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Summary

Today’s interest in applications like pattern recognition and computer vision makes
image processing algorithms of great importance. However, the rapidly increasing
volume of visual information weighs on the computational capabilities currently
available in classical computers. Quantum Image Processing (QImP) focuses on
providing a counterpart of conventional image processing strategies in the Quan-
tum Computing domain, exploiting its intrinsic parallel nature. Over the years,
many QImP algorithms have been proposed to encode and process images using
quantum formalism. Despite this, in the state-of-the-art, not enough room is given
for direct and practical comparisons between the available techniques. Therefore,
difficulties arise when trying to understand whether they represent effective op-
portunities with respect to classical counterparts, especially when considering the
limitations and non-idealities of nowadays quantum hardware. The goal of this
thesis is to define a Python software library of QImP algorithms compatible with
Qiskit, an open-source software-development kit for quantum computing, to pro-
vide users with the ability to flexibly compare the different techniques on reference
input images and analyze their suitability through particular figures of merit. First,
a preliminary study of the current literature on QImP has been carried out in order
to identify the most promising algorithms. Then, they have been implemented as
parametrical modules, which progressively formed the library. Jupyter Notebooks
were considered to provide a practical user guide for a conscious application of the
algorithms provided. The selection of the supported techniques spans from encod-
ing methods, basic processing tools, compression, and edge detection algorithms
and takes into account the limited computational resources of quantum hardware
and the possibility of practical applications. Tests have been conducted on all the
implemented circuits, both through simulations on classical computers and tests
on real quantum hardware. The strengths and weaknesses in the application of
the different algorithms have been put into evidence considering several use cases.
This thesis lays the foundations for exploring the QImP scenario, while the imple-
mented library gives the possibility to include and characterize new algorithms and
compare them with the others, thanks to its flexible and modular nature.
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Chapter 1

Introductory concepts

Quantum Computing is an interdisciplinary subject that intersects physics, math-
ematics and computer science. Its goal is to find methods to exploit natural
quantum-mechanical effects to do information processing, overcoming the limited
computational capabilities of conventional computation[1]. Its applications span a
wide range of topics, including the optimization of problem solving and the simu-
lation of many scenarios, e.g. in finance and machine learning. This first chapter is
aimed at giving the reader the tools to understand the working principles of quan-
tum computing, starting from the mathematical concepts from which it builds off.
An in-depth presentation of Quantum Computing can be found in [2].

1.1 Quantum Systems
Analogously to what happens in classical computers, quantum computers use quan-
tum bits, called qubits. Qubits are the smallest unit of information and they are
implemented using two-dimensional quantum systems. The physical quantities that
are canonically used for this purpose are the spin of a particle or excited states of
atoms [2].

By assembling more qubits, it is possible to obtain quantum systems whose
dynamics are described by complex vector spaces. These vector spaces are based
on complex numbers, which are defined by the expression:

c = a + b × i = a + bi, (1.1)
a, b ∈ R (1.2)

where a is called the real part of c and b its imaginary part of c. The set of
all complex numbers is denoted as C. The canonical representation of quantum
states is done via column vectors of complex elements. The state of a qubit, being
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1 – Introductory concepts

a two-dimensional quantum system, is therefore given by

|Ψ⟩ =
C
α
β

D
= α|0⟩ + β|1⟩ where α, β ∈ C (1.3)

The difference between a standard bit and a qubit lies in the inherent indetermi-
nacy on the knowledge of the physical state of a quantum particle. While a bit can
only assume one of its two possible values, the qubit state’s is denoted as a linear
combination of its basis states, weighted by α and β. These complex parameters
are called probabilities amplitudes and their magnitude squared represents the
probability of measuring one of the two possible outcomes, i.e |0⟩ and |1⟩ whose
sum must therefore be 1:

|α|2 + |β|2 = 1. (1.4)
The reason why the probabilities are described by complex numbers is that,

when complex numbers are added together, they can cancel each other out, mean-
ing that amplitudes can lower their probability. This is related to a quantum
mechanics physical phenomenon called interference, for which an individual par-
ticle, being into more than one state at the same time, can cross its own trajectory
and interact with itself, actually interfering with the probability of being in a state
or another.

To describe the state of a quantum system obtained from assembling qubits, it is
necessary to perform an operation called tensor product between the state vectors
describing its starting qubits. Taking for example two qubits whose state vectors
are:

|Ψ⟩ =
C
a
b

D
, |Φ⟩ =

C
c
d

D
, (1.5)

their tensor product is defined as:

|Ψ⟩ ⊗ |Φ⟩ =
C
a
b

D
⊗
C
c
d

D
=


a · c
a · d
b · c
b · d

 (1.6)

Equivalent ways of representing qubits of the same system can be:

• |Ψ⟩ ⊗ |Φ⟩

• |Ψ⟩|Φ⟩

• |ΨΦ⟩

2



1.2 – Superposition and Measurement

1.2 Superposition and Measurement
As seen in the previous section, a single particle can be in a combination of different
states weighted by specific probability amplitudes. This phenomenon, referred to
as superposition, can be extended to an arbitrary number of qubits and it is
exploited in quantum computing to condense more information into the same set of
qubits. This effect, though, does not survives after a measurement is performed on
the system. The quantum information is lost irreversibly and classical information is
obtained, making the measurement a destructive operation. Therefore re-obtaining
the information embedded in the states of a quantum system becomes a statistical
process. For example, if the state of a qubit is given by |Ψ⟩ =

è
a b

éT
, the result

of the measurement can be:

• |0⟩ with probability |α|2

• |1⟩ with probability |β|2

After the measurement is performed, the state of the system collapses into one
of the basis states and any further measurement will therefore give the same result
with a probability equal to 1.

The goal of quantum algorithms is therefore to exploit the parallelism made
possible by the superposition of states, which allows evaluating more inputs at same
time, and take advantage of the interference phenomenon to increase the probability
amplitude associated with the states representing the sought-after solution, in order
to make sure it will be the one measured.

1.3 Entanglement
Another peculiarity of quantum systems is entangled states. The basic states of
assembled systems are obtained with the tensor product of the basic states of its
constituents, these are called separable states. But they are not the only states
that quantum systems can be found in. For example, if a 2-qubit quantum system
is described

|Ψ⟩ = α|00⟩ + β|11⟩

its state cannot be expressed as a tensor product of two basic states. The two states
are intimately related to one another in such a way that performing a measurement
on one of the two qubits will determine the state of the other as well. If, for
example, the result of a measurement on the first qubit is |0⟩, the second one will
necessarily be |0⟩. By exploiting entangled states, quantum algorithms can speed-
up their processing capabilities since processing and measuring one qubit will reveal
information about the entangled one.
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1 – Introductory concepts

1.4 Bloch Sphere
The Bloch Sphere is a unitary radius sphere, centered in the origin that serves
as a graphic representation of the state of a qubit and can be a valuable way to
understand one-qubit operations. The previous definition of a complex number,
expressed by equation 1.1, is referred to as the Cartesian representation. Another
way to describe it is by using polar coordinates:

• ρ =
ñ

(a2 + b2) is referred to as the magnitude

• θ = tan -1( b
a
) is instead defined as its phase

By defining the probability amplitudes of a qubit state in this way, it is possible
to rearrange its expression as:

|Ψ⟩ = cos(θ)|0⟩ + eiϕ sin(θ)|1⟩, where θ ∈ [0; π] and ϕ ∈ [0; 2π] (1.7)

Where the angles θ and ϕ can be used to describe the vector that starts from
the origin and arrives at the surface of the Bloch sphere, referred to as the Bloch
Vector, as shown in Figure 1.1.

Figure 1.1. Bloch Sphere

1.5 Quantum Circuits and Quantum Gates
Similarly to what happens in classical digital circuits, quantum circuits do calcula-
tions by manipulating the information stored into qubits. They do so through the
use of devices called quantum gates, which can be combined in different ways to
implement many algorithms. Quantum dynamics is expressed through linear trans-
formation between complex vector spaces, represented by complex square matrices.
Given a matrix A, defined as

4
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A =


a11 a12 . . .
... . . . ...

am1 . . . amn

 (1.8)

where aij is a complex number, it is possible to define its transpose, conjugate,
adjoint:

• The transpose of a matrix is obtained by switching the rows and the columns
of a matrix, and is defined as

AT =


a11 . . . am1

a12
. . . ...

. . . . . . amn

 (1.9)

• To obtain the conjugate matrix, the sign of the imaginary part of each com-
plex entry is inverted, which is referred to as its complex conjugate aij. The
conjugate matrix is therefore defined as

A =


a11 a12 . . .
... . . . ...

am1 . . . amn

 (1.10)

• The adjoint is a conjugate matrix that has been transposed as well.

A† =


a11 . . . am1

a12
. . . ...

. . . . . . amn

 (1.11)

Furthermore, a matrix is invertible if there exists a matrix A−1 such that

A−1A = AA1 = I (1.12)
where A−1 is defined as its inverse.
The transformations implemented by a quantum gate are represented by uni-

tary complex matrices, which are matrices for which adjoint and inverse coincide

U †U = UU † = I. (1.13)
After applying a gate on an a quantum system, to obtain the resulting state a

tensor product between the state vector and the gate matrix must be performed.
Given a state |Ψ⟩ defined as

|Ψ⟩ = [c0, c1, . . . , cn]T (1.14)

5



1 – Introductory concepts

and a unitary matrix U given by

U =


u11 . . . un1

u12
. . . ...

. . . . . . unn

 (1.15)

The resulting state |Ψ′⟩ is defined as

|Ψ′⟩ = U |Ψ⟩ =


U11 · c1 + U12 · c2 + · · · + · · · + U1n · cn

· · · + · · · + · · · + · · · + . . .
... + ... + ... + ... + ...

Un1 · c1 + Un1 · c2 + . . . . . . Unn · cn

 (1.16)

By exploiting the properties of unitary matrices, applying a gate whose unitary is
equal to U † on |Ψ′⟩, the original state |Ψ⟩ can be re-obtained, making the evolution
of a quantum state reversible in time. Measurement is the only quantum operation
that is not represented by a unitary matrix and is in fact a non-reversible operation,
as stated previously.

1.5.1 One-Qubit gates
Some common one-qubit quantum gates and their matrices will be discussed in this
section.

Pauli X, Y, Z Gates

The Pauli gates are ubiquitously used in quantum computing. Each of them per-
forms a rotation of the qubit state along one of the three axes present in the Bloch
sphere representation.

The Pauli X-gate performs a π-radiants rotation around the X-axis which
causes the state of the qubit to be flipped. It is the equivalent of the classical NOT
gate in the binary domain, which is why it is also referred to the NOT gate. The
matrix that corresponds to the transformation applied by this gate and its symbols
are given in equation 1.17 and in Figure 1.2 respectively.

X =
C
0 1
1 0

D
(1.17)

Figure 1.2. Symbols for Pauli
X-Gate
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1.5 – Quantum Circuits and Quantum Gates

For a qubit in the general state |Ψ⟩ =
è
α β

éT
to whom an X-gate transformation

is applied, will have a resulting state equal to:

|Ψ′⟩ = X|Ψ⟩ =
C
0 1
1 0

D C
α
β

D
=
C
β
α

D
(1.18)

In Figure 1.3, an example of a X-gate applied on an a state initialized at |0⟩ is
shown.

Figure 1.3. Bloch Sphere representation of the X gate transformation

The Pauli Z-Gate applies a rotation around the Z-axis of π-radiants, which
means flipping the relative phase of a generic qubit state. It is often referred to as
the phase gate. Its matrix and symbol are reported in Figure 1.4.

Z =
C
1 0
0 −1

D
(1.19)

Figure 1.4. Symbol for Pauli
Z-Gate

In general, for a qubit state defined as |Ψ⟩ =
è
α β

éT
to whom a Z-gate trans-

formation is applied will have a resulting state equal to:

|Ψ′⟩ = Z|Ψ⟩ =
C
1 0
0 −1

D C
α
β

D
=
C

α
−β

D
(1.20)

The example shown in Figure 1.5 shows the effect of a Z-gate applied on a state
given by |Ψ⟩ = |0⟩+1⟩√

2 .
The Pauli Y-Gate rotates the state of a qubit of π-radiants around the Y-

axis, which means the final state will have both a different relative phase and a
different amplitude probability. Since its action on the qubit state can be achieved

7



1 – Introductory concepts

Figure 1.5. Bloch Sphere representation of the Z gate transformation

by combining a Pauli X gate and a Pauli Z gate. It is referred to as the bit-phase-flip
gate. Its matrix and symbol are reported in Figure 1.6.

Y =
C
0 −i
i 0

D
(1.21)

Figure 1.6. Symbol for Pauli
Y-Gate

In general,

|Ψ′⟩ = Y |Ψ⟩ =
C
0 −i
i 0

D C
α
β

D
=
C
−i · β
i · α

D
(1.22)

Figure 1.7 depicts the result of applying a Y-gate on a state initialized at |0⟩.

Figure 1.7. Bloch Sphere representation of the Y gate transformation

Hadamard Gate

The Hadamard Gate is one of the most important gates because it permits to get
a superposition of basis states with uniform amplitudes, which is one of the main

8
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ingredients of most quantum algorithms. The matrix that represents this operation
transform is given in equation 1.23 and its symbol in Figure 1.8.

H = 1√
2

C
1 1
1 −1

D
(1.23)

Figure 1.8. Symbol for
Hadamard Gate

It can be considered a change of basis since it transforms the basis states |0⟩ and
|1⟩ into two other remarkable states, denoted as |+⟩ and |−⟩:

|0⟩ −→ |0⟩ + |1⟩√
2

= |+⟩, |1⟩ −→ |0⟩ − |1⟩√
2

= |−⟩ (1.24)

By looking at the Bloch Sphere in Figure 1.9, it is possible to visualize the basis
change better, as the frame of reference switches from the Z-axis to the X-axis.

Figure 1.9. Bloch Sphere representation of the Hadamard gate transformation

Arbitrary Rotation Gates

Rotation gates allow the application a rotation around one of the axes by an ar-
bitrary angle. By convention, there are three of them, Rx, Ry, and Rz. Here only
Ry is presented because it is the only one used in the algorithms present in this
document. Its matrix and symbol are the following:

9



1 – Introductory concepts

Ry(θ) =
cos

1
θ
2

2
− sin

1
θ
2

2
sin
1

θ
2

2
cos
1

θ
2

2 
(1.25)

Figure 1.10. Symbol for Ry Gate

The example in Figure 1.11 shows a rotation of 3
4π radiants around the y-axis

on the Bloch sphere.

Figure 1.11. Bloch Sphere example for the Ry gate

1.5.2 Two-qubit gates
SWAP Gate

The Swap gate is a two-qubit gate that allows swapping the position of the qubits.
The swap gate is of crucial importance in the compilation of quantum circuits,
taking into consideration the limited connectivity of the current circuits’ topologies.
Its matrix is reported in equation 1.26 and its symbol is shown in Figure 1.12.

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (1.26)

Figure 1.12. Symbol for
SWAP gate
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Controlled gates

A controlled gate is a gates that performs an IF-THEN operation. Its inputs are
divided into controls and targets, and its gate transformation is performed on the
target qubits only when the control qubits are true (or false, depending on the type
of controls). Starting from a gate U described by an n-qubit unitary matrix, adding
a control qubit will result into a gate described by an (n + 1)-unitary matrix CU .
Controlled gates are represented by the symbol in Figure 1.13.

Figure 1.13. Symbol for a CU gate

For a given unitary U describing a gate, its controlled version is given by CU

U =
C
a b
c d

D
, −→ CU =


1 0 0 0
0 1 0 0
0 0 a b
0 0 c d

 . (1.27)

CNOT gate

The CNOT gate is the controlled version of the Pauli X gate, which means that the
flip of the target qubit is applied only when the control qubit is true. Its matrix is
reported in equation 1.5.2 and its symbol is shown in Figure 1.14.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.28)

Figure 1.14. Symbol for
CNOT gate

To change the condition on which the target qubit is flipped, a NOT gate can
be applied before and after the control qubit. This approach has its own symbol,
reported in Figure 1.15, which is often used to simplify circuits’ schematics. The

11
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equivalent gate is referred to as 0CNOT gate and, as described by the matrix
in equation 1.5.2, it works in the same exact way as the CNOT, except that the
transformation is applied if the control qubit is in state |0⟩.

0CNOT =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (1.29)

Figure 1.15. Symbol for
0CNOT gate

Controlled Rotation gate

The controlled rotation gate applies the rotation only if the control qubit is true.
Only the controlled rotation along the Y-axis is described, because it is the only
one that finds is use in the algorithms presented in this document.

CRy =


1 0 0 0
0 1 0 0
0 0 cos

1
θ
2

2
− sin

1
θ
2

2
0 0 sin

1
θ
2

2
cos
1

θ
2

2


Figure 1.16. Symbol for C −
Ry gate

1.5.3 Three-qubit gates
Toffoli Gate

The Toffoli Gate is a three-qubit gate, also known as the CCX gate or CCNOT. It
is a NOT gate with two control qubits and one target. In this case, the operation
is performed only when both of the control qubits are true.

Friedkin Gate

The Friedkin Gate, or CSWAP, is also a three qubit gate, but in this case, it has
one control and two targets. It is the controlled version of the SWAP gate, in fact

12



1.5 – Quantum Circuits and Quantum Gates

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Figure 1.17. Symbol for Tof-
foli gate

the swap between the two qubits takes place only if the control qubit is true. Its
unitary matrix is represented in equation 1.30 and its symbol in Figure 1.18

CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


(1.30)

Figure 1.18. Symbol for
Friedkin gate

1.5.4 Measurement Operation
As said before, the measurement is a non-reversible operation, therefore it is not
described by a unitary matrix. This operation is only applied to the circuit at the
end of the computation. It is represented by the symbol in Figure 1.19.

Figure 1.19. Measurement Operation Symbol

13
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Chapter 2

Quantum Image Processing:
state of the art

2.1 Introduction

Nowadays, the interest around applications like pattern recognition and computer
vision makes image processing tasks like storage and processing of visual infor-
mation of great importance. However, the rapidly increasing volume of visual
information weighs on the computational capabilities currently available in clas-
sical computers. In the meantime, the Quantum Computing paradigm began to
establish itself and grow in popularity, thanks to the recent advancement in the de-
velopment of quantum hardware. Exploiting the phenomena presented in section 1
like superposition and entanglement increases the density of processable informa-
tion, while introducing a computational speed-up in the attainment of the results.
The inherent parallelism of the quantum framework can therefore be exploited to
reduce the computational complexity of the image processing tasks, and from the
intersection of these two research domains, Quantum Image Processing (QImP)
was born. In this context, many algorithms that permit to encode an image in
a quantum circuit and process it, have been presented. This chapter gives an
overview of QImP techniques that were considered promising in terms of feasibility
and application scenarios. The selection spans from encoding methods, basic pro-
cessing tools, and edge detection techniques. Classical compression algorithm that
allows the reduction of the quantum resources needed has also been investigated.
First, the formalism and workflow of the algorithms are presented and then they
are analyzed in terms of complexity and dimension of the corresponding circuit.
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2.2 Quantum Image Representation

In order to process the information on quantum computers, the images need to
be stored in a quantum circuit. Many different models have been proposed that
differ in the way they encode the intensity information of pixels as well as positions,
making them different in terms of image processing applications and algorithmic
complexities. The two most popular Quantum Image Representations (QIRs) are
here discussed, followed by a less-known model that has promising perspectives in
terms of computer vision applications.

2.2.1 FRQI

Flexible Representation of Quantum Images (FRQI) is a phase encoding technique
in the QIR panorama presented in [3]. It represents the color information of an
image through the phase of a qubit. It uses a Cartesian coordinate system and
captures information about the intensity and position of the pixels in the state of
a quantum circuit. For a gray-scale image, the FRQI state is defined as

|I(θ)⟩ = 1
2n

22n−1Ø
i=0

(cosθi|0⟩ + sinθi|0⟩) ⊗ |i⟩, (2.1)

θi ∈ [0,
π

2 ], i = 0,1, ...,22n (2.2)

From equation 2.1 is possible to see that the FRQI state is a normalized state, i.e.
||I(θ)|| = 1 as given by

||I(θ)|| = 1
2n

öõõô22n−1Ø
i=0

(cos2θi + sin2θi)2 = 1 (2.3)

and that the state is made of

• information that encodes the gray-scale information: cosθi|0⟩ + sinθi|0⟩, with
θ proportional to the intensity of the pixel

• information that encodes the corresponding position of the pixel: |i⟩

Taking for example a 2 × 2 image like in Equation 2.2.1, its FRQI state will be
described by
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|I⟩ = 1
2[(cos θ0|0⟩ + sin θ0|1⟩) ⊗ |00⟩ + (cos θ1|0⟩ + sin θ1|1⟩) ⊗ |01⟩+

+ (cos θ2|0⟩ + sin θ2|1⟩) ⊗ |10⟩ + (cos θ3|0⟩ + sin θ3|1⟩) ⊗ |11⟩] =

= 1
2(cos θ0|000⟩ + sin θ0|001⟩ + cos θ1|010⟩ + sin θ1|011⟩ + cos θ2|100⟩+

+ sin θ2|101⟩ + cos θ3|110⟩ + sin θ3|111⟩ (2.4)

Figure 2.1. 2 × 2 FRQI image

In the FRQI encoding method, the number of qubits needed to encode the
positions of a 2n ×2n image is given by Npos = log2 2n +log2 2n = 2n. An additional
qubit is used to encode the color information, for a total of

N = Npos + Ncolor = 2n + 1

To build an FRQI state representing an image, the 2n position qubits have to
be put into a superposition of states with uniform probability amplitudes. In this
way, the 22n combination of their basis states will represent all of the 22n positions
present in the image with equal probability. This can be achieved by applying a
Hadamard gate on each position qubit.

Starting from the initialized state |0⟩⊗2n+1, the subsequent state is obtained by
applying the transform H = I ⊗H⊗2n which is equivalent to applying 2n Hadamard
gates on each qubit dedicated to the position. The new state is given by

|H⟩ = 1
2n

|0⟩ ⊗
22n−1Ø

i=0
|i⟩ (2.5)

After that, the intensity of the pixels is mapped on the color qubit by changing
its phase by an angle proportional to the intensity value. This transformation is
achieved through the application of a Ry gates for each pixel. To make sure that
the angle encoded corresponds only to a specific pixel in the image, the Ry gate has
to be controlled by the position qubits and its controls have to be true or negated
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depending on the position of the pixel that is being encoded, obtaining the final
state:

|I(θi)⟩ = R|H⟩ = (
22n−1Ù

i=0
Ri)|H⟩ (2.6)

The algorithm can therefore be divided into two steps:

• Step 1 : putting the position qubits into superposition, through the use of
Hadamard gates.

• Step 2 : applying phase change on the color qubit through C2n − Ry gates.

Example Circuit

Taking for example the 2 × 2 image schematized in Equation 2.2.1, in order to
translate it into an FRQI image, the number of qubits needed to encode the posi-
tion of the pixels are

21 × 21 −→ n = 1 −→ Npos = 2n = 2

for a total of N = 3.
Now the position qubits have to be put into superposition by applying a Hadamard

gate on each of them:

|0⟩ H

|0⟩ H

|0⟩

The first pixel is in position 00, therefore to activate the controls of the rotation
gate when the position qubits are in state |00⟩, a NOT gate is applied on each. To
add the color information, a controlled rotation gate is applied on the color qubit
with an angle proportional to the intensity of the pixel:

|0⟩ H X •

|0⟩ H X •

|0⟩ Ry(θ0)
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In order to keep the circuit schematic simple, the NOT gates used to change
the conditions on which the C2 − Ry gate activates will be applied taking into
consideration the gates that have been previously applied. Therefore, to encode
the position of the second pixel 01, an X-gate is applied to the second position
qubit. It is then followed by the controlled rotation:

|0⟩ H X • •

|0⟩ H X • X •

|0⟩ Ry(θ0) Ry(θ0

The procedure is repeated for the last two pixels as well, obtaining:

|0⟩ H X • • X • •

|0⟩ H X • X • X • X •

|0⟩ Ry(θ0) Ry(θ1) Ry(θ2) Ry(θ3)

Computational Complexity

The computational complexity of an algorithm measures the number of elementary
steps that an algorithm runs on inputs of arbitrary size. Complex quantum gates,
like controlled gates, are constituted by a combination of simpler gates, therefore,
to implement them on real devices and to understand their actual depth, they have
to be decomposed. As shown in the previous section, the FRQI algorithm can be
implemented by 2n Hadamard gates and 22n controlled rotations C2n(Ry(2θi)). The
controlled rotations can be broken down into 22n −1 simple rotations, C(Ry( 2θi

22n−1))
and C(Ry(− 2θi

22n−1)), and 22n − 2 CNOT [3]. Taking the example of a 2 × 2 image,
i.e. n = 1, a C2(Ry(2θi)) operation can be broken down as shown in the schematic
below:

• • • •
• = • •

Ry(2θ) Ry(θ) Ry(−θ) Ry(θ)
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Therefore the total number of simple operations needed to prepare an FRQI
image is given by:

2n + 22n × (22n − 1 + 22n − 1 − 2) = 24n − 3 · 22n + 2n (2.7)
The calculation complexity of FRQI is thus O(24n), which is quadratic to the

22n pixels present in the image. The calculation does not take into consideration
the number of X-gates needed to encode the position because it is negligible in the
approximation of the complexity.

Image Retrieval

To retrieve the image from the quantum framework to the classical one and be
able to visualize it, the qubits of the circuit must be measured. A measurement
performed on an FRQI circuit gives out a state of the form |c⟩|i⟩2n, where |c⟩ is the
color qubit and |i⟩2n are the qubits that encode the position. A single measurement
of this circuit, however, does not give any information about the intensity of the
pixel, since that information is encoded in the phase between the amplitudes of the
state. Therefore, to get the amplitudes, multiple measurements of many identical
FRQI states are required. The results will produce a probability distribution that
is then elaborated to obtain the angles encoding the intensity levels.
Taking the mathematical expression of an FRQI state that encodes only the inten-
sity information of the i − th pixel of a 2n × 2n image

|ci⟩ = 1
2n

cos(θi)|0⟩ + sin(θi)|1⟩ (2.8)

and performing a number Nmeas of measurements on the circuit, it is possible to
define N0i and N1i as the number of times that the measurement of the color qubit
is found to be 0 and 1 respectively, in the same position. The amplitudes of the
state are re-obtained as:

c0i = 1
2n

cos(θi) =
ó

N0i

Nmeas

(2.9)

c1i = 1
2n

sin(θi) =
ó

N1i

Nmeas

(2.10)

To extrapolate the information about the angle, it is sufficient to apply an inverse
function, after doing some calculations:

θi = arctan
Aó

N0i

N1i

B
(2.11)

It is important to notice that results obtained from measuring an FRQI state will
always be an approximation of the original image and that, to obtain an accurate
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approximation, it is necessary to perform a sufficiently high number of measure-
ments, depending on the size of the image.

Multi-Channel Representation

To extend FRQI to the representation of color images, a Multi-Channel Represen-
tation for Quantum Images (MCRQI) was introduced in [4]. It uses the widely
popular RGB color model to represent the color information, adding two other
channels to the circuit. The RGB model, that stands for red (R), green (G), and
blue (B), is an additive color model that uses primary colors with different inten-
sities to reproduce a wide array of colors. To accomplish this, three qubits are
instantiated to encode the color information, instead of just one. The resulting
expression is:

|I⟩ = 1
2n+1

22n−1Ø
i=0

|Ci
RGB ⊗ |i⟩, (2.12)

where |Ci
RGB⟩ encodes the information of the R, G, and B channels

|Ci
RGB⟩ = |CR⟩|00⟩ + |CG⟩|01⟩ + |CB⟩|10⟩ (2.13)

with

|CR⟩ = cos θi
R|0⟩ + cos θi

R|1⟩,
|CG⟩ = cos θi

G|0⟩ + cos θi
G|1⟩,

|CB⟩ = cos θi
B|0⟩ + cos θi

B|1⟩

Taking as an example a 2 × 2 image, as in Figure 2.2, the overall state is de-
scribed as:

|I⟩ = 1
4[(cos θR

0 |000⟩ + cos θG
0 |001⟩ + cos θB

0 |010⟩ + sin θR
0 |100⟩ + sin θG

0 |101⟩+

+ sin θB
0 |110⟩) ⊗ |00⟩ + (cos θR

1 |000⟩ + cos θG
1 |001⟩ + cos θB

1 |010⟩ + sin θR
1 |100⟩+

+ sin θG
1 |101⟩ + sin θB

1 |110⟩) ⊗ |01⟩ + (cos θR
2 |000⟩ + cos θG

2 |001⟩ + cos θB
2 |010⟩+

+ sin θR
2 |100⟩ + sin θG

2 |101⟩ + sin θB
2 |110⟩) ⊗ |10⟩ + (cos θR

3 |000⟩ + cos θG
3 |001⟩+

+ cos θB
3 |010⟩ + sin θR

3 |100⟩ + sin θG
3 |101⟩ + sin θB

3 |110⟩) ⊗ |01⟩]

The procedure to build an MCRQI state is fairly similar to an FRQI one. The
position qubits are put into superposition and the intensity of the pixels is encoded
into the phase of one color qubit, referred to as the R qubit, by applying a rotation
gate. The main differences instead are are:
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Figure 2.2. 2 × 2 MCRQI image

• two more qubits are added to the circuit, referred to as the G and B qubits.

• The rotation gates applying the phase change are also controlled by the G and
B qubits, as well as by the position qubits.

• The measurement is performed conditioned by the state of the G and B channel
qubits.

The two added color qubits are used to generate more combinations of the basis
states to embed the intensity information of all three channels. For each of the
positions, adding two more qubits into superposition, can expand the number of
basis state combinations to four instead of one. The MCRQI encoding exploits only
three, one for each channel. The phase of the R qubit will cyclically represent the
intensity of each of the three channels. By applying controls on the measurement
operation, it is possible to distinguish between the three channels.

The total number of qubits required for an MCRQI image is therefore

N = Npos + Ncolor = 2n + 3

The quantum circuit for a 2×2 MCRQI image is reported below. For simplicity,
only the first pixel is encoded, seeing as the procedure for the other ones is constant.
Instead of explicitly showing the application of X gates that changes the state of
the control qubits, the negated controls are represented by a white dot, as seen in
section 1 for the 0CNOT gate.

As can be seen from the circuit, for each pixel three controlled rotations are
needed and, in the end, three measurement operations that allow to distinguish
between the three color channels when retrieving the image.

The simple operations needed to implement the algorithm are:

• 2 + 2n Hadamard Gates

• 3 × 22n C2n+2(Ry(2θ)) that are broken down into
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|0⟩ H

|0⟩ H

|0⟩ H • •

|0⟩ H • •

|0⟩ Ry(θR
0 ) Ry(θG

0 ) Ry(θB
0 )

– 3 × 22n × (22n+1 − 1) C(Ry(2θ)), C(Ry(−2θ))
– 3 × 22n × (22n+1 − 2) CNOT gates

giving a total of 24×24n −9×22n +2n+2 elementary gates. The computational
complexity is O(24n), the same as for FRQI.

2.2.2 NEQR
FRQI presents some drawbacks that limit its capabilities of handling an image,
since it stores the gray-scale information as the probability amplitude associated
with the basis states of a single qubit. This limits the processing possibilities and
makes it impossible to retrieve the accurate image from measuring the circuit. For
these reasons, a novel enhanced quantum representation (NEQR) was introduced
in [5]. This model uses the basis states of a qubit sequence to store the intensity
information of every pixel, instead of the phase of a qubit state, and the Cartesian
coordinates system to encode the position. For a 2n × 2n image with a gray-scale
range of 2q values, a NEQR state is defined as:

|I⟩ = 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

|f(Y, X)⟩|Y X⟩ = 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

q−1p
i=0

|Ci
Y X |Y X⟩ (2.14)

where f(Y, X) is the gray-scale value of the corresponding pixel (Y, X), defined
as:

f(Y, X) = C0
Y XC1

Y X . . . Cq−2
Y X Cq−1

Y X CY X , (2.15)
Ck

Y X ∈ [0,1],
f(X, Y ) ∈ [0,2q − 1].

To encode a NEQR state, q qubits must be instantiated for the color encoding
and 2n qubits for the position encoding:
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N = Npos + Ncolor = 2n + q

Taking, for example, a 2 × 2 image like in Figure 2.3, where the intensity gray-
scale values are indicated in decimal form, the corresponding NEQR state will be:

|I⟩ = 1
2(10001000⟩⊗|00⟩+ |00010000⟩⊗|01⟩+ |11000000⟩⊗|10⟩+ |1001100⟩⊗|11⟩)

(2.16)

Figure 2.3. 2 × 2 NEQR image

Starting from a state initialized at |0⟩, there are two steps to obtain a NEQR
image:

• Step 1: Similarly to FRQI, the position qubits are put into superposition
through the use of Hadamard gates, while the sequence of color qubits is kept
in the same state.

• Step 2:To set the gray-scale value of each pixel, C2nNOT gates are applied on
the color qubits corresponding to the bits of the intensity values encoding a 1.

Step 1 of the algorithm can be represented by the transform U1 defined as:

U1 = I⊗q ⊗ H⊗2n (2.17)

The first transform brings the initialized state |Ψ⟩0 to the intermediate state |Ψ⟩1:

|Ψ⟩0 = |0⟩⊗2n+q (2.18)

|Ψ⟩1 = U1(|Ψ⟩0) = (I|0⟩)⊗q⊗(H|0⟩)⊗2n = 1
2n

|0⟩⊗q⊗
22n−1Ø

i=0
|i⟩ = 1

2n

2n−1Ø
Y =0

2n−1Ø
X=0

||0⟩q|Y X⟩

(2.19)

24



2.2 – Quantum Image Representation

Step 2 is subdivided into 22n sub-operation, one for each pixel, that take care of
setting the intensity value on the color qubits. The sub-operation, UY X is instead
defined as:

UY X = (I ⊗
2n−1Ø

j=0i=0,

2n−1Ø
i,j /=Y X

|ji⟩⟨ji|) + ΩY X ⊗ |Y X⟩⟨Y X| (2.20)

where ΩY X is the value-setting operation for pixel (Y, X):

ΩY X =
q−1p
i=0

Ωi
Y X (2.21)

which consists of q quantum oracles (one for every qubit of the gray-scale range)
as given by

Ωi
Y X : |0⟩ −→ |0 ⊕ Ci

Y X⟩. (2.22)

If Ci
Y X = 1, Ωi

Y X is a C2nNOT gate. Otherwise it is a simple Identity gate. For
a detailed mathematical demonstration, the reader is invited to read [5].

Example Circuit

Taking the 2 × 2 image with a gray-scale range q = 8 in Figure 2.3 as an example,
to build a NEQR circuit encoding that image the number of qubits needed is given
by:

N = Npos + Ncolor = 2n + q = 2 + 8 = 10

They start initialized at the state |0⟩⊗10.
Applying the first step of the NEQR algorithm, the 2 position qubits are put

into superposition through the use of Hadamard gates, while a NOP is applied on
the color qubits:

The first sub-operation of the second step, Ω00, consists in encoding the intensity
value of the pixel in position 00, whose binary value is “10010110”, by applying a
C2NOT gate on the qubit corresponding to the bit encoding a 1, controlled by the
position qubits.

The procedure is repeated for the other three pixels as well:

Computational Complexity

The first step of the algorithm is implemented through the use of 2n Hadamard
gates and q Identity gates, achieving a complexity of O(q + 2n). The second step is

25



2 – Quantum Image Processing: state of the art

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ H

|0⟩ H

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ H

|0⟩ H

composed by 22n sub-operations UY X , who in turn are made of q C2nNOT gates,
in the worst case.
CkNOT operations can be decomposed into (4k − 8) Toffoli gates when k − 2
auxiliary qubits are present, as shown in the circuit below, making their complexity
O(k). The complexity of the whole UY X operation is therefore O(2qn) and that of
the integral step is O(2qn22n). The complexity of the whole circuit is due to Step2
of the algorithm.

26



2.2 – Quantum Image Representation

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ I

|0⟩ H • • • •

|0⟩ H • • • • •

|q4⟩
|q3⟩ •
|q2⟩ •
|q1⟩ •
|q0⟩ •
|a1⟩
|a0⟩

=

• •
• • • •

• •
• •

• • • •
• •

Image Retrieval

Unlike FRQI, NEQR does not store the intensity information in the probability am-
plitude of a qubit, but rather in the basis state of a sequence of qubits. Performing
a measurement on the NEQR will give as a result one of the states:

Imeas = |f(Y, X)⟩|Y X⟩

that represents, in binary form, the intensity and the position of the pixel.

Therefore, through this method, the actual intensity value can be recovered by
decoding the result of the measurement.
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Multi-Channel Representation

To handle RGB images also with the NEQR model, a novel quantum representation
of color images (NCQI) was proposed in [6]. It extends the NEQR model by adding
two more qubit sequences to embed the intensity information, for a total of three
color channels. The number of qubits instantiated for 2n × 2n image and with an
intensity range of 2q values, represented with the NCQI model, is equal to:

Ntot = Npos + Ncolor = 2n + 3q (2.23)

The procedure to build an NCQI state is exactly the same as for NEQR, with
the exception that Step 2 of the algorithm is performed for each color channel.
Therefore 2n Hadamard gates are applied on each position qubit and, in the worst
case scenario, 3q C2nNOT are applied for each 22n pixel, which corresponds the
encoding of the maximum intensity value of the range.

A NCQI state for a 2n × 2n image can be shown in the following equation:

|I⟩ = 1
2n

2n−1Ø
y=0

2n−1Ø
x=0

|c(y, x)⟩ ⊗ |yx⟩ (2.24)

where |c(y, x)⟩ denotes the intensity encoded in a binary sequence of all three
channels of the corresponding pixel:

|c(y, x)⟩ = |Rq−1 . . . R0Gq−1 . . . G0Bq−1 . . . B0⟩ (2.25)

Taking a 2 × 2 image as in Figure 2.4, with an intensity range for each channel
of 256 values, the number of qubits needed to represent it is given by:

Ntot = 2 + 3 · 8 = 26

Figure 2.4. 2 × 2 NCQI image

The NCQI state that corresponds to the image is:
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|I⟩ = 1
2(|111111111111111111111111⟩ ⊗ |00⟩+

+ |000000000000000011111111⟩ ⊗ |01⟩+
+ |111111110000000000000000⟩ ⊗ |10⟩+
+ |000000001111111100000000⟩ ⊗ |11⟩)

(2.26)

To obtain the NCQI state, the required gates are:

• 2n Hadamard gates

• 2n × 3q × 22n Toffoli gates, in the worst case

therefore its complexity is O(6qn · 22n), very similar to the NEQR one.

2.2.3 QPIE
FRQI and NEQR are by far the most popular methods for encoding images in
the quantum domain. Since their proposal, several extensions, operations, and
possible applications based on them have been presented. Their structures have
advantages and disadvantages, therefore it is useful to explore other encoding meth-
ods, depending on the applications for a certain type of processing. A Quantum
Probability Image Encoding (QPIE) has been proposed in [7] that exploits the prob-
ability amplitudes of the quantum states to store the gray-scale values of the pixels
of an image and uses the Cartesian coordinate system like the previously presented
encoding.

In particular, for a 2N1 × 2N2 image represented as a 2D matrix of pixel’s inten-
sities as:

I = (Iyx)N1×N2 (2.27)

its QPIE state is given by:

|I⟩ =
2n−1Ø
i=0

ci|i⟩ (2.28)

where ci is the normalized pixel intensity so that the squared sum of all the
probabilities amplitudes is equal to 1.

ci = Iyxñq
I2

yx

(2.29)
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The number of qubits required for this encoding is 2n, since the intensities values
are encoded directly on the position qubits, making it the method that requires the
least amount of qubits for the representation of a gray-scale image.

Taking Figure 2.5 as an example, the corresponding QPIE state will be given
by:

|I⟩ = c0|00⟩ + c1|01⟩ + c2|10⟩ + c3|11⟩ (2.30)

where ci = Iiñq3
j=0 Ij

.

Figure 2.5. 2 × 2 QPIE image

2.2.4 Computational Complexity
The preparation of an n-qubit quantum state into a specific probability distribution
(c0, c1, ..., cn) on a superposition of the orthonormal states of a set of qubits can be
very efficiently implemented using CNOT gates and single-qubit rotations. Various
algorithms have been proposed to implement the initialization of a quantum system
whose complexity to prepare an arbitrary state starting from a known distribution
is O(2n) [8], [9].

2.2.5 Image Retrieval
The extraction of a QPIE image has the same disadvantages as an FRQI image since
the gray-scale information is encoded in the probability amplitudes. In order to
retrieve a good approximation of the image, many measurements must be performed
and the exact image can never be obtained. The probability of a state encoding a
pixel’s position, which is its intensity, is described as

ci = Iyxñq
I2

yx

(2.31)

30



2.3 – Geometric Transformations

Performing a measurement on a QPIE circuit will give as a result a generic state
|yx⟩. Defining Nyx as the number of times this result occurs and as Nmeas the
number of total measurements, the intensity of the pixel in position (y, x) can be
approximated as:

Iyx =
ó

Nyx

Nmeas

× RMS (2.32)

Furthermore, the squared sum of the intensities, used to normalize the QPIE
state, is not embedded in the image. For this reason, only the proportions between
the intensities can be retrieved, not their actual value. The retrieved value and
the original one will differ by a proportional coefficient. Assuming that all the
intensities have an intensity value equal to the middle of the range is a possible
operative choice that introduces further approximation.

To compare the different types of encoding, table 2.1, gives an overview of the
most important parameters of the three encoding methods.

Comparison of QImRs for a 2n × 2n image and grey-scale range of 2q values
Representation
method

Encoding
type

Qubit
resource

Complexity Image Retrieval

FRQI Phase 2n + 1 O(24n) Approximated
NEQR Basis 2n + q O(qn22n) Exact
QPIE Amplitude 2n O(2n) Approximated

Table 2.1. Comparison table between FRQI, NEQR, and QPIE

2.3 Geometric Transformations

After defining the models through which an image can be represented on a quan-
tum circuit, processing can be applied to the embedded information. Geometric
Transformations are a basic type of image processing that can be used as a building
block in more advanced algorithms. Fast Geometric Transformations on Quantum
Images are proposed in [10] that manipulates the position information of the pixels
of the image through the use of elementary gates. This type of processing ap-
plies to every representation that uses Cartesian coordinate models, therefore it is
applicable to all of the three previously presented encoding methods.
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2.3.1 Flip operation
The flip operations consist in inverting the pixels’ position with respect to X- or
the Y-axis. They are defined as:

F X
I (|I⟩) = 1

2n

22n−1Ø
k=0

|ck⟩ ⊗ F X(|k⟩ (2.33)

F Y
I (|I⟩) = 1

2n

22n−1Ø
k=0

|ck⟩ ⊗ F Y (|k⟩ (2.34)

where ck represents the color information, |k⟩ = |y⟩|x⟩ and

F X(|y⟩|x⟩) = |y⟩|x⟩, (2.35)
F Y (|y⟩|x⟩) = |y⟩|x⟩, (2.36)

|x⟩ = |xn−1xn−2 . . . x0⟩, |y⟩ = |yn−1yn−2 . . . y0⟩, (2.37)
|x⟩ = |xn−1xn−2 . . . x0⟩, |y⟩ = |yn−1yn−2 . . . y0⟩, (2.38)

where

xi = 1 − xi, yi = 1 − yi, i = 0,1, . . . , n − 1 (2.39)
To achieve an FX or FY operation, NOT gates must be applied on the qubits

that encode the positions related to the opposite coordinate axis, respectively the
Y- or X-axis. An example of an FY flip operation on a 4 × 4 FRQI image and its
expected result can be seen in the depictions below. The red dotted line represents
the original image.

c

y1

y0

x1 X

x0 X

Figure 2.6. FY operation circuit on a 4 × 4 FRQI image and its result

Of the 2n qubits instantiated to encode the position, n are dedicated to spec-
ifying the position on the X-axis of an image, and n on the Y-axis. The number
of NOT gates applied to the circuit to perform a flip along one of the two axes is
equal to n, therefore the complexity of this algorithm is O(n).
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2.3.2 Coordinate Swap Operation
The coordinate-swapping CI operation inverts the position of the pixels between
the two coordinate axes. When applied to |I⟩ produces outputs of the form:

CI(|I⟩) = 1
2n

22n−1Ø
k=0

|ck⟩ ⊗ C(|k⟩) (2.40)

where ck represents the color information, |k⟩ = |yx⟩ and

C(|yx⟩) = |xy⟩ (2.41)

This operation is carried out by applying n SWAP gates that take (yi, xi) as
inputs, where i = 0, . . . , n − 1. SWAP gates can be built using three CNOT
gates. Therefore the total amount of elementary gates necessary is 3n CNOT
gates, making the complexity of this algorithm O(n).

×
×

=
• •

•

Figure 2.7 shows the coordinate swap circuit implemented on an FRQI 4 × 4
image and its expected result.

c

y1 ×
y0 ×
x1 ×
x0 ×

Figure 2.7. CI operation circuit on an 4 × 4 FRQI image and its result

2.3.3 Orthogonal Rotation Operations
By combining the previous two operations, Flip and Coordinate-swap, it is possible
to apply Orthogonal Rotations on quantum images, i.e. rotations with angles of
90°, 180°, and 270°. These orthogonal rotations operations are the operations R90

I ,
R180

I , and R270
I , which are defined as:
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R90(|yx⟩) = |xy⟩, (2.42)
R180(|yx⟩) = |yx⟩, (2.43)
R270(|yx⟩) = |xy⟩. (2.44)

When applied on a quantum image, they produce outputs of the form:

Rα
I (|I⟩) = 1

2n

22n−1Ø
k=0

|ck⟩ ⊗ Rα(|k⟩) (2.45)

where ck represents the color information, |k⟩ = |yx⟩, α ∈ {90,180,270}.
They can be built from flip and coordinate-swapping operations as

R90 = CF X (2.46)
R180 = F Y F X (2.47)

R270 = CF Y (2.48)

Therefore their computational complexity is the same as for flip and coordinate
swapping operations, O(n).

In figures 2.8, 2.9, and 2.10 circuit and expected results of R90
I , R180

I , and R270
I

respectively will be shown.

c

y1 X ×

y0 X ×

x1 ×

x0 ×

Figure 2.8. R90 operation circuit on an 4 × 4 FRQI image and its result

2.3.4 Restricted Geometric Transformations
After defining geometric transformations, it can be useful to limit their action to
smaller subareas of the image. This type of operations is used in macro algorithms
like watermarking, which is the process of hiding information in a carrier image.
By changing the geometry of an image in a small area, the overall image looks
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c

y1 X

y0 X

x1 X

x0 X

Figure 2.9. R180 operation circuit on an 4 × 4 FRQI image and its result

c

y1 ×

y0 ×

x1 X ×

x0 X ×

Figure 2.10. R270 operation circuit on an 4 × 4 FRQI image and its result

apparently the same but contains additional information when compared to the
original. Restricted Geometric Transformations on Quantum Images (rGTQI) are
presented in [11]. These operations are implemented by imposing control conditions
on the gates that apply the geometric transformations. For example, imposing a
condition on the MSB qubit encoding the Y coordinates, will result in dividing
the image into two sub-areas, a lower and an upper one. Positions in the form
|1yn−2 . . . y0⟩|x⟩ will locate pixels in the upper half of the image. Adding a second
condition on the MSB of the X coordinates will instead divide the image vertically
into a left half and a right one. Positions in the form |1yn−2 . . . y0⟩|0xn−2 . . . x0⟩ will
locate the right upper subarea of the image as can be seen in Figure 2.11, and so
on. Increasing the number of conditions is equivalent to reducing the affected area.

To impose a flip with respect to the Y-axis on the lower half of the image for
example, the NOT gates applied to the qubits of the X coordinate will have to be
replaced by 0CNOT gates controlled by the MSB qubit of the Y coordinates. The
circuit and the expected result are shown in Figure 2.12.
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Figure 2.11. Dividing the image into subareas

c

y1

y0

x1

x0

Figure 2.12. FY operation circuit applied on the lower half of an 4 × 4
FRQI image and its result

To apply the transformation only on the left lower part of the image, another
control must be added to the gates, which will now be Toffoli gates controlled by
the MSB of both the Y and X coordinates. The gate that was applied on the MSB
of X coordinate will not be needed anymore, because of the condition imposed on
that qubit. Figure 2.13 shows the corresponding circuit and its result.

c

y1

y0

x1 •
x0

Figure 2.13. FY operation circuit applied on the left lower half of an 4 × 4
FRQI image and its result
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The complexity of rGTQI operations depends on the number of conditions im-
posed on the qubits. Transformations that affect a smaller area will require a higher
number of elementary gates. If the original transformations include a NOT gates,
b CNOT gates, and c Toffoli gates, by adding a condition the gates will become
respectively CNOT , Toffoli, and C3NOT gates. As mentioned in the previous
section CkNOT gates can be decomposed into 4k − 8 Toffoli gates, therefore
the gate count will be a CNOT gates, b + 4c Toffoli, obtaining a complexity of
O(a + b + 4c) [11].

2.3.5 Position Shifting Operations
Another type of geometric transformation that acts on the location of the pixels is
the Position Shifting Transformation presented in [12]. This type of transformation
consists of globally displacing the pixels of a certain amount of positions. It is often
used as a building block inside image filtering algorithms, where shifted copies of
the original image are used to confront neighboring pixels, as will be described later
in this document. The position shifting operation is defined as

P (|i⟩) = |i′⟩ = |(i + c)mod22n⟩, i ∈ 0,1, . . . , 22n − 1 and c ∈ 0,1, . . . , 22n − 1 (2.49)

where i is the decimal representation of the position information |yx⟩, while c
controls of how many positions the image is going to be shifted. To shift the image
of one position, Ck − NOT gates are sequentially applied on all of the position
qubits, starting from the MSB, controlled by the k remaining qubits. An example
of a circuit and its result on an 4 × 4 FRQI image when c = 1 are shown in
Figure 2.14.

c

y1

y0 •
x1 • •
x0 • • •

Figure 2.14. P operation circuit applied on an 4 × 4 FRQI image with
c = 1 and its result.

When c = 2k, the same type of circuit is applied on the 2n − k highest qubits.
In Figure 2.15, the circuit of an 4 × 4 FRQI image when c = 2 and its result are
shown. In [12], also cases where c is not a power of 2 are detailed.
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c

y1

y0 •
x1 • •
x0

Figure 2.15. P operation circuit applied on an 4 × 4 FRQI image with
c = 2 and its result.

To shift the image up or down the Y-axis, or left or right along the X-axis, the same
type of circuit must be applied, but taking into consideration only the position
qubits of the coordinate of interest. The direction of the shift depends on whether
Ck − NOT uses negated controls or not. The circuit to be applied on 4 × 4 FRQI
image shifting the pixels to the right of one position and its result are shown in
Figure 2.16.

c

y1

y0

x1

x0

Figure 2.16. P operation circuit applied on an 4 × 4 FRQI image with c = 1 only
on the X-coordinate its result.

The worst-case scenario, from a complexity point of view, is when c = 1, because
it requires the highest number of gates. In that case, the complexity of the circuit,
for an n-sized image is O(n2), as demonstrated in the reference [12].

2.4 Chromatic Transformations
Chromatic Transformations are another macro-category of basic processing that is
used to modify the color information stored in the image. Color transformations
for FRQI and NEQR are presented in the following sections.
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2.4.1 Applications on FRQI
FRQI uses only the phase of one qubit to store the color information. Applying a
gate on the color wire, the gray-scale information of the whole image is affected.
Different basic gates can be used to obtain various results on the image as presented
in [13], while adding controls on the position qubits allows restricting the affected
areas, as seen for Restricted Geometric Transformations.

Color transformation based on X-gate

When the X-gate is applied to the color qubit of an FRQI image, the result is
defined as:

X(|c(θk)⟩ = |c(π

2 − θk)⟩, ∀k ∈ 0, 1, . . . , 22n − 1, (2.50)

where |c(θk)⟩ represents the color information. This operation acts like a color
inversion. The intensities of the pixels of the entire image invert from darker to
lighter and vice versa. This complement color transformation makes the target in
the image (notably medical images) easier to be found[14].

Color Transformation based on Ry-gate

The Ry gate is used in the FRQI algorithm to encode the color information. It can
also be used to modify the color after that the image has already been encoded,
specifically increasing or decreasing the gray-scale information. Applying an Ry on
the color qubit has the effect of modifying the intensity of all of the pixels. The
result is defined as

Ry(θ)|c(θk)⟩ = |c(θk + θ)⟩ (2.51)
Ry(−θ)|c(θk)⟩ = |c(θk − θ)⟩ (2.52)

It can be used to increase or decrease the brightness of an image.

2.4.2 Applications on NEQR
NEQR encodes the color information into the basis states of a further sequence
of qubits. This allows for a much more flexible elaboration of the intensity of the
pixels since it inherits every property of binary calculation. In the following section,
some color transformations that were found useful in more advanced algorithms are
presented.
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Complement Color Transformation

The complement color transformation inverts the grey-scale value of all the pixels
[14]. It is implemented through the use of NOT gates and it is defined as:

UC = X⊗q ⊗ I⊗2n (2.53)
By applying this transformation to the NEQR image defined in section ??, the

result is

UC(|I⟩) = UC( 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

|f(Y, X)i⟩|Y X⟩) =

= 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

q−1p
i=0

(X|Ci
Y X)⟩|Y X⟩ =

= 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

|2q − 1 − f(Y, X)⟩|Y X⟩) (2.54)

An example of the complement transformation circuit applied on a 2n ×2n image
is depicted below.

|C7⟩ X

|C6⟩ X

|C5⟩ X

|C4⟩ X

|C3⟩ X

|C2⟩ X

|C1⟩ X

|C0⟩ X

|y⟩ /n

|x⟩ /n

As it can be seen from the circuit, a NOT gate is required on all of the color
qubits, therefore the complexity of this algorithm is O(q).

Halving Operation

The halving operation UH is presented in [15] and consists in reducing by half the
grey-scale information of all of the pixels, consequently halving the range as well.
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It is used to calculate gradients between the intensity values of the pixels. When
applied to a NEQR image, it produces outputs of the form:

UH(|I⟩) = UH( 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

|f(Y, X)i⟩|Y X⟩) =

= UH( 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

q−1p
i=0

|Ci
Y X⟩|Y X⟩ =

= 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

(|C0
Y X⟩

q−2p
i=0

|Ci+1
Y X⟩)|Y X⟩) =

= 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

(|C0
Y X⟩|f(Y, X)/2⟩)|Y X⟩) (2.55)

This operation is implemented by swapping the position of each color qubit with
its neighbor, shifting them from the LSB to the MSB. An example of the circuit is
depicted below.

|C7⟩ ×
|C6⟩ × ×
|C5⟩ × ×
|C4⟩ × ×
|C3⟩ × ×
|C2⟩ × ×
|C1⟩ × ×
|C0⟩ ×

|y⟩ /n

|x⟩ /n

As can be seen from the circuit, q−1 swap gates are employed for this algorithm,
which means that the complexity of this operation is O(q).

Classification Operation

The classification operation UT is also presented in [15]. It consists in confronting
the whole sequence of color qubits with a threshold, effectively confronting all of
the pixels’ intensity at the same time. The result of the comparison is stored into
an auxiliary qubit. This procedure is also called image segmentation and it reduces
the intensity range of the image to only two possible values, 0 and 1. Applying this
operation to an NEQR image gives out an output of the form

41



2 – Quantum Image Processing: state of the art

UT (|I⟩) = UT ( 1
2n

2n−1Ø
Y =0

2n−1Ø
X=0

|f(Y, X)i⟩|Y X⟩) =

= 1
2n

(
Ø

f(Y,X)≥T

|f(Y, X)⟩|Y X⟩|1⟩ +
Ø

f(Y,X)<T

|f(Y, X)⟩|Y X⟩|0⟩) (2.56)

The choice of the threshold is limited to powers of two for a straightforward and
efficient implementation. This limitation means that the configurable threshold
values are denser in the lower part of the intensity range. Nevertheless, it is in line
with the application intended for this operation, which is comparing gradients of
intensities of neighboring pixels, which have typically low values.
To implement this algorithm, Ck − NOT gates are applied on the auxiliary qubit,
depending on the threshold. If the threshold is, for example 2q−2, the two highest
color qubits are used as controls. In this way, if either one is equal to 1 the intensities
exceeds the threshold, the auxiliary qubit is put in state |1⟩. The circuit referred
to this example is depicted below.

|C7⟩ •
|C6⟩ •
|C5⟩
|C4⟩
|C3⟩
|C2⟩
|C1⟩
|C0⟩

|y⟩ /n

|x⟩ /n

|0⟩

The complexity of this circuit depends on the chosen threshold. The worst case
scenario is when the threshold is equal to 20 = 1. In that case the complexity is
O(q2), as for the position shifting operation of section 2.3.5.

Addition/Subtraction Operation

In the NEQR framework, it is possible to define the addiction and subtraction of
the intensity of two images because of its binary embedding. This operation is
also used in applications like feature extraction of images. For what concerns the
addition of two images, the pixels of the resulting image will have the arithmetic
additions of the gray-scale values of the corresponding input images [15]. The two
2n × 2n NEQR images are defined as
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|IA⟩ = 1
2n

22n−1Ø
Y X=0

|AY X⟩|Y X⟩

|IB⟩ = 1
2n

22n−1Ø
Y X=0

|BY X⟩|Y X⟩ (2.57)

(2.58)

where |AY X⟩ = oq−1
i=0 |ai⟩ and |BY X⟩ = ob−1

i=0 |bi⟩.
The resulting image |IC⟩ will have gray-scale values that are the sum of AY X

and BY X .

|IC⟩ = 1
2n

22n−1Ø
Y X=0

|CY X⟩|Y X⟩ = 1
2n

22n−1Ø
Y X=0

|AY X + BY X⟩|Y X⟩ (2.59)

The result |CY X⟩, being the sum of AY X , BY X ∈ [0,2q −1] will be included in the
range [0,2q], therefore q +1 are needed to store the result. To obtain this operation,
a quantum full adder is designed in [15]. The building blocks of a classical full
adders are 1-bit full-adders, which have three inputs (a, b, the two inputs bits; cin,
the previous carry bit) and two outputs (sum, the result of the addition; cout the
current carry bit). The quantum counterpart is designed in an analogous way, with
the previously mentioned inputs that control through the use of C3 − NOT and
Toffoli gates, the two outputs, for a total of 7 elementary gates. The quantum
addition operation can be defined as:

|a⟩|b⟩|cin⟩|0⟩|0⟩ −→ |a⟩|b⟩|cin⟩|sum⟩|cout⟩ (2.60)
A schematic of the circuit is depicted below.

|a⟩ • • • •
|b⟩ • • • •

|cin⟩ • • • •
|0⟩
|0⟩

To build a q-qubit sum circuit, q 1-qubit adders are needed. In Figure 2.17, a
schematic of the quantum full adder is provided, where |A⟩ = oq−1

i=0 |ai⟩ and |B⟩ =oq−1
i=0 |bi⟩ are the input numbers, |C⟩ = oq

i=0 |ai⟩ is the result and |F ⟩ = oq−1
i=0 |fi⟩

are the auxiliary qubits. The circuit is initialized with the values of the two inputs,
while the result q + 1 qubits and the q auxiliary qubits are initialized at |0⟩.

Quantum image subtraction of two images |IA⟩ and |IB⟩ can be obtained by the
same circuit, using the complement color operation presented in section 2.4.2 to
invert the gray-scale values of |IB⟩, obtaining
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Figure 2.17. q-qubit sum circuit

|IB⟩ = UC(|IB⟩),

and then summing |IA⟩ and |IB⟩ together

|IC⟩ = qSUB(|IA⟩, |IB⟩) = qADD(|IA⟩, |IB⟩). (2.61)

The result of the subtraction will be in the range [−(2q − 1), 2q − 1] but the
result of the subtraction will be in two’s complement. Therefore the q + 1 qubit is
needed to reinterpret the number at the retrieval.

Since q 1-qubit full adder are needed to construct a q-qubit full adder, which
have complexity O(7), the whole block has complexity O(7q). It is worth noticing
that this schematic is not the most efficient one, but it is the one that preserves
the information about the original images, because it uses auxiliary qubits to store
the result.

2.5 Image Compression
The limited computational resources of quantum hardware and the typical dimen-
sions of images to be processed require a reduction of the circuits’ complexity for
a robust implementation of quantum image processing strategies. Decreasing the
number of gates used to build a QImR state can be achieved by grouping redundant
gray-scale information of the image. Therefore compression algorithm for FRQI and
NEQR are presented in the following sections.

2.5.1 Applications on FRQI
In the FRQI encoding method, as seen in section 2.2.1, the encoding of the im-
age has a complexity O(24n), which increases drastically as the image growths in
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size. An algorithm to reduce the number of controlled rotations, which embed the
intensity information, is presented in [3]. It consists in grouping the pixels with
the same intensities, in order to apply the rotation with the corresponding angle
the least possible amount of times. The difference is on the conditional part of the
gate, which must encode all the positions of the pixels with a certain intensity.
Taking as an example the 8 × 8 FRQI image represented in Figure 2.18, its gate
count would be of 64 C6 − Ry, even though it only contains two intensities values
for the whole image. Applying compression on the resources, a circuit that applies
only four rotations is achievable, like in the schematic below.

Figure 2.18. 8 × 8 FRQI image with only two intensity values

|c⟩ Ry(2θ1) Ry(2θ2) Ry(2θ2) Ry(2θ2)

|y2⟩

|y1⟩

|y0⟩

|x2⟩

|x1⟩ •

|x0⟩ •

The four rotations that are applied in this circuit, not only are considerably
less than they would have been with a standard procedure, but they also have less
controls, which means that they correspond to less elementary gates.
In order to minimize the number of controls, the positions of the pixels must
be transformed into binary strings, with each position qubit corresponding to a
Boolean variable. Taking a variable x, if the value of that position qubit is 1,
than it will be represented by x in the string, otherwise x is used. In this way, a
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1 − 1 correspondence is defined between each position and each Boolean term. In
Figure 2.18, the pixel position that have a darker color are:

|0⟩, |8⟩, |16⟩, |24⟩, |32⟩, |40⟩, |48⟩, |56⟩.

Their corresponding binary strings are represented by:

|0⟩ −→ |000000⟩ −→ x5x4x3x2x1x0

|8⟩ −→ |001000⟩ −→ x5x4x3x2x1x0

. . .

|56⟩ −→ |111000⟩ −→ x5x4x3x2x1x0

The Boolean expression e that takes into consideration all of these positions is
described by the sum of its terms:

e = x5x4x3x2x1x0 + x5x4x3x2x1x0 + x5x4x3x2x1x0 (2.62)

The minimized expression that represents all of the listed positions is given by

e = x2x1x0 (2.63)
The number of terms in the expression translates the number of rotations to be

applied. In this case only one rotation is needed instead of 8, conditioned by the
lowest three qubits being equal to 0, as seen in the circuit. The minimization of
Boolean expressions like 2.5.1 has been studied extensively. The Espresso algorithm
is a widely used option for achieving minimization of Boolean expressions, and does
so within a reasonable running time [16]. The amount of compression applied to
the circuit by this algorithm depends on how much the image’s pixels are similar
to each other. An image that does not have any pixel with the same intensity as
another one, will not be compressed at all.

The flow chart of the quantum image compression algorithm for FRQI is depicted
in Figure 2.19.

Even though this algorithm apparently implements lossless compression, there
are cases in which it introduces errors into the image. When minimizing boolean
functions, algorithms like the Espresso do not take into consideration that the
minimized expression might be redundant. Assuming, for example, that an image
has pixels in position 01, 10 and 11 of the same intensity. Their minimized version
corresponds to ′x1′,′ 1x′. When applying C − Ry gates with the corresponding
conditions, the pixel in position 11 will be embedded two times.
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Figure 2.19. Flow chart of FRQI image compression

2.5.2 Application on NEQR
NEQR, as presented in table 2.1, has a significantly lower complexity compared
to FRQI. Nevertheless, compression can be applied to further reduce the resources
needed to implement it, using some of the same concepts as for the FRQI com-
pression algorithm, as presented in [5]. In the case of NEQR, the positions are
still grouped and minimized, but the compression takes place at the intensity qubit
level, instead of being pixel-wise. In order to understand this process, Step2 (??)
of the NEQR algorithm is grouped in an operation set Φ, defined as

Φ =
2n−1Û
Y =0

2n−1Û
X=0

q−1Û
i=0

Φi
Y X , Φi

Y X ∈ {I, C2nNOT} (2.64)

where Φi
Y X represents the quantum operation for the i-th qubit in the color qubit

sequence of the pixel in position (Y, X). This operation set can be divided into q
groups Φi, each one representing the quantum operations applied on the same color
qubit.

Φ =
2n−1Û
Y =0

2n−1Û
X=0

q−1Û
i=0

Φi
Y X =

q−1Û
i=0

(
2n−1Û
Y =0

2n−1Û
X=0

Φi
Y X) =

q−1Û
i=0

Φi (2.65)

Whether the type of operation applied by Φi
Y X is an Identity gate or a C2nNOT ,

depends on the value of Ci
Y X . So the operation Φi on the i-th qubit can be divided

into groups
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Φi =
2n−1Û
Y =0

2n−1Û
X=0

Φi
Y X

= (
2n−1Û
Y =0

2n−1Û
X=0,Ci

Y X=0
I)

Û
(

2n−1Û
Y =0

2n−1Û
X=0,Ci

Y X=1
(C2nNOT )Y X) (2.66)

Because the Identity gates do not alter the quantum state, the first part of the
operation Φi can be ignored. The second part instead, is the one that will be
compressed, specifically the position information that controls the gate, in order
to reduce the occurrences of CkNOT on the specific color qubit. In the same
way as for the rotation gates in FRQI, the controls of C2nNOT will be reduced,
the difference is that the operations that are being grouped are the C2nNOT on
the same qubit. In Figure 2.20, half of the pixels are black and the other half is
white, which are encoded as |00000000⟩ and |11111111⟩ respectively. The operations
needed to encode the image can therefore be divided into two groups, following the
described procedure:

Φi =
2n−1Û
Y =0

2n−1Û
X=0

Φi
Y X

= (
11Û

Y =00

01Û
X=00

IY X)
Û

(
11Û

Y =00

11Û
X=10

(C4NOT )Y X) (2.67)

i = 0, . . . , q − 1 (2.68)

Ignoring the set of Identity gates, the positions that apply a CkNOT gate on
the color qubits are:

|2⟩, |3⟩, |6⟩, |7⟩, |10⟩, |11⟩, |14⟩, |15⟩.

Their corresponding binary strings are

|2⟩ −→ |0010⟩ −→ x3x2x1x0

|3⟩ −→ |0010⟩ −→ x3x2x1x0

. . .

|14⟩ −→ |1110⟩ −→ x3x2x1x0

|15⟩ −→ |1111⟩ −→ x3x2x1x0

By applying the Espresso algorithm, the resulting Boolean expression is
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e = x1

Therefore on the i-th color qubit, the number of gates is reduced from 8 C4 −
NOTs to one CNOT . In the schematic representing the compressed circuit, for
space reasons only the X1 position qubit is shown, since it is the only one used.
The other three position qubits will only be put into superposition.

Figure 2.20. 4 × 4 NEQR image to be compressed

|C7⟩

|C6⟩

|C5⟩

|C4⟩

|C3⟩

|C2⟩

|C1⟩

|C0⟩

|X1⟩ H • • • • • • • •

Because this algorithm takes into consideration each color qubit, the preparation
for each can be compressed independently, increasing the probability of reducing
the computational complexity for any type of image. It is worth noticing that
the same problems due to the redundancy of the boolean functions highlighted for
FRQI, also apply to the NEQR version of the algorithm.
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2.6 Image Spatial Filtering
In order to expand the study of the state of the art of QImP with more advanced
but essential algorithms in the image processing domain, quantum image filtering
was investigated. Filtering places one self in pre-processing category of images
algorithms, whose goal is too enhance the quality of the image for a more precise
elaboration. In [17], a quantum image median filtering in the spatial domain for
NEQR is presented. Spatial median filtering is a type of non-linear operation, used
directly on the pixels’ intensity of an image, that replaces the intensity value of
each pixel with the median value of its neighbouring pixels. The adjacent pixels
of a specific location in the image are sorted by intensity and the median value is
used to replace the intensity of the pixel being considered. In the classical domain
is proved to be very effective at removing noise from an image.

2.6.1 Building Blocks
The quantum filtering algorithm is based off the use of smaller modules, like the Po-
sition Shift Operation encountered in 2.3.5, a Comparator module and Sort module,
to be introduced.

Comparator module

The comparator module is used to make a comparison between the neighboring
pixels’ intensities. It is capable of comparing two integers embedded in the basis
states of two sequences of qubits of the same length and identify whether they
are equal or which one is the largest. Taking two integers x = xn−1xn−2 . . . x0,
y = yn−1yn−2 . . . y0, with xi, yi ∈ {0,1}, i = 0,1, . . . , n − 1, the comparator uses the
outputs e1, e0 to express which one is the largest. The results will be:

• e1e0 = 10 if x > y

• e1e0 = 01 if x < y

• e1e0 = 00 if x = y

As can be seen in the schematic below, the comparator module has n groups of
quantum gates, one for each qubit in the sequence. Each group compares couples
of qubits from the two sequences that are the same position, and stores the the
partial results in two auxiliary qubits and on the e1e0 as well. In total, the number
of auxiliary qubits added are 2n. The controls k of the NOT gates increase the
higher the index i of the group is, starting from the MSBs, in order to take into
consideration the previous comparations as well. Therefore the controls on the
gates for group i are 2n+2. The complexity of the comparator module is O(n2), as
detailed in the reference [18]. The symbol used to represent this circuit is instead
depicted in Figure 2.21.
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|xn−1⟩ • •
|yn−1⟩ • •

|0⟩
|0⟩

|xn−2⟩ • •
|yn−2⟩ • •

|0⟩
|0⟩

. . .

|x1⟩ • •
|y1⟩ • •
|0⟩
|0⟩

|x0⟩ •
|y0⟩ •
|0⟩ |e1⟩
|0⟩ |e0⟩

Figure 2.21. Symbol for the comparator circuit

Sort

The Sort module makes use of the Comparator and a Swap module to change the
order of the two integers that represent the intensity. The Swap module is simply
composed by C2 − SWAP , controlled by the outputs e1e0 of the comparator, as
depicted in the schematic below followed by its symbol 2.22. The inputs a and b
are sent to the comparator, which will activate the swap gates based on whether
its result is 01 or not, in order to put the larger integer is on the higher position.
The Sort module schematic is reported in Figure 2.23.
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|C1
q−1⟩ ×

|C1
q−2⟩ ×

... . . .

|C1
0⟩ ×

|C2
q−1⟩ ×

|C2
q−2⟩ ×

... . . .

|C2
0⟩ ×

|e1⟩
|e0⟩ • • •

Figure 2.22. Swap module symbol

Figure 2.23. Sort module schematic and symbol

2.6.2 Workflow of the algorithm
The implementation of this algorithm consists in creating a 3 × 3 neighboring win-
dow around each pixel, in order to identify the median value of that window.
Taking for example the image in Figure 2.24, a pixel and his neighboring window
are highlighted.

Figure 2.24. Neighboring window of a pixel
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The 8 copies are shifted in different directions in order to create images that
have the adjacent pixels in the same position as the one taken into consideration.
Figure 2.25 highlights the neighboring pixels of the window in each shifted copy.

Figure 2.25. Shifted copies of the image in Figure 2.24

After obtaining the neighboring window, a Median filtering operation is achieved
by applying 30 Sort modules on the intensity qubits of the 9 images, like in Fig-
ure 2.26. In this way, the intensities are ordered from the highest to the lowest, and,
by taking only the value in the middle |ĉ5⟩, the filtering operation is completed.
Exploiting the superposition of states, each pixel in the image can be evaluated in
parallel. To make sure that the comparison is taking place in the same position in
each image, 8 Comparator modules are used to compare the position qubits of the
original and the 8 shifted copies. The results of this comparisons will control the
application of the median filtering operation.

2.6.3 Dimensional Analysis
This algorithm, although it exploit quantum parallelism evaluating the neighboring
windows of all the pixels at the same time, requires a great amount of resources to
be implemented. As seen in the presentation of the Comparator module, in order to
compare qubit by qubit its two input sequences, the comparator adds 2n auxiliary
qubits. For a 2n × 2n NEQR image, the qubits needed to apply quantum median
filtering are:

• 9 · (2n + q) qubits the encode the original image and the copies to be shifted.

• 8 · 2 · 2n auxiliary qubits to make the comparison between the positions of the
9 images.
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Figure 2.26. Median filtering operation

• 30·2·q auxiliary to compare the intensities in the 30 Sort modules that compose
the Median filtering operation.

The total qubit count of the circuit is Ntot = 9·(2n+q)+8·2·2n+30·2·q. To save
resources, some of the auxiliary qubits can be shared in between the same modules.
The 8 compare modules applied on the position qubits can share the auxiliary
qubits, except for the ones that encode the result of the comparison. Furthermore,
since the sort modules that are used in parallel are just four, the auxiliary qubits
of their comparator modules can be shared inside the median filtering operation.
In this way the total amount of qubits would actually be Ntot = (9 · (2n + q)) +
(2 · 2n + 7 · 2) + 4 · 2q. For a 4 × 4 with an intensity range expressed by 8 qubits,
the corresponding circuit would have 194 qubits. The number of qubits required
to implement this algorithm is comparable to the computational capabilities of the
most sophisticated quantum computers available today, even for very small images.
Therefore, given the impossibility of actual application scenarios in real quantum
hardware, the algorithm is deemed not suitable to be actually implemented, but its
modules instead allow to enrich the processing possibilities of NEQR.

2.7 Quantum Edge Detection
Edge detection is an image processing technique for identifying the borders of an
image. It has important applications in areas like computer vision and pattern
recognition, where the speed of the edge detection algorithm plays an important
role. The increasing volume of information of higher resolution images weights on
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the computational capabilities of classical edge detection pixel-by-pixel methods.
A classical edge extraction algorithms for 2n × 2n image is know to have lower
bound complexity of O(22n) [19]. Quantum edge detection is an emerging field in
which algorithms with exponential speed-up have been proposed for the encoding
techniques discussed in the previous sections. They exploit quantum parallelism to
evaluate all the pixels simultaneously, allowing to lower the complexity of the edge
detection techniques by reducing the number of iterations of the algorithm.

2.7.1 Quantum Sobel Edge Detection for FRQI
Sobel edge detection is one of the most commonly used methods in classical feature
extraction. It uses an approximation to the derivative to calculate the gradients
between the intensities of the pixels in a neighboring window and assigns the edges
of the image to the positions where the gradient is highest [19], comparing them to
a threshold.

Figure 2.27. Pixel neighborhood window

Referring to the schematic of a 3 × 3 neighboring window in Figure 2.27, where
p(Y, X) is the gray-scale value in position (Y, X), the gradients along the Y- and
X-axis are approximated as

Gx = (p(Y + 1, X + 1) + 2p(Y + 1, X) + p(Y + 1, X − 1))−
− (p(Y − 1, X + 1) + 2p(Y − 1, X) + (p(Y − 1, X − 1)) (2.69)

Gy = (p(Y + 1, X + 1) + 2p(Y, X + 1) + p(Y − 1, X + 1))−
− (p(Y + 1, X − 1) + 2p(Y, X − 1) + (p(Y − 1, X − 1)) (2.70)

while the overall gradient is given by

g =
ñ

G2
x + G2

y (2.71)
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A quantum version of this algorithm, QSobel, has been proposed for FRQI in
[20]. It consist in shifting the image in order to have access to all the pixels neigh-
boring window simultaneously, in a similar way as in the median filtering algorithm
presented in 2.6. The difference in this technique is that there are no copies of the
entire image, only the color qubit is copied and stored in an auxiliary qubit after
each shifting operation. In this way the gray-scale values of the neighboring win-
dows can be compared to calculate their gradients. In Figure 2.28, a schematic of
the QSobel circuit is shown, where the Uy+, Ux+, Uy−, and Ux− are position
shifting operations in the four directions along the Y- and X-axis. US is the copy
operation defined as

US(|C⟩|0⟩) = |C⟩|C⟩ (2.72)

and UΩ is a quantum black box used to calculate the gradients. An auxiliary
qubits Ω(Y, X) is added to the circuit to store the result of UΩ which is defined as

|Ω(Y, X)⟩ =
|0⟩,

ñ
Gx(Y, X)2 + Gy(Y, X)2 < T

|1⟩,
ñ

Gx(Y, X)2 + Gy(Y, X)2 ≥ T
(2.73)

where Gx(Y, X) and Gy(Y, X) are the approximations of the derivatives of the
X-axis and Y-axis. They are expressed as

Gx(Y, X) = (CY −1,X+1 + 2CY,X+1 + CY +1,X+1) − (CY −1,X−1 + 2CY,X−1 + CY +1,X−1)
Gx(Y, X) = (CY +1,X−1 + 2CY +1,X + CY +1,X+1) − (CY −1,X−1 + 2CY −1,X + CY −1,X+1)

(2.74)

Figure 2.28. QSobel schematic
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Considering that the intensity of the pixels is embedded in the phase of the
color qubit, manipulating that information does not have the flexibility that the
calculations of the gradients require. There are no studies yet that suggest how such
a calculations should be achieved. It is also unclear how the copy operation should
be implemented, since the cloning of an unknown quantum state is prohibited by
one of quantum computing most important theorems [2]. For these reasons, this
algorithm does not have any prospect of implementation yet and therefore can not
be tested on realist scenarios.

2.7.2 Quantum Edge Detection for NEQR
In [15], a local feature point extraction algorithm is presented to find the boundaries
of an image encoded with the NEQR technique. Its based off the use of position
shifting operation and off the color transformations defined in 2.4.2. The steps used
in this method are similar to the median filtering and the Sobel algorithm:

• Step 1 consists in preparing 9 copies of the same image with the NEQR
method.

• Step 2 consists in shifting 8 of the copies in different directions to compare
the neighboring pixel window.

• In Step 3 the quantum addition operation and the halving operation are used
to compute the gradients between the intensities.

• Finally, in Step 4, the classification operation is used to compare the gradients
with a fixed threshold in order to identify the borders.

As seen for the median filtering algorithm, the 3 × 3 neighboring window is
created by preparing 8 extra copies of the image and their intensities are used to
compute the gradients between the pixels. In this algorithm, the method used to
approximate the gradients is called the zero-cross method, which uses four sub-
gradients defined as

G1 = |2CY,X − (CY +1,X + CY −1,X))|/2
G2 = |2CY,X − (CY +1,X+1 + CY −1,X−1))|/2
G3 = |2CY,X − (CY +1,X+1 + CY −1,X−1))|/2
G4 = |2CY,X − (CY +1,X−1 + CY −1,X+1|/2 (2.75)

where CY,X is the gray scale of the pixel (Y, X). In order to achieve this compu-
tation, the addition/subtraction operation qADD/qSUB (2.4.2) and the halving
operation UH (2.4.2) are used in the following way:
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|ϕ0⟩ = qADD(|IY,X⟩, |IY,X⟩),
|ϕ1⟩ = qADD(|IY +1,X⟩, |IY −1,X⟩),
|ϕ3⟩ = qADD(|IY +1,X+1⟩, |IY −1,X−1⟩),
|ϕ5⟩ = qADD(|IY,X+1⟩, |IY,X−1⟩),
|ϕ7⟩ = qADD(|IY +1,X−1⟩, |IY −1,X+1⟩),
|G1⟩ = UH(|ϕ2⟩),
|G3⟩ = UH(|ϕ6⟩),

(2.76)

|ϕ2⟩ = qSUB(|ϕ0⟩, |ϕ1⟩⟩),
|ϕ4⟩ = qSUB(|ϕ0⟩, |ϕ3⟩),
|ϕ6⟩ = qSUB(|ϕ0⟩, |ϕ5⟩),
|ϕ8⟩ = qSUB(|ϕ0⟩, |ϕ7⟩),
|G2⟩ = UH(|ϕ4⟩),
|G4⟩ = UH(|ϕ8⟩). (2.77)

After the gradients are calculated, they are compared with a fixed threshold
using the operation UT 2.4.2. The results will be stored on four additional qubits
|Zi⟩, with i = 0, . . . , 3. When measuring the circuits, only the positions that have
the four gradients greater than then selected threshold will be identified as edges.

The circuit implementing this edge detection algorithm for NEQR will make
use of 5 Addition modules and 4 Subtraction modules, which require respectively
2q + 1 and 2q auxiliary qubits each. As said, four more qubits are needed for the
classification operations. Considering the qubits needed to embed the 9 2n × 2n

images with a gray-scale range of [0, 2q − 1], the total number of qubits needed to
implement the algorithm is

Ntot = 9 · (2n + q) + 5 · (2q + 1) + 4 · (2q) + 4

Applying edge detection on a 4 × 4 NEQR image with 256 intensity value with
this algorithm, would require a 270 qubits circuit. With the same considerations
done for the median filtering algorithm, the circuit does not seem like an applicable
option nowadays, but its modules are useful in the prospect of further processing.

2.7.3 Quantum Hadamard Edge Detection
The Quantum Hadamard Edge Detection algorithm (QHED) is a technique pro-
posed in [21] that allows feature extraction for images encoded with QPIE method
2.2.3. It exploits the properties of Hadamard gates to compute the gradients of
adjacent pixels with an extremely low complexity.

To identify the boarders of an N -pixel image encoded with QPIE, the gradient
between two neighboring pixel can be approximated as a subtraction between the
amplitude values of two adjacent states, i and i + 1, with i ∈ {0, N − 1}. Therefore
two adjacent pixels in QPIE state will have amplitudes ci and ci+1:

I = c0|0⟩ + c1|1⟩ + · · · + ci|i⟩ + ci+1|i + 1⟩ + · · · + cN−2|N − 2⟩ + cN−1|N − 1⟩
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If the result of the subtraction is below a certain threshold, the two pixels belong
to the same area, otherwise an edge has been identified. In order to compute the
gradient, the Hadamard gate can exploited. Its application on a single qubit has
outputs of the form

|0⟩ −→ |0⟩ + |1⟩√
2

= |+⟩ (2.78)

|1⟩ −→ |0⟩ − |1⟩√
2

= |−⟩ (2.79)

Applying an Hadamard gate on the last qubit of a 2N -qubit system will result
in

I2n−1 ⊗ H0 = 1√
2



1 1 0 0 . . . 0 0
1 −1 0 0 . . . 0 0
0 0 1 1 . . . 0 0
0 0 1 −1 . . . 0 0
... ... ... ... . . . ... ...
0 0 0 0 . . . 1 1
0 0 0 0 . . . 1 −1


(2.80)

where I2n−1 is the 2n−1 × 2n−1 Identity matrix. Applying this on a QPIE image
gives instead the following state

(I2n−1 ⊗ H0) ·



c0
c1
c2
c3
...

cN−2
cN−1


−→ 1√

2



c0 + c1
c0 − c1
c2 + c3
c2 − c3

...
cN−2 + cN−1
cN−2 − cN−1


(2.81)

In a 2n ×2n = N pixel image, two neighboring pixels are represented by position
bit-strings where only the LSB changes

|bn−1bn−2 . . . b10⟩, |bn−1bn−2 . . . b11⟩ (2.82)
bi ∈ {0,1}. (2.83)

Therefore, if the measurement of the qubits in the circuit is conditioned on the
LSB being in state |1⟩, the horizontal gradients between even pairs of pixels can be
obtained.

In order to get the gradients from both even and odd pairs of pixels in the
same iteration of the algorithm, an auxiliary qubit can been added to the circuit.
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Applying an Hadamard gate to this qubit, initialized to the state |0⟩, results in the
redundant state

|I⟩ ⊗ (|0⟩ + |1⟩)√
2

= 1√
2



c0
c0
c1
c1
c2
c2
...

cN−2
cN−2
cN−1
cN−1



(2.84)

In order to easily compute the gradients with the Hadamard gate, the amplitudes
have to shift back of one position to obtain the state:

(c0, c1, c1, c2, c2, c3, . . . , cN−2, cN−1, cN−1, c0)T (2.85)

To achieve this, an amplitude permutation is defined in [22]. It can be efficiently
be decomposed into a set of NOT and Ck−NOT gates with a O(poly(n) complexity.
This operation is referred to as a Decrement gate, which is described by the unitary

D2n+1 =



0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 0 0 . . . 0 0
... ... ... ... . . . ... ...
0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0


(2.86)

After the permutation, applying the Hadamard gate on the auxiliary qubit will
give output of the form
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(I2n−1 ⊗ H) ·



c0
c1
c1
c2
c2
c3
...

cN−2
cN−1
cN−1

c0



−→ 1√
2



c0 + c1
c0 − c1
c1 + c2
c1 − c2
c2 + c3
c2 − c3

...
cN−2 + cN−1
cN−2 − cN−1

cN−1 − c0
cN−1 + c0



(2.87)

Measuring the circuit conditioned on the auxiliary qubit being in state |1⟩ results
in obtaining the horizontal gradients. To obtain the vertical gradients, the intensity
matrix that represents the digital image has to be transposed.

Img =


I0 I1 . . . I2n−1
... ... . . . ...

I22n−2n . . . . . . I22n−1


T

−→


I0 . . . . . . I22n−2n

I1
... . . . ...

I2n−1 . . . . . . I22n−1

 (2.88)

After that, the transposed image is encoded in a QPIE state and the same
process is repeated. After the measurements, the two images are retrieved and
their intensity information are added together, obtaining the image stripped to its
borders.

A schematic of the QHED algorithm for a 4 × 4 image is depicted below in
Figure 2.29. The qubits denominated as ci with i = 0,1, . . . , 4 are the classical bits
where the result is stored.

Figure 2.29. QHED schematic
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This algorithm is presented to be very efficient, it requires only 2n+1 qubits and
its processing is appointed only to the position shifting operation and the Hadamard
gate, which results in a complexity of O(poly(n)). Confronted with a classical
edge detection algorithm O(22n), QHED gives a super-exponential speed up and is
defined by simple and efficient operations, which can be easily implemented.
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Chapter 3

Quantum Image Processing:
software library

Translating the presented algorithms into circuit descriptions is a necessary step to
be able to test and compare the different techniques. For this purpose, a modular
Python software library was developed to give the possibility to flexibly compose
quantum circuits implementing the techniques presented, for images of arbitrary
size. The aim of this chapter is to give an overview of all the functions implemented
in the library, providing a brief description for each, followed by the display of
some practical use-cases that show all the necessary steps to exploit the supported
functionalities, while also presenting the figure of merits used to characterize the
results that can be obtained.

3.0.1 Qiskit
The implemented library is based on Qiskit, an open-source software development
kit created by IBM that permits to describe quantum circuits and to run them either
on simulators or on real quantum devices, through their Cloud quantum computing
service. It is made up by four different components (Terra, Aer, Ignis and Aqua),
each characterized by a different functionality set [23]. The ones used in this library
are Terra and Aer. The Terra component allows the description, visualization and
transpilation of the circuits, which is the process of changing the description of the
implemented circuit into a given basis of gates, in order to match the topology of a
specific quantum device or to optimize the circuit with respect to noise. It can also
be used to understand the complexity of the implemented circuit, by looking at its
depth and the number of used gates after decomposing it into an elementary set.
Terra also allows to manage the test parameters of Qiskit’s simulators and devices
and to choose the results that are to be extrapolated. The Aer component instead
provides a simulator framework for executing circuits compiled in Terra, to which
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noise models can also be applied. The IBM quantum computing services includes
devices of up to 127 qubits, but the free accessible ones have a maximum of 5 qubits.
The functions and methods provided by Qiskit’s Terra are used through the library
to compose quantum circuits, while Aer simulators are used to test them.

3.1 Overview of the library
The QImP software library is made-up of three main packages, one for each of
the encoding methods proposed. Each is divided into two sub-packages, one ded-
icated to the embedding and retrieval of images and one dedicated to processing
algorithms. Furthermore, a package containing a set of testing functions is also
present as well as a package for preparing the classical information to be encoded
and to extrapolate figures of merit from the implemented circuits and their tests,
both applicable across the different methods. The library is organized in such a
way to facilitate future expansions, thanks to the code’s modularity. The follow-
ing sub-sections give a a brief overview of what each module does, but for further
explications and details, the reader is invited to refer to the extensive documen-
tation produced using Jupyter notebooks. The library’s organization is shown in
Figure 3.1.

Figure 3.1. Organization of the library

3.1.1 FRQI software library package
The frqi_software_library.py package contains all the functions related to
FRQI. In its current version its modules are divided into two more sub-packages,
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one dedicated to encoding and retrieval functions and one to the processing ones.

Encoding and retrieval sub-package

The functions presented in this category allow the embedding of classical visual
information in a quantum circuit using the FRQI technique, its compressed version
or its extension to RGB images, MCRQI. The FRQI and MCRQI modules also
contain their respective retrieval functions, which are used to decode the results
obtained after testing the circuit. The compression module is instead made-up by
functions that permit the user to follow the steps of the algorithm, as well as apply
the encoding. All of the mentioned modules are set out in the following tables.

frqi_basic.py module
Function name Description
frqi_circuit() It generates an FRQI circuit description

starting from the pixels’ intensities of an im-
age.

frqi_decode() It retrieves the pixel intensities of an image
starting from the measurements obtained
from an FRQI circuit.

mcrqi_basic.py module
Function name Description
mcrqi_circuit() It generates an MCRQI circuit description

starting from the pixels’ intensities of an im-
age.

mcrqi_decode() It retrieves the pixel intensities of an image
starting from the measurements obtained
from an MCRQI circuit.

frqi_comp_class.py module
Function name Description
turn_to_funct() It groups the positions of the pixels by inten-

sity and turns them into boolean functions.
print_funct() It allows to print the results of the boolean

translation of the positions.
compress() It concatenates the boolean functions re-

ferred to the same intensity and minimizes
them, then turns them back into strings of
character that express the position.
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print_pos_comprsd() It prints the minimized positions minimized.
frqi_image() It uses the minimized positions and intensity

information to generate the description of an
FRQI circuit.

Processing sub-package

All the modules used to apply processing on a FRQI image belong in this sub-
package. Currently, it is composed by a module dedicated to collecting functions
implementing geometric transformations, and one for chromatic transformations.

frqi_geometric_transf.py module
Function name Description
frqi_axis_flip() It applies the flip operation on an FRQI cir-

cuit with respect to one of the axis or both.
frqi_coord_swap() It applies the coordinate swapping operation

on an FRQI circuit.
frqi_ort_rotation() It applies the orthogonal rotation operation

on an FRQI circuit, given the chosen angle.
frqi_restr_flip() It applies one of the flip operation on a FRQI

circuit, in a restricted area chosen by the
user.

frqi_restr_coord() It applies the coordinate swap operation on
a FRQI circuit, in a restricted area chosen
by the user.

frqi_pos_shift() It applies the position shifting operation on
a FRQI circuit, of a magnitude and direction
chosen by the user. The axis along which the
shift is applied is also configurable.

frqi_chromatic_transf.py module
Function name Description
frqi_color_compl() It applies the color complement operation on

a FRQI circuit.
frqi_color_change() It applies the color change operation on a

FRQI circuit, of a value chosen by the user.
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3.1.2 NEQR software library package
Modules whose functions are designed to generate the description of NEQR circuits
and related algorithms, belong in the neqr_software_library.py package. Its
organization is identical to the one done for the FRQI modules, dividing its encoding
and retrieving modules from its processing ones.

Encoding and retrieval sub-package

This category is made-up of modules that allow the embedding of gray-scale im-
ages through NEQR and color images through NCQI, as well as the decoding of
the measurements obtained from these circuit. A module dedicated to applying
compression on NEQR is also present. The functions are described in tables briefly
presented in the following tables.

neqr_basic.py module
Function name Description
neqr_circuit() It generates an NEQR circuit description

starting from the pixels’ intensities of an im-
age. The number of intensity qubits used in
the encoding is chosen by the user.

neqr_decode() It retrieves the pixel intensities starting from
the the measurements of an NEQR circuit.

ncqi_basic.py module
Function name Description
ncqi_circuit() It generates an NCQI circuit description

starting from the pixels’ intensities of an im-
age. The number of intensity qubits used is
chosen by the user.

ncqi_decode() It retrieves the pixel intensities starting from
the results of the measurements of a NCQI
circuit and the number of intensity qubits
used.

neqr_comp_class.py module
Function name Description
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turn_to_funct() It groups the positions of the pixels that ap-
ply a CNOT gate on the same intensity qubit
and turns them into boolean functions.

print_funct() It allows to print the results of the boolean
translation of the positions.

compress() It concatenates the boolean functions re-
ferred to the same intensity qubit and min-
imizes them, then turns them back into po-
sitions strings.

print_pos_comprsd() It prints the minimized positions.
frqi_image() It uses the minimized positions and intensity

information to encode the image in a NEQR
circuit.

Processing sub-package

This sub-package is designed to collect modules related to processing images em-
bedded in NEQR circuits. It is consists of two modules, one for geometric transfor-
mations and one for chromatic transformations. It is worth noticing that functions
describing the implementation, measurement and decoding of the comparison op-
eration presented in 2.6.1, are present in both processing module, as they can be
used to compare the position qubits of the image as well as the intensity ones.

neqr_geometric_transform.py module
Function name Description
neqr_axis_flip() It applies the one or both flip operation on

an FRQI circuit.
frqi_coord_swap() It applies the coordinate swapping operation

on an NEQR circuit.
frqi_ort_rotation() It applies the orthogonal rotation operation

on an NEQR circuit, given the chosen angle.
neqr_restr_flip() It applies one of the flip operation on a

NEQR circuit, in a restricted area chosen
by the user.

neqr_restr_coord() It applies the coordinate swap operation on
a NEQR circuit, in a restricted area chosen
by the user.

neqr_pos_shift() It applies the position shifting operation on a
NEQR circuit, of a magnitude and direction
chosen by the user. The shift along one of
the axis is also configurable.
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neqr_comparator() It compares two integers represented by two
qubits sequences of equal length.

neqr_comparatormeasure() It applies measurement only on the neces-
sary qubits needed to obtain the results of
the comparison for each pixel.

neqr_comparatordecode() It retrieves the results of the comparison be-
tween two image intensities.

neqr_chromatic_transform.py module
Function name Description
neqr_color_compl() Given an NEQR circuit, it applies the color

complement operation .
neqr_half_int() Given an NEQR circuit, it applies the halv-

ing operation on it.
neqr_classify_compl() Given an NEQR circuit, it applies the clas-

sification operation on it.
neqr_classification_decode() Given the results of measurements on a clas-

sification operation circuit, it retrieves the
binary image.

qc_add_1() It implements a 1-qubit add operation given
two qubits.

q_ADD_SUB() It implements a multi-qubit ADD/SUB op-
eration given two sequences of qubits.

neqr_ADD_SUB_measure() It applies measurement only on the neces-
sary qubits needed to obtain the resulting
image of an ADD/SUB.

neqr_ADD_SUB_decode() It retrieves the NEQR image resulting from
an ADD/SUB.

neqr_comparator() It compares two integers represented in two
qubits sequences of equal lenght.

neqr_comparator_measure() It applies measurement only on the neces-
sary qubits needed to obtain the results of
the comparator module.

neqr_comparatordecode() It retrieves the results of the comparison be-
tween two sequence of qubits.

neqr_sort() It compares the intensity qubits of two
NEQR circuits and sorts them depending on
their value.
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neqr_sort_measure() It applies measurement only on the neces-
sary qubits needed to obtain the results from
the sort module.

neqr_sort_decode() It retrieves the results of the sort module,
outputting an array containing the informa-
tions about the image.

3.1.3 QPIE software library package
The qpie_software_library.py package is designed to collect modules related to
the QPIE method. As for NEQR and FRQI, the embedding functions are separated
from the processing ones.

3.1.4 Encoding and retrieval sub-package
This sub-package currently contains one module of functions implementing the
embedding of images with QPIE and decoding necessary to visualize the image
after performing measurements on it.

qpie_basic.py module
Function name Description
qpie_circuit() It generates the description of a QPIE cir-

cuit starting from the pixels’ intensities of
an image.

qpie_decode() It retrieves the pixel intensities starting from
the measurements from a QPIE circuit.

Processing sub-package

The processing sub-package for QPIE is divided into a module that collects the
implemented geometric functions and a module dedicated to the QHED algorithm.
They are set out in the following tables.

qpie_geometric_transformations.py module
Function name Description
qpie_axis_flip() It applies the one or both flip operation on

an QPIE circuit.
qpie_coord_swap() It applies the coordinate swapping operation

on an QPIE circuit.
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qpie_ort_rotation() It applies the orthogonal rotation operation
on an QPIE circuit, given the chosen angle.

qpie_restr_flip() It applies one of the flip operation on a QPIE
circuit, in a restricted area chosen by the
user.

qpie_restr_coord() It applies the coordinate swap operation on
a QPIE circuit, in a restricted area chosen
by the user.

qpie_pos_shift() It applies the position shifting operation on
a QPIE circuit, of a magnitude and direction
chosen by the user. The shift along one of
the axis is also available.

qhed.py module
Function name Description
qhed_filter() It applies the QHED algorithm on a QPIE

circuit.
qhed_decode() It retrieves the gradients between the pixels

from a QHED circuit.

3.1.5 Testing package
Inside the QImP software library, a package is dedicated to testing the circuits.
It is currently made-up of only one module, that contains functions for running
the circuits on both ideal and noisy simulations and on real quantum computers,
chosen from the ones made available by Qiskit for free. The testing function run
the circuit on ideal and noisy simulations on a local computer, while the test on a
real hardware is done on the least busy device of the ones available on the cloud
service. Generally speaking, functions in this module can also be used on circuits
not generated by this library. All the available functions are listed in the following
table.

3.1.6 Miscellaneous package
This package is conceived with the idea of inserting all the functions that do not
strictly relate to the description of quantum circuits but still represent useful tools
for analyzing the results and handling the information. It is composed by an image
preparation module and module dedicated to obtain particular figures of merit.
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testing_functions.py module
Function name Description
ideal_simulation() It transpiles the circuit and tests it through

the Qiskit Aer simulator.
noisy_simulation() It transpiles the circuit and tests it through

the Qiskit Aer simulator with a noise model.
device_test() It transpiles the circuit and tests it through

the least busy available IBM device.

Image preparation module

The image preparation module contains function that are useful to speed-up the
overall process of handling images on quantum circuits. They check that the im-
ages have the right characteristic in terms of color channels and dimensions, to be
encoded using the chosen embedding method.

img_prep.py module
Function name Description
image_conv() It verifies that the image file opened meets

the requirements to be encoded with FRQI,
NEQR and QPIE, which means being
squared and having one color channel.

color_image_conv() It verifies that the image file opened
meets the requirements to be encoded with
MCRQI, and NCQI, which means being
squared and having three color channels. If
the image has an alpha channel, its informa-
tion is discarded.

Figures of merit

The figures_of_merit.py module contains functions that allow the extrapolation
of numerical quantities useful to describe the obtained results and to analyze and
compare of the algorithms. To verify the faithful representation of visual informa-
tion in the implemented encoding methods, Peak Signal to Noise Ratio (PSNR)
was considered. It is one of the most used quantities for comparing the fidelity of
an image in the image processing panorama. Its definition is based on the means
squared error (MSE), which for N × N images I and J is given by

MSE = 1
N2

N−1Ø
i=0

N−1Ø
j=0

[(I(i, j) − J(i, j))2], (3.1)
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Consequently, PSNR is defined as

PSNR = 20log10

A
MAXI√

MSE

B
, (3.2)

where MAXI is the maximum intensity value of image I. Two images that are
exactly the same, have a PSNR = infdB, while a with PSNR = 0dB wthey
have a MSE equal to the the maximum value of the original image. A function
implementing this calculation is provided in this module, along with a function
that permits to evaluate the complexity of the circuit. The functions are listed and
described in table 3.1.6.

figures_of_merit.py module
Function name Description
PSNR() It computes the PSNR between two given

array of pixels.
transpile_circuit() It transpiles the circuit in a set of gates made

up by single qubit rotations a cx gates. It
prints the Depth and the Operation counts
of the transpiled circuit.

3.2 User guide
The purpose of this section is to illustrate the capabilities of the QImP library. In
this regard, a few of the implemented techniques will be used in order to demon-
strate the supported workflow, reported in Figure 3.2.

Figure 3.2. Workflow of the QImP software library
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3.2.1 Example 1: Image fidelity
The first example shows the necessary steps to open an image file, encode it in a
quantum circuit, test it and then analyze the obtained results to verify the fidelity
of the selected encoding. To demonstrate this, the FRQI encoding has been chosen,
but the same process applies to all three methods. In this example the FRQI image
will be embedded using the compressed encoding to illustrate its features as well.
It is worth noticing that in the case of QPIE, compression is not included in the
library, therefore to implement the same process, only the standard function can
be used.

Encoding with Compression

The first step in this procedure is to open an image file and extract the pixel
information in array form. This operation can be achieved by using the functions
in the image_preparation.py module, by specifying the name of the file to be
opened. In this example, it is referred to as sample.png. To check that the image
meets the requirements necessary to be implemented using the FRQI encoding, the
image_conv() function is used. It converts to gray-scale the image and compares
its width and height to verify it is squared. This function also prints out the image
and its matrix on the terminal, to have visual and numerical understanding of the
file being handled. Independently from the encoding, this function outputs the
pixels in array form, in order to facilitate the embedding.

px_array=image_conv('sample.png')

Output:

[170 45
170 200]

As can be seen from the matrix, the image in this example contains has redun-
dant intensity information, making it eligible for being compressed. The compres-
sion procedure, as it is defined in the library for both FRQI and NEQR, is divided
into several steps. By exploiting the properties of the frqi_comp class, the positions
of the pixels can be turned into boolean functions. The result of this procedure is
also printed on the terminal
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img_comp=frqi_comp(px_array)
img_comp.turn_to_funct()
img_comp.print_funct()

Output:

45 ['~a & b']
170 ['~a & ~b', 'a & ~b']
200 ['a & b']

After that, the compress() function applies minimization on the boolean function
and turns back into position strings. The print_pos_comprsd() function allows to
visualize on the terminal the resulting position strings.

img_comp.compress()
img_comp.print_pos_comprsd()

Output:

45 [' 01']
170 [' x0']
200 [' 11']

Now that the information is compressed, the quantum circuit can be described,
according to the FRQI formalism. When the circuit of any of the supporting
encoding is created using the QImP library, its depth and operation count (i.e.
number of gates) are also shown. To understand the complexity of the circuit
created, the transpile function unrolls the circuit in a base of gates made of Toffoli
gates and single qubit rotations, which also shows the depth and operation count
after the transpilying has taken place.

qc=img_comp.frqi_image()
transpile(qc)

Output

Depth : 15
Operations: OrderedDict([('ry', 6), ('barrier', 4),
('x', 4), ('ccx', 4), ('h', 2), ('cx', 2)])

Depth after transpiler : 53
Operations after transpiler: OrderedDict([('u1', 28),
('cx', 26), ('u2', 10), ('u3', 10), ('barrier', 4)])
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Testing

In order to evaluate the fidelity of the technique in question, the processing step of
the workflow is skipped, to confront the resulting image with the original. To obtain
results from the circuit, measurement must be applied on the circuit and then the
testing functions can be used to run it. Since the image chosen is described by a
circuit that does not exceed the 5 qubit limit of the available quantum devices, the
device_test function can be applied by selecting the number of shots. Its output
will give the measured states and the number of times they have occurred during
the test.

counts=testing.device_test(qc, numShots)

Output:

{'010': 252, '001': 982, '101': 79, '110': 772,
'100': 733, '011': 93, '000': 273, '111': 912}

Retrieval

The results of the measurements on FRQI, NEQR and QPIE circuits can be elabo-
rated by their specific decoding functions, to re-obtain the pixel intensities ordered
by position. Even when using the compressed version of the encoding method, if
it is supported, there is no decompression to apply. The states embedded on the
compressed FRQI circuit are the same as the standard version. Because of this, the
decoding function from the frqi_basic module can be used. This function outputs
an array with the pixels intensities ordered by position in the image. The PSNR
function uses the original array and the retrieve one to print on the terminal the
Peak Signal to Noise ratio of the experiment.

px_array_r=frqi.frqi_decode(counts, numShots)
print(px_array_r)

PSNR(px_array,px_array_r)

Output:

[131 113 138 152]

PSNR = 12.276324453507348 dB

From the results, it is possible to evaluate the impact of noise on the FRQI
encoding. The resulting array can then be reshaped into a matrix, by defining its
dimensions, to visualize the retrieved image.
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img_matrix= px_array_r.reshape(n_side, n_side)
plt.imshow(img_matrix, cmap='winter', vmin=0, vmax=255)

Output:

Figure 3.3. Image retrieved from testing FRQI circuit on the IBM
quantum device Manila

3.2.2 Example 2: Processing two images
The second example is conceived with the idea of showing how to use the imple-
mented functions that process two images together, like the neqr_ADD_SUB(),
the neqr_comparator(), and the neqr_sort() functions, as well as demonstrat-
ing the processing capabilities of the neqr_chromatic_transformation.py mod-
ule. To give a practical application scenario of the usage of one of this modules, the
neqr_sort() function is used to process of two images in order to identify an object
depicted in both, but with different lightning. The images taken into consideration
are in Figure 3.2.2.

Figure 3.4. ′shadow_1.png′ Figure 3.5. ′shadow_2.png′

In order to keep the circuit under the dimension constraint of 30 qubits for the
ideal simulation, the two images are scaled to their 8×8 version and their intensity
range is reduced to [0, 23].
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Encoding

As seen in the previous example, the two images files, now referred to as shadow_1.png
and shadow_2.png have to be opened and the characteristic of the images have to
be checked. The image_conv function is used to open both files.

px_array_1=image_conv('shadow_1.png')
px_array_2=image_conv('shadow_2.png')

Output:

Figure 3.6. ′shadow_1.png′ 8 × 8
version, q = 3

Figure 3.7. ′shadow_2.png′ 8 × 8
version, q = 3

Figure 3.8. Output after opening the two images

The standard encoding function is then used to embed the two images in two
different quantum circuits, with q = 3.

q=3
qc_1=neqr.neqr_circuit(px_array_1, q)
qc_2=neqr.neqr_circuit(px_array_2, q)

Output:

Circuit Depth : 235
Operations: OrderedDict([('x', 384), ('mcx_gray', 108), ('barrier', 65),
('h', 6)])

Circuit Depth : 218
Operations: OrderedDict([('x', 384), ('mcx_gray', 91), ('barrier', 65),
('h', 6)])

To investigate the complexity of the implemented circuit, the transpile function
is applied to both.

transpile(qc_1)
transpile(qc_2)
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Output:

Depth of the circuit after unrolling: 33884
Operations after unrolling: OrderedDict([('u1', 20412), ('cx', 20304),
('u3', 384), ('u2', 222), ('barrier', 65)])

Depth of the circuit after unrolling: 28611
Operations after unrolling: OrderedDict([('u1', 17199), ('cx', 17108),
('u3', 384), ('u2', 188), ('barrier', 65)])

To process the two images together, their circuits must be merged together.
This can be done by exploiting a few of the Qiskit tools. The QuantumRegister
function is used to create a register capable of containing the second circuit, which
is then added to the first circuit. Then the compose method is called to com-
bine them, as shown in the example below. To use the neqr_comparator and the
neqr_ADD_SUB function, the same procedure has to be applied. The num_qubits
method is used to extrapolate the number of qubits in a circuit and save it into a
variable.

n_qubits=qc_2.num_qubits
qc_2_reg=QuantumRegister(n_qubits)
qc_1.add_register(qc_2_reg)
qc_1=qc_1.compose(qc_2, range(n_qubits, n_qubits*2))

Processing

In order to sort the intensities expressed in the NEQR circuits, the sort module is
applied. Its implementation allows to flexibly sort any two sequence of qubits in a
circuit. It requires as inputs two lists containing the position of the two sequences
in the circuit. The last parameter represents an index of the sort module being
implemented, which is useful when applying more than one to the same circuit.

qc_TOT=neqr_sort(qc_TOT, range(0, q), range(qc_2.num_qubits,
qc_2.num_qubits + q), 0)

To facilitate the detection of the target, the intensity information of the brighter
image is inverted. The neqr_compl_color_ is used to apply the color complement
operation on the intensity qubits of the circuit containing the brighter image, by
specifying its LSB qubit on the circuit.

qc_TOT=neqr_color_compl(qc_TOT, 0, q)
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Testing

Using modules that handle two images together, whether it is through the sort
module, the comparator or the adder, adds several auxiliary qubits to the circuit
that are are not useful in decoding process. Measurement function are supported
in the library to speed-up the process of retrieving the information from this type
of circuits. In this case, neqr_SORT_measure is used to apply measurement to
the circuit only on the necessary qubits. The ideal_simulation is run, by using
its corresponding function. Its output corresponds to the measured states and the
number of times they have been measured.

qc_TOT=neqr_measure_SORT(qc_TOT, int(math.log((num_pix),2)), q)
counts=qimp.ideal_simulation(qc_TOT, numShots)

Output:

{'100000110111110010': 26, '000001110010010011': 23, .....
'110110001000110001': 41, '101001101011100011': 29}

Retrieval

Measuring a two-image circuit produces results that contain the position informa-
tion and the intensity information for both images. The results are only valid when
the position information is the same. The neqr_SORT_decode function is used to
decode these measurements and find the actual sorted intensities. Functions that
decode the results from testing the adder module and the comparator module are
also provided in the library. In order to decode the information, the function re-
quires the number of pixels in the image and the resolution of the intensity as well.
By printing the resulting array, the concatenated pixel information are displayed.

sort_imgs=neqr_SORT_decode(counts, num_pix, q)
print(sort_imgs)

Output:

[3 4 4 5 5 .... 5 5 5 5]

The two images can now be visualized by splitting the array and re-shaping the
results as shown in ??. On the figure on the left, the brighter image resulting from
the sort operation, whose intensities have been inverted, is displayed. On the one
on the right, the darker one is shown. As expected, the brighter image contains a
shape of higher intensity that corresponds to the target.
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Figure 3.9. Brighter image with
inverted intensities Figure 3.10. Darker image

3.2.3 Example 3: Edge Detection
The third example aims at showing the reader how to perform edge detection on
an image, using the functions supported by the library. To demonstrate this, an
image file referred to as ’cat.png’, shown in Figure 3.11 will be processed.

Figure 3.11. Image ’cat.png’

The functions used are taken from the qpie_software_library package, more
specifically from the qpie_basic.py, qpie_geom_transformation.py and qhed.py
modules. To keep a contained circuit dimension, the image is scaled to its 32 × 32
version, which corresponds to 10 qubits in the QPIE encoding.

Encoding

As seen in the previous examples, the image file cat.png is opened and stored into
an array.

px_array=image_conv('cat.png')

Output:

In order to embed it with the QPIE method, the standard encoding function is
used to describe two different quantum circuits, one for the horizontal scan and one
for the vertical scan.
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Figure 3.12. Output of calling im_conv Image ′cat.png′ 32 × 32 version

qc_h=qpie.qpie_circuit(px_array)

Output:

Circuit Depth : 1
Operations: OrderedDict([('initialize', 1)])

In order to apply edge detection both in the horizontal and vertical direction
of the image, the algorithm has to be applied on an image whose matrix is the
transposed of the original. The obtained array is therefore rearranged. The en-
coding functions, print out the depth and operation count of each circuit. Because
QPIE corresponds to a state preparation of a circuit, its encoding function consists
into computing the probabilities corresponding to the intensities and then using a
method provided by Qiskit, initialize, to apply the transformation on the circuit.
For this reason the depth of the circuit, without transpiling, is 1.

px_mx=px_array.reshape(n,n)
px_array_T= (np.asarray(px_mx.T)).flatten()
qc_v=qpie.qpie_circuit(px_array_T)

Circuit Depth : 1
Operations: OrderedDict([('initialize', 1)])

The actual complexity of the circuit is evaluated by using the transpile() func-
tion.

transpile(qc_h)
transpile(qc_v)
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Output:

Depth of the circuit after unrolling: 2037
Operations after unrolling: OrderedDict([('u3', 1023), ('cx', 1022),
('reset', 10)])

Depth of the circuit after unrolling: 2037
Operations after unrolling: OrderedDict([('u3', 1023), ('cx', 1022),
('reset', 10)])

Processing

Processing may be applied on the image before its features are extracted. For
example, this image might require to be shifted up, in order to position the target
in the center of the frame. To exemplify this, the qpie_pos_shift() is applied
on both circuits, but along opposite axis, given the transposition between the two
images. The function requires as inputs the axis along which the shift is applied,
the direction and the magnitude of the shift. The image is shifted along the Y-axis,
in the up direction and of 23 pixels. The transposed image is shifted along the
X-axis, of the same magnitude in the left direction.

c=3
qc_h= qpie_pos_shift(qc_h, 'y', 1, c)
qc_v= qpie_pos_shift(qc_v, 'x', 1, c)

The QHED algorithm can now be applied on both circuits, by simply calling the
qhed function.

qc_h=qpie.qhed(qc_h)
qc_v=qpie.qhed(qc_v)

Before testing the circuits, measurement has to be performed on both.

qc_h.measure_all()
qc_v.measure_all()

Testing

Both of the circuits are then run separately, since the information they are elaborat-
ing is independent. The ideal_simulation function is used and the measurements
results are printed on the terminal.

counts_h=qimp.ideal_simulation(qc_h, numShots)
counts_v=qimp.ideal_simulation(qc_v, numShots)
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Output:

{'01001010001': 1, '10011010011': 1, '10101011111': 1, ...
'1110001100': 57, '11011110110': 86, '11001001000': 137}

{'01111100001': 1, '01000010111': 1, '11111100111': 1, ...
'10100001100': 79, '10101000111': 54, '00110100101': 47}

Retrival

Only the measurements in which the auxiliary qubit is equal to 1 correspond to
the gradients of the pixels. In order to filter out the results and order them by
position, the function qhed_decode is used for both simulations. Its output contains
the information on the borders of the image extracted in the two directions. By
summing the two array together, the edge detection algorithm is completed.

edges_h=qhed_decode(counts_h, px_array.size, numShots)
edges_v=qhed_decode(counts_v, px_array.size, numShots)
edges=edges_h+edges_v

The resulting array is then reshaped into a matrix. The brightness of the edges
is configurable by changing the maximum intensity value of the resulting image.

max_gradient=5
edges_mx=edges.reshape(N,N)
plt.imshow(edges_mx, cmap='gray', vmin=0, vmax=max_gradient)

Output:

Figure 3.13. Result of applying the QHED algorithm

As expected, the results shows that areas with high contrast of intensities are
reported on the obtained image, with a certain degree of approximation.
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Tests and simulations

Once the development of the QImP software library was complete, the implemented
algorithms were tested using Qiskit’s simulators and devices to verify their correct
behaviour and characterize them.

The aim of this chapter is to present the characteristics of the chosen tools used
to carry out the tests, explaining their limitations and the reason behind their
usage. After that, the methodology followed to carry out the various tests in order
to obtain meaningful results will be explained. The last section is dedicated present
the experimental results of the conducted test and draws conclusions on them.

4.1 Set Up
In this section the quantum devices and simulators used are presented, followed by
an explanation on how they were considered to address the characterization of the
algorithms.

4.1.1 IBM quantum devices
The tests on quantum devices have been conducted on one of the free accessible
quantum computers provided by IBM, Quito. This device is part of the processor
family Falcon, specifically the Falcon r4T design version, which has 5 qubits [24].
The coupling map of this type of processor, i.e. a graph representing how the qubits
are connected to each other, is displayed in Figure 4.1.

As can be seen from the schematic, there is limited connectivity between the
qubits, which constitutes a constraint on which couples of qubits can be considered
when implementing two-qubit gates. That defines a discrepancy between the virtual
circuit created from the description done through Qiskit and the actual circuit that
can be implemented on the device. In order to solve this, SWAP gates are added

85



4 – Tests and simulations

Figure 4.1. Coupling map of the Falcon processor type, version r4T

to the circuit to compensate the lack of connectivity, but increasing the depth
of the overall circuit. Furthermore, the performance of this connection coupling
maps is sometimes affected to change and not all the connected couples can be
effectively used. Because of the fact there is a limited number of free accessible
devices available on the IBM Cloud service, their usage is assigned to the users
through a queuing system that often implicates having to wait a considerable time
before being able to run a test. Other three Falcon devices are available on the
Cloud, but the device Quito was chosen because, in the days in which the tests
were conducted, it guaranteed the maximum qubit connectivity, allowing all the
techniques to be tested on a constant setting.

4.1.2 Ideal and noisy simulators
The main tool used to perform validation tests on the algorithms was Qiskit’s
Aer backend. Qiskit’s Aer contains several backends that implement a variety of
simulation methods. Its main one, the Aer Simulator, gives the possibility to run
simulations that mimic the execution of an actual device without noise, taking
into account its behaviour only from a functional point of view. When its default
settings are considered, the simulator returns a count dictionary containing the
final values of the measurements and the number of times each result has occurred.
Moreover while it also provides a number of methods that return, for example,
the unitary describing the circuit or its state vector and other ways to represent
it. To test the algorithms supported by the library the default configuration was
evaluated to be the most appropriate, as the goal was to understand if the images
retrieved from the measurements were as expected.
To test the circuit adding a noise model to the simulation, Aer allows the creation of
backends starting from actual noise data retrieved from real devices. The data sets
available come from IBM quantum computers with different architectures, allowing
the simulation of circuits of dimensions that exceed the computational capacities
of the free accessible devices. The automatic models generated by the simulator
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are an approximation of the real errors that occur on actual devices because they
are built from a limited set of input parameters describing the non-ideal behaviour
of qubits. Nevertheless, testing circuits on this platforms can overall give a good
estimation of the robustness of the algorithms.

4.1.3 Methodology
The main goal of this thesis is to quantitatively and qualitatively compare the dif-
ferent encoding methods and their processing algorithms on real quantum devices,
to evaluate their application perspectives on real world scenarios. As previously
stated, the limited availability and computational capabilities of accessible quan-
tum hardware, made it necessary to exploit other available tools to ensure that the
tests on real devices were as meaningful as possible and to characterize the results
obtained by applying the same algorithms on larger images. The methodology
followed can therefore be synthesized into three steps:

• First, validation tests were performed to verify the correct implementation of
the algorithms, through ideal simulations

• Secondly, functional tests were run to find the optimal number of shots for
each encoding method that guaranteed the maximum PSNR, as well as to
analyze the depth of the implemented circuits

• At last, tests were conducted on the real devices to make comparisons between
the techniques and to see the effect of processing on them

Figure 4.2. Methodology of the tests
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4.2 Experimental results
The experimental results presented in this section follow the structure of the method-
ology presented:

• For what concerns the validation tests, the graphical representation of applying
the algorithms to a sample image, depicted in Figure 4.3, will be shown in
comparison to the original input image.

• The results of the functional tests will be presented for both the ideal and
noisy simulations, grouped in tables that show the varying of the figures of
merit previously discussed, while changing the parameters of the simulation
and the image.

• The results on real hardware will be shown in both graphical and table form.

The sample image used for experiments is depicted in Figure 4.3.

Figure 4.3. Original sample image

4.2.1 Validation tests
Considering the dimension of the circuits required by the various algorithms varies
considerately depending on the specific technique applied, the sample image has
been reduced to its 8 × 8 pixels version. Furthermore, for what concerns the most
resource-demanding NEQR algorithms, the intensity range was also reduced to
be able to process images of the same size as for the other techniques, but still
complying with the 30 qubits limit of the Aer Simulator. The result of these tests
are divided in categories that include the encoding methods and the processing
type, and they are always shown next to their input image. All of the tests have
been run on the Aer backend, executing optimal number of simulations derived
with a particular methodology that will be presented in the next section.

88



4.2 – Experimental results

FRQI

In this category, it is possible to observe the results of embedding an image with the
three techniques supported in the library that are based on the FRQI formalism:
standard FRQI, compressed FRQI and MCRQI. In section 4.2.1, the standard FRQI
encoding is tested through an ideal simulation and is retrieved with a PSNR=37.65
dB. It is worth noticing that the results obtained from the measurements are then
rounded to the nearest integer, in order to interpret them as intensity levels.

Figure 4.4. Original sample and the results obtained from an FRQI encoding

In Figure 4.5, the compressed version of the FRQI encoding gives the same result
as the standard version, effectively implementing a lossless compression, with a
PSNR=36.91 dB.

Figure 4.5. Original sample and the results obtained from the compressed
version of an FRQI encoding

Embedding the RGB version of the sample on an MCRQI circuit, an image with
a PSNR=27.12 dB with respect to the original is retrieved. As can be seen from
Figure 4.6, the slight differences between the intensities are more visible on an RGB
image.
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Figure 4.6. Original sample and the results obtained from an MCRQI encoding

NEQR

In this category, the results of embedding an image using one of the three tech-
niques based on the NEQR formalism are shown.

By using the standard NEQR encoding to embed the sample, the retrieved
image, depicted in section 4.2.1, has a PSNR=inf dB with respect to the original,
due to basis embedding of the technique.

Figure 4.7. Original sample and the results obtained from a NEQR encoding

When considering the compressed version of NEQR though, it modifies the in-
formation contained in the sample. The compression applied on the image, heavily
depends on how much redundant information there is and where it is stored. As
seen in 2.5.2 the minimization of the boolean functions, can create duplicate states
for the same pixel, actively modifying its intensity. The PSNR derived from the
result of this test are shown in Figure 4.8 is 12.23 dB.
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Figure 4.8. Original sample and the results obtained from the compressed
version of an NEQR encoding

To embed the RBG version of the sample on a NCQI circuit, while respecting
the limitations on the number of qubits, it was necessary to reduce the intensity
range of each color channel to [0,23]. The resulting image has a PSNR=inf dB as
NEQR, given the embedding strategy it uses. The image is depicted in Figure 4.9.

Figure 4.9. Original sample and the results obtained from a NCQI encoding

QPIE

Simulating the QPIE circuit encoding the image, the retrieved image has a PSNR=21.30
dB and is shown in Figure 4.10. As for FRQI, the resulting image is an approxi-
mation of the original.

4.2.2 Processing algorithms

In this category, the behaviour of the processing algorithms is verified. The PSNR
of these techniques is calculated by confronting them with the results of the same
processing applied through classical computing on the original image.
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Figure 4.10. Original sample and the results obtained from a QPIE encoding

Geometric transformations

The results of tests regarding the geometric transformations functions are shown
only for the FRQI encoding. The other versions have identical visual results, with
PSNR slightly changing depending on the encoding method’s retrieval accuracy.

In Figure 4.11, the image on the right represents the result of applying an axis
flip with respect to the X-axis. Its PSNR is of 37.21 dB.

Figure 4.11. Original sample and the results obtained from applying a FY

operation on a FRQI image

The results of applying a coordinate swap operation is represented in 4.12. The
function effectively implements the desired effect, obtaining a PSNR=35.96 dB.
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Figure 4.12. Original sample and the results obtained from applying a coordinate
swap operation on a FRQI image

In Figure 4.13, it is possible to observe the effect of applying the orthogonal
rotation function, with θ = 270◦, to an FRQI image. The retrieved image has a
PSNR of 36.31 dB.

Figure 4.13. Original sample and the results obtained from applying a orthogonal
rotation operation on a FRQI image

In Figure 4.14, the result of a restricted flip operation on the upper half of the
image, with respect to the X-axis, is shown. The processed sub-area of the image
is highlighted in red, while the PSNR is 35.67 dB.

Figure 4.14. Original sample and the results obtained from applying a restricted
FY operation on a FRQI image
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Applying a coordinate swap operation on the upper right half of the image,
produces the result shown in Figure 4.15, as expected. Its PSNR with respect to
classical processing is of 34.03 dB.

Figure 4.15. Original sample and the results obtained from applying a restricted
coordinate swap operation on a FRQI image

4.2.3 Chromatic transformations
In this category, only the results of applying chromatic transformations to NEQR
will be presented, as it is the encoding from which the algorithms of most interest.

In Figure 4.16 the color complement operation is shown. The inversion of the
gray-scale information is correctly achieved.

Figure 4.16. Original sample and the results obtained from applying a color
complement operation on a NEQR image

If Figure 4.17, it is possible to observe the classification operation applied with
a threshold of 128. All of the pixels with higher intensity are displayed in black,
while the others are white.
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Figure 4.17. Original sample and the results obtained from applying a classifica-
tion operation on a NEQR image

In order to demonstrate the add/sub function, the sample image’s intensities were
subtracted with the intensities of a copy. Black pixels are equivalent to the intensity
level 0, demonstrating the correct behaviour of the algorithm in Figure 4.18.

Figure 4.18. Original sample and the results obtained from applying a SUB
operation on two NEQR images

In Figure 4.19 the original sample and its color complemented version are de-
picted to illustrate the correct functioning of the sort module, which is to compare
the two images pixel by pixel and to sort them by intensity value, putting all the
brightest in the first image and vice-versa. Instead, on Figure 4.20 it is possible to
observe that the two resulting images’ pixels are sorted by intensity level.
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Figure 4.19. Original sample and color complement version

Figure 4.20. Resulting images from applying a SORT operation on two NEQR images

Quantum Edge Detection

In Figure 4.21, the effect of applying the QHED algorithm on the sample image, as
implemented in the library, is depicted. The image selected, in its 8 × 8 gray-scale
version, does not have a considerable differences in terms of intensity between the
object and the landscape. Therefore extracted edges of the image do not describe
the target accurately.

Figure 4.21. Original sample and the results obtained from applying QHED
algorithm on a QPIE images
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4.2.4 Functional tests
After the validation tests, the goal was shifted onto characterizing the different
techniques in terms of complexity and fidelity by varying the dimension of the
images and the number of shots of the simulations. For this purpose, the noise
models provided by Qiskit were used as a tool to predict the behaviour of the
algorithms in real quantum hardware applications, along with ideal simulations.
It is worth noticing that, the many noise models present in Qiskit’s toolbox have
consistently different behaviours, due to their different data sets, and the results
of simulating the implemented algorithms may vary in a non-negligible way when
switching between them. In the following section, the Aer backened simulator was
used to run ideal simulations, while the FakeMelbourne backend was considered for
the noisy simulations. Its noise model is based on data taken from the performances
of the IBM quantum computer Melbourne, which has an architecture of 14 qubits.
The dimensions of the embedded images used in the tests vary from 2 × 2 images
to 16 × 16, requiring to reduce the number of intensity levels in order to simulate
NEQR images. The number of intensity levels was reduced to 23 for all three
encoding methods. The tests are organized in the following way:

• First the encoding methods were tested with ideal simulation, in order to
understand which are their characteristics in absence of non-idealities, varying
the number of shots and the dimensions of the circuit, by changing the size of
the image.

• After that, the same process is repeated on the noisy backend, to investigate
what are the limitations it introduces.

• The results obtained from processing algorithms are also presented, for a lim-
ited number of techniques. The techniques were chosen based on which pro-
cessing algorithms were also testable on the limited capacities of the available
real devices and their PSNR is calculated with respect to the ideal simulations.

• Finally, the same techniques, are tested on the device Quito.

In the reported tables, the main figures of merit describing the QImP algorithms
and their performances, are presented for each circuit. In the first experiments ,
the number of simulation shots are varied to see how the PSNR responds, while
the depth and the number of gates are observed in contrast to the image size. In
the noisy simulations, the same process is repeated, while observing how the PSNR
changes in relation to the depth of the circuit. The number of simulations Nshots is
given by the formula:

Nshots = Npixels × c

where Npixels is the number of pixels in the image, and c is a factor varied through
the experiments.
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FRQI ideal simulation

Here, the results of ideal simulations performed on a FRQI circuit are shown in three
tables, in which c varies from 10 to 1000. From these experiments it is possible to
see that c = 1000 corresponds to the number of measurements that guarantees the
highest possible PSNR for FRQI. Switching from the minimum to the maximum
number of shots, there is an improvement of more than 20 dB. Test with c > 1000
were also run, but the PSNR achievable by the FRQI encoding peaks at about 40
dBs. Increasing c coefficient does not bring additional advantages with respect to
the ones shown for c = 1000.
The second aspect worth evaluating is the actual increase of depth and gate count
when varying the size of the image. The depth and number of gates shown in all of
the following tables is extracted from the circuit after the transpiling, which unrolls
the circuit in X gates, CX gates and U gates, which are single qubit rotations. The
increase of required resources correlated to larger image’s sizes is more than what
was expected, making the circuits for images of modest size extremely complex.

FRQI tests with c=10, ideal simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 3 91 138 40 14.72 dB
4 × 4 5 1427 1972 160 13.34 dB
8 × 8 7 24131 32584 640 16.17 dB
16 × 16 9 391427 524042 2560 16.65 dB

FRQI tests with c=100, ideal simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 3 91 138 400 23.72 dB
4 × 4 5 1427 1972 1600 26.85 dB
8 × 8 7 24131 32584 6400 27.81 dB
16 × 16 9 391427 524042 25600 29.26 dB

FRQI tests with c=1000, ideal simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 3 91 138 4000 29.73 dB
4 × 4 5 1427 1972 16000 41.96 dB
8 × 8 7 24131 32584 64000 38.34 dB
16 × 16 9 391427 524042 256000 42.10 dB
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NEQR ideal simulation

For what concerns ideal simulations on NEQR, only the table corresponding to
c = 10 is shown, as the PSNR maximum value is already reached. As presented
in subsection 2.2.2, in the absence of non-idealities, NEQR is capable of retrieving
the exact image. The depth and number of gates observed instead do not match
the expected results. In fact, the depth and gate count obtained from transpiling
the circuit in CX gates and one-qubit rotations exceed the ones required for FRQI,
although the NEQR circuit is reduced to its 3-intensity-qubit version. Slightly
different basis of gates were given as inputs for the transpiler, but the result stayed
the same.

NEQR tests with c=10, ideal simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 5 88 135 40 inf dB
4 × 4 7 1962 2693 160 inf dB
8 × 8 9 30117 36839 640 inf dB
16 × 16 11 461348 279605 2560 inf dB

QPIE ideal simulation

As can be seen from the following tables, QPIE has by far the lowest complexity of
all the encoding methods, in line with the theoretical results. As for FRQI, QPIE
reaches its highest PSNR value when c = 1000, but in this case the PSNR peaks at
around 20 dB. It is worth noticing that the QPIE retrieval depends heavily on an
estimation of the Root Mean Squared (RMS) value of the pixels intensities, since
that information is not embedded in the circuit. By knowing the exact value of the
RMS, further tests conducted show that, in an ideal simulation for a QPIE circuit
embedding this image, the peak PSNR can arrive at around 27 dB. An image whose
RMS value is close to the median one estimated in the retrieval process, will have
better results in terms of PSNR. That underlines the fact that QPIE’s results can
vary a lot depending on the information contained by the image.

QPIE tests with c=10, ideal simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 2 5 7 40 7.92 dB
4 × 4 4 27 33 160 15.39 dB
8 × 8 6 121 131 640 15.16 dB
16 × 16 8 503 517 2560 17.21 dB
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QPIE tests with c=100, ideal simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 2 5 7 400 8.66 dB dB
4 × 4 4 27 33 1600 18.66 dB
8 × 8 6 121 131 6400 20.50 dB
16 × 16 8 503 517 25600 21.21 dB

QPIE tests with c=1000, ideal simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 2 5 7 400 8.71 dB
4 × 4 4 27 33 1600 18.86 dB
8 × 8 6 121 131 6400 21.37 dB
16 × 16 8 503 517 25600 22.31 dB

FRQI noisy simulation

When switching to noisy simulations, it is possible to observe that the results of all
the encoding methods worsen considerately. Depth and gate count of the circuits
have an important impact on the PSNR results, as the parameters describing the
errors of gates are introduced, the circuit accumulates error as the critical path
of the circuit increases. Even in the noisy simulation, c = 1000 represented the
optimal working point for the performances of FRQI.

FRQI tests with c=10, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 3 91 138 40 10.16 dB
4 × 4 5 1427 1972 160 10.09 dB
8 × 8 7 24131 32584 640 8.55 dB
16 × 16 9 391427 524042 2560 8.77 dB

FRQI tests with c=100, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 3 91 138 400 17.42 dB
4 × 4 5 1427 1972 1600 10.58 dB
8 × 8 7 24131 32584 6400 10.49 dB
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16 × 16 9 391427 524042 25600 9.32 dB

FRQI tests with c=1000, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 3 91 138 4000 21.99 dB
4 × 4 5 1427 1972 16000 10.30 dB
8 × 8 7 24131 32584 64000 10.88 dB
16 × 16 9 391427 524042 256000 10.80 dB

NEQR noisy simulation

The tests on noisy simulations have shown that the encoding method most affected
by noise is the NEQR method. With the addition of gate non-idealities, all of the
possible 22n combinations of the basis states are generated, and the results show
that the states with the highest probability can be different from the originally
encoded states. Over many tests, it was observed that this behaviour is completely
aleatory, making NEQR a less robust. The decoding function implemented for
NEQR only elaborates the states with the highest probability, which can lead to
retrieved information that can be redundant for one pixel and completely absent
for another. When the retrieved states are the correct ones, the PSNR reaches the
maximum PSNR level, while it can drop significantly when that does not occur. In
this case, the number of measurement performed as a impact on the NEQR results,
especially for 2 × 2 images, showing once again the importance of lower depth and
gate count.

NEQR tests with c=10, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 5 88 135 40 3.83 dB
4 × 4 7 1962 2693 160 2.16 dB dB
8 × 8 9 30117 36839 640 4.15 dB
16 × 16 11 461348 279605 2560 2.03 dB

NEQR tests with c=100, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 5 88 135 40 inf dB
4 × 4 7 1962 2693 160 3.30 dB
8 × 8 9 30117 36839 640 4.02 dB dB
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16 × 16 11 461348 279605 2560 3.04 dB dB

NEQR tests with c=1000, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 5 88 135 40 inf dB
4 × 4 7 1962 2693 160 10.30 dB
8 × 8 9 30117 36839 640 4.6 dB dB
16 × 16 11 461348 279605 2560 4.35 dB

QPIE noisy simulation

The QPIE encoding is the most robust to the effect of noise. The results obtained
show PSNR values that are close to the noiseless simulation, for what concerns
the 2 × 2 images, confirming once again the inverse proportionality between the
complexity of the circuit and the fidelity of the images retrieved.

QPIE tests with c=10, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 2 5 7 40 8.32 dB
4 × 4 4 27 33 160 12.72 dB
8 × 8 6 121 131 640 13.20 dB
16 × 16 8 503 517 2560 10.15 dB

QPIE tests with c=100, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 2 5 7 400 8.67 dB
4 × 4 4 27 33 1600 16.22 dB
8 × 8 6 121 131 6400 15.02 dB
16 × 16 8 503 517 25600 9.80 dB

QPIE tests with c=1000, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 2 5 7 400 8.66 dB
4 × 4 4 27 33 1600 17.57 dB
8 × 8 6 121 131 6400 14.70 dB
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16 × 16 8 503 517 25600 10 dB

Noisy simulation on the Flip Operation

The testing of processing algorithms on FRQI was done through the application
of the flip operation along the Y-axis (FY ). The simulation was repeated for a
number of times that was deemed optimal from the previous experiments done
on the encoding method, since the flip operation adds a complexity to the circuit
of O(1). The results are in line with what was observed from simply testing the
encoding method, showing similar PSNR values.

FY on FRQI tests with c=1000, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 3 92 140 4000 18.77 dB
4 × 4 5 1429 1973 16000 9.70 dB
8 × 8 7 24134 32586 64000 10.02 dB
16 × 16 9 391431 524044 256000 9.10 dB

Noisy simulation on the Complement Color technique

For what concerns NEQR, the processing method applied was the color complement
technique (CC), which is also a very low complexity algorithm. In the same way as
for NEQR, the exact measurement is retrieved when the image is sufficiently small,
while in other cases the PSNR is very low, due to the randomness of the retrieved
states.

Color complement operation on NEQR tests with c=1000, noisy simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 5 89 138 4000 inf dB
4 × 4 7 1962 2693 16000 4.54 dB
8 × 8 9 30117 36839 64000 2.80 dB
16 × 16 11 461348 279605 256000 3.27 dB
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QHED noisy simulation

The QHED simulations showed results consistent to what already observed for
QPIE. The added qubit required by the algorithm did not introduce a drop in
performances with respect to the simple encoding method.

QHED tests with c=1000, ideal simulation
Img size number

of qubits
Depth Number

of gates
Number
of shots

PSNR

2 × 2 3 8 10 4000 9.80 dB
4 × 4 5 29 34 16000 10. dB
8 × 8 7 123 132 64000 9.02 dB
16 × 16 9 503 517 256000 7.97 dB

4.3 Tests on real hardware
As a last step of the testing procedure, the algorithms presented were run on real
quantum hardware. The tests were initially performed using the optimal number
of shots identified in the previous steps, and later they were varied to verify their
accuracy. The number of simulations shown on the tables are the ones that were
found to be the optimal ones through various tests on the hardware.

4.3.1 Encoding methods
In this first table, the encoding techniques are closely compared for the same 2 × 2
image, shown in Figure 4.22, which has a gray-scale range equal to [0, 23 − 1]. The
testing was performed in this way to allow the representation of NEQR on the
available hardware, in line with the previous tests performed.

Figure 4.22. 2 × 2 sample with q=3
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Given the redundancy of the sample image chosen, the compression version of the
FRQI and NEQR method were also tested. To quantify the amount of compression
applied, the Compression Ratio (represented as CR in the tables) is also specified.
It is defined as

Compression_Ratio = (1 − Ops_After_Compression

Ops_Before_Compression
) × 100%

This metric varies considerately depending on the embedded image. For the
other encoding methods, the corresponding table cell is indicated as Non Classified
(NC).

Comparison of embedding techniques on hardware
Method Nqubits Depth Ngates Nshots CR

(%)
PSNR

FRQI 3 92 144 4000 NC 6.32 dB
FRQI comp 3 53 76 4000 47.22 9.13 dB
NEQR 5 79 126 400 NC. 6.02dB
NEQR comp 5 6 12 400 90.14 16.90dB
QPIE 2 6 9 4000 NC 10.23dB

From the results obtained, it is possible to observe that the results of FRQI on
the Quito device have a substantial drop of performances in terms of PSNR. As
it is easily observable from the table, FRQI is by far the encoding that requires
the highest depth, followed by NEQR. For both of this encoding methods the
compressed versions introduce improvement. As can be seen in Figure 4.3.1, the
image retrieved from the compressed version constitutes a recognizable version of
the image with respect to the image retrieved from the standard version, which is
quantified by an PSNR increase of about 3 dB, due to a CR = 47.22%.

Figure 4.23. FRQI
standard

Figure 4.24. FRQI
compressed

Figure 4.25. FRQI tested on the IBM Quito device
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For what concerns NEQR, the effect of noise is easily observable in Figure 4.3.1
and 4.3.1. Both images have the intensity of one of the pixels of a value unrelated to
the original image. In the compressed case, that value is closer to the original one,
raising the PSNR from 6.02 dB to 16.90 dB, with CR = 90.12%. These results do
not improve by using the maximum number of shots available on the device, which
is 8192. It is important to notice that the results obtained from NEQR, vary a lot.
Multiple measurements on the Quito device have shown that, depending on the
state of the hardware, the NEQR can also give satisfying results with PSNR=inf
dB with a certain frequency.

Figure 4.26. NEQR
standard

Figure 4.27. NEQR
compressed

Figure 4.28. NEQR tested on the IBM Quito device

The image retrieved from testing the QPIE encoding method is depicted in
Figure 4.29. By looking at the table 4.3.1 is possible to observe that the result is
one of the most encouraging between the other encoding methods. Nevertheless,
the results are slightly below the expectations given the very low computational
complexity of the algorithm.

Figure 4.29. QPIE encoding tested on quantum hardware

4.3.2 Processing algorithms
The techniques previously tested on the noisy simulation, were also tested on the
hardware. Because all of these processing techniques require the addition of a few
simple gates, the results were expected to slightly worsen. The respective PSNR
of each resulting image has been calculated with respect to the data obtained from
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running the same circuit on an ideal simulation. The corresponding image is also
shown next to the one of each device test.

Comparison of processing techniques on hardware
Processing
technique

Nqubits Depth Ngates Nshots PSNR

FY FRQI 3 92 142 40 8.06 dB
FY FRQI comp 3 54 81 4000 9.44 dB
CC 5 80 128 400 13.38 dB
CC comp 5 7 15 400 inf dB
QHED 3 19 31 4000 9.26 dB

For what concerns FRQI, by looking at the table ??, it is possible to observe that
the PSNR has slightly improved, but the overall result is line with the expectations.
Figures 4.3.2 and 4.3.2 show the results of applying a FY operation on the FRQI
circuit, where it is noticeable that the compressed circuit delivers an image more
recognizable, given its increase of 1.44 dB in terms of PSNR.

Figure 4.30. Ideal sim-
ulation

Figure 4.31. FRQI
standard

Figure 4.32. FRQI
compressed

Figure 4.33. FY tested on the IBM Quito device

The result obtained from testing the complement color operation on the circuit
show the previously mentioned characteristics of retrieving images embedded with
NEQR. For the non-compressed image, pixels intensities are very unrelated to their
original value. The compressed circuit instead, gives the exact result, bringing the
PSNR to maximum. That is in contrast with the expectations, since the added
noise coming from the extra gates was expected to worsen the performance. These
underlines the aleatory aspect of retrieving an NEQR image in the presence of
non-idealities.
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Figure 4.34. Result on
ideal simulation on NEQR

Figure 4.35. NEQR
standard

Figure 4.36. NEQR
compressed

Figure 4.37. CC tested on the IBM Quito device

As a last test, the QHED was also run on quantum hardware. By comparing
looking at 4.3.2, it is possible to observe that the edge point of the image is correctly
retrieved. Comparing the image with the one in Figure 4.3.2, a PSNR=9.26 dB
was observed, in line with the previous results of QPIE.

Figure 4.38. QHED
tested through ideal
simulation

Figure 4.39. QHED
tested on IBM Quito
device
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Chapter 5

Conclusion

The goal of this thesis is to provide a practical way to compare the most promising
QImP techniques proposed in the state-of-the-art and to evaluate whether they
represent concrete opportunities with respect to their classical counterparts, while
considering the limitations of quantum computers available today. For this purpose,
a modular Python software library was developed, capable of applying many QImP
algorithms. It gives the possibility to flexibly implement encoding methods, geo-
metrical and chromatic transformations, edge detection algorithms and compression
techniques, while allowing the characterisation of the different algorithms through
a set of test functions. The library makes use of Qiskit, an open-source software-
development kit that permits to describe quantum circuits and to run them either
on simulators or on real quantum devices, through IBM Cloud quantum comput-
ing service and it has been extensively documented considering Jupyter Notebooks.

Once the library development was completed, the implemented techniques were
tested using both simulations and real quantum hardware, while particular figures
of merit were considered to make quantitative comparisons of the results obtained.

The results observed during the tests highlight the fact that, although the pro-
cessing algorithms implemented do not contribute to the complexity of the circuit
in a substantial way, the depth of the circuits required by NEQR and FRQI only for
embedding the information, make the retrieved images non reliable and therefore
not suitable for further processing. Future perspectives for these methods should
necessarily focus on compressing the information for any kind of image, given how
critical depth is to the reliability of the circuit. In this regard, the results obtained
by QPIE underline the importance of expanding its processing capabilities both for
its low complexity and its suitability to algorithms oriented to computer vision.

In conclusion, the implemented library provides a useful tool for comparing var-
ious techniques from the QImP panorama. The analysis and characterisation of
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5 – Conclusion

the algorithms, that can be done exploiting the developed functions, represents a
starting point to a larger comprehension of practical perspectives of this field of
research and the feasibility of its algorithms, which are often not discussed in the
available literature.

The modular and flexible nature of the implemented library gives the possibility
to enrich it with new techniques in the future and to integrate the ones that are
present into more advanced quantum computing algorithms, broadening their ini-
tial application into more complex processing tasks. The tests performed on real
quantum hardware highlighted the actual advantages and disadvantages of the dif-
ferent encoding methods that were not observable from the theory and simulations.
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