
POLITECNICO DI TORINO
MASTER’s Degree in

PHYSICS OF COMPLEX SYSTEMS

MASTER’s Degree Thesis

A TWO-COMPONENT MODEL FOR
PHASE SEPARATION DRIVEN

MOLECULAR SORTING

Supervisors

Prof. ANDREA GAMBA

Prof. LUCA DALL’ASTA

Candidate

SILVIA VARESCHI

OCTOBER 2022





Summary

Molecular sorting is a highly complex process taking place in eukaryotic cells, in
which specific cargo molecules are collected in vesicles and dispatched to appropriate
destinations. The first fundamental step of sorting, vesicle formation, is possible
through the aggregation, on the membrane, of cargo molecules and a number of
different endocytic proteins. The formation of such aggregate promotes membrane
bending, leading to the budding and the extraction of a vesicle enriched with the
engulfed molecular components.

Recently, a theoretical model of this process was proposed (we will refer to it as
“one-component” model), where the following events are described: proteins arrive
on a membrane region, diffuse and aggregate into localized enriched domains, that
are ultimately extracted after reaching a characteristic size. Under appropriate
conditions, the system self-organizes into a driven non-equilibrium stationary state,
that is characterized by the coexistence of phase-separated sorting domains with a
gas of freely diffusing molecules. In particular it was highlighted the existence of a
region of values, in the aggregation parameter g, where the sorting process is most
efficient and, therefore, leads to low-density stationary states.

In that prototypical model the aggregation of proteins of a single type was
considered, however this is far from the actual biological process. To take more into
account the complexity of the phenomenon, this thesis proposes a two-component
model (we will refer to it as the “AB” model), in which sorting domains are formed
by the aggregation of two species: cargo (“B” species) and auxiliary molecules (“A”
species). Cargo can only diffuse laterally once inserted into the membrane. Auxiliary
molecules are present in a fixed number and are recycled after each extraction event.
Differently from the cargo, auxiliaries are able to shuttle between membrane and
cytosol, where their diffusivity is much faster then on the membrane. A contact
attractive interaction, (quantified by the aggregation parameter g) is assumed to
exist between particles belonging to different species while the interaction between
particles of the same species is of excluded volume type, meaning that a domain
will need both species to form.

Our investigation aims to answer two questions. The first one asks to understand
what is the effect of having a limited pool of auxiliary proteins, which are necessary

ii



to form domains, and how it changes with the aggregation parameter.
The second question arises from an observation on the different dynamics followed

by the two species: if we focus on a small region of the membrane for relatively short
time scales (shorter than the typical time scale of domain growth and extraction
and of cargo insertion) we see that the concentration field of the cargo is locally
conserved on the membrane. On the contrary, the fast redistribution mechanism
followed by the auxiliaries implies that their concentration field is approximately
globally - but not locally - conserved on the membrane. This observation is useful
since, according to theories of phase separation processes, systems described by
a non-locally-conserved order parameter show a faster coarsening than systems
that are described by a locally-conserved one. Because of this, it is reasonable
to ask whether the interaction of cargoes with molecules that follow a faster,
non-locally-conserved dynamics can be advantageous for the process.

The model proposed in this thesis has been studied numerically, by implementing
a Gillespie algorithm and describing the membrane as a square lattice with periodic
boundary conditions, coupled to an unstructured cytosol. In order to discern the
effect of non-local-conservation of the auxiliaries the algorithm was also implemented
for a variant "B’B" model: in this case “A” molecules are substituted by “B’ ”
molecules which differ for being able only to diffuse along the membrane (they
cannot shuttle between membrane and cytosol, but still they are present in a finite
number and are recycled after each extraction event). The behaviour of the AB and
the B’B model was then studied by varying the value of the aggregation factor g
and the number of auxiliaries per unit membrane site (Naux/Nsites ), starting from
an empty membrane initial condition. The AB model was additionally investigated
in a regime of faster redistribution of the auxiliaries. A preliminary analysis was
also conducted starting from a non-empty membrane.

Results show that, independently from the specific dynamics followed by the
auxiliaries, our model is characterized by a rich phenomenology, where the stability
of low-density stationary states changes as we vary the number of auxiliaries and
the aggregation parameter. This results in a new, sharp transition between a
parameter region where sorting occurs under optimal conditions (the existence of
such optimal region is reminiscent of the one-component model) and neighboring
regions where sorting is disfavoured. Simulations also show the appearance of
a parameter region where the stationary state is characterized by peculiar large
oscillations in the density, due to the alternation of long “quiescent” periods, where
extraction events are rare, and periods where the extraction activity is very intense.
Finally, results show that faster shuttling of the auxiliary molecules can increase
the efficiency of the sorting process.

This thesis is structured as follows:
• In Chapter 1 an introduction to the biological process is given, with a particular

focus on the paradigmatic case of clathrin-mediated-endocytosis
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• In Chapter 2 phase separation theory is introduced
• In Chapter 3 the “one-component” model for molecular sorting, already present

in literature, is introduced, together with the main results achieved
• Chapter 4 introduces the “AB” and the “B’B’ ” models. The features chosen

are discussed.
• In Chapter 5 the numerical method used to study the model is presented
• Finally, in Chapter 6 and 7 results are presented and discussed
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Chapter 1

Molecular sorting

“Everything in its right place”
Radiohead, Kid A

1.1 Spatial organization in living cells
Paraphrasing its thermodynamic definition given by Schroedinger, life can be
thought as a “struggle against disorder”, indeed, differently from inanimate
systems, living organisms avoid a rapid decay to the state of maximum entropy
and behave in a manner that is apparently purely mechanical, in contrast to
thermodynamic, i.e. it is not affected by thermal disorder [1]. Evolution of life
thus followed a path that lead organisms to develop strategies to contrast the
homogenizing effect of thermal disorder such that, even if the laws of chance still
hold, their outcome is different. Among these strategies there are the “invention” of
the macro-molecule and the “invention” of the cell, basic unit of life, characterized
by a high spatial organization (Fig. 1.1a).

How is this spatial organization possible? A paradigm that has become
particularly useful and seems quite universal is that of phase-separation, that
was successfully applied to explain the formation of non-membrane-bound compart-
ments in the cytosol (Fig.1.2a) [4],[5], the formation of transient enriched domains
on the cell membrane (Fig.1.2b) [6],[7],[8],[9],[10]and the organization of genetic
information in the nucleus (Fig.1.2c, [11]). Interactions driving the phase separation
can be direct (e.g. arising from contact interactions) or effective, sustained by
positive and negative chemical feedback loops [6, 12].

Eukariotic cells are further organized into functionally distinct, membrane
enclosed compartments (organelles), each of them enriched in a particular set
of molecules. The expression “molecular sorting” (or “protein sorting”) refers to
the maintenance of the biochemical differences between organelles, that is possible
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Molecular sorting

(a)

(b)

Figure 1.1: (a): schematic organization of a eukariotic cell. From [2]. (b)
schematic representation of a cell membrane. From [3].

(a) (b) (c)

Figure 1.2: (a): P-granules found in the cytosol of Caenorhabditis elegans. From.
[4](b): Transient domains on the plasma membrane of a eukaryotic cell. From [13].
(c): Chromosome territories in the nucleus. From [14].

through a complex intracellular membrane traffic (Fig.1.3a), characterized by the
budding of transport vesicles from one compartment and their fusion with the
other: as they do so they carry material as cargo from the lumen and membrane of
the donor compartment to the lumen and membrane of the target compartment
(Fig.1.3b). So, in the case of membrane bound compartments, compartmentalization
of molecular species involves a further layer of complexity in that phase separation
processes are coupled to membrane mechanics. Phase separation processes are
indeed crucial both to identify target membranes and to initiate the process of
membrane budding. which is the subject of this thesis.
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Molecular sorting

(a)

(b)

Figure 1.3: (a): "road-map" of intracellular membrane traffic.(b): Budding and
fusion of a transport vesicle. Figures from [15]

There are many routes that lead to membrane budding, most of them have in
common the fact that transport vesicles bud off as coated vesicles. The coat
has a double function, reflected in a common two layer structure: an inner layer
concentrates specific membrane proteins in specialized patch in order to select the
appropriate membrane molecules for transport, an outer layer induces bending
of the membrane and shapes the vesicles. A coat is formed by many different
types of proteins and different type of coats exist, which are characterized by
different molecular species involved: three well characterized coated vesicles are
clathrin-coated vesicles, COPI-coated vescicles and COPII-coated vesicles, that take
their name from the major component of the coat and are specialized for different
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Molecular sorting

transport steps. However, this list is not exhaustive since there is variety even in
these three types. The minimal model I will discuss in the next chapters transcends
molecular details, so that the results are likely to be applicable in general to coated
vesicles. In the following section I give a more detailed description of clathrin
mediated endocytosis (the word endocytosis refers to the process of vesicle formation)
in that clathrin coated vescicles have been the first to be identified, however the
process of their formation is quite paradigmatic and conceptually similar to the
ones that lead to the formation of other types of coated vesicles.

1.2 Coated vesicles formation: the example of
clathrin mediated endocytosis

The process of clathrin mediated endocytosis was first described 5 decades ago
and, since then, over 50 proteins have been shown to be part of the machinery and
characterized in detail. Despite being studied for a long time, since the process is
very complex, there are a lot of open questions, mainly related to how all these
different components work together in a highly coordinated manner to drive vesicle
formation. An interesting review [16] was written recently and in the following I will
mainly refer to it as well as [15]. However complex, endocytosis is a conceptually

Figure 1.4: steps of clathrin mediated endocytosis. Figure from [16]

fairly simple process that consists of a few sequential and partially overlapping
steps, that are representend in the cartoon in Fig.1.4:
Initiation : endocytic coat proteins from the cytosol start to cluster on the inner

leaflet of the plasma membrane
Continuation : further recruitment of other coat proteins from the cytosolic pool

allows the protein coat assembly to continue growing.
Cargo recruitment : cargo molecules are concentrated to the coated region of

the plasma membrane.
Membrane bending : the assembling coat transforms the flat plasma membrane

into a ‘clathrin-coated pit’
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Scission : the membrane invagination is constricted and cut, separating the
clathrin-coated vesicle from the plasma membrane. Actin polymerization
cooperates with the coat and scission proteins to promote membrane shaping.

Uncoating : the endocytic protein machinery disassembles and he nascent cargo-
filled vesicle is released and allowed to be trafficked within the cell.

Thus, on the basis of their dynamics, the endocytic proteins can be grouped into
functional modules: coat module, actin module, scission module, uncoating module.
Extensive interactions take place within and between modules to coordinate the
assembly and functions.

As it will be discussed in the next chapters, the model studied in this thesis
deals with the process of aggregation of cargo and coat proteins, while it does not
directly tackle with membrane bending, scission and uncoating. The coat module
is composed by clathrin adaptors proteins (eg. adaptor protein AP2 complex) and
by scaffold proteins (e.g.: clathrin, Fig.1.5), that interact with the clathrin adaptors
and with themselves to cluster the coat components together as well as to induce
membrane bending. It is possible to identify an earliest assembling coat that forms
a pioneer module (Fig. 1.6) , responsible for initiating the endocytic process [16],
[17]. Coat assembly is crucial for the initiation of the process and defines the

Figure 1.5: Structure of a clathrin coat. Figures adapted respectively from [18]
and [19]

position where endocytosis will take place: in some cases endocytic events appear
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Figure 1.6: Proteins of the pioneer module, which includes the F-BAR domain
only protein 1 and 2 complex (FCHO1/2), the adaptor protein AP2 complex,
epidermal growth factor receptor substrate 15 (EPS15) and monomeric cargo
adaptors. From [16]

.

to be initiated at random positions but, in many cases, the initiation is clearly
spatial non random and this may be due to the existence of plasma membrane
domains or regions with endocytosis promoting properties such as the ability to
concentrate specific lipids or endocytic cargo proteins.
This stage is also responsible for cargo loading (the word "cargo" refers to
transmembrane proteins and their extracellular ligands). The basic principle in
cargo recruitment is that proteins of the clathrin coat bind to specific sites in the
cytosolic part of different transmembrane cargo molecules, so that specific cargoes
will be enriched in the forming vesicles and then selectively endocytosed, indeed a
large number of clathrin-adaptor proteins (including many of the early arriving
coat component) and scaffolds proteins have been shown to directly interact with
specific cargoes and function as cargo adaptors for them. Because of this, it is
reasonable to think that the cargo molecules may recruit the pioneer proteins to the
plasma membrane and increase the likelihood of initiation of an endocytic event.
Furthermore, cargo-checkpoint mechanisms have been described, that guarantee
vesicles that form are filled with cargo molecules: a possible mechanism is the
stabilization of the pit by the presence of cargo, as argued in [20] (see Fig. 1.7)
and [21].

The way cargo recruitment is coordinated with coat assembly is highly coopera-
tive since, in addition to binding to cargoes, most adaptors also interact directly
with lipids and with other coat proteins, thereby forming a complex network of
interactions that can mediate initiation of clathrin coat assembly and its further
expansion. An example is the case of AP2 complex that can act to coordinate
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Figure 1.7: Model proposed in [20]: coat formation is characterized by a initial
exploratory phase, during which coated pits continue to grow but collapse rapidly
if conditions required for coat stabilization are not met. Alternatively the forming
coated pit stabilizes, perhaps by cargo capture.

cargo recruitment with coat assembly, thus possibly regulating the initiation and/or
maturation of the endocytic coat: binding of AP2 with the phospholipid PI(4,5)P2
is associated with a large conformational change in AP2, that enables binding with
clathrin and cargo (Fig.1.8 ).

So the process of coat formation and vesicle extraction is highly complex and
involves many different proteins that interact both directly and through self en-
forcing feedback loops. Interestingly, if we focus on the dynamics of molecular
factors present on the membrane we can see that the process can be thought as
a phase separation: in a regime where vesicle formation occurs we can identify
the coexistence of a high density phase of coat proteins and a low density one.
Following this viewpoint, recently a minimal model has been proposed [22], [23]
and this thesis will proceed in that direction. Because of this, in the next chapter,
I first review some classical theories about phase separation.
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Figure 1.8: Upon interaction with the phosphoinositide PI(4,5)P2 in the cytosolic
leaflet of the plasma membrane, AP2 rearranges so that binding sites for cargo
receptors become exposed. When AP2 binds tightly to the membrane, it induces
curvature, which favors the binding of additional AP2 complexes in the vicinity.
From [15]

8



Chapter 2

Phase separation processes

“Because we separate
Like ripples on a blank shore”

Radiohead, Reckoner

2.1 Passive vs active phase separation
The formation of domains of endocytic molecules (cargo, adaptors, clathrins) can be
though as a phase separation process where the two phases are i) regions with high
density of endocytic molecules ii) regions with low density of endocytic molecules;
in particular it resembles the phenomenon of precipitation of a solute in a solvent,
where the domains are the precipitate. Vesicle scission can be thought as an
annihilation reaction that takes place once a sufficient large domain has formed.

In classical thermodynamic context, phase separation is a transient non
equilibrium process by which an initially well-mixed equilibrium state transforms
to a demixed equiilbrium state following an appropriate change of thermodynamic
conditions. Fig.2.1 shows the phase diagram for the behaviour of a binary mixture:
in the space of temperature and relative concentration it is possible to identify
areas where the system is in a mixed state and areas where demixing takes place.

In the case of phase separation occurring in biological systems, everything
is complicated by the fact that the system is active, i.e. it exchanges matter with
the environment, reactions occur and there are energy consuming mechanisms that
introduce a well defined “arrow”, such that in general detailed balance does not hold.
In such active systems the final state may differ from the equilibrium one (if work
and energy were not supplied) and it is not so immediate to define a free energy. A
possible classification of current theoretical descriptions of inhomogeneous phase
separating systems has been recently proposed in [24] and consists in four categories:

1. Passive systems: sytems where phase equilibria and domain kinetics show
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Phase separation processes

Figure 2.1: Thermodynamics of phase separation. Simple binary phase diagrams
showing regions of immiscibility and of mixed phase instability, delimitated by
binodal and spinodal boundaries, respectively. Critical points are indicated by blue
dots. Figure from [24]

no significant deviations from equilibrium thermodynamics
2. Modulate passive systems: systems that differ from passive ones only in the

addition of space and/or time dependent equilibrium or external parameters
3. Undriven chemically reactive systems: systems where chemical kinetics

take place but no internal or external energy sources supply work or drive the
system. Such mixtures satisfy detailed balance in equilibrium and therefore
relax to thermal equilibrium, as far as no special boundary conditions are
applied. Domain evolution kinetics may be altered relative to non reactive
mixtures, however thermodynamic equilibrium is not affected by the presence
of reactions.

4. Driven chemically reactive systems: systems where work is supplied
though external forces, heat transfer, mass transfer or internal energy sources
and can alter thermodynamic stability of phases.

Categories (1) and (2) don’t involve explicit treatment of chemical reactions or any
other active process; categories (1), (2) and (3) share the common fundamental
feature that each is predicated on the existence of a thermodynamic free energy
density and a relaxation to local thermal equilibrium. Category (4), instead, is
fundamentally different, since i) reaction rates can be dictated by driving forces
other that the local chemical potential, ii) detailed balance can be violated and iii)
a well defined free energy functional does not exist, rather a nonequilibrium free
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energy functional is sought.
Unluckily (or interestingly) our system seems to fall in category (4), since we have
a flux of matter and vesicle extraction (Fig.2.2). However, looking at the case of

Figure 2.2: Black domains represent portions of the cell enriched with coat
proteins. On the left we see the system before an extraction event occurs, on the
right the extraction event took place. The extraction event is not reversible because
coated vesicles cannot merge following the same pathway. In other words, detailed
balance does not hold.

phase separation in passive systems is still instructive since it has been studied for
decades and can give interesting hints to the behaviour of the phenomenon.

2.2 Relaxation dynamics
Among the approaches that have been developed in order to describe the transition,
a possibility is a phenomenological field theoretic formalism that describes the
relaxation dynamics of an order parameter in a energetic landscape. The order
parameter is defined as a field Φ(x, t) coming from a coarse-graining of microscopic
degrees of freedom on an area that is much larger than the lattice spacing but
much smaller than the correlation length. Such theories follow two principles: 1) a
system let evolved in contact with a thermal bath should tend to Gibbs equilibrium
distributions 2) conservation laws that characterize the microscopic dynamics must
still hold at the coarse grained level. The prototype of a relaxational dynamics
is the behaviour of a brownian particle, described by the Langevin equation:

dv(t)
dt

= F (t) − Γv(t) + η (2.1)

where η is a noise term such that ⟨η(t)⟩ = 0 ⟨η(t)η(t′)⟩ = 2Dδ(t − t′) and the
damping coefficient Γ is linked to diffusivity D by Einsteins relation D = ΓKBT .
Extending this approach to the description of the dynamics of a countinuous degree
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of freedom defined in the space it is possible to obtain:

∂ϕ(x, t)
∂t

= −
Ú

Γ(x − x′) δH[ϕ]
δϕ(x′, t)dx′ + η(x, t) (2.2)

where:
• η is such that ⟨η(t)⟩ = 0, ⟨η(x, t)η(x′, t′)⟩ = 2Dδ(t − t′)δ(x − x′)
• the action is defined as S[ϕ] = βH[ϕ] =

s
dx[1

2(∇ϕ)2 + V [ϕ]]
• a useful form for the potential is V [ϕ(x)] = µ2

2 ϕ(x)2 + λ
4!ϕ

4 − J(x, t)ϕ(x, t),
describing a double well subject to an external driving field, that can describe
the process of phase separation of two stable phases.

• Γ(x−x′) is a distribution that can have different expressions, implying different
conservation laws:

– dynamics with no local conservation of the order parameter
(NCOP) is obtained when

Γ(x − x′) = Γδ(x − x′) → ∂ϕ(x, t)
∂t

= −Γ δH[ϕ]
δϕ(x′, t) + η(x, t) (2.3)

this equation is also known as MODEL A in the Hohenberg-Halperin
[25] classification. A dynamics of this type describes for example alloys
that undergo an order-disorder transition on cooling through Tc, rather
than phase separating. The microscopic counterpart of this model is the
Glauber dynamics [26].

– dynamics with local conservation of the order parameter (COP)
is obtained

Γ(x − x′) = −Γ∇2δ(x − x′) → ∂ϕ(x, t)
∂t

= Γ∇2 δH[ϕ]
δϕ(x′, t) + η(x, t) (2.4)

this equation is also known as MODEL B in the Hohenberg-Halperin
classification [25]. A dynamics of this type describes for example a binary
alloy, where it’s clear physically that atoms of the two different species
can exchange only locally (not over large distances), leading to diffusive
transport of the order parameter. The microscopic counterpart of such
model is the Kawasaki dynamics [27].

After performing a quench, the process described by these equations is character-
ized by different temporal stages. In an early stage (as a linear stability analysis
can prove) initial conditions and thermal fluctuations play a role. If, after the
quench, the system is in an unstable state, i.e. it is described by a point under
the spinodal line (Fig. 2.1 ), a second order transition occurs, where the mixed
phase becomes globally unstable (Fig 2.4a) and large-scale critical fluctuations
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Figure 2.3: Temporal snapshots of phase separation process in case of non-
conserved(left) and conserved (right) order parameter. Ref [28]

emerge with essentially no nucleation barrier. Fluctuating domains settle below
the critical point into some characteristic morphology with a typical wavelength
(Fig 2.4b) that depends on the conservation laws and may coarsen with time. If
the system is in a metastable state after the quench, i.e. phase separation begins
between the binodal and the spinodal (Fig. 2.1 ), then a first order transition
occurs (Fig 2.4c) and the system needs a large thermal fluctuaton to overcome the
free energy barrier. This happens through the mechanism of nucleation and growth
of a droplet: it is possible to identify a critical radius, function of surface tension
and gas supersaturaton, beyond which a droplet will have more convenience to
grow. Depending on whether the system is in a state of large supersaturation/fast
particle diffusion or low supersaturation/diffusion limited growth, growth laws show
a different dependence on time.

On the contrary, in a late stage, the system has developed well defined interfaces,
characterized by surface tension. Surface tension drives the dynamics of phase-
separated domains, causing the appearance of universal scaling laws that
depend only on the quench being critical or subcritical and on conservation laws.
It is now well established that a scale-invariant coarsening domain mosaic
emerges from the solutions to the equations at late times [29]. This morphology is
(statistically) independent of time when all lengths are rescaled by a typical domain
size L(t) that grows algebraically with time. and is usually written as L(t) ∼ tz

with z the dynamical exponent whose value is

z =


1
2 NCOP (model A)
1
3 COP (model B)

These scaling laws are important in that they imply different coarsening behaviours
of the system depending on the conservation laws. This is because the influence
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(a)

(b)

(c)

(d)

Figure 2.4: (a): Change in the free energy profile when crossing the spinodal
line determines the presence of a second order phase transition (from [24]). (b)
Mechanism of uphill diffusion occurring during spinodal decomposition drives the
system to the development of a characteristic wavelength (from [28]). (c) Change
in the free energy profile when crossing the binodal line determines the presence
of a first order phase transition. (d) Nucleation and growth mechanism in the
metastable region (from [28]

)
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of a conservation law severely limits the way in which an interface between two
domains can move.

2.3 Coarsening and competition between domains
A relevant case in cell biology and for this thesis is that of a dilute population of
droplets immersed in a majority phase which, at a late stage, coarsen and coalesce,
competing for growth. This non trivial dynamics is named Ostwald Ripening and
results have been obtained for both conserved and non-locally conserved order
parameter dynamics. Such results are interesting for the study of domain dynamics
on a cell membrane, due to the existence of i) molecular species that mainly diffuse
laterally along the membrane (their concentration field is thus locally conserved),
ii) molecular species that can shuttle between membrane and cytosol, (thus they
introduce a concentration field that is locally non conserved). Emerging scaling laws
show that non-locally-conserved dynamics is characterized by a faster coarsening,
suggesting that the shuttling mechanism observed in cells may have come as an
evolutionary advantage.

2.3.1 Conserved dynamics
To understand the coarsening of a dilute population of droplets it is useful to first
look at the scenario of a single droplet is in its supersaturated vapor (the
average concentration c̄ of the minority phase in the entire system is larger than
the supersaturation value c∞), in the assumption that the growth of the droplet is
governed by diffusion of molecules to it. The following steps are mainly referred to
[29]. Under a a quasi-static assumption the vapor concentration for the surrounding
gas is the solution of a Laplace equation with Dirichlet boundary condition. Thus,
concentration profile in 3D follows the expression (see also Fig. 2.5):

c(r) = c̄ − [c̄ − c(R)]R
r

(2.5)

with c(R) being determined by the Gibbs-Thomson relation (for a possible derivation
see for example [30] - Appendix N):

c(R) = c∞

A
1 + ν

R

B
(2.6)

ν is the capillary length, that is related to the surface tension and the temperature.
Considering that the volume of a droplet changes with time following

dV

dt
= 4πR2 dR

dt
= 4πR2D

∂c

∂r

-----
r=R

(2.7)
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Figure 2.5: Schematic (not to scale) dependence of the minority-phase concentra-
tion as a function of the radial coordinate. Figure from [29].

the previous equations allow to calculate the evolution of R, giving

dR

dt
= D

R

A
∆ − c∞

ν

R

B
= α

R2

A
R

Rc

− 1
B

(2.8)

where ∆ = c̄ − c∞ is the degree of supersaturation and it is possible to identify a
critical radius Rc = c∞ν

R
such thatR >> Rc =⇒ R(t) grows as t1/2

R < Rc =⇒ R(t) shrinks as t1/3

Subcritical droplet shinkage with t1/3 dependence is the building block of t1/3

coarsening characterizing conserved order-parameter dynamics, that can be found in
the case of many competing domains. A system like this was studied by Lifshitz-
Slyzov and Wagner [31] under the assumptions of a slightly supersaturated
background (so that there is competition among domains) and of a dilute population
of droplets (so that droplets are non interacting and the concentration field around
each droplet is the same as for an isolated droplet). In a scenario like this, where
droplets have different sizes, the value of Rc must be determined self consistently.
The result of this dynamics is that as time passes, fewer droplets will be found in
the system, but will have a larger size, since largest droplets grow up as a result of
the swallowing up of the smaller ones. The governing equation are:

• continuity equation for the concentration of droplets of radius R ( the flux is
defined as J = f(R, t)dR

dt
):

∂f

∂t
+ ∂J

∂R
= 0 (2.9)

16



Phase separation processes

• Equation 2.8 for the evolution of the radius of a single domain

• conservation of the total mass of the minority phase

c̄ − c∞ + 4π

3

Ú ∞

0
R3f(R, t)dR = const (2.10)

In the minority limit the volume fraction of the minority phase that exists as
freely diffusing monomers is vanishingly small. As a consequnce the conser-
vation law reduces to the condition that the total volume of the droplets is
fixed, ie Ú ∞

0
R3f(R, t)dR = const (2.11)

A solution for the domain size distribution f(R, t) can be found under the scaling
assumption:

f(R, t) = 1
R4

c

ϕ(x) x = R

Rc

Such a choice is supported by the fact that it allows to rewrite 2.11 as
s

x3ϕ(x) =
const that is manifestly time independent. Substituting this Ansatz in the continuity
equation 2.9 it is possible to find the time behaviour for the critical radius

Rc ∼ t
1
3

and an expression for ϕ (plotted in Fig.2.6):

ϕ(x) =

Cx2(3 + x)−7/3(3 − 2x)−11/3e− 3
3−2x x < 3

2
0 x ≥ 3

2

with the amplitude C fixed by the conservation law 2.11.
This last result leads to the average size of domains scaling in time as ⟨R(t)⟩ ∼

t1/3. Such slower-than-diffusive behaviour also justifies the quasi-static approxima-
tion that was used to determine the concentration outside a droplet. It’s important
to point out that this derivation holds only for d > 2 , however the same qualitative
behaviour is found for arbitrary dimension: for d = 2, in particular, there are rather
relevant logarithmic corrections whose final effect is not universal and results in a
slowing down of the dynamics.

2.3.2 Non conserved dynamics
Exploiting scaling assumptions it is also possible to derive the scaling behaviour
of domain size distribution in the case of a non conserved order parameter ,
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Phase separation processes

Figure 2.6: Plot of ϕ. From [29]

as done in [32] . By Allen-Cahn equation (see for example [30]-Appendix O) the
local velocity of a domain wall in any dimension is proportional to its curvature,
meaning that in in two dimensions the area of the domain shrinks with constant
rate (let us say dA

dt
= −λ) . As a consequence of this, the domain size distribution

satisfies the continuity equation

∂

∂t
f(A, t) + ∂

∂A
(−λf(A, t)) = 0

giving f(A, t) = C
(A+λt)2 that comes with the scaling R(t) ∼ t

1
2 .

Results have also been found for the case of a non locally conserved order
parameter, with global conservation, for d = 2 , in order to address the
problem of domain coalescence on cell membrane [8],[33] (see Fig.2.7a). In this
case the system is dominated by the equations ( ∆ is the degree of metastability, σ
the linear surface tension, and γ is a damping factor):

• time evolution of the distribution function f(R, t) for the domain radius R:

γ
∂f

∂t
+ ∂

∂R
[(∆ − σ

R
)f ] = 0 (2.12)

• degree of metastability ∆(t) tends to zero at the equilibrium, as the total
patch area tends to its limit value AT OT :

∆ ∝ AT OT −
Ú

dRπR2f(t, R) (2.13)
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Asymptotically these equations lead to the self similar solution

∆(t) = (2σγ/t) 1
2 f ∝ t− 3

2 g(√γR/
√

2σt)

implying ⟨R⟩ = σ/∆ = Rc and therefore ⟨a⟩ ∝ ∆−1 ∝
√

t . The evolution of the
self similar domain size distribution is plotted in figures 2.7a, 2.7b . This result
is interesting because it is reminescent of the Landau-Slyzov-Wagner theory of
coarsening, showing a peak in the distribution of domains due to global conservation,
but the dynamics is faster due to the scaling R(t) ∼ t

1
2 .

(a)

(b)

Figure 2.7: (a) Domain coarsening and coalescence during cell polarization. (b)
Time evolution of the self similar domain size distribution (t/t0 = 1,2,3,4). Figures
from [33].
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Chapter 3

Phase separation in
molecular sorting:
one-component model

“Will I see you give more than I can take?
Will I only harvest some?”

Neil Young, Harvest

As claimed recently [22, 23], the process of molecular sorting may emerge from
the combination of two fundamental physical processes: a) a phase separation of
specific molecules into localized sorting domains and b) domain induced membrane
bending, leading to the formation of vesicles enriched in the biochemical factors of
the engulfed domains. This means that the process can be modelled, in abstract and
phenomenological terms, as a scenario in which proteins arrive on a membrane
region, diffuse and, due to an attractive interaction, aggregate into
localized enriched domains which are removed from the membrane after
reaching a characteristic size RE >> Rc: this mimics vesicle extraction at
a coarse grained level, without introducing explicitly membrane dynamics and
scission process. Direct coalescence of domains is not included in the model because
diffusivity of clusters in the membrane is much smaller than that of single molecules
(see [22], Supplementary Material), Such a model can be considered a variant
of the Island Growth model [29] for aggregation with input, with the difference
that in the present case over-threshold domains are removed and the aggregation
is not irreversible: according to classical nucleation theory, a critical size Ac is
required for a domain to continue to grow and avoid decay. At the stationary state
the growing domains coexist with a continuously repleted two-dimensional gas: if
the supersaturation is low the domains compete for growth and the scenario is
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Phase separation in molecular sorting: one-component model

then reminiscent of 2D diffusion-limited-aggregation and Lifshitz-Slyzov-Wagner
coarsening (but in 2D). Two important differences from the LSW coarsening are,
however, that 1) the solution is constantly repleted 2) extraction of over-threshold
domains prevents complete coalescence to be reached. In such a framework it
is natural to ask when sorting is most efficient and how is the size of domains
statistically distributed in such optimal condition. The efficiency of the sorting
process can be measured in terms of the average residence time T̄ of a molecule
on the membrane system, that is proportional to the density of molecules on the
membrane (see [34]).

Useful scaling laws governing the system can be derived by exploiting the
parallelism with Ostwald-ripening and thus following a similar approach to the
ones introduced in Sec.2.3. In a slight supersaturation scenario, the system can
be thought as divided in many attracting basins and the "vapor" density n(r)
surrounding a domain can be found, with a quasi-static assumption, by solving a
Laplace equation in two dimensions with Dirichlet boundary conditions:

n(r) = n0 + ln(r/R)
ln(L/R)∆n (3.1)

where n̄ is average molecule density in the gas, that can be considered constant
by continuous repletion of molecules, n0 the molecule density in proximity to the
domain boundaries and ∆n = n̄−n0. R is the radius of the domain (approximating
a domain as circular) and L the typical inter-domain distance. The evolution of
the system is then governed by the following equations:

• Dynamic equation for domain growth (with A0 = area occupied by a
molecule in the domain):

Ṙ = A0D∆n/[Rln(L/R)] (3.2)

This expression can be obtained from the flux of molecules from the gas

ΦR = 2πRD∂rn(r)
-----
r=R

= 2πD∆n

ln(L/R) (3.3)

that is related to radius dynamics by Ṙ = 1
2πR

ΦRA0

• Smulochowski equation describing the statistics of supercritical domains
N(t, R) (defined such that N(t, R)dR is the number of domains per unit area
with size between R and R + dR):

∂N

∂t
+ ∂

∂R
(ṘN) = −γ(R)N (3.4)
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where γ(R) is the extraction rate for domains of size R and is assumed to
be negligible if R < RE , while it is strong for R > RE. This expression is
analogous to Eq.2.9, with the difference that the l.h.s. term is not zero and
models domain extraction.

Together, Eq.3.2 and 3.4 bring to the stationary solution

Nst(R) = JRln(L/R)
D∆R

exp −
Ú R

0
dr

rln(L/r)γ(r)
A0D∆n

(3.5)

where the factor J can be determined imposing that at stationarity the average
flux to the domains equate the incoming flux ϕ per unit areaÚ

dRΦRNst(R) ∼ ϕ (3.6)

giving
J ∼ ϕ

R2
E

(3.7)

The distribution is plotted in Fig. 3.1 (red line).

Figure 3.1: Frequency densities of domain sizes during the sorting pro-
cess,accordance between the phenomenological theory (Eq.3.5), experiments and
simulations, Ref. [22]

This result is useful to evaluate the efficiency of the sorting process by allowing
to estimate the average residence time T̄ of a molecule on a membrane system,
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which can be written as the sum of the average time T̄f required to reach a domain
by free diffusion and be absorbed and the average time T̄d spent inside the domain
until the extraction event. Notice that an absorbing domain is implicitly assumed:
this simplifications assumes a small critical size and thus neglects the time spent in
under-critical domains. The two terms can be estimated as follows:

• T̄f should be inversely proportional to the expected number of domains and
to diffusivity, giving

T̄f ∼ 1/(DNd) ∼ ∆n/ϕ (3.8)

where Nd =
s

dRNst(R) ∼ ϕ/(D∆n)

• T̄d can be approximated to the time required to a flow of molecules to fill an
area ∼ R2

E

T̄d ∼ R2
E/(A0ΦR) ∼ R2

E/(D0∆n) (3.9)

A scaling form for n̄ can can be found considering the rate of formation of domains,
that can be estimated as

dNd/dt = CDn̄2 (3.10)

where C is a dimensionless quantity characterizing the efficiency of absorption of
single molecules by a germ of a domain. At stationariety this rate equates the rate
at which a domain is extracted from the system

dNd/dt = Nd/T̄d (3.11)

and we can thus find a scaling form for n̄

n̄ ∼
A

ϕA0

CDR2
E

B1/2

(3.12)

Under the assumption of a strong depletion around a domain it is possible to
approximate ∆n ∼ n̄ and then substitute this scaling form in the expression for
T̄ = T̄f + T̄d, obtaining that it has a minimum for C ∼ A2

0/R2
E << 1

Such result has been confirmed numerically through a lattice-gas microscopic
model, where the system evolves according to a Markov process that comprises the
following three elementary mechanisms:

1. molecules from an infinite reservoir arrive and are inserted on empty sites
with rate kI

2. molecules can perform diffusive jumps to an empty neighboring site with rate
kD/gNnn , where Nnn is the number of molecules neighboring and where g > 1

3. molecules are extracted from the system by the simultaneous removal of all
connected molecule clusters, if any, that contain a completely filled square of
linear size l , with l2 ∼ RE/A0
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Efficiency of the process can be evaluated by measuring the density ρ, that is
proportional to T̄ . As can be seen in Fig. 3.2a results confirmed the estimates, in
that C increases monotonically and non-linearily wit the aggregation coefficient
g. Experimentally measured densities are reached in the physical model near the
density minima (Fig. 3.2b), supporting the idea that evolution may have lead
proteins to tune their activity around optimality.

(a)

(b)

Figure 3.2: (a): density obtained at the stationary state (from numerical simula-
tions) as a function of the aggregation coefficient g, for different incoming fluxes.
(b): nondimensionalized sorting rate as a function of the aggregation coefficient g
and of the nondimensionalized incoming flux . Values obtained from experiments
on living cells are compatible with the idea that cells operate in an optimal regime.
From [22]
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Chapter 4

Phase separation in
molecular sorting:
introducing a
two-component model

“Hey, Hey, What Can I Do
Led Zeppelin

Despite being minimal, the model dicussed in [22] and presented in the previous
chapter proved capable to capture a crucial feature of the sorting process, that
is the existence of an optimal region in which the process takes place. Having
a minimal model capable to do this is an important point, since it means that
the feature investigated is robust (i.e. it does not rely on details of the system).
Encouraged by these results, this work aims to add new ingredients to the model,
while keeping it minimal. So far, only one type of molecule has been considered,
which, once inserted in the membrane, can only diffuse until it is extracted together
with a over-threshold domain; however, as pointed out in Ch.1, coat formation
involves the interaction of:

1. cargo molecules, that are an input to the system and, once present on the
membrane, can mainly diffuse until they are extracted.

2. a finite pool of cytosolic endocytic proteins of different types that can
shuttle between membrane and cytosol (i.e: they evaporate from any part of
the membrane, then they diffuse rapidly in the cytosol and are successively
captured again in another part of the membrane) and are recycled after an
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extraction event. This is the case, for example, of adaptor molecules and
clathrins. In the followig these proteins will be referred, in genearal, as
“auxiliary molecules”

Imagining to focus on a small region of the membrane for relatively short time
scales (shorter than the typical time scale of domain growth and extraction and of
cargo insertion) we would see that the concentration field of the cargo is locally
conserved on the membrane (“model B” following the classification in [25]). On the
contrary, the fast redistribution mechanism followed by the auxiliaries implies that
their concentration field is approximately globally - but not locally - conserved
on the membrane (“model A” following the classification in [25], but with global
conservation).

(a) (b)

Figure 4.1: (a):AB model (b) B’B model

With these observations in mind, in the following I am going to propose a “AB
model” in order to answer the following questions:
Q1 What are the crucial features of such a coupled dynamics?
Q2 According to classical theories of phase separation (see Ch. 2) systems that

follow a A dynamics show a faster coarsening. At the same time in [22]
it was found that optimality takes places in scenarios where the number
of sorting domains is minimized (few overcritical domains) suggesting that
faster coarsening might facilitate sorting. So, does the interaction of cargoes
with molecules that follow a faster, non-locally-conserved dynamics, make the
process more efficient?
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4.1 AB model
The membrane system is modelled as a 2D lattice-gas with periodic boundary
conditions, which is coupled to an unstructured cytosol. As discussed in Ch.1
there are tens of protein types involved in the process of protein sorting, however
here I follow a coarse-grained approach and consider the interactions of just two
types of “particles”, “B particles” and “A particles” , that model respectively cargo
and auxiliary molecules:

B particles allowed to perform two moves:

Insertion on the membrane from a infinite reservoir (this is because they
mimic cargoes, that are an input to the system) such that an empty site
of the membrane will be occupied by a B particle with a rate

Diffusion to a neighboring empty site with rate rate kdiffB
gnA

, where nA counts
the number of first-neighbouring A particles. kdiffB is the diffusion rate
for a free molecule and g the adimensional aggregation constant.

When an over-threshold domain is extracted the B particles involved are just
removed from the system.

A particles allowed to perform:

Insertion on the membrane from a finite reservoir (at each time step NAtot =
NAcyt +NAmem) such that the rate at which an empty site can be occupied
by an A molecule is kinsANAcyt

Detachment with the position dependent rate kdetA
gnB , where nB counts the

number of first-neighbouring B particles and kdetA is the detachment rate
for a free particle

When an over-threshold domain is extracted the A particles involved are
re-immitted in the cytosol.

A connected component of at least NE elements is extracted with rate kext. In this
work it is assumed that A-A and B-B interactions are of excluded volume type,
while a contact attractive potential is assumed for A-B interactions, modelling the
cargo-auxiliary molecule affinity presented in Ch.1. A more realistic model could
assume an attractive interaction also between homologous particles, indeed as I
claimed in Ch.1, there is a cooperation between auxiliary molecules (see Fig. 1.8):
in other words in a more general case we would have an aggregation matrix

G =
C
gAA gAB

gAB gBB

D
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that is now simplified to

G =
C
1 g
g 1

D
. This assumption is needed to reduce the number of parameters and at the
same time is consistent with the fact that domains need both cargo and auxiliary
molecules in order to be stable (see Ch.1).

4.2 B’B model
The AB model defined previously has three crucial features:

1. finite and conserved pool of auxiliary molecules
2. auxiliariy molecules perfom a A dynamics
3. attractive interaction only for A-B pairs

So, in order to assess what contribution is given by the shuttling property of the
auxiliary molecules, I introduce a “B’B” model that shares features 1) and 3) with
model AB but it replaces A particles with B’ particles, that can jump to empty
neighbouring sites with rate kdiffB′

gnB
- and thus follow a B dynamics - and are recycled

after an extraction event (they are re-inserted randomly on the membrane). .

4.3 Parameter dependence
As in [22], we are interested at evaluating the efficiency of the process by calculating
the density of molecules achieved by the system at stationarity, that is a relevant
situation that happens often in biological and non biological systems. In the
microscopic model we can define ρ = Number of filled sites

Total number of sites such that [ρ] = 1 (i.e. ρ
is nondimensional). In general, at stationarity this quantity for the AB model is
given by

ρAB = ρAB(g,
Naux

Nsites
, Next, kext, kinsA, kdetA, kinsB, kdiffB) (4.1)

A choice for the extraction threshold can be Next = 100, that is a reasonable value
since the lateral surface occupied by a protein is typically A0 ∼ (10nm)2 [15] and
the size of mature endocytic vescicles is AE ∼ (100nm)2 [22]. We are thus left with

ρAB

-----
Next=100

= ρAB

-----
Next=100

(g,
Naux

Nsites
, kext, kinsA, kdetA, kinsB, kdiffB) (4.2)

Since [ρAB] = [ Naux
Nsites

] = 1 and [kdetA] = [kdiffB] = [kinsB] = [kext] = 1
[time] we can

write, in a similar fashion of [22]

ρAB

-----
Next=100

= ρAB

-----
Next=100

(g,
Naux

Nsites
,

kext

kdiffB
,

kinsA

kdiffB
,
kdetA

kdiffB
,

kinsB

kdiffB
) (4.3)
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The number of parameters can be reduced assuming that
• kext → ∞ (i.e. the precise value of the extraction rate is irrelevant as long as

the extraction dynamics is much faster than the characteristic timescale of
domain growth, so that similar scenarios are always observed for large but
finite values of kext).

• we take the limit kinsA → ∞: this is compatible with the assumption of a fast
diffusion of auxiliaries in the cytosol

and obtaining (theˆindicates the assumptions done)

ρ̂AB = ρ̂AB(g,
Naux

Nsites
,
kdetA

kdiffB
,

kinsB

kdiffB
) (4.4)

Similarly, for the B’B model we have

ρB′B = ρB′B(g,
Naux

Nsites
, Next, kext, kdiffB′ , kinsB, kdiffB) (4.5)

that, following similar steps, becomes

ρB′B

-----
Next=100

= ρB′B

-----
Next=100

(g,
Naux

Nsites
,
kdiffB′

kdiffB
,

kinsB

kdiffB
) (4.6)

In a first approximation lateral diffusivity of different species along the membrane
should not vary much in terms of order of magnitude, so we can assume kdiffB′

kdiffB
= 1,

getting
ρ̂B′B = ρ̂B′B(g,

Naux

Nsites
,

kinsB

kdiffB
) (4.7)

To sum up we have

ρ̂AB = ρ̂AB(g,
Naux

Nsites
,
kdetA

kdiffB
,

kinsB

kdiffB
)

ρ̂B′B = ρ̂B′B(g,
Naux

Nsites
,

kinsB

kdiffB
)

The system was studied by running simulations based on the algorithm described
in Ch.5, obtaining phase diagrams as a function of g and Naux

Nsites
. Simulations were

performed on a 200x200 square lattice with periodic boundary conditions setting
kinsB
kdiffB

= 10−6 . To make a comparison a direct as possible between model AB
and model B’B I first set kdetA = kdiffB = kdiffB′ : in this case we are ultimately
comparing a model where the auxiliary molecules perform a random walk on a
square grid (the B’B model) with the case where they still perform a random walk,
but the steps, even if with the same propensity, can have arbitrary length and
direction. For the AB model I then also investigated the case where kdetA

kdiffB
= 102 in

order to study the role of a faster redistribution of the auxiliaries (the larger kdetA
the lower is the affinity of the auxiliaries for the membrane in absence of cargo).
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Chapter 5

Model and Algorithm

“This means war
With your creator"

Muse, Algorithm

5.1 Model formalization
The kinetic of distillation in the model AB can be described as a continuous time
Markov process specified by the infinitesimal generator L. Given, Col = {A, B}
,η ∈ ColN the configuration of the system , f(η) a function of the state of the
system (such as density of molecules), L is defined by the relation

∂tE(f(η)) = E(Lf(η)) (5.1)

where E(f(η)) = q
η P (η)f(η). and L is given by the sum

L = LinsB + LdiffB + LinsA + LdetA + Lext (5.2)

where the various contributions are defined in the following way:

LinsB operator for the insertion of a B particle:

LinsBf(η) = kinsB
Ø

i:ηi=0
[f(ηiB ) − f(η)] (5.3)

where the configuration ηiB differs from η only for the insertion of a B particle
on site i.

LinsA operator for the insertion of a A particle:

LinsAf(η) = NA
cytkinsA

Ø
i:ηi=0

[f(ηiA) − f(η)] (5.4)
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LdiffB -operator for the diffusion of a B particle:

LdiffBf(η) = kdiffB
Ø

i:ηi=B

Ø
j∈N⟩ηj=0

g−nA(i)[f(ηij) − f(η)] (5.5)

where ηij differs from η only for the jump of molecule in site i to site j and
nA(i) is the number of A particles neighbouring site i..

LdetA operator for the detachment of a A particle:

LdetAf(η) = kdetA
Ø

i:ηi=A

g−nB(i)[f(η−iA) − f(η)] (5.6)

where nB(i) is number of B particles neighbouring site i. η−iA differs from η
only for the detachment of a A particle in site i.).

Lext operator for the extraction of a connected over-threshold cluster:

Lextf(η) = kext
Ø
C∈C

[f(ηC) − f(η)] (5.7)

where C is the set of connected clusters above threshold and ηC differs from η
only for the removal of a cluster C (so we set ηi = 0∀i ∈ C)

The infinitesimal generator for the B’B model can be written as

L = LinsB + LdiffB + LdiffB′ + Lext (5.8)

with
LdiffB′f(η) = kdiffB′

Ø
i:ηi=B′

Ø
j∈N⟩ηj=0

g−nB(i)[f(ηij) − f(η)] (5.9)

the infinitesimal generator for the diffusion of a B’ particle.

5.2 Gillespie algorithm

5.2.1 Basic ideas
To simulate the system a Gillespie (Kinetic Monte Carlo) algorithm [35] was
implemented, which is a rejection-less Monte Carlo algorithm commonly used to
simulate stochastic processes in continuous time. We first recall here some of the
basic ideas behind this algorithm and then focus on our specific implementation.
Let’s consider n independent events and set pi = ∆tp̄i (p̄i has thus dimension
1/[time]) the probability of occurrence of event i in the time interval ∆t. If we
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suppose to be at instant t, then the probability that next event will happen in an
interval [t + τ, t + τ + dt] is given by

p([t + τ, t + τ + dt]) = (
NØ

i=1
p̄i)e−(t+τ)

qN

i=1 p̄idt (5.10)

Memory-less property of Markov processes implies

p([τ, τ + dt]) = (
NØ

i=1
p̄i)e−τ

qN

i=1 p̄idt (5.11)

and so the waiting time τ follows an exponential distribution

τ ∼ E(
NØ

i=1
p̄i) (5.12)

from which it is possible to sample using the inverse cumulative method, obtaining

τsampled = −log(1 − u)qN
i=1 p̄i

(5.13)

where u ∼ U([0,1]).
Probability that an event i happens, conditioned to the fact that an event

happens, is given by

p(i happens|sth happens) = p̄iqN
i=1 p̄i

+ O(1) (5.14)

According to the inverse cumulative method it is possible to sample from this
distribution choosing the event µ such thatqµ−1

i=1 p̄iqN
i=1 p̄i

< r ≤
qµ

i=1 p̄iqN
i=1 p̄i

(5.15)

So the structure of the algorithm is given by the repetition of the following
steps:

1. initialize configuration
2. draw the waiting time
3. increase clock by τ
4. draw which event will happen
5. update the system, update the possible events that can happen at this current

configuration and their relative propensities p̄i

6. go to 2
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5.2.2 Implementation
In the present case things are slightly complicated by the fact that the number
of possible events that can potentially happen scales at least with the size of the
lattice (> O(Nsites)) . A strategy to overcome this is to group events that will
happen with the same propensity and subsequently draw what specific event among
them will happen, conditioned to the fact that one of these events will happen. In
our system the propensity of a particle to do a certain move is strictly related to
its position. In order to follow this approach it is useful to define the function lc
that associates each site to its local configuration

lc(i) = (η(i), nempty(i), nA(i), nB(i))

(where nempty(i) is the number of neighbouring empty site) . With LCA (LCB) we
denote the space of possible local configurations having respectively a A particle (a
B particle) in the middle . It is hence possible to define a vector for the propensities:

ν⃗ =


ν⃗diffB
ν⃗detA
ν⃗ins
νext


where:

• ν⃗diffB ∈ R|LCB | is the vector for the propensities of particle B diffusion: given
lck = (B, nk

empty, nk
A, nk

B) ∈ LCB a local configuration, the propensity of having
a B particle in that local configuration diffusing is

νlck
diffB = Nlck

kdiffBnk
emptyg−nk

A

with Nlck
the number of particles in that local configuration.

• ν⃗detA ∈ R|LCA| analogously is the vector such that, given lck = (A, nk
empty, nk

A, nk
B) ∈

LCA ,
νlck

detA = Nlck
kdetAg−nk

B

is propensity of having the detachment of a A particle in that local configura-
tion.

• ν⃗ins = [νinsA, νinsB] is the vector for the propensities of insertion such that

νinsA = kinsAN cyt
A Nempty

νinsB = kinsBNempty
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• νext tells the propensity of having an extraction event and is given by

νext = kextNot

with Not being the number of over-threshold domains

So the selected event may be:
• a diffusion of a particle in local configuration lck: the algorithm then chooses

uniformly at random a site among the ones in that local configuration.
• a detachment of a particle in local configuration lcl: the algorithm then chooses

uniformly at random a site among the ones in that local configuration
• an insertion of a particle of type A or B: the algorithm then chooses uniformly

at random an empty site where to insert it
• an extraction of a domain: the algorithm then chooses uniformly at random

the connected component whose size is above threshold
Once that the instant for the next event is drawn and the event is selected, the
system configuration is updated and the vector of propensities re-calculated.The
main steps of the algorithm are illustrated in 5.1

The algorithm for the B’B model is very similar. The vector of rates becomes

ν⃗ =


ν⃗diffB
ν⃗diffB′

ν⃗insB
νext


and the structure of the algorithm is in Fig. 5.2
During the simulation statistics are tracked following the algorithm in Fig.5.3. At
the end we are able to compute

• the temporal average in the time window [t − ∆t, t] as

⟨s⟩(t) = WSs(t)
∆t(t)

• the temporal average in the time window [t1, t2]

⟨s⟩ =
qt2

t=t0 WSs(t)qt2
t=t0 ∆t(t)

Where s = ρ, ρ2, ρ3, ρ4 , ρ is the total density of the system and ⃗ρpart is the vector
of the partial densities.
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Figure 5.1: Structure of the algorithm used to simulate the AB model
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Figure 5.2: Structure of the algorithm used to simulate the B’B model
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Figure 5.3: Strategy adopted to track statistics during the simulation
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Chapter 6

Results

“Do I wanna know?”
Arctic Monkeys, AM

As introduced in Sec. 4.3, I studied the stationary state for the following
scenarios:

1. ˆρB′B

----- kinsB
kdiffB

=10−6
(g, Naux

Nsites
)

2. ˆρAB

----- kdetA
kdiffB

=1,
kinsB
kdiffB

=10−6
(g, Naux

Nsites
)

3. ˆρAB

----- kdetA
kdiffB

=102,
kinsB
kdiffB

=10−6
(g, Naux

Nsites
)

thus obtaining phase diagrams in the (g, Naux
Nsites

) space. As in [22], the sorting
process is considered optimal when the mean residence time of the cargo (the time
passing from the instant cargo is inserted on the membrane and the instant it is
extracted) is minimal. Mean residence time of the cargo is proportional to the
density of cargo reached at the stationary state. Differently from [22], in the present
case also auxiliary molecules are involved, which are present in a fixed density
ρaux ∼ Naux/Nsites on the membrane (this is true for B’ species and A species in the
case of large kinsA ). Since many biological processes take place on the membrane,
it is reasonable to require that at optimal sorting the membrane is not overcrowded
with endocytic (auxiliary) molecules: in other words a scenario where small ρB

is achieved at the expenses of large ρaux is not optimal. For this reason in the
following I will focus both on ρB and ρ = ρB + ρaux .
As explained in the previous chapter, the trajectory of our system is a Markov
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Chain, that can be interpreted as a random walk on the graph of all possible
configurations of the system, with link-dependent transition probabilities. It follows
that, depending on the graph, it may be possible for the system to stuck in (quasi-
)absorbing connected components. Hence, in general, the initial condition is not
irrelevant. In order to discuss the existence of low density stationary states here I
present the results for simulations 1 starting from an empty membrane initial
condition. The issue of initial condition will be further discussed in Sec. 6.8.
In the following I first present separately the results for the three different cases
investigated, then I focus on peculiar features of the model that can be grasped in
general.

6.1 Case 1: B’B dynamics
A qualitative view of the behaviour of the B’B model, simulated setting kinsB =
10−6, kdiffB = 1, kdiffB′ = 1, kext = 105, can be found in the phase diagram in Fig. 6.1
where, for each couple (g, Naux/Nsites), I represent snapshots of the system taken
after the transitory. A quantitative view of the behaviour of average cargo density
can be obtained from the plots in Fig. 6.2a, Fig.6.3a - left and Fig. 6.3b-left. The
behaviour of ρ = ρB + ρB′ (let us recall that in the case at hand ρB′ = Naux/Nsites)
is plotted in Fig. 6.2b, Fig. 6.3a-right , Fig. 6.3b-right. In Fig.6.2c and Fig. 6.2d I
plot the values reached at the stationary state by the standard deviation of the
cargo density and the total density: the reason why the two plots are equal is that
in this regime ρB′ = Naux/Nsites , meaning that only ρB contributes to fluctuations
.
From the plots we observe that, for a low enough Naux/Nsites ( Naux/Nsites ≤
α < 1.75 × 10−2) no sorting takes place, regardless of g, and the system becomes
overcrowded with B particles. For a larger Naux/Nsites, instead, we observe the
emergence of an interval of g where low densities are achieved . This
interval becomes larger as the ratio Naux/Nsites increases, but the final density
achieved at the optimal g , for a fixed value of Naux/Nsites , increases.
For large enough g (g ≥ 102) we see that going from Naux/Nsites ∼ 0.04225 to
Naux/Nsites ∼ 0.05625 the system switches from a high density regime to a regime
where the density is consistently smaller, but exhibits larger fluctuations. Such
fluctuations are linked to the emergence of large oscillations, that are specific of
this region (see Fig. 6.2c ). Their nature will be discussed in Sec.6.5. Interestingly,
a comparison between Fig. 6.2a and Fig.6.2c shows that fluctuations are the
smallest in correspondence of the region where minimum densities are found.

1Computational resources were provided by HPC@POLITO (http://www.hpc.polito.it) and
BigData@PoliTO Cluster (https://smartdata.polito.it/computing-facilities/)
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Figure 6.1: Phase diagram for the B’B dynamics

At Naux/Nsites = 1.0 × 10−1 a crossover can be identified: such oscillations
decrease in amplitude, ρB starts again to decrease, but ρ keeps on increasing. These
behaviours are due to the fact that now the system is overcrowded with B’ particles,
as can also be seen in Fig.6.1.
Fig. 6.4 shows that, for fixed values of g, at optimality, we reach a situation where
the quantity of B particles at the stationary state is approximately equal to that of
B’ particles.
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(a) (b)

(c) (d)

Figure 6.2: B’B dynamics: plots, as a function of Naux/Nsites and of g , of (a)
stationary density of cargo, (b) stationary total density, (c) standard deviation
at stationariety of cargo density (d) standard deviation at stationariety of total
density.
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(a)

(b)

Figure 6.3: B’B dynamics: (a-left) stationary cargo density and (a-right)
stationary total density as a function of g; (b-left) stationary cargo density and
(b-right) stationary total density as a function of Naux/Nsites
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Figure 6.4: B’B dynamics: for fixed g optimal conditions are realized when
cargo and auxiliaries are at quasi-equimolarity in the stationary state.

43



Results

6.2 Case 2: AB dynamics

Figure 6.5: Phase diagram for the AB dynamics

A qualitative view of the behaviour of the AB model, simulated setting kinsB =
10−6, kdiffB = 1, kdetA = 1, kinsA = 106, kext = 105, can be found in the phase diagram
in Fig.6.5, which does not differ qualitatively from the previous case (Sec. 6.1).
Again, a more quantitative view can be obtained from the plots in Fig. 6.6a and
Fig. 6.6b where I plot, respectively, the average density ρB and ρ = ρB + ρA (let
us notice that, for large kinsA , ρA ≃ Naux/Nsites). More details can be seen in
Fig.6.7a and Fig.6.7b, while in Fig.6.6c and Fig.6.6d the behaviour of the standard
deviation is plotted.
In this case the appearance of a low density region is found going from
Naux/Nsites = 0.01 to Naux/Nsites = 0.01325. In approximately the same positions
as the previous case we see a large oscillationsregion and a crossover , where
the system becomes overcrowded with A particles.

44



Results

Fig. 6.8 shows that, for fixed values of g, at optimality, we reach a situation where
the quantity of B particles at the stationary state is approximately equal to that of
A particles.

(a) (b)

(c) (d)

Figure 6.6: AB dynamics: plots, as a function of Naux/Nsites and of g , of (a)
stationary density of cargo, (b) stationary total density, (c) standard deviation
at stationariety of cargo density (d) standard deviation at stationariety of total
density.
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(a)

(b)

Figure 6.7: AB dynamics: (a-left) stationary cargo density and (a-right)
stationary total density as a function of g; (b-left) stationary cargo density and
(b-right) stationary total density as a function of Naux/Nsites
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Figure 6.8: AB dynamics: for fixed g optimal conditions are realized when
cargo and auxiliaries are at quasi-equimolarity in the stationary state.
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6.3 Case 3: fast AB dynamics

Figure 6.9: Phase diagram for the fast AB dynamics

A qualitative view of the behaviour of the AB model, simulated setting kinsB =
10−6, kdiffB = 1, kdetA = 102, kinsA = 108, kext = 105, (“fast AB dynamics)” can be
found in the phase diagram in Fig.6.9. Again it shows a behaviour similar to
the previous ones, notice however that it is shifted to lower values of Naux/Nsites.
Again, a more quantitative view can be obtained from the plots in Fig. 6.10a, and
in Fig. 6.6b where I plot, respectively, the average density ρB and ρ = ρB + ρA.
More details can be seen in Fig.6.11a,6.11b, 6.12. In Fig.6.10c and Fig.6.10d the
behaviour of the standard deviation is plotted.
The appearance of a low density region is found for Naux/Nsites ≥ α with
α ∈ (3.2 × 10−3, 4.225 × 10−3] . The emergence of large oscillations is found for
Naux/Nsites ≳ 4.225 × 10−2.
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(a) (b)

(c) (d)

Figure 6.10: fast-AB dynamics: plots, as a function of Naux/Nsites and of g , of
(a) stationary density of cargo, (b) stationary total density, (c) standard deviation
at stationariety of cargo density (d) standard deviation at stationariety of total
density.
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(a)

(b)

Figure 6.11: fast-AB dynamics: (a-left) stationary cargo density and (a-right)
stationary total density as a function of g; (b-left) stationary cargo density and
(b-right) stationary total density as a function of Naux/Nsites
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Figure 6.12: AB-fast dynamics: stationary cargo density versus Naux/Nsites
(non-logarithimc scale)
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6.4 Comparison between the three cases

Figure 6.13: Comparison of the behaviour of total density reached at stationary
state for the three scenarios investigated. A faster rearrangement mechanism of
the auxiliaries enlarges the “sorting region” and allows to reach smaller values of
the density.

Fig.6.13 compares the three cases investigated. This comparison suggests that
a faster rearrangement mechanism of the auxiliaries enlarges the “sorting region”
and allows sorting to take place even for lower values of Naux/Nsites. The region
not only gets larger, but also the optimal values of ρ (and of ρB) become smaller
and are always found at the smallest possible Naux/Nsites where it is possible to
find a low density state.

The role of a fast redistribution of auxiliary molecules can be seen not only if
we focus on the stationary state, but also if we look at the time required to reach a
low density stationary state starting from a non-empty membrane. As it will be
discussed in Sec. 6.8, for fixed g and Naux/Nsites, the time required to reach a low
density stationary state can be significantly lower for the AB dynamics than for
the B’B dynamics.

These results are not trivial because, in order to form a domain, B particles
are necessary and they follow the same dynamics in all the three cases studied,
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possibly making the specific dynamics of the auxiliary molecules (whether A, B’ or
A with fast shuttling) irrelevant. The results achieved suggest that the dynamics
followed by the auxiliaries is not irrelevant and can impact on the process.

6.5 Large oscillations

Figure 6.14: Trajectories obtained for the AB and the B’B dynamics and snapshot
of the configurations with Naux/Nsites = 10−1 and g = 1000. For proper values of the
parameters (large-oscillations region), the density of cargo shows large oscillations
and the configurations of the system follow a strongly periodic behaviour.

An interesting feature of the two-components model, independently of the
specific dynamics followed by the auxiliaries, is the presence of a region where the
fluctuations in the density become much larger, as it can be seen from the plots
in Fig. 6.2c, Fig.6.6c, Fig.6.10c. Interestingly such larger variance comes with
the appearance of relatively regular large oscillations in the density. This feature
can be grasped from the example trajectories on the left of Fig. 6.15, that are
presented together with their estimated power density spectrum (calculated from
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the total density2). A more systematic point of view can be obtained from Fig.
6.16, where for each parameter combination we see the dominant frequency and its
power contribution: from these plots we can see that in the large fluctuations region
(see again Fig. 6.6c) the evolution of the system is characterized by oscillations of
large amplitude (thus large power) and small frequencies.

What’s the mechanism behind such oscillations? In Fig.6.14 two example
trajectories obtained in this parameter region are represented for the AB and the B’B
dynamics, where we see oscillations in ρB together with the periodic behaviour of the
configurations assumed by the system. Such behaviour is apparently a consequence
of having a sufficiently large value of Naux/Nsites, in presence of large values of g :
this combination favours the proliferation of many competing domains that
grow until the totality of auxiliary molecules is depleted. As suggested from the
sequence of snapshots in Fig. 6.14, if Naux/Nsites is sufficiently large it is possible
to reach configurations where many domains have a size comparable with the
extraction threshold so that, as one domain is extracted, auxiliary molecules are
recycled and can successively bind to other domains, allowing them to reach the
extraction threshold end being extracted at their time. The result is thus a cascade
of extractions. Fig. 6.2c and Fig. 6.6c show that such large oscillations are present
only for a range of Naux/Nsites. Indeed, if this value is too small the large g causes
the auxiliary molecules to remain frozen in small clusters, preventing sorting; on
the contrary, for larger Naux/Nsites, we can expect that the auxiliaries cease to be a
limiting factor and oscillations decrease in amplitude.
The mechanism just described implies the periodic alternation between long
“quiescent” intervals where extractions are rare events and intervals characterized
by cascades of extractions. Indeed, this can be seen in the example trajectory
in Fig.6.15f. Such regular behaviour cannot be found in other regions. This idea
can be assessed more systematically by performing a preliminary analysis on the
sequence of the extraction instants (that are recorded during the simulations). In
particular it is possible to obtain the time series

h(t) = number of extraction events occurred in the interval[t − ∆/2, t + ∆/2)

Fig.6.17 (top-right) shows an estimate of its variance, that reaches the highest values
in correspondence of the large-oscillations region. Fig.6.17 (left and bottom-right)
also shows that in this region low frequencies are important.

2Techical remark: as presented in Ch.5 the simulation algorithm records a value for the density
every N steps. The recorded value is a time-weighted average of all the densities assumed in the
last N steps, this implies that the obtained signal is smoothed (which is not a great problem since
we are interested in smaller frequencies) and non-uniformly sampled. To do the analysis I first
linearily interpolated the signal and then estimated the power spectral density by computing the
Fourier transform of the auto-correlation function of the signal (Wiener-Khinchin theorem)

54



Results

A similar analysis can be done also on the time series f(t) defined such that

f(t) = time elapsed (at t) since last extraction event

This time series, in the large-oscillations region, should exhibit higher peaks in
correspondence of quiescent intervals and is thus expected to show a quasi-periodic
behaviour. This can be confirmed estimating the power density spectrum of the
signal (Fig. 6.18).
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(a)
(b)

(c)
(d)

(e)
(f)

Figure 6.15: Figures on the left represent trajectories obtained for the AB dy-
namics in different parameter regions (red=ρA , blue=ρB, vertical bar = extraction
event). Figures on the right show the associated power spectra. The third example
comes from the large fluctuations region: here we see large oscillations, corre-
sponding to a peak in the spectrum, and the alternation between periods where
extractions are very rare and periods of intense extraction activity.
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(a) (b)

Figure 6.16: Spectral analysis of ρ evolution at stationariety, for the AB case:
dominant frequencies (left) and their associated power (right). For large g and large
Naux/Nsites the stationary state is characterized by oscillations of large amplitude
(thus large power) and small frequencies. In the region where sorting is disfavored
and the system reaches high densities, the plot is more irregular. This is probably
due to the fact that here the signal itself is more irregular and, to have a more
detailed analysis, the system should be simulated for longer times.
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Figure 6.17: Analysis of the signal h(t) (h(t) = number of extraction events
occurred in the interval [t − ∆/2, t + ∆/2)). (top-right) estimated variance. (left)
dominant frequencies of the spectrum, with zoom on the top-right region (bottom-
right) associated power. These results are compatible with the observation that, in
the large-oscillations region, we observe the alternation of long“quiescent” periods
(where extractions are more rare) and periods where the extraction activity is more
intense. To do the analysis a ∆ much smaller than the average time between two
extraction events was chosen (in order to obtain a train of spikes).
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(a) (b)

Figure 6.18: Spectral analysis of f(t) (f(t) = time elapsed, at t, since last
extraction event) for the AB case: dominant frequencies (left) and their associated
power (right). This result is compatible with the observation that, in the large-
oscillations region, we observe “quiescent” periods (where long time passes between
one extraction and the other) and periods where the extraction activity is more
intense. The analysis was performed considering a sampling period much smaller
than the average time between two extraction events.
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6.6 Comparison with the one-component model

Figure 6.19: Comparison between the one-component model (center) and the AB
model (right and left).

Independently from the specific dynamics followed by the auxiliary molecules, a
specificity of the two-component model is that a domain requires the presence of
both species in order to be stable, but one of them is present in a limited quantity.
This apparently simple feature introduces behaviours that are not found in the
one-component model studied in [22]. This can be seen in Fig. 6.19, where the
behaviour of ρB as function of g, in the AB model, is compared to the density
behaviour in the one-component model described in [22]. The former is simulated
setting that the particles involved have the same insertion rate and diffusion rate
of B molecules in the AB model, while the extraction threshold is half the one for
the AB model (in this way the number of particles removed within an extraction
in the one-component model is approximately equal to the number of B molecules
removed during an extraction in the AB model, however a similar curve is obtained
setting the same extraction threshold).
From the plots we see that, for large values of Naux/Nsites (Fig. 6.19, rightmost
panel) the behaviour of ρB as a function of g is reminiscent of that in the one-
component model, with the difference that fluctuations (error bars represent the
standard deviation) become larger for increasing values of g: this is because the
large- oscillations phenomenon described in Sec.6.5. As Naux/Nsites decreases, the
minimum of ρB reaches smaller values and it gradually shifts to larger values of
g. It is to notice, however, that the optimal values for g are in approximately the
same region as in the one-component model.
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For low enough Naux/Nsites (Fig. 6.19, leftmost panel), sharp transitions take
place. Indeed it is possible to identify an interval of g where the functional form

of ρB(g)
-----
Naux/Nsites

is similar to that found at larger Naux/Nsites while, going out of

this interval, sorting is much more disfavoured and high densities are reached. This
interval becomes smaller for decreasing Naux/Nsites , until we get a “sorting well”
(a small region where sorting takes place and small densities are reached). The
origin of such sharp transitions, that are not observed in the one component model,
is discussed in Sec. 6.7.
Interestingly, the global minimum for ρB in the AB model is approximately the
same of the one in the one-component model, but it becomes smaller for a faster
rearrangement of A molecules (AB - fast dynamics, see Fig. 6.11a - left) : this
allows us to hypothesise that the coupling of cargo with fast auxiliaries may be
advantageous with respect to a system where only cargo self-aggregate. This idea
would need further investigation.

6.7 Observed transitions
As introduced in the previous sections, the two-component model shows non trivial
transitions, independently from the specific dynamic of auxiliaries. Such transitions
are schematically represented in Fig. 6.20 for the AB dynamics (same qualitative
conclusions should apply also to the other two cases, though): notice that this is
no formal classification at all, but just a convenient way to describe the behaviour
of the system. In particular we see that, for low Naux/Nsites , a low density state
of the system becomes less stable when moving away from the optimal g
(case (a) and (c) ) and as the number of auxiliaries is sufficiently decreased (case
(b)). The trajectories plotted suggest that a situation where ρB > ρA can lead to a
destabilization of a low density (not overcrowded with B particles) stationary state.
So, when fluctuations in ρB become larger, they become able to (irreversibly) disrupt
the order maintained by the system, leading to configurations overcrowded with B
molecules. Large values of g hinder the ability of auxiliaries to redistribute, thus
disfavouring sorting and leading to system overcrowding; however, as Naux/Nsites
increases (case (e)) such a crowded state becomes less stable and we enter a
large oscillations regime. The same is observed if, for sufficiently large Naux/Nsites,
we go from large values of g to smaller ones (case (d)). Such phenomenological
observations therefore suggests that the observed abrupt transitions are caused by
the fact that the stability of high density and low density states varies as
the parameters change. It points out also the necessity to investigate long time
stability of the stationary states identified. Interestingly, for the parameters where
smallest densities are reached, also the fluctuations are the smallest: this supports
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the idea that such region may remain stable also for longer times.
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Figure 6.20: Phase diagram for the AB model and trajectories of the system for different values of the parameters,
when crossing transitions. As the parameters change, also the long time stability of a low/high density stationary
state changes.
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6.8 Dependence on the initial conditions
Fig.6.21 and Fig.6.22 show example simulations of the AB and the B’B dynamics
starting from ρB(t = 0) = 0.0 and ρB(t = 0) = 0.10, for different combinations
of (g, Naux/Nsites). We see that in some cases, starting from ρB(t = 0) = 0.10,
can bring the system to a large-density (eventually trapping) state. Auxiliaries
following a A dynamics can allow the system to reach low densities faster. So, in
general, the initial condition is not irrelevant and, depending on the dynamics of
the auxiliaries, the time required to reach low densities may be different. Shuttling
mechanism can make the system more robust to variations in the initial condition.
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(a) (b)

(c)

Figure 6.21: Evolution of the system starting from ρB(t = 0) = 0.0 and from
ρB(t = 0) = 0.10, for the AB and the B’B dynamics (blue = ρB , red =ρA,
green=ρB′) at Naux/Nsites = 3.2 × 10−2. Starting from ρB(t = 0) = 0.10, for g = 10
and g = 17.8 (top-left and top-right) relaxation is faster for the AB dynamics.
For g = 31.6 (bottom) the B’B dynamics is attracted by a high density (possibly
trapping) state.
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(a) (b)

(c)

Figure 6.22: Evolution of the system starting from ρB(t = 0) = 0.0 and from
ρB(t = 0) = 0.10, for the AB and the B’B dynamics (blue = ρB , red =ρA,
green=ρB′). When starting from ρB(t = 0) = 0.10, for Naux/Nsites = 2.375 × 10−2,
g = 17.8 and g = 31.6 (top-left and top-right) the B’B dynamics reaches a high
density (a longer simulation should reveal whether it ultimately relaxes to a low
density stationary state) while the AB dynamics reaches a low density stationary
state. For Naux/Nsites = 1.75 × 10−2 and g = 31.6 (bottom) both AB and B’B
dynamics reach high densities when staring from ρB(t = 0) = 0.10 (again, longer
simulations should reveal whether it ultimately relaxes to a low density stationary
state).
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Chapter 7

Discussion and conclusions

“Answers? Questions! Questions? Answers!”
Focus, Focus III

In this thesis a two-component model for the process of protein sorting was
studied, thus extending a previous work [22] that considered only one species (we
refer to it as “ one-component model”) and describing the interaction of cargo with
a pool of auxiliary molecules. Our investigation was driven by two questions:
Q1: How does the quantity of auxiliaries affect the behaviour of the system,

considered that auxiliaries are necessary for the formation of sorting domains?
Q2: How can different dynamics of the auxiliaries affect the process?
About question Q1 we can conclude that a rich phenomenology arises if we study
the behaviour of the system varying the number of auxiliaries and the aggregation
parameter. In particular, some of these effects appear to come as a consequence of
the finiteness of auxiliaries in presence of specific values of the aggregation parameter.
First fact to point out is the existence of an optimal region in (g, Naux/Nsites), both
for the cargo density and the total density. This is not surprising in that optimality
in g is reminiscent of the one-component model, where too small values of g
disfavour the formation of sorting domains and too large values of g tend to form
many competing domains. The appearance of an optimum also in the quantity of
auxiliaries can be explained in a similar fashion. For even larger Naux this effect
no more takes place and again we obtain low densities of cargo, which is, however,
counterbalanced by an overcrowding with auxiliaries.

If, on the one hand, the existence of an optimal region should not be very
surprising, on the other hand it is interesting to notice that the approach to such
region is sharp. A reason behind this behaviour apparently stems from the fact
that, as we move away from optimal parameters, a low density state of the system
becomes more unstable. The instant at which the system destabilizes is reasonably
stochastic, highlighting the possible need to further study the long-term stability of
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low-density states. The existence of a sharp change in the behaviour of the system,
as we vary the parameters, can be interesting from a biological point of view, as it
may be linked to switch-like behaviours, which are typical of living cells. However
it may be also be an unwanted effect. It should thus be investigated whether this
behaviour is actually realized in cells.

In general, the issue of stability appears to be quite relevant in this model, in
that it is possible for the system to get stuck in high density (quasi-)stationary
states. This implies also that initial conditions can be important.

The finite quantity of auxiliaries is also at the basis of the periodic alternation
of intense extraction activity and quiescent periods, a phenomenon that takes place
for large g and Naux/Nsites and results in large oscillations, in time, of the density.
Again, this behaviour is not contemplated by the one-component model of [22]and
it may be interesting to investigate whether it is found in actual biological system.

Interestingly, switch-like and oscillatory behaviours in vesicle secretion have
been theoretically hypothesised [36] following a different approach. They therefore
deserve further study, integrating the different theories, as well as experiments.

About question Q2 we can conclude that a faster shuttling of the auxiliaries
can actually bring advantages to the process, allowing sorting to take place even
for smaller quantities of auxiliary molecules (for proper values of the aggregation
parameter). A faster redistribution process seems also to make the system more
robust with respect to variations of the initial conditions and variations in the density
of cargo. Results also suggest that a cargo-checkpoint mechanism characterized by
a large selectivity of auxiliaries for cargo can increase the efficiency of the process:
in facts fast shuttling, in our framework, implies that auxiliary molecules are very
prone to leave the membrane in absence of cargo and find another membrane site.
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