
Politecnico di Torino
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Reliable and efficient solutions for a
participative air pollution monitoring

system

Supervisors

Filippo Gandino

Edoardo Giusto

Pietro Chiavassa

Candidate

Alessandro Ricciuto

Academic Year 2021 - 2022

Contents

1 Introduction 1
1.1 Problem of air pollution . 1
1.2 Air quality monitoring . 2
1.3 Goal of the project . 3

1.3.1 Participative approach 3
1.3.2 Status of the project 4
1.3.3 Implementation . 5
1.3.4 Thesis organization . 6

2 Architecture of the system 7
2.1 Components . 8

2.1.1 IoT device . 9
2.1.2 Mobile Application . 10
2.1.3 Server . 11

2.2 Data communication . 12
2.3 Alternative technologies . 13

3 IoT Device 15
3.1 Functionalities . 16

3.1.1 Data sampling . 16
3.1.2 Data storing . 17
3.1.3 Data processing . 19
3.1.4 Data transmission . 21

3.2 Bluetooth Low Energy . 23
3.3 Data exchange protocol . 26
3.4 Implementation issues . 28
3.5 Future improvements . 30

4 Mobile Application 31
4.1 Flutter framework . 32

4.1.1 Cross-platform frameworks comparison 35
4.2 Participative system implementation 38

i

4.2.1 BLE limitations . 41
4.3 Interaction with the Server . 42

5 Server 44
5.1 REST paradigm . 45
5.2 ORM paradigm . 46
5.3 Frameworks used . 48
5.4 Database structure . 49
5.5 Code structure . 51
5.6 Implementation . 53

6 Evaluation 56
6.1 Performances of the system 56

6.1.1 I/O and transmission results 56
6.1.2 Data loss . 57
6.1.3 API performance . 59

6.2 Data transfer statistics . 60
6.3 Open issues . 61

6.3.1 Data aggregation . 61
6.3.2 Data calibration . 62

7 Conclusions 63

Bibliography 65

ii

Chapter 1

Introduction

1.1 Problem of air pollution
Air pollution is one of the leading causes of mortality worldwide.

The World Health Organization (WHO) identifies air pollution as one of
the major causes of the increasing hospital admissions for cardiovascular and
respiratory diseases and for mortality in many European cities and other
continents (as shown in Figure 1.1) [1].

Figure 1.1: Number of deaths from outdoor air pollution, 1990 vs. 2019 [2]

While some causes of pollution are strictly correlated to natural events –

1

Introduction

sudden changes in temperature, seasonal changes, or regular cycles – others are
the effects of human activities [3]. One of the main pollution factors is given
by particulate matter, microscopic particles, mostly generated by fossil-fuel
combustion and waste incineration. According to their diameter size, they are
classified into two categories [4]:

• PM10, inhalable coarse particles with a diameter of 10 micrometers (µm)
or less;

• PM2.5, fine particles with a diameter of 2.5 µm or less;

Alongside the long-term problems that inhaling these particles can cause, like
stroke, heart disease, lung cancer, and so on, the smallest particles are the
most dangerous: they can travel deeply into the respiratory tract, reaching
the lungs and causing short-term health effects such as eye, nose, throat and
lung irritation, coughing and shortness of breath [5].

1.2 Air quality monitoring
Many countries in the world, in particular the U.S. and Europe, have developed
environmental monitoring systems and taken corrective actions to keep air
quality under control. That was made especially through the definition of stan-
dards, legal directives and regulations to which every region and agglomeration
has to stick.

The PM monitoring in the EU is described by the Directive 2008/50/CE [6]
and is performed using high-precision techniques based on β-attenuation mon-
itoring and gravimetric detection. The sensors are positioned on fixed stations
and the spatial coverage is limited due to the high cost of the instrumentation,
which is between 50K - 100K US $ [7].

Considering the monitoring network of the Metropolitan Area of Turin, Italy,
managed by the environmental agency ARPA (Agenzia Regionale Protezione
Ambientale), Figure 1.2 shows how the stations are positioned.

The concentration of particulate matter in the air can be widely variable
and requires a monitoring system that detects changes in the shortest time
possible. It is closely linked to the climatic conditions of a specific area of the
territory and it is the reason why a dense network of stations is needed to
have a better representation of the environmental situation. On windy days
or in case of wildfires, for example, the measures of particulate concentration
vary in less than one hour and could be dangerous to know it only hours later,
or even the day after. In some cases, making people aware of the situation as
soon as possible could be a vital issue.

2

Introduction

Figure 1.2: Network of the ARPA monitoring stations in the Metropolitan
Area of Turin [8]. Red markers are high-traffic locations, blue markers are
low-traffic locations.

To interpret data in a way that satisfies this need, many algorithms were
proposed. One of the most used, until 2013, was the Conroy method. Its
result produces an Air Quality Index (AQI) based on the last 24 hours of
measurements. However, it was shown to be too slow to respond to rapid
changes in air conditions. Based on this, the NowCast algorithm, known also
as the Reff method, was proposed. It relies on the hourly averages from the
prior 12 hours, unlike Conroy’s one which is based on the latest 24. Moreover,
when air quality variation is considerable, the AQI is computed on an average
of the 3 most recent hours [9].

1.3 Goal of the project
This project aims to explore and develop an innovative possibility repre-
sented by a participative environmental monitoring system that implies the
involvement of the citizens in the transmission and collection of environmental
conditions data.

1.3.1 Participative approach
In the context of this thesis, citizens will not only be able to keep constantly
updated on the air quality of the area they are in, but they will indirectly

3

Introduction

participate in the monitoring process. Since the users are an active part of
this system, sharing their hardware and software tools for collecting data,
the monitoring system will be referred to with the term of participative. The
participation consists of receiving the measurements from nearby monitoring
devices and sending them in turn to a remote server for storing and processing
purposes. Measurements are received on citizens’ smartphones that can be
associated to gateways working in a telecommunications network, allowing
the data flow from a source to a destination. Since the concept of this project
is based on creating a wider monitoring network through the use of low-cost
sensors, the participative approach can reduce the overall cost of the system,
increasing also portability and scalability: data trasmission to the server takes
place via the internet connection provided by the users, avoiding of equipping
each sensor with it.

A similar approach was used for the implementation of an European
project, PULSE (Participatory Urban Living for Sustainable Environments)
[10]. Through the use of gamification, a research group, composed of major
European universities, developed a mobile application where users, represented
by avatars, have to gain points to be rewarded. Rewards are assigned as a
recompense for the achievement of an objective through a series of actions
proposed, to promote or to follow healthy and green habits. Data collection
comes from heterogeneous sources and it is mostly in charge of the user through
the use of wearable devices [11].

1.3.2 Status of the project
This project is intended as a continuation of a previous work [12]. In fact,
at the beginning of this thesis work, some architectural and technological
decisions had been already taken.

The IoT device, which is in charge to collect and store environmental data,
is a microcontroller that mounts a set of sensors for measuring PM10 and
PM2.5 concentration, relative humidity, temperature, air pressure and GPS
position. Since the main objective of the research group is the portability and
scalability of the system, PM sensors are much smaller and cheaper than the
ones used by environmental agencies. Moreover, the research group wants
to experiment with a solution in which the system is not connected to the
Internet due to the considerable total cost of the service for all the sensors.
Following this approach brings advantages and disadvantages:

• Main advantages:

– portability of the system. It can be easily moved from one location
to another.

4

Introduction

– given the low-cost of the sensors, it is possible to create a larger
monitoring network on the territory.

– local governments can take corrective actions to targeted areas.

– since no mobile network subscription is needed for the participative
nature of the system, the cost of the implementation is reduced.

• Main disadvantages:

– due to the small dimension of the sensors, the precision of the mea-
surements is affected and break events could happen more frequently.

– since the transmission of the data from the microcontroller to the
remote server takes place through users, there is no guarantee that
measures are continuously transmitted.

The participative system was implemented through the development of a
mobile application whose purpose is to act as a gateway between the monitoring
system and the remote server. The UI of the app was completely implemented
while the transmission of the data, using Bluetooth Low Energy technology,
was not complete and it still had some aspects to improve in performance and
reliability.

The remote web server, developed by the research group, was able to manage
and store the measurements through its APIs. However, the research group
decided to improve and renovate it to adjust it for the experimentation phase.

1.3.3 Implementation

The contributions given by this thesis to the project are the following:

• redesign the data management on the microcontroller, implementing a
system of queues able to make the operations of load and store more
efficiently;

• implements the communication protocol using Bluetooth Low Energy
(BLE) to transmit data from the microcontroller to the mobile application;

• implements a BLE client agent on the mobile application able to auto-
matically connect to nearby microcontrollers;

• implement and redesign some APIs on the web server;

5

Introduction

1.3.4 Thesis organization
The document is structured in 7 chapters, including this introduction. The
second chapter is meant to provide a general overview of the architecture of the
system, describing all the components, how they interact and the technologies
used for this project. Chapter 3 is focused on the IoT device to which the
microcontroller belongs. Chapter 4 is about mobile application development,
the framework used and its interaction with the board and the server. Chapter
5 is meant to provide an evaluation of the system by presenting the relevant
data. The last chapter, the seventh, contains some final considerations and
introduces possible future works on the project.

6

Chapter 2

Architecture of the system

The idea of this project stems from the need to make air quality monitoring
more effective. In Italy, the official monitoring systems are managed by public
entities and are represented by large, fixed and expensive stations. Since they
cannot be placed in the city center for logistic and economic reasons, they
produce data that are not suitable for taking localized countermeasures.

The solution proposed by this project is represented by the use of tiny
low-cost monitoring devices, spread around the city. They are more portable
and can sample environmental conditions data every second, producing a
considerable amount of data. Moreover, since connecting each of these devices
to the Internet would result in a general increase in costs, the system was
designed to follow a participative approach. For these reasons, to properly
handle and collect the data, the system architecture, shown in Figure 2.1, was
adopted. The main components represented in the figure are the IoT device
which is in charge of collecting and transferring the data, citizens’ smartphones
which act as gateways to the server and the server which is composed of
a web application, a data analysis module and a database. Alternative
technologies, which will be described later in the chapter, are still under study
and development, such as the use LoRa technology, the MQTT protocol and
a dashboard to configure the system and visualize the data.

The purpose of the next sections in this chapter is to describe in detail the
technological components of this system and how they interface with each
other.

7

Architecture of the system

Figure 2.1: System architecture schema

2.1 Components
This section aims to describe the technologies that compose the parts of the
system. The system architecture of this project is placed in the context of the
Internet of Things and requires advanced connectivity of devices, systems and
services that interact using a variety of protocols, domains and applications.

Figure 2.2: IoT system architecture [13]

The Internet of Things is often as-
sociated with the concept of dis-
tributed systems and, even in the
context of this project, some sim-
ilarities could be found. In con-
trast with the cloud infrastructure
characterizing the distributed sys-
tems, here the system is based on
a centralized remote server with
its database. However, the inter-
connection of the physical items
geographically far from each other
makes the system decentralized.

The edge nodes of the system are represented by the monitoring devices

8

Architecture of the system

while the users’ smartphones are the mobile agents that act as the gateways
responsible for the data transmission to the server.

2.1.1 IoT device
Each monitoring device is a platform composed of a few boards and a set
of sensors. Originally, the core of the prototype was based on a Raspberry
Pi, running a Linux operating system capable of collecting the measurements
and handling the synchronization tasks. However, due to the high power
consumption which can not be modified through the options of the device and
the complexity of configuration given the presence of an operating system,
the core of the board was replaced by a microcontroller with the following
components:

Figure 2.3: Pycom
Expansion Board 3 [14]

• an expansion board, the Pycom Expansion Board
3 showed in Figure 2.3. It is both USB and
LiPo battery-powered, with options for two differ-
ent charging currents (100mA and 450mA). It is
equipped with a MicroSD card slot for memory
expansion, several LEDs showing the state of the
system and lots of jumpers to enable and disable
features. To make development easier, Pycom
has developed a plugin, called Pymakr, available
for the popular code editors Visual Studio Code
and Atom. It facilitates developers in flushing the
firmware and debugging the code.

• a development board, the Pycom FiPy Develop-
ment Board showed in Figure 2.4. It embeds an
Expressif ESP32 microcontroller unit (MCU) as
CPU which implements different energy modes to
reduce power consumption. The MCU is a dual
processor and the main processor is entirely free
to run the user application. It embeds five com-
munication modules, including WiFi, Bluetooth
(classic and low energy), cellular LTE-M (CAT-
Ml and NBloT), LoRa and Sigfox. The firmware
is programmable in MicroPython, a subset of
Python programming language, which permits
direct control over the MCU and its peripherals.

Figure 2.4: Py-
com FiPy Develop-
ment Board [15]

9

Architecture of the system

The hardware architecture is also equipped with the peripherals needed for
data acquisition. As shown in the graphical representation of the monitoring
device in Figure 2.5, the peripherals are the following:

• 4 PM sensors Honeywell® HPMA115S0-XXX. The quantity of sensors is
aimed at introducing data redundancy, allowing the detection of strange
events on the single device and avoiding the occurrence of failures;

• 1 DHT22 as temperature and relative humidity sensor;

• 1 Bosch BME280 as pressure sensor;

• 1 PA1010D module as GPS sensor;

• 1 DS3231, a Real Time Clock (RTC) module for the operating system to
retrieve the correct time after a sudden power loss;

Figure 2.5: Monitoring device. Data coming from the sensors are first stored
in the MicroSD memory of the board and then transmitted through Bluetooth
Low Energy.

2.1.2 Mobile Application
The participative way of the project is represented by a mobile application,
running on citizens’ smartphones. It has been developed using Flutter, an open-
source cross-platform framework created by Google, which allows building
native interfaces for both of the most popular mobile operating systems,

10

Architecture of the system

Android and iOS. This architectural choice was taken to make the application
available for most of the smartphones in circulation, without having to develop
a native application for each operating system and facilitating the maintenance
of the code.

In the context of this project, having a native app is essential to obtain the
expected results because using a web-based UI framework to build a hybrid
app would lead to performance issues. The reason is the fact that the app of
this project heavily uses the hardware components of the device and Flutter,
using its rendering engine, eliminates the need for a communication bridge
with the operating system.

However, to be able to use some of the built-in platforms on the smartphone,
such as Bluetooth Low Energy and GPS location, some restrictions apply to
the versions of the operating systems:

• Android 4.4 and later;

• iOS 5 and later;

2.1.3 Server
The system architecture is based on a decentralized network of devices that refer
to a central remote web server. The server integrates the Flask framework which
allows running a web application, implemented using the Python programming
language, based on the REST paradigm. Flask was created with the idea of
being easy to use, following the principle of minimalism with its lightweight
and modular design, but the developer can build a complex web application
through the integration of plugins and extensions.

Data are stored in a MySQL database that, for this experimentation phase,
is located on the same server of the web application. However, the research
group has already faced the performance matter of having a fast response to
SQL queries and decided to use a dedicated server, a Dell computer with 20
cores, 384 GB of internal memory, and some TB of hard disk [16]. Moreover,
the decision was taken considering also the need to create different layers
between the business logic and the data storage, given the very fast growth of
the database. In the end, the project also includes a replica of the data which
could be useful for analytics and backup purposes.

Since the project is still in the experimentation phase, the central configu-
ration chosen for the server, known also as star network topology (figure 2.6),
was chosen for its quickness and simplicity in the implementation. However, a
single master server represents a single point of failure on the network and
cannot scale, limiting the computational power and the requests that can be
processed concurrently. Instead, implementing a distributed system, known

11

Architecture of the system

also as mesh network topology (figure 2.7), could result in a fault-tolerant,
highly scalable, faster and secure system. The problem would be related to
the orchestration and management of the whole system, considering also the
synchronization issues that could arise.

Figure 2.6: Centralized network man-
agement [17]

Figure 2.7: Distributed network
management [17]

2.2 Data communication
The main communication channel, on which this work is based, is the one
that links the monitoring device to the mobile application. Considering that
the objective of the project is to build a dense low-cost network of monitoring
devices spread around the territory, each monitoring device could not be
equipped with a mobile Internet connection due to the considerable whole
cost that it would imply. Therefore, this work aims to analyze the use of the
Bluetooth Low Energy technology in data transmission which, as explained in
section 3.2, is becoming the preferred and one of the most compatible options
for the Internet of Things. The main reason is due to the energy efficiency
that supports the connectivity of the IoT devices for longer periods than other
technologies (e.g. WiFi or classic Bluetooth), especially when the device is
battery-powered.

Bluetooth Low Energy has a range of about 10 meters, limiting its use to
confined and small areas. However, it supports multiple topologies options,
depending on what the system architecture requires:

• Point-to-Point, used for establishing one-to-one communications. It is
optimized for data transfer and is well suited for connected device products,
such as fitness trackers, health monitors, PC peripherals and accessories
[18];

• Broadcast, used for establishing one-to-many device communications. It
is optimized for localized information sharing and is ideal for location

12

Architecture of the system

services such as retail point-of-interest information, indoor navigation and
wayfinding, as well as the item and asset tracking [18];

• Mesh Networking, used for establishing many-to-many device communica-
tions. It allows the creation of large-scale device networks and is ideally
suited for control, monitoring, and automation systems where the devices
need to reliably and securely communicate with others [18];

Figure 2.8: Bluetooth Low Energy topologies [19]

2.3 Alternative technologies
Other solutions to implement the data transmission across the system can be
considered.

One of them is represented by WiFi technology. It transmits at frequencies of
2.4 GHz or 5 GHz which are much higher than the frequencies used for cellular
transmission, allowing the signals to carry more data. However, all forms
of wireless communication represent a trade-off between power consumption,
range, and bandwidth. So in exchange for high data rates, WiFi consumes a
lot of power and does not have a lot of range [20]. Moreover, to send data from
a monitoring device to the remote server, two options are available. The first
consists of the presence of a WiFi access point near each monitoring device,
which would lead to a considerable increase in costs. Furthermore, even if
the Internet connection were provided by local authorities, the organizational
complexity would increase and the flexibility in the positioning of the stations
would be reduced as in some places there is no network availability. With
the second option, each IoT device becomes a WiFi access point, to which
gateways will have to connect to receive data. However, previous work on this

13

Architecture of the system

project has deeply analyzed the solution discarding it for the long time needed
to allocate the socket and build the connection between the devices [12].

Another solution is represented by putting in direct communication each
monitoring device with the remote server using LoRa, a low-frequency mod-
ulation technology. It is commonly embedded in IoT sensors and devices
to achieve long-range communication with low battery consumption. The
research group has detected that the communication range can reach 600 m
and each packet, for which a maximum payload is 51 bytes, could be sent
at an interval of 5 minutes from each other [21]. With the LoRa technology,
the peripheral devices have to communicate with a LoRa gateway which is
in charge of receiving the signals, eventually converting and sending them
to the cloud through the use of other technologies, such as WiFi or optical
fiber. The infrastructure of an IoT system based on LoRa could exploit the
MQTT protocol to send messages from the LoRa gateways to the network.
It is a lightweight open IoT messaging transport protocol that is based on a
publish/subscribe pattern of communication. Meaning that, instead of com-
municating with a server, client devices and applications publish and subscribe
to topics handled by a centralized MQTT broker. MQTT can simplify the
transmission of LoRa packets since they have to traverse multiple technology
stacks and infrastructures [22] but it is too heavy for LoRa technology and can
be used by the peripheral devices only over WiFi or from the LoRa gateway
by connecting to an MQTT broker. In the context of this project, given the
limited bandwidth of the LoRa technology, it could be exploited once in a
while to transmit the status of the board while it is not applicable for the
transmission of the measurements.

Figure 2.9: MQTT Integration with LoRaWan Gateway [22]

14

Chapter 3

IoT Device

This project is placed in the context of smart cities and smart environments
that refer to a growing technological field, the Internet of Things. It is intended
as the process of connecting to the Internet everyday physical objects, from
the most familiar objects used in the home, such as light bulbs, to resources
in the health sector, including medical and wearable devices.

IoT stands for any system of physical devices that receive and transfer
data mostly over wireless networks, with limited manual intervention. IoT
devices are inserted into the real world to monitor and interact with the
environment. They can be divided into two main categories of technologies:
switches, responsible for sending commands to other objects, and sensors,
which acquire data to send them elsewhere [23].

One of the objectives of the IoT is certainly aimed at improving the quality
of life of the people and of the environment where they live, through the
analysis of the large amount of data collected by these devices.

In the context of this project, air quality monitoring is achieved through
the use of an IoT device composed of low-cost PM sensors mounted on a
microcontroller that transmits data through Bluetooth Low Energy technology.
The core of the device is represented by a Pycom expansion board and a
Pycom development board which is programmable with the MicroPython
programming language, an efficient implementation of a subset of Python 3.4.

This chapter aims to describe the main functionalities of the device, focusing
on those implemented during this work, and the principles of the Bluetooth Low
Energy technology used to implement the data exchange protocol, describing
also some implementation issues and some future improvements.

15

IoT Device

3.1 Functionalities
The device is in charge of monitoring the surrounding environment. Its primary
functions are therefore to collect the data produced by the detection of the
sensors with an adequate frequency and to store them in memory. Storage
management has to take into account that the memory is limited and an
efficient organization of the data should be done. The solution proposed in this
work tries to reorganize the data into binary files to reduce memory allocation.
Moreover, to avoid wasting CPU clock cycles on I/O operations, data are
processed through a system of buffers and queues located in the RAM. Data
transmission through Bluetooth Low Energy is another important functionality
of the device, trying to make it as efficient as possible but also taking into
account a certain level of reliability.

Pycom development board allows to implement the functionalities through
many basic libraries inherited from Python, such as the math and the crypto
libraries, but also modules that allow us to communicate with the hardware
components of the board, such as the Bluetooth radio or the switches of the
LEDs. The deployment of the firmware on the microcontroller is quite simple
since Pycom has developed a plugin interface, called Pymakr which is available
for Visual Studio Code and Atom IDEs, and allows the developer to upload,
download and debug the code on the board.

3.1.1 Data sampling

Figure 3.1: Picture of the IoT
device composition

The data acquisition is made through the
sensors mounted on the device (figure 3.1).
In addition to PM concentration measure-
ments, other environmental data are needed
to detect air quality. In fact, the device is
equipped with the following sensing periph-
erals: 4 PM sensors, each of them able to
measure both PM10 and PM2.5 concentration,
attached to the Fipy board UART, 1 sensor
connected via one-wire protocol to measure
the temperature and the relative humidity,
1 pressure sensor and 1 GPS sensor, both
connected via the I2C protocol.

16

IoT Device

In the boot phase of the device, each sensor connection is established via
software through the configuration of the pins described by the configuration
file located on the board. Even data sampling is initialized in this phase
and it is made through the definition of periodic timers, one for each sensor.
Therefore, each sensor has its sampling frequency and when a timer expires, a
routine will be activated to retrieve the measurement value produced by the
sensor (Figure 3.2). The routine is also in charge of writing the measure in a
buffer stored in RAM that, as described later, will be flushed into a file of the
memory.

Figure 3.2: Data sampling with timers. When a timer expires, a routine
retrieves the measurement value produced by the sensor.

3.1.2 Data storing
The device is equipped with a RAM of 4MB and built-in flash memory of 8MB
on the FiPy board which is inadequate for storing the sensing data and is
used to store the firmware code. However, the expansion board has a MicroSD
card slot that is accessed via SPI protocol. In the context of this project, a
MicroSD of 32GB has been chosen to store the data and the file system of the
device.

One of the objectives of this work was to improve storage management in
order to reduce the allocated memory and reduce the size of the files containing
the measurements produced by the device.

Until now, data were archived in the file system using text files formatted

17

IoT Device

according to CSV format. Each file contained the measurements of an entire
day of detection, bringing its size to around 18MB. However, this file size
was incompatible with the operations that the microcontroller can do, both
regarding the I/O operations and the transmission over a wireless network.
Since Pycom does not provide a module to compress files, what has been
decided to do is to change data archiving into binary files. Furthermore, the
temporal window of the measurements contained in each file has been reduced
from one day to one minute and the main reason, as will be explained in
paragraph 3.3, is due to the high transmission time of one-day files, which is
incompatible with the time in which a user will be near to a station. These
approaches reduced the files dimension by about 65%, improving the I/O
operations with the memory, saving computational time and reducing also the
data transfer time through BLE.

Each stored measure contains 3 main pieces of information: the acquisition
timestamp of the measure, the sensor identifier which collected the data and
the value of the measure. Therefore, using the CSV format, the file was
structured as in the following example:

1 ...
2

3 2022 -09 -19 12:30:05 ,49 ,12
4 2022 -09 -19 12:30:06 ,129 ,35.6
5 2022 -09 -19 12:30:07 ,15 ,25.8564
6 2022 -09 -19 12:30:08 ,46 ,9956.45
7

8 ...

The conversion of the data into the relative binary codification has been done
through the struct library provided by MicroPython. Each piece of information
has been converted in bytes following the big-endian representation, so from
the most significant byte to the least one. According to their value size, the
applied conversion has been done as follows:

• the timestamp has been converted from the string representation of the
ISO 8601 standard to the 10-digit representation of the UNIX format.
Then, it has been converted to the binary representation of a signed
integer, which size is 4 bytes (e.g. 2022-09-19 12:30:05 → 1663583405);

• the sensor identifier is an integer and its size could be variable. In order
to be as flexible as possible, the binary representation has been chosen to
be on 4 bytes integer;

• the value of the measure could be an integer, as in the case of PM
measurement, or a float, as in all other cases. Since having multiple sizes

18

IoT Device

would result in adding information to correctly interpret the data, all the
measurement values will be treated as a float represented on 4 bytes;

The resulting conversion of the data in their binary representation is shown in
the example in Figure 3.3, where each byte is in its hexadecimal representation
in order to be more readable.

Figure 3.3: Example of the binary representation of the data

3.1.3 Data processing
Another aspect that this work wants to address is the security associated with
the integrity of the data transmitted as they may have been altered during
the transmission by unknown actors. Therefore, giving the possibility to the
recipient of verifying the origin of the data is important to guarantee secure
communication.

A solution proposed by this work is the introduction of the digital signature
for the measurement files. A digital signature assures that the person generat-
ing the message is who they claim to be and that the content of the message
is not altered by anyone during the transmission. It makes use of asymmetric
cryptography given by a private and public key. They are used to encrypt
and decrypt messages on the basis that every public key matches only one
private key. In order to create a digital signature, the sender has to digitally
sign the message that wants to send, encoding the message with a hashing
algorithm, such as SHA256 or MD5, and then encrypt it with his private key
using the RSA algorithm. While the private key is only known by the sender,
the public key is accessed by everyone and it is the way through which the
recipient validates the signature. The signature validation is done with the
reverse approach: the recipient computes the hash of the message, decrypts
the digital signature using the sender’s public key and finally compares the
equality of the 2 hashes.

On the monitoring device, the digital signature has been implemented
through the ucypto library, where the function generate_rsa_signature accepts
the string message to encode it with the SHA256 algorithm and the private
key in order to encrypt it. Since the message, in this case, is a bytearray,
containing the measurements, it had to be turned into a string through a
Base64 encoding.

19

IoT Device

Figure 3.4: Digital signature process [24]

However, creating a digital signature is an expensive operation and for
every file, it takes about 2 seconds of computations to be performed, during
which time the data coming from the sensors is lost. This operation, together
with the I/O operations, could compromise data transmission. Since the
transmission phase is the one with the highest priority because it could be
done only when a smartphone is nearby, what is wanted to avoid is wasting
clock cycles in doing expensive operations. In order to meet this need, data
are processed in a dedicated module placed between the business logic and
the file system. It handles a buffer queue system that aims to simplify and
solve a few synchronization and performance issues, giving a priority to each
operation (shown in Figure 3.5). Since continuously accessing the SD memory
slows down the system, the module contains a series of queues where a copy of
some measurements and signatures files located on the file system are stored
in buffers in RAM.

It is composed of the following elements:

• a queue of the latest created files, both measurement and signature files,
allowing the files to be immediately ready to be sent when a smartphone
connects to the device, instead of searching and reading them from the
memory;

20

IoT Device

• a queue of the latest created measurement files which are ready to be
signed. Since the operation is computationally expensive, it is handled
through this priority queue that is processed one minute at a time only if
the device is not already involved in the transmission process;

• a queue of the files already transmitted but waiting for the confirmation
of receipt, as explained in paragraph 3.3;

• a single buffer containing the data that refer to the temporal window
of the current minute. When the minute will change, the data will be
flushed in a file in the file system and it is moved to the top of the queue
of the files to be signed. Having this buffer is useful in order to detach
the logic of the sensing module from the file system management.

Figure 3.5: Buffer queue system

3.1.4 Data transmission
In the context of this project, the monitoring device is also in charge of trans-
ferring the data that have been stored in its memory to nearby smartphones.

21

IoT Device

The transmission is made through the Bluetooth Low Energy technology that
is based, as explained in section 3.2, on the GATT and ATT protocol.

The IoT device acts in the role of the GATT Server, accepting requests from
the GATT Clients, represented by the users’ smartphones. The connection is
based on a Point-to-Point topology and only one connection at a time can be
established.

The BLE module, which has been implemented for the data transmission
on the board, is contained in the lib/ble.py file and it is initialized during the
boot phase of the device. The initialization includes 4 main steps:

• reading the configurations from the configuration file. They include the
identifiers that the board has to use in order to be recognized by the
gateways. Since the gateways will retrieve the identifiers of the BLE
service from the server, having the configuration file aligned with the
information on the database is essential to establish a connection between
the devices;

• instantiating the GATT service that will be advertised by the device in
order to allow the connection of the smartphones. During this phase, even
the MTU, the Maximum Transmission Unit represented by the length of
the ATT packets, will be defined and fixed to 185 bytes;

• instantiating the 2 communication channels, called GATT Characteristics,
on which the transmission will take place. One of them will be used for
the measurement and signature files transmission and it is configured in
order to notify the client of value changes while the other, configured in
order to be written by the client, will act as a control channel;

• starting the advertising of the service in order to be discoverable by nearby
smartphones and to allow new connections.

The following code snipped shows the BLE initialization:

1 class BLE:
2

3 ...
4

5 def __init__(self, bufferHandler):
6 self.bleSettings = config.readJSON('bleConfig.json')
7 self.mtu = 185
8 self.bluetooth = Bluetooth(mtu=self.mtu, secure_connections=False)
9 self.service = self.bluetooth.service(

10 uuid=uuid2bytes(self.bleSettings["ServiceUUID"]),
11 isprimary=True,

22

IoT Device

12 nbr_chars=2,
13 start=True
14)
15 self.create_characteristics()
16 ...
17

18 def create_characteristics(self):
19 self.measure_characteristic = self.service.characteristic(
20 uuid=uuid2bytes(self.bleSettings["MeasureCharacteristicUUID"]),
21 properties=Bluetooth.PROP_READ | Bluetooth.PROP_NOTIFY
22)
23 self.ack_characteristic = self.service.characteristic(
24 uuid=uuid2bytes(self.bleSettings["AckCharacteristicUUID"]),
25 properties=Bluetooth.PROP_WRITE | Bluetooth.PROP_READ
26)
27 ...
28

29 def start_advertisement(self):
30 self.bluetooth.set_advertisement(
31 name=self.bleSettings["Name"],
32 service_uuid=uuid2bytes(self.bleSettings["ServiceUUID"])
33)
34 self.bluetooth.advertise(True)

The transmission of the files has to take into account that the channel size
is regulated by the MTU and, as specified in section 4.2.1, its value has been
set to 185 bytes for the limitations imposed by the mobile operating systems.
Since a file cannot be sent in a single transmission, it must be divided into
chunks. The size for the single chunk has been set to 182 bytes because 3
bytes of the ATT packet consists of the ATT header and the ATT handle,
which are respectively 1 and 2 bytes long.

3.2 Bluetooth Low Energy
It is estimated that in 2026 the devices equipped with Bluetooth will reach the
quota of 7 billion [25]. One of the reasons is also due to the introduction of
Bluetooth Low Energy (or BLE), also called Smart Bluetooth, in the Bluetooth
4.0 specification, as an alternative to Classic Bluetooth. Like its predecessor,
BLE technology uses wireless technology based on a radio frequency, in the
free band of 2.4 GHz in order to connect nearby devices.

The main difference with Classic Bluetooth, as can be easily deduced from
the name, is the reduced energy consumption. In fact, for BLE, the bit rate
is 1 Mbit/s (with an option of 2 Mbit/s in Bluetooth 5) and the maximum
transmission power is 10 mW (100 mW in Bluetooth 5). This means that the
power used is less than half of what it used to be.

23

IoT Device

Bluetooth Low Energy was first unveiled in 2004, following a Nokia research
project, and it was released for the first time with Bluetooth 4.0. The first
smartphone equipped with Bluetooth 4.0 was the iPhone 4S, in October 2011,
which was followed by many others. Today, all new smartphones are equipped
with this Bluetooth version or higher.

BLE is one of the main technologies that make the Internet of Things
possible. For example, many internet-connected devices, used for personal
health care, fitness, sports, entertainment and tracking, now use Bluetooth
Low Energy to communicate with smartphones and tablets, including iPhones,
Android phones, Windows and BlackBerry.

BLE is attractive to consumer electronics and internet-connected machine
manufacturers due to its low cost, long battery life, and ease of implemen-
tation. From thermometers and heart rate monitors, from smartwatches to
proximity sensors, Bluetooth Low Energy facilitates short-range wireless data
transmission between devices, powered by a simple watch battery.

It introduces two new protocols to the standard:

• GATT (Generic Attribute Profile) is the layer at which the application
has to interface and defines the data transfer protocol between two devices.
As shown in Figure 3.6, it is based on a set of hierarchical entities:

– Attribute, which identifies the application data;
– Characteristic, composed by a group of Attributes. It adds addi-

tional properties such as permissions and rules of interaction for a
unique set of data. Apart from the Characteristic value, there may be
other attributes within each Characteristic, called Descriptors. For
example, in order to identify the temperature unit of a thermome-
ter, a Descriptor containing the information could be added to the
Characteristic;

– Service, composed by a group of Characteristics. It adds information
for a given feature or functionality.

For Example, Battery Service includes a Battery Level Characteristic that
describes through an Attribute the battery level of a given device.

• ATT (Attribute Protocol) defines the protocol of transferring the attribute
data and includes GATT-related functionality such as Write Request,
Write Response, Notification and Read Response. Therefore, GATT
defines and creates appropriate attributes for a given application while
ATT creates outgoing packets and parses incoming ones [27];

BLE devices are divided into two categories: central and peripheral. A
central device is commonly powered by mains or by a large battery, so the

24

IoT Device

Figure 3.6: GATT hierarchy schema [26]

energy consumption caused by the Bluetooth radio is not a problem. Examples
of this category of devices are represented by smartphones or computers. A
peripheral device, instead, has energy constraints because its batteries are
expected to last for years and Bluetooth should be used only when strictly
necessary. Typically, the GATT server is represented by a peripheral device
while the GATT client by a central one.

The possible ways of communication provided by the Bluetooth Low Energy
technologies can be summarized by the following commands:

• write, when client or server sends some bytes to the other through a
characteristic or descriptor in order to be processed and get a response;

• read, when client or server reads the value of a characteristic or descriptor
and interprets it based on a protocol that has been established beforehand;

• notify/indicate, when a client subscribes to a characteristic for notifications
or indications, and it is notified by the server when the value of the
characteristic changes;

Notifications and Indications are the ways that allow the server to send a
message to the client, avoiding the client from continuously requesting new
data from the server. Indeed, if the Characteristic is correctly configured to
accept subscriptions, the client can subscribe in order to receive updates on the
data. The difference between the 2 sending mechanisms could be associated
with the same reason that distinguishes the TCP from the UDP protocol, even
if their technological stacks are completely different. While Indications require
that the client sends an acknowledgment message to the server every time a

25

IoT Device

message is received, Notifications do not, increasing the transmission rate and
decreasing the reliability.

3.3 Data exchange protocol
In order to make data transmission reliable and efficient, a new data exchange
protocol has been defined. It establishes the communication rules that have to
be applied in the BLE data transmission between the IoT device, which acts
as a GATT server, and the citizens’ smartphones, which run a GATT client
represented by the mobile application.

On the server side, the protocol is based on the instantiation of a GATT
Service with 2 GATT Characteristics, which will play the role of transmission
channels:

• measure_characteristic, responsible for sending each chunk of a file along
with its signature. It is configured in Notification mode such that a
connected client can subscribe to value changes;

• ack_characteristic, used as a control channel. The client will notify
the reception of an entire file, communicating also the outcome of the
signature verification in order to assure that the file has been received
without errors.

As shown in Figure 3.7, the communication between the devices follows
these steps:

1. the mobile application detects the presence of a nearby station, connecting
to the BLE service active on the IoT device;

2. through the acknowledgment channel, the app sends a command indicating
to the server that transmission can begin;

3. one file at a time with its signature is taken from the buffer queue of the
server and broken into chucks of maximum size 182 bytes;

4. as shown in step 7 of Figure 3.5, when the single file has been sent, it
enters another queue waiting for confirmation of receipt;

5. the app verifies the signature of the file and sends back to the server the
outcome through the acknowledgment characteristic;

6. if the outcome is positive, the file is removed from the queue. If not or
the confirmation does not come back to the server, the file is reinserted
in the transmission queue;

26

IoT Device

7. if communication errors happen, the connection is reset;

Figure 3.7: Data exchange protocol

The entire process for a single file containing measures of a temporal window
of one minute takes place in less than 500 ms, improving the previous protocol
where the same amount of data in CSV format was transmitted in 4-5 seconds.
Reducing the file size, and therefore the transmission time increases the
probability that the file arrives at the destination successfully because having
fewer data to send, in terms of quantity of bytes, means a minor probability of
transmission errors. Moreover, the decision of reducing the temporal window
of the files from one day to one minute of measurements also derives from
several factors:

• in case of transmission errors, only one minute of data would be lost and
not an hour or even a day;

• since the concentration of particulate matter in the air can be widely
variable, receiving data from one hour or one day ago could be useless for
taking corrective actions;

• users could be close to the station only for a limited amount of time
and, since BLE can work well only in a range of 10 meters, having an

27

IoT Device

efficient transmission is fundamental. Moreover, large files may not finish
the transmission before the person leaves and be discarded by spending
resources unnecessarily;

3.4 Implementation issues
The decision of migrating from a Raspberry PI to a microcontroller based on
Pycom technologies as the core of the board has for sure brought benefits to the
whole system, increasing the performance and reducing the power consumption
that it is one of the most important objectives for an IoT system. However, one
of the disadvantages introduced is related to the use of proprietary software
represented by the modules that Pycom offers. During the development of this
work, some issues were encountered but, since the implementation of these
libraries must be taken as a black box, a real solution was not always found.

One of the problems was encountered during the development of the buffer
queue system, the module implemented for interfacing with the file system.
Initially, the file system was organized in a way such that all the measurement
files were in a single folder. However, after a few days of data collection,
I/O operations time started to increase drastically, from a few milliseconds
to seconds. The reason for this deterioration was due to the number of files
stored in the folder which had reached the order of thousands, making read
and write operations slowly. The solution implemented was a renovation of
the organization of the file system, trying to limit the number of files in a
folder to a fixed number. As shown in Figure 3.8, a tree structure has been
adopted where subfolders, named with the dates of the days in which the
measurements are taken, are inserted in the root folder. Then, in each date
folder, a maximum of 24 subfolders are created, one for each hour of the day,
which can contain a maximum of 60 files inside, one for each minute of the
hour. This approach limited the read-and-write operation time to less than
150 ms per file but, on the other hand, has made the logic and the file system
more complicated.

Other issues were related to the signature generation of the measurement
files. Pycom board has one physical processor available for user application
and, since the signature process requires 2 seconds of computation, in that
time interval acquiring data from the sensors is not possible, thus losing 2
seconds of data for each minute. Moreover, the execution of the function
generate_rsa_signature requires a considerable amount of RAM that causes
sometimes a MemoryError exception. Since there are no indications on the
Pycom documentation about the RAM needed for the execution and how
the function has been implemented, a workaround has been applied in order
to increase the probability of not having error occurrences. The solution

28

IoT Device

Figure 3.8: File system structure

proposed is represented by the use of the garbage collector in order to free
unused portions of the memory that will be used by the function for its
computations.

1 measuresBase64 = b2a_base64(buf.content)
2 try:
3 buf.signature = crypto.generate_rsa_signature(
4 measuresBase64,
5 self.privateKey
6)
7 except MemoryError as e:
8 gc.collect()
9 buf.signature = crypto.generate_rsa_signature(

10 measuresBase64,
11 self.privateKey
12)

Finally, at the beginning of this work, one of the main issues was related to
data transmission through BLE because many files were corrupted during the
transmission and they were not understandable for the client. This problem
was partially resolved by the introduction of the signature because it facilitated
the clients for the verification of the integrity of a measurement file, allowing
them to accept or discard it. However, the outcome of the verification had to

29

IoT Device

go back to the server in order to retry the transmission later or consider it
successfully sent. This last step has been implemented through the use of the
acknowledgment characteristic, where the client inform the server about the
transmission and verification outcome.

3.5 Future improvements
This section aims to explore three of the main improvements that could be
applied to the system.

One of them is represented by the file storage on the IoT device. When a
file is sent to the gateway and the response of the gateway is positive about
the reception and the outcome of the signature verification, the file is not
removed by the system because there is no assurance that the file has reached
the remote server. Since the memory, represented by the MicroSD peripheral,
has a limited storage amount, a way to remove these files has to be found.

One solution can be represented by using a further Characteristic, instanti-
ated on the GATT server, in order to allow the gateway to notify the board
on which file has been correctly sent to the remote server. Otherwise, by
making use of the LoRa antenna on the device and by building a more complex
infrastructure by adding LoRa gateways, it is possible to create direct commu-
nication between the device and the remote server in low bandwidth. In this
way, the device could query the server on the files that have been correctly
received in order to remove them from the device storage.

A further improvement could be applied to the management of the private
keys used for the signature process. Since a single pair of private and public
keys has been generated and stored on the device, a security issue could occur:
a device could be violated and the private key could be stolen, making all the
data sent by all the other monitoring devices not verifiable.

In order to solve this problem, one solution is represented by having a
different pair of keys for each monitoring device. In this way, even if one
of them is violated, the others will not be affected. However, public keys
should be accordingly diffused in a way such that each gateway can retrieve
them. Therefore, public key could be added as an attribute of the device
configurations on server side.

Finally, it is necessary to implement a security system that guarantees
smartphones connected via BLE to be in communication with an official
station and not with a fictitious one created by an attacker.

30

Chapter 4

Mobile Application

One of the architectural features that the research group wants to experiment
with is the absence of an Internet mobile connection on the monitoring devices,
thus avoiding direct communication between the devices and the remote server.
A participative approach has been adopted in order to ensure that the data
produced by the sensors reach the server, involving the citizens’ smartphones
in the transmission process acting as a gateway.

The business logic of the participative approach was implemented through
a mobile application. It was developed using the cross-platform framework
Flutter which allows the possibility of building a unique version of the code
in order to deploy it on multiple platforms (e.g. Android and iOS operating
systems).

The main functionalities offered by the app were implemented in previous
work on this project [12] and they are included, as showed in Figure 4.1, in
the following user interfaces of the app:

• authentication, offered by multiple login procedures: traditional one with
email and password, Facebook login and Google login;

• home, which is dedicated to data visualization. It exploits visual compo-
nents such as charts, graphs and maps according to the position of the
user. Here, the concentration of PM10 and PM2.5 are used to compute
the air quality index (AQI) according to the NowCast algorithm, giving
the perception of the air quality to the user;

• map, which shows the current position of the user and where the moni-
toring devices are located around the city. In this section, the user can
search for a destination to reach and the map will show, according to the
AQI, the best path to follow;

• settings, where the user can select their preferences about the language
and the measurement unit;

31

Mobile Application

• profile, where a section is dedicated to the favorite stations of the user
and another one to the account information, with the possibility to log
out from the app.

Figure 4.1: App screenshots

In the context of this work, the participative system was revised in order to
adapt it to the new communication protocol between the mobile application
and the monitoring device, implementing a background process that can
connect and receive data without requiring any action from the user.

4.1 Flutter framework
The continuous evolution of mobile devices has pushed developers to under-
stand in depth the mechanisms and the guidelines of the main operating
systems, iOS and Android, in order to reach as many users as possible through
the various markets. Although the evolution of these OS and the introduction
of new languages and approaches have simplified and speeded up the develop-
ment of native applications, it is still difficult for a single developer to able to
create and maintain a native app for the different platforms over time.

32

Mobile Application

The main reason lies in the absence of a shared codebase between the apps
for the different mobile platforms.

In order to solve this problem, several frameworks have been proposed
for creating cross-platform or hybrid apps in HTML5 and Javascript, which
exploit the typical approaches of native apps and web apps. Some examples
are Apache Cordova and Ionic which have allowed many developers to greatly
reduce the development time of their apps, simplifying also the maintenance
of a single codebase over time.

In 2018, a new framework developed by Google entered the landscape of
cross-platform app development which allowed its developers to create their
native apps for Android, iOS and Windows with native interfaces and shared
code based on the Dart programming language. Flutter is a free open-source
project for building high-quality native apps on iOS and Android quickly and
with native interface support. Its goal is to create new apps through:

• a rapid development phase with features such as hot reload, which does
not require you to recompile the code;

• expressive and flexible user interfaces with a set of modular widgets,
libraries for animations and a layered and extensible architecture;

• performances very close to native ones;

• a unique codebase for Android and iOS applications;

Flutter’s “everything is a widget” strategy applies object-oriented program-
ming to everything, including the user interface: an app interface is thus
composed of various widgets, which can be nested within each other. Each
button and displayed text is a widget containing several features that can
be changed. Widgets can influence each other and react to external state
changes via integrated functions. For all the main elements of the user inter-
face, the respective widgets are supplied in such a way that meets the design
requirements of Android and iOS and the most common web applications.
If necessary, the widgets can be expanded with additional functions or it is
possible to create custom widgets that can be perfectly combined with existing
ones. Compared to tools in other SDKs, widgets offer much more flexibility
but have the disadvantage that they are all located in the program’s source
code, which is therefore heavily nested and intricate.

Compared to other frameworks, Flutter is built in a completely new way,
allowing you to create simple, high-performance applications. To make this
possible, Flutter runs on each platform natively using AOT (Ahead-Of-Time)
compilation, while during the development phase, JIT (Just-In-Time) compila-
tion is used to make the testing process faster. Each widget is interpreted and

33

Mobile Application

represented on a Canvas managed by the Skia graphic engine. The platform
shows the widget thus constructed to the end user and intercepts and forwards
the events resulting from the interaction to the app.

Figure 4.2: High-level representation of the communication between a Flutter
app and the mobile platform [28]

The Flutter architecture, shown in figure 4.3, consists of three main macro
blocks composed in turn of APIs and libraries that characterize each layer:

1. Embedder - Platform Specific.

It is the lowest level of Flutter’s architecture and it is the heart of the
Flutter Engine. In this layer, the specific embedders for the platforms are
defined, which have the purpose of tying together the rendering to the
toolkit of the native screen, the management of input events, etc. In order
to do that, the embedders interact with the Engine layer via low-level C
/ C++ APIs. However, these APIs are only exposed internally. If the
developer needs to implement a particular behavior, he can use high-level
integration APIs for the Android and iOS platforms.

This layer also consists of a Shell that hosts the Dart VM. In particular,
the Shell is specific to each platform and offers access to the native
API of the platform in question. Shells implement specific code, such
as communication with Input Method Editors (IMEs) and app lifecycle
events based on the operating system of interest;

2. Engine.

This middle layer is the C / C++ side of Flutter and it is defined in the
repository engine. In particular, the Engine includes multiple low-level
components, essential for the functioning of the framework and its basic
operations. Among these components, we find the Skia graphics engine
and the shells that can be accessed through the APIs exposed by the
library dart:ui. Specifically, it is possible to create an app using the classes
defined in this library such as Canvas, PaintandTextBox;

34

Mobile Application

3. Framework.
It is the most important layer for developers and offers all the libraries and
packages necessary for developing an app, such as the layers relating to
animations, the definition of gestures, or the creation of widgets. Generally,
during the development of an app it will be much more common to work
with the layers of this component of the architecture, composing widgets
and animations starting from those already provided by Flutter itself or
creating their ad-hoc ones.

Figure 4.3: Flutter architecture [29]

4.1.1 Cross-platform frameworks comparison
Mobile application development can follow multiple approaches depending on
the technologies used.

The first approach consists of the use of the native platforms of the device,
such as iOS and Android SDKs, which represent the most stable choice

35

Mobile Application

for mobile application development, also for the large community and the
available tutorials. As shown in the diagram in Figure 4.4, the app is in direct
communication with the system, choosing this framework as the best one in
terms of functionalities and performance. However, a drawback is represented
by the fact that there is no unique codebase to develop and maintain and
the programming languages are platform-specific: Kotlin or Java for Android,
Obj-C or Swift for iOS. Therefore, in order to build an app with the same
functionalities on all the platforms, all the platform-specific languages must be
used, complicating even the process of modifications of the code that should
be duplicated across the platforms. This kind of framework is not a good
choice for a small team or for projects that need speed in the development
process.

Figure 4.4: Native framework architecture [30]

A second approach is represented by the use of a cross-platform framework,
which enables the possibility of building platform-specific applications from a
single codebase. However, every framework has some drawbacks.

In the early time of mobile computing, several WebView-based frameworks
have been proposed such as Cordova, Ionic and PhoneGap. The use of
these frameworks has allowed developers to build applications composed of
a WebView rendering HTML, which transformed native mobile application
development into website development. Despite the considerable simplification
introduced, unfortunately, these frameworks do not allow for fully exploiting
the typical characteristics of the various mobile platforms, and suffer from
greater slowness in execution, and access to local resources and peripherals
(e.g. cameras, sensors). The reason is the fact that these kinds of frameworks
rely on external components called plugins, which act as a bridge between the

36

Mobile Application

operating system and the application itself. The bridge can switch between
JavaScript running on the native web view to the native system. The following
diagram in Figure 4.5 shows how a WebView-based framework works:

Figure 4.5: WebView-based framework architecture [30]

Since Flutter is compiled AOT (Ahead Of Time) instead of JIT (Just
In Time) during the development phase, its performances are much better
compared to the other solutions. As shown in Figure 4.6, it eliminates the
bridge element between the application and the operating system and does
not rely on the OEM platform, using Widgets Rendering instead of working
with the canvas and events. It uses Platform Channels in order to call the
services (e.g. Location, Bluetooth, ...), simplifying the use of platform APIs
with an asynchronous messaging system. The framework allows to build,
integrate and publish plugins, even developed by other developers, in order to
use platform-specific services and functionalities.

Figure 4.6: Cross-platform framework architecture: Flutter [30]

37

Mobile Application

4.2 Participative system implementation
During the previous work, a prototype of the participative system on the
mobile application has been already developed. However, since the data
management and transmission have been changed on the monitoring device
adopting a new communication protocol, the prototype has been adapted
accordingly. Moreover, the existing prototype suffers from problems that could
compromise the experimentation. One of the main issues was related to the
limitations imposed by the operating systems in the use of Bluetooth Low
Energy, forcing its use only when the app is up and running in order to improve
energy consumption. This limitation could damage the participative approach
of the system: users should pay attention to being near a station and open
the app, increasing the effort and attention required from the user.

For this reason, in the context of this thesis work, there is the aim of
making the participative way of the system as transparent as possible for
the user in order to discourage the app uninstallation, implementing a back-
ground process that can run even if the app is closed. The background
process on Flutter has been implemented with the integration of the plugin
flutter_background_service which allows starting a process detached from the
UI thread. It is initialized at the first run of the app and will be notified about
the state of the app lifecycle in order to react accordingly. Since the operating
systems have restrictive policies on the use of resources by apps that are not
running up, they may kill background processes at every moment. In order
to keep processes up and running, one possibility is represented by disabling
the app from the battery optimization process of the operating system. As
shown in the code snippet below and Figure 4.7, through the integration of the
optimize_battery plugin, the battery optimization settings are opened before
the process starts in order to give to the user the possibility of excluding the
app from the optimization process.

1 static Future<void> _checkIgnoreBatteryOptimization() async {
2 bool ignoreBatteryOptimization = await
3 OptimizeBattery.isIgnoringBatteryOptimizations();
4 if(!ignoreBatteryOptimization){
5 await OptimizeBattery.openBatteryOptimizationSettings();
6 }
7 }

However, even if this action solves the problem on Android, on iOS there
is no way of having long-running services because, when the app is run-
ning in the background, the OS will suspend it soon. Currently, the flut-
ter_background_service provides the onBackground method, which allows the

38

Mobile Application

process to be executed periodically by Background Fetch capability provided
by iOS but its execution frequency cannot be faster than 15 minutes and the
process will be alive only for about 15-30 seconds.

Figure 4.7: Battery optimization settings on Android

The main goal of the background process is to exploit the Bluetooth Low
Energy in order to scan for nearby monitoring devices, establish a connection,
receive and process the data applying the communication protocol and send
them to the remote server. The Bluetooth Low Energy functionality is accessed
through the integration of a further plugin, flutter_blue_plus, which replaced
the previous one, flutter_blue because it can also be used by a process detached
from the UI thread. The BLE scan routine is activated through a periodic
timer that triggers the _listenBLEScanResults function every 5 seconds. The
scan routine is not interrupted when a nearby device is already connected
because, in case a closer device is found, the connection should be migrated
to the new one. The proximity of a device is provided by the plugin through
the RSSI parameter which is used in telecommunications in order to measure
the power of a signal. When a connection is established, communication
between the devices starts. The app starts to collect the file chunks sent by the
monitoring device through the measureCharacteristic along with the metadata

39

Mobile Application

needed to recognize the beginning and the end of each file. Then, the integrity
and authentication of the file are verified through the signature verification
process in order to send back to the monitoring device the outcome of the
verification through the ackCharacteristic. At the end of the process, the pair,
composed of the data file and signature one, is stored in the local storage of
the device. The following code snippet shows the main steps just described:

1 Future<bool> _handleCharacteristicValue({
2 @required BluetoothDevice device,
3 @required BluetoothCharacteristic ackCharacteristic,
4 FileInfo fileInfo,
5 List<int> values
6 }) async {
7 if (fileInfo.needMetadata) {
8 ... // set metadata information
9 } else {

10 fileInfo.appendData(values);
11

12 if(fileInfo.completed){
13 logger.wtf("END RECEIVING DATA AT ${DateTime.now()}");
14 Map signature = await fileInfo.verifySignature();
15 if(signature['ok']) {
16 String pathMeasures = await fileInfo.measures.store();
17 String pathSignature = await fileInfo.signature.store();
18 if(pathMeasures != null && pathSignature != null){
19 await ackCharacteristic.write(
20 signature['name'].codeUnits + ',OK'.codeUnits,
21 withoutResponse: true
22);
23 }else{
24 logger.e("Error while saving measures/signature in localStorage");
25 }
26 } else {
27 await ackCharacteristic.write(
28 signature['name'].codeUnits + ',KO'.codeUnits,
29 withoutResponse: true
30);
31 }
32 }
33 }
34 ...
35 }

The background process is configurable for working in 2 different ways.
When the app is up and running, BLE is the unique way of interacting with
the environment, continuously scanning for nearby devices. Instead, when the
app is in background or is closed, the first approach, the default one, is to

40

Mobile Application

keep using BLE even in case. The second one is represented by the use of the
GPS sensor on mobile smartphones. Since the position of each monitoring
device is known, the app can monitor the position of the user and warn him
when the distance from the monitoring device is under 10 meters. It is done
through the sending of an in-app notification which should be tapped in order
to open the app and start the data transmission through BLE. The user has
the ability of choosing how he could be involved in the participative process
by choosing in the app settings one of the configurations for the background
process. It is also possible to switch off the process in order to use the app
only as a data visualizer.

4.2.1 BLE limitations
The use of Bluetooth Low Energy and GPS location requires the granting
of some permission from the user that should be asked accordingly. The
permission have to be added to the project in the following files of the 2
platforms:

• in the android/app/src/main/AndroidManifest.xml:

1 <uses-permission android:name="android.permission.BLUETOOTH" />
2 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
3 <uses-permission
4 android:name="android.permission.ACCESS_COARSE_LOCATION"/>

• In the ios/Runner/Info.plist:

1 <dict>
2 <key>NSBluetoothAlwaysUsageDescription</key>
3 <string>Need BLE permission</string>
4 <key>NSBluetoothPeripheralUsageDescription</key>
5 <string>Need BLE permission</string>
6 <key>NSLocationAlwaysAndWhenInUseUsageDescription</key>
7 <string>Need Location permission</string>
8 <key>NSLocationAlwaysUsageDescription</key>
9 <string>Need Location permission</string>

10 <key>NSLocationWhenInUseUsageDescription</key>
11 <string>Need Location permission</string>

Since the background process is intended to run even if the app is not up
and running, permission should be granted not only when the app is in use
but always. Even if the process will use only the BLE, location permission is
needed because Bluetooth has direct access to the device’s MAC address for the

41

Mobile Application

purpose of pairing. If the MAC addresses of WiFi or Bluetooth transmitters
are readable, a device could be located. Therefore, the requirement to allow
location services to use Bluetooth is about ensuring that someone who disables
location keeps their location private.

A limitation imposed by the mobile application is the file chunk size used for
the data transmission. This parameter has been influenced by the Maximum
Transmission Unit (MTU) value that has been set to 185 bytes. The reason is
due to the fact that, even if the MTU value is negotiated across the devices
during the pairing process, each device has its maximum value. In this case,
the MTU of the monitoring device could be set between 23 and 200 bytes
and Android devices could arrive even up to 512 but iOS imposes a maximum
value equal to 185 bytes. Therefore, the MTU value has been set for all the
devices to 185 bytes and the file chunk size to 182, for the ATT header size of
the BLE packet which occupies 3 bytes.

Another problem, mostly on Android, is represented by the use of Bluetooth.
Even if the app has been excluded by the battery optimization process, the
operating system tends to stop Bluetooth scans after a while because it is not
efficient for the battery energy. However, by applying a filter on the scans
programmatically, it is possible to make it work for a long time. In particular,
the filter could be applied to the GATT service identifiers that we want to
discover. Since for this project every station is configured on the server along
with the BLE configurations, it is possible to retrieve them through an API in
order to insert them in the BLE scan filter. The following code snippet shows
how the filter on the scan is applied:

1 _flutterBlue.startScan(
2 timeout: Duration(seconds: 4),
3 withServices: boardsConfig["ble_service_uuid"]
4 .values
5 .map((s) => Guid(s))
6 .toList()
7).then(...)

4.3 Interaction with the Server
The mobile application is a client of the remote web server and the commu-
nication is made through REST APIs. On Flutter, an useful plugin that
implements an http client for the Dart programming language is dio, which
supports functionalities like interceptors, requests cancellation, cookies man-
agement and file uploading and downloading.

Besides the APIs to download the data to be displayed to the user, an

42

Mobile Application

important functionality is represented by the uploading of the files received
from the monitoring device to the remote server, since it is the last hop of
the data transmission. The following code snippet shows how it has been
implemented:

1 Future<...> sendMeasureFiles(List<String> paths, ...) async {
2 ...
3

4 FormData formData = FormData.fromMap(files);
5 try {
6 Response<List<dynamic>> response = await dio
7 .post<List<dynamic>>(
8 '/api/measures',
9 data: formData,

10 options: Options(
11 receiveTimeout: 30000,
12 validateStatus: (int status) => status == 200,
13 headers: {"x-access-token": token}
14)
15);
16

17 ...
18 } catch (error) {
19 rethrow;
20 }
21 }

As mentioned in the previous section, when the files arrive to the mobile
application through BLE and the signature is verified, they are stored in the
local storage of the device. In order to send them to the server, the background
process has been implemented to have also a procedure in charge of monitoring
the directory where the files are stored. It can be considered as a file watcher
routine that is triggered every 20 seconds by a timer and it checks if the folder
contains new files to send. The first action of the routine is to check if there
is an Internet connection in order to send the request to the server. Then, it
looks for the pair of data and signature files associated by their names that
should be equal. Since the API of the server has been developed in order
to accept more than one file per request, the routine looks for a maximum
of 20 files and, once the request has been sent, it waits for the response. If
successful, the response contains a list of the file names just sent, with the
outcome of the processing for each of them. Each file that has a value of the
outcome equal to VALID is removed from the local storage.

43

Chapter 5

Server

This chapter is in charge of describing the core of the system, the server. It is
the unique interface to the database and offers the functionalities to apply the
CRUD (create, retrieve, update, delete) operations on its tables, applying the
business logic needed to guarantee a certain level of service.

At the beginning of this thesis, a server has already been implemented
but the research group decided to renovate and improve it. It acts as a web
server, offering web services via the Internet to the mobile application and a
web dashboard used by the administrators of the system, which is still in the
development phase. The development is based on the Python programming
language and uses some frameworks that facilitate the implementation of the
functionalities, such as Flask, SQLAlchemy and Marshmallow.

Web services, also called web application program interfaces (API), consist of
public endpoints that accept requests in order to produce responses, formatted
according to the JSON format. The APIs follow the REST paradigm that is
based on the HTTP protocol.

The APIs make extensive use of the database, due to the considerable
amount of data that is processed. One of the renovations introduced with this
work is the use of the ORM paradigm in order to simplify the way to access and
operate the database. Moreover, the introduction of the new communication
protocol made necessary the adaptation and improvement of existing APIs
and procedures.

The database is a MySQL database and it is structured in order to contain
the measurements, the sensors and the boards’ information, the configurations
and some other entities.

44

Server

5.1 REST paradigm
REST, or REpresentational State Transfer, is an architectural paradigm to
provide a way to facilitate communication between the systems on the web. It
is characterized by a separation of concerns between client and server where
the systems try to be as stateless as possible.

The separation between client and server means that the implementation
of the two systems is independent from each other and changes on one system
will not affect the operation of the other one, considering also the possibility
to evolve independently. Moreover, knowing only the interface of a system
and the way to interact with increases modularity, flexibility and scalability.

In the REST architecture, clients send a request to the server in order to
receive a response. The aim of the request could be for retrieving resources or
modifying them on the server. A request generally consists of:

• HTTP method, which defines the operation to execute;

• headers, allowing the client to add information about the request;

• a path to a resource;

• an optional body, which contains a content or a message that the client
wants to transmit;

Since the REST paradigm is based on the HTTP protocol, there are 4 basic
operations to interact with the resources of a REST system:

1. GET, used to retrieve specific resources;

2. POST, used to create a new resource;

3. PUT, used to update a specific resource;

4. DELETE, used to remove a specific resource;

In the HTTP protocol, the GET (read), POST (create), PUT (update)
and DELETE (remove) methods are considered CRUD operations as they
have precise semantics relating to the management of data storage. In fact,
they allow the client to directly manipulate the status of the web resource of
interest.

Each request from the client corresponds to a response from the server
that contains the status code of the request, alerting the client if it has been
successful or not. The status code is a number of 3 digits and the first one
represents the category of the outcome. The possible values are:

45

Server

• 1xx is an informational response indicating that the request has been
received and the processing can continue (e.g. 100 Continue);

• 2xx indicates that the request has been successfully received and processed
(e.g. 200 OK, 201 Created);

• 3xx indicates that the client must take further action to fulfill the request
(e.g. 304 Not Modified);

• 4xx indicates that the request is syntactically incorrect or cannot be
satisfied (e.g. 400 Bad Request, 401 Unauthorized, 404 Not Found);

• 5xx indicates that the server failed to fulfill a valid request (e.g. 500
Internal Server Error, 502 Bad Gateway);

5.2 ORM paradigm
Object-Relational Mapping (ORM) is a technique that allows to query and
manipulate data from a database using an object-oriented paradigm, which is
implemented in several libraries of various programming languages.

Each ORM library encapsulates the code needed to manipulate the data,
interacting directly with the object in the language that has been chosen
and avoiding using SQL. It creates a virtual object database. However, many
popular database products such as SQL database management systems (DBMS)
are not object-oriented and they are often not able to manipulate and store
complex types, treating the data as scalars, such as integers and strings, and
organizing them into tables. The conversion of the object values into groups of
simpler values is required in order to store them in the database. In the same
way, a conversion back to complex types on retrieval is needed in order to avoid
using simple scalars in the program. This is what Object-relational mapping
is intended to implement and, in case both conversions are implemented, the
objects are said to be persistent, abstracting the implementation characteristics
of the specific DBMS used.

The main advantages of using this technique are the following:

• the overcoming (more or less complete) of the fundamental incompatibility
between the object-oriented paradigm and the relational model on which
most of the current DBMS used are based;

• high portability concerning the DBMS technology used: when changing
DBMS the routines that implement the persistence layer do not have to
be rewritten; generally, it is enough to change a few lines in the product
configuration for the ORM used;

46

Server

• drastic reduction in the amount of source code to be written. Behind sim-
ple commands, ORM masks the complex activities of creating, collecting,
updating and deleting data (CRUD). Such activities usually take up a
good percentage of the overall development, testing, and maintenance
time. Furthermore, they are by their nature very repetitive and, therefore,
favor the possibility that mistakes are made during the development of
the code that implements them;

• it suggests the implementation of the architecture of a software system
based on a layered approach, thus tending to isolate the logic of data
persistence in a single level, with the aim of increasing the modularity of
the system;

The currently most popular ORM products often offer natively features
that would otherwise have to be created manually by the programmer:

• automatic loading of the graph of the objects according to the association
bonds defined at the language level. The loading of an instance of a class
could automatically cause the loading of the linked data. In addition,
this loading can only take place if the data are requested by the program,
otherwise, it is avoided (a technique known as lazy-initialization);

• concurrency management in data access during transactions. Conflicts
during the modification of data by several users at the same time can be
automatically detected by the ORM system;

• data caching mechanisms. For example, if the same data are fetched
several times from the DBMS, the ORM system can automatically provide
caching support that improves the performance of the application and
reduces the load on the DBMS system;

• management of a conversation using the Unit of Work design pattern,
which delays all data updating actions when the transaction is closed; in
this way, the requests sent to the DBMS are those strictly indispensable
(e.g. only the last of a series of updates is performed on the same data, or
a series of updates is not performed at all on a data that is subsequently
deleted); moreover, the dialogue with the DBMS takes place by composing
multiple queries in a single statement, thus limiting the number of round-
trip-times required and, consequently, the application response times to a
minimum;

47

Server

5.3 Frameworks used
The development of the server and its REST APIs were made through the
framework Flask. It is not considered a full web development framework
because its light installation offers minimal and basic functionalities, making
it in fact a micro-framework. The main features of Flask are the following:

• a built-in development server and debugger;

• integrated support for unit testing;

• RESTful request dispatching;

• uses Jinja templating, allowing the creation of HTML, XML, or other
markup files, which are returned to the user via an HTTP response;

• support for secure cookies;

• error handling, for aborting a request with an error status code;

• static routing, to trigger a specific function corresponding to a certain
URL;

• dynamic routing, to trigger a specific function corresponding to a set
of URLs, each of one containing parameters that will be used by the
function;

Flask uses the concept of Blueprints to create sub-components of the
application sharing the same configurations and the same patterns. Blueprints
can simplify the management of a large application, making it more modular.
Each Flask Blueprint is an object that, similarly to a Flask application, can
have resources, such as static files, templates, and functions that are associated
with routes. However, it is not an application and it needs to be registered in a
Flask application before being run by calling Flask.register_blueprint(). When
a Flask Blueprint is registered in an application, it extends the application with
its contents. It is a great modular way to organize the application, defining
also a dynamic URL prefix that will be applied to all routes in a blueprint.

Moreover, Flask can be extended with third-party libraries. In the context
of this project, one of the libraries that have been integrated is SQLAlchemy,
an Object Relational Mapper (ORM) tool that translates Python classes
to tables on relational databases and automatically converts function calls
to SQL statements. It is able to provide a standard interface that allows
developers to create database-agnostic code to communicate with a wide
variety of database engines. In order to interact with a database, SQLAlchemy

48

Server

needs to instantiate an Engine, responsible of managing two components:
Pools and Dialects [31]. The library supports the most common database
management systems available on the market, such as PostgreSQL, MySQL,
Oracle, Microsoft SQL Server, and SQLite. The Connection Pools are based
on the object pool pattern where, instead of spending time creating objects
that are frequently used, the program fetches an existing one from the pool.
In the database connections context, this pattern allows easier management
of the number of connections that an application might use simultaneously
[31]. The Dialects are the proprietary variations introduced by the various
DBMS in the SQL standard. SQLAlchemy enables Python developers to
create applications that communicate to different database engines through
the same APIs, creating a separated layer between the Python code and the
database engine used [31].

Another library integrated into this project is Marshmallow. It converts
complex data types to and from Python data types. It is a powerful tool for
both validating and converting data for serialization and deserialization. It is
based on the concept of Schema that defines the structure of the data and
also the validation to apply and provides functions to serialize and deserialize
to and from JSON format.

5.4 Database structure
At the beginning of this thesis, the structure of the database, a MySQL
relational database, was already provided by the research group. The basic
entities are represented by the tables of measures, sensors and boards, together
with all those necessary for the enrichment of the information and for describing
the relationships. A representation of database relational schema is shown in
Figure 5.1.

Each measurement inserted in the measure_table has the information about
the sensor that produced the data. In particular, this information is a foreign
key that references the logical_sensor_table which in turn references the
unit_of_measure_table, containing the unit of measure of the data produced
by a sensor.

A logical sensor is linked to a physical sensor, represented by the table
physical_sensor_table, with a relationship many to one. The concept of the
logical sensor has been introduced for distinguishing the sensor physically
mounted on a board from the measurement that it produces. In order to better
clarify this concept, one example is represented by the PM sensor: even if a
unique physical PM sensor is mounted on the board, it produces two different
measurements, PM10 and PM2.5, as they were produced by two different logical
sensors. Each physical sensor and each board, represented by the board_table,

49

Server

Figure 5.1: Database relational schema

have their vendor and model that are described in the vendor_model_table.
The connection between a physical sensor and a board is described in the
board_sensor_connection_table.

In the context of this work, in order to make the participative system work,
each board should be associated to one or more experiments, each of one
contained in the experiment_table, through the board_experiment_table. The
association is made through a manual configuration from a web dashboard,
setting also the location of the board for the specific experiment, represented
by the properties latitude, longitude and latitude.

Moreover, each board could have a set of configurations that are inserted in
the board_config_table and all the possible configuration types are described
in the param_type_table. Indeed, all the configurations needed for the BLE
access point of a board are described here. In particular, the param_type_table
describes the generic configuration names (shown in Table 5.1), such as the
name of the access point and the UUIDs for the service and characteristics,
and the board_config_table describes their values for a specific board (shown
in Table 5.2).

There is also a user_table which is in charge of storing the user’s information
handled by the mobile application to guarantee the authentication functionality.

50

Server

ParamId Description
1 ble_ap_name
2 ble_service_uuid
3 ble_measure_char_uuid
4 ble_ack_char_uuid

Table 5.1: BLE configurations in param_type_table

BoardId ParamId ParamValue
1 1 weather-station-1
1 2 a7dd77c8-1088-48ba-b0da-8ddefc069aa9
1 3 00054326-0000-1000-8000-00805f9b34fb
1 4 b12ef43c-3f2c-4c3c-a52a-524d758f854c

Table 5.2: BLE configurations in board_config_table

5.5 Code structure
The code implemented for the server is structured in a way such that the
Flask application is started in the file app.py. Here, during the boot phase of
the application server, the application registers the Blueprints and initializes
the singleton components such as the mail server and the database session
through SQLAlchemy.

The core of the application is represented by the business logic which is
contained in 4 main folders: routes, services, models and schemas.

The routes folder contains all the controllers of the application. Each
Blueprint defines a route that is linked to a controller, representing the
interface exposed outside of the application and contains the APIs. The aim
of the functions defined in a controller is to retrieve eventual parameters or
messages within a client request and return a response containing the HTTP
status code along with a response body or an error description. The response
is generated starting from the input supplied through the call to a function
defined in another module, the service. Below is an example of the API defined
in measures_controller.py to upload the file containing the measurements:

1 @measures_controller.route('', methods=['POST'])
2 @token_required
3 @doc(tags=["measures"])
4 def upload_measures(current_user):
5 try:

51

Server

6 results = MeasureService.upload_measures(request.files)
7 return make_response(jsonify(results), 200)
8 except FileNotFoundError:
9 return make_response(

10 jsonify({"message": "No file was uploaded"}),
11 404
12)
13 except Exception as e:
14 return make_response(jsonify({"message": str(e)}), 500)

The services folder contains the implementation of the APIs and here
there is the business logic of the application. Each function receives eventual
parameters that are first validated according to the specifications and then
used to produce an output, involving also other components of the application.
The following code snippet shows the implementation of the API to retrieve
all the boards with the optional parameter modelId provided as input:

1 @staticmethod
2 def get_all(modelId=None) -> List[Board]:
3 if modelId is None:
4 return Board.query.all()
5 else:
6 return Board.query.filter(Board.vendorModelId == modelId)

The models folder contains the classes used to implement the ORM paradigm.
Each class represents an entity table of the database declaring all the columns
with their data type, constraints and external relationships. A model extends
the Model class of the SQLAlchemy library, responsible for providing the native
functionalities to manage the connection, access the database and retrieve and
store the data in the table. The following example shows the Measure model:

1 class Measure(db.Model):
2 measureId = db.Column(db.BigInteger(), primary_key=True)
3 timestamp = db.Column(db.BigInteger())
4 data = db.Column(db.Float())
5 sensorId = db.Column(
6 db.BigInteger,
7 db.ForeignKey('logical_sensor.sensorId'),
8 nullable=False
9)

Last module, represented by the schemas folder, contains the classes with
the rules for validating, serializing and deserializing the data from the object

52

Server

model to the JSON format. Each class extends the SQLAlchemyAutoSchema
class of the Marshmallow library that provides two main decorators, pre_load
to clean input data and post_load to envelope the response data, and two
functions for converting an object, load to validate and deserialize the input
data to the model object and dump to serialize the model data to the output
data. The example below shows the BoardSchema to convert to and from the
Board model:

1 class BoardSchema(ma.SQLAlchemyAutoSchema):
2 class Meta:
3 model = Board
4

5 boardId = ma.auto_field(required=False)
6 serialNumber = ma.auto_field()
7 connections = fields.Nested(BoardConnectionSchema, many=True)
8 vendorModel = fields.Nested(VendorModelSchema)
9

10 @post_load
11 def make_board(self, data: Any, **kwargs) -> Board:
12 return Board(**data)

5.6 Implementation
The aim of this section is to describe the implementations and the changes
applied to the web application during this work. It focuses on the application
of the ORM paradigm with a renovation and adaptation of some new and
already existing APIs, in particular the ones regarding the management of
the users, boards and measurements, and procedures needed to aggregate the
measurements.

At the boot phase of the server, besides the definition of the Blueprints
along with their controllers, a background scheduler is instantiated to run two
background jobs periodically. Given the considerable amount of data that are
stored in the measure_table, the purpose of these jobs is to aggregate them in
order to have data averaged on a temporal window. In particular, the jobs are
the following:

1. insert_data_five, which aggregates the measurements by sensor every 300
seconds in a temporal window of 5 minutes and inserts them in the table
five_min_avg_measure;

2. insert_data_hour, which aggregates the measurements by sensor every
61 minutes in a temporal window of 1 hour and inserts them in the table
hour_avg_measure;

53

Server

They work in a very similar way and the main steps are:

• retrieve the last aggregated measure produced by a specific sensor from
the aggregated table;

• if there is no aggregated data for that sensor, retrieve, if exists, the first
measure in the measure_table;

• get the acquisition timestamp from the result in order to compute the
belonging temporal window;

• query the measure_table applying the temporal window filter on the
acquisition timestamp;

• aggregate all the results computing the average, minimum and maximum
value of the measurements and insert them into the aggregated table;

The two aggregated tables offer the possibility of having fast data re-
trieving when a client sends a request because their size is smaller than the
measure_table and they allow to compute statistics in a easier way.

The main APIs that were implemented are included in the following con-
trollers:

• user_controller, which handles the registration, login and password recov-
ery functionalities to provide the authentication on the mobile application
and session management through a JWT token. In fact, most of the APIs
require a valid token to be executed successfully. It has to be inserted in
the x-access-token field of the request headers and it is validated through
the token_required decorator shown below:

1 def token_required(f):
2 @wraps(f)
3 def decorated(*args, **kwargs):
4 ...
5 token = request.headers['x-access-token']
6 if not token:
7 return make_response({"message": "Unauthorized"}, 401)
8 data = jwt.decode(token, ...)
9 current_user = User.query

10 .filter(User.user_id == data['sub'])
11 .first()
12 ...
13 return f(current_user, *args, **kwargs)
14

15 return decorated

54

Server

• measures_controller, which offers the functionalities to upload the mea-
surement files and to retrieve the aggregated data according to specific
filters. The upload API is in charge of verifying the signature of each
measurement file and converting the bytes content to the measurement
object model in order to insert it into the database, as specified in the
communication protocol. Its implementation is shown here:

1 @staticmethod
2 def upload_measures(files):
3 ...
4 for f in files.keys():
5 out = {"filename": f, "status": MeasureStatus.VALID.name}
6 try:
7 verify_signature(key, files.get(f), files.get(signFileName))
8 except (ValueError, TypeError):
9 out["status"] = MeasureStatus.SIGN_NOT_VALID.name

10 else:
11 measures = bytes_to_measures(files.get(f))
12 db.session.add_all(measures)
13 db.session.commit()
14 outcomes.append(out)
15 return outcomes

• boards_controller and board_config_controller, which offers the APIs to
create, manage, retrieve and delete the boards and their configurations.
In particular, an API to retrieve the boards, according to a location sent
in the request, has been implemented for the participative system. It
returns all the board in a range of a maximum distance specified in the
request. Its implementation in BoardService is shown here:

1 @staticmethod
2 def get_all_by_location(latitude: float, longitude: float, maxDistanceKm):
3 boardIds = BoardService.get_all_ids()
4 boardExperiments = BoardExperimentsService
5 .get_board_experiments_between(boardIds, int(time.time()))
6 nearbyBoards = []
7 for exp in boardExperiments:
8 distanceKm = geopy.distance.geodesic(
9 (latitude, longitude),

10 (exp.latitude, exp.longitude)
11).km
12 if distanceKm <= maxDistanceKm:
13 nearbyBoards.append(exp)
14

15 return nearbyBoards

55

Chapter 6

Evaluation

The aim of this section is to present the results obtained with the contribution
given by this work.

The first paragraph is intended to show the general performance of the
system and the various parts that were affected by the changes.

The second one focuses on the data transmission through the Bluetooth
Low Energy technology and the performances given by the new communication
protocol to collect and process the data.

Finally, the last paragraph is intended to highlight some open issues that
have to be reviewed in order to start the experimentation phase.

6.1 Performances of the system
The contribution given by this work was intended to increase the performance
of the whole system, in particular regarding the participative aspect of the
project.

6.1.1 I/O and transmission results
One of the changes has involved the storage management on the IoT device,
migrating from the CSV format to a binary representation of the data in the
files in order to reduce their size and improve the I/O operations and the
transmission time. Moreover, the temporal window of the data contained in a
single file has been reduced from one day to one minute.

File system management has also been changed due to increased I/O
operation time when the amount of files in the root folder becomes large. The
solution implemented tried to fix the amount of files in a folder, limiting in
turn read-and-write operation time. Indeed, file system structure has been

56

Evaluation

refactored into sub-folders, divided by date and time, limiting the amount of
files for each folder to 60, one for each minute of the hour.

Moreover, a new communication protocol has been introduced in order to
transmit the data from the monitoring device to the mobile application. Its
aim was to improve the performance and reliability of the transmission.

Table 6.1 shows some of the results obtained with a comparison between
the old version of the project and the new one and a focus on the increasing
performance percentages in the last column. The results were derived from
tests conducted using both textual measurement files, shown in the first column,
and binary ones, shown in the second column. Both kinds of files cover a
temporal window of one minute, containing the same amount of measurements
that, as explained in section 6.1.2, is about 560. The values shown in the table
were computed by averaging all the results obtained by the tests, indicating
the mean values for a single file.

Before work
changes

After work
changes

Improvement
rate

File size ~13 KB ~4.5 KB 65 %
I/O operations time ≥ 500ms ~150 ms ≥ 70%

Data transmission time ~4500 ms ~500 ms 88 %

Table 6.1: Data storage and I/O operations statistics

6.1.2 Data loss

As shown in the previous sections, a signature process has been introduced
on the IoT device in order to let the clients verify the integrity of the data.
However, this process takes 2 seconds of computation, during which the device
is unable to handle the interrupts coming from the sensor timers. Since they
will be handled when the thread is free, signature process results in data loss
every minute. Furthermore, since data sampling is different for each sensor,
the amount of data lost during the process changes accordingly, resulting in a
minimum and maximum percentage of data loss. In order to compute these
values, the following table shows for each sensor how often it is sampled and
how many measurements the sample contains:

57

Evaluation

Sensor type Sampling time
N° of measurements

produced
for each sample

Measurements
produced

PM 1 s 2 ∗ 4 = 8 PM10, PM2.5
GPS 3 s 2 latitude, longitude
DHT 4 s 2 temperature, relative humidity
BPM 5 s 1 pressure

Table 6.2: Data sampling

Given the number of measurements produced in a sample (ms), the sampling
time (ts) and the number of each type of sensor mounted on the board (ns), it
is possible to compute the maximum amount of measurements contained in a
single file with a temporal window of one minute:

max =
Ø
s

ms
60
ts

ns

= 260
1 4 + 260

3 1 + 260
4 1 + 160

5 1

= 480 + 40 + 30 + 12 = 562

(6.1)

Moreover, an hypothetical minimum value could be computed considering
that the last interrupt of the current minute from sensor timers could be
kept at the beginning of the next minute. In this way, the minimum value is
represented by the maximum value minus the measurements of one sample:

min =
Ø
s

(ms
60
ts

ns − ms)

= (480 − 8) + (40 − 2) + (30 − 2) + (12 − 1)
= 472 + 38 + 28 + 11 = 549

(6.2)

In the end, data loss could be computed in the best and worst case for each
sensor. The results, presented in table 6.3, show a data loss percentage from
1.4% to 3.8% every minute.

58

Evaluation

Min Max

N° PM measurements lost in 2 seconds 8 16
N° GPS measurements lost in 2 seconds 0 2
N° DHT measurements lost in 2 seconds 0 2
N° BPM measurements lost in 2 seconds 0 1

N° measurements in a file of 1 minute 549 562

Data loss 8
562 ≃ 1.4 % 21

549 ≃ 3.8 %

Table 6.3: Data loss statistics

6.1.3 API performance
When the files are transmitted from the monitoring device to the mobile
application through BLE, they are in turn sent to the server through the
provided REST API. Compared to the previous implementation of the API
accepting a request body containing a single measurement, the current API is
able to accept multiple files containing hundreds of measurements. Most of the
time spent to receive a response from the server is due to network latency and
to the HTTP protocol operations and not to the elaboration of the request
itself. The implemented API is configured to receive a maximum of 20 files,
10 for the measurements and 10 for the signatures, because, as shown in table
6.4, in this way the server is able to respond in less than 1 second. In order to
send X measurements to the server, the old API had to be invoked X times
and the table shows an approximation of the old API response time to a
linear function described by Xt0, where t0 is the response time for a single
measurement upload. Even in the case of a single file upload, the performance
improvement increased by almost 100%.

N° of measurements
sent

Old API
response time

New API
response time

Improvement
rate

1 32 ms - -
200 (~1 file) 6.4 s 88 ms 98.6 %
400 (~2 file) 12.8 s 102 ms 99.2 %
600 (~3 file) 19.2 s 148 ms 99.3 %

...
2000 (~10 file) 64.0 s 986 ms 98.5 %

Table 6.4: Upload API statistics

59

Evaluation

6.2 Data transfer statistics

Many strategies of communication were explored in order to transmit the data
through BLE from the monitoring device to the mobile application in the
fastest way possible and the best one has been chosen through an empirical
approach based on the measured performances. Moreover, at the beginning of
this work, many files were corrupted during the BLE transmission and they
were not understandable for the client. For this reason, signature process was
introduced in order let facilitate the verification of the integrity of the file on
the client. However, even if it results in performance degradation, the server
should be aware of the success of the transmission in order to retransmit or
delete a specific file.

One the variable that affects the performance is represented by the com-
bination of commands provided by Bluetooth Low Energy technology. As
described in section 3.2, they are the following: write, read, notify/indicate.

Another variable to take into consideration is represented by the buffer
queue system which is involved in the data exchange protocol, storing files in
RAM and avoiding as much as possible I/O operations with the SD during
the transmission phase.

Table 6.5 shows the results in terms of data transmission time for each file
of measurements along with the signature one for each combination of the
solutions adopted. In order to send the data, the operation needed can be
the read or the notify one. Two of the solutions use them in combination
with the write operation which is used to acknowledge the server that the
file has been received, while the other ones do not wait for a confirmation of
receipt. While with the first solution (using the read and write operation) the
client acknowledges every chunk of the file, in the solution with the notify
and write approach, the client acknowledges only the whole file reception.
The introduction of the combination of the two operations is to increase the
reliability of the data transmission at the expense of the performance in order
to let the monitoring device know about which file has been received and
which should be sent again.

The results show that the read operation is in general much slower than
the notify one and that acknowledging every single chunk of the file is too
expensive from the performance point of view. The best solution should use
the notify approach and, since acknowledging the file reception ensures more
reliability, the combination with the write operation has been chosen for this
project, even if it leads to an increment in transmission time of about 200
ms. Finally, all the results show that using the buffer queue system as an
access point to the memory to have a cache of the files in RAM instead of
the SD leads to a reduction of the overall transmission time of about 150 ms,

60

Evaluation

corresponding to the I/O time.

BLE commands Without buffer queue
system

With buffer queue
system

Read and Write ~4900 ms ~4700 ms
Read ~1100 ms ~950 ms

Notify and Write ~650 ms ~500 ms
Notify ~450 ms ~300 ms

Table 6.5: Data transmission time statistics

The results reported in the table were obtained with experiments carried out
by placing the devices at close range, mainly less than two meters from each
other. However, further experiments, carried out to verify how the attenuation
of the Bluetooth signal impacted the transmission time, did not show evident
differences. Indeed, the power of signal is no longer detectable at a distance of
about 10 meters and in that case the connection is interrupted.

Moreover, the previous results do not take into account the time needed
for establishing a BLE connection between the devices, which is independent
from the command used in the communication and it is required only once at
the beginning. Its mean value was measured to be around 2 seconds and was
measured on the app, starting from the discovery of the board through the
Bluetooth scan until the receipt of the first chunk of a file. This time, added
to the time required to transfer all the chunks of a file through the notify and
write commands, represents the minimum time in which a user should be near
to the board in order to perform a complete transmission.

6.3 Open issues
The aim of this paragraph is to highlight the main issues that this work didn’t
address and that could be solved in future works on this project.

6.3.1 Data aggregation
One of the problems was encountered during the reorganization of the proce-
dures on the server which are responsible for aggregating the measurement
values, computing averaged values on different temporal windows. The problem
is related to the logic that retrieves the measurements from the measure_table.
In fact, when an aggregated measurement already exists for a specific sensor,
the logic aggregates only the measurements arrived after that time arrival.

61

Evaluation

This implementation is a simplification that avoids recomputing the old ag-
gregated values but introduces a strong limitation in the system: it assumes
that all the measurements for a sensor arrive in the right chronological order.
However, the monitoring device has been designed to send first the latest
collected measurements because they have the highest priority and, if older
measurements have not been already sent, they are no more considered by the
server.

Actually, the procedures run on two background tasks of the web application
and it could lead to performance issues when satisfying client requests. Since
the operations of the tasks have to aggregate the data on the database, it
could be useful to move the aggregation procedures directly to the database,
implementing some scheduled stored procedures in order to optimize the web
application job.

6.3.2 Data calibration
Another problem is related to data calibration. The use of tiny low-cost PM
sensors leads to inaccurate measurements as compared to the data provided
by the official environmental agencies. For this reason, the research group had
already studied and developed a calibration technique using machine learning
models. Initially, they analyzed both the Multivariate Linear Regression model
and the Random Forest one using the data produced by ARPA stations in
Turin as training. This work is part of a Python module that has been called
WSAnalysis. During the development of the old server, it was integrated to
calibrate the measurements but, with the new server development, it has
not been integrated because the development is still in progress and data
calibration was not in the scope of this work.

62

Chapter 7

Conclusions

The goal of the project described in this work is to explore and develop an
environmental monitoring system to give citizens a tool to improve their health
conditions and therefore their lives. The project wants to propose an alternative
low-cost solution to the one provided by the official environmental agencies in
order to collect data about the air quality conditions and in particular about
Particulate Matter (PM) concentration. Given their considerable dimension
and costs, the official monitoring stations cannot be located in the city center
and they are not so representative of a specific area. With this solution, the
monitoring devices can cover up multiple areas of the territory since they are
cheaper and smaller and they allow them to take localized countermeasures.

In order to maintain the overall cost of the system low, some architectural
choices have been taken. One of them is represented by the citizens’ partici-
pation in the system itself: since equipping each monitoring device with an
Internet connection would lead to an increase in costs, the collected data of
the monitoring devices are transmitted to citizens’ smartphones which are in
turn responsible of sending them to a centralized remote server. Since the
good functioning of the system depends on citizens’ participation, the system
has been called participative.

The participative approach of the system is highly based on an IoT infras-
tructure composed of monitoring devices. The transmission of the data to the
citizens’ smartphones, which run a mobile application that acts as a gateway
to the server, is made through Bluetooth Low Energy technology.

The aim of this work was to contribute to the development of the system,
in particular by taking care of solutions to improve and fill up some of the
performance and reliability gaps during the transmission of the data of the
previous prototype of the system. It was made through the implementation
of optimized data management which was able to save 65% of the memory
on the IoT device and a new data exchange protocol that improved the data
transmission time by about 88%.

63

Conclusions

The results obtained could open up new opportunities for project develop-
ment and improvement. In fact, with the current performances achieved, the
monitoring devices could be installed in places where people use to stop even
for a few minutes, such as bus stops. In this way, data collection could also
be done by a single close person and the download of an entire hour of data
could take place in just about 30 seconds.

However, the success of the project and therefore the good functioning of
the system depend on the participation of the users. Indeed, encouraging to
download the mobile application and involving users as much as possible is
one of the most important next steps of the project.

Several technical experiments on the prototype will have to be conducted
in a real context to verify its validity and identify any weaknesses. During
this experimentation phase, it could be useful to conduct a series of interviews
with a group of citizens, future users of the system, to also verify that their
needs are still compatible with the functions offered by the system, or, instead,
to discover new possible areas of improvement.

64

Bibliography

[1] World Health Organization. url: https://www.who.int/news-room/f
act-sheets/detail/ambient-(outdoor)-air-quality-and-health
(cit. on p. 1).

[2] Our World in Data. url: https://ourworldindata.org/grapher/
outdoor-pollution-deaths-1990-2017 (cit. on p. 1).

[3] Phys.org. url: https://phys.org/news/2016-04-air-pollution.
html (cit. on p. 2).

[4] U.S. Environmental Protection Agency. url: https://www.epa.gov/pm-
pollution/particulate-matter-pm-basics#PM (cit. on p. 2).

[5] New York State. url: https://www.health.ny.gov/environmental/
indoors/air/pmq_a.htm (cit. on p. 2).

[6] EUR-Lex - 02008L0050-20150918 - EN - EUR-Lex. url: https://eur-
lex.europa.eu/legal-content/IT/TXT/?uri=CELEX%3A02008L0050-
20150918 (cit. on p. 2).

[7] Report: A Guide for Local Authorities Purchasing Air Quality Monitoring
Equipment - Defra. url: https://uk-air.defra.gov.uk/library/
reports?report_id=386 (cit. on p. 2).

[8] Città Metropolitana di Torino. url: http://www.cittametropolitana.
torino.it/cms/ambiente/qualita-aria/rete-monitoraggio/stazi
oni-monitoraggio (cit. on p. 3).

[9] CRAN. url: https://cran.r-project.org/web/packages/PWFSLSmo
ke/vignettes/NowCast.html (cit. on p. 3).

[10] PULSE. url: http://www.project-pulse.eu/ (cit. on p. 4).
[11] url: http://www.project-pulse.eu/wp-content/uploads/2019070

7_Empowering-Citizens-through-Perceptual-Sensing-of-Urban-
Environmental- and- Health- Data- Following- a- Participative-
Citizen-Science-Approach.pdf (cit. on p. 4).

65

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://ourworldindata.org/grapher/outdoor-pollution-deaths-1990-2017
https://ourworldindata.org/grapher/outdoor-pollution-deaths-1990-2017
https://phys.org/news/2016-04-air-pollution.html
https://phys.org/news/2016-04-air-pollution.html
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM
https://www.health.ny.gov/environmental/indoors/air/pmq_a.htm
https://www.health.ny.gov/environmental/indoors/air/pmq_a.htm
https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX%3A02008L0050-20150918
https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX%3A02008L0050-20150918
https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX%3A02008L0050-20150918
https://uk-air.defra.gov.uk/library/reports?report_id=386
https://uk-air.defra.gov.uk/library/reports?report_id=386
http://www.cittametropolitana.torino.it/cms/ambiente/qualita-aria/rete-monitoraggio/stazioni-monitoraggio
http://www.cittametropolitana.torino.it/cms/ambiente/qualita-aria/rete-monitoraggio/stazioni-monitoraggio
http://www.cittametropolitana.torino.it/cms/ambiente/qualita-aria/rete-monitoraggio/stazioni-monitoraggio
https://cran.r-project.org/web/packages/PWFSLSmoke/vignettes/NowCast.html
https://cran.r-project.org/web/packages/PWFSLSmoke/vignettes/NowCast.html
http://www.project-pulse.eu/
http://www.project-pulse.eu/wp-content/uploads/20190707_Empowering-Citizens-through-Perceptual-Sensing-of-Urban-Environmental-and-Health-Data-Following-a-Participative-Citizen-Science-Approach.pdf
http://www.project-pulse.eu/wp-content/uploads/20190707_Empowering-Citizens-through-Perceptual-Sensing-of-Urban-Environmental-and-Health-Data-Following-a-Participative-Citizen-Science-Approach.pdf
http://www.project-pulse.eu/wp-content/uploads/20190707_Empowering-Citizens-through-Perceptual-Sensing-of-Urban-Environmental-and-Health-Data-Following-a-Participative-Citizen-Science-Approach.pdf
http://www.project-pulse.eu/wp-content/uploads/20190707_Empowering-Citizens-through-Perceptual-Sensing-of-Urban-Environmental-and-Health-Data-Following-a-Participative-Citizen-Science-Approach.pdf

BIBLIOGRAPHY

[12] Gabriele Telesca. «Study and development of a participative air pollution
monitoring system». MA thesis. Politecnico di Torino, 2021 (cit. on pp. 4,
14, 31).

[13] Nordic Semiconductor. url: https://blog.nordicsemi.com/getconn
ected/iot-wireless-architecture (cit. on p. 8).

[14] Pycom. url: https://pycom.io/product/expansion-board-3-0/
(cit. on p. 9).

[15] Pycom. url: https://pycom.io/product/fipy/ (cit. on p. 9).
[16] B. Montrucchio, E. Giusto, M. G. Vakili, S. Quer, R. Ferrero, and

C. Fornaro. «A Densely-Deployed, High Sampling Rate, OpenSource
Air Pollution Monitoring WSN.» In: IEEE Transactions on Vehicular
Technology (2020) (cit. on p. 11).

[17] ZPE. url: https://www.zpesystems.com/centralized-vs-distrib
uted-network-management-zs/ (cit. on p. 12).

[18] Bluetooth. url: https://www.bluetooth.com/learn-about-bluetoo
th/topology-options/ (cit. on pp. 12, 13).

[19] Atlas RFID Store. url: https://www.atlasrfidstore.com/rfid-
insider/are-bluetooth-bluetooth-low-energy-ble-forms-of-
active-rfid/ (cit. on p. 13).

[20] LEVEREGE. url: https://www.leverege.com/iot-ebook/iot-wifi
(cit. on p. 13).

[21] Amir Nagah Elghonaimy. «LoRaWAN for Air Quality Monitoring Sys-
tem». MA thesis. Politecnico di Torino, 2021 (cit. on p. 14).

[22] HIVE MQ. url: https://www.hivemq.com/blog/lorawan-and-mqtt-
integrations-for-iot-applications-design/ (cit. on p. 14).

[23] RedHat. url: https://www.redhat.com/it/topics/internet-of-
things/what-is-iot (cit. on p. 15).

[24] CyberAngel. url: https://cybelangel.com/digital-signatures-
are-the-cybersecurity-vulnerability-you-need-to-stop-ignor
ing/ (cit. on p. 20).

[25] Bluetooth. url: https://www.bluetooth.com/learn-about-bluetoo
th/tech-overview/ (cit. on p. 23).

[26] Bosch. url: https://developer.bosch.com/products-and-service
s/sdks/xdk/develop/c/connectivity/bluetooth-low-energy-ble
(cit. on p. 25).

[27] PunchThrough. url: https://punchthrough.com/maximizing-ble-
throughput-part-2-use-larger-att-mtu-2/ (cit. on p. 24).

66

https://blog.nordicsemi.com/getconnected/iot-wireless-architecture
https://blog.nordicsemi.com/getconnected/iot-wireless-architecture
https://pycom.io/product/expansion-board-3-0/
https://pycom.io/product/fipy/
https://www.zpesystems.com/centralized-vs-distributed-network-management-zs/
https://www.zpesystems.com/centralized-vs-distributed-network-management-zs/
https://www.bluetooth.com/learn-about-bluetooth/topology-options/
https://www.bluetooth.com/learn-about-bluetooth/topology-options/
https://www.atlasrfidstore.com/rfid-insider/are-bluetooth-bluetooth-low-energy-ble-forms-of-active-rfid/
https://www.atlasrfidstore.com/rfid-insider/are-bluetooth-bluetooth-low-energy-ble-forms-of-active-rfid/
https://www.atlasrfidstore.com/rfid-insider/are-bluetooth-bluetooth-low-energy-ble-forms-of-active-rfid/
https://www.leverege.com/iot-ebook/iot-wifi
https://www.hivemq.com/blog/lorawan-and-mqtt-integrations-for-iot-applications-design/
https://www.hivemq.com/blog/lorawan-and-mqtt-integrations-for-iot-applications-design/
https://www.redhat.com/it/topics/internet-of-things/what-is-iot
https://www.redhat.com/it/topics/internet-of-things/what-is-iot
https://cybelangel.com/digital-signatures-are-the-cybersecurity-vulnerability-you-need-to-stop-ignoring/
https://cybelangel.com/digital-signatures-are-the-cybersecurity-vulnerability-you-need-to-stop-ignoring/
https://cybelangel.com/digital-signatures-are-the-cybersecurity-vulnerability-you-need-to-stop-ignoring/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://developer.bosch.com/products-and-services/sdks/xdk/develop/c/connectivity/bluetooth-low-energy-ble
https://developer.bosch.com/products-and-services/sdks/xdk/develop/c/connectivity/bluetooth-low-energy-ble
https://punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-mtu-2/
https://punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-mtu-2/

BIBLIOGRAPHY

[28] HTML. url: https://www.html.it/pag/377313/il- framework-
dettagli-tecnici/ (cit. on p. 34).

[29] Flutter. url: https://flutter.dev/docs/resources/architectural
-overview (cit. on p. 35).

[30] Wajahat Karim. url: https://wajahatkarim.com/2019/11/how-
is-flutter-different-from-native-web-view-and-other-cross-
platform-frameworks/ (cit. on pp. 36, 37).

[31] Auth0. url: https://auth0.com/blog/sqlalchemy-orm-tutorial-
for-python-developers/ (cit. on p. 49).

67

https://www.html.it/pag/377313/il-framework-dettagli-tecnici/
https://www.html.it/pag/377313/il-framework-dettagli-tecnici/
https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/docs/resources/architectural-overview
https://wajahatkarim.com/2019/11/how-is-flutter-different-from-native-web-view-and-other-cross-platform-frameworks/
https://wajahatkarim.com/2019/11/how-is-flutter-different-from-native-web-view-and-other-cross-platform-frameworks/
https://wajahatkarim.com/2019/11/how-is-flutter-different-from-native-web-view-and-other-cross-platform-frameworks/
https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/
https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/

	Introduction
	Problem of air pollution
	Air quality monitoring
	Goal of the project
	Participative approach
	Status of the project
	Implementation
	Thesis organization

	Architecture of the system
	Components
	IoT device
	Mobile Application
	Server

	Data communication
	Alternative technologies

	IoT Device
	Functionalities
	Data sampling
	Data storing
	Data processing
	Data transmission

	Bluetooth Low Energy
	Data exchange protocol
	Implementation issues
	Future improvements

	Mobile Application
	Flutter framework
	Cross-platform frameworks comparison

	Participative system implementation
	BLE limitations

	Interaction with the Server

	Server
	REST paradigm
	ORM paradigm
	Frameworks used
	Database structure
	Code structure
	Implementation

	Evaluation
	Performances of the system
	I/O and transmission results
	Data loss
	API performance

	Data transfer statistics
	Open issues
	Data aggregation
	Data calibration

	Conclusions
	Bibliography

