker Engine API
	Caching mechanism
	Instmetrics exposed API
	Instmetrics daemon architecture

	CrownLabs container Instances infrastructure
	Sidecar container infrastructure
	Application container
	Remote display server
	Browser-based remote desktop

	Metrics aggregation
	Centralized access to Instance metrics
	Metrics sharing steps
	Tracking Websockify connections

	Monitoring Frontend
	noVNC monitoring add-on
	Examiner Dashboard

	Validation
	Testing conditions
	Measurements
	Metrics scraping performances
	Production results
	Instmetrics Memory impact
	Network usage

	Conclusions

