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Abstract

The goal of this thesis is the development of an autonomous navigation system for
a mobile robot named Paquitop. Its main peculiarity is to achieve omnidirectional
motion exploiting conventional wheels. The Paquitop platform has been designed
and prototyped by the researches at Politecnico di Torino during the last two
years. This work represents the first step to enable the robot with autonomous
navigation capability to perform indoor assistive tasks in full autonomy. The
software architecture is designed to fulfill the following tasks: Mapping, Localization,
Obstacle Avoidance and Path Planning.

The first step for the design is the definition of a Hybrid Control Architecture
based on the primitive functions Sense-Plan-Act. The basic idea behind this design
is to decouple the navigation algorithms inside these primitive according to their
task. Firstly, the platform extracts in real-time information perceived from the
environment through the sensors, returning its local position estimate, the map of
the surrounding environment and the obstacle detection. The ability for a mobile
robot to localize itself and at the same time to build a map of the surrounding
environment recognizing the obstacles, is defined Visual Simultaneous Localization
and Mapping (VSLAM). A navigable path between the starting point and the
target one is computed by the global planner. The global path is subdivided into
suitable waypoints by the local planner, which takes into account the dynamic
obstacles and the vehicle constraints. Finally, the planned actions are controlled
until the goal is reached.

The adopted framework for the implementation of all tasks is the Robot Operat-
ing System (ROS). Inside this framework, the Unified Robot Description Format
(URDF) is used to represent the robot kinematic structure in the form of links and
joints. The ROS packages used to fulfill the global task are included inside the
Navigation Stack package. In conjunction with ROS, Gazebo simulator and RViz
visualizer are adopted to simulate robot in its operational environment.

To effectively achieve autonomous navigation, the Paquitop platform has been
provided with exteroceptive sensors: a LiDAR, used to acquire data for the SLAM
algorithm and a commercial tracking camera, adopted to estimate the pose changes
in time through sensor fusion techniques. The brain of the whole system is the
computer Nvidia Jetson Nano, able to provide the need computational capability,
connected to Arduino, which receives and sends information to electronic devices.

The obtained result involves a both reactive and deliberative framework, which
guarantees an accurate mapping and localization in the environment. This data
can be used by the navigation algorithms to accomplish the mobile robot to the
desired pose and to perform an obstacle avoidance logic.



The thesis is divided as follows: Chapter 1, presents the state of the art of
mobile autonomous robots, the logic of the motion planning and the tools used
to develop the thesis work; Chapter 2, describes the Paquitop platform analyzing
its kinematic and its main components; Chapter 3, defines the software robotic
architecture with its packages and their implementations; Chapter 4, focuses on
validation tests; Chapter 5, presents the conclusions pointing out the system limits
and its possible improvements.
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Chapter 1

Introduction

A robot is an electromechanical artificial system capable of performing a series of
actions programmed and ascribed by humans. The term derives from the Czech
word “robota”, meaning “forced labour”, coined in 1921 by the writer Karel Capek
in his play R.U.R. (Rossum’s Universal Robots), for featuring a humanoid machine.

Nowadays, a robot incorporates a mechanical structure, constituted of rigid
components connected by joints, which allow either rotational or translational
motions of the whole robotic structure. The data acquisition about the internal
state of the mechanical structure, such as position and velocity, is provided by a
sensorial unit, in particular by proprioceptive sensors. Instead, to have information
about the surrounding external environment, robot adopts exteroceptive sensors.
The ability to comprehend the workspace in which the robot operates, is named
perception, based on the sensory data acquisition, process and representation,
useful to outline the external word with static and dynamic obstacles. In addition,
a control structure is fundamental for guaranteeing the fulfillment of the requested
tasks, composed by electromagnetic motors or actuators. To accomplish a task, the
robot must move autonomously from one place to another. In such sense, hardware
and software systems are needed, to program and to check the activities of the
robot.

Each robot has a different level of autonomy, ranging from robots fully controlled
by human beings, to robots that perform tasks in fully autonomy. The remote-
controlled robots are employed in hazardous environments for the operators, while
the autonomous mobile robots are adopted for improving the speed and the accuracy
of repetitive operations.

Unlike the stationary robotics, used for carrying out tasks on site, an Autonomous
Mobile Robot (AMR) navigates in the world and makes decisions in real-time
independently, without the help of human beings.

The operating environments of the robots can be classified intro three categories:
pre-defined and structured environment, in which the robot has information about

1



Introduction

the surrounding environment and objects in it; semi structured environment, where
the robot knows only some things, as for example the map; unstructured environ-
ment, in which the robot relies on information taken from sensors and camera to
work autonomously, as has no prior knowledge about the environment.

The fields of application of robotics are wide, listed below: medical, military,
domestic, service, educational, industrial and aerospace application fields.

Later, the state of the art of a mobile robot, its fundamental subsystems and the
adopted environment to develop the mobile platform, will be described in detail.

1.1 State of the art of Mobile Autonomous Robot
A subset of robots is the mobile robot, an automatic machine that is not attached
to the environment, able to move in a given space [1]. As opposed to stationary
robots, a mobile robot owns an unlimited motion within both known and unknown
environments. Like a human, it can carry out a variety functions such as domestic
helper, surveillance, cargo transporter, entertainment and also, to perform repetitive
activities and to operate in areas that the humans cannot explore, as radioactive
environments and spaces too far in distance and time.

Mobility requires a specific design, which can be organized into three parts:
Software, Hardware and Mechanical.

The Software part consists of a high level, which includes all navigation algorithms
to fulfill the designated mission and a low level, which possesses the commands to
send to both the microcontroller and processors, in order to provide the mobility
to the robot. The development of a software architecture includes all processes
required by the robot to perform a specific task and it is based on the integration
of its major components and on how they interact.

The Hardware part comprises electronics components that convert the software
algorithms in form of control signals for the actuators.

The Mechanical part involves the design of a robotic structure, namely the type
and the configuration of a robot and its main components, in detail the links, its
rigid bodies, the joints, the connections between the links and the end-effector,
a tool attached to a final part of a robotic arm, for example a gripper, used to
interact with the environment for grabbing, holding and handling tasks.

Mobile robots can be categorized into three categories according to their oper-
ating environment: the Ground Mobile Robot (Figure 1.1a [2]), the Aerial Mobile
Robot (Figure 1.1b [3]) and the Water-based Mobile Robot (Figure 1.1c [4]).

Each one of these categories can be further divided into several sub-categories.
In particular, the Land-based Mobile Robots can be classified on the basis of their
locomotion system into three groups: Wheeled, Legged and Tracked.

Wheeled robots (Figure 1.2a [5]) exploit the ground contact and the friction
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(a) Ground Mobile Robot (b) Aerial Mobile Robot

(c) Water-based Robot

Figure 1.1: The Mobile Robots Classification according to the operating environ-
ment

to perform their motion. The wheels design allows the robot to travel with high
speed and energy efficiency on flat and even grounds. Wheeled robots have a
simpler control system compared to the other two categories, but a limited ability
to overcome obstacles and low adaptability to the different types of terrains.

Tracked drive (Figure 1.2b [6]) exploits bands of tracks driven by two or more
pulleys. Tracked robots can move on uneven and yielding terrains, thanks to
their major contact surface with the ground [7]. On the other hand, they are
characterized by a slow motion and a high energy consumption due to the friction
of the transmission system and especially to the sliding of the tracks during
curvilinear trajectories.

Legged locomotion (Figure 1.2c [8]) is the solution to rough terrains and obstacles,
characterized by a slow motion and less energetically efficient on flat grounds.
Legged robots have a high architectural complexity of mechanical and control
architecture, due to handle a high number of actuators. This implies a high cost of
the robotic structure.

3
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(a) Wheeled Mobile Robot (b) Tracked Mobile Robot

(c) Legged Mobile Robot

Figure 1.2: The Mobile Robots Classification on the basis of the locomotion
system

By combining all locomotion systems a Hybrid Robot is achieved, which integrates
some characteristics of the previous locomotion systems. Example of Hybrid robots
are: Legs-Wheels, Legs-Tracked, Wheels-Tracked and Legs-Wheels-Tracked.

Legs-Wheels robots (Figure 1.3a [9]) guarantee a high speed and an energy
efficiency of the wheeled locomotion and also both high mobility and flexibility of
legs.

Legs-Tracked robots (Figure 1.3b [10]) are sturdy and reliable, with a greater
capability of overcoming obstacles also in rough environments. On the other hand,
they travel with both low speeds and energy efficiency.

Wheels-Tracked robots (Figure 1.3c [11]) have a good performance on uneven
and soft grounds and an energy efficiency on flat terrains.

Legs-Wheels-Tracked robots (Figure 1.3d [12]) combines all three types of locomo-
tion. Their peculiarity is the high adaptability to various terrains and high speeds.
The combination of the categories causes a high complexity of the architecture and
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an elevated energy consumption.

(a) Legs-Wheels Robot

(b) Legs-Tracked Robot (c) Wheels-Tracked Robot

(d) Legs-Wheels-Tracked Robot

Figure 1.3: The Hybrid Mobile Robots Classification

5
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In this chapter, the attention is focused on the Wheeled Mobile Systems, classified
in five categories according to the platform’s locomotion [13], in particular on the
basis of the kinematics and dynamics properties:

• Omnidirectional Drive Systems;

• Differential-Drive Robots;

• Wheeled Robots with at least one steering mechanism;

• Bicycle, Tricycle and Car-like Robots;

• Pseudo-Omnidirectional Robots based on swerve-drive systems.

The Omnidirectional Drive Systems have a specific wheels construction, which
allows a rolling motion in all directions, enabling a full mobility in the plane. The
wheels used for this type of motion are the Mecanum (Figure 1.4a [13] [14]), Poly
(Figure 1.4b [13] [15]) and the spherical (Figure 1.4c [13] [16]) wheels. The first
have the rollers mounted around the wheel rim and their rotation axis is rotated
of 45 degree, which guarantees the motion in more directions. By setting the
same velocity to all wheels, both forward and backward motions are possible; for
the side motion, all wheels on one diagonal have opposite velocity to the wheels
on the other diagonal. The motion in all directions can be achieved combining
forward/backward with side motions.

About the Poly wheel, a number of six free passive rollers are arranged around
the wheel rim with their axes to 90 degree with respect the main wheel axis. These
wheels can rotate and slide laterally.

The passive rollers of the Mecanum and Poly wheels are characterized by small
dimensions, by a discontinuous contact with the ground, that causes vibrations
above all on uneven terrain and difficulty to carry heavy loads, and by a high
sensitivity to the floor condition. The wheels’ construction accuracy affects strongly
the navigation performance of the platform: a high control uncertainty could cause
their slippage. Unlike the previous wheels, the omnidirectional robot based on
spherical wheels has a continuous contact with the ground, a high controllability,
both little slippage and sensitivity to the floor condition. Instead, the characteristics
in common are the following: their actuation redundancy, the strong influence on
the performance by the construction of the wheels and finally a high uncertainty
and slippage in the case of control errors.

The Differential-Drive Robots (Figure 1.5 [13]) have two non-steering wheels,
controlled by independent motors and sometimes, to give more stability the system,
one or more non-driven wheels, called caster wheels, are implemented. The latter
support the vehicle avoiding its tilt. The driven wheels are placed on the same axis
at a certain distance from their centre. To maneuver any differential robot in a
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(a) Mecanum Wheel

(b) Poly Wheel

(c) Spherical Wheel

Figure 1.4: Types of Omnidirectional Wheels

plane, the robot requires a linear velocity Vl with direction perpendicular to their
common axis, computed as the average between the tangential velocities of right
and left wheels, Vr and Vl respectively, and an angular velocity. The motion of the
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robot changes according to tangential velocity value of the right and left wheels,
named respectively Vr and Vf :

1. If Vr = Vf , the robot has a forward linear motion along a straight line and the
rotational velocity w is null;

2. If Vr = −Vf , the robot rotates on itself around the intermediate point of the
wheels axis.

3. If Vl = 0, the robot rotates around the left wheel. Otherwise, if Vf = 0, the
robot rotates around the right wheel.

The motion cannot occur along the common axis of the driven-wheels.

Figure 1.5: Differential-Drive Robot

The Wheeled Robots with at least one steering mechanism (Figure 1.6 [13]), point
at the same directions because of the same steering angle of the wheels. Despite
the presence of the castor wheel causing vibrations, the robot guarantees stability,
thanks the continuous contact of the wheels with the ground. This implies both
high payload and efficiency.

Figure 1.6: Wheeled Robot with at least One Steering Wheel
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The Bicycle, the Tricycle (Figure 1.7 [13]) and the Car-like Robots are grouped
into the same category. According to the type of robot chosen among those listed
above, they are constituted of one or several steering front-wheels and one or several
two fixed rear-wheels. If more than one steering wheels is adopted, the drive is
based on the Ackermann steering principle [1]. Before describing it, the definition
of the instantaneous center of rotation (i.c.r.) point is need, around which all the
wheels follow a circular motion with the same angular velocity [1]. Taking into
account the Car-like Robot, the idea behind the Ackermann steering principle is as
follows: the inner wheel closer to i.c.r. will steer with a bigger angle with respect
to the outer one, in order that the vehicle rotates around its middle point. As a
consequence, the angular velocity of the inner front-wheel is slower than the outer
front-wheel. The i.c.r. point is placed on the straight line given by the rear-wheels’
axis.

Figure 1.7: Tricycle Robot

The Pseudo-Omnidirectional Robots (Figure 1.8 [13]) are characterized by no
fixed wheels and at least two independent steering wheels or a castor wheel or a
spherical wheel or self-balancing algorithms. This type of locomotion architecture
has several actuation strategies: on the one hand, if the steering wheels axis lies
on the same line, the platform has the same configuration of the differential drive
robots, and on the other hand, the platform can assume a pseudo-omnidirectional
motion, with non-equal steering angles of conventional wheels. To have a pseudo-
omnidirectional motion, it is necessary to have independently actuated wheels,
which do not allow sideways sliding. The term pseudo-omnidirectional means that
the robot can perform omnidirectional motions, but to do so there must be a
reconfiguration of internal degrees of freedom of the platform, such as steering.
Within the latter category Paquitop belongs, whose kinematics will be described in
Chapter 2.

After an overview of all mobile robot types, with particular attention on the
wheeled one and on their classification according to the kind of locomotion, the
concepts that involving the autonomous navigation will be deepened in the following
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sections.

Figure 1.8: Pseudo-Omnidirectional Robot

1.2 Motion Planning
Motion planning problem is defined as the construction of a robot motion to execute
a path from a start configuration to a target configuration. Motion must satisfy a
set of requirements such as avoiding collisions, joint or effort limits, performing a
specific task along a path, executing a set of waypoints [17]. To solve the problem of
motion, the concept of the configuration space or C-space is useful, namely the set
of all possible states that the system might have to reach a specific goal pose. The
solution to this problem consists of computing a path inside of the configuration
space, where each point of the route represents a unique configuration of the robot,
described by a generalized coordinate q. All configurations made while executing a
route, are enclosed within a vector, called C-space.

Besides the concept of motion planning, there is that of path planning, which is
defined as a purely geometric problem consisting of finding a collision-free path
between initial and goal points. Unlike motion planning, this problem does not
take into accounts the dynamics, the duration of motion and constraints on the
motion and the control inputs [17].

One of objective functions of the path planning is the shortest path planning,
defined as the search of the path that minimizes the route cost. The cost includes
all parameters that affect the choice of the path, as the time and the distance.
Algorithms that employ this objective function are Dijkstra and A*. The first
transforms all working space into a network of nodes or points passable by the
robot, each linked by edges or arcs connecting the motion from one node to another.
The entire path will be constituted by the set of all edges, each associated to a cost
and it will have as total cost the sum of all edges costs along the route. The second
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is an extension of the Dijkstra algorithm, characterized by a best computation time
thanks to the heuristic functions used. Both algorithms will be described in detail
in the Chapter 3.

Another objective function in motion planning is the optimal coverage path,
defined as the coverage of an area with minimal redundant traversals. One of the
algorithms that employs this logic is grid-based method, which divides the working
space into grid cells. Among the applications that employ this logic are cleaning
and farming.

The path planning problem precedes the trajectory planning one, which consists
of assigning a time law to a geometric path given by the path algorithm. In
detail, the trajectory planning considers the solution given from the path planning
algorithm and finds a way to move along it, satisfying all mechanical limitations of
the robot [18]. The outputs of the trajectory planning are the trajectory of the
joints, the links and the end-effector, in terms of position, velocity and accelerations
values.

One of the competences of the motion planning is perception, namely the ability
of a robot to collect information from the surrounding environment. This is a
fundamental function for an autonomous system as provides crucial information
on free drivable areas, as a consequence the obstacles’ locations and other date as
position, velocities and acceleration of a robot. In particular, the ability of the
robot to calculate its position with respect to the environment is named localization.
The latter is included in the competences of a mobile robot and it is closely linked
to the mapping concept, considered another ability of an autonomous system.
Localization and mapping are tasks that can be performed by means of the sensors
placed on a robot: LiDAR, camera or the fusion between these two types of devices.
The robot, equipped with on-board sensors, is able to identify the obstacles along
its route and to modify its motion to avoid collisions through the implementation
of some algorithms. This represents another competence of the motion planning
called obstacle avoidance.

1.2.1 Perception
In robotics, perception is the ability of robot to perceive, comprehend and reason
about the surrounding environment [19]. Robotics perception concept is based both
on the acquisition and the process of sensor data, which is fundamental in motion
planning problem to make decisions, plan and operate in real-world environments.

Components of the perception are sensory data processing, data representation
(environment modelling) and algorithms for data analysis and interpretation. Mobile
robots carry different types of sensors to perform different functions, which can
be classified in exteroceptive and proprioceptive sensors. The first sensors acquire
information from the surrounding environment (e.g. temperature, light intensity,
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distance measurements), while the second ones monitor the internal state of a robot
(e.g. motor speed, battery charge, wheel load).

Addressing the specific application of the project, Paquitop is equipped with
the exteroceptive sensors: the RPLIDAR A2 sensor and the tracking camera T265,
which will be present detailly in Chapter 2.

1.2.2 Localization and Mapping
Navigation of the mobile platform requires the ability of self-localization and map-
ping within outdoor and indoor environments. In this project, the key enabling
these tasks is the implementation of the SLAM technology, which addresses the
problem of constructing the environment model (map) that the sensors are per-
ceiving, while simultaneously performing its localization in it. The most common
SLAM systems can be classified as LiDAR SLAM or Visual SLAM, which exploit
information from LiDAR and camera sensors respectively. These two technologies
will be described detailly in the next two paragraphs.

LiDAR SLAM

LiDAR, acronym for Light Detection And Ranging, identifies a sensing technology
that uses light in the form of pulsed laser beams to measure the ranges (distances) to
a selected target. The devices that employ this technology, are able to transform the
surrounding environment with a points cloud model, through their field of view of
360 degree of the optical window. In general, these sensors are constituted by three
components: the transmitter, the receiver and the detector. An electromagnetic
wave generator (transmitter) emits a laser signal and, after detecting any surface,
it reflects on it and returns by the receiver. The reflected light is analyzed by
the detector, which is based on the optical Time-of-Flight (ToF) measurement,
namely the time between the emitted and reflected light beam. This parameter
is needed for calculating the distance to each object, obtained knowing that the
electromagnetic waves travel at the speed of light. The distance to the detected
object can be calculated as follows (1.1):

d = c · ToF
2 (1.1)

where d indicates the distance to the target, c is the speed of light and ToF is
the Time of Flight described previously.

In addition to detect the presence of objects, Lidar SLAM-based sensors are also
used for building 3D map of the environment through the Hector-SLAM approach
thanks to the acquisition of the distances every second. This approach is one of
the many algorithms that can be used and it will be discussed in Chapter 3.
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As mentioned before, other task of this technology is to provide the pose of
the robot, which is then fused with other computed poses given by more sensors
through an Extended Kalman Filter (EKF), deepened in Chapter 3.

Visual SLAM

Visual SLAM or vSLAM, refers to the process to locate the pose of the robot,
while simultaneously it builds the map of the environment through the images
captured by the camera sensors. It is a technique for obtaining a 3D structure of
an unknown environment by using the visual information. Visual SLAM can be
divided into three main categories [20]: Visual-Only SLAM, Visual-Inertial SLAM
and RGB-D SLAM.

VO SLAM acquires only 2D images captured from multiple points of view by a
monocular or stereo camera. Then, it defines a global coordinates system through
an initialization process, and finally it builds a map. This approach can adopt two
different methods, namely the Feature-Based and the Direct Methods. The first
extracts some feature points from the images, named key points, both to calculate
the pose and orientation of the camera, and to construct a feature map. Unlike the
Feature-Based Method, Direct Method has the aim to estimate the robot motion
using pixels.

VI SLAM incorporates an Inertial Measurement Unit (IMU) to estimate the
sensor pose. It employs a gyroscope for providing information relative to the angular
rate; an accelerometer to compute the acceleration and a magnetometer device to
determine the magnetic field around the device, in particular that of the earth in
order to have information regarding orientation.

RGB-D SLAM employs a depth sensor and a monocular RGB camera to acquire
the depth information and the color image data of the environment. These devices
use the Iterative Closest Point (ICP) algorithm to provide the sensor pose and the
map with a high accuracy.

In general, Visual SLAM logic [21] consists of five parts, as shown in Figure
1.9. Sensors send the image information to Visual Odometer, which is able to
estimate the motion of the camera via the keyframe pose. Back-End Optimization
considers both of the motion equation and the observation one, to optimize the pose
of each point crossed building a trajectory. As Back-End Optimization, usually
an Extended Kalman Filter (EKF) is used. The latter estimates the pose of the
robot, and it is the nonlinear filter of the Kalman Filter (KF). Loopback Detection
deletes the errors accumulated over time, re-estimates the pose, building globally
the consistent trajectory and the map. Finally, from the information collected, the
map measurement is established.
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Figure 1.9: Visual SLAM Logic

1.2.3 Obstacle Avoidance
Obstacle avoidance is a crucial task for robotics systems, which must avoid to
collide with any object present within its workspace. The detection of both static
and dynamic obstacles occurs by means of the sensors. Each time that an obstacle
is detected, it is inserted within the grid map, which represents the workspace of
the robot in form of filled or empty cells, depending on the presence of the obstacles.
The basic idea of the occupancy grid map is to construct a map, where each cell is
marked with a binary number: the number 1 if the cell contains an obstacle; the
number 0 if it a free space. Hence the occupancy grid map is the transformation of
a continuous world into a discrete representation.

In order to build a feasible path from an initial configuration to a goal config-
uration, the occupancy grid is analyzed and constantly updated, so to provide a
drivable path. Algorithms that fulfill this task are present in Global and Local
plannings, which employ the obtained costmap to build a path.

1.3 Development Environments
This paragraph contains the tools used to develop the thesis work. In particular,
the ROS framework is described, listing its key concepts and simulation tools. The
simulation of robot movements is an essential tool for anyone working in the world
of robotics. A well-designed simulation allows to quickly perform tests, design
robots, observe artificial intelligence systems using realistic scenarios. ROS deals
with distributing tools for analyzing and debugging the system, namely RViz and
Gazebo.

1.3.1 ROS: Development framework description
ROS is the acronym of Robot Operating System, which indicates a set of software
libraries and tools for the development and programming of robot. ROS is an
open-source and meta-operating system, as it provides the its same performance,
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including hardware abstraction, low-level device control, communication between
processes and packages management.

ROS is designed according to a modular structure with several independent
modules, or packages, responsible of small tasks in the overall software. The
modularity has as advantages easy debug of small part of code and functionality
and their update.

The distribution used for this project is Melodic Morenia LTS version, which is
supported by Ubuntu 18.04. LTS stands for Long Term Support and means that
the released software will be maintained for long period time (5 years in case of
ROS and Ubuntu). Currently the supported languages are C++, Python, Matlab
and Java. For this project the Python language has been used.

ROS architecture is based on the following fundamental concepts:

• Master: the core of the software, which has the task of orchestrating all nodes
by managing their name registration, parallel execution and communication
between them. Without the presence of the ROS Master, the nodes could not
identify each other, exchange messages or invoke services. Master node can
be launched with the roscore command.

• Node: a process that performs the main functions of the system and deals
with the processing data. All the nodes are inserted inside an interconnected
graph where each of them is able to communicate with all the others in a direct
way. To have this graphical view of the system nodes, rqt− graph command
is needed. Each node will be related to only one specific functionality, in order
to keep a both ordered and intuitive graph.

• Message: the communication between nodes occurs by means of messages,
which contain the information necessary to fulfill the functionality of the nodes.
ROS uses different types of messages, each for a particular purpose. The
structure of the message is composed using basic data types as integer, float,
char etc, which also can be grouped in arrays.

• Topic: each message needs to be located within the ROS network on a given
topic. The messages are exchanged through the publish/subscribe communica-
tion system: a node is named publisher if it publishes a message on a topic,
while subscriber if it subscribes to the appropriate topic as interested in a
certain type of data.

• Service: the request/reply communication system is created through the use
of services, which unlike messages, support a synchronous communication.
Services are provided by the server node, while a client node calls the service
by sending a request message and awaiting the response by the server node.
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• Bag: a file format for saving ROS messages data. Bags subscribe to one or
more ROS topics and, by means of a variety of tools, they are able to process,
analyze, visualize messages or also remap them to new topics.

1.3.2 RViz
RViz, or Ros Visualization, is 3D visualization tool for ROS applications. It provides
the visualization of robot model with kinematic chain parent-children relationships,
reference frames of all the rigid bodies, environment map and all captured data
from sensors.

For more details, take a look to [22].

1.3.3 Gazebo
Gazebo is a 3D robot simulation tool which able to test algorithms, design robot
and simulate both real movements of robots and sensors, in indoor and outdoor
environments. Plugins can be implemented to manage and control any aspect of
the robot.

For more details, take a look to [23].
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Chapter 2

Paquitop

This chapter presents an innovative mobile robot for assistive indoor applica-
tions, named Paquitop (Figure 2.1), designed and prototyped by the researches at
Politecnico di Torino during the last two years.

The robot’s objective is to autonomously perform basic actions that do not
require the presence of a human operator. Its main tasks are the constant monitoring
and tracking of the patients, as measuring of specific parameters among them the
temperature or the blood pressure, and the delivering of medical products.

As a consequence the platform is designed for working in a domestic and un-
structured environment, occupied by people [24]. The workspace strongly affects
the mechanical design of Paquitop, which owns an elliptical chassis both to suggest
to human footprint and to easily navigate narrow spaces lived by people, given its
small dimensions.

The chassis is suspended on four wheels: two passive castor wheels and two
driven-steering wheels, the latter controlled by two BrushLess Direct Current
(BLDC) motors, to enable the forward/backward motions and by two stepper
motors, for the steering motions.

The motor control occurs by means of a microcontroller, the Teensy 4.1 board,
which transforms the velocity twist commands imparted by a remote controller or
by an autonomous navigation architecture, into commands for motors.

The microcontroller is connected to the on-board PC, in the case of the au-
tonomous drive, or to a radio system, if a remote control is implemented. To
accomplish the assistive tasks, the platform is provided with a 2D RPLidar A2,
both to measure the distance between itself and the surrounding obstacles and to
map its workspace, and with a commercial tracking camera, named Intel RealSense
T265, to localize itself within the built map.

In addition to these sensors mounted on a chassis’ holder, a power supply battery,
namely a LiPo 6S, and a commercial tablet, a Human-Machine Interface (HMI)
have been implemented, the latter used by the user to control the robot state, the
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(a) Inner Part

(b) Outer Part

Figure 2.1: Paquitop Platform
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tasks’ fulfillment and other information.
Navigation tasks are implemented within the ROS-based software architecture,

which is based on Visual Simultaneous Localization and Mapping (VSLAM) algo-
rithms, useful to constantly update the data coming from sensors, then used by
the global and local planners to properly plan a safe path, and at the same time to
guarantee the non-collision with obstacles.

In the following sections, the analysis of the robot features and the overall
architecture of the platform are described, starting from the requested specifications
until to the details relating to the mechanical, electrical and software parts of the
system.

2.1 Robot Concept

The key concept behind the robot’s design is the assistance of people owning a
reduced mobility. The platform is designed to have two mainly functionality: the
health conditions monitoring and tracking of a person during his domestic life, and a
basic human assistance for the achievement of low-dexterity manipulation tasks (as
objects transport or their simple manipulation). These duties are accomplished in
an unstructured environment (Figure 2.2 [24]), occupied by people and obstacles, in
which sensors have a crucial role for the autonomous navigation and the localization
of robot. Due to its peculiar workspace, the robot is shaped on human scale in
order to easily navigate in narrow environments lived by persons.

Figure 2.2: Paquitop Navigation in an Unstructured Environment
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A high maneuverability is reached thanks to the non-axisymmetric and elliptical
chassis shape (Figure 2.3) and the omnidirectional mobility, which gives a redundant
actuation to the overall system. The robot is able to overpass small objects (carpets)
or to avoid both static and dynamic obstacles.

Figure 2.3: Non-Axisymmetric and Elliptical Shape of Paquitop

After analyzing the tasks to address and the working conditions, the next step
is to define the adopted design process for the achievement of the requested specifi-
cations. A modular design has been used, in which the overall system is split into
sub-systems, in order to develop a structure more robust. The whole architecture
can be subdivided in two main layers (Figure 2.4), namely navigation and motion
layers, within which all physical and non-physical parts (mechanics, electronics and
software) of the robot are included. The navigation layer comprises the software
part of the system within the on-board PC, containing all autonomous navigation
algorithms and the Human Machine Interface (HMI), collecting information and
tasks provided by the user. The exteroceptive sensors, the Electronic Control Unit
(ECU) and the whole mechanical system, can be considered part of the motion
layer. The interaction and the control of these layers, ensures the fulfilment of all
tasks.
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Figure 2.4: Layered Design of the Platform

2.2 Mechanical Design
The mechanical design must reflect the features of the requested tasks. As the
mobile platform is mainly developed for personal assistance, its dimensions must
be both compatible with the workspace in which the robot is asked to work, in
order to guarantee a full mobility. As previously anticipated, the overall dimension
of the robot (Figure 2.5) has been designed to suggest to human footprint: the
chassis has an elliptical and non-axisymmetric shape.

Moreover, the robotic platform has a mass of 4.5 Kg, suspended by four wheels:
two driven wheels with a steering angle, and two standard off-centered passive castor
wheels. Both forward and backward motions of the first two wheels occur by using
two different BrushLess Direct Current (BLDC) motors, while their steering angle
is controlled by two independent stepper motors through a pinion gear transmission.
The two driven wheels represent the locomotion units, whose steering angle is
measured by an absolute encoder mounted on the chassis.

On the one hand, this specific structure has the advantage of both high maneu-
verability and stability in reduced environments during high-dynamics motions.
Another advantage is the proper mechanical design of the wheels suspensions
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Figure 2.5: Paquitop’s Dimensions expressed in millimeters

system, as guarantees a close contact of the wheels with the ground giving stability
to the system. In this regard, the platform can assume two configurations (Figure
2.6 [24]): a one-arm or two-arms. The one-arm configuration guarantees a more
stable behaviour when carries out a curve, unlike the other configuration that
presents many oscillations. However, the two-arms configuration provides as a
better response passing over an obstacle.

On the other hand, to obtain high manoeuvrability, the robot offers a redundant
actuation, which implies the omnidirectional motions in the plane. As a consequence,
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(a) One-Arm Configuration

(b) Two-Arms Configuration

Figure 2.6: Suspension System of Paquitop

this makes it difficult the motion planning and controlling.
The expected performances strongly influence the kinematic architecture of

Paquitop, shown in Figure 2.7 [24]. To such aim, four frames are defined, each
characterized by the same orientation. The main frame {c} is the chassis one, whose
origin coincides with the midpoint of the major axis connecting the two driven-
steering wheels center. On the latter lies their frame, named {wr} for the right wheel
and {wl} for the left one. The pose of the robot chassis, computed with respect
to the space frame {0}, is determined by a coordinates vector p0

c = [γc, xc, yc]T ,
where γc is the rotation of the chassis around the axis z of the frame {c}, while
xc and yc are the coordinates of the mobile platform. The center position of each
wheel i, is described with respect the chassis frame {c} by a vector pc

i = [xi, yi]T .
The left and right wheels are placed respectively at a distance pc

wl = [0, a]T and
pc

wr = [0,−a]T from the frame {c}, where the parameter a represents half major axis.
The wheels motion is defined by two specific parameters: an angle δi around the
axis z, along which the wheel i ({wr} or {wl}) can steer, and an angular velocity
(θ̇i) for traction motions. These two parameters constitute the actuation variables
of the robot, two for each driven-steering wheel, enclosed within the actuation
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vector q = [δwl, θ̇wl, δwr, θ̇wr]T . In addition to this last parameter, it is necessary
to introduce another, in order to define its kinematic equation: the 3-dimensional
velocity twist Vb = [γ̇c, ẋc, ẏc]T , obtained deriving its pose vector p0

c . The actuation
vector q and the platform velocity twist Vb are linked by a relationship (2.1), defined
as follows:

Figure 2.7: Kinematic Architecture of Paquitop

Vb = [γ̇c, ẋc, ẏc]T = r

ywl − ywr

 −cδwl
cδwr

−ywrcδwl
ywlcδwr

xwlcδwl
+ (ywl − ywr)sδwl

−xwlcδwr

 C
θ̇wl

θ̇wr

D
(2.1)

where r is the wheels radius. As the mobile platform cannot slide, a pure rolling
condition must be applied, imposing the following kinematic constraint (2.2):

((xwl −xwr)cδwl
+(ywl −ywr)sδwl

)θ̇wl = ((xwl −xwr)cδwr +(ywl −ywr)sδwr)θ̇wr (2.2)

By substituting the previous coordinates vectors pc
wl = [0, a]T and pc

wr = [0,−a]T ,
the equation (2.1) and the kinematic constraint (2.2) are expressed as (2.3):

Vb = [γ̇c, ẋc, ẏc]T = r

2a

−cδwl
cδwr

acδwl
acδwr

asδwl
0

 C
θ̇wl

θ̇wr

D
with sδwl

θ̇wl = sδwr θ̇wr (2.3)

The equation of the velocity inverse kinematics (2.4) between the twist velocity
and the actuation vector is possible to derive:
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)

D
(2.4)

This equation has four independent solutions. If θ̇wl and θ̇wr are null, there are
not solutions, while if only a null velocity is required, namely θ̇wl = 0 or θ̇wr = 0,
there is no point in evaluating the corresponding steering angle.

In addition to omnidirectional movement, Paquitop can have several locomotion
strategies (Figure 2.8 [25]), obtained via the different positioning of the two driven
wheels.

Configuration I, represents the general case of motion, enclosing all other
configuration types. It defines the omnidirectional motion, obtained with the
independent control of the two steering angles: δwr /= δwl. The instantaneous center
of rotation (i.c.r) is defined by the intersection of the two wheels axes.

Configuration II, outlines the ability of the robot to translate along a fixed
direction without any rotation. The equal steering angles δwr = δwl /= 0, π

2 cause
the parallel and non-coincident wheels axes. As a consequence, the angular velocity
of the two wheels is equal: θ̇wr = θ̇wl.

Configuration III, represents the differential drive as the steering angles are
both null: δwr = δwl = 0; the i.c.r lies on the axis y of the frame {c}. The robot
is able to have an angular velocity, without the possibility to have that along the
axis y.

Figure 2.8: Locomotion Strategies

Configuration IV, enables the pure translational motion as the Configuration
II, as the steering angles have the same value: δwr = δwl = π

2 . The wheels axes are
parallel and non-coincident and their angular velocity is the same. Moreover, this
configuration can assume the car-like locomotion (fFigure 2.9 [25]), by modifying
the steering angle to such one of the two wheels (Configuration IV.a-IV.b) or
steering the wheels by opposed small angles around π

2 (Configuration IV.c).
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Figure 2.9: Locomotion Strategies of Car-like

All the configurations previously described are actuated with a velocity as like
that of a human walk (≈ 1-1.5 m

s
) and an appropriate acceleration (≈ 0.5-1.5 m

s2 ),
as Paquitop is built to follow a human being.

2.3 Electronic Design
The electronic design of the robot follows the main idea behind the design of
the entire architecture, namely to develop a modular structure that allows the
subdivision of all the robot’s physical and non-physical parts into the two main
layers previously mentioned. Focusing on the implemented electronic components,
those enabling the navigation are inside the navigation layer, while those adopted
for the motion control during the platform navigation are inside the motion layer.
Figure 2.10 [26] shows the whole electronic architecture with such subdivision, where
the motion layer and the Radio Controller device represent the Low-Level Control
Architecture, while the Autonomous Navigation block, containing the navigation
algorithms and the electronic devices, enabling the autonomous navigation of
Paquitop represent the High-Level Architecture.

The entire electronic architecture is described in detail below. It revolves around
to a component, namely the MicroController, responsible to read the inputs coming
from a Radio Controller, a digital device used to remotely control the robot from
a distance, or an on-board computer, equipped with all navigation algorithms
employed in case of an autonomous drive. About the on-board computer has
been chosen a Jetson Nano, for its computational complexity of the autonomous
navigation, connected to two the exteroceptive sensors, namely LiDAR and camera,
described in the following sections.

The adopted MicroController is Teensy 4.1 board, usually used in Unmanned
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Figure 2.10: Electronic Architecture organized in the Navigation and Motion
Layers

Aircraft System (UAS), and Arduino compatible, programmed in C++ language.
This device has been chosen according to different specifications, among which
the communication channels, the number and type of pins available, the processor
performance, the floating-point unit and finally the number of timers and dimensions.
Moreover, the MicroController has the purpose of computing the inverse kinematics
of the platform, namely to determine the joint parameters providing a desired
configuration of the end-effector pose (position and orientation), reached remotely
or autonomously.

The remote control of the platform is performed by using a Digital Telemetry
Radio System, in particular the FrSky 2.4G ACCST Taranis X9D Plus, consisting of
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two parts: a Transmitter and a Receiver. The logic behind this device is to transmit
the selected command to the Receiver at a frequency of 2.4 GHz, acquired in forms
of radio waves and then converted into electrical signals to send to the motors.
The input commands of the Radio Controller are converted in velocity commands
by means of a mapping function, adopted to process the joystick commands and
to guarantee the platform controllability. This Radio System is equipped with a
switches’ layout (Figure 2.11 [27]), characterized by different channels to control
the directional movement of the robot, its Working Configurations, the motor state
and both linear and angular velocities of the platform. The Digital Telemetry
Radio System Layout has the following channels structure:

• Channels [1,2], controls on the hand the linear velocity in Working Configu-
ration I, on the other hand the transversal velocity and angular velocity in
both Configuration II and III;

• Channel [3], controls the angular velocity in Working Configuration I.

• Channel [4], enables the engine ignition and shutdown;

• Channel [5], activates the Configuration Mode III.a, III.b, III.c;

• Channel [6], selects the Working Configuration I, II, III;

To manually control the mobile robot through the selection of the channels
described below, the Radio-Receiver needs of a serial device to communicate
with the MicroController at a frequency of 50 Hz. In particular, the Radio
Controller receives the instructions in the form of velocity twists w commands
through a map, and in turn the MicroController computes the inverse kinematics
through the equation 2.4 to evaluate the reference actuation variables. Then
the degrees of actuation are controlled employing a closed-loop speed control, by
adopting a Proportional-Integral-Derivative (PID) control (Figure 2.12 [26]). The
MicroController interfaces to a driver, to control the motor in terms of velocity
(or current depending on the control mode) and direction. The forward/reverse
direction is given by the polarity of the voltage source, while the velocity is chosen
by a Pulse Width Modulation (PWM) signal at a frequency of 536 Hz. The voltage
source value (Vctrl) can be between 0 V and 3.3 V , and is influenced by both speed,
expressed in rpm and current, present in the winding of the motor. In fact, to a 0
V value corresponds a 0.0 A value and a rotation velocity −wmax, while to a 3.3
V value corresponds a 15.00 A value and a rotation velocity wmax. Moreover, the
Motor Driver supports an inner closed-loop current control (Ifb and Iref ) with the
BLDC Traction Motor, linked to by the Hall-Effect Speed Sensor, whose aim is
to control the motor speed and to close the loop speeds of the MicroController.
The velocity signals provided by the speed sensor, are transformed by the driver
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Figure 2.11: Digital Telemetry Radio System Layout

into an analog signals from 0 V to 3.3 V . These values can be modified by using a
programming interface of the motor driver, assuming the form of a speed regulator
(open-loop speed control).

To actuate the steering axes, the MicroController communicates with the two
Stepper Motors, which receive as inputs a voltage and current values from the
Stepper Motor Drivers. An Absolute Encoders read and update the steering angle
values at the frequency of 1 Hz, and communicate with the MicroController through
two Serial-Peripheral-Interface (SPI) buses: one is used to activate and program
the Stepper Motor Drivers and the other is used to read the Absolute Encoders. At
frequency of 200 kHz, the steering angles are converted from radiant to number of
steps of the stepper motor, useful to drive the steering system to the correct angles.

As previously mentioned, the following sections will describe RPLidar A2 and
camera T265.
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Figure 2.12: PID MicroController and Traction Unit Control

RPLidar A2

RPLidar A2 (Figure 2.13 [28]) is a two-dimensional 360-degree laser scanner
developed by SLAMTEC. This device is equipped with a scanning system, a
communication and power interface and an electric motor. The scanning system
consists of two optical lens, deployed for the transmission and reception of the
emitted signals. The clockwise rotation of the core occurs by using an electrical
motor, which permits the scanning of the environment. The user can obtain the
scan data through the communications interface, namely Serial/USB port. This
device adopts the triangulation ranging principle, wherein a light beam is projected
by sensor on the target and then reflected into a receiver, forming a triangle (Figure
2.14 [29]). The information released by the detector component is the value in
polar coordinates of the distance d and angle θ created between the two beams.

Figure 2.13: RPLidar A2
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Moreover, LiDAR adopts coordinate system of the left hand in its barycentre,
but the default one adopted in ROS environment is as shown in Figure 2.15 [30].

The technical specifications of RPLIDAR A2 are reported below:
• 8 m ranging distance;

• 10 Hz typical scanning frequency, which can be adjusted in the range between
5-15 Hz;

• Good performance in both indoors or outdoors environments, even without
direct exposure to sunlight;

• Low power consumption.

Figure 2.14: The RPLidar Working Schematic

Intel RealSense Tracking Camera T265

The camera T265 (Figure 2.16 [31]) is a six-degrees-of-freedom (6DoF) tracking
camera providing the odometry information develop by Intel Real Sense. This
device consists of two fisheye lens cameras, an Inertial Measurement Unit (IMU)
and an Intel Movidius Myraid Visual Processing Unit (VPU). The fisheye lenses
collect inputs with a field of vision of 170 degrees; an IMU is a device that includes
gyroscopes to measure the angular rate and an accelerometers to compute a force and
an VPU is a microprocessor that has as objective image processing and computer
vision. The device fuses inputs of the fisheye lens and the IMU data for providing
an accurate real time position. Then the data fusion from these sensors is sent into
VSLAM, running on VPU for visual-inertial odometry.

The coordinates system of the device is represented in Figure 2.17 [32].
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Figure 2.15: Coordinates System of RPLidar in ROS Environment

Figure 2.16: Intel RealSense Tracking Camera T265

2.4 Software Design

The software design constitutes the High-Level Architecture of the robotic system,
namely all algorithms that enable the autonomous navigation of the platform.
Persons tracking and monitoring in unknown environment can occur addressing
some problems regarding the autonomous navigation of the platform: obstacle
avoidance, path planning, localization and mapping. To solve these navigation tasks,
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Figure 2.17: Coordinates System of the Tracking Camera

exteroceptive sensors are employed, LiDAR and camera, which are based on Visual
Simultaneous Localization and Mapping (VSLAM) algorithm. The latter gives
the robot the ability of mapping the surrounding environment in which operates,
locating itself in it. Information coming from sensors is the inputs for the global
path planner, which builds a free-path for reaching the patient, guaranteeing a
safe path free of obstacles thanks to the local planner. By implement a modular
approach, it is possible to draw the software architecture as the interaction of
the two layers previously introduced (Figure 2.18). The software design will be
described in detail in Chapter 3.
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Figure 2.18: Software Architecture
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Chapter 3

High-Level Architecture and
Packages Implementation

In this chapter the High-Level Architecture of the robot will be described in detail,
specifying all ROS packages needed to achieve the full robot autonomy. In this
sense, the concept of Robotic Paradigm is defined with the aim of developing and
describing the internal software organization of the Paquitop’s robotic system.

All the kinematics and dynamic properties of the robot will be described within
the URDF format, needed to visualize and control the motion planned by the
developed software architecture, within the ROS simulation environments, namely
RViz and Gazebo.

3.1 Robotic Paradigm
The term paradigm encloses a set of assumptions and/or techniques which charac-
terize an approach to a class of problems [33]. In robotics, a paradigm is a mental
model of how a robot works, which provides the principles to organize its control
system for reaching a required application.

Each robotic paradigm is organized into subsystems or modules, each one
orientated to a specific task. The modular logic allows of designing, developing
and testing each block separately in a simpler and faster way. This property
enhances the flexibility and the extensibility of the control system, allowing an
incremental development over time through the integration, the verification and
the improvement of its component.

A robotic system should be as reactive as possible to sudden changes in the
environment, adapting and altering the control strategies accordingly (adaptabil-
ity). Also, it should have the ability to maintain and achieve different objectives
even in case of unexpected events and sudden malfunctions (robust and reliable
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system). To best fulfill these characteristics, the robot must own multiple sensors,
as individually they suffer of limited accuracy, reliability and applicability, which
must be compensated using several complementary sensors.

Each paradigm is based on the organization of the main primitive functions of a
robot, which can be divided into following three general categories or modules:

• SENSE: encloses the functions consisting in perceiving the environment
through sensory data, and in returning the perceived information, useful for
subsequent modules;

• PLAN: incorporates all functions exploiting a priori knowledge of the sur-
rounding environment, to produce directives or tasks to be performed by a
robot;

• ACT: selects functions producing the commands to send to the actuators,
from sensory information and directives.

There are currently three major paradigms for organizing intelligence in robots
named Hierarchical, Reactive and Hybrid (Deliberative/Reactive). Applying the
right paradigm to a robotic system, is the main key to being able to successfully
program a robot for a particular application.

3.1.1 Hierarchical Paradigm
In the Hierarchical Paradigm, the primitive functions are organized in the following
manner:

SENSE −→ PLAN −→ ACT

The robot perceives (SENSE) the surrounding environment on which operates,
and it manages the processing data, which are elaborated and gathered into one
internal world model, that contains:

• an a priori representation of the environment in which the robot operates
(map);

• a perceived sensory information.

The perception module is used to establish and maintain a correspondence
between the internal model of the world and the external world.

The PLAN module uses the built world model to generate a plan, based on the
tasks that the robot has to execute.

Finally, the ACT module generates the commands to send to the motor control,
which takes care of the real-time control of the actuators. After the ACT phase,

36



High-Level Architecture and Packages Implementation

Figure 3.1: Horizontal and Sequential Subdivision of the Hierarchical Paradigm

the operations are repeated until the set objective is reached, carried out by the
robot in a strictly horizontal and sequential manner, as shown in Figure 3.1:

A robot employing this approach, needs a complete and correct knowledge of
the world for obtaining a predictable functioning and planning. This guarantees
an efficient and stable system. If this information is inaccurate, or if the world
has undergone changes during the planning phase, the execution will be wrong.
In conclusion, this approach is characterized by a low adaptability to real-time
changes of the environment, and consequentially characterized by a low reactivity.
Furthermore, the strict sequencing of the modules causes low parallelism and delays
in updating related to the changes of a dynamic environment.

3.1.2 Reactive Paradigm
In response to the problems encountered by the previous paradigm in terms of poor
responsiveness and performance, an opposite approach called Reactive has been
developed. In the Reactive Paradigm, the planning phase is completely eliminated,
so there is a direct relationship between sensors and actuators, as shown below:

SENSE −→ ACT

Perception and action cooperate to produce timely responses in dynamic and
unstructured environments, allowing the robots to operate in real-time. This char-
acteristic enables to remove an internal state that had to be updated continuously,
improving the response times. The representation of the world is not memorized,
but extracted in real time from the world through sensors, and consequently, there
is no prior planning of actions.

A Reactive robotic system decomposes its functionality into behaviours, which
are reactions or stimuli in real time to information perceived by the environment.
Behaviours are a direct mapping between the sensory inputs and the pattern
of motor actions, used to achieve a specific task [33]. This is performed by
different behaviours, each one with a specific competence. The overall behaviour is
determined by the set of behaviours present.
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Unlike the Hierarchical Paradigm characterized by a horizontal and sequential
subdivision, the Reactive Paradigm has a vertical and parallel subdivision of the
information chain, as shown in Figure 3.2:

Figure 3.2: Vertical and Parallel Subdivision of the Reactive Paradigm

Each behaviour exploits a local representation of the world, and it elaborates
the best action to fulfill independently of other pre-existing and active behaviours.
The vertical decomposition produces many information flows, each relating to a
particular function assigned to the robot. In this way, each sequence deals with a
specific aspect in the overall functioning of the system, and can be developed in
parallel with other processes.

In conclusion, constructing a robotic system with a Reactive Paradigm has
several advantages:

• modular structure with independent behaviours between them, which enables
to easily test them in isolation from the system;

• incremental extension of the capabilities of a robot by having more behaviours;

• high adaptability to changes in the environment because of the real-time
response;

• parallelism in the control;

• inexistence of the world model, but only information persisting for a short
period of time;

• low complexity of each level and low overall computational cost of the system.

Regarding the disadvantages can be listed as follows:

• difficulty in predicting the global behaviour of the robot in advance;

• complexity of modules management if their number is high, and difficulty in
resolving conflicts.
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3.1.3 Hybrid Paradigm
The architecture using the Reactive behaviours but also incorporates a general
planning, are named Hybrid. The Reactive Paradigm removes planning or any
functions which involved remembering or reasoning (deliberative functions) about
the global state of the robot relative to its environment [33]. Consequently this
implies, for example, a non-optimal path planning and no selection of the best
behaviours to accomplish a task. In order to include all deliberative functions, the
Reactive Paradigm has undergone an extension, giving rise to the Hybrid Paradigm,
consisting of a reactive and a deliberative portions, just a fusion of Hierarchical
and Reactive Paradigms, which combines a planning efficiency with the flexibility
of Reactive control systems.

The primitive functions are organized in the following way:

PLAN −→ SENSE, ACT

The planning phase is performed in a single step, while SENSE and ACT
primitives in another one: this was due to the fact that planning spent a lot of
time and it required a global knowledge of the surrounding environment, while the
SENSE and ACT blocks performed in real time. The primitive function PLAN
includes all deliberations and global world modelling: the robot plans how to
perform a mission using a task-oriented global world model, then it decides what
skills are from hire to face a mission and, subsequently, it activates a set of skills
(SENSE-ACT) to execute the plan. The operations would execute until the plan is
completed, then the planner would generate a new set of skills, and so on. To notice
the use of the term skill rather than behaviour, used into the Reactive Paradigm
to identify purely reflexive behaviours.

Generally Hybrid architectures consist of the following modules:

• Sequencer, generates all behaviours to use to accomplish a specific subtask,
and also it determines the sequence and activation conditions.

• Resource Manager, allocates resources to behaviours performing checks.
For example, it verifies if all sensors can detect at a sufficient range, or if they
can update fast enough to match the robot’s desired velocity.

• Cartographer, creates and stores a map, and also it contains a global world
model and information for accessing the data.

• Mission Planner, constructs a mission plan, and it traduces the commands
into robot terms after the interaction with the human.

• Performance monitoring and problem-solving, checks the execution of
each plan verifying their state.
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3.2 Autonomous Navigation Architecture
This section introduces a general autonomous navigation architecture (Figure 3.3)
based on a Hybrid approach, which makes use of both a Reactive control and a
Deliberative planning. The Reactive part deals with the local navigation, that
depends on both the obstacles and the commands of the deliberative planning,
containing the waypoints for reaching the goal.

Figure 3.3: General Autonomous Navigation Architecture of a robotic platform
equipped with Lidar and Tracking Camera

In order to perform the autonomous navigation in any environment, the sensing
components are necessary for mapping, localization and detection of obstacles.
In general, by considering a robot equipped with a Lidar sensor and a tracking
camera, mapping and detection of obstacles are performed by the first device, which
scans the environment and detects the obstacles; while localization is provided
by the second device by means of its odometry. The sensor fusion is applied for
obtaining the simultaneous localization and mapping, or SLAM, useful for the
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collision avoidance in a dynamic environment. The sensorial data and all the tasks
are combined and managed by the planner, which plans a sequence of movements
and waypoints to achieve the goal. The planner builds a trajectory that is sent
to the action planner, which generates references for the implementation system
or actuators. Their motion is controlled by a human through a computer system,
containing the software architecture that allows the autonomous navigation of a
robot, where it is also possible to supervise the planned and performed actions,
and to receive the constant updating of the sensors data on board the robot.

3.3 SW Architecture: Navigation Stack
The previous architecture has been adopted to develop the Software Architecture
(Figure 3.4) of the mobile robot Paquitop. In order to enable autonomous navigation,
a set of control algorithms, contained within the Navigation Stack package, have
been implemented. All the navigation algorithms belong to specific packages,
each of which is associated with one of three primitive functions according to its
navigation task. However, many packages will belong to more primitive functions,
as shown in Figure 3.4, causing the intersection of three blocks.

First, sensor data of Lidar and camera represent the inputs of the Sense block
within the architecture. Lidar uses rpilidar− ros package to scan the environment,
while the hector − slam package is used to build the map, and at the same time
to provide a pose estimation of the robot within the map itself. The tasks of the
latter package are enclosed in the acronym SLAM. A tracking camera is necessary
for odometry information. The estimated poses by Lidar and camera, are merged
into one by the robot− pose− ekf package, taken into account as a localization
parameter.

In order to correctly use the data from different sensors and produce navigation
references consistent with the pose of the robot, it is necessary to define the robot
as the connection between links and joints, each of which is described by its own
reference system. The package that keeps track of these coordinate frames over
time in a tree structure, is named tf .

Localization and mapping tasks are addressed in the Sense module, where the
map− server package is included, which is responsible for both saving the map
built by the hector − slam package, and providing a previously given map.

In order to engender a drivable path, a weighted grid map is built through
a Local and Global Costmaps, contained inside the costmap − 2d package. The
latter exploits the map built in the Sense module to store and update information
about obstacles both locally and globally. The information related to obstacles are
used by the move− base package to plan a path through both Global and Local
Planners. The performed trajectory is saved through one of nodes contained within
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Figure 3.4: SW Architecture of Paquitop

the hector− slam package and, for this reason this package is enclosed in the Plan
module. This module also includes map− server, costmap− 2d and move− base
packages, as useful to the path planning.

Finally, commands, processed sensor data and trigger signals are sent, by means
of Arduino, to Jetson Nano, a computer that powers the platform. Both Arduino
and Jetson Nano are inside the Act module and, besides them, both sensors in
order to maintain a continuous updated pose over time.

The relationship between all several packages in detail, will be described in the
next paragraph related to the Navigation Stack package description.

3.3.1 Description
The ROS Navigation Stack is a set of software packages useful for localization,
mapping of the environment and path planning for the purpose of autonomous
navigation of a mobile robot. The objective of Navigation Stack is to produce a
navigable path connecting the starting point with the goal pose, processing data
from odometry, sensors and environment map [34]. This package uses a series
of different algorithms to navigate through known and unknown environment,

42



High-Level Architecture and Packages Implementation

detecting and avoiding obstacles. All algorithms are included in the following
packages: move− base, costmap− 2d, tf , robot− pose− ekf and map− server.

The Navigation Stack takes information about the surrounding environment
from Lidar sensor, which is supported by the LaserScan package through the
rplidarNode. Lidar is able to detect the obstacles in all directions sharing and
publishing this infomartion in form of sensor-msgs/LaserScan messages on
/scan topic.

To the latter, the hector − slam package subscribes and allows Lidar to extract
the map of the unknown environment through one of its nodes named hecto −
mapping. The grid map information is published on the /map topic as nav-
msgs/OccupancyGrid messages.

At the same time, this node subscribes to the /tf topic inside the TF package
for knowing the information about the frame transformations as tf/tfMessage
messages. This package allows the robot to keep track of its movements over time
and, therefore, of positions of its different links and joints, and also, to associate a
frame with each joint and link through a tree data structure.

Another task of the hector − mapping is keeping track of the 2D robot pose,
publishing it on /poseupdate topic.

In addition to Lidar, also the tracking camera manages the pose of the robot,
publishing the start pose as geometry-msgs/PoseWithCovarianceStamped
messages on the /initialpose topic. All information about camera is published on
/camera/odom/sample as sensor-msgs/PointCloud message.

All information regarding the robot pose, extracted by Lidar and camera, are
merged by the robot − pose − ekf package (node: ekf − se) to estimate the 3D
pose of a robot. This package subscribes to both hector − mapping node and
/imu-data topic, and it publishes the estimated pose on the /tf topic, so that the
latter contains all inserted frames. In turn, the /tf topic publishes its information
on the n− −rviz node.

The hector − slam package contains a node named hector − trajectory −
server that saves trajectory data, extracted from /tf topic, and it publishes it on
/trajectory topic [35].

For the path planning and its execution, the Move Base package is needed. This
package subscribes to odometry (/camera/odom/sample topic), sensor (/scan
topic) and tf (/tf topic) data and goal position (/move-base/action-topics
topic) messages. The last topic contains all actions that the robot has to perform to
reach the target point, while the message containing its coordinates is published on
/move-base-simple/goal as geometry-msgs/PoseStamped. The coordinates
can be given from the terminal and RViz. For executing all permitted actions, the
Move Base package produces velocity commands, published on /cmd-vel topic as
geometry-msgs/Twist, to be send to the mobile base and finally to serial−node
that supports Arduino. In order to reach the pre-established pose, the Follow
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Waypoint algorithm is used, since it is able to set waypoints up to the goal.
Also, the Move Base package can also subscribe to a map on the following

/map and /map-updates topic, so it can generate a better path with known
information of the environment.

In order to guarantee the navigation process, the Move Base incorporates
a Global and Local Planner. The Global Planner takes the current robot posi-
tion and the goal and generates a trajectory, while the Local Planner manages
a small portion of the environment around the mobile base, taking into consid-
eration the dynamic obstacles and the vehicle constraints. The topics related
to the planners are respectively: /move-base/PlannerROS/local-plan and
/move-base/PlannerROS/global-plan. Both contain the points of the planned
trajectory locally and globally, which are updated every time it is replanned a
new trajectory as nav-msgs/Path messages. The Local Planner needs data from
odometry, published on /odom topic as nav-msgs/Odometry, provided by the
sensors.

Each planner references to a Global and Local Costmap: the Global Costmap
represents the whole environment, while the Local Costmap is a scrolling window
moving inside the Global one [36]. All information of both costmaps, regarding the
obstacles in the surrounding environment in the form of an occupancy grid, is con-
tained on the following topics: /move-base/global-costmap/costmap, /move-
base/global-costmap/costmap-updates, /move-base/global-costmap /foot-
print, /move-base/local-costmap/footprint. In the last two topics the foot-
print of the robot is published as geometry-msgs/Polygon message and it is
viewed on RViz. In the first topic the costmap is published containing the occu-
pancy and inflation value of the cells on the map, while in the second topic the
costmap value during the navigation are published. Both topics use messages of
type map-msgs/OccupancyGrid.

ROS allows us to save the data relating to a map of the desired area on /map
topic through the map − saver node as nav-msgs/GetMap message, present
within the map− server package. This package contains also map− server node,
useful to provide static map data as a ROS Service.

For summarizing the relationship between all running nodes and the topics that
they communicated with, a GUI plugin named rqtgraph has been used Figure 3.5:

In conclusion, the Navigation Stack setup can be seen in Figure 3.6, schematized
in conceptual blocks and divided by areas of operation:

3.3.2 Move Base
The main component of the Navigation Stack is the move− base package, which
provides an implementation of an action for reaching a goal with its mobile base
[37]. As mentioned before, the Move Base supports two planners to accomplish
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Figure 3.5: Rqt Graph of Navigation Stack

the global task: Global and Local Planner and also, it contains a set of algorithms
used for recovery behaviours, whose purpose is to decrease the probability that
the robot will end up in a stalemate during the navigation. The stall stands for a
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Figure 3.6: Conceptual blocks of Navigation Stack Setup

condition in which the robot is unable to reach the desired destination and ends
up interrupting your navigation.

3.3.3 Local Planner: DWA
The Local Planner has the purpose to generate a trajectory in the nearby distance
avoiding the obstacles. To achieve this result, a Local Costmap is created for
including information about the navigation cost expressed as a number 0, if the
cell is free, 1, if there is an obstacle inside the cell and -1, if the cell is unknown.
So, given a path to follow and a cost map, the planner uses a controller to produce
the velocity commands to send to robot. This package supports both holonomic
and non-holonomic robots.

Each local planning algorithm must be adapted and configured according to
the kinematic and dynamic specifications of the robot used and the navigation
environment. Among the predefined algorithms, the Dynamic Window Approach
local has been chosen, a collision avoidance strategy based solely on the robot
dynamics. In detail, the approach consists of searching a two-dimensional space of
translational and rotational velocities, reached by a robot along a trajectory until
to a given goal point. The trajectory is approximate with a sequence of circular
arcs, uniquely determined by the velocity vector (v, w), considered admissible only
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if the robot is able to stop safely without collision with the obstacles. The search
space is reduced to a dynamic window, namely to the only admissible velocities that
can be reached in short time interval, taking into account the limited accelerations
of the robot [38]. The DWA considers time intervals sufficiently small to calculate
the trajectory, each one corresponding to a velocity pair, so that in each control
interval [ti,t(i+1)], the robot velocity is constant, and the velocity pair is not updated
until the next operation period [38]. The combination of admissible translational
(vx, vy) and rotational (w) velocities is called velocity twist, chosen by maximizing
an objective function (3.1), expressed as follows:

G(v, w) = σ(α · angle(v, w) + β · dist(v, w) + γ · vel(v, w)) (3.1)

where:

• dist(v, w): indicated the distance to the closest obstacle on the trajectory.

• angle(v, w): represents the current heading direction of the robot with respect
the goal direction (Figure 3.7);

• vel(v, w): defines the robot velocity used to calculate the progress of the robot
along the corresponding trajectory;

• α,β,γ: are the weighting constants whose values are included between [0,1],
chosen to optimize the navigation.

• σ: function used to smooth the weighted sum of the three components in the
interval [0,1].

In detail, the velocity twist search space includes all linear and angular velocity
values Vs allowed by the robot specifications. The objective function finds the
admissible velocities vector Va considering the dynamic window Vd. The admissible
velocities Va (3.2) and the dynamic window Vd (3.3) are computed as follows:

Va = (v, w)|v ≤
ñ

2 · dist(v, w) · v̇b ∧ w ≤
ñ

2 · dist(v, w) · ẇb (3.2)

Vd = (v, w)|v ∈ [va − v̇ · t, va + v̇ · t] ∧ w ∈ [wa − ẇ · t, wa + ẇ · t] (3.3)

where:

• v̇b and ẇb: are the linear and angular accelerations respectively for breakage
of the robot;

• va and wa: represent the linear and angular current velocities;
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Figure 3.7: Angle(v,w) of the objective function

• t: is the time interval sufficiently small, to assume the robot velocity constant.
This makes the optimization problem more feasible.

Finally, by considering the three velocity vectors described previously, namely
the Vs, Va and Vd, the set of the eligible velocities Vr (3.4) is obtained according to:

Vr = Vs

Ü
Va

Ü
Vd (3.4)

Figure 3.8 [39] illustrates the whole velocity search space, defined by the velocities
Vs allowed by the robot specifications, by the admissible velocities Va, by the velocity
dynamic window Vd, centred in the current velocity position of the robot, and by
the eligible velocities Vr, the area with the red outline in which the robot can travel
without colliding with the obstacles.
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Figure 3.8: The whole Velocity Search Space for DWA

In conclusion, the basic idea of implementation of this algorithm is described as
follows [40]:

1. Discretely sample in the robot’s control space (dx, dy, dtheta).

2. For each sampled velocity, perform forward simulation from the robot’s current
state to predict what would happen if the sampled velocity were applied for
some (short) period of time.

3. Evaluate (score) each trajectory resulting from the forward simulation, using
a metric that incorporates characteristics such as: proximity to obstacles,
proximity to the goal, proximity to the global path and the speed. Discard
illegal trajectories (those that collide with obstacles).

4. Pick the highest-scoring trajectory and send the associated velocity to the
mobile base.

5. Repeat as necessary.

This algorithm can be summarized as follows [34]: the first step is to sample
velocity pairs (vx, vy, w) in the velocity space within the dynamic window. The
second step is basically obliterating velocities (i.e. kill off bad trajectories) that are
not admissible. The third step is to evaluate the velocity pairs using the objective
function, which outputs trajectory score. The fourth and fifth steps consist of
taking the current best velocity option and recompute.
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Parameters

In this section the ROS parameters of the Local Planner DWA are described
according to several categories: Forward Simulations, Robot Configuration, Goal
Tolerance and Trajectory Scoring. These parameters characterize and configure the
behaviour of the DWA for a specific robot.

Forward Simulation Parameters

These parameters influence the simulations of the trajectories produced by the
DWA during planning, and follow the description above:

• controller-frequency (double, default: 20.0): parameter that specifies the
planning frequency in hertz of the trajectory. A value of 4.0 is chosen,
according to the performance computer.

• sim-time (double, default: 1.7): parameter that sets the maximum time
value in seconds for which the DWA elaborates and evaluates the trajectories
during the navigation. By varying this value, the conditions made in the
article [34] have been verified, namely longer this parameter value, heavier the
computation load becomes. About the tuning of this parameter [34], if it is set
to a lesser value equal to 2, the performance will be limited, since the planner
has not sufficient time for processing of the trajectories. This causes excessively
abrupt obstacle avoidance, and effects the quality of navigation. Instead, if the
sim-time is set to a greater value equal to 5, the computational cost increases,
but helps to better anticipate any avoidance of obstacles. For the thesis project,
a value of 1.7 was set, although it did not follow the directives previously
stated, as experiments demonstrated that setting a value greater than 1.7,
caused problems in slowing down the planner, due to the performance of the
on-board computer. Also, as all the trajectories are simple arcs, setting this
parameter greater than 1.7, caused long arcs and the consequent rotational
movement of the robot on itself.

• sim-granularity (double, default: 0.025): parameter that defines the distance
in meters of the points processed for the trajectories (step size). This means
how frequently to control the points on the examined trajectory. To set this
value too low compared to the default one, implied a high frequency which
required more computation power [34], while a too high value risked having
an inaccurate control of the points on the trajectory. After a few experiments,
a value of 0.1 was selected, on the basis of the chosen controller frequency
and on the feedback related to the built trajectory.
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• vx-samples (integer, default: 3): parameter that indicates the number of
samples used to evaluate the trajectories with respect to the x direction. Since
the number of samples depends on how much computation power the computer
owns, 20 samples in x direction were picked.

• vy-samples (integer, default: 10): parameter similar to the previous one, but
evaluated with respect to y direction. By setting the max-vel-y value to zero,
as described later, the velocity samples in y direction will not be needed, and
hence this parameter was set to 0 value.

• vth-samples (integer, default: 20): parameter that controls the number of
rotational velocities samples. It is preferable to set this value higher than
the vx-samples value, because turning is generally more complicated motion
compared to the linear one. For this reason, 40 samples were collected.

Robot Configuration Parameters

The parameters influencing the robot kinematics are the velocity and acceleration
limit with which the controller will have to operate, and are defined as follows:

• max-vel-x (double, default: 0.55): represents the maximum x velocity for the
robot in meters per second. As already stated, the robot has been developed
with the idea to follow a human being to a velocity of 1-1.5 m

s
. For safety, a

maximum translational velocity along x lower than the human walk was set:
0.7.

• min-vel-x (double, default: 0.0): represents the minimum x velocity for the
robot in meters per second. Experiments demonstrated that a value greater
than or equal to 0.0, will not allow the robot to perform reverse movements,
which instead will be granted with values smaller than 0. It has been observed
that enabling robot reverse movements, has as consequence the fact that this
will tend not to rotate in place, and to back off in case of stucking. In case of
the robot used, a value lower than or equal to 0.0 caused a deadlock condition
and difficulty in motions, and as a consequence, a value of 0.1 was chosen.

• max-vel-y (double, default: 0.1): represents the maximum y velocity in
meters per second. Only for a non-holonomic platform, such as the differential
wheeled robot, this value should be set to 0, since as mentioned in Chapter 1,
it cannot perform motions along the wheels’ axis. However, the y velocity of
Paquitop has been set to 0 as it had not good motion response along that axis.
To move in the y direction, first the robot performed a rotational motion, and
then a translational one along the x axis.
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• min-vel-y (double, default: -0.1): represents the minimum y velocity in
meters per second. For setting this parameter, the same considerations of the
previous one have been taken into account, and so the value of 0 was imposed.

• max-rot-vel (double, default: 1.0): represents the maximum rotational
velocity in radians per second with respect to the z axis. For setting this
parameter value, the ROS Navigation Tuning Guide advised to control with a
joystick the rotational motion of 360 degrees of the platform with a constant
velocity, and to measure the respective time. A value of 3.0 was obtained.

• min-rot-vel (double, default: 0.4): represents the minimum rotational velocity
in radians for second with respect to the z axis. By applying the same
considerations of the previous parameter, the value of -3.0 has been imposed
to have the same behavior in the opposite direction.

• max-vel-trans (double, default: 0.55): represents the absolute value of the
maximum translational velocity for the robot in meters per second, that in
case of Paquitop is 0.7.

• min-vel-trans (double, default: 0.1): represents the absolute value of the
minimum translational velocity for the robot in meters for second, that for
Paquitop is 0.1.

• acc-lim-x (double, default: 2.5): represents the x acceleration limit of the
robot in meters per second square. To set this parameter, the time with which
the robot reached the maximum translational velocity imposed, was taken
by odometry message in the ROS terminal. This procedure was carried out
several times, and finally was made the average of the acceleration values
obtained along x. However, for safety reasons, values lower than the default
value are used, and the value of 2.0 was selected.

• acc-lim-y (double, default: 2.5): represents the y acceleration limit of the
robot in meters per second. As the y velocity was null, then this parameter
must be set to 0.

• acc-lim-theta (double, default: 3.2): represents the rotational acceleration
limit in radians for second square. As for the x acceleration parameter,
the rotational maximum velocity of Paquitop from static was taken by the
odometry message, and for safety reasons, a value lower than the obtained
one was imposed: 3.0.
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Goal Tolerance Parameters

The following parameters define the dimensional tolerances inherent to the target
points, namely the distance from the goal point considered successful when is
reached by the robot:

• xy-goal-tolerance (double, default: 0.10): represents the tolerance in meters
for the controller in the x and y distance when achieving a goal, imposed to a
value of 0.075.

• yaw-goal-tolerance (double, default: 0.05): represents the tolerance in
radians for the controller in yaw/rotation when achieving its goal, imposed to
a value of 0.5.

• latch-xy-goal-tolerance (bool, default: false): setting to true, if the robot
reaches the goal xy location, it will start to rotate on itself, even if this
movement takes it out of tolerance. For avoiding this behaviour, this parameter
was set to false.

Trajectory Scoring Parameters

As mentioned earlier, the DWA maximizes the objective function to obtain the
velocity pairs from a specific trajectory, which is chosen by cost function (3.5)
expressed in the following form:

cost = path−distance−bias ·D+goal−distance−bias ·d+occdist−scal ·c (3.5)

where:

• D = distance to path from the endpoint of the trajectory in meters;

• d = distance to local goal from the endpoint of the trajectory in meters;

• c = maximum obstacle cost along the trajectory in obstacle cost (0-254).

The robot will use the trajectory with the lowest total cost, so as to take the
shortest path but with the lowest possible risk of collision. The parameters that
affect the choice of trajectory are described above:

• path-distance-bias (double, default: 32.0): indicates the weight for how
much the local planner should stay close to the global path. If this value
will be higher than the default one, the local planner will prefer trajectories
of the global path to the detriment of that planned locally. Experiments
demonstrated that the default value worked well in the Paquitop’s simulation.
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• goal-distance-bias (double, default: 24.0): indicates the weight for which
the robot will tend to follow the local path. This parameter works inversely
to the previous one, means that by increasing this value the planner will tend
to follow the local trajectory more to the detriment of the global one. As
for the previous parameter, there is no rule to set its value, and experiments
demonstrated that the value of 10.0 resulted to be compliant with the value
set for the other parameters concerning the trajectory scoring.

• occdist-scale (double, default: 0.01): indicates the weight for which the
robot will avoid a specific obstacle. A much higher value than the default
one, will cause an indecisive robot that stucks in place, in the sense that the
obstacle will be considered too large in dimensions compared to its real ones,
preventing the robot from planning new trajectories to overcome the nearby
obstacle. For this reason a slightly higher value to the default one has been
chosen, namely 0.02.

All the parameters described below, will be tuned as their respective default
value, as worked well in the simulations:

• forward-point-distance (double, default: 0.325): represents the distance in
meters from the center point of the robot to place in front of it an additional
scoring point. This parameter is crucial for robots whose center of rotation is
not in their middle, as is used to align the robot on the planned path. If it is
0, this parameter will not affect the robot trajectory.

• stop-time-buffer (double, default: 0.2): indicates the amount of time that
the robot must stop before a collision, in order for a trajectory to be considered
valid in seconds.

• scaling-speed (double, default: 0.25): represents the absolute value of the
velocity at which to start scaling the robot’s footprint, in meters per second.
This parameter ensures greater safety during the robot navigation at high
speeds, increasing its footprint size, and making it place as far away as possible
from obstacles and walls.

• max-scaling-factor (double, default: 0.2): is the maximum factor to scale
the robot’s footprint by, when the velocity value set by the previous parameter
is reached.

3.3.4 Global Planner: A* - Dijkstra Algorithms
The Global Planner is an algorithm whose purpose is to compute the optimal
trajectory chosen based on the obstacles and cost information contained in the
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global costmap, the information about the localization system and the goal pose.
From these, it creates a high-level plan for the robot to follow, to reach the target
location. The global planner is able to create a series of way-points that the robot
has to execute. The two most algorithms used in the robotic field for path planning,
are Dijkstra and A*, which will be described below.

The A* search algorithm is the classic method for computing optimal paths
for holonomic robots. It is a heuristic search algorithm which consists of finding
the shortest path from the start node to goal node with the lowest cost among
all possible paths. Starting from the start node, the algorithm considers all its
neighbouring nodes, and choices the one with the least cost. For this reason, the
algorithm needs to traverse around all nodes for selecting the right one until the
goal node is reached, causing a long calculation time.

This algorithm represents the C-space, described in Chapter 1, as a graph, which
consists of a collection of nodes N and edges ϵ, where each edge connects two
nodes. A node typically represents a configuration or state, while an edge between
nodes n1 and n2 indicates the ability to move from n1 and n2 without hitting the
obstacles. This algorithm is formulated in terms of weighted graph, in which each
edge has a positive cost associated. A tree of paths is created from the starting
node (root), each of which consists of different nodes (leaf) with the respective
cost. According to the latter, the algorithm choices how to extend its path at each
iteration, considering only the lowest costs to reach the target node.

The heart of this algorithm is the function f(n) (3.6), which is the sum of the
function g(n) and h(n), expressed as follows:

f(n) = g(n) + h(n) (3.6)
The term g(n) is the cost of the path from the start node to the current node

n; h(n) is the heuristic function that estimates the cost of the path from the
node n to the goal node through the selected sequence of nodes and f(n) is the
heuristic function of the A* algorithm, which represents the shortest possible
distance between two points. The algorithm selects the smallest f(n) value, and
to make this, it involves maintaining two lists named open and closed. The open
set contains the nodes that have to be explored, while the closed list stores the
nodes that have already been visited (expanded). At the beginning, the open list
only contains the starting node, while the closed one is empty. In each iteration,
the algorithm removes the node from the open list that has the smallest f-value,
expands this node inserting it in the closed list, and then puts its neighbouring
nodes in the open list. The algorithm stops when find the goal node from the open
list, or if there are no more nodes available in the open list.

In the case of intersection of the trajectory with an obstacle, the algorithm
litters the path taken, and selects the path with the lowest cost between all possible
paths listed in a priority queue.
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If h(n)≤h(n)* for all the nodes n in the graph, the algorithm is admissible and
it is named optimal. The function h(n)* is the true cost to reach the goal state
from n, while h(n) is an estimate of h(n)*.

Figure 3.9 [41] represents an illustration of A* search algorithm. The empty
circles represent the nodes in the open set, i.e. those that remain to be explored,
and the filled ones are in the closed set. The colour on each closed node indicates
the distance from the goal: the red points indicate the points close to the start
node, while the green points one close to the target node. The A* algorithm traces
a straight line in the direction of the goal, but when encountering the obstacle, it
explores alternative routes inside the open set.

Figure 3.9: A* Search Algorithm

With the Dijkstra algorithm, the concept of Breadth-first search is defined. First,
the algorithm stores all the unvisited nodes creating a list named unvisited set, to
which assigns the zero value to the initial node distance, while infinity to all the
other nodes. So all nodes one edge away from the start node, are considered first.
Then the initial node is set as current and all the distance of its neighbors are
considered, choosing only the smallest one. Once all the neighbors of the current
node are visited, this will be deleted by the unvisited list. If the target node has
been reached or if there is no connection between the start node and the unvisited
nodes, the algorithm stops. Otherwise the unvisited node with the smallest distance
is selected and considered as current one and so the algorithm keeps running.

Figure 3.10 [42] illustrates this algorithm. Open nodes represent the unvisited
nodes, while filled nodes are the visited ones, with colour that represents the
distance. The nodes are explored uniformly in all different directions.

Unlike the Dijkstra algorithm, A* is a best-first search algorithm, that means
that the nodes of a graph are explored in the direction of the most promising node
according to a specific rule. The A* search algorithm is just like the Dijkstra’s
algorithm, with the only difference that A* uses a heuristic function to find a better
trajectory, according to the nodes priority, while Dijkstra explores all possible
ways. Therefore, it runs more slowly than A* owing to the lack of the heuristic
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Figure 3.10: Dijkstra Algorithm

function. For the considerations listed above, the algorithm A* is adopted for the
development of the Paquitop robot.

Parameters

In this section the ROS parameters of Global Planner A* adopted are described:

• allow-unknown (bool, default: true): parameter that specifies wheter to
allow the planner to create plans even in unknown space. It enables the search
algorithm to plan on unknown cells, namely not yet visited, marked with the
value of -1 as previously mentioned. For this thesis project, a true value was
selected.

• use-dijkstra (bool, default: true): indicates which algorithm is used between
A* and Dijkstra. As the algorithm A* was adopted, a false value was set.

• use-grid-path (bool, default: false): creates a path following the grid bound-
aries, otherwise a gradient descent method is used [43]. For the computation
time reason, a true value was adopted.

• publish-potential (bool, default: true): publishes potential costmap. For
memory reasons, a false value was set.

• outline-map (bool, default: true): outlines the global costmap with lethal
obstacles. For the usage of a no static (rolling window) global costmap, this
needs to be set to false. By adopting a dynamic map, a false value has been
chosen.

The quality of the planned global path is determined by the parameters cost-
factor, neutral-cost and lethal-cost, described below:

• lethal-cost (int, default: 253): indicates the presence of the obstacle in the
cell, and so safe collision with the obstacle by the mobile platform. The
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planner will be unable to plan a trajectory passing through that cell. Setting it
to a low value with respect to the default one, may result in failure to produce
a path, even when a feasible path is obvious, and so after experiments, the
default value was preferred to choose.

• neutral-cost (int, default: 50): unlike the previous parameter, this indicates
the absence of an obstacle. As a much higher value than the default one could
cause the same effect of lethal-cost parameter when a much lower value the
default one is set, a value of 66 has been selected.

• cost-factor (double, default: 3.0): factor to multiply each cost from costmap
by. Experiments demonstrate that setting this parameter to too low or too
high with respect to the real one, lowers the quality of the paths [34], so a
value of 1.0 was set in such a way as to have the actual weight value relating
to the obstacle.

Follow Waypoints

The Follow Waypoints algorithm allows the robot to have a prior knowledge of the
path information, to reach a target point with the minimum number of errors. To
fulfill a requested task, it provides a path tracking using a set of ordered waypoints.
To avoid of stopping the robot at each waypoint, and to make its smoothing motion,
a distance threshold parameter enables an imaginary circle defined by a radius r, so
that when the robot is within it, the control system will update the next waypoint,
and it will drive the robot toward it. For this thesis project, a value of 0.75 was
set. Figure 3.11 shows an example of planned path, where the robot starts from a
point P1 and arrives to goal position Pn, passing through n waypoints.

The Follow Waypoints algorithm is programmed in Python language, while the
list of poses to reach are contained into an Excel file, where each goal point is
written in the form of quaternions.

Figure 3.12 shows an example of the planned points that the Paquitop has to
reach, marked with red arrows, which define a blue performed trajectory.

3.3.5 Costmap
A costmap is a weight matrix representing the environment with information about
obstacles by means of the costmap-2d package. The costmaps used are the following:

• Global Costmap: stores information globally for long-term route planning,
and its map is used by the global planner. This map will include the chromatic
scale of the values assigned to each obstacle present in the environment (Figure
3.13).
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Figure 3.11: Example of a planned path through waypoints

• Local Costmap: stores information locally for short-term obstacle avoidance,
and its map is used by the local planner. It has smaller dimensions than the
global map, and it is integral with the robot. This is because the obstacles
encountered by the robot during navigation will be stored inside it, so it is
necessary that this is displayed taking the robot as a reference (Figure 3.14).

Both costmaps in ROS use the concept of overlapping layers, which are imple-
mented as a plugin on RViz. Among the predefined ones:

• Static map layer, represents the static map of the environment provided
by the map-server (Figure 3.15). This layer is used exclusively by the global
costmap and is indicated with the name of “costmap-2d::StaticLayer”.

• Obstacle layer, represents the obstacles identified by the sensors, and is used
by both the local and global costmaps. The obstacles are represented on a
two-dimensional map indicated with the name of “costmap-2d::ObstacleLayer”.
Optionally, obstacles can also be configured to be displayed in 3D. There
are numerous ROS packages that allow the three-dimensional display of the
navigation space, and the default on the ROS Navigation Stack is the voxel-grid
package.

• Inflation layer, responsible for inflating obstacles, creating a collision-free
region. This layer is used by both the local and global costmaps, and is
indicated with the name of “costmap-2d::InflationLayer”.
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Figure 3.12: Follow Waypoints algorithm. The cost-map contains the points
planned by this algorithm, the path performed by the robot footprint and the
inflation radius of the local and global map, represented with light and dark blue
strokes respectively, the values of which are 0.1 m and 0.8 m.

The costmap uses sensor data and information from the static map to build
a 2D or 3D grid map, where each cell has a cost: higher costs indicate a smaller
distance between the robot and an obstacle. The details on the allocation of costs
are explained in the Inflation layer.

Inflation layer

The Inflation layer consists of cells with a cost going from 0 to 255, which defines
the severity of an obstacles and allows to configure a margin of security with respect
to obstacles. The cost scale is built on the basis of the robot footprint, obtaining 5
specific areas:

• Freespace cost (value: 0): represents a passable cell by the robot with
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Figure 3.13: Global Costmap in RViz environment. The cost-map points out the
maximum range of the Lidar, defined by a square. The light and dark blue strokes
define the inflation radius of the local and global map respectively, the values of
which are 0.1 m and 0.8 m.

assigned zero of collision;

• Possibly circumscribed cost (value: from 1 to 127): indicates the cost
range for which the robot can avoid the obstacle. The possible collision will
be determined from the orientation of this during the circumscription of the
cell. It should be noted that a cell with a value included in this range does
not mean that is an obstacle, because it is possible to have such values in
free map areas, where it is preferred that the robot does not plan or that it
remains at a certain safety distance.

• Inscribed cost (value: from 128 to 253): means that a cell is less than the
robot’s inscribed radius away from an actual obstacle. This represents the
cost range in which it is likely that if the center of the robot is inside the cell,
it will collide with the obstacle.

• Lethal cost (value: 254): indicates the presence of the obstacle in the cell
and so safe collision with the obstacle by the mobile platform. The planner
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Figure 3.14: Local Costmap in RViz environment. The cost-map outlines the
radius inflation of 0.1 m with light blue strokes and the robot footprint.

will be unable to plan a trajectory passing through that cell.

• Unknown cost (value: 255): assigned to a map cell when information is not
enough to evaluate the occupation of the cell.

In conclusion, the inflation indicates the process of propagating cost values out
from occupied cells, that decrease with distance as shown in Figure 3.16 [44]:

The parameter used to modify the inflation of the maps is the following:

• inflation-radius (double, default: 0.55): indicates the distance expressed in
meters from the center of the robot to the obstacle. For the global costmap,
the value of 0.8 was set, to ensure that the robot is in the middle of the path,
while for the local costmap a value of 0.1, to keep the robot neither too close
nor too far from the obstacle.

• footprint (list, default: [43]): represents the outline of the robot base coincid-
ing with the origin of the base-footprint frame. In Figure 3.16, the inscribed
and circumscribed circles of the mobile base are represented, useful to inflate
obstacles in relation to the size of the robot. Specifically, they refer to the
footprint of the platform. In order to guarantee a certain safety margin, the

62



High-Level Architecture and Packages Implementation

Figure 3.15: Static Map Layer in RViz environment

real perimeter of the robot can be increased, scaling its coordinates in the CAD
software as Solidworks. The footprint can be described by two shapes: circular
and polygonal. The first is expressed as the radius value of the circumference,
which will have as its center the reference of the robot frame. The second
is defined as a two-dimensional array containing the points of the vertices
expressed with respect to the frame reference of the robot, such as:

[[x0, y0], [x1, y1], [x3, y3], [x4, y4], ..]
Both clockwise and counter-clockwise orderings of points are supported.
Paquitop has a polygonal shape, and both local and global costmaps de-
scribe its footprint from the point P1 to one P8 (Figure 3.17), as follows:

[[0.3, 0.0725], [0.0725, 0.24], [−0.0725, 0.24], [−0.3, 0.0725],
[−0.3,−0.0725], [−0.0725,−0.24], [0.0725,−0.24], [0.3,−0.0725]]

Obstacles layer

The Obstacles layer is responsible for two main operations that can be performed
on the grid map: marking and clearing. The first consists of inserting obstacle
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Figure 3.16: Inflation Process Graph

information into the costmap, while the second removes previously stored obstacles
no longer present in that position of the map. These two operations are described
by the following two parameters, and for this thesis project, assume the same value
in both costmaps:

• obstacle-range (double, default: 2.5): the default maximum distance from
the robot at which an obstacle will be inserted into the costmap in meters.
This parameter depends on the type of sensor and configuration implemented,
and as the maximum distance range of Lidar adopted is 6 m, a lower value
than the actual one has been chosen to reduce the calculation times, namely
4.0 m.

• raytrace-range (double, default: 3.0): represents the default range in meters
at which to raytrace out obstacles from the costmap using sensor data. In
order to guarantee a clean of the costmap, it is convenient to configure this
parameter to a value slightly higher than the previous one, and in this case
4.5 m.
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Figure 3.17: Paquitop Footprint Description in Costmaps

Static map layer

The Static map layer incorporates the following parameters:

• map-topic (string, default: “map”): indicates the topic where the costmap
subscribes to for the static map: /map.

• subscribe-to-updates (bool, default: false): in addition to map-topic, also
subscribe to map-topic plus “-updates”. In this case true was set.

• rolling-window (bool, default: false): fixes the origin of the map attached to
the robot. If the static-map parameter is set to true, this parameter must be
set to false. Since the static-map parameters has been set to false for both
maps, this parameter was set to true since a dynamic map was used.

• resolution (double, default: 0.05): defines the resolution of the map in meters
per cell. For both costmaps a value of 0.1 was adopted.

• static-map (string, default: true): determines whether or not the costmap
is given by map-server, so if an initial map does not exist, this parameter is
set to false. In this case, the map is built and updated by sensor constantly
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through the SLAM algorithm, so for both the local and the global map it was
set to false.

It has been observed that enabling the rolling-window and resolution parameters,
avoided the risk of having costmap areas not updated during the navigation.
Otherwise, it was updated only the portion of the map where changes were detected.

Through the simulations, it was observed that if an excessively small map was
used, with the width and the height dimensions much lower than 50 meters, the
local planner did not have sufficient planning space, and considered the obstacles
overdue, causing abrupt maneuvers to avoid them, and subsequent stall condition.
Instead, values higher than 50 of the width and the height, caused an excessive
freedom of planning, and subsequent increase of the computation time. In ROS
environment, the width and the height parameters are described as follows:

• width (int, default: 10): represents the width of the map in meters.

• height (int, default: 10): represents the height of the map in meters.

For the considerations listed above, a value of 50.0 m has been set for both
width and height, developing a grid of data with dimensions 50·50 m2.

Other Parameters

Rate Parameters

Sensor data, marking and clearing operations are performed and updated in the
costmap at the rate specified by update-frequency parameter, and published by
publish-frequency parameter, described below:

• update-frequency (double, default: 5.0): indicates the frequency in hertz
for which the map is updated. Increasing this value too much with respect to
that of the controller frequency, risks increasing the computational calculation
required, while decreasing it risks having a map not updated during the
navigation of the mobile platform. To avoid increasing the computation time
and occupying a lot of memory, a lower frequency value than the controller
one was set: 2.0 Hz.

• publish-frequency (double, default: 0.0): indicates the publication frequency
value in hertz. It is recommended to use a value lower than the previous
parameter, otherwise data not yet processed will be published. For local
costmap a value of 1.0 Hz was set, while for global one a value of 0.0 Hz was
selected in order not to influence the calculation times.
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Coordinate Frame and TF Parameters

• transform-tolerance (double, default: 0.2): sets the tolerance value on the
transformations of reference systems over time. One of the most frequent errors
during navigation is the propagation delays of messages about transformations.
For both costmaps a value of 0.3 has been chosen.

• global-frame (string, default: “map”): with such parameter is configured the
global reference used for navigation. This must coincide with the reference of
the map.

• robot-base-frame (double, default: “base-link”): with this parameter the
reference of the robot frame is configured. Although conventionally the name
of base-link is assigned for this reference, the base-footprint frame was selected,
as hector-slam package adopts a base frame placed on the same plane of the
map one. This guaranteed no delay propagation about transformation from
one frame to another.

3.3.6 TF
ROS provides a system called tf to introduce the coordinate transformations
between frames assigned to each component (link) of the system. Each transform
defines the translations and the rotations required to pass from a frame to other,
without performing the calculations with trigonometry. This allows the description
of the geometrical relation between all the part of the robot, where every frame
is defined by its relationship to other frame, building a tree structure. Each
transformation is described in the following way:

• x/y/z: cartesian triad indicating the position in meters of the reference
system;

• roll/pitch/yaw (rpy): terminology used to describe the orientation in
radians of each reference system. The term rpy derives from the initials of
the English terms corresponding to the different rotations (Figure 3.18): roll,
rotation of an angle ψ around the x axis; pitch, rotation of an angle θ around
the y axis and yaw, rotation of an angle ϕ around the z axis.

Before listing all the transformations, all the reference systems used for Paquitop
(Figure 3.19) in the ROS environment are described:

• map: identifies the name of the reference system of the map. Its origin is
arbitrarily chosen in the navigation environment and is fixed.
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Figure 3.18: Roll/Pitch/Yaw of Paquitop

• odom: identifies the name of the reference system in which the robot is
initialized.

• base-footprint: identifies the name of the reference system associated to
the chassis’ footprint, which has the origin in projection of the origin of the
robot’s mass center, but placed on the footprint. This reference system is not
fixed, but it is integral with the robot.

• base-link: identifies the name of the reference system positioned in the center
of gravity of the robot, representing the Paquitop’s chassis.

• laser-link: identifies the name of the reference system of the laser’s center of
gravity. This reference system remains fixed with respect to the base-link.

• camera-link: identifies the name of the reference system of the camera’s
mass center.

Coordinate transformation can be static and dynamic: unlike the latter, the
former does not change over time. All the transformations are listed below:
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Figure 3.19: Paquitop’s Reference Systems in ROS environment and their coordi-
nates expressed in millimeters with respect to the footprint frame.

• map to odom: dynamic transformation, defined by the hector-slam package
that takes care of localization and mapping.

• odom to base-footprint: dynamic transformation, defined by the ROS
pose-ekf (Extended Kalman Filter) package, which estimates the position of
the robot (base-footprint) in the environment with respect to the initialization
frame (odom).

• base-footprint to base-link: static transformation, both coordinate frames
are integral to each other.

• base-link to laser: static transformation that provides the position and
orientation of the laser with respect to the base-link frame.

• base-footprint to camera: static transformation which sets the pose of the
camera to that of the robot.

As previously mentioned, the description of the frames within the tf package,
occurs through a tree structure, that for Paquitop is the following (Figure 3.20):

3.3.7 Hector SLAM
Hector SLAM is a mapping algorithm which only uses laser scan information to
extract the map of the environment. In fact the term SLAM, which stands for
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Figure 3.20: The Tree Structure of Paquitop

Simultaneous Localization and Mapping, indicates just an algorithm solving the
problem of constructing a map of an unknown environment, while simultaneously
keeping track of its position within it. This is an approach that can be used without
odometry but only using the Lidar sensor, which is put on the platform to operate
in real-world environments. The package name is hector-slam and its main node
are:

• hector-mapping: SLAM node, which builds the environment map, estimating
the 2D robot pose;

• hector-geotiff : saves the map and the robot trajectory of the performed
path;

• hector-trajectory-server: keeps track of performed trajectory.

After providing a general idea of how the algorithm works, all the parameters
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used during the experimental tests are listed.

Parameters

• map-resolution (double, default: 0.025): as the name suggests, it indicates
the map resolution in meters. In details, it is the length of a grid cell edge.
For this project, a value of 0.02 was selected.

• map-size (int, default: 1024): represents the number of cells for axis of the
map, calculated as map-size·map-size. As the length of each cell edge is 0.02,
and the map is a square with side of size 50 m, 2500 represents the number
of cell for axis.

• map-start-x (double, default: 0.5): indicates the origin coordinates of the
map about x axis from 0.0 to 1.0. To have a map centered with respect to
the global origin, the value 0.5 was imposed.

• map-start-y (double, default: 0.5): indicates the origin coordinate of the
map about y axis. As for the previous value, also this the value was set to 0.5.

• map-update-distance-thresh (double, default: 0.4): defines the value in
addition to which is performed the map updates in meters. In this case the
platform had to travel 0.0 m for performing map updated, causing its constant
updating.

• map-update-angle-thresh (double, default: 0.9): defines the value in ad-
dition to which is performed the map updates in radians. As the previous
parameter, this was set to 0.0 rad.

• map-pub-period (double, default: 2.0): represents the period in seconds of
the map publish, performed to 0.2 s.

• map-multi-res-levels (int, default: 3): indicates the number of map multi-
resolution grid levels, which help the algorithm to compute the best position
estimation. The default value 3 was adopted.

• update-factor-free (double, default: 0.4): represents a range between [0.0,
1.0] for updating free cells. The value of 0.5 indicates no change, and a value
of 0.4 was selected to update newly free cells more slowly (less reactive), and
to have more time for path calculation.

• update-factor-occupied (double, default: 0.9): similar to the previous
parameter, but refers to updating occupied cells. This parameter is in the
range [0.0, 1.0], and a value of 0.5 indicates no change. A value of 0.9 was
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imposed, in order to instantly update (more reactive) the obstacles on the
map, and to avoid computing a possible path on that cell.

• laser-min-dist (double, default: 0.4): indicates the minimum distance in
meters from which the laser scans the environment, thus all points less than
this distance are ignored. From datasheet, the minimum distance range of
the adopted Lidar is 0.15, but to avoid seeing itself as an obstacle, a slightly
greater value than the distance between the Lidar and the rear part of the
platform was imposed, namely 0.6 m.

• laser-max-dist (double, default: 30.0): analogous to the previous parameter,
but indicating the maximum distance in meters within which the laser scans,
thus all points beyond this value are ignored. From datasheet, the maximum
distance range of the adopted Lidar is 6.0 m.

• laser-z-min-value (double, default: -1.0): represents the minimum height in
meters from which the laser scans the environment. All points lower than this
value are ignored. This parameter and the next are needed for lasers 3D, and
hence not important for the adopted Lidar.

• laser-z-max-value (double, default: 1.0): similar to the previous parameter,
but representing the maximum height in meters from which the laser scans
the environment. All points upper than this value are ignored.

• pub-map-odom-transform (bool, default: true): indicates whether or not
the transformation from map to odom is published by the system. Hector
SLAM computes this transformations, and to publish it, a true value was
imposed.

• output-timing (bool, default: false): output timing information for processing
of every laser scan. For the computation time and occupying memory reasons,
a false value was set.

• scan-subscriber-queue-size (int, default: 5): represents the queue size of
scan subscriber. If in hector-mapping, logfiles (computer-generated data file)
have a speed higher than real time one, this parameter should be set to very
high values than the default ones. In this case, a value of 10 was chosen.

• pub-map-scanmatch-transform (bool, default: true): indicates whether or
not the transformation from scanmatcher to map is published by the system.
The scanmatcher frame indicates the lidar pose frame with respect to map
frame, and as the laser frame was already defined as laser-link, a false value
was selected.
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• tf-map-scanmatch-transform-frame-name (string, default: scanmatcher-
frame): defines the frame name of the scanmatcher when the transformation
is published. For this project, it was not needed as the transformation from
scanmatcher to map was not published.

3.3.8 EKF
The EKF algorithm estimates the 3D pose of a robot through the implementation
of an Extended Kalman filter with a 6D model, of which 3D position and 3D
orientation. Kalman filtering, also known as linear quadratic estimation, is an
algorithm that uses a series of measurements observed over time from sensors in
the presence of noise, and produces an estimate of them by then making a weighted
average [45]. This package is named robot-pose-ekf.

Each sensor source refers to own world reference frame, so different sensors
cannot be compared between them. Therefore also if each sensor send an absolute
pose, this package uses the relative pose differences of each sensor.

Parameters

In this section the parameters related to EKF package are described as follows [46]:

• frequency (default: 30): the filter will output the position estimate at
frequency specified in hertz. Until the filter does not receive at least one
message from one of all the inputs, it will not work. The imposed frequency
value was 20 Hz.

• sensor-timeout (default: 1
frequency

): represents the minimum period in sec-
onds with which the filter will generate a new output. The term timeout
derives from the fact that we consider timed out a sensor after reaching of this
time specified. In this case, a predict cycle on the filter is performed without
correcting it. A value greater than the default one obtained (0.05), was set:
0.1.

• two-d-mode (default: false): if this parameter is set to true, the effect of
small variations in the ground plane is ignored. So, only 2D information will
be used for pose estimate, while the 3D ones will not be considered. For this
reason, a true value was set.

• transform-time-offset (default: 0.0): this parameter gives an offset to the
transform generated by the ekf-localization-node, useful for interaction with
other packages. A value of 0.3 was selected, to make the transformation
visible after a while in terms of seconds.
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• transform-timeout (default: 0.0): after this value, each transformation
became available for tf listener. This parameter was set to 0.0.

• print-diagnostics (default: false): this parameter shows the problems en-
countered in the node through the command echo /diagnostics-agg topic, and
so useful, it was set to true.

• debug (default: false): if set to true, a large amount of information is
outputted about debug settings inside the file debug-out-file. As not necessary,
a false value was set.

• debug-out-file (default: robot-localization-debug.txt): this parameter specifies
the full path of debug file, and that relating to this project is the following
/debug/robot-localization-debug.txt.

• publish-tf (default: true): indicates if to broadcast the transformation on
the /tf topic, and it was set to true.

• publish-acceleration (default: false): whether or not to publish the acceler-
ation state. As not needed, a false value was selected.

All the coordinate frames have already been described in the tf package. The
main ones contained inside the ekf package are map, odom, base-link and world.
The position described by odom-frame will drift over time, but remains accurate in
the short time. So the odom-frame is the best frame for executing local motion
plans. The map-frame contains a globally accurate position estimate, but it is
subject to discrete jumps (e.g. due to the fusion of GPS data or position updates).
The world-frame gives a common reference frame to relate multiple map frames.
Below, the frames settings are described:

1. To set the map-frame, odom-frame and base-link frames to the appropriate
frame name of system. If the map-frame does not exist, to set the world-frame
to the value of odom-frame.

2. To set world-frame to the odom-frame value, if position data as wheel encoder
odometry, visual odometry or IMU data are fused. This is the default behaviour
for the robot-localization’s state estimation nodes.

3. If a global absolute position data is fused, to set the world-frame to map-frame
value.

The default values and those set for this project, are reported below:

• map-frame (default: map): map
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• odom-frame (default: odom): odom

• base-link-frame (default: base-link): base-footprint

• world-frame (default: odom): odom

The parameters described below, indicate all inputs take into account by the
filter, and this means not having the default values. In order to add an input, to
append the next number in the sequence to its “base” name, e.g. odom0, odom1,
twist0, twist1, imu0, imu1, etc.

• odom0: this parameter indicates the topic name of the received input by
the filter. By taking into account the camera input, the topic was written as
follows /camera/odom/sample.

• odom0-config (default:

[false, false, false,
false, false, false,
false, false, false,
false, false, false,

false, false, false]):

this parameter allows us to read some or all updates of the filter’s state, setting
false or true to the requested update value. This guarantees a greater control
on measurement of values that feeds the filter. The order of the values is x,
y, z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az. For example, if
the z position value of an odometry message is used, then to set the entire
vector to false, except for the third entry. Note that some message types do
not provide some of the state variables estimated by the filter. For example, a
TwistWithCovarianceStamped message has no pose information, so the first
six values would be meaningless in that case. Within the topic considered in
the previous parameter, there were the data relating to the x and y camera
coordinates and their respective velocities, its orientation and the angular
velocity around the axis z. Accordingly, this parameter was set as follows:

[true, true, false,
false, false, true,
true, true, false,
false, false, true,
false, false, false]
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• odom0-queue-size: if high-frequency data or low frequency parameter value
are used, the size of the subscription queue has increased so as to merge more
measurements. A value of 20 was chosen.

• odom0-nodelay: setting to true, disables the Nagle’s algorithm, which causes
strange behaviour when a large messages in ROS arrive at a high frequency.
This option tells the ROS subscriber to use the tcpNoDelay option to disable
this algorithm. For avoiding this behaviour, the parameter was set to true.

• odom0-relative: if set to true, the first measurement for a given sensor is
considered a “zero point” for all future measurements. The same effect can be
reached with the next differential parameter, but the only difference is that
the relative parameter doesn’t cause the measurement to be converted to a
velocity before integrating it. This parameter was set to true, for having an
absolute measure of the data received from this topic. In reverse, the next
parameter will be set to false, as indicates a relative measure.

• odom0-differential: this parameter is useful when the sensors under-report
their covariances while measuring one pose variable. In this case it makes
sense to correct the covariances measurement or, if the velocity is measured by
one of the sensors, one sensor measures the pose value, while the second one
the velocity. But this solution is not always feasible, and so the differential
parameter is introduced, able of converting the absolute pose data to velocity
one, by differentiating the absolute pose measurements. This parameter is
used only for sensors that provide pose measurements, and not the twist ones.
As anticipated, this parameter was set to false.

The following two parameters are used for setting a threshold values when the
data is subject to outliers. These threshold settings are expressed as Mahalanobis
distances to control how far away from the current vehicle state, a sensor measure-
ment is permitted to be. Data is specified at the level of pose and twist variables,
rather than for each variable in isolation. For messages that have both pose and
twist data, the parameter specifies to which part of the message we are applying
the thresholds. The selected values for these two parameters are reported below,
appropriately chosen taking inspiration from other projects:

• odom0-pose-rejection-threshold (default: numeric-limits<double>::max()):
5 ;

• odom0-twist-rejection-threshold (default numeric-limits<double>::max()):
1.
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The following parameters are further input, as odom described before, but they
concern the /poseupdate topic.

• pose0: /poseupdate

• pose0-config: the previous topic contained only the updated pose about
the x and y camera coordinates, and its updated orientation around the axis.
Consequently, the matrix obtained was:

[true, true, false,
false, false, true,
false, false, false,
false, false, false,
false, false, false]

• pose0-differential: true

• pose0-relative: false

• pose0-queue-size: 20

• pose0-rejection-threshold: a value of 4 was set, chosen as for the previous
topic.

• pose0-nodelay: as for the previous topic, this parameter was set to true for
disabling disables the Nagle’s algorithm.

• process-noise-covariance (default: [46]): this parameter is expressed in
form of matrix, and it represents the noise that we add to the total error
after each prediction step, if set to true. The process noise covariance matrix
can be difficult to tune, and can vary for each application, so it is exposed
as a configuration parameter. The better the omnidirectional motion model
matches your system, the smaller these values can be. However, if users find
that a given variable is slow to converge, one approach is to increase the
process-noise-covariance diagonal value for the variable in question, which
will cause the filter’s predicted error to be larger, and to trust the incoming
measurement more during correction. The values are ordered as x, y, z, roll,
pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az.

• initial-estimate-covariance (default: [46]): this parameter represents the
initial value for the state estimate error covariance matrix. The diagonal
values represent the variance, and if they are set to large values, the initial
measurements of the variables will be in rapid convergence. The values are
ordered as x, y, z, roll, pitch, yaw, vx, vy, vz,vroll, vpitch, vyaw, ax, ay, az.
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3.4 URDF
To describe and to visualize the overall 3D robotic structure of Paquitop in the ROS
simulation environments, it is necessary to transfer all its mechanical characteristics
in an XML file named Universal Robot Description Format (URDF). Unlike the tf
package that maintains the relationship overtime between coordinate frames of the
rigid parts of a robot, named links, this file also considers the movable components
that enable the relative motion between adjacent links, named joints. In addition,
this file describes, through a tree structure, the kinematic and dynamic properties
of a robot, its appearance and its collision model. In the URDF file, the description
of the robot’s constituent elements occurs as follows.

The links are uniquely identified by a name, and their characteristics related
to the aspect, the inertia and the collision properties are specified. The visual
representation of a link consists of assigning a geometric shape among the graphic
primitives made available by the URDF format (box, cylinder or sphere), or
using the STL (STereoLithography) mesh file, which contains the 3D model of the
examined link. Also the link’s color is possible to add, by using the Red-Green-Blue-
alpha (RGBa) syntax, namely a numeric array containing the colors with an alpha
parameter, specifying the opacity. Besides, each link is provided of a mass, a mass
center and an inertia matrix, all specified within the inertial properties. Unlike the
visual representation, the collision properties outline the collision model, making a
link size estimation through simpler models, in order to reduce computation time.

The joints connect the links together through a parent-child relationship, each
identified by a unique name. As previously claimed, the purpose of the joints is to
provide relative movements between two adjacent links, depending on their number
of degrees of freedom. This component describes the kinematics and dynamics
of the robot joints, which can be classified in six categories according to both
their degrees of freedom and the range over which they can be moved. The joints
classification is listed below:

1. Revolute Joint, represents a hinge joint, whose rotation occurs along one of
its axes with a limited range of motion superior and inferior;

2. Continuous Joint, is similar to the previous joint but without any rotation
limit;

3. Prismatic Joint, is a sliding joint, which allows a linear movement along its
axis in a limited range;

4. Fixed Joint, admits no movement as its degrees of freedom are locked;

5. Floating Joint, enables the movement in all six degrees of freedom;
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6. Planar Joint, allows the motion in a plane perpendicular to the specified
axis.

As previously claimed, the Paquitop model consists of a link representing the
chassis, named base-link, joined to two links representing the LiDAR sensor and the
camera, namely laser-link and camera-link respectively. The latter are connected
to the chassis through two fixed joints (Figure 3.21): lidar-joint and camera-joint.

Figure 3.21: The Paquitop’s Joints defined by frames and their coordinates
expressed in millimeters with respect to the base.

The parent-child relationships present between the two joints are indicated in
Table 1:

Joint Father Child
lidar-joint base-link laser-link
camera-joint base-link camera-link

Table 3.1: The Parent-Child Relationships of Links and Joints
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Validation Tests

In this chapter, the experimental tests for validating the control system implemented
on Paquitop are described. The challenges that a mobile robot is being faced with
to fulfill the autonomous navigation are path planning, localization and obstacle
avoidance in either static and dynamic environments. These three sub-problems of
the autonomous navigation are examined on the developed platform, testing its
software part in the real-world conditions, which are described in detail, defining
their purpose and their respective outcome, compared with that to be achieve.

4.1 Experimental Tests Description
A robot mobile must undergo tests to meet the customers demand and, at the
same time, to ensure safety for both the human beings and the robotic platform,
minimizing as possible as risks. Tests should be conducted repeatedly to guarantee
that every part complies its desired specifications, and otherwise to diagnose the
detected defect, outlining the source of the dysfunction coming from the mechanical,
electronic or software parts of the system. Considering that the aim of the thesis is
the development of the high-level of Paquitop, in this chapter the software testings
are reported, fundamental to validate all the set parameters contained within the
adopted packages, to fulfill the autonomous navigation of the platform.

The adopted procedure to check the whole behaviour of Paquitop, consisted
of organizing tests into levels to maximize as possible as safety. Firstly, the
sensors data were evaluated to check if they perfectly reflect either the surrounding
environment represented in which operated, and the ability to localize the robot
pose within it. To such aim, the mapping of many environments was performed
to evaluate the capacity of the adopted Lidar to detect all the objects present
in the considered workspace. Besides, the robot odometry given by the tracking
camera was controlled to ensure that it was working properly. If sensors data were
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reliable, tests about the motion can be conducted. Before operating the robot in a
complex workspace, its software part has been tested firstly in a static environment,
where nothing changes during the robot mission, and subsequently in dynamic
environment, which evolves over time because of the moving entities. Compared
to testing in a static environment, dynamic one considers the time factor crucial,
as the frequency with which data was collected had to be fast enough to shun
potential obstacles. In this case, the robot was placed in rooms with moving objects,
whose purpose was to plan a safe trajectory, able to modify it in case of dynamic
obstacles.

Specifically, the challenges addressed by Paquitop were initially carried out in
the static environment, and subsequently in densely populated dynamic ones, as
the main objective of the thesis was to develop a platform capable of assisting
the human beings in domestic or also hospital environments. The robot motion
planning in different conditions was studied, and the different challenges faced are
listed afterward. The first consisted of locating the robot in a static environment
where the navigation from an initial position to final one was required. The second
was based on the static obstacle avoidance in a static environment, while the third
checked the navigation in narrow static area. The last challenge incorporates the
previous challenges, but in a dynamic environment. For each test, the evaluation
was performed comparing the actual outcome with the expected one.

4.1.1 Navigation to a Goal Point

One of the skills of a mobile robot is to perform a task that requires the achievement
of a desired pose. Specifically, this section will focus on the scenario where the
robot had to reach a point along a straight line, as shown in the cost-map by
Figure 4.1, where the red arrow represents the desired pose at a distance 3.0 m
from the starting point, the green trajectory indicates the path to perform, and
the green polygon represents the Paquitop’s footprint. To achieve the goal position
as accurate as possible, it was necessary to set the right tolerance value through
the xy-goal-tolerance parameter in both planners. As this parameter indicates the
x and y distances in meters where the system considers the robot to have reached
the goal, imposing a high value implied a non-precision to the desired point. To
determine the parameter value to set, tests with values ranging from 0.025 to 0.20
were performed, and what has been noticed is that regardless of the imposed value,
the robot reached always the final point at a distance of about 24 cm. This means
that the precision error was not related to the algorithm, but to an accuracy of the
adopted sensors. However, the ideal desired value for this parameter to perform
this task type in the best possible way, was of 0.075 meters, even if the system
neglected the value of the parameter set.
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Figure 4.1: Navigation from an Initial Point to a Final Point. The global cost-map
contains the Paquitop’s footprint, the planned path, the desired pose, 3.0 m away
from the starting point and the light and dark blue strokes, that define the inflation
radius of the local and global map respectively, the values of which are 0.1 m and
0.8 m.

4.1.2 Obstacle Avoidance at Different Planners Frequencies

A basic requirement in the autonomous navigation is the obstacle avoidance, namely
the ability of the robot to avoid both static and dynamic obstacles, modifying its
planned path.

In this section, the challenge on the static-obstacle-avoidance at different con-
troller frequencies is addressed. Specifically, the robot had to reach a pose overcom-
ing an obstacle safely, in this case a panel with dimensions 84 cm·119 cm. Figure
4.2 illustrates this scenario from the initial position (1) to the final one (4) distant
3.0 m, where the red arrow indicates the goal pose, the green trajectory represents
the planned path, while the blue trajectory, the performed one by the platform.
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Figure 4.2: Static-Obstacle Avoidance between Two Points: the Start (1) and the
Goal Points (4). The global cost-maps represent the steps to reach the goal, 3.0
m away from the starting point. The challenge consists of overcoming the static
obstacle of dimensions 48 cm·119 cm, placed halfway through. Each map contains
the Paquitop’s footprint, the planned and performed paths, the desired pose and
the light and dark blue strokes, that define the inflation radius of the local and
global map respectively, the values of which are 0.1 m and 0.8 m.
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To avoid the obstacle efficiently and move toward the free areas in the surrounding
environment, it was necessary to impose the right value of the controller-frequency
parameter to both local and global planners at the same time. Experiments
demonstrated that varying this parameter from 2.0 Hz to 5.0 Hz, the planned
trajectory was the same. The only difference is that setting a frequency lower than
3.0 Hz, the robot spent a lot of time to perform the planned trajectory, as the
system sent the velocity commands to the robot slowly. Instead, at a frequency
higher than 3.0 Hz, the robot received all the velocity commands quickly, so as
not to be able to handle them, causing uncertainty in its motion, especially in the
curvilinear section. A good compromise was to set the frequency value to 3.0 Hz,
as Paquitop was more reactive to shun an obstacle.

4.1.3 Navigation through Narrow Areas
The navigation through narrow spaces is a challenge of any autonomous vehicle,
essential for a safe navigation of a robot. Sometimes, a robot perceives an insufficient
space to navigate by means of the on-board sensors, due to the different reasons:
the inaccuracies in the platform localization and in the motion execution, or noise
and miscalibration error of the sensors adopted. An approach to address this
issue is to plan waypoints in the considered area by a human operator, in order to
successfully traverse it and to avoid the abortion of a possible path planning.

In this section, a procedure for satisfactorily performing this task is present, in
order to achieve fully autonomous of Paquitop even in tight spaces, like corridors or
doorways. Figure 4.3 illustrates the scenario where the robot has to cross a narrow
space 119 cm long, to reach the desired pose distant 3.5 m from the starting point.
To plan and execute the navigation, the robot had to have a margin of operation,
which depended on the parameter of the inflation radius set in both local and global
cost-maps, and the Paquitop’s footprint width. The cost-map built by the on-board
sensors is shown in Figure 4.4, which defined the navigable areas by Paquitop
according to the navigation costs, and hence by the detected obstacles. Specifically,
the light blue areas represented the lethal areas, while the blue one indicated the
navigable areas. Considering that the value of the inflation-radius imposed in the
local cost-map was of 10 cm (light blue areas), and that the Paquitop’s footprint
(green polygon) width is about 48 cm, the minimum space required by Paquitop to
plan a path was approximately of 65 cm.

4.1.4 Path Planning in Narrow Areas with Static and Dy-
namic Obstacles

Path planning for mobile robots is a challenging problem, as the robot is required
to reach a given goal in optimal way through the planning of a conflict-free path.

84



Validation Tests

Figure 4.3: Paquitop’s Path Navigation in a Narrow Space

Inaccurate localization during the navigation maneuvers and a high velocity, could
cause significant drift and, as a consequence, performing paths that could be
infeasible. The functioning of the localization system is fundamental, as allows the
robot to complete the challenge without interruption, or to have mismatches either
of the map and the trajectory, which could cause collision with any obstacle.

In this section, the software part of Paquitop has been tested planning a path
in a narrow environment of size 6.5 m·6.8 m, highly constrained by obstacles to
avoid. Specifically, as the cost-map of the Figure 4.5 shows, the robot had to
navigate from a predefined start location to a goal one, with the addition of two
static and dynamic obstacles, which make the challenge even more difficult. In
detail, the dynamic obstacle has a translational movement perpendicular to the
goal direction, the first indicated in the Figure 4.5 with a dashed black arrow, the
second represented with a red arrow.

To study the behaviour of the robotic platform, the experiments consisted
of performing several times the planned trajectory by the robot from the initial
point to the final one, and to validate the choice of the parameters set within the
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implemented packages. The results demonstrated a good repetitiveness with small
variations in the path between the considered points, a stable motion, sometimes
little fluid, executed with a low velocity without any oscillations. This experiment
proved that the robot was able to navigate to the goal efficiently, although the tight
space full of objects with the addition of the two static and dynamic obstacles.

Figure 4.4: Cost-map of a Static Environment with a Narrow Space to cross. The
scenario represents the route planning through a narrow space 119 cm long, where
the starting point is 3.5 m from the end point. The light and dark blue strokes
define the inflation radius of the local and global map respectively, the values of
which are 0.1 m and 0.8 m.
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Figure 4.5: Navigation to a Desired Point with Static and Dynamic Obstacles
in a narrow environment of size 6.5 m·6.8 m. The black dotted arrow indicates
the translational motion of the dynamic obstacle. The light and dark blue strokes
define the inflation radius of the local and global map respectively, the values of
which are 0.1 m and 0.8 m.
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Conclusions

This thesis project has the objective to develop a High-Level architecture of a
novel-actuated mobile platform, named Paquitop, for assistive robotics tasks such
as monitoring or tracking of the human beings in domestic and non-structured
environments. Its main peculiarity is to achieve omnidirectional planar motion on
conventional wheels, thanks to the over-abundant set of actuators with respect to
its degrees of freedom, crucial to enhance the dynamics of traditional robots.

The high manoeuvrability affects the motion planning and controlling, which
constitute the ROS-based software architecture of the robotic system. Such SW
architecture comprises all autonomous navigation algorithms, which address specific
challenges as obstacles avoidance, path planning, localization and mapping.

Fundamental elements to solve these navigation tasks are the exteroceptive
sensors, in particular a Lidar, which maps the surrounding environment taking into
consideration the obstacles present, and a tracking camera for the robot localization.
The ability to map and localize at the same time is called VSLAM (Simultaneous
Localization and Mapping). These information are crucial for the global and local
planners, which build a free-path to reach a given goal without collision with any
obstacle.

The obtained results through the experimental tests, presented a navigation
architecture with a good capability to efficiently navigate to the goal, both within
large and tight spaces lived by people and full of static and dynamic objects. On
the one hand, this depended on an efficient accuracy of the sensors adopted, which
developed a precise mapping of the surrounding environment and an accurate
location of the robotic system inside it. On the other hand, a valid software
design allowed a good planning of a path thanks to proper use of the implemented
algorithms.

Future developments foresee the development of a waypoints planning system
based on Bezier curves, to achieve a more stable motion of the robot without
interruptions. In detail, the path planner would first generate a series of points
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that satisfy the cost function and the avoidance of obstacles, and secondly it would
use the Bezier curves to smooth the path.

Besides, the replacement of the adopted on-board computer with another more
performing in terms of processor’s response time, will allow the platform to improve
its computational capabilities, such as to own a higher control frequency and
consequently to be a more reactive system with dynamic obstacles.

To improve the performance of the autonomous navigation system, it is recom-
mended to carry out more experimental tests in the future.

Another future development could be the development of a control algorithm
in the ROS2 environment, which works not only on Linux systems but also Win-
dows, MacOS e RTOS. This will improve the timeliness of the control and the
performance of the entire robot, thanks to a system called DDS (Data Distribution
Service), which manages the distribution of data in real time while maintaining
the publish/subscribe paradigm. Such system will enhance the communications
network performance between multiple robotic systems.

The implementation of robotic system on the Paquitop’s chassis such as a
commercial collaborative arm (Figure 5.1), it could be a future work to implement
manipulation tasks.

However, it will be necessary to adopt a more robust mechanical structure of
Paquitop to ensure good performance despite the weight of the arm, for example

Figure 5.1: Paquitop and a Collaborative Arm for Manipulation Tasks
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implementing a new motor that allows a more torque above all during executing
uphill paths or curvilinear trajectories. The addition of a depth camera on its
end-effector will check the achievement of the desired pose of the arm by means of
the data collected by the camera.
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