
POLITECNICO DI TORINO
Master’s Degree in COMPUTER ENGINEERING

Master’s Degree Thesis

DEVELOPMENT OF A WEB
APPLICATION IN AN AGILE TEAM

IMPROVING THE USER STORY
EFFORT ESTIMATION PROCESS

Academic Supervisor

Prof. Antonio Vetrò

Industrial Supervisor

Dott. Massimo Gengarelli

Candidate

Amedeo Sarpa

October 2022

Abstract
In this master thesis work is presented my experience in a French

consultant company during a six-month internship. The goal of the
internship was to develop a web application in an Agile team. The
main functionality of the application is the management of clients and
consultants of the company. The agile team was composed by six interns
developers at their first working experience, who periodically exchanged
the roles of Product Owner (PO) and of the Scrum Master (SM). The
thesis work extends the internship report committed at the end of the
stage. Particularly, are added the chapter 4, describing an activity
research made in parallel during the stage, and the sections where are
described tools used for the deployment (kubernetes, terraform and
helm).

The team started from scratch, defining the microservice architecture
of the system and choosing the technologies that most suited each
microservice. The application was deployed in a cloud environment,
exploiting all its advantages: more flexibility, easier maintenance and
users that do not need to directly manage resources. Developers were in
charge of setting up the cloud infrastructure. The development followed
the DevOps philosophy: tools like Terraform and GitLab pipelines have
been used in order to automatize operations. In the thesis work are
described all the steps of the project and the tools used, providing also
practical examples.

The research activity, that was carried out in parallel with the de-
velopment, proposes a possible approach to improve the user story
estimation process. It proposed metrics and possible indicators that
could badly affect this process. The possible indicators of bad estima-
tions proposed are: 1) "New technology": when a user story requires the
introduction of a new technology. 2) "Spike", user story that requires
also to implement transversal tasks. 3) "New functionality", when a
user story introduces a new set of functionalities. During the devel-
opment were collected both quantitative data, such as effort in hours
spent on each user story, and qualitative data, like developers’ feedback.

ii

These data were analysed and discussed before each sprint planning
and, particularly, in a special meeting at the middle of the development
in order to see if, with a more experience in the project and with the
analysis of data collected, the estimation process improved. Develop-
ers’ feedback, i.e. difficulties encountered during the implementation,
were collected in order to identify the most common reasons of bad
estimations. What came out is that the role of the Product Owner is
crucial and must not be underestimated, in fact, 15 user stories out
of a total of 20 identified were badly estimated because the goal of
the story was not clear during the planning or client’s needs were not
fully understood. Furthermore, a factor that most influenced the team
was the lack of experience of developers. The activity demonstrated
that the effort estimation process could be improved by collecting and
analysing data. The number of user stories bad estimated decreased
over time, no more exceeding 2 bad estimations per sprint. Regarding
the possible indicators of bad estimations, not significant conclusions
can be drawn about because there were no strong correlations. However,
the team thinks that developers must pay attention when estimating
a user story that introduces a new set of functionalities or requires to
perform transversal tasks. In the first case, the team has to make sure
that the new functionality’s goals are clear to every developer. In the
second case, the team must discuss possible difficulties and factors that
could affect the implementation of transversal tasks.

keywords: Agile methods; Effort estimation; Microservices; DevOps;
Cloud computing.

iii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms viii

1 Introduction 1
1.1 The company . 1
1.2 The project . 2

2 Project structure 5
2.1 Microservice Architecture 5
2.2 C4 model . 6
2.3 Kubernetes . 11
2.4 Helm . 21
2.5 Terraform . 24

3 Development technologies 30
3.1 Microsoft MSAL for the login system 30
3.2 Pipelines . 34
3.3 CosmosDB . 39
3.4 Jest and Supertest . 42
3.5 gRPC protocol . 46
3.6 Cronjob . 50

4 Research activity 53
4.1 Description and motivation 53

iv

4.2 Research questions and metrics 55
4.3 Results analysis . 57
4.4 Conclusions and future works 67

5 Conclusions 69

Bibliography and Sitography 71

v

List of Tables

4.1 Differences of the number of user stories identified as
bad estimated by the two metrics 60

4.2 Mean, median and standard deviation of story points
done and committed 63

4.3 Phi correlation coefficients 63
4.4 Developers’ feedback occurrences after last sprint . . . 66
4.5 Developers’ feedback occurrences after sprint 6 66

vi

List of Figures

1.1 Some widgets of the dashboard 4

2.1 Context level . 8
2.2 BM’s customer journey 11
2.3 Cloud model . 14
2.4 Helm’s folder structure 22

3.1 Login structure . 31
3.2 Login dialog . 32
3.3 JWT Payload . 33
3.4 GitLab pipeline . 35
3.5 gRPC schema . 47
3.6 Cronjob Scheduled . 52

4.1 Variance in estimates chart at sprint 6 58
4.2 Final variance in estimates chart 59
4.3 Bad estimations number trend 60
4.4 Trend story points done over story points committed . 61
4.5 Histogram comparing story points done versus committed 62

vii

Acronyms
BM

Business Manager

BU
Business Unit

SA
Sophia Antipolis

SM
Scrum Master

PO
Product Owner

POC
Proof of concept

JWT
Json Web Token

CDC
Cahier Des Charges

AD
Active directory

viii

Chapter 1

Introduction

1.1 The company
"Alten is a French multinational consultant company founded in 1988,
it has offices in more than 28 countries and works with key factors in
the Aeronautics and Space, Defense and Naval, Security, Automotive,
Rail, Energy, Life Sciences, Finance, Retail, Telecommunications and
Services sectors" [1]. Alten’s DNA combines human values, a culture
of excellence and expertise at the service of its costumer. In France
there are several Business Units, one in Sophia Antipolis, were I made
the internship, a delivery center that manages and develops IT projects
for Alten’s clients. The core of the company are two figures: Business
Managers and Consultants. The latter are people who provides expert
advice professionally to other companies, the clients. The former instead
are the people who are directly in contact with the clients to satisfy
their needs, selecting the best consultants that fit their requirements.
Others relevant figures inside the company are the HR, that is in
charge of recruiting and retention of employees within a company,
the CMC, in charge of career, which follows the career evolution of
the pool of consultants of the BU and the department director, who
oversees the BMs. I did the internship in the company with other
nine guys, all interns. We were divided in two teams, with the goal
to develop two functionalities of the same application. My team,
composed by 6 developers, dealt with the front office implementation,

1

Introduction

that is described in the next section. The second team dealt with the
back office implementation, the operations accessible by the system
administrator with elevated privileges. The goal of the internship
was not only to develop a web application but to introduce us in a
modern web development project, following the DevOps philosophy.
Shortly, DevOps [2] indicates best practise to combine development
and operational operations, with the goal to decrease the development
life cycle, empathising the automation. The company has well-defined
development tools that are used in every project: to help the Agile team
to coordinate and manage user stories was used the Jira dashboard.
GitLab is used as code repository and software development platform,
that suits with DevOps projects. Due to a partnership with Microsoft,
the cloud environment and its related technologies chosen is Microsoft
Azure.

1.2 The project

The goal of the project was to develop a web application used manly
by the HR and the BM in order to facilitate the hiring process, careers
follow-up and client management. The application was developed in
a multicultural team, following Agile SCRUM methodology. Unfortu-
nately, not much detailed information can be provided on this as the
project is an internal project. Peculiarity of the web app is that this
will be used in all Alten’s department in France, so an important aspect
to took in consideration was the multi-tenancy management. Since the
application is deployed as a single cloud-native Software as a service
solution, each BU must be enclosed in its own tenant, the accesses must
be controlled. For example, a BM that has this role in Paris’ tenant,
cannot access data of consultants that work for SA’s tenant, even if
data are stored in the same database. To manage each tenant, a new
role is introduced, the tenant administrator, which is able to handle
entities inside the tenant. Since several users can access the application,
its functionalities act differently basing on the role of the user logged
in.

2

Introduction

Let’s analyse more in deep the requirements of the main functionali-
ties of the app:

• Candidates Management: A candidate is a future consultant in
process of being recruited, it is an entity with several fields like
general information, professional information, recruitment and
interviews information. The main requirements are the possibility
to display the candidate in 4 ways: as a list, as a recap card with
all important information, a form to create one and a summary
with the interviews planned.

• Consultant Management: A consultant is a current or previous
employee of Alten, it is an entity with several fields like general
information, contact information and Alten related information.
The main requirements are the possibility to display the consultant
in 4 ways: as a list of current consultant, a list of ex consultant, as
a recap card with all important information, a form to create or
edit a consultant.

• Client’s needs Management: Business Managers will manage their
costumers, so they need the possibility to create or edit them. Since
their information are sensible, the access to the data is limited. To
each customer are associated one or more needs, that correspond
to the consultant they are looking for.

One particular request was to have a dashboard (fig 1.1) as the main
page of the app. Once the user login is redirect to this page, where are
shown some widgets basing on the role of the user logged. These widgets
provide an overview of the most valuable information for the users and
facilitate the access to the features of the app. Other requirements for
the application were to design an application that follows the Europe’s
GDPR rules, accessible, fun to use, responsive and in particular with
high performance. This last requirement was the most important, why?
Because the application was build from scratch but already exists a
first version of the application; it was developed many years ago with
deprecated and old technologies, that cause the application to be very
slowly and with very low performance. Also, the UX/UI is considered

3

Introduction

Figure 1.1: Some widgets of the dashboard

very boring and not well designed, so this is another point that we
carefully took into consideration during the development. This explain
why the company choose to restyle and build from scratch the second
version of the product. Since the core activity of the company is to
hire consultant and manage client needs, having a software that is not
frustrating to use but a joy to use and with very fast performance, can
only have positive effects for the company. The product thus aims to
fill a need of the company, improving business processes, facilitating
the work of the employees.

4

Chapter 2

Project structure

2.1 Microservice Architecture
Before talking about the architecture of system, I would like to in-
troduce an important concept that was very useful for us to choose
the technologies used in the project and to facilitate our works when
we started implementing a new functionality: the Proof of concepts.
POC [3] in general could be defined as a small realization of an idea
to demonstrate its feasibility and could be used as a prototype of a
solution. In our case, POC are small projects where are applied new
technologies or more technologies are combined. This allows, for the
first case, to start learning a new technology not in a client project and
to share it with colleagues in order that they can have a starting point.
For the second case, POC can show the feasibility of the combination
of two or more technology (e.g. see how is possible to communicate a
certain database to a back end) to determine if worth it to use together
these technologies or not. I manly wrote POCs to choose the best tech-
nology for the front end. We started with the idea to use the framework
Svelte, a new approach to build user interface. Since nobody knew
that, was useful to see how it worked combined also with a back end.
In particular, I wrote a POC for an authentication system in Svelte,
then I wrote the same functionality in React. At the end, we choose
React because Svelte is not well documented and there were some team
members that already did some work in React. Another example was

5

Project structure

one POC that was provided by our supervisor, that showed how to
connect two Nestjs microservices through gRPC protocol. This POC
helped us a lot to learn faster how gRPC works and how to apply it to
the project.

The architecture of the system follows the microservice software
design pattern. This approach enables to define an application as a suite
of small services, each one in charge of implementing a functionality
and communicating each other via lightweight protocols (e.g. gRPC).
Each microservice must use the right tools for executing their job,
it’s not necessary that they all use same technologies but the ones
best suited with the task to be performed. Microservices are loosely
coupled: they know each other at run time and not at design time,
implying a late binding, so the exchange of data is established at run
time. Other properties are the autonomy, each service is responsible
only of its data and functionalities, and push and pull behaviour, data
exchange could be started by a service consumer that requests data or
by a producer that publish messages that are received by subscribers
(a message broker is needed). Another approach could be using a
monolithic architecture, but although the advantages of a single code
base and a central ops team, this approach is conditioned by a difficult
in scalability, lack of agility and difficulties in maintain and evolve the
architecture. Microservices instead has the advantages to facilitate the
scaling of each individual micro-service, to facilitate the maintenance
and to be more flexible and modular compared to the monolithic.

2.2 C4 model
Alten’s business is not based on the product development but on the
client satisfaction. Client’s needs could be written or said verbally. In
the latter case, the business analyst determines what is needed to do in
the project, then the Product Owner defines requirements writing the
CDC, document with specifications and requirements. In the former
case, CDC is already provided by the client. CDC is the starting
document for the software architect to define the architecture of the
system. In our team, me with other two team members were in charge

6

Project structure

of defining that structure. There are several models that could be used,
like the UML, but the company suggested us to use the C4 model.
The C4 model [4] was introduced not only to improve the graphical
representation of the structure, having a more clear and readable one,
but also to better communicate it to the client. As the name suggests,
it’s composed by 4 diagrams:

1. Context, the first level, it explains the app context and how it
interacts with stakeholders and external systems. Is the one that
is presented to the client, so does not contain technical details but
highlights the main macroservices of the application and how they
communicate with the stakeholders and between each others.

2. Containers, application design, it represents the runnable/deploy-
able units and how they inter operate. An example of container
is a database or the back end side of a microservice. Inside a
macroservice there is at least one container. This level is important
for the client, for the PO (that can start do the sizing) and for who
has to do the setup of the infrastructure, generally the architect
himself.

3. Components, used generally to do the sizing of the app, represent
for each container its components. For example, could be the
representation of controllers and services of a back end container.

4. Code, that is the representation of the structure of the code of a
single component. Could be generated automatically by some IDE,
an example is an UML class diagrams. Generally, the definition of
this level is not done by the architect but is left to the developers,
because they can organise the code structure as they see fit and as
they usually do.

This model allows a sort of zoom in and out in the structure in order to
represent it at different levels of details and to show to the reader the
information he is interested on. Our supervisor gave us some guidelines
and suggestions to prepare the model:

• Add title on each page and documents.

7

Project structure

• Be consistent with names.

• Add sticky notes possibly.

• Do not use acronyms.

• Write directional lines and write the purpose of each connection

• Use icons, be explicit and use a legend.

In the figure 2.1 is showed the system context of our application.
Stakeholders are identified by the human icon, the ones that most

Figure 2.1: Context level

interacts with the application are already described in section 1.1, like
HR and BM. Of course, they can interact with the system through
the UI of the web site. In green is represented an external system, the
Microsoft MDAP, that allows the user to authenticate, more details are
given in section 3.1. One of the most relevant internal systems is the
login system, every user interact with it and and in turn it interacts
with the external system.

8

Project structure

Since a requirement was the possibility to receive real time notifi-
cations when some particular actions are performed, we decided to
put a microservice only in charge to deal with notifications, the Noti-
fication system. In the ideal implementation, it is a subscriber of an
asynchronous protocol, waiting for messages published to a message
broker by one of the other microservices that act as publisher. Since
this solution is expensive and required a lot of time, to simplify the
process, we decided to send notifications using a REST API like, where
a microservice send a request to the notification system. More details
about are given in chapter 3.5, where is described the protocol used for
this implementation, the gRPC. ’Core system’ is the microservice with
more responsibilities, except for client and candidate managements
that have an own system, here there are incorporated most of the
functionalities of the app. As already said, interactions between mi-
croservices happen using gPRC protocol. Internally, each microservice
has more than one components, that could be back ends, front end and
a database container. Interactions with database is made using http
protocol with TCP at the transport layer. Communication between
front end and back end happens via REST API.

Let’s now discuss the chosen technologies for each container: database
is a non relational one, cosmosDB. The choice of using a non relational
database is due to best performances compared to a sql database,
the more flexibility and scalability. CosmosDB particularly because
the company has a partnership with Microsoft, the owner of Cosmos,
and because we deployed our application on azure cloud. CosmosDB
provides a library to query the database using an sql syntax, that
helped us a lot. More details about are given at section 3.3. For the
front end’s technology the choice fell on React. This choice was not
easy because we wanted to use Svelte, a new framework, with which we
also wrote some POCs. What led us to choose React was the fact that
it is more well documented and affirmed compared to Svelte, which is
a younger framework, and also the fact that two out of four front end
developers already knew this framework, so this helped us to be faster
in the development. Regarding the structure of the front end, to make
the work easier, we used a monolithic structure, all the code in the same

9

Project structure

repository git and all the GUI defined in a single project. Is important
to underline the choice of using Typescript instead of Javascript. It
could seems that they are similar but there are a lot of advantages in
using the first. First of all, Javascript code is fully compatible with
Typescript, that points out compilation errors at development-time.
As the name suggests, typescript is typed, so the developers have fully
controls on type and there is a static type checking, helping a lot for
the code maintenance. Typescript was used also for the back end,
together with NestJs framework [5]. This framework was new to me, we
chosen it after the suggestion of our supervisor. It’s lightweight, simple
and open source and allows to build efficient and scalable server-side
applications. It’s fully compatible with CosmosDB, is composed by
three main components:

• Controller: component capable to handle requests, is the file where
API REST are defined. It’s responsible of managing errors and
return the appropriate response.

• Service: The business logic of the app. Provided functions that are
invoked by the controllers and interact with the database. Can be
injected as dependency.

• Module: encapsulate set of capabilities, like services and controllers,
or db dependency. Each app has a root module, in our case for
example we have a module for each microservice.

Others NestJs advantages, that can help a software architect to chose
this technology, are: 1) it is a customisable framework, allowing custom
annotations. 2) Provides a lot of functionalities, like Guards. 3) Has a
documentation very extensive and is widespread in developers.

Before moving to the next section, I would like to briefly describe
the customer journey because was part of the project even though I did
not work on it. It’s a document produced by other two team members
that dealt with the functional parts; it could be defined as the path
that the client of the application will follow while using the application.
Of course, since the are more roles, for each of them must be defined
a customer journey, in fig 2.2 the one for the BM role. It’s defined

10

Project structure

Figure 2.2: BM’s customer journey

starting from the main functionality of the application that the client
will use, which is circled in the diagram, then starting from that point
all possible interactions and functionalities are covered. If there are
some doubt about functionalities, in red rectangles is possible to add
questions that the client can answer during the presentation of the
document. The main goal of the customer journey is to document how
the customer interacts with the application at each step during the use,
in order to better understand it and possibly improve the business.

2.3 Kubernetes
In this section and in the sections 2.4 and 2.5, are explained how and
which tools we used to deploy our application. First, let’s simply define
what does it means deploy an application: deployment is the process
that allows to make the software available and usable by the end user.
Behind this process, there are a lot of procedures and operations to
perform [6], like: configure https port and virtual hosts to make the
app reachable from the external through http, install the application

11

Project structure

on the application servers, configure a firewall. The set of computer
systems where the application is deployed is called environment. In
our project two kind of environments where defined: development and
production. The first is used by developers to test the application after
deployed and it is where changes are developed (like if the application
is running on the developer’s computer). The production environment
is the one used by the client to see how the application works and
possibly perform user friendly test.

Nowadays, there is a new concept that allows and facilitate the de-
ployment of an application (and other services) offering several services:
cloud computing. Cloud computing is used to define the process of
hosting and delivery services via internet. Some advantages are[7]:

• The user does not need to directly manage resources, so even a
user not expert is able to use it. The goal of cloud computing is in
fact to allow the user to take all the benefits of it without having
an in-depth knowledge.

• Very flexible, resources could be added, removed or extended with-
out any problems.

• Cost are reduced.

• Maintenance is easier, since the provider of the cloud maintains
the cloud infrastructure, without manage hardware.

• Service providers care about the performances.

• Scalability: if for example we want to increase the power, all you
have to do is change the settings.

• Availability and security reinforced, thanks to the provider’s work.

• Since its main feature is the virtualization, i.e. create a virtual
version of something, a virtualised resource computer can be moved
on another platform without any problems.

There are three possible cloud systems used for deployments:

12

Project structure

• Private cloud: cloud private to a single organization that is managed
internally, so requires experts to manage it.

• Public cloud: there is a third part company (like Microsoft) that
rents the hardware to the users. Services are provided over the
network and they are shared between several users. Compared to
the previous one is less secure and we don’t know where hardware
is located, while with the private cloud we have the fully control.

• Hybrid cloud: uses both, internal and external can communicate
and are used to separate what must be inside the company from
what is not needed to be enclosed.

In our project we used a kind of system public: Azure Cloud. As already
said, Alten has a partnership with Azure, so its cloud provider is used.
It remains to describe the several possible models of cloud computing[8],
they are 3:

• IaaS: delivery of resources and computer infrastructure. Network
equipment and servers are already provided. Generally used by the
lead architect.

• PaaS: Delivery of tools used for the project development. Here the
OS is hidden. Generally used by developers.

• Saas: Is an already developed application, like Dropbox, so used
by the end user.

For the infrastructure of our project we used an IaaS model, illustrated
on fig 2.3. Servers and Networking were already provided, we did care
about OS, Middleware, Runtime and of course app development and
data management. Runtime is the software that allows to execute
and/or compile the code, like the the Java Virtual Machine in Java. In
out project we used Kubernetes as runtime. Before discussing about
kubernetes and see how we applied it to the project, it is important to
introduce two concepts that are interrelated and are closely connected
to kubernetes: Container and Docker.

13

Project structure

Figure 2.3: Cloud model

A container is a virtualization at the level of the operating system,
the kernel allows the isolation of user space instances at the applica-
tion layer. It could be seen like an unit of software containing code
and dependencies that runs the application quickly and reliably [9].
Differently from an Operating system, they cannot see all resources
of the computer but only resources assigned to them. Docker instead
is an implementation of a container running on the Docker engine, it
could be seen as a PaaS. Thanks to docker, container are more portable,
flexible and lightweight because they share the kernel of the computer’s
OS, container are also more secure because they are isolated. From
the developers point of view, using docker container allows to deploy,
move, or replicate containers faster and easily if compared to a Virtual

14

Project structure

Machine. In order to have a docker container we must build and run
a docker image, assembled in the .dockerfile, a file where are defined
the commands to create the image. To build the image is used the
command build, that receives as parameter the path of the dockerfile
to build. To run the container is used the command run, that can
receive as parameter the port that the container has possibly to expose,
the name of the container and environmental variables used inside the
docker file, in addition to the name of the image to be run that is
mandatory. In the following, an example of certain commands in the
docker file used to assemble the images of the back end microservices.
Note that thanks to the usage of docker environmental variables, it was
possible to write a single dockerfile for all the containers:

1 FROM node :16− a l p i n e as bu i l d e r
2 # Which Mic ro s e rv i c e to bu i ld
3 ARG MICROSERVICE
4

5 # Micro s e rv i c e d i s t
6 COPY ${MICROSERVICE}/ s r c /app/${MICROSERVICE}/ s r c
7

8 RUN yarn i n s t a l l
9 RUN yarn bu i ld : ${MICROSERVICE}

10

11 CMD [" node " , " d i s t /main "]

Is possible to create a docker image from an existing one, like in our
case where in the FROM we specified the image to start, alpine, that is
a Linux distribution. RUN allows to execute command on the terminal,
in our case we install dependencies and build the project. Thanks to
the usage of a docker file is possible to define some file that must be
not copied (like a gitignore) when executing the command COPY, that
copies the content of the folder specified inside the folder specified of
the container. Finally, CMD command is used to provide a default
command for executing the container, in our case is the command’s
node used to run the mail file.

In a microservice architecture, a microservice could be seen as an
application, so it could be implemented by a container, allowing a fast

15

Project structure

starting with low overhead and an easier composition and replacement.
So in a microservice architecture we could have several containers to
manage and orchestrate, there are three ways to do that:

• Manually, for example via SSH into machine and using only docker.
Approach very simple and easy to understand but not scalable and
against the concept of automatization of the DevOps philosophy.

• Using scripts, that facilitate the integration with existing environ-
ments but is still not scalable and requires manual scheduling.

• Using an orchestrator, that does not requires human intervention
and match containers to machines, grouping systems together
to form clusters. Even if is difficult to understand and requires
overhead, this approach allows to automatize and to be more
scalable.

In our project we used this last approach, using particularly the Ku-
bernetes orchestrator. Generally, an orchestrator has the goals to
manage the complete lifecycle of a containers [10], scheduling them,
handling failures and manage replication. Other appreciate features are
the possibility to have a built in load balancer, cluster that auto scale
them self and a provisioning storage. Kubernetes [11] is a term coming
from the Greek language and it means "ship pilot", underlining the fact
that we can think kubernetes as the pilot on a ship of container. Could
be also referred as k8s, since between the initial and the final letter
there are 8 characters. It was designed taking as idea the Google’s
Borg: is very rapid in adoption, modular by design and has a large
scalability over thousands of machines. Its supported features are [11]:

• Automatic bin packing: basing on the availability is able to deter-
mine the resources to assign to the scheduled containers

• Horizontal scaling: scalability of applications can be done manually
or automatically, where the latter case is done basing on the CPU
and on the custom metrics utilization.

16

Project structure

• Load balancing: Each container receives an IP address, then k8s
assigns a single DNS name to a set of container to aid load balancing
of requests inside the set of containers.

• Self-healing: In case a node fails, it is automatically replaced and
rescheduled. Furthermore, a traffic is prevented from being routed
to an unresponsive container.

• Storage: is able to mount automatically storage solutions like
external cloud providers to the containers.

• Both version of IP, v4 and v6, are fully supported.

• Secret management: Sensitive data, like the key to sign a JWT
token, are managed separately from the container image, in order
to avoid a rebuild of that.

Note that all the appreciated feature of an orchestrator are all in the
just aforementioned features of kubernetes. In kubernetes, a group of
one or more containers, together with disk volumes, are called pods,
the minimum elements in k8s. These containers are fully in relation
each other, sharing a ’namespace’. A pod is executed on a single node
since elements inside of it are highly coupled, allowing the scheduler to
avoid to start them on different servers. Some pods may require some
privileges, like access the bare OS; is possible to create a privileged pod
setting the permission in the "deploy" request of the pod. Pod could
be defined like a general kubernetes resource, starting from a defined
template containing the following information:

• apiVersion and kind, that specify the resource and define uniquely
an object. An example of a possible kind value is ’Pod’.

• metadata, info about the object, there could be of two type: labels,
information useful for the kubernetes cluster and annotations,
information used to enrich the basic info. An example of a label
that for convention in used in Alten is: ’app.alten-dcx.dev/<name
of the project>’.

17

Project structure

• spec, description of the goal of the object provided by the program-
mer, specifying also the expected state.

• status, current state of the application.

Let’s now see the main k8s resources of our project and see also their
definition. Deployment is the resource that is in charge of manage the
life cycle of a Pod and that create object of type ’ReplicaSet’. ReplicaSet
is an object that implements the ’cattle pattern’: if a server goes down,
it is destroyed and a new replica is created, allowing to not affect the
whole system in case of a failure of a single replica. When a new version
of deployment is provided, a new ReplicaSet is created. Following, I
will show step by step the deployment resource used for the template
of our front end, adding comments:

1 ap iVers ion : apps/v1
2 kind : Deployment

Simply specify the version and the kind of the resource. I will skip the
metadata, that I will discuss later, moving directly to the spec attribute

1 s e l e c t o r :
2 matchLabels :
3 {{− i n c lude " chart . s e l e c t o r " . | n indent 6 }}
4 spec :
5 con ta i n e r s :
6 − imagePul lPo l i cy : Always
7 env :
8 − name : TZ
9 valueFrom :

10 configMapKeyRef :
11 name : {{ inc lude " chart . name" . }}
12 key : APPLICATION_TIMEZONE
13 image : {{ . Values . image . name } } : {{ . Values . image . tag }}
14 name : {{ inc lude " chart . name" . }}
15 por t s :
16 − conta ine rPor t : 80
17 r e s t a r t P o l i c y : Always

18

Project structure

The thing that may immediately jump out is the values passed to some
attributes, that are not ’hard coded’ but passed inside brackets. This
is a functionality of helm, a tool that will be described later. Inside
’matchLabels’, is specified the pod to manage; Inside the spec are
written some pod specifications: 1) the restart policy, i.e. when to
restart the container 2) the specifications of the containers, that are:
the port to expose; the image pull policy, i.e. when pull the image of
the pod (always in this case); the name of the environmental variables
received from the ConfigMap, another resource that will be described.
In the example is not shown, but through the ’replicas’ attribute is
also possible to specify the number of replicas we want in order to have
more than one instance in execution. After defining the deployment
resource, is important to introduce the resource that acts as a load
balancer and manages the traffic in ingress: service. It exposes the
application in a set of running pods, its implementation is very simple,
following the one for the front end template:

1 ap iVers ion : v1
2 kind : S e rv i c e
3 spec :
4 por t s :
5 − name : http
6 port : 80
7 ta rge tPor t : 80
8 pro to co l : http

Also here, metadata are omitted. It specifies the port through which
be reached and the protocol to use, giving a name. In our case we gave
the name of the protocol with which communicate with. If we want
to have a load balance internally (reachable only internally), we must
add the attribute ’type’ with the value ’ClusterIP’. Note that, even if
we did not do that, there is a resource that allows to limits the traffic
between pods, the ’NameSpace’, because by default there is no firewall
between them.

It’s now the moment to describe the resources ConfigMap and Secret.
ConfigMap is a sort of .env from where environmental variables are

19

Project structure

inserted. Then, as already shown for the deployment resource, these
values can be injected into pods. Secret has the same goal, but as
the name suggests, is used to hide some values to the developers like
passwords or keys, encoding them in base64. Following an example of
a configMap for the front end template:

1 ap iVers ion : v1
2 kind : ConfigMap
3 metadata :
4 name : {{ inc lude " chart . name" . }}
5 data :
6 APPLICATION_ENVIRONMENT: {{ . Values . g l oba l . env }}
7 APPLICATION_TIMEZONE: {{ . Values . g l oba l . t imezone }}

Last resource described is the ingress, it allows to a service to be reached
from the external through an url. Following, the ingress for the front
end template:

1 kind : I n g r e s s
2 ap iVers ion : networking . k8s . i o /v1
3 metadata :
4 annotat ions :
5 kubernetes . i o / i n g r e s s . c l a s s : t r a e f i k
6 t r a e f i k . i n g r e s s . kubernetes . i o / route r . en t rypo in t s : websec
7 t r a e f i k . i n g r e s s . kubernetes . i o / route r . t l s : ’ true ’
8 t r a e f i k . i n g r e s s . kubernetes . i o / route r . t l s . c e r t r e s o l v e r : l e
9 spec :

10 r u l e s :
11 − host : {{ . Values . i n g r e s s . host }}
12 http :
13 paths :
14 − backend :
15 s e r v i c e :
16 name : {{ inc lude " chart . name" . }}
17 port :
18 name : http
19 pathType : P r e f i x
20 path : /

20

Project structure

Inside spec is defined a load balancer, in its service attribute is indicated
the corresponding service to expose, in our case, as seen above while
describing it, is specified the http service. Host is the url, that is
configured through helm. Under paths are listed the services, back
end redefines the references service. In the annotations attributes, are
specified some options to controls the traffic routing.

2.4 Helm
In the previous section is shown how templates were created, what
came up is that the manifest file contains some configurable variables.
Helm is a package manager for Kubernetes, used to make templates
configurable. It allows to create, configure and deploy applications and
service to k8s clusters [12]. We can say that helm is for kubernetes
what apt is for Ubuntu. Applications are packaged and structured into
charts. A chart contains information about versioning and type of the
application. Following an example:

1 ap iVers ion : v2
2 name : bo−f rontend
3 d e s c r i p t i o n : A Helm chart f o r f r o n t end
4 # A chart can be e i t h e r an ’ app l i c a t i on ’ or a ’ l i b r a ry ’ chart
5 type : a p p l i c a t i o n
6

7 # This i s the chart v e r s i on . This v e r s i on number should be
incremented each time you make changes

8 ve r s i on : 1 . 0 . 2
9

10 # This i s the ve r s i on number o f the a p p l i c a t i o n being
deployed .

11 appVersion : " 1 . 0 . 0 "

So, Helm charts are collection of files describing k8s resources. In fig
2.4 is illustrated the directory’s structure of an helm chart used in our
project.

In addition to the chart file, there is a "values" file, where are listed
all the variables that will be injected for the configuration of templates.

21

Project structure

Figure 2.4: Helm’s folder structure

We have then the templates folder, where are defined k8s’ templates.
Inside this folder, there is the file helpers, where are described data
structure that can be used inside the manifest using the keyword
include. Following, the content of the helpers file of the front end chart.
After, is illustrated how the ’chart.name’ structure is invoked inside
the matchLabels attribute of the deployment resource:

1 {{− d e f i n e " chart . name" −}}
2 f rontend
3 {{− end }}
4

5 {{− d e f i n e " chart . l a b e l s " −}}
6 app . a l ten −dcx . dev/name : f rontend
7 app . a l ten −dcx . dev/ p r o j e c t : mia2
8 {{− end }}
9

10 {{− d e f i n e " chart . s e l e c t o r " −}}
11 app . a l ten −dcx . dev/ s e r v i c e : f rontend
12 {{− end }}

22

Project structure

1 matchLabels :
2 {{− i n c lude " chart . s e l e c t o r " . | n indent 6 }}

Helm facilitate to manage k8s resources, facilitating the mainte-
nance of the kubernetes’ manifests packaging information into the
aforementioned charts. Other reason to use Helm is that it guarantee
repeatability and consistency [13].

Note that kubernetes and helm were used only for deployment on
the cloud. In order to run and test the application in locally, is enough
to use docker compose without the two technologies just mentioned.
For each functionality like front end, back end or the database itself,
we have a docker image that could be run; we need a tool that allows
to define and run them all in once, and docker compose is what we
need [14]. Here an example of the docker compose file to execute our
back end monorepo, for simplicity are reported only two services:

1 ve r s i on : ’ 3 . 9 ’
2 s e r v i c e s :
3 # DATABASE EMULATOR
4 cosmosdb :
5 image : ’mcr . m i c ro so f t . com/ azure−cosmos−emulator ’
6 por t s :
7 − ’ ${COSMOS_PORT}:8081 ’
8 environment :
9 AZURE_COSMOS_EMULATOR_ENABLE_DATA_PERSISTENCE: ’ f a l s e ’

10

11 l og in −backend :
12 por t s :
13 − ’ 5000 :5000 ’
14 environment :
15 − TZ=${APPLICATION_TIMEZONE}
16 bu i ld :
17 context : .
18 args :
19 MICROSERVICE: log in −backend
20 r e s t a r t : un le s s −stopped
21 depends_on :
22 − cosmosdb

23

Project structure

The first service specified allows to run the database; inside are specified
the ports to expose, while environment is used to pass environmental
variables to the container. For the database, the image to execute is
specified through the image attribute, while for the second service, the
login back end, a specific build section is defined. Inside this build
section is specified the path of the image to build and run and possible
arguments to pass. In our case, we put the dot because the docker
compose is inside the same folder of the dockerfile and, as already said,
the dockerfile is unique for each back end, it’s only necessary to pass as
argument the name of the folder of the back end we want to build and
execute. Finally, we can note that we can specify some dependencies
for the container in order to not start it before the container specified
in the "depends on" attribute starts.

2.5 Terraform
Terraform is an infrastructure as code tool that allows to define cloud
resources in human-readable way, configuring files that could be ver-
sioned, reused or shared [15]. It is able to perform these operations
thanks to a provider, exploiting the Application Programming Interfaces
(API) of the cloud platforms. For example, we can use the provider
to create and manage resources of Azure Cloud, IBM Cloud, Amazon
Web Services and more and more. The core of Terraform in enclosed
in three commands [15]:

• Init: Resources definition, check of provider and data upload.

• Plan: Is a sort of compilation, the output is an execution plan
that illustrates the infrastructure that will be created and which
resources will be destroyed or updated.

• Apply: It’s the effectively connection to the cloud, the operations
described in the execution plan are performed.

Note that the first command is executed once the resources are defined
by the programmer, the other two can be inserted into a pipeline

24

Project structure

(explained in the next chapter), like in our case: each time there is a
push on the main branch, the ’infra pipeline’ is triggered and the two
commands are executed automatically in sequence. Together with these
two, at the end, is executed another command part of Kubernetes, the
’rollout’. This is the command that replaces previous versions of the
application with new versions of an application, recognizing if there
are new images and in the affirmative case, creating them. Note that
resources are recreated if there are changes in the ’version’ field of the
corresponding helm chart. Before illustrate how to create a resource
and describe the main resources in our project, I will illustrate some
other useful terraform files:

• do not modify: it contains basic configuration info necessary for
terraform, for example here is the place where is specified the
provider, Azure cloud in our case. Inside of it is also defined the
resource group, that will be described later.

1 data " azurerm_resource_group " " main−rg " {
2 name = var . rg−name
3 }
4 t e r ra fo rm {
5 r equ i r ed_prov ide r s {
6 azurerm = {
7 source = " hash icorp /azurerm "
8 ve r s i on = "~> 2 . 99 "
9 }

10 }}
11

• deployments YAML files: These are template modules could be
defined for each resource and thanks to is possible to pass values
in the definition of the resource. In our project they are initialized
by Helm thanks to its values file.

• variables: here are defined reusable variables with its attributes
that are the type, the default value and a description.

25

Project structure

Now, after having cited these files, we can describe our main resources.
To have clear in mind what is a terraform resource, we can say that it
is an infrastructure object, i.e. the elements showed in fig 2.3. The first
resource that has been created is the resource group, a sort of package
created manually where all the other resources are contained. Let’s
now defined the storage resource: we have a resource for each back
end since each one works with a specific container. We have then a
general resource, called "azurerm cosmosdb account", where general
information like the location, resource name and consistency policy
(more details in the CosmosDB’s section) are provided. Following an
example for the notification container:

1 r e s ou r c e " azurerm_cosmosdb_sql_container "
2 " n o t i f i c a t i o n −conta ine r " {
3 name = " N o t i f i c a t i o n "
4 resource_group_name = data . name
5 account_name = azurerm_cosmosdb_account . name
6 database_name = azurerm_cosmosdb_sql_database . name
7 partit ion_key_path = "/ id "
8 }

Inside the resource are specified its name, the database account the
container refers and other useful information to create the container.
Note that to each terraform resource are attached two tags, one relative
to the project’s name and the other is an internal tag of Alten, that must
be always written. Note also that for each resource me must specify a
type and a name, in the example are respectively "azurerm cosmosdb sql
container" and "notification-container". Let’s now describe a resource
that allowed us to store and manage docker containers pushed by the
pipeline: the container registry.

1 r e s ou r c e " azurerm_conta iner_reg i s t ry " " acr " {
2 resource_group_name = data . main−rg . name
3 l o c a t i o n = data . azurerm_resource_group . l o c a t i o n
4 name = " acrweudevmia2001 "
5 sku = "Premium"
6 tags = var . a l ten −tags

26

Project structure

7 }

In the ’sku’ attribute is specified the version, we selected the Premium.
Into ’location’ we specify where there are the resources, the Azure
location.

Looking at fig 2.3, is still missing the creation of the resource related
to the runtime, that as already said is kubernetes. So it’s the moment to
create a Kubernetes cluster; its creation is a little bit more complicated
to the other resources seen so far, so I will show step by step the
creation: First, let’s start with basic info, specifying the resource group,
location, name and the dns prefix, defined in another resource, that is
the one used when the cluster is created.

1 resource_group_name = data . azurerm_resource_group . name
2 l o c a t i o n = data . azurerm_resource_group . l o c a t i o n
3 name = " aks−weu−dev−mia2 −001"
4 kubernetes_vers ion = " 1 . 2 2 . 6 "
5 node_resource_group = " rg−weu−dev−mia2_nodepool −001"
6 dns_pref ix = " aks−weu−dev−mia2 −001"

Now, a default pool must be created. In each node runs a docker
runtime where several container can be executed:

1 default_node_pool {
2 name = " d e f a u l t "
3 vm_size = " Standard_B2ms "
4 enable_auto_scal ing = f a l s e
5 node_count = 1
6 max_pods = 120
7 vnet_subnet_id = azurerm_subnet . subnet . id
8 tags = var . a l ten −tags
9 }

120 is the maximum number of containers can run in a node while
1 is the initial value. In the ’vnet subnet id’ is written the id of the
subnet resource, that I will describe later. The auto scaling could be set
through a boolean variable, false in our case. Last but not the least, in
’vm size’ we have to specify which ’sku’ to use for the Virtual Machines.

27

Project structure

Let’s see and describe two possible Azure Virtual machines we could
choose, in order to complete the OS level of the cloud structure 2.3:

• Av series: the more stable and are more suitable in developing and
testing environments.

• B series: the one used by us, we pay RAM memory and CPU we
use. They are suitable for Web Servers, where the workload does
not require full CPU performance.

Note that if we want to have multiple node pools we must use a Virtual
Machine of kind "Scale Sets". Also, note that this choice is very very
important, because once decided is not possible to come back to the
decision.

There is still missing one last step: associate a Virtual Network to
the runtime. Is needed to setup the components of the High Level
Networking that in Azure are called Virtual Network (router and
network controller), Subnet (Switch) and private endpoints (cables).
I will illustrate just the first two. Virtual network is fundamental if
we want resources communicate between them. It’s the core of the
private network, guaranteeing isolation, availability and scalability. The
definition is very simple:

1 r e s ou r c e " azurerm_virtual_network " " vnet " {
2 resource_group_name = data . azurerm_resource_group . name
3 l o c a t i o n = data . azurerm_resource_group . l o c a t i o n
4 name = " vnet−weu−dev−mia2 −001"
5 address_space = [" 1 0 . 0 . 0 . 0 / 8 "]
6 tags = var . a l ten −tags
7 }

Note that the name is not given randomly but following the convention:
<resource name> - <location (west Europe)> - <deployment phase
(dev, prod..)> - <project name> - <version>. The IP address space
is given without following a specific criteria, just keeping in mind one
constraint: do not use address starting with 172 because these are used
by Docker. The resource just illustrated allows to manage a virtual

28

Project structure

network including its subnets. The reason of having subnets inside the
virtual network is to have more security and organization. Following,
an example, noting that the address space is a range of the IP address
assigned to the virtual network:

1 r e s ou r c e " azurerm_subnet " " subnet " {
2 name = " kubernetes2 "
3 resource_group_name = data . azurerm_resource_group . name
4 virtual_network_name = azurerm_virtual_network . vnet . name
5 addre s s_pre f i x e s = [" 1 0 . 4 2 . 0 . 0 / 1 6 "]
6 enforce_pr ivate_l ink_endpoint_network_pol ic i es = true
7 en fo rce_pr ivate_l ink_serv i ce_network_po l i c i e s = true
8 }

To conclude the chapter, I will describe an optimization we did
during the project, using the edge router. In order to do not keep
services on the board and expose them, is possible to expose a single
edge router that receives all the requests. The possibles edge router
specific for kubernetes are HAProxy, Ambassador or traefik, the one
chosen by us. To add traefik on a kubernetes cluster we can use helm,
using the helm release resource, we just need to ensure that the cluster
has the permission to modify resources. Note that the helm release
resource requires a TLS certificate; we can create and insert a fake one,
for example using ’LetsEncrpyt’.

29

Chapter 3

Development
technologies

3.1 Microsoft MSAL for the login system

After having defined the system architecture and the cloud infras-
tructure, we started with the development. The first functionality
implemented was the authentication system, in order to enable users
to log in the application. I will list the protocols and the tools used
and then show how they work together; in fig 3.1 the flow of the login
process, that will be described. First, is important to underline that
the company has a partnership with Microsoft, so in all its applications
the company uses the Microsoft Active Directory. AD [16] is a directory
service used for authenticate and authorize all users and computer in a
Windows domain network (Alten in our case). This system allows to
enforce the security, checking if the user exists or not and determining
also the privileges of the user. The protocol used for the authentication
is OAuth 2.0 [17], a standardized protocol that simplifies the process
to get the authorized access to the protected resources via HTTP. Using
OAuth 2.0, the application acts as a user-agent that redirects the user
to the Microsoft Authorization server (Identity platform) to insert its
company credentials and then get an access token where user info are

30

Development technologies

stored. Note that these info are taken from the Microsoft Active Direc-
tory. The access token is a JSON Web Token that will be saved locally
(in our project into cookies) and will be included in every request’s
header sent to the server. JWT is composed by three parts:

• header: contains metadata about the token type.

• payload: contains user’s useful data, like permissions or roles.

• signature: contains a signature of the parts above.

From the security point of view, in the payload must not be written
sensible information because it is sent in clear, it’s not encrypted. The
signature guarantee data integrity; protection by sniffing attacks is
provided by default only if sensible information are not written in the
payload.

Now that we have introduced the main concepts, let’s have a look
on how they cooperate: When the user clicks on the login button, the

Figure 3.1: Login structure

Front End will start implement the Oauth2.0 protocol communication
with Microsoft Active directory and the dialog in fig 3.2 is shown. If
credentials are incorrect (email and password do not match any user in
the AD), an error will be shown in the dialog. If the authentication
succeed, Front End will get a JWT, the access token signed by Microsoft.
Now, since the Microsoft’s JWT does not contains useful information for

31

Development technologies

Figure 3.2: Login dialog

us and since the back ends, if we will use this token at each request, must
ask Microsoft if the user is authorized or not, the received Microsoft’s
JWT is sent to the login back end. Login back end that will validate
the token providing a new one, with the correct info. In particular,
through a POST request, the front end sends a request to the login
back end that, through a GET request sending the token received at
the url graph microsoft url, is able to determine if the token is valid
and if the user that requests to login is part of the active directory.
This additional step was made to increase the security and to verify the
token. Once Microsoft’s JWT is validated (if not, an error 403 is sent),
the back end checks, using the mail contained in the JWT, if the user
already exists in the database or not. If it not exists, login back end
will create the user assigning no role to it. If the user already exists,
login back end will retrieve his info from the database. At the last step,
the back end generate a new JWT with its signature and will add the
token in the cookies of the response. The front end can get and include
it in each request sent to the back ends. In fig 3.3 is a possible payload

32

Development technologies

of our token: There are user’s mail, display name and most of all, the

Figure 3.3: JWT Payload

roles the user has and the list of tenants where he has that roles. This
was a crucial step for the multi tenancy request of the project. The
others two info are about the issue time and the expiration time.

In the front end, to implement the OAuth 2.0 communication, we
used a library provided my Microsoft: MSAL [18]. The name stands
for ‘MicroSoft Authentication Library‘ and is the one that allows to
communicate with Microsoft in order to acquire the token. It acts
like a sort of wrapper, that allows to not directly use the OAuth 2.0
libraries and most of all can be used as an hook in React. The name
of the hook is useMsal, from which the object instance could be taken.
This object contains several useful methods; in particular, the method
acquireTokenSilent, once invoked will shows in the application the dialog
in fig 3.2. After the user is authenticated, in the code is returned the
access token.

It only remains to describe how the token is checked at each request.
We must remember that our architecture is a microservice one, the
operations performed by the login back end are not known by the others
back end as for the signature’s key. So, even if the user is authenticated
by the login back end, there is loosely coupling of information, each

33

Development technologies

back end must check authentication and authorization at each request.
A possible solution could be to check the permission in each route of
the controller, but this implies a lot of code replication for the same
check. The solution used was to define the roles that can request an
operation and put a Guard for each request. Guard is a class that
determines if a given request will be handled by the controller or not,
depending on some conditions. It is like a filter that make pass all
authorized requests. Guard class is a functionality provides by NestJs
frameworks; it implements the CanActivate interface, an interface with
only one method with the same name of the interface. The ’CanActivate’
method returns a Boolean indicating if the request is authorized or not,
receiving as parameter the ExecutionContext, that was fundamental
in our project because from there it could be extracted the JWT sent
in the request header. We combined guards with the possibility to
create personal decorators in NestJs. We created a personal decorator
called ’RolesCheck’, that receives as parameters the list of roles that
are allowed to perform the operation requested. This decorator was
added in all the controller’s routes that required roles check. Inside the
decorator, roles received are set as metadata that will be used by the
’AuthenticatedGuard’, a guard defined by us. Inside that class, in the
’canActivate’ method, from the token are extracted the roles and the
return value is ’true’ if at least one of the authorized roles (received as
metadata) is present in the user’s roles. Note that the tenant check is
not implemented there but this check is performed by each service, if
needed.

3.2 Pipelines
One of the DevOps principles is to automatize things, eliminating the
need of manual operations during the life cycle of a software development
process. Pipeline [19] are a powerful tool for DevOps developers,
allowing to automatize processes utilized by software engineering team
like run test, compile, build and deploy. This allows to be fast in the
processes, save developer time since he no longer has to deal with these
tasks and to avoid possible human errors improving the quality of the

34

Development technologies

code. For creating a DevOps pipeline there exists many tools like
CircleCI, Azure DevOps Pipelines or GitLab CI/CD, the one we choose
in our project. GitLab pipelines consists in: 1) jobs, the operation
to execute. 2) stages, that indicates when to execute the job. In a
stage there could be executed more than one job, in parallel, moving
to the next stage only if all current jobs pass. Jobs are executed by
GitLab runners, an application that could also be installed on a local
machine. In fig 3.4 are illustrates the stages of one pipeline defined in

Figure 3.4: GitLab pipeline

our projects. The stages are:

• Test: executes tests and stop the pipeline in case not all test pass
or the coverage is under the threshold defined in the Definition of
Done.

• Build: that builds the project; for the back end, for example, it
simply runs the ’build’ command of yarn.

• Docker: builds docker images and push them to the azure repository.

• Deploy: this is a particular stage because it triggers the infra
pipeline, which is in charge of deploying the project, executing in
order the terraform commands ’plan’, ’apply’ and ’rollout’. Their
execution result is summarized under the ’downstream’ column.

The image also illustrates that we can have at each stage several jobs
executing their task.

Until now we have discussed about pipelines and the stages defined in
our project, but how to setup a GitLab pipeline? They are configured
using a version-controlled YAML file, called .gitlab-ci.yml, within the
root of the project. In that file can be defined, aside for jobs and stages,

35

Development technologies

other parameters like: when trigger pipeline, what to do if a stage pass
or not. I will now show step by step the content of one .gitlab-ci.yaml
file defined in our project, used to manage the pipeline of the cronjob
scripts’ repository:

1 s t ag e s :
2 − t e s t
3 − compi le
4 − docker

stages allows to define stages of the pipeline, executed in order. In our
case we have just 3 stage since the pipeline manages scripts to run in
a cronjob, so is not needed to deploy. These stages are: 1) test, that
executes tests and check coverage. 2) compile, that compiles the project.
3) docker, that builds and push in the cloud’s images repository the
images. Now we can define each step:

1 compi le :
2 image : node :16− a l p i n e
3 be f o r e_sc r i p t :
4 − yarn i n s t a l l
5 s tage : compi le
6 s c r i p t :
7 − yarn compi le
8 a r t i f a c t s :
9 paths :

10 − s r c

Here, as suggested by the field stage, the compile stage is defined. image
represents the docker image from which start to execute jobs, in this
case the version 16 of node alpine. In before script are defined the scripts
to be executed before the job starts; scripts contains the command
executed by the job, both commands are ordinary shell commands,
is like typing in the system terminal. In this case, first libraries and
dependencies are installed, then the project is compiled. artifacts is
very important if the output of the current stage will be used by the
following stage. This because the files with which the pipeline works

36

Development technologies

are the ones present in the repository, so if some file are ignored, like
in our case with the dependency values (node modules), the next stage,
without using artifact, will not have that files and as a consequence
will not work. So, artifact allows to overwrite the folders specified in
the paths field with the one produced by the current stage. In this
case, test stage will have in the paths folder the files produced by the
compile stage. Test stage will be not shown because does not add more
information compared to the compile one, the difference is that does not
produce artifacts and the script that executes is the one that runs test.
What is important to show is the docker stage, that has the peculiarity
to be executed only if some conditions are verified. These conditions
are called rules, and could be defined at the beginning of the file as
follows:

1 . de fau l t_docker_ru les :
2 r u l e s :
3 − i f : $CI_COMMIT_BRANCH != $CI_DEFAULT_BRANCH
4 when : never
5 − changes :
6 − d o c k e r f i l e
7 − package . j son
8 − . g i t l ab −c i . yml
9 − . g i t i g n o r e

10 − t s c o n f i g . bu i ld . j s on
11 − . docke r i gnore
12 − t s c o n f i g . j s on
13 when : never

Rules are evaluated in order until we have a match, then the stage is
executed or not basing on the when condition, that by default is on
success. If there are no match, the pipeline is not executed. In our
case, the first condition indicates that, if the branch on which we have
committed is not the main branch, do not execute the stage because of
the never conditions. Note that the name of the current branch and the
default branch are GitLab variables that could be set manually in the
variables section of the GitLab CI/CD pipeline. The second condition
indicates that, even if we are in the main branch (because we skip the

37

Development technologies

first condition) but the changes of the current commit are only on the
listed files, the pipeline must not be executed.

Once defined the rules, let’s apply them to the docker stage. This
stage was split in two because of the number of cronjob scripts we have,
adding a tag after the name of the stage. Let’s see the docker stage for
the notification cronjob:

1 docker : notification - cronjob :
2 variables :
3 DOCKER_HOST : tcp :// docker :2375
4 DOCKER_TLS_CERTDIR : ’’
5 DOCKER_DRIVER : overlay2
6 NOTIFICATION_CRONJOB_IMAGE : ${ REGISTRY_URL }/${ CI_PROJECT_PATH }/

notification - cronjob
7 stage: docker
8 image: docker :20
9 rules:

10 - ! reference [. default_docker_rules , rules]
11 - changes :
12 - src/ notification - cronjob /*
13
14 services :
15 - name: docker :20- dind
16 alias: docker
17 command : [’--tls=false ’]
18 script :
19 - docker build -t ${ NOTIFICATION_CRONJOB_IMAGE }: latest -f

dockerfile --build -arg FOLDER = notification - cronjob .
20 - echo "${ REGISTRY_PASSWORD }" | docker login --password -stdin -u $

{ REGISTRY_USER } ${ REGISTRY_URL }
21 - docker push ${ NOTIFICATION_CRONJOB_IMAGE }: latest

If the job uses ENV variables, these could be defined under the variables
field. Under rules section are listed the rules to decide if execute or not
the stage. Together with the rules defined before, like default docker
images rules, there is a third condition that indicates that if there are
changes in the specified path, the stage must be executed only if the
previous stages passed correctly. This because the default value of
when condition, if not specified, is on success, that executes the job if
there are no failures in the previous stages. The commands executed
are the building of the image, then a print to log the operations and
finally the push on the cloud’s repository. Also here, the notification
cronjob image variable is defined in the variables section of the GitLab

38

Development technologies

CI/CD web site. To conclude, services defines a docker instance that
runs during the execution of the job. It is needed in order to execute
docker commands like build and push.

These kind of pipelines defined by us where basic pipelines, the
simplest ones. They are not the most efficient but the easiest to
maintain. To increase the efficiency, GitLab proposes another kind
of pipeline: Directed Acyclic Graph Pipelines [20]. They allows to
define dependencies between jobs, allowing to run everything as fast
as possible without waiting to conclude each stage step by step. The
outcome of the pipeline could be checked directly on the main page of
the repository git. There is a badge that indicates if the pipeline has
passed (in green) or has failed (in red). Then, clicking on the badge,
it redirects to the pipeline page where details are given and where is
possible to restart the whole pipeline (or just a single stage).

3.3 CosmosDB
CosmosDB is the database technology chosen by the team. It is a non
relational database, so before see in details aspects related to Cosmos,
let’s analyze the differences from a relational database and why we
preferred a noSQL one. Relational database’s data are organized in
structure called table. If there are dependencies within data, it provides
cascade operations that allows data consistency and, most of all, is
possible to perform JOIN operations to merge tables with attributes in
common. All these concepts are not valid for non relational databases.
Data in a non relational database are not structured in tables but
in documents, that belongs to a certain collection; join operation is
removed; non relational database do not use SQL to query the database
but custom query languages. What are the advantages? More scalability,
flexibility and adaptability. Our decision was to use a non relational
database because the data to be collected are not very structured
and because there are no much relationships between data stored in
different collections (not a lot of join operations). There are several
noSQL technologies could be used, we decided to use CosmosDB [21]
because:

39

Development technologies

• Is owned by Microsoft; thanks to the partnership with the company
we had a reductions in the costs and more functionalities not present
in the basic version.

• There is a very powerful library, azure cosmos, available in type-
script, that facilitates operations. It allows to query the database
using SQL syntax, so allowing us to have a sort of hybrid approach.

• It has very high performance in terms of availability and operations
execution’s time, that was a requirement for the project.

In CosmosDB documents can be written only in JSON data format
and all together can be stored in containers. In our case, each back
end microservice uses one container. In each container could be stored
heterogeneous documents, not all belonging to the same type. Good
performance are achieved because each field of the document is indexed;
data integrity is ensured thanks to an unique key constraint that could
be assigned automatically or manually also. The internal data model
not only provides SQL API (used by the typescripts’ library aforemen-
tioned) but offers also others five API to guarantee compatibility with
MongoDB, Gremlin, Cassandra, Azure table Storage and etcd [22]. To
give an idea about performances, latency for all kind of requests is
guarantee to be below than 10ms, reserving the needed resources to
guarantee the constraint. Another feature of CosmosDB is that can be
configured in all the Microsoft Azure regions, dynamically adding or
removing a region. By the way, we did not exploited this functionality
because our application will be used only in France. However, within
the region we can have several databases distributed. One problem not
mentioned for CosmosDB, but in general for all non relation database,
is that is impossible to guarantee the coexistence of the following three
properties: 1) consistency, all distributed database contains the same
data. 2) availability, even if one database has a failure others one
continue their job. 3) partition, the system continue to operate even
if some data are lost. As there is that problem, CosmosDB allows
to configure the data consistency among five different different levels.
Some limitations of cosmosDB are that it only supports JSON data

40

Development technologies

format and lack of support for representation of date and time. An-
other limitation is that, even if could be queried through SQL, not
all functionality, like GROUP BY, can be used. This last limitation
could be overcome using User-defined functions [23]. They allows to
extends the SQL syntax adding complex business logic in the queries.
Once defined, they could be used by the developers as they are SQL
keywords. Following, an example of a user defined function written by
us, named ’GET MERGED VALUES’, that is very simple and allows
to retrieve in an array all the values of a document, a sort of mapping:

1 f unc t i on mergedObjectValues (ob j e c t) {
2 r e turn Object . va lue s (ob j e c t) . reduce ((a , b) => a . concat (b) ,

[]) ;
3 }

Note that they are written in Java code, and could be used in a ’whery’
condition in this way:

1 AND udf .ARRAY_CONTAINS_SOME(udf .GET_MERGED_VALUES(c . r o l e s) ,
@tenants)

where ’ARRAY CONTAINS SOME’ is another user defined functions
that checks if at least one object of the array received as second param-
eter is present in the array received as first parameter.

From the application’s code is possible to connect to the database
using HTTP over TCP, using the aforementioned @azure/cosmos library.
It provides the ’CosmosClient’ class, thanks to is possible to open the
connection just passing the endpoint and the key to access the database
(proved to us by the company).

Using CosmosDB for all development steps, despite the partnership,
can lead to increased costs for the company. For testing and development
purposes, the best solution is to use the CosmosDB emulator. It allows
to emulate in local an Azure CosmosDB instance, providing the same
interface of the real one, accessible in local host at port 8085, without
requiring an Azure subscription. In the next section, is shown how to
combine the emulator with test container, in order to run the emulator

41

Development technologies

in a docker container for testing purposes. Cosmos Emulator data are
not loss, but they could be migrated in a real Azure CosmosDB service
using the Azure data migration tool. Following, some small differences
from the emulator to the real service, that is important to underline:

• Emulator does not provide multi-region replication.

• The consistency levels configurable are not five like for the real
service but less.

• Emulator is not scalable and only a limited number of containers
can be added.

However, these limitations do not affected our development.

3.4 Jest and Supertest
In this section are described tools and technologies used to test the
application. Let’s first describe what does it means ’test an application’
and which kind of test we performed.

Testing is a Validation and Verification technique, we want to test
the reliability and the effectiveness of the system and its efficiency and
correctness. Test is a dynamic technique that requires the execution of
the application or of a single part; given a certain input, test detects if
the correspondent output is the one expected. Tests must be exhaustive,
to reach this property, several kind of test must be performed:

• Unit test: test the correctness of a single unit; two possible tech-
niques to write an unit test are the white box and the black box
(the former was used by us). If one module depends on another,
the dependency could be mocked, in the sense that we assume that
the module that creates the dependency is correct and returns a
specific value.

• Integration test: test the correctness of the interactions between
two or more module. Generally is performed after the unit test.

42

Development technologies

• System test: all the system is tested to check if it satisfies the
requirements.

• Acceptance test: in an agile environment could be performed by
the PO or in general by the end client, where he tests the system
according to a given scenario.

• E2E test: specific for the software development cycle, similar to
the system test, emulate a scenario and validates the system.

In our project we performed just the first two, the others will be
performed by the next team of interns that will replace our team. One
indicator that could be used to determine if test are exhaustive is the
coverage: it indicates the percentage of code tested. In the project we
decided to have a coverage of at least 90%.

Now, having a clear idea of what is test’s purpose and what are the
techniques, let’s have a look into the technologies used in our project.
Unit and integration test were performed by developers using Jest
framework. It is a Javascript Testing framework that runs test in
parallel; it facilitate mocking functions and is very well documented. It
allows to define a test case using the keyword describe, that receives in
input two arguments: the name of the use case scenario and the function
where internally are executed the unit tests. Unit tests are introduced
by the keyword it and the definition is similar to the describe since the
two arguments are the name and the body of the test. Inside each test
are made the assertions, using the keyword expect. For example, if we
want to test an asynchronous function that resolves the integer value 3,
the code is the following :

1 i t (’ t e s t example ’ , async () => {
2 await expect (func t i on ()) . r e s o l v e s . toBe (3) ;
3 }) ;

Is important to put the ’await’ keyword before the test since we are
testing a promise function. ’Resolves’ means that the promise returns
the value; if the promise rejects we must use rejects, addressing the
error expected with the keyword toThrowError.

43

Development technologies

1 i t (’ t e s t example ’ , async () => {
2 await expect (func t i on ()) . r e j e c t s . toThrowError (new Error ()) ;
3 }) ;

One powerful feature of Jest is that it provides simple functions that
can be executed after or before all tests, or after or before each tests,
allowing to perform some operations of initialization or of cleaning (
e.g. restore the database after the execution of the test case). Some of
these useful functions are afterEach, afterAll, beforeEach, beforeAll; the
latter, in particular, is used to create the testing module: a jest module
where could be specified the services to inject or where could be opened
the connection with the database. Mocking a function is very easy with
Jest, of course we must have in our testing module the service on which
the component to be tested depends. Let’s for example test a certain
controller that uses methods provided by a service class. First, we must
initialize an instance of the service class, that we will call service. The
Jest function spyOn allows to mock a method of the service class:

1 j e s t . spyOn(s e r v i c e , method) . mockResolvedValue () ;

The type of the returned value depends on whether the method is
asynchronous or not. If it is, as in our case, it can be mocked to
resolve or reject a value. It’s a good practise to clear all the mocked
functions at the end of each test, exploiting the function ’beforeEach’,
using the Jest method clearMocks. About controllers, since they handle
HTTP requests, to test their behaviour is needed an additional libray:
supertest [24]. It allows to test API, specifying the http method
and the URI we want to test, and specifying also the expected result,
testing both message status and body of the response. Let’s analyze
the following code:

1 await r eque s t (app . getHttpServer) .
2 get (’ / data ’) .
3 s e t (’ Content−Type ’ , ’ a p p l i c a t i o n / json ’) .
4 expect (HttpStatus .OK) .

44

Development technologies

5 expect ([]) ;

Here we are testing that, if we invoke the ’/data’ API with a get method,
the response is an empty array and then of course the status is ’ok’
(200). Since our data format is JSON, this must be specified in the
Content-Type header, as in line 3. If we need to send data, this is
possible using the send method, that has as parameter the data to
send. If it’s necessary to include some data in cookies, we can use, as
for the application context, the set method, were the first parameter
is the string ’Cookie’ and the second is the list of cookies in the form
’name=value’. The request method of supertest requires the http server
to test. Is possible to have it using an ’INestApplication’ instance,
that provides the method getHttpServer. As already discussed before,
the INestApplication instance could be initialised in the ’beforeAll’
method, where first the module is defined and then the instance is
created using the method createNestApplication. In the following a
possible implementation:

1 l e t app : INes tApp l i ca t i on ;
2 b e f o r e A l l (async () => {
3 const f i x t u r e = await Test . createTest ingModule ({
4 imports : . . . ,
5 c o n t r o l l e r s : ,
6 s e r v i c e s : . . .
7 })
8 . compi le () ;
9

10 app = f i x t u r e . c r ea t eNes tApp l i ca t i on () ;
11 await app . i n i t () ;
12 }

It remains to describe the last tool used: testcontainer [25]. This
is a fundamental tool to emulate a database or something else running
in a docker container. This was useful for the team to test services
class using an emulated version of the database, CosmosDB Emulator.
The container is initialised in the testing module; there are provided
information about the id of the database, the name of the container,
the name of the endpoint and the key of the cosmos database emulator

45

Development technologies

client.

3.5 gRPC protocol
gRPC is a protocol owned by Google that could be used for the com-
munication between two microservices. In this section I will explain
how it works and what are the advantages compared to REST API.
gRPC was used for the communication between several microservices
and the notification back end container, in order to request to send a
notification. This protocol was used also for the interaction with the
login microservice in order to create,read,update or delete users in its
corresponding database container. There will be examples considering
the first case, the one for sending notification. gRPC allows to per-
form these operations as if methods of the other services to invoke are
in the same application of the one that consumes them. Client and
server could be implemented using different technologies thanks to the
proto file concept. gRPC [26] is based on the idea that a microser-
vice provides a service with its corresponding methods, return values
and method’s parameters. The server, then, implements this interface
running the gRPC server while the client has a stub that provides the
methods of the server. The interface that the service implements is
described in the proto file, a file with the .proto extension. Data
structure defined in the proto are then serialized since gRPC is based
on protocols buffers [27], an extensible mechanism for serializing data
in a forward-compatible and backward-compatible way; it is similar to
JSON but smaller and faster. Following an example of a proto file:

1 syntax = " proto3 " ;
2 s e r v i c e N o t i f i c a t i o n S e n d e r S e r v i c e {
3 rpc SendNot i f i c a t i on (Not i f i ca t i onSenderReques t) r e tu rn s (

Not i f i ca t i onSenderResponse) {}
4 }
5 message Not i f i ca t i onSenderReques t {
6 s t r i n g message = 1 ;
7 op t i ona l s t r i n g n o t i f i e d U s e r I d = 2 ;
8 }

46

Development technologies

9 message Not i f i ca t i onSenderResponse {
10 bool n o t i f i c a t i o n S e n t = 1 ;
11 }

• At the first line is specified the syntax used, ’proto3’. In the official
documentation are described all the possible data types the protocol
buffers supports and also, how to compose an object with multiple
fields.

• ’service’ introduces the name of the service we want to define, in
our case our service is used to send notifications.

• ’rpc’ introduces the definition of methods using the syntax: <method
name> (<argument>) returns (<return value>) .

• ’messages’ represents the data structure. In this case, the arguments
require the message to show in the notification and the notified user,
that could be optional. In case we want to send a list, the keyword
repeated precedes the type. The return value, instead, contains a
Boolean indicating if the operation was performed correctly or not.

One main feature of gRPC is that, internally, it uses a built-in com-
piler, protoc. Thanks to this compiler, data defined in the proto file are
transcribed automatically in code, targeting the chosen programming
language. gRPC is supported by the TypeScript programming language
and by NestJs, providing a package that could be installed via yarn or
npm. To better understand how to implement a gRPC connection in

Figure 3.5: gRPC schema

47

Development technologies

NestJs, let’s consider the sub system illustrated in fig 3.5, where the
gRPC server is the notification back end while the client is the ’Core
system back end’, which internally has the hub.

In the main file of the Notification back end, the gRPC service must
be initialized,

1 app . connec tMic ro se rv i c e ({
2 t r anspo r t : Transport .GRPC,
3 opt ions : {
4 package : ’ n o t i f i c a t i o n ’ ,
5 ’ proto−messages / d i s t / n o t i f i c a t i o n . proto ’ ,
6 u r l : p roc e s s . env .NOTIFICATION_GRPC_URL
7 }) ;

selecting the gRPC transporter mechanism and specifying several pa-
rameters, that are: 1) the url of the service. 2) the package name.
3) the location of the proto file. Then, we move to the Notification
controller. There, thanks to the GrpcMethod decorator, is possible to
define the gRPC service method:

1 @GrpcMethod (’ No t i f i c a t i onSende rSe rv i c e ’)
2 async s e n d N o t i f i c a t i o n (data : Not i f i ca t i onSenderReques t) :

Promise<Not i f i ca t i onServe rResponse >{
3 // Implementation
4 }
5 }) ;

The decorator receives as parameter the name of the service; the name
of the method is the same of the one defined in the proto file. The
argument and the return file, that are defined as message in the proto
file, here could be defined as interfaces. On the client side (core system
back end in our case), we must obtain the Stub. One common technique
is to use the register method of the ’ClientsModule’ class, that binds a
package of the proto file into an injected token.

1 ClientsModule . r e g i s t e r ([
2 name : ’NOTIFICATION_GRPC_SERVICE’ ,

48

Development technologies

3 t r anspo r t : Transport .GRPC,
4 opt ions : {
5 package : ’ n o t i f i c a t i o n ’ ,
6 protoPath : ’ proto−messages / d i s t / n o t i f i c a t i o n . proto ’ ,
7 u r l : p roc e s s . env .NOTIFICATION_GRPC_URL
8 }
9])

It is dual to the initialization of the server: are specified the transport
method, the proto package, the path of the proto file and the url of the
server. Once registered, through the annotation Inject(), is possible
to inject the client as an object with the proto file defined methods.
It remains to underline one last important thing: the value that the
method invoked returns through the gRPC client is an observable [28]
value. For example, injecting the client object in the core system back
end, invoking the method sendNotification, we will get the following
instance: Observabe<NotificationSenderResponse>. Observable ob-
jects allows to handle events [29], registering and then processing the
value get. Inside the observable object three different callbacks could
be defined:

• A success handler function, that can work with the value returned.

• An error handler function, that receives the error and manages it.

• A completion handler function, that gets called only if the stream
completes.

Since the results of the function call is asynchronous, subscribing only
could make the risk to continue the code execution without having the
result. A possible solution to overcome this problem is to wrap the
subscription inside a promise that will be awaited; if the subscription
fails, the promise rejects, if not, the promise resolves the value.

To conclude, let’s highlight the differences between REST and gRPC
[30] and why prefer the latter. Proto buffer, data format used by gRPC,
is smaller, faster, highly packed and efficient compared to JSON, the
one used by REST. The second advantage of gRPC is that it is faster
in transmission because REST API uses HTTP and so all the 7 level

49

Development technologies

of the ISO/OSI stack are involved; gRPC stops at transport layer. The
code generation is faster with gRPC due to the usage of the protoc
built-in compiler. However, gRPC is not supported universally like
REST API, so this limits its diffusion for the moment and makes this
protocol suitable for building internal systems, services that are closed
to the external users. Note the gRPC is only a temporary solution,
the best solution is to use a message broker using an asynchronous
protocols communications. This because as the system now is defined,
the microservices are coupled and this is against one principles of the
microservice architecture.

3.6 Cronjob
A cronjob is a task scheduled to be executed periodically, for example
to perform backup operations. In our project, since we manage requests
sent by the consultant to the BMs, we used cron jobs to send notifica-
tions to the BM if he/she has not accepted or approved that request
after 3 days. Another application of cronjob was to send a notification
to the consultant when the BM reviews the request. Another cronjob
was used to clear the notifications reads by the users older than 5 days.
To implement a cronjob there were two opportunities: 1) using the
’cronjob’ library provided by nest. 2) using kubernetes cronjobs [31].
The choice fell on the latter because since we are using a microservice
architecture, it could be possible to add a new microservices in the
future that runs a new back end technology, so Nest cronjob provided
a solution working only with this framework. Further, since kubernets
orchestrate our pods, using its jobs is a more high level and scalable
solution. First, we defined in the notification controller a new set of API
to invoke in order to execute the job required (e.g. clear the notification
container). Then, we decided to create a new GitLab repository where
we added all the scripts to execute periodically, scripts that are simple
typescript files. These scripts merely invoke the newly defined API,
with the feature that the request does not ’pass’ via the Internet but
reaches the pod of interest via the local endpoint. The docker images
of the scripts file are built and pushed in the cloud registry by a GitLab

50

Development technologies

pipeline. Now it’s the moment to modify the notification chart, adding
in the template the cronjob.yaml file, containing the cronjob object. I
will show its content and then analyse it:

1 ap iVers ion : batch/v1
2 kind : CronJob
3 metadata :
4 name : {{ inc lude " chart . name" . }}
5 l a b e l s : {{− i n c lude " chart . l a b e l s " . | n indent 4}}
6 spec :
7 schedu le : "0 0 ∗ ∗ ∗ "
8 jobTemplate :
9 spec :

10 template :
11 spec :
12 con ta i n e r s :
13 − name : n o t i f i c a t i o n −cronjob
14 image : <docker image>
15 imagePul lPo l i cy : Always
16 env :
17 − name : NOTIFICATION_BACK_END_ENDPOINT
18 value : http ://{{ inc lude " chart . name " . } } : 3 0 0 0
19 r e s t a r t P o l i c y : OnFailure

• apiVersion: defines the versioned schema of the representation of
the object.

• Kind: string value that represents the resource of the object.

• metadata: standard object’s metadata.

• schedule: part of the spec object, represents the schedule in the
cron format. Clicking here is possible to access an online converter
to get quickly the cron format. Schedule time are based on the
timezone of the master where job is initialised.

• jobTemplate: specifies the job that will be created when executing
the cronjob. Internally, under the containers object, is possible
to define: the name of the job, the image to execute (in our case

51

https://crontab.guru/

Development technologies

the ones pushed in the Azure repo), possible env variables of the
docker images, and the ImagePullPolicy, i.e. when and how pull
the docker image (in this case every time the job is going to be
executed). If the jobs fails, there is the possibility of doing nothing
or restart the job; this behaviour could be set in the ’restartPolicy’
field.

The docker env variable is the url of the notification back end. One
important feature of jobs is that they should be idempotent, it could
happen that two jobs might be created simultaneously. In our case,
if this happen is not a problem for the job that requests to clear the
notifications while, for the jobs that request to send notifications, these
will be sent two times.

Of course, cronjob scheduled can fail. Is possible to check the cronjob
scheduled through the command kubectl get cronjob and through the
command kubectl get jobs is possible to see the job scheduled, showing
the complete list with the name, the completion state (0/1 uncompleted
or 1/1 completed), the duration and the time elapsed since its execution,
as illustrated in fig. 3.6.

Figure 3.6: Cronjob Scheduled

52

Chapter 4

Research activity

4.1 Description and motivation
During my internship I carried out a research activity with the main
goal of improving the user stories estimation process within
the agile environment. I will first do a little recap of Agile and what
estimate user stories means, then I will describe our estimation process
and the metrics collected, analyzing the results obtained. This work is
inspired to a work done by my thesis supervisor a few years ago in a
German company [32].

Agile is an iterative software development practise that breaks the
work into small increments in order to deliver faster the value to the
customer. It’s based on short iterations, each of these produce a
software functionality subset showed, at the end of the interaction, to
the customer, who can monitor progress and can give feedback. Scrum
is the Agile methodology mostly used, its pillars are transparency
(everything done is visible), inspection and adaption. Iterations are
called sprints, the duration goes from 1 to 4 weeks; in our team we
choose a sprint duration of two weeks. Main roles are the team member,
the Product Owner and the Scrum Master. Team members self-organize
the work choosing tools and conventions that best fit them. Generally a
team is composed by 5-9 members, in our case we were five for the first
half of the project then another developer joined us. Product Owner
is the one in directly contact with the client, he has to ensure that

53

Research activity

customer needs are well understood by the team. His main tasks are:
define user stories and prioritize items in the backlog, that is owned by
him. The last role, the Scrum Master, as the name suggests, is an agile
expert that has to guide the team ensuring that Scrum principles are
not violated and removing impediments inside the team. It is like a
coach. In our team there were no fixed PO and SM, but the company
gave us the change to play those roles in turn, exchanging these two
roles approximately every two sprints.

The effort estimation of user stories is a process done by the scrum
team during the sprint planning. Briefly, a user story is a description
of a functionality required; it must be estimable. Sizing the effort of
a user story means assigning points to it. This process could be done
in two ways: 1) absolutely, assigning the exact effort to the story. 2)
relative, comparing the estimating story to a target user story. We used
this latter approach, belonging to the Fibonacci series scale to assign
points. I will not consider the first two sprints since we considered
them as test sprints. Starting from sprint 3, after the advice given
by our company supervisor, we used only the Fibonacci series subset
[1,13]. We estimated user story’s effort comparing each story to the
target one, a user story with effort 1 implemented during the first sprint.
If a user story was for example estimated 5, it would mean that it
would require 5 times more effort to target one, estimated 1. Note
that user stories estimation process must take into account not only
the development effort but also other processes, like testing. It’s not a
deterministic process, it could happen that the estimation given to a
user story during the sprint turns out to be inaccurate. Particularly,
two kind of errors could happen when a user story is bad estimated:
over estimation and under estimation. Over estimation means that the
user story requires less effort than the one estimated. If that happens,
developers can relax and reduce their productivity, thus taking longer to
perform tasks that they would be able to do in less time. The opposite
case, under estimation, happens when a user story requires more effort
than the one estimated. When developers recognize that a user story
could be under estimated, in order to match the estimated effort, they
can reduce the quality of the code for example writing less unit tests or

54

Research activity

performing a not detailed code review. The effort estimation process
should not be underestimated, in the following sections it is shown that
by monitoring and discussing data collected about estimations, it is
possible to improve this process and obtain all the benefits of having
well-estimated stories.

4.2 Research questions and metrics
The goals of this activity were: improve the effort estimation process of
user stories, collect the most common reasons of inaccurate estimates
and try to identify some indicators of inaccurate estimations. First
we tried to identify a metric to determine if a user stories was badly
estimated. After a suggestion given by my thesis supervisor, in order to
determine if a user story was under/over estimated, the team followed
these steps: 1) we took track of the effort in hour spent for each user
story. 2) For each story point category (from 1 to 13 in the Fibonacci
series) we computed the median and the standard deviation. A user
story of a certain category is bad estimated if its effort in hours is
outside the interval centered in the median of the category and large
two standard deviation. For example, if for the user stories estimated 8
the median is 20 hours and the standard deviation is 2, a user story
with an effort of 25 hour is bad estimated because the effort outside
the range [18,22]. Note that the effort in hours takes in consideration
all kind of efforts (e.g. testing) except for the code reviews on merge
requests. To collect the most common reasons of inaccurate estimations
we simply collected and counted the feedback provided by the developer.
To identify some possible indicators of a user story than can lead to
inaccurate estimations we computed the phi correlation coefficient
between three indicators identified by us and the list of user stories.
These three proposed indicators are:

• New technology: user story requires the application of new tech-
nologies not used so far, like a new communication protocol. Since
we are a team of interns, we could not know how to apply new
technologies, receiving a lot of code reviews on merge requests

55

Research activity

reviewed by our supervisors.

• New functionality: user story starts a set of new functionalities (like
start implementing a new microservice). It could be an indicator
because if the new functionality is not completely clear for the
developer, the first implementations could not be totally aligned
with the requirements.

• Spike: spike stories are user stories that not only have to produce
something ’valuable’ but also require additional tasks, in our case
the study of a new technology.

Note that there is a strong overlap between ‘spike’ and ‘new tech’: often
if a user story requires the use of a new technology it is also a spike
story, because before applying these new technologies we had to study
them. There are only a few times when the user story required a new
technology and some team members already knew it (so it gone straight
into application without the study, implying the user story is not a
spike). The correlation coefficient was computed between each indicator
(list of boolean values) and the boolean values indicating which user
stories were bad estimated. We chosen the phi correlation coefficient
because it is the one suitable to compute the correlation between boolean
variables. This measure could be interpreted like the Pearson correlation
coefficient, in fact, if we compute the Pearson correlation coefficient
between two binary vectors, it will return the phi coefficient [33]. We
interpreted this value referring to the Cohen’s classification, for which
a correlation coefficient between 0.10 and 0.29 is thought to represent
a weak or small association, a correlation coefficient between 0.30 and
0.49 is considered a moderate correlation and a correlation coefficient
larger than 0.50 is thought to represent a strong correlation. Since the
metric aforementioned, to determine if a user story is bad estimated,
could be prone to errors like of bias selection, for the computation of
the correlation coefficients the team decided to consider a user story as
bad estimated following this approach: We took as reference the target
story used for the estimation process (the one estimated 1), seeing if, for
example, a story that was estimated 5 actually required 5 times more
effort than the reference user story. After making this comparison and

56

Research activity

especially discussing possible difficulties and various implementation
feedback (also taking in consideration the output of the metric about
median and std), we decided whether or not the user story was badly
estimated. In the next section will be presented the differences between
this approach and the one proposed in the first metric defined.

Data collected were analyzed during each sprint planning and dis-
cussed more in depth during a special meeting at the end of sprint 6
(middle of the development), in order to see if, with a more experience
in the project and with the knowledge of the errors, the user stories
estimation process improved.

4.3 Results analysis
Let’s now have a look on data collected comparing the one obtained
at the end of sprint 6 and the one obtained at the end of development.
Let’s start with the first metric, the one used to determine if a user
story is bad estimated basing on the median and standard deviation
of its story point category. Data are shown using the variance in
estimates chart: on the x axis we have the story point category while
on the y axis the effort in hours. The red point represents the median
of the story point category while the green lines define the interval
large two standard deviation. User stories, represented by crosses, are
considered well estimated if they are inside this interval. We chosen the
median and not the mean because the median could protect against
compensatory effects. In fig 4.1 the variance estimation chart at the
middle of the development. It is relevant that the median of user stories
estimated 5 was higher compared to the one of the category 8. This
was an alert for the team, indicating that something was going wrong.
Normally, the trend of the median points must follow an increasing
trend. Category 5 was also the category with the most user stories
bad estimated. The chart underlines that the team did not well catch
the difference between the category 2 and the category 3, the median
is about the same and the high value of the standard deviation for
both the category can lead to bias selection errors. About that, one
significant outcome is that the two user stories closest to the median

57

Research activity

of the category 5 where considered as underestimated for the team
(following the metric aforementioned) while for the median + standard
deviation metric were estimated correctly. In fig 4.2 the variance in

Figure 4.1: Variance in estimates chart at sprint 6

estimation chart after the last sprint. Compared to the previous one,
the most important result is that now the median points follow an
increasing trend, the median of the 5th category is correctly decreased
under the one of the category 8. The standard deviation of the 2th
category decreased significantly and there is now a clear difference
between the category 2 and the category 3, where the two median
values differ of almost 5 hour. There are still some inconsistencies with
the category 5 and the category 8: the median values differ by just two
hours. Also the fact that the standard deviation of the category 8 is
increased while the one of the category 5 is almost the same compared

58

Research activity

Figure 4.2: Final variance in estimates chart

to the previous chart, it indicates that the team did not conceive very
well the difference between the two categories. This explains also why
most user stories bad estimated for the team and not for this metric
belong to the 5th and 8th category. In the table 4.1 are showed the
most relevant differences between the two metrics: the most relevant
results are that 8 user stories (6 after the first period and 2 in the
second period) were considered as bad estimated for the team but not
by the metric, while 1 user story (implemented in the first period)
was considered bad estimated for the metric but not for the team. So,
the metric tends to produce some false negatives because, as already
said, most of this 8 stories belonged to the the 5th and 8th story point
category, where the standard deviation is very high. So, the differences
could be due to the choice of the arbitrary threshold for the median +
standard deviation metric. These inaccuracies could be eliminated by

59

Research activity

reducing the standard deviation of some categories or defining an upper
bound for this value. Note that metric based on the team’s feedback is
also a non deterministic metric, it is not completely correct. However,
we think it is more reliable because is based on team discussions and
analysis, and developers are directly involved in the project.

Time Median + standard deviation Team
After 4 sprints 8 13

At the end 13 20

Table 4.1: Differences of the number of user stories identified as bad
estimated by the two metrics

In fig 4.3 is shown the number of user stories bad estimated according
to the team during the 8 sprints analysed. In particular, this number
decreased during the time, no more exceeding the value of 2 user stories
after sprint number 6. This improvement could be mainly due to two
factors: 1) a better understanding of the project. 2) the analysis and
discussion of data collected at the end of each sprint and during the
special meeting. This helped us making decisions during the sprint
planning in order to not make the same mistakes as in the past. Benefits

Figure 4.3: Bad estimations number trend

of more accurate planning can also be verified with the trend of the

60

Research activity

ratio between story points done and story points planned in fig 4.4.
However, even before the sprint 6 this value was not completely wrong,
in fact there are only two sprints where the ration was lower than 1.
In sprint 3 we think we were not able to complete all the story points

Figure 4.4: Trend story points done over story points committed

committed because it was the first sprint where we started estimating
user stories using the range [1,13] of the Fibonacci series. In sprint
number 8 the ratio is not 1 because during this sprint many team
members didn’t work for a few days because of university exams, a
public holiday for the French national day, and also the last Tuesday
and Wednesday of the sprint the team attended a workshop on UX/UI
that occupied us the whole day. So, the main reason of the mistake
made at sprint 8 was a lack of organization. The histogram in fig 4.5
better shows the differences between the story points done versus the

61

Research activity

ones committed. What is relevant is that the story points committed
at Sprint 6 where higher compared to the average because in this sprint
the sixth developer joined us and also because during this sprint all
the team members were available for working at the project, free from
other tasks like interviews with the future clients or work commissioned
by our supervisors for client projects. Team velocity was not perfectly

Figure 4.5: Histogram comparing story points done versus committed

constant because data are bad affected by the errors in sprint 3 and
sprint 8. In table 4.2 are shown the mean, the median and the standard
deviation for story points committed and done. If we remove the two
inaccurate sprints (3 and 8) from the computation of these values, of
course we will get the same medium and mean and also the standard
deviation of story points done decrease by 1 unit.

So far we have analyzed data concerning user stories bad estimated;
it remains to analyze developers’ feedback and the correlation coefficient
of the possible indicators. Let’s start with the results obtained from
the phi correlation coefficient. In table 4.3 are shown the correlation

62

Research activity

Mean Median Standard deviation
Sp committed 30.3 29.5 3.4

Sp done 28.1 27.5 4.4

Table 4.2: Mean, median and standard deviation of story points done
and committed

coefficients computed between user stories and the indicators ’new
technology’, ’new functionality’ and ’spike story’. Interpreting the
results using the Cohen’s classification, for the ’spike’ indicator there
is a moderate correlation while for the other two the correlation is
small. About the ’new functionality’ indicator, although the correlation

Indicator Coefficient value
New functionalities 0.279

New technology 0.219
Spike story 0.321

Table 4.3: Phi correlation coefficients

coefficient is low, we think that the team should pay attention when
estimating a user story introducing a new functionality, assuring that
all team members have a clear idea of the story goal and of the new set
of functionalities. The correlation coefficient of the ’new technology’
indicator is also low and we do agree with this result. We noticed that
the user stories bad estimated that required new technologies were
implemented only at the beginning of the project, when we lacked
of experience and we did not know best practices. If the team was
composed by more experienced developers, probably, we would have a
lower coefficient value. Furthermore, POCs could help reduce the effort
while applying a new technology. So, we think that the ’new technology’
cannot be considered as a good indicator. About ’spike story’ indicator,
we think it could be an indicator of inaccurate estimates. Except for
one, all spike stories were bad estimated. What more influences bad
estimation for spike stories is the fact that they require additional tasks

63

Research activity

that are difficult to estimate because often too subjective (e.g. study a
new technology); this could be the reason why is the indicator with the
highest coefficient value, that can be interpreted as moderate.

In addition to the possible indicators, we collected and counted the
occurrences of additional reasons of inaccurate estimations according
to the developers. These additional reasons were:

• Difficult in testing: what badly influenced the team at the beginning
was that only few of us already used test’s frameworks like jest or
generally tested an application. Testing the features of our project
was not easy at all since it required the introduction of new tools
and concepts new for everyone. This, especially at the beginning,
influenced a lot the user story estimation, mainly because who
never wrote a test had difficulties on giving an estimation since
they did not know the effort required. This is a demonstration that
our lack of experience impacted our estimates.

• Difficult in the implementation: user story was clear, well under-
stood by developers, but due to technical problems or unexpected
code behavior, has proved to be difficult to implement. When this
happened, we asked for help to our supervisors to reduce the effort
in the implementation but it was not enough to have an under
estimation of the user story.

• User story not clear during the planning: PO has the important role
to define and prioritize user stories. Especially at the beginning,
when the functionalities of the project are not very clear, if a
user story is not well defined, it could happen that team members
perceive different difficulties. Team had not clear the goal of the
user story, implying that during the implementation, when the
functionality to implement become clear, the implementation time
needed is more or less than expected. It’s important that during
the planning a user story is well discussed in order to be clear for
all the team, before giving an estimation.

• Client needs not clear: PO defined the user story in a clear way,
following the structure "As a <role> I want to <perform action>

64

Research activity

so that <value created>". However the PO was not quite sure of
what the customer wanted and during the sprint, after a discussion
with the client, the story requirements were changed, thus leading
to a slowdown in implementation.

• Code review took a lot of time: especially at the beginning or
when implementing a user story that required the use of a new
technology, code review on a merge request implemented by our
supervisors took a lot of time since we received a lot of comments
due manly to our lack of experience.

Let’s now see and discuss the occurrences. In table 4.4 the values
at the end of the project, the symbol ’-’ means that there where no
occurrences. The most common reason is "User story not clear during
the implementation", that is also the only reason that caused over
estimations. This is followed by "Difficult in the implementation", other
reasons occurred once and only caused under estimations. Having 14
occurrences for the "User story not clear during planning", underlines
the fact that the role of the PO is fundamental; these errors could be
avoided if: 1) user stories and their acceptance criteria were defined
better 2) during the planning it was ensured that each team member
had a clear idea of the purpose of the story and of all the aspects
that would influence its implementation. In table 4.5 are shown the
occurrences collected at the end of sprint 6. These data were analyzed
during a special meeting. Let’s compare them to the one collected at the
end of the project to see if there where improvements. Despite we knew
that an unclear user story could lead to bad estimates, we made this
error another five times. With the increasing of the knowledge and the
experience, we had no more long code reviews and difficulties in testing.
We have twice more experienced "difficult in the implementation", for
reasons not due to unclear user stories but to problems that developers
may encounter every day.

65

Research activity

Description Total occur-
rences

Under estima-
tions

Over estima-
tions

Difficult in testing 1 1 -

Difficult in the im-
plementation

3 3 -

User story not clear
during the planning

14 11 3

Client needs not
clear

1 1 -

Code review took a
lot of time

1 1 -

Table 4.4: Developers’ feedback occurrences after last sprint

Description Total occur-
rences

Under estima-
tions

Over estima-
tions

Difficult in testing 1 1 -

Difficult in the im-
plementation

1 1 -

User story not clear
during the planning

9 6 3

Client needs not
clear

1 1 -

Code review took a
lot of time

1 1 -

Table 4.5: Developers’ feedback occurrences after sprint 6

66

Research activity

4.4 Conclusions and future works

In this section I have described the research activity carried out during
the development of the project. The main goal was to improve the
user story estimation process after collecting and analysing data in
a special meeting; others goals were to identify the most common
reasons of bad estimations and possible indicators of bad estimates.
We tried to individuate a metric that could identify automatically if a
user story was under/over estimated; comparing it to a metric based
on developers’ feedback, the differences were not so huge. The metric
tended to produce some false negatives, these kind of errors can be
reduced by decreasing the standard deviation of some story points
category, possibly limiting the value. The most important result is
that we were able to improve the estimation process, decreasing the
number of inaccurate estimations. This result is obtained thanks to a
bigger experience on the project and to the discussion and the analysis
of data collected. Not only data regarding this metric were discussed
but also feedback provided by developers, trying to identify the most
common reasons of inaccurate estimations. About feedback collection,
it is noticeable that some mistake happened once, never happened
again. The most common reason of errors was "User story not clear";
even if after sprint 6 it had a significant value of occurrences, was not
enough for the team to avoid this error, causing other bad estimations.
However, since this is mostly a PO responsibility, we think that this
is an expected behaviour: the company gave us the change to play in
turn the PO and SM roles, so exchanging the PO role lead to possible
inconsistencies and different points of view. From our feedback, also,
came out that one factor that mostly impacted the team was our lack of
experience; after some sprints the team gained a bit more of experience
and some mistakes were no longer made. The lack of experience was
an expected problem since we had all different academic backgrounds
and for most team members it was the first working experience in an
Agile environment. Regarding the possible indicators of inaccurate
estimations identified by us, computing the phi correlation coefficient
between the indicators and the user story data, we did not get strong

67

Research activity

evidences to draw significant conclusions. However, we think that "New
functionality" indicator and especially the ’Spike’ indicator could be
good indicators for inaccurate estimations. It’s interesting that our
data collected are close to data obtained from a survey made in 228
companies working in 10 countries, about the contemporary problems
practitioners encounter [34]. For a future work, a machine learning
algorithm could be used to determine if the estimation given to a user
story could be prone to errors. We tried to use a logistic regression
model to determine if the user stories of the sprint 10 were recognized
as good or bad estimated according to developers’ feedback, labelling
them with the three indicators aforementioned. The interesting result
is that the confusion matrix has an accuracy and precision of 1; the
only user story bad estimated was identified by the model. Of course,
using the list of user stories until sprint 9 as train set, is a limitation
since it is very small and unbalanced. However, this work could be
considered in the future, where more data from different projects could
be available and used.

The results of this research activity could be used by the company
for internal projects and for the next team of interns that will continue
the development of the project. Data cannot be generalized since only
the first sprints of a single project are analyzed and, for example, other
companies could not use the concept of ’Spike story’, using transversal
tasks instead.

68

Chapter 5

Conclusions
In this master thesis work is presented my experience in a French
consultant company while developing a web application in an Agile
team. The main functionality of the application is the management of
clients and consultants of the company. The thesis work extends the
internship report committed at the end of the stage, particularly, it is
added the last chapter describing the activity research made in parallel
during the stage.

During the internship, we had the possibility to take part in the
initial steps of the project, defining the microservice architecture of
the system. We deployed the application in a cloud environment,
exploiting all the advantages of cloud computing. The development
of the project followed the DevOps philosophy, using interesting tools
like Terraform and Pipelines in order to automatize operations. The
Minimum Viable Product was delivered on date 12/08/2021. Right
now, are implemented 3 application functionalities: 1) Management
of entities inside a tenant. 2) Consultant management by HR and
Business Managers. 3) Consultant’s rewards management. The entities
that could be managed by the application right now are the employee
of the Sophia Antipolis Business unit, that are around 100 people. The
development of the project will be continued by a new group of interns.
Momentarily, users are performing a "friendly user test" in order to
collect suggestions and feedback, all positive for the moment.

The next team can be guided by the outcomes of the research activity

69

Conclusions

carried out during the 6 months. The activity consisted in collecting
both qualitative and quantitative data and analyze them in order to
improve the user story estimation process. We tried also to identify
most common reasons of inaccurate estimations and possible indicators
of bad estimations. The activity highlighted the importance of the
PO role: there were a lot of inaccurate estimations (15 out of 20)
because user stories where not clear or client needs not well understood.
Another factor that influenced negatively the development was our
lack of experience. The activity demonstrate that gaining a bit of
experience, knowing more the environment, the project’s requirements
and analysing data and errors, can improve the user story estimation
process. Analyzing data collected helped also to not have the problems
encountered at the beginning, like difficulties in testing and long code
reviews, the only exception is for the "User story not clear" error.
However, we think that we had this problem because we exchanged the
PO role during the development, involving to expected inconsistencies
and different points of view.

We cannot draw significant conclusions regarding the possible indica-
tors of inaccurate estimations, the values of the correlation coefficients
do not indicate a strong correlation and also data are related to a
single project. However, we think that the "New functionality" and the
"Spike" indicators should be taken in consideration by the next team
when estimating user stories implementation effort. The first indicator
indicates a user story that introduces a new set of functionalities, it is
important to make sure that each developer has well understood the
new functionality goals. The second indicator indicates that the user
story requires also to implement further tasks (like study a new tech-
nology) that increase the difficulty of the estimation, so it’s important
that the team discuss about possible difficulties and factors that could
affect he implementation of these transversal tasks.

70

Bibliography and
Sitography
[1] https://en.wikipedia.org/wiki/ALTEN. visited on March 2022

(cit. on p. 1).
[2] https://en.wikipedia.org/wiki/DevOps. visited on March

2022 (cit. on p. 2).
[3] https://fulcrum.rocks/blog/proof-of-concept. visited on

March 2022 (cit. on p. 5).
[4] https://c4model.com/. visited on March 2022 (cit. on p. 7).
[5] https://docs.nestjs.com/. visited on April 2022 (cit. on p. 10).
[6] https://xebia.com/blog/so-what-is-a-deployment-really

/. visited on April 2022 (cit. on p. 11).
[7] https://en.wikipedia.org/wiki/Cloud_computing. visited

on April 2022 (cit. on p. 12).
[8] https://www.geeksforgeeks.org/difference-between-iaas-

paas-and-saas/. visited on April 2022 (cit. on p. 13).
[9] https://www.docker.com/resources/what-container/. vis-

ited on April 2022 (cit. on p. 14).
[10] Tim Hockin. A Crash Course on Container Orchestration. May

2017 (cit. on p. 16).
[11] https://manish- bannur.hashnode.dev/kubernetes- k8s-

kybernhths. visited on April 2022 (cit. on p. 16).

71

https://en.wikipedia.org/wiki/ALTEN
https://en.wikipedia.org/wiki/DevOps
https://fulcrum.rocks/blog/proof-of-concept
https://c4model.com/
https://docs.nestjs.com/
https://xebia.com/blog/so-what-is-a-deployment-really/
https://xebia.com/blog/so-what-is-a-deployment-really/
https://en.wikipedia.org/wiki/Cloud_computing
https://www.geeksforgeeks.org/difference-between-iaas-paas-and-saas/
https://www.geeksforgeeks.org/difference-between-iaas-paas-and-saas/
https://www.docker.com/resources/what-container/
https://manish-bannur.hashnode.dev/kubernetes-k8s-kybernhths
https://manish-bannur.hashnode.dev/kubernetes-k8s-kybernhths

BIBLIOGRAPHY AND SITOGRAPHY

[12] https://phoenixnap.com/kb/what-is-helm. visited on April
2022 (cit. on p. 21).

[13] https://harness.io/blog/what-is-helm. visited on April
2022 (cit. on p. 23).

[14] https://docs.docker.com/compose/. visited on April 2022
(cit. on p. 23).

[15] https://www.terraform.io/intro. visited on May 2022 (cit. on
p. 24).

[16] https://en.wikipedia.org/wiki/Active_Directory. visited
on April 2022 (cit. on p. 30).

[17] https://docs.microsoft.com/en-us/azure/active-directo
ry/develop/v2-oauth2-auth-code-flow. visited on April 2022
(cit. on p. 30).

[18] https://docs.microsoft.com/en-us/azure/active-direc
tory/develop/msal-overview. visited on April 2022 (cit. on
p. 33).

[19] https://www.pagerduty.com/resources/learn/what-is-a-
pipeline-in-devops-and-how-to-build/. visited on May 2022
(cit. on p. 34).

[20] https://docs.gitlab.com/ee/ci/pipelines/. visited on May
2022 (cit. on p. 39).

[21] https://azure.microsoft.com/en- us/services/cosmos-
db/#overview. visited on May 2022 (cit. on p. 39).

[22] https://en.wikipedia.org/wiki/Cosmos_DB. visited on May
2022 (cit. on p. 40).

[23] https://docs.microsoft.com/en-us/azure/cosmos-db/sql/
sql-query-udfs. visited on June 2022 (cit. on p. 41).

[24] https://www.testim.io/blog/supertest- how- to- test-
apis-like-a-pro/. visited on April 2022 (cit. on p. 44).

[25] https://www.testcontainers.org/. visited on April 2022 (cit.
on p. 45).

72

https://phoenixnap.com/kb/what-is-helm
https://harness.io/blog/what-is-helm
https://docs.docker.com/compose/
https://www.terraform.io/intro
https://en.wikipedia.org/wiki/Active_Directory
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-auth-code-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://www.pagerduty.com/resources/learn/what-is-a-pipeline-in-devops-and-how-to-build/
https://www.pagerduty.com/resources/learn/what-is-a-pipeline-in-devops-and-how-to-build/
https://docs.gitlab.com/ee/ci/pipelines/
https://azure.microsoft.com/en-us/services/cosmos-db/##overview
https://azure.microsoft.com/en-us/services/cosmos-db/##overview
https://en.wikipedia.org/wiki/Cosmos_DB
https://docs.microsoft.com/en-us/azure/cosmos-db/sql/sql-query-udfs
https://docs.microsoft.com/en-us/azure/cosmos-db/sql/sql-query-udfs
https://www.testim.io/blog/supertest-how-to-test-apis-like-a-pro/
https://www.testim.io/blog/supertest-how-to-test-apis-like-a-pro/
https://www.testcontainers.org/

BIBLIOGRAPHY AND SITOGRAPHY

[26] https://grpc.io/docs/what-is-grpc/introduction/. visited
on May 2022 (cit. on p. 46).

[27] https://developers.google.com/protocol-buffers/docs/
overview. visited on May 2022 (cit. on p. 46).

[28] https://blog.logrocket.com/using-observables-transfor
m-data-typescript/. visited on May 2022 (cit. on p. 49).

[29] https://blog.angular-university.io/rxjs-error-handlin
g/. visited on May 2022 (cit. on p. 49).

[30] https://blog.dreamfactory.com/grpc-vs-rest-how-does-
grpc-compare-with-traditional-rest-apis/. visited on May
2022 (cit. on p. 49).

[31] https://kubernetes.io/docs/concepts/workloads/control
lers/cron-jobs/. visited on July 2022 (cit. on p. 50).

[32] A. Vetrò M. Conoscenti V. Besner and D. Méndez Fernàndez.
Combining Data Analytics and Developers Feedback for Identifying
Reasons of Inaccurate Estimations in Agile Software Development.
2019 (cit. on p. 53).

[33] https://en.wikipedia.org/wiki/Phi_coefficient. visited
on August 2022 (cit. on p. 56).

[34] M. Kalinowski D. Fernández M. Felderer and S. Wagner. Naming
the pain in requirements engineering. 2017 (cit. on p. 68).

73

https://grpc.io/docs/what-is-grpc/introduction/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
https://blog.logrocket.com/using-observables-transform-data-typescript/
https://blog.logrocket.com/using-observables-transform-data-typescript/
https://blog.angular-university.io/rxjs-error-handling/
https://blog.angular-university.io/rxjs-error-handling/
https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/
https://blog.dreamfactory.com/grpc-vs-rest-how-does-grpc-compare-with-traditional-rest-apis/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://en.wikipedia.org/wiki/Phi_coefficient

	List of Tables
	List of Figures
	Acronyms
	Introduction
	The company
	The project

	Project structure
	Microservice Architecture
	C4 model
	Kubernetes
	Helm
	Terraform

	Development technologies
	Microsoft MSAL for the login system
	Pipelines
	CosmosDB
	Jest and Supertest
	gRPC protocol
	Cronjob

	Research activity
	Description and motivation
	Research questions and metrics
	Results analysis
	Conclusions and future works

	Conclusions
	Bibliography and Sitography

