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Abstract

Metabolic networks are probably among the most challenging and promising
biological networks. Their study provides insight into how biological pathways
work and how robust a specific organism is against an environment or therapy.
Previous studies have obtained relevant results using flux balance analysis (FBA)
and simulations of single gene deletion. However, the structural characterization of
metabolic networks as complex networks has been proven an arduous task. Past
attempts have considered graphs whose nodes are the metabolites or reactions
of the metabolic network in question, and only recently has the focus shifted to
higher-order structures, highlighting that simple pairwise interaction may not be
sufficient for characterization. Here we show an intuitive way to map metabolic net-
works into hypergraphs using the bipartite representation. We introduce structural
characterization measurements to analyze the metabolism of a single organism
and to compare the robustness and complexity of different metabolic models. Our
findings show a connection between topological and biological properties. Com-
municability and information-based measurements succeed in identifying relevant
metabolites and reactions in the metabolic hypergraph, and different organisms
exhibit an overall similar complexity but very different robustness. In particular,
the Staphylococcus aureus, an antibiotic-resistant bacterium, displays the highest
robustness.
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Introduction

Complex systems are ubiquitous in our everyday lives [1], which is why they are
attracting more and more interest, from the study of ecological and social systems to
economics and spin systems. All these systems have a large number of interactions
among their components. They may be simple exchanges of messages, economic
transactions, or complicated ferromagnetic interactions. Given the variety of the
problem, it is helpful to abstract the concept of interaction and to represent it
mathematically in a proper structure, a graph. With these motivations, complex
systems and network theory have become concepts that often travel alongside [2—4].
Through the study of graphs, physics has achieved excellent results in different areas
like spins models, phase transition theory, and condensed matter, as well as brought
about the emergence of a thriving and ever-growing field such as neural networks
[5]. Dynamic contagion systems such as the SIS model and its generalizations have
been studied on social networks, a topic that has never been more important at
this time in history.

However, in network sciences, only pairwise interactions are considered. This
is a limitation when considering phenomena in which higher-order interactions
may be present, such as in the social sciences [6-16], epidemiology [11, 14, 17-19],
biology [20-26], etc. It has been shown that higher-order interactions are essential
to the understanding of such phenomena [11, 25, 27-31], and thus it has become
increasingly important to develop mathematical objects capable of describing these
interactions [32]. One possible solution is to consider a graph whose edges are
capable of connecting multiple vertices at the same time. Such a generalization
of a graph is called a hypergraph [33]. It has potentially no structural limits and
accounts naturally for higher-order interactions. In recent studies, different ways
to represent hypergraphs have been introduced depending on the problem. One
popular way of representing a hypergraph is the so-called projected representation,
in which the nodes belonging to a hyperedge are represented as a clique on a
graph [32, 34, 35]. However, this representation may not be sensitive to some
local hypergraph structures and is especially not general. In [36], they show
that for a hypergraph with edge-dependent vertex weights (EDVW), there is no
clique projection, highlighting the structural limitation of this representation. Here
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Introduction

we propose an alternative and general way of representing hypergraphs, which
projects them onto a bipartite graph. We show that this method is convenient
and intuitive and potentially has no structural constraints. Even the EDVW
hypergraph proposed in [36] can be represented in this way and as oriented and
directed hypergraphs. The latter, in particular, are types of hypergraphs that have
been little studied in the literature since the undirected counterpart is simpler but
is no less important. Included in this category are metabolic networks [37, 38],
which we study here, but also task or supply chains and message spreading, to give
a few examples.

Of all the possible applications, here, we focus on metabolic networks. A
metabolic network [39] is a set of biological processes that determines the properties
of the cell. Several reactions are involved in metabolism, grouped into various
metabolic pathways. A metabolic pathway is an ordered chain of reactions in
which metabolites are converted into other metabolites or energy. For example,
the glycolysis pathway is the set of reactions involved in transforming one glucose
molecule into two pyruvate molecules, producing energy. Metabolic networks
are among the most challenging and highest potential biological networks [40—
42]. The way to represent a metabolic network on a graph is not unique, and
several approaches have been tried. One possible way is to consider metabolites
(or reactions) as nodes and connect them if and only if they share a reaction (or
metabolite). The resulting graph is undirected, and this may unpleasantly change
the structural properties of the network. In [43], they analyze the same dataset we
examine here for F.coli and propose a directed graph with reactions as nodes that
take into account the directionality of the reactions, highlighting the difference with
the undirected counterparts. Here, however, we define the metabolic hypergraph as
a hypergraph whose nodes are the metabolites and reactions are the hyperedges.

Our work contributes from a mathematical point of view to explore and compare
different representations of hypergraphs and the random walks defined on them.
In particular, we include directed and oriented hypergraphs in the discussion and
provide a possible representation of them. We also address the problem of defining
a Laplacian matrix on hypergraphs, which is very much related to the concept of
random walks and diffusion, emphasizing how it becomes ill-defined on directed
hypergraphs and how, although attempts have been made, at present there seems
to be no clear answer in the literature.

In addition, we define and introduce characterization measures based on random
walks and information theory for all the representations considered. This approach
allows analysis at multiple scales: at the local scale, the access and hide information
or communicability; at the global scale, the natural connectivity and average search
information; and at the mesoscopic scale, by analyzing differences in pathways.
From a physical point of view, we establish a connection between these types of
measures and the biological properties of the studied organisms. Our findings shows
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a partial connection between structurally important reactions from the network
point of view and essential reactions for the metabolism. There are some aspects
that we cannot capture with these measurements, like external reactions that are
important for metabolism. These are leaves in the hypergraph and are considered
irrelevant from the structural point of view. In addition, a global analysis of the
metabolic hypergraph allowed us to compare different organism’s metabolism and
connect their structural organization with biology arguments. The complexity seems
comparable among individuals, and this result might be motivated by evolution.
We also find that an antibiotic-resistant bacterium displays the highest robustness
among the organisms studied. This is a great result, but we are aware that it is
still an isolated case, and more studies on more data should be carried on to be
sure that such a correlation exists.

We emphasize that the representations and measurements described above are
entirely general and can be applied to any type of hypergraph. In this sense,
metabolic hypergraphs are a choice, not a necessity. In any case, we show a
one-to-one mapping between hypergraphs and metabolic networks. This means
that in using this mathematical model, no information is lost. Moreover, again as
a consequence of this mapping, metabolic hypergraphs are a natural example of an
EDVW hypergraph. This is relevant because it is challenging to find hypergraph
data online that possess this structure and this variety of weights. In practice,
weights are often arbitrary chosen by the author. Therefore, even if researchers
are not directly interested in metabolic networks, they could use them as a real
dataset for studying EDVW hypergraphs.

The work is organized as follows. In chapter 1, we present the methods used
to characterize hypergraphs. Specifically, in subsection 1.1, we first define hyper-
graphs from a mathematical point of view, and in section 1.2, we compare several
representations of them. In section 1.3, we explore different types of random walks
for each representation and explain why we believe the bipartite representation
is the best. Connecting from the random walks, in section 1.4, we generalize the
Laplacian matrix for hypergraphs using the bipartite representation, comparing it
with other Laplacians defined in the literature. Then in section 1.5, we introduce
metrics based on random walks, such as communicability and search information.
In chapter 2, we apply these measures first to the F.coli core metabolism and
then to different metabolic networks to compare them. In chapter 3, we start
exploring the possibility of defining a null model of metabolic hypergraphs. Finally,
we conclude by summarizing our results and presenting possible future works.



Chapter 1

Hypergraphs
characterization

1.1 Hypergraphs definition

A hypergraph H = {V, E} is a set of vertices or nodes v € V and hyperedges
e € E. Each hyperedge is a subset of V' such that different nodes interact with
each other if and only if they belong to the same hyperedge. Thus a hyperedge
represents a multiple-node interaction. If the dimension |e| of the hyperedge is 2,
then the hypergraph is equivalent to a normal graph. In this thesis, we will denote
by N = |V the number of vertices of the hypergraph and by M = |E| the number
of hyperedges.

There are different types of hypergraphs. A weighted hypergraph H = {V, E, W'}
is a set of vertices or nodes v € V, hyperedges e € E, and edge weights w(e).
If w(e) =1 Ve € E, then the hypergraph is said to be unweighted. A weighted
hypergraph with edge-dependent vertex weights (EDVW) H = {V, E, W, T'} is a set of
vertices or nodes v € V', hyperedges e € E, edge weights w(e) and edge-dependent
vertex weight v.(v). If v.(v) = v(v) Ve € E, then the hypergraph is said to have
edge-independent vertex weight. All the weights are assumed to be positive.

A hypergraph can be oriented, directed, or undirected. An oriented hypergraph
is a hypergraph in which hyperedges have an orientation. We can identify the
head H(e;) and tail T'(e;) of the hyperedge e;. A vertex v; can belong only to the
head or the tail of the hyperedge e;, not both. A directed hypergraph is similar
to an oriented hypergraph, but vertices can belong to both the head and the tail.
Each oriented hypergraph is directed, and each directed hypergraph can be made
oriented by adding additional hyperedges whenever a vertex belongs to both the
head and tail.

It is also helpful to define k,, the degree of a vertex v € V| as the number of
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hyperedges in which v is contained. Finally, we also define |e|, the cardinality,
sometimes also called the degree, of the hyperedges e € E, as the number of vertices
belonging to e.

To be more practical, hypergraphs can be viewed as sets of sets, where sets are
hyperedges and the element they contain are the nodes of the hypergraph. Indeed,
using intersecting sets is a common way to visualize hypergraphs, probably the
best. However, in practice, it is tough to draw hypergraphs with a vast number
of hyperedges and nodes using sets, so it can be useful to present other possible
representations of hypergraphs.

1.2 Hypergraphs representations

A possible hypergraph representation is a projection of a hypergraph onto a graph
such that an adjacency matrix can be defined. This is practically convenient,
allowing to generalize concepts from graph theory to hypergraph. Unfortunately,
we show that there are different ways to project a hypergraph and that the projection
operation can cause a loss of information. Also, it is important to underline that
different types of representation may correspond to different types of processes.

1.2.1 The Incidence Matrix

Given an undirected hypergraph H = {V, E'} of N vertices and M hyperedges, the
incidence matrix is the matrix Z € R¥*M gsuch that

1 ify; €e
T, = e (1.1)
0 ifv e

Given an oriented hypergraph H = {V, E'} of N vertices and M hyperedges, the
incidence matrix is the matrix Z € R¥*M guch that:

1 if v; € H(ej)
Iij =<1 if V; € T(ej) s (12)
0 if (5 §é €;

where H(e;) and T'(e;) are, respectively, the head and the tail of the hyperedges e;.

1.2.2 Hypergraph projections

Since hyperedges account for multi-body interactions, a natural and common
way to represent them is as cliques in a graph. A clique of a graph is a fully
connected subgraph. Therefore, the meaning of this representation is to connect
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every node belonging to the same hyperedge. The adjacency matrix of a so-projected
hypergraph can be defined as

At — 77" — D, (1.3)

where D is the diagonal matrix whose k-element is the degree of node k. The
element A;; is the number of hyperedges shared by vertex i and vertex j. As a
consequence, all nodes in a hyperedge are connected, i.e., they form a clique. We
call this adjacency matrix the counting adjacency matriz [32, 34]. Another possible
way to define the adjacency matrix is by normalizing each entry by the size of the
hyperedges it corresponds to [35], thus

norm _ - 1.4
ik Z |e]| B 1’ ( )

which can be rewritten in matrix form as
Anorm — T E—l IT - D

where E = diag (|e;] — 1) and D is a diagonal matrix such that the diagonal entries
of A" are zeros!. We refer to this matrix as the normalized adjacency matriz [35].
It is useful to highlight that in this representation, the degree can be obtained as
ki = S0, A%e™™. These two representations are similar, but they describe different
processes. Note that the two above-mentioned adjacency matrices are symmetric,
meaning that the projected graph is undirected. It has been shown by Citra et al.
[36] that a hypergraph with edge-dependent vertex weight cannot be represented as
a clique graph. The intuition behind this statement is that if a vertex has different
weights depending on which hyperedges it belongs to, this information is lost when
we project on the vertices. Therefore, these representations are not general and an
alternative way to represent hypergraphs is needed.

Another situation in which these projections fail is when hyperedges are con-
tained in other bigger hyperedges. Since a k-clique is also a g-clique, with ¢ < k,
the smallest hyperedges are absorbed into bigger hyperedges when projected. This
situation often occurs in social systems or WhatsApp groups, where private and
group chats exist. One may argue that the information about the smallest hy-
peredges incorporated into bigger ones is in the weights of the projected edges.
Consider, for example, the hypergraph A) shown in Fig. 1.1. In the projected
graph, using the counting adjacency matrix, the edge connecting node 1 and node
2 has weight w; » = 2 because they share two hyperedges. Nevertheless, at least

I This is to avoid lazy random walks, which correspond to self loops in the projected graph.
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A) B)

Figure 1.1: An example of two different hypergraphs A) and B) with the
same counting adjacency matrix. The hypergraph in A) has hyperedges F =
{(12), (2:4), (0,1,2,3)} and the hypergraph in B) E = {(0,1,2), (2:4), (1,2,3), (0,3)}.

another hypergraph has the same adjacency matrix. Indeed take the hypergraph
B), and one can show that the counting adjacency matrix is the same, but the
structure is very different. In B), there is an extra hyperedge, and the nodes
have a different degree than in A). This suggests that the normalized adjacency
distinguishes between the two. Note that instead, the incidence matrix is always
unique.

The fact that hypergraphs cannot be projected on graphs without losing some
information indicates that they are more complex and rich than them. Still, having
a way to project them helps visualize them, and it represents a good starting point
to generalize the theory of networks.

1.2.3 Bipartite representation

The projection of a hypergraph H(V, E') on a bipartite graph is the graph, some-
times called the incidence graph, G = {VUE,E CV x E}, where V and FE are
respectively the set of all nodes and all hyperedges of the hypergraph H. An edge
(¢,7) € € if and only if v; € e;. The adjacency matrix of such G is

Abipartite — ( 0 I)

or (1.5)

where 7 is the incidence matrix of the hypergraph H, as in Eq.(1.1). In this case,
the hypergraph is not projected onto the vertices nor onto the hyperedges. This
allows much more freedom in dealing with different processes while maintaining all
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the information that was also contained in the previous representations. Indeed, it
is easy to obtain the graph projected to the vertices or the edges from the bipartite
graph. Note that since the incidence matrix is unique, the bipartite adjacency
matrix is also unique.

The matrix (AbPartite)2 ig a diagonal block matrix. The upper block is the
adjacency matrix of the hypergraph projected on the vertices?; the bottom block is
the adjacency matrix of the hypergraph projected on the hyperedges. See Fig. 1.2
for an example of the two representations.

The above representations regard undirected hypergraphs. In the case of oriented
or directed hypergraphs, one can still define the adjacency matrix as A" as in
Eq.(1.3), but the directionality is lost. Nevertheless, this can still be useful. For
example, Mulas and coworkers [45, 46] used this adjacency to define the Hypergraph
Laplacian operator. In this way, the operator is symmetrical and easier to deal
with. They studied its spectral properties and applied them to chemical reaction
networks.

In the case of an oriented Hypergraph, one can notice that the incidence matrix
in Eq.(1.2) can be divided into

I =15 TIr, (1.6)

where Zp and Zp are matrices of positive entries [38]. The adjacency matrix of the
clique graph can then be defined as

Aot = 7Tk, (1.7)

and the adjacency matrix of the bipartite representation as

Abipartite — (IST %) . (18)

The meaning of the bipartite representation is very intuitive. The graph has a
directed edge from the vertices to the hyperedges of the hypergraph when the
vertices belong to the tail of the hyperedge, and a directed edge from the hyperedges
to the vertices when the vertices belong to the head of the hyperedge. In this way,
orientation is accounted for in a simple and natural way. For directed hypergraph,
one can use the same construction as above, with the only difference that now
vertices can belong to both head and tail of a hyperedge.

We conclude by making some considerations. First, notice that we pay a cost
in representing the hypergraph as bipartite. The size of the projected graph, i.e.,

2The exception is the diagonal. This is equivalent to say that we allow self-loops, i.e., lazy
random walks. Otherwise, a different bipartite projection is needed, see [44].
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——

hypergraph

Figure 1.2: An example of two different ways to represent hypergraphs. In the
bipartite representation, vertices and hyperedges are the two partitions of the
bipartite graph. An edge between a vertex and a hyperedge is present if and only if
such vertex belongs to such hyperedge. In the clique representation, the hypergraph
is projected onto the vertices, such that vertices belonging to the same hyperedge
form a clique.

its number of nodes, is N 4+ M, much bigger than the size of the hypergraph, just
N. Additionally, a bipartite projection corresponds to two hypergraphs. This is
because of the symmetry hyperedges-nodes: a hyperedge is a set that links different
nodes, but equivalently one may consider hyperedges as connected if they share
at least one node. This is equivalent to saying that given a connected bipartite
graph, one can always find a unique partition of nodes in two sets, but these two
sets are symmetric and exchangeable. In conclusion, a hyperedge is more flexible
than an edge to describe certain types of processes such as critical mass, that is, a
hyperedge that becomes active when it contains a certain amount of active nodes.

9



Hypergraphs characterization

However, as far as this thesis is concerned, we do not consider such processes.

1.3 Random Walks

In this section, we define different types of random walks on hypergraphs. The
walk on the bipartite representation is the most intuitive one and very general.

1.3.1 Definitions on hypergraphs

A walk w,, ,, on a hypergraph H is a sequence of tuples of vertices and hyperedges
(Viy €i11) (Vig1, €i42)...(vs_1,€f)(ef, vf) such that v;_1,v; € e;, meaning that to move
from one node to another the walker needs to travel through a hyperedge containing
both nodes. So a walker that at time ¢ is located in node v;_; can go to v; through
hyperedges e; if and only if both nodes belong to e;. A step is a walk of length one.

A random walk is defined as a walk in which each step is chosen accordingly to
some probability. It is thus a stochastic process. We are interested in Markovian
random walks, a type of random walk such that the next step of the walk is defined
based only on the current state of the process. Practically, the typical process we
will consider for a random walk at time ¢ at vertex v, is:

« pick an edge e € N(v;) with some probability p,,(e),
e pick a vertex v € e with some probability p.(v),
e move to v,y = v at time t 4 1.

Where N(v;) is the neighborhood of vy, i.e. the set of hyperedges containing v;.
The choice of the probability is not unique, and the way one defines the transition
matrix defines the random walk. This procedure results in a two-step process and
characterizes a random walk that moves on the vertices. It is simple to write the
process for a random walk that moves on the hyperedges using a similar argument.
Of course, one can also consider a random walk that walks alternatively both on
the vertices and the hyperedges. In this case, the process will be a one-step process,
exactly as on a regular graph, and the walk is no more a sequence of tuples but a
sequence of nodes. This may not seem interesting from a physical point of view,
but it is the intuition behind the bipartite representation.

In this thesis, we distinguish between lazy and non-lazy random walks. A lazy
random walk is a process in which the probability of remaining at time ¢ 4+ 1 in the
node where the walker was at time ¢ is non-zero. In a non-lazy random walk, this
probability is instead zero.

10
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1.3.2 Formulation and analysis

We explore different types of random walks.
Given an adjacency matrix A, the probability matrix is defined as

P=D"'A4, (1.9)

where D is diag(Sn_, Aqx), the matrix whose i-th element is the sum of the i-th row
of the adjacency matrix. The matrix element P;; is the probability to transition
from state i to state k, P(i — k)3. Since the adjacency matrix is defined in different
ways, also the random walk will be.

Take A = A" ag defined in Eq.(1.3). We get what is known as a projected
random walk. The i-entry of D represents the number of outgoing paths from
node i, while instead A§"™ is the number of paths linking node ¢ and k. Thus,
P(i — k), in this case, is the number of paths from node i to k, divided by the
total available paths. From this, the name A®“"*: the matrix elements count the
number of paths linking two vertices.

If one chooses A = A™"™ as defined in Eq.(1.4), we get a different walk. To
understand its meaning, first, consider a lazy random walk. The adjacency matrix
can be rewritten in matrix form as follow:

A=TZTE 717,
where E = diag (|e;|). Now it is clear that the probability
P=D'IE'I"

represents a two-step process: first, the random walk moves to a hyperedge choosing
uniformly between all the possible k; linked hyperedges, and thus the associated
probability is given by D~!Z; then from that hyperedge, the random walk chooses
a node uniformly between all the possible |e;| nodes, and thus the associated
probability is given by E7'1Z7. Since the random walk is lazy, it is equivalent to
an unbiased random walk on the bipartite projection. Indeed, take A4 = Abirartite
The random walk on this projection is a one-step process. It will move first to a
node v; € V and then to a node e;;; € E. This type of walk is trivially equivalent
to a lazy random walk on the hypergraph since it is a sequence of alternating
vertices and edges. In the case of a non-lazy random walk, the only difference is
that the random walk cannot go back. This means that the two walks are not the
same, but the behavior is similar. However, one can project the bipartite graph

A= (E—(l)zT 6) : (1.10)

3Note that, sometimes, the transition matrix is defined as the opposite: Py = P(k — i).
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remove the diagonal and obtain a non-lazy random walk. There is also an extension
of the bipartite representation with state nodes for non-lazy random walks [44].
Projecting the bipartite graph means taking the square of the adjacency matrix,

therefore
777 0
0 z7z)°

Except for the diagonal term, one can recognize the adjacency matrix as defined
in Eq.(1.3). The Z7Z is the hyperedge counterpart. Indeed, there is a symmetry
between hyperedges and vertices. Omne can equivalently define a walk on the
hyperedges, obtaining a projected graph whose nodes are the hyperedges and
whose weighted edges are the number of paths linking two hyperedges. In this
case the diagonal will be D = diag (Zj |ej]). The adjacency matrix so defined is

A — (Abipa'rtite)2 — < (111>

block-diagonal. Indeed the two projected graphs ZZ7 and ZTZ are not connected
and independent. We showed that the transition probabilities are the same among
representations, but a random walk on the bipartite graph can be more general.
With an appropriate choice of edge weights, it has the same transition probability
of a random walk on a hypergraph with edge-dependent vertex weight, a process
not describable by a clique projection. In this sense, both A®“" and A" are
contained in AYPertite byt the latter is more general.

We show how the bipartite representation can be weighted such that a random
walk on it is equivalent to a random walk on a hypergraph with edge-dependent
vertex weight. In [36], the probability of transitioning from a node v to a node w
of such a random walk is

p. = z:ﬂﬁﬂ%@) (1.12)

or in matrix form
P = D,!WD;'T, (1.13)

where N(v) is the set of hyperedges at which e belongs, d(v) = > cn() w(e) is
the weighted degree of node v and d(e) = ¥, . 7e(v) is the weighted degree of
hyperedge e. Dy and Dpg are the diagonal matrices of, respectively, the weighted
vertex degree and the weighted edge degree. The matrix I' is the matrix such that
each entry is

s i
r, =00 i€ (1.14)
0 else
and
. T
w, — @) ities (1.15)
0 else
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This random walk is lazy, and so Eq.(1.13) factorizes in two independent probabili-
ties. This is what makes the bipartite projection suitable to represent this type of
hypergraph. The corresponding adjacency matrix is

A — (PT Vg) _ (1.16)

A walk on this bipartite graph has the same transition probability of Eq.(1.12).

1.4 Laplacians

1.4.1 Definition on graphs

From the concept of random walk, it follows naturally the process of diffusion. We
recall that the unbiased diffusion equations are written as

on(x,t) = DAn(x,t), (1.17)

also known as Fick’s second law of diffusion [47], where A is the Laplace operator,
and D is the diffusion coefficient. This is related to the concept of random walk.
Consider several random walkers on an undirected graph G and let us call n;(t)
the number of random walkers in node ¢ at time ¢. The number of random walkers
in node 7 at time ¢ 4 dt will be given by

J#i

where w;; is the transition rate from node j to i, and w;; is the sum of all transition
rates from i to j. An unbiased random walk on a graph moves only to the first
nearest neighbors with equal probability. As a consequence, apart from a constant
that can be absorbed in the time unit dt, the transition rate wij is given by the
adjacency matrix element A;;. The term w;; instead is given by >;.; wj;, which
in a graph will be proportional to the degree of node i. Everything can then be
rewritten in a matrix form and taking the limit dt — 0 as

on=(A—-—D)n=—Ln, (1.19)

where we used the convention that matrices are written with capital letters and
vectors in bold. D is the degree matrix, and L is the so-called Laplacian matrix.
One can notice the similarity with Fick’s second law of diffusion and, from that,
the choice of the name. The element of the Laplacian matrix is defined as

deg(v;) ifi=y
0 otherwise

13
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However, in [48], the Laplacian matrix is directly introduced, explicating its relation
with the incidence matrix,

L=BB" =D — A, (1.21)
where B is the |v| X |e| directed incidence matrix defined element-wise as

1 if edge e; enters vertex v;
Bij = {—1 if edge e; leaves vertex v; . (1.22)

0 otherwise

Note that undirected graphs are thought of as directed graphs in this picture. While
Eq. (1.22) is a compact and convenient form when analyzing its spectrum, we are
more used to the standard definition of the incidence matrix Z for an undirected
graph, in which the entries are all positive. With this definition the adjacency
matrix can be obtained from A = ZZT — D. We will not follow the notation of
Eq. (1.22). In this way, from the incidence matrix defined in Egs. (1.1) and (1.2)
one can recover the incidence matrix of a graph, directed or undirected, when
le|] =2V hyperedge e.

Note that the definition in [48] holds both for undirected and directed graphs.
Nevertheless, in the case of directed graphs, the definition of the Laplacian as in
Eq. (1.21) has some problems®. First, the adjacency matrix A is usually defined as
not symmetric for a directed graph, so also the Laplacian should be. Indeed, if one
thinks about how we introduced the Laplacian matrix, that is, through a diffusion
process, the walk of a random walk is not symmetric in a directed graph. For this
reason, we choose the definition as in Eq. (1.19), and we will refer to the Laplacian
defined in Eq. (1.21) as the symmetrized Laplacian. Actually, for directed graphs,
several definitions of the Laplacian matrix are present in the literature and their
choice usually depends on the applications.

Different measures can be done using the Laplacian matrix. The most common
is the algebraic connectivity, also called the Fielder value. It is defined as the first
non-zero eigenvalue of the Laplacian matrix and measures the connectivity of a
graph. However, the Laplacian is not symmetric for directed graphs, so nothing
ensures that it is diagonalizable and that the spectrum is real. This makes the
algebraic connectivity not well defined and may be a motivation to prefer the
choice of the symmetrized Laplacian. Also, there exists some generalization of
the algebraic connectivity for directed graphs that avoids this confusion while
maintaining most properties of the Fielder value [49].

4Note that the out-degree matrix substitutes the degree matrix.

14
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1.4.2 Generalization to Hypergraphs

Here we generalize the Laplacian matrix for hypergraphs using the representations
and random walks described before. Then we compare our generalization of the
Laplacian with the literature.

Since we already defined representations and used them to define different
random walks, we can introduce the Laplacian matrix as the matrix that describes
the transition rates of random walkers that diffuse on a hypergraph. Using the
same reasoning as in the section above, we arrive at a definition of the Laplace
matrix for hypergraphs equivalent to Eq. (1.19),

L=D-A, (1.23)

where A is the adjacency matrix of the hypergraph and D = diag (Zk# Aik). We
recall that different random walks can be defined and so their diffusion on the
hypergraph is different. For the projected random walk A = A" Eq. (1.3), for
the higher-order random walk A = A" Eq. (1.4), and finally the diffusion on
the bipartite is described by A = AbPartite Fq. (1.5). As anticipated, we will focus
on the bipartite projection. The algebraic connectivity is then simply generalized
as the first non-zero eigenvalue of the hypergraph Laplacian matrix.

Notice that this definition is also valid for directed hypergraphs, but with the
same problems described above. Our Laplacian is not symmetric and so not always
diagonalizable with real eigenvalues. In [45, 46], Mulas and coworkers define a
symmetrised Laplacian matrix specifically for directed metabolic hypergraphs,
generalizing Eq. (1.21). Since we are treating metabolic hypergraphs, it is in-
teresting to make some considerations about these two Laplacians. First, the
symmetrized hypergraph Laplacian describes the same process as the underlined
undirected hypergraph, losing in this way all the information on the directionality
of the reactions. We believe that the information on the reversibility or not of
some reactions is physically too important to be neglected in the diffusion process.
However, the Laplacian introduced by Mulas points out an important detail that
our Laplacian is not able to capture. If m; and my are two reactants belonging to
a not-reversible reaction, in our representation, they are not connected and thus
not interacting, while physically we know that they are taking part in the reaction
and thus interacting.

For this thesis, we decided not to investigate further the several definitions of
and leave it as future work. However, we still report the result of the algebraic
connectivity for some bipartite metabolic hypergraphs in Appendix A.

For completeness, we also report the definition that was given in [36] for the
hypergraph Laplacian matrix of a hypergraph with EDVW,

[P + PTII

L=TI ,
2

(1.24)
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where P is the probability transition matrix of the hypergraph with stationary
distribution . II is the |V| x |V| diagonal matrix with element II,, = ,.

1.5 Characterization measurements

In this section we define some measures, generalizing on hypergraphs the concepts
of communicability [50] and search information [51]. They allow us analysis at
multiple scales. From the communicability, we obtain the natural connectivity that
gives a measure of the overall robustness of the hypergraph and, complementary,
the average search information is related to the global complexity of the network.
Communicability and search information are microscopic measurements of how
parts of the network communicate.

1.5.1 Communicability
Estrada et al. [50, 52] define the communicability of a graph as

Giy = > (A%, (1.25)
k=0

where ¢, is some coefficient depending on k such that the series is convergent.
(A*);; is counting the number of paths of length & from i to j. The meaning of ¢,
is thus a “penalty” to paths that are long. A common choice for this coefficient
is ¢ = % With this choice, the communicability is just the exponential of the
adjacency matrix

G =e (1.26)

They also introduce as a measure of the robustness of the graph the natural
connectivity [50, 53]

A =log(EE(G)/n), (1.27)
where n is the number of nodes in the graph and EE(G) is the Estrada index

EE(G) =Tr{G} = Tr{e"} (1.28)

for our choice of communicability.

We explicit the dependence of the natural connectivity on the largest eigenvalue
of the adjacency matrix. Assume A diagonalizable®, then there exists some invertible
matrix V such that A = VAV ™! where A = diag()\;) and ); are the eigenvalues
of A. We can then write e = VePV =1 where we recognize e’ = diag(e*) to be

5This is always true in the case of an undirected graph.
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the eigenvalue of G. Assuming that A\; > Ay > A3 > ..., the natural connectivity
becomes

A = log <Z e’\"> —log(n) =
i=1
= log [e’\l <1 + Ze)"'_)“)] —log(n) =
=2
=\ + log (1 + Ze’\i_’“) —log(n)

=2

=\ —log(n) +0O (e’(’\l”“)) :

If the spectral gap is big enough, the natural connectivity is dominated by the largest
eigenvalue. Since the correction is exponential, this approximation is expected to
be quite good.

We can also define some bounds to the natural connectivity. The graph with the
higher communicability possible is a complete graph whose spectrum is known to be
{(n — 1)}, =171}, where the exponent indicates the multiplicity of the eigenvalue
and n is the number of nodes. The Estrada index is then given by

EE™(A) = Tr{e"} ="'+ (n—1)/e, (1.29)

and so the largest possible value for the natural connectivity is well approximated
by -
AT~ — 1 — log(n) (1.30)

for large n. It is also useful to compute the natural connectivity for a complete
bipartite graph B. For such graph, the spectrum is {\/nm,0""™ 2 —/nm}, where
n and m are the nodes of the two bipartite sets. The natural connectivity is then
approximated by -

bipartite ™ vnm —log(n +m). (1.31)

The generalization to hypergraph is straightforward. Once one defines the
hypergraph adjacency matrix, all the same definitions can be extended.

The communicability G' of the bipartite projection takes a nice form. The
adjacency matrix defined in Eq.(1.5) has zero main diagonal blocks. Consequently,
all the even powers of the adjacency matrix are block diagonal, while the odd
powers are off block-diagonal. In detail,

om (@ 0
A _< 0 (ITI)">’ (1.32)

0 (IIT)”I)
: (1.33)

AT = (((ITI)”I>T 0
17
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where Z is the hypergraph incidence matrix. The communicability can be factorized
in an odd and in an even part

A A _A_ A
G="¢ J;e T 26 = cosh A + sinh A, (1.34)

where cosh A contains only even powers of A and so, for the considerations above,
is a diagonal block matrix. On the contrary, sinh A has zero block diagonal. We
can use this result to compare it with the communicability computed using A",
If one considers the first block of Eq.(1.32) is the n-th power of Acunt 6

The AbPaertite glso has some nice spectral properties. It is symmetric, so it is
diagonalizable with real eigenvalues, and since the corresponding graph is bipartite,
if \; is an eigenvalue, then —); is also an eigenvalue.

By looking at A2, its eigenvalues are the singular values squared of the incidence
matrix, with multiplicity 2. Consequently, the eigenvalues of A are, in module, the
singular values of the incidence matrix. By denoting the singular values of Z s;, we
get that the natural connectivity of the bipartite graph is:

A~ s; —log(n). (1.35)

The natural connectivity of a fully connected hypergraph is the same as a fully
connected bipartite graph, and so it is given by Eq.(1.31).

1.5.2 Information on graphs and hypergraphs

Roswvall et al [51] introduced the concept of search information, as a measure of
complexity:

S(i,7) = log, ( ) P(Z?(Z’,j))) : (1.36)
{p(i.5)}
where {p(7,j)} is the set of all shortest paths from ¢ to j and

PO =5 3 o (1.37)

i lep(ing

is the probability to follow path p(7,j) in the graph, and k; is the degree of node
l. S(i,j) corresponds to the number of binary questions needed to reach j from
1. Based on this local quantity, respectively the access, hide, and average search

6Note that, in this case, we allow lazy random walks.
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information are introduced as

A(s) = ;V;sw)
H{(t) = ;,ZS(SJ) (1.38)
S— ]\1[22;5(5,15),

where N is the number of nodes in the graph, s is a source node in the graph, and
t is a target node in the graph.

We generalize these concepts for hypergraphs. They will be defined differently
depending on which representation one is projecting the graph.

The probability of making a step for a projected random walk is given by

. # of hyperedges connecting 7 and j
P(i,j) =

# of hyperedges containing i
Ay
Z;cvzl -Azk ’
where N is the number of vertices in the hypergraph.
Consider now a higher-order step. The probability of making a step will be

11 e
Nt v ifi,j€e
Pi.5) {O otherwise ’ (1.39)
where k; is the number of hyperedges to which i belong, and |e| is the size of the
set e, i.e., the number of vertices it contains. Note that the projected graph has
the same edges and paths in both cases, just with different weights.
It is interesting to highlight that the probability of following a path can be
rewritten emphasizing that a walk on the hypergraph is a two-step process ” as

PO = o X
il = L

v,u)€P(i,])

(1.40)

given that the first step is the tuple (i, e;). In the case of the bipartite representation,
the walk is a one-step process and so the definition of the probability of a path
reduces to Eq.(1.37), with no modification. This is mathematically equivalent to
Eq.(1.40). So again, we see that the higher-order step is equivalent to a walk on
the bipartite projection.

"Here, we use the higher-order step.
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If the hypergraph has edge-dependent vertex weight, we showed that it is well
described by the bipartite representation. We can then use the same definition
but generalized for graphs with weighted edges. In this case, the probability of
a random walk to make a step ¢ — j is proportional to the weight of the edges
connecting 7 and j (e

. W\ E;j
P(i,j) S w(en) (1.41)
where N (i) is the neighborhood of ¢ and w(e;;) is the weight of the edge e;;.

All the previous formulas apply for a directed graph, only with minor modifica-
tions. We replace the degree with the out-degree 8, and we do not always subtract
1 from it. In fact, the k; — 1 in the denominator of Eq.(1.37) is present because the
walk cannot turn back and thus can choose between k; — 1 vertices to move toward.
In a directed graph, this is not always true. If the path comes from a directed edge,
it cannot go back using the same edge. It follows the equation that we used for the
metabolic hypergraph,

1 1
Poli. 1)) = - 1.42
(p(ly.])) k,;)ut le%j) k,lout _ rl, ( )

where 7, is equal to one if the node [ is a reversible reaction or if it is a metabolite
that, in the path, is coming from a reversible reaction. Otherwise, it is zero.
While the formula is easily generalized to hypergraphs, it is important to point
out that if the directed graph is not strongly connected, then some nodes may
be unreachable or may not reach other nodes. It means that they have infinite
hide or access information. To avoid this problem, we set these cases to have zero
information, but this can impact the value of the average search information.

8The out-degree is the number of edges leaving the vertex, denoted it by kput. If the graph is
unweighted, then it is the sum of the weights of the edges exiting the vertex.
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Chapter 2

Metabolic Hypergraphs

In this section, we present the applications of our theoretical work. We first analyze
the metabolic hypergraph of Fscherichia coli, and then we compare the robustness
and information of different BiGG models.

2.1 Introduction to Metabolic Hypergraph

Here we define the metabolic hypergraph as the hypergraph whose nodes are
the metabolites and the reactions are the hyperedges, and we use the bipartite
representation. Note that one can use the representation A«“" Eq.(1.3), and
obtain a graph where metabolites are vertices and are linked if they share a reaction.
The issue with this representation is that we lose directionality and we encounter
the problem explained in [43]. However, using the bipartite projection, we can
intuitively include the directionality: reagents of a reaction ¢ have directed links
towards the hyperedge representing reaction i, and products of reaction ¢ have
directed links incoming from reaction i. Note that this is a directed hypergraph.
For example, consider the reaction Phosphofructokinase, BiGG-id PFK, which is a
reaction belonging to the Glycolysis/Gluconeogenesis metabolic pathway, involved
in the conversion of fructose 6-phosphate and ATP to fructose 1,6-bisphosphate
and ADP. The corresponding representation as a graph is shown in Fig. 2.1.

The reaction PFK is catalyzed by the enzyme Phosphofructokinase-1, or PFK-1,
from which the reaction takes its name. In chemistry, a catalyst is an enzyme that
takes part in a reaction but is not changed by it. In practice, it is an element that
appears on both sides of the reaction equation. Here we do not consider catalyst
since they do not affect the path followed by a random walk in the metabolic
network. Indeed, since reactions do not modify them, they cannot “move” on the
graph. However, they can be taken into account. In [46], they define an oriented
graph where catalysts are taken into account as self-loops in the graph.
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fdp c
P— PEK

atp c
fép_c

h c

Figure 2.1: PFK Reaction from BiGG dataset: atp_c + f6p_c — adp_c +
fdp_c+ h_c. In green the reagents, in blue the products, and in pink the reaction.
Directionality is easily taken into account with this definition.

In this section, we apply the concepts of communicability and search information
to the E.coli metabolic network [54]. Communicability can identify important
reactions, and the search information measures the complexity of the network
at different levels. We base our results on purely structural measures. Indeed,
the chemistry is taken into account only when building the network but then is
neglected. The mass of reagents/products is not conserved since stoichiometry is
not taken into account as edge weights!. This is not the approach that people
usually follow to analyze metabolic networks [43, 55]. The difference is that here
we are considering a higher-order structure and not a simple graph. The aim of
this analysis is then to be able to understand if including this type of structure is
relevant in characterizing the metabolic network.

2.2 Mapping stoichiometry matrices into hyper-
graphs

There are many real-world examples of systems that can be described and studied
with hypergraphs. For example, one can think of social network relations as a
hypergraph, where each chat or group represents a hyperedge. Contagion models
can be viewed as hypergraphs too since in our everyday life our relations are not
limited to interaction with just one other person. The places where the viruses
spread the most are the ones where multiple people are present, and thus considering

IThe hypergraph is unweighted for simplicity.
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Figure 2.2: An example of a metabolic network mapped into a hypergraph with
edge-dependent vertex weight. In (A), we present a small network composed of three
reactions and five metabolites. The first reaction r is reversible and is represented
with the double arrow. In (B), we show the corresponding stoichiometry matrix.
Reactants are negative and products are positive. We need to split the reversible
reaction into two irreversible reactions 7 and r; to write it in matrix form. This
stoichiometry matrix is the incidence matrix of the hypergraph with edge-dependent
vertex weights shown in (C). For the sake of visualization, only the hyperedge r;
is shown. The hyperedge r; is just the same but with the opposite sign. Note that
weights are both positive and negative, meaning that the hypergraph is directed.
Indeed, we separate the head and tail of each hyperedge with a dashed line.

multi-body interaction is essential [11]. Also, biological and ecological systems
may include multiple agents/species interactions [27]. In particular, we will focus
on metabolic networks. Indeed, metabolic networks are naturally mapped into
hypergraphs. Each network composed of N metabolites and M reactions is fully
specified by the stoichiometry matrix S, a N x M matrix, such that

0 if metabolite ¢ is not in reaction j

Sij = c if metabolite ¢ is a product in reaction j ,

—c  if metabolite 7 is a reactant in reaction j

where ¢ is the stoichiometric coefficient of metabolite ¢ in reaction j. This matrix
is the incidence matrix of a directed hypergraph with edge-dependent vertex weight,
where reactions are the hyperedges and metabolites are the vertices. Directed
because the weights v.(v) are positive and negative. One can indeed recognize,
in the same way we defined the incidence matrix in Eq. (1.2), the head, vertices

with positive weights, and the tail, vertices with negative weights, of the hyperedge.
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Metabolites have different weights depending on which reaction they belong to. See
Fig. 2.2 for an example. In the figure, the metabolite d is present in the reaction r3
with weight —1, meaning that it is a reagent, but is also the product of the reaction
ro, with weight 4. This particular set of weights, plus the fact that reactions are
directed, makes this type of hypergraph the most general one.

2.3 The dataset and preprocessing

The metabolic hypergraphs are taken from the BiGG Database [56]. We analyze
more than 20 different models, with an increasing number of nodes and describing
different organisms. All data are publicly available on the BiGG models [57] web
page in different formats. In this analysis, the .json format is used. The data
contain information on metabolites, reactions, and genes. Metabolites are identified
by a Bigg id, consisting of an abbreviation defining their type, for example, “h” for
hydrogen and “ATP” for the adenosine triphosphate, and a subscript indicating
the compartment to which they belong. The suffix “c” indicates the cytosol
compartment and the suffix “e” the extracellular space compartment. Regarding
the reactions, in addition to their ids, the metabolites belonging to them are given,
with their respective stoichiometric coefficients. Usually, a negative coefficient
indicates that the metabolite is a reactant, but not always. One has to look at
the “upper bound” and “lower bound” parameters associated with the reaction to
understand its direction and whether it is reversible or not.

2.4 Communicablity on Escherichia coli

We compute the communicability of the bipartite metabolic network as Eq.(1.26).
We show in Fig. 2.3 the metabolic network where each node is weighed in size
and color based on the average communicability per node. One can notice that
the points with higher communicability are located in the center of the graph, as
expected. The metabolite with the higher communicability is h_ ¢, so hydrogen in
the cytosol compartment, as expected since it appears in many reactions. Other
metabolites with higher communicability are h_e, H,O, and ATP and NAD, which
are important metabolites responsible for the energy consumption/production of
the cell. In general, while this is a nice result since the highlighted metabolites
are important for the organism, similar results can be derived by using the degree
centrality measure: indeed, the average communicability per node and the degree
distribution? correlates, with some minor differences. However, if one considers

2The degree in the directed graph is defined as the sum of out degree and in degree.
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Figure 2.3: E. Coli metabolic hypergraph in the bipartite representation. Nodes
are metabolites and reactions. The color of each node is proportional to the average
communicability of that node, and the size is proportional to the node degree.

the reactions network, we have some differences, and the average communicability
per reaction reveals something different from the degree centrality measure. The
Biomass Objective Function with GAM is the reaction with the highest degree in the
network?, but while still having high average communicability, the ATP synthase
reaction has a higher one. This reaction is central in a metabolic process since many
chemical processes require energy in the form of ATP. Another interesting fact to
point out is that the metabolites or reactions that have higher communicability are
the ones that are shared by many metabolic pathways. Recall that in a metabolic
network, different regions can be identified based on the function they fulfill: those
regions are called metabolic pathways.

323 metabolites are involved in the reaction.
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Figure 2.4: Access information vs Hide information for the metabolites (A) and
reactions (B). Metabolites in blue belong to the cytosol compartment, and the
ones in green belong to the extracellular space. The latter have, on average, higher
access and hide information compared with the former since they belong to the
outermost of the network. Each reaction is colored differently depending on the
metabolic pathway to which they belong. We do not observe a separation between
pathways in the Access vs Hide information plane, meaning that different pathways
have, on average, the same complexity in E.coli. The nodes with the higher degree,
h. and Biomass, are highlighted with a red cross. Some nodes appear to have zero
access or hide information. Those nodes cannot reach or be reached by other nodes.

2.5 Information on Escherichia coli

We apply the concepts introduced in section 1.5.2 to F.coli hypergraph. We compute
the access and hide information for each node in the graph and we compare them.
Results are shown in Fig. 2.4. The access information does change much, while
the hide information varies more. This suggests that there are no reactions or
metabolites that “connect” worst than others, and so that for whatever reaction
or metabolite it is equally “easy” to access other metabolites or reactions in the
network. With this measurement, we can identify hubs in the graph as nodes with
low hide information and relatively high access information. Hubs are points with
a high degree that are easily reachable from the other nodes in the network, and
thus, they are “visible” and have low hide information. From a hub is harder to
reach a specific point in the network since the degree is high, resulting in relatively
high access information. On the contrary, nodes that are leaves of the graph will
be better hidden from the other nodes of the network. For the metabolites, the
hub is h__¢, the hydrogen in the cytosol compartment, present in most of the core
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reactions?; for the reaction is the Biomass reaction, the reaction involved in the
cell growth, and thus the principal reaction for the metabolism. The points with
zero hide information are just points that are not reachable and are set to zero for
convenience. One can also see that both the hide and access information do not
correlate with the node degree. This is because they depend more on the paths than
the degree. In Fig. 2.4, metabolites are divided into metabolites belonging to the
cytosol compartment, the interior of the cell, represented in blue, and metabolites
belonging to the extracellular space, in green. The latter are metabolites exchanged
with the environment, like cell nutrients or waists, they are labeled with the “_e”
subscript and belong to reactions of the Transport Extracellular, Extracellular
exchange and Inorganic Ion Transport and Metabolism pathways. They are leaves
of the bipartite graph. The former are the metabolites belonging to the core
reactions of the cell, and they are labeled with the “ ¢” subscript. Metabolites
belonging to the extracellular compartment have, on average, higher access and
hide information with respect to the ones of the cytosol compartment.

Reactions are grouped into 12 different pathways. They do not separate in
clusters, meaning that the pathways are equally complex in the network. They
show a general trend: most pathways have reactions with progressively lower hide
information.

2.6 Comparison with Flux Balance Analysis

In this section, we try to link the structural properties we measured through the
communicability and the search information with biological properties that we
can obtain with Flux Balance Analysis (FBA) [55]. It is a widely used technique
that consists in solving a linear system of equations for the fluxes of metabolites.
Since multiple solutions exist, we specify an objective function to maximize, that
in the case of F.coli is chosen to be the Biomass objective function. This is a
common choice for most metabolic networks since it is the reaction responsible
for cell growth. To simulate FBA, we use the Cobrapy package for python [58].
With this package, we can compute the fluxes of metabolites in the network, but
we can also perform some other valuable simulations like single-gene deletion and
single-reaction deletion. These algorithms perform a deletion of a gene or reaction
in the network and then compute the flux of metabolites toward the Biomass
function. These fluxes can be the same as the optimal solution or can lead to
a lower flux of metabolites, even zero. If no fluxes of metabolites arrive at the
Biomass, the cell is considered dead. We can then identify with this technique
essential genes or essential reactions for the metabolic network as those genes

4h_ ¢ has in-degree k;,, = 31 and out-degree oy = 19
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or reactions that, when inhibited, cause cell death. The quasi-essential genes or
reactions are those that, when inhibited, reduce the flux of metabolites by 50% or
more. To help visualize the single-reaction deletion technique, there is an online
Escher map [59] that allows interactively to delete a reaction and see how the
fluxes distribution changes in the network and how this operation impact the cell
growth. Given the information on the most important reactions in the metabolic
network, we want to compare them with the most important ones identified by
the communicability measure. Results are shown in Fig. 2.5. We can see that
essential reactions are only partially captured by the communicability measures,
but this is not unexpected. There are some reactions that are essential but have
low communicability. The majority of those are leaves or are close to external
reactions, so it is natural that they are ranked low. To consider these reactions, we
should define a different measure that can also consider the biological properties of
the network, but as already anticipated, this is outside the scope of that thesis. We
want to keep the work as general as possible. There are also some reactions that are
ranked with high communicability even though they are not essentials. These are
fails of our measures, and the reason for that is that they are reactions containing
the metabolite h_ ¢, which has a large degree and biases the measure. A possible
solution for this is to remove the h__c metabolite, since it belongs to what in the
field are called pool or ubiquitous metabolites, as done in [37]. Other examples of
ubiquitous metabolites are HyO, ATP, and CO_ 2. However, this procedure does
not seem to be so well-founded and introduces other problems, such as the fact
that the graph can become disconnected. We leave the exploration of this approach
as future work.

2.7 Comparing metabolic networks

Here, we compare the robustness and the complexity of different metabolic networks.
We analyze 20 different models, with an increasing number of nodes and describing
different organisms. The data is treated in the same way described in section 2.3,
and each hypergraph is constructed using the bipartite projection as discussed in
section 2.1. We measure the natural connectivity and average search information of
each hypergraph. The results show that the complexity is almost constant across
individuals of very different species, while the robustness varies significantly. In
particular, an antibiotic-resistant bacterium displays the highest robustness.

2.7.1 Results

The average search information and the natural connectivity are computed for each
organism and the results are shown in Fig. 2.6. As can be seen, the complexity
of the organisms, as measured by the average search information, is relatively
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Figure 2.5: Plot of the reactions average communicability. In purple is represented
the average communicability of quasi-essential reactions, in orange the average
communicability for essential reactions, and in blue for non-essential reactions

constant. This is not surprising since even if the microorganisms are different,
the reactions and pathways are similar [60]. On the contrary, the robustness of
the network varies a lot between different organisms. We deduce that while the
pathways and reactions are similar between individuals, they can be arranged
differently to form more or less robust networks. A metabolic network with high
robustness is expected to be efficient even if some reactions or some metabolites
are not available for some reason. This means having alternative pathways, which
translates into high communicability.

It is interesting to point out that antibiotics operate by targeting and inhibiting
some specific reactions, without which the cell dies [61]. If the network has high
natural connectivity, it is more difficult to identify reactions that, if suppressed,
will cause cell death, because many alternative pathways exist. Looking at Fig.
2.6, the Staphylococcus aureus subsp aureus N315 is the organism with the highest
robustness, and it is indeed a antibiotic-resistant bacterium [62]. We stress that this
result is obtained by a purely structural argument. Chemistry is taken into account
just in the construction of the edges in the bipartite graph. The stoichiometric
coefficients are disregarded and so is the mass conservation of reactants/products.
All reactions are considered equally important, while standard Flux Balance Analysis
(FBA) assumes a specific reaction to be optimized, usually the Biomass reaction [55].
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Figure 2.6: Average search information, in blue, and natural connectivity, in
orange, computed for different BiGG models. The organisms analyzed range from
simple bacteria to humans. The results show similar complexity among species, but
a substantial difference in robustness. Note that the peak in robustness is obtained
for the Staphylococcus Aureus. The models are ordered in increasing number of
nodes.

However, by only considering structural properties, our proposed measurements
are able to detect this biological feature, showing the potential of our methods.
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Chapter 3
Random metabolic networks

In this chapter, we want to compare the results we obtained in the previous chapter
with a null model of a metabolic hypergraph. Defining a null model is a standard
procedure used to explore the statistical properties of graphs. The basic idea is
to generate a random object that matches some specific properties of the object
of interest, but is constructed in such a way that the model can be considered
unbiased. In the case of hypergraphs, we want to build an unbiased hypergraph.
So, for example, imagine having a social hypergraph, in which hyperedges form
communities and we have a population divided into old and young people. They are
the vertices of the hypergraph. The question that we would like to ask is: do people
interact homogeneously or individual of the same category forms groups. A way to
answer this question is to build a null model, a random hypergraph in which vertices
are assigned randomly to hyperedges. If the assignment of the vertices is done in
an unbiased way, then the null model represents an unbiased version of the original
hypergraph. One can also think to preserve some structural properties of the
original hypergraph, like in this case we can preserve the degree of each hyperedge.
In this way, the community structure is the same for the two hypergraphs. The
next point is to compare the two models, and to do so, we formulate what is called
a null hypothesis. In the case of our example, the null hypothesis will be that
communities have, on average, the same amount of old and young people. We can
then verify or discard the hypothesis by comparing the distribution of old people in
communities in the original and random hypergraph. If they are the same, then we
can conclude that there is no bias in forming communities. This is an elementary
example but it is similar to what we want to achieve for metabolic networks.

The idea is to see if the biological and chemical constraints of reactions induced a
higher complexity or robustness compared to a hypergraph in which the chemistry is
not taken into account. Our null hypothesis will then be that chemical and biological
constraints do not affect the network’s complexity or robustness. Although the
problem seems simple and well posed, there are some subtle aspects. The first
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thing to do is define how to randomize the hypergraph. To do so, we need to define
the biological and chemical constraints we want to compare. Indeed, there are
multiple ways in which we can define a random metabolic hypergraph.

The easiest way to randomize the network is to exchange metabolites belonging
to different reactions. We are going to call this method shuffle reactions. The
procedure is simple:

e choose a reaction r;,

choose a metabolite in the chosen reaction r;,

choose another reaction r;,

if the chosen metabolites is a product (or a reactant), exchange it with a
product (or a reactant) of r;.

By randomizing in this way, we are changing only the chemistry of the reactions,
but the degree of each reaction is left unchanged. We randomized the metabolic
network 100 x M, where M is the number of reactions. At this point, we can build
the hypergraph directly from this new random metabolic network as described in
section 2.2. The resulting hypergraph will have the same amount of hyperedges
and vertices and the same degree distribution.

Another possibility is to randomize directly the hypergraph. To do so, we again
exploit the bipartite representation to generalize a type of shuffle widely used for
directed graphs, that keeps the in-degree and out-degree fixed. We refer to this
procedure as shuffle edges and consists in:

« select a random pair of edges A — B and C' — D,

o swap the links such that A — D and C' — B if and only if the link is not
already present.

With this procedure, the in-degree and out-degree distribution are kept fixed. We
can use the same procedure on the bipartite projection of the metabolic hypergraph.
We need to be careful because we want the final graph bipartite to still be interpreted
as a hypergraph. So we randomize first the sub-bipartite graph with the edges
going from metabolites to reactions and then the sub-bipartite graph with the
edges going from reactions to metabolites. In this way, we avoid the situation in
which a metabolite can be linked with another metabolite. This is equivalent to
exchanging products with products and reactants with reactants, but we change the
reversibility. Indeed now we are randomizing the hypergraph directly, by reshuffling
the links. In this way, the double links that characterize the reversible reactions in
the bipartite projection can be broken in the randomization procedure.
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3.1 Shuffle reactions vs shuffle edges

We compare the results of the two null models we proposed above. We recall that
the shuffle reactions is a randomization of the metabolic network and not directly of
the generated hypergraph. This means that some chemical features of the metabolic
network will be preserved, for instance, which reactions are reversible. What is
swapped is the role of metabolites. In this new metabolic network, reactions have
no physical meaning since they violate the mass conservation principle. Metabolites
are created and destroyed without any rule as a consequence of randomization.
However, consider that in the hypergraph construction, we do not take explicitly
into account this factor, so we expect our null hypothesis to be true. Indeed, this is
what has been observed by simulation. See the Appendix B for more details about
this result.

By randomizing the hypergraph directly, we observe some differences. Notice that
using the shuffle edges method is equivalent to randomizing the “oriented version’
of the metabolic network, so randomize regardless of the reversibility. The average
complexity of the network is left unchanged, see Appendix B, while the robustness
displays a pattern, shown in Fig. 3.1. We see that the robustness tends to be lower
in the null model, meaning that the biological properties affect the robustness of
the network. Note that, for example, the robustness of the Staphylococcus has
been almost halved by the randomization procedure. Remember that the in-degree
and out-degree are preserved. The main difference with the previous method is in
the reversibility, which is not maintained. This may indicate that the robustness
measure is biased towards systems that have more reversible reactions. We can
check what is called the reciprocity of a graph G [63],

L(—)
r(G) = 7 (3.1)
where L is the total number of bidirectional links, and L is the total number of
links in the graph. The generalization to the hypergraph case is simple [64]

Trace{(ZrLh)*}
r(H) = Trace{U?}

)

(3.2)

where A and U are, respectively, the adjacency matrix of the directed and underlying
undirected hypergraph!. The results show no correlation between reciprocity and
hypergraph robustness. The value of the reciprocity is reported in the Appendix B.
We can then conclude that our measurements are not biased by reversible reactions
and that the biological and chemical constraints make the metabolic network more
robust compared to a random network with the same degree distribution.

! An underlying undirected hypergraph of a directed hypergraph H is defined as the hypergraph
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Figure 3.1: Comparison between the robustness of the real metabolic hypergraph
and of the randomized one. The obtained value is an average of 5 repetitions of the
randomization procedure. We consider a subset of the most interesting metabolic
hypergraph.

in which each hyperedge present in H is bidirectional.
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Conclusions

Metabolic networks are probably among the most challenging and promising
biological networks. Their study provides insight into how biological pathways
work and how resistant a given organism is to a specific environment or therapy.
It is therefore critical to develop mathematical tools that can best characterize
them. We propose an intuitive method to analyze metabolic hypergraphs. These
are directed hypergraphs with edge-dependent vertex weights. As much as the
undirected version has been explored in the literature [36, 65, 66] the theory of
directed hypergraphs is lacking [37]. We propose a representation of it as a bipartite
graph, define its adjacency, and analyze its structural properties by measuring the
communicability and complexity of the network. A brief schematic summary of
the work follows.

In chapter 1 we describe hypergraphs from a mathematical point of view. We
focus on the different ways of projecting hypergraphs onto graphs and show their
advantages and disadvantages. We show that the most flexible representation is the
bipartite representation, and for this reason, we choose it as the basis for generalizing
aspects of network theory onto hypergraphs. We compare different types of random
walks and Laplacians matrices, laying the foundation for describing characterization
methods. We choose to generalize communicability, to identify how different parts of
the metabolism are connected, and to measure robustness. In addition, we measure
the complexity of the hypergraph using probability tools: search information is
defined as a kind of entropy and allows us to identify more or less easily accessible
areas within the hypergraph. So far, the discussion is completely general. In the
chapter 2, we apply the developed mathematical concepts to metabolic networks
taken from the BiGG Database [56, 57]. We show how these can be considered
EDVW hypergraphs without any loss of information. The results are discussed
in detail in the paragraph below. In chapter 3 we propose two ways to define a
null model for a metabolic hypergraph. This way, we can understand whether our
results are derived from chemical and biological constraints or not.

We are thus able to identify important reactions and hubs in the network
and characterize the complexity of different metabolic pathways. In particular,
we compare several metabolic hypergraphs and obtain satisfactory results. The
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complexity of the different organisms studied is almost invariant. This result is
in line with the literature [60], since as varied as organisms may be, evolution
has caused metabolic reactions and pathways to be similar across species. In
contrast, the robustness of the network varies significantly from organism to
organism, presenting a distinct peak for Staphylococcus aureus, an antibiotic-
resistant bacterium. This result is not accidental. Antibiotics work by targeting
specific reactions, inhibiting them, and causing organism death [61]. The more
robust a network is, the more difficult it will be to individuate a reaction that leads
to cell death because there are many alternative reactions. It would be interesting
to extend this result and apply it to different antibiotic-resistant bacteria. It should
be noted that antibiotics also block reactions by inhibiting the genes corresponding
to the enzyme that catalyzes them. Therefore, another way for a bacterium to resist
an antibiotic is to express many genes that code for the most important reactions.
In this way, even if its bipartite metabolite-reaction graph is not structurally robust,
the bacterium is able to endure the therapy. With these motivations, it would be
interesting to use genes as hyperedges, thus obtaining a bipartite metabolite-genes
graph.

As much as hypergraphs seem to be the right tool to describe metabolic networks,
the mathematical theory is yet to be expanded. Network theory has several tools
available that can be generalized to hypergraphs. Consider, for example, cascading
failures, which seem to be strongly related to the analysis of essential reactions done
via FBA. Various clustering or community detection methods could be explored
and compared with the metabolic pathways. For example, Estrada in [50] proposed
a community detection method based on communicability.

To conclude, we would like to emphasize that metabolic hypergraphs are a
complex topic yet to be explored, and we hope to have motivated further research
in this area.
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Appendix A

Algebraic Connectivity

Here, in Fig. A.1, we show the results for the algebraic connectivity of the bipartite
projected hypergraph Laplacian, introduced in section 1.4. We computed the first
non-zero eigenvalue of the Laplacian matrix

L=D— Abz’pav'tite' (A].)

Even if the Laplacian is not symmetric, and so the spectrum is not necessary real,
the algebraic connectivity was always a real quantity.
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Appendix B

Random metabolic networks:
extra results

Here we report some additional results of chapter 3. In Fig. B.1 and in B.2, we show
respectively the comparison between the measure of average search information
and robustness for real metabolic hypergraphs and their corresponding randomized
version using the method shuffle reactions. In Fig. B.3 we show the comparison
between the measure of average search information for real metabolic hypergraphs
and their corresponding randomized version using the method shuffle edges. In B.1
we show the value of the reciprocity. In addition, we also provide the fraction of
reversible reaction for each metabolic network.
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The average search information for some metabolic hypergraphs

Figure B.1

compared with the average search information of their randomized counterparts.
The method used to randomize the hypergraph is shuffle reactions. We did 100 x M

shuffles, where M is the number of reactions.
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robustness of their randomized counterparts. The method used to randomize the

hypergraph is shuffle reactions. We did 100 x M shuffles, where M is the number

of reactions.
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Figure B.3: The average search information for some metabolic hypergraphs
compared with the average search information of their randomized counterparts.
The method used to randomize the hypergraph is shuffle edges. We did 5 repetitions
and 100 x M shuffles, where M is the number of reactions.
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Name File fraction of reversible reactions  reciprocity
0 e coli_core 0.484211 0.425000
1 Homo sapiens 0.375267 0.289474
2 iIT341 0.330325 0.278738
3 Thermotoga maritima MSB8 0.306748 0.257384
4 Trypanosoma cruzi Dm28c 0.552987 0.438191
5 Staphylococcus aureus subsp aureus N315 0.309556 0.368752
6 Escherichia coli str K-12 substr MG1655 0.236279 0.212747
7 Homo sapiens2 0.443452 0.322267
8 Escherichia coli BL21(DE3) 0.239416 0.174967
9 Methanosarcina barkeri str. Fusaro 0.304348 0.260189
10  Acinetobacter baumannii AYE 0.417734 0.328678
11  Lactococcus lactis subsp. cremoris MG1363 0.362069 0.342130
12 Clostridioides difficile 630 0.195281 0.167685
13 Yersinia pestis CO92 0.279449 0.206161
14  Mycobacterium tuberculosis H37Rv-1 0.267317 0.215523
15  Mycobacterium tuberculosis H37Rv-2 0.226754 0.184243
16  Plasmodium berghei 0.456420 0.317741
17 Plasmodium cynomolgi strain B 0.455307 0.316309
18  Saccharomyces cerevisiae S288C 0.344392 0.295849
20  Shigella dysenteriae Sd197 0.257188 0.190624

Table B.1: Table of the fraction of reversible reactions and the reciprocity for
each metabolic hypergraph studied.
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