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Abstract

ParABS systems are a tripartite mechanism that ensure chromosome and low-
copy-number plasmid separation in most bacterial species. This thesis focuses on
the interaction of two of these elements: centromere DNA sequence ParS and the
DNA-binding protein ParB.

A new analytical coarse-grained model for the diffusion of ParB dimers on DNA
is proposed. A first diffusive model was introduced in [1] but it ignores both the
structural transitions of the dimer and the change of nucleotide it is bound to
(either CDP or CTP). This model distinguishes between the open and closed states
of the protein, therefore taking also in account the transition between these two
conformations. Adding this feature in the model is crucial for a more faithful
description of the ParBS interaction. Indeed experiments show that the ParS
sequence catalyzes the closing transition of ParB, creating clusters of them around
itself. The density distribution of ParB over DNA is therefore very peaked near the
centromere. The main goal of this thesis is to recreate such distribution through a
biophysical model.

From a thermodynamical point of view the equilibrium distribution is completely
flat. The system is therefore considered to be in a Non Equilibrium Steady State
(NESS). The only way this NESS can maintain itself is through the hydrolysis
of CTP. In this thesis a continuous limit of the previously (numerically solved)
discrete lattice model has been performed in order to obtain an approximate but
analytical solution. The latter has been compared with the equilibrium one, gaining
information on how much energy this system dissipates.
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Chapter 1

Non equilibrium theory

"Environmental entropy production is the price Nature has to pay for
keeping a subsystem away from thermal equilibrium" [2]

1.1 Continuous Markov chains
Discrete time Markov chains evolve a probability distribution by one unit of time

πt+1
i =

Ø
j

πt+1
j Pji

If we want to evolve the distribution of a time longer than one we can just use
iteratively the relation above, obtaining:

πt+n = πtP n

When we consider a continuous-time phenomenon we have to introduce a stochastic
matrix P (t) which depends on the continuous parameter t. We can ask ourself
now how does the P matrix evolves with time. In order to do this we will study its
derivative:

d

dt
P (t) = lim

h→0

P (t + h) − P (t)
h

(1.1)

Using the Chapman Kolmogorov equation we have that P (t + h) = P (t)P (h).
Collecting P (t):

d

dt
P (t) = P (t) lim

h→0

P (h) − I

h
= PQ (1.2)

The Q matrix is called the "infinitesimal generator" of the Markov chain, and it
would be largely used in this thesis. In particular it coincides with the rate matrix
of a process described by a Master equation.
A very property of this matrix is that it gives also the time derivative of the
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Non equilibrium theory

distribution vector π.

d

dt
π(t) = d

dt
(π(0)P (t)) = π(0) d

dt
P (t) = π(0)P (t)Q

d

dt
π(t) = π(t)Q (1.3)

Another important property of matrix Q is that we can find matrix P from Q.
Starting from equation (1.2)

Ṗ

P
= Q (1.4)

which is easily solved, and we finally find the relation:

P (t) = eQt (1.5)

Since in this thesis we would only be working with steady states, the P (t) matrix
will not be needed at all. The Q matrix containing the reaction rates will be largely
used to find steady states (1.3). However it’s important to understand the role of
this matrix in the Markov chain framework.

1.1.1 Holding time
In discrete time markov chains random walkers change their location every unit of
time (they can remain in their position if a selfloop is present.
On the contrary, in continuous time Markov chains, we have that the "holding time"
is a random variable itself. Its distribution in time is exponential (exponential
distributions are memoryless).
Considering a node i of a network, and calling kij the rates going out of node i, we
have that the holding time distribution is:

P (t) = (
Ø

j

kij)exp

−(
Ø

j

kij)t
 (1.6)

1.2 Master Equation
The master equation is a very simple yet extremely powerful equation that describes
the time evolution of an enormous variety of different systems. Among the letter
there are chemical reactions.
The time evolution equation of the concentration of a chemical species is expressed
though the chemical rates.

d
dt

[Xc] =
Ø
c′

([Xc′ ] wc′c − [Xc] wcc′) (1.7)
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Non equilibrium theory

This equation can easily be mapped in the master equation dividing the equation
by the sum of all concentrations, thus getting a probability Pc = Pcq

c′ [Xc′ ]

d
dt

Pc =
Ø
c′

(Pc′wc′c − Pcwcc′) (1.8)

This is clearly equation (1.3). The generator Q of the Markov chain is a function
of the rates. In physics and biophysics is very common to study steady states.
For systems described by (1.8) they are found solving the (1.8) equation with a
vanishing left hand side.

Ø
c′

(Pc′wc′c − Pcwcc′) = 0 (1.9)

1.2.1 Detailed Balance
The principle of Detailed Balance states that a system where elementary processes
occur is in equilibrium when every of these processes is completely balanced by its
reverse.
This principle gives a very clear definition of equilibrium and it is easily understood
in terms of a Master Equation.
Considering (1.9) we have that Detailed Balance holds when all the terms in the
sum are equal to zero:

Pc′wc′c − Pcwcc′ = 0 ∀(c, c′) (1.10)

As (1.10) shows the detailed balance condition implies that there is no net current
around all branches of the reaction graph.

All steady states that do not fulfill (1.8) are called Non Equilibrium Steady States
(NESS) and they are for particular interest in Biophysics, given the intrinsic out of
equilibrium nature of life.

1.2.2 Cycles
It is worth to notice that if Detailed Balance is respected and a cycle is present in
the graph, the rates can not be completely independent. Using (1.10) recursively
for the cycle edges, probabilities cancel out from the equation, leaving a relation
that contains rates only: r

i wi,i+1r
i wi+1,i

= 1 (1.11)

Where the product is performed only on the nodes that belong to the cycle.
It’s very important to clarify that this property does not assure that the system
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Non equilibrium theory

is in equilibrium, but it says that the system has an equilibrium state to relax to.
The relaxation toward equilibrium is an aspect of out of equilibrium physics which
is not treated in this thesis.
Instead we will be dealing with "Non Equilibrium Steady States" (NESS) which
are steady states that do not fulfill (1.11).

1.3 Useful definitions
1.3.1 Extent of a reaction
Lets consider a simple reaction, at constant temperature:

A ⇌ B (1.12)

The following quantity is defined as the "extent of the reaction", and it measure
the intensity of the reaction.

dξ = dNB = −dNA (1.13)

This quantity is often defined using particle concentration instead of particle
numbers, but the meaning is the same.
The time evolution of this quantity is easily expressed via transition rates:

ξ̇ = NAwAB − NBwBA (1.14)

ξ clearly vanish in equilibrium conditions.
The relation of the extent of the reaction with the Gibbs free energy is:

dG = (µB − µA) dξ (1.15)

which leads us to a new definition.

1.3.2 Chemical potential and chemical affinity
The chemical potential is defined as the change in Gibbs free energy as the particle
number (or concentration) changes. Just as Gibbs free energy, it has both an
energy and entropic term:

µc = ∂F

∂Nc

= µ0
c + kBT ln Nc (1.16)

It is very important to notice that it is an increasing function of the specie
concentration. For example a diffusion process can be explained in terms of chemical
potentials. Particles migrate from high concentration areas to lower concentration
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Non equilibrium theory

areas, thus releasing energy, and in turn making diffusion a spontaneous process
(Fick’s first law).
The difference between the chemical potentials belonging to dissimilar species is
defined as the chemical affinity:

Acc′ = µc′ − µc (1.17)

Acc′ = µ0
c′ − µ0

c + kBT ln Nc′

Nc

= ∆µ0
cc′ + kBT ln Nc′

Nc

(1.18)

The chemical affinity is the change in chemical potential if we were to transform
one particle of specie c to one of specie c’.

Setting the lhs of (1.18) to zero and solving for the concentration (number) ratio
we get:

K = N ′
c

Nc

= e−
µ0

c′ −µ0
c

kT (1.19)

where K is called equilibrium constant of the reaction.

1.3.3 Smoluchowsky equation of chemical rates
Smoluchowski equation is a very simple, yet meaningful way to look at chemical
rates.

K = k

V
= 4π (D1 + D2) (R1 + R2)

V
= 4πD̂σ

V
(1.20)

This equation describes the rate at which two spherical particles, with radius R
and diffusion constant D meet in a volume V. This is clearly linked to chemical
reaction since they occur when to compatible molecules meet because of the random
diffusion in the thermal bath.

1.4 Entropy production
In order to deeply understand Biolocical systems it’s indispensable to study their
relationship with the environment [3].

How can a biological system keep itself out of equilibrium, maintaining order,
apparently violating the second principle of Thermodynamics?
Laws of physics tell us that all isolated systems are either in equilibrium or are
tending to it, thermalizing. Biological systems cannot be isolated (they always
depend on the environment for food, water and many other chemical compounds)
and have to be considered subsystems, constantly interacting with the environment.
The concept of Entropy production naturally arises as a way to reconcile NESS with
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the second law of thermodynamics. A system can manage to keep itself ordered (for
a finite time), in a low entropy state, but it will increase the environment entropy.

1.4.1 Operational fluxes
[4] In order to help us understand the concept of entropy production we will consider
the example of particles going in and out of a biological subsystem. Introducing an
extensive parameter Xc (could be the concentration of the particle). Calling Xs

c

the parameter for the subsystem and Xe
c the one for the environment we can write:

Xc = Xs
c + Xe

c (1.21)
This could be the case of the transport of a specific molecule in or out of a cell.
Taking the derivative of Gibbs potential on variable X, and assuming that both
internal energy and volume do not depend on this parameter, we get:

Fc = dG

dXc

= dS

dXc

= d(Ss + Se)
dXc

= Fc + F ′
c (1.22)

Fc is called the "thermodynamic force" or affinity. Most of the times it does not
have the unit of a force, but the analogy with a force is in the fact it is that it is
the derivative of a potential on a certain variable (F = −∂xU). Clearly the system
is at equilibrium only when there is no net force acting on it.
Introducing the flux Jc:

Jc = dXc

dt
(1.23)

It’s important to note that this fluxes can exist even if the subsystem is in a steady
state, indeed:

Jc = dXc

dt
= d(Xs

c + Xe
c )

dt
= d(Xe

c )
dt

(1.24)

Where Jc is called the "operational flux" of particle specie "c" going in the system.
dS

dt
=
Ø

c

dS

dXc

dXc

dt
=
Ø

c

F eq
c Jc (1.25)

This relation can be interpreted as follows: Jc is the number of particles that
going in the subsystem. Fc is the free energy increase/decrease associated to every
particle that crosses the system’s barrier. More specifically Fc is the difference in
the chemical potentials associated to the inside and outside particles.

Fc = µc − µ′
c (1.26)

Operational fluxes, being the time derivative of a concentration, can be experimen-
tally measured. We will see that this is not the case for the cycle-fluxes.
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1.4.2 Cycle-fluxes
In this section we will observe the same kind of phenomena discussed in the previous
section but from the perspective of cycle dynamics.
We will consider a simple system that transports a specific molecule inside and
outside of the molecule.
This cycle brings particles outside if considered in the counter-clockwise direction,

Figure 1.1: Reaction graph for a generic process

and brings one particle inside the system if for every cycle completed in the clockwise
direction.
From (1.11) we now that if the product of the clockwise rates is equal to the
counterclockwise rates, the system can achieve equilibrium. We will cal this ratio
Ω and will understand its meaning.

Ω = wabkbckcdkda

kbakcbwdckad

(1.27)

Recalling that both wab and wdc are rates associated to second order reaction (the
flux depends on 2 concentrations). Therefore they also depend on the (respectively)
internal/external concentration of the molecule. Therefor Ω is a function of the
concentrations:

Ω = (cikab)kbckcdkda

kbakcb(cokdc)kad

(1.28)

at equilibrium we have Ω = 1, therefore:

(ceq
i

ceq
o

)−1 = kabkbckcdkda

kbakcbkdckad

(1.29)
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Substituting back in (1.28) we get that Ω is just the ratio between the ratios of the
concentrations:

Ω =
( ci

co
)

( ci

co
)eq

(1.30)

Recalling the definition of the chemical potential (1.16) and the one of the affinity
we have:

ci

co

= exp
A

F − ∆µ0

kBT

B
(1.31)

Using the same scheme for the ratio at equilibrium (F=0) and substituting in (1.30)
we finally link the Ω to the thermodynamic force:

Ω = exp
3

F

kBT

4
(1.32)

F = kBT log Ω = kBT log
A ( ci

co
)

( ci

co
)eq

B
(1.33)

This simple example shows that, if second order rates are present, we can express
Ω as a function of these concentrations, and the ones at equilibrium.
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Chapter 2

Clamping and Sliding model
for the ParBS system

ParABS systems ensure chromosome separation for most bacterial species. This
chapter will focus on one component of this tripartite system: the ParB protein,
and in particular on the conformational changes it can go through. This dimer
can transition between 2 shape conformation (open and closed), and it can bind
to the both to the cytidine triphosphate (CTP) and to the cytidine diphosphate
(CDP) molecules. The role of these nucleotides is crucial for the thermodynamical
aspects of this system: CTP hydrolysis provides the energy necessary for keeping
the system out of equilibrium.

Figure 2.1: Open state of the dimer [5]

2.1 The CTP solution
In order to understand ParB conformational changes it’s important to understand
its relationship and interaction with the solution it is found in. In particular we

9



Clamping and Sliding model for the ParBS system

Figure 2.2: Closed state of the dimer [5]

are interested on the concentration of the species of the 2 nucleotides, CDP and
CTP. These two nucleotides can transform into each other through the processes
of hydrolysis and synthesis. The rate of CTP synthesis ks is much lower than the
rate of hydrolysis kh, indeed the ratio of the equilibrium concentrations is:

[CDP ]eq

[CTP ]eq

≈ 106

However this is often not the case of the solution in the cell, where CTP is very
abundant, way more than CDP.
The ParB dimer can find itself bound to one of the two nucleotides (T and D states
in the next graph) or bound to no nucleotide, the APO state. We will show that
this state can be ignored since its thermodynamically unfavourable.

Figure 2.3: Reaction graph for off-DNA ParB’s states

Let’s now consider the reaction graph fig.2.3. It is the reaction chain that a ParB
dimer undergoes when found in a solution of CTP and CDP.

10



Clamping and Sliding model for the ParBS system

Considering the ratio of clockwise and counter clockwise rates we get:

Ω =
khkD

offkT
on[CTP ]

kskT
offkD

on[CDP ]

Introducing the dissociation constant: ki
d = ki

off

ki
on

we get:

Ω = khkD
d [CTP ]

kskT
d [CDP ] (2.1)

This ratio is known to be equal to one (the thermodynamic force of the cycle is
zero) if the rates permit an equilibrium steady-state. From (2.1) it’s evident that
equilibrium is only possible at a specific value of the [CTP ]/[CDP ] ratio.

Now we will consider the reactions that a CTP or CDP molecule undergoes
in the presence of a concentration [E] of ParB molecule, treated in this section
as an enzyme. ks and kh are the same rates of fig.2.3 while ksp

s and ksp
h are the

spontaneous hydrolysis and synthesis rates of the solution (nucleotides free, not
bound the the protein). It’s reasonable to assume that this cycle is able to achieve

Figure 2.4: Reaction graph for a CTP/CDP molecule

equilibrium. For this reason we set the thermodynamic force to zero, obtaining:
ksk

T
offksp

h kD
on[E]

khkT
on[E]ksp

s kD
off

= ksk
T
d ksp

h

khkD
d ksp

s
= 1 (2.2)

It’s important to notice that the equilibrium condition does not depend on the
enzime concentration. Manipulating the former expression we get:

ksp
s

ksp
h

= ksk
T
d

khkD
d

(2.3)

11
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But the lhs can be expressed in terms of equilibrium concentrations. Imposing
detailed balance over the hydrolisis/synthesis reaction we have:

ksp
s

ksp
h

=
A

[CTP ]
[CDP ]

B
eq

(2.4)

Combining (??) with (2.3) we obtain:

ksk
T
d

khkD
d

=
A

[CTP ]
[CDP ]

B
eq

(2.5)

finally inserting (2.5) in (2.1):

Ω =
[CT P ]
[CDP ]1

[CT P ]
[CDP ]

2
eq

(2.6)

It’s now evident that this cycle needs the equilibrium concentration ratio of CT-
P/CDP in order to be at equilibrium itself.

2.2 The exchange rates
Recalling fig.2.3, we will now describe the system by means of a master equation.
In this section we will consider the time evolution of the enzyme concentration by
means of a Master equation:

˙[a] = +kT
off [ET ] − kT

on[T ][a] + kD
off [ED] − kD

on[D][a]
˙[ET ] = −kh[ET ] + ks[ED] − kT

off [ET ] + kT
on[T ][a]

˙[ED] = +kh[ET ] − ks[ED] − kD
off [ED] + kD

on[D][a]
(2.7)

Previous publications [5] show that nucleotide binding and unbinding rates are
much faster than the Hydrolysis/Synthesis one. Therefore we can consider the
APO state (whose master equation contains the fast rates only) constant in time.
The next calculation will show how to permorm a coarse-graining of the system
where the short-lived APO state is neglected.
Exploiting the stationarity condition we are able to find [a] as a function of the
other 2 concentrations:

[a] =
kT

off [ET ] + kD
off [ED]

kT
on[T ] + kD

on[D] (2.8)

substituting this relation in (2.7) and reorganizing terms we obtain 2 equations where
a new interaction (between ED and ET) has appeared: the exchange interaction.
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kD→T
x = kD

off

kT
on[CTP ]

kT
on[CTP ] + kD

on[CDP ] =
kD

offkT
on

[CT P ]
[CDP ]

kT
on

[CT P ]
[CDP ] + kD

on

(2.9)

kT →D
x = kT

off

kD
on[CDP ]

kT
on[CTP ] + kD

on[CDP ] =
kT

offkD
on

kT
on

[CT P ]
[CDP ] + kD

on

(2.10)

This new interaction originates from the the removal of the APO state. The system
in fig.2.3 can now be seen as a 2 state systems with additional edges:sythesys It’s

Figure 2.5: Coarse grained ParB state transition graph

now important to notice that the exchange reactions (in both directions) are still
much faster than the hydrolysis/synthesis.
When the dimer is open fig.(2.2) the nucleotide is free to transform both with
exchange and hydrolysis/synthesis, so from now one we will consider only the
exchange process since it’s the dominant one.
On the contrast it has been observed that when the dimer closes it "traps" the
nucleotide fig.(2.2) therefore making the exchange not possible. In the graph below
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Figure 2.6: The 4 possible states of the dimers and the relative rates

2.3 The thermodynamic force
Once again we consider the ratio between the two directions of a chemical cycle.
We now consider the cycle of fig.??

Ω4 = khkD
cok

D→T
x kT

oc

kskD
ock

T →D
x kT

co

(2.11)

Substituting the expression of the exchange rates (2.9) and (2.10) and recalling the
definition of the dissociation constants:

kD→T
x

kT →D
x

= kD
d

kT
d

α (2.12)

where α = [CT P ]
[CDP ] .

Using relation (2.5):
kD→T

x

kT →D
x

= αks

αeqkh

We finally obtain an expression that links the thermodynamical force of this cycle
to the nucleotide’s concentrations:

Ω4 = αkD
cok

T
oc

αeqkD
ock

T
co

(2.13)
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Chapter 3

From a 5-state system to a
3-state one

The 5-state model is the one that is thought to be the closest to the real biological
model. Such model is however impossible to solve analytically even in a continuous
limit. A continuous 2 state model (empty/full) has already been formulated [1]
in a phenomenological fashion. A reasonable trade-off between the the desire
of an analytical solution and a less coarse grained description of the system is
achieved with a 3 state model (empty, full-open, full-closed). The letter would
be solvable (in the continuous limit) and it would contain opening and closure
rates, indispensable for an accurate description of the ParS-ParB interaction. In
this chapter a dynamical coarse-graining procedure has been developed, which,
remarkably, is able to preserve the thermodynamic force of the cycle.

3.1 Justification for the coarse-graining
The idea of this coarse-graining procedure is to get rid of 2 out of the 4 conforma-
tions: the open-CDP and the closed-CDP states. This is done because it has been
observed that both these configurations are thermodynamically unstable and thus
are short-lived [5]. The OD state is considered transient since the CTP concentra-
tion is orders of magnitude higher than the CDP (therefore we have kDT >> kT D).
The reason why the CD state is short-lived is on the contrast due to the fact that
the the ParB dimer is prone to open itself when it is bound to CDP. As depicted in
fig.(3.1) the OD and CD state will be considered as "transition-states" or "reactive
intermediates". The coarse-grained model would than be made just out of the two
states bound to CTP and the effective rates between them will be the inverse of
the mean passage times that also include the presence of the CDP-bound states.
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From a 5-state system to a 3-state one

Figure 3.1: A reaction graph showing the main reaction both off-DNA and
on-DNA [5]

3.2 Mean passage time approach
In order to perform the sought coarse-graining we will use the concept of mean
passage times. For a discrete time Markov chain it reads:

mij = pij +
Ø
k /=j

pik(1 + mkj) (3.1)

When time is discrete the random walker waits exactly 1 unit of time between
every jump. This relation is clearly a recursive relation that explores every possible
path, even infinite ones, to state j.
Switching to continuous-time Markov chains we need to introduce time dependent
probability distributions. Recalling (1.6) we know how the functional form of single
node holding-time distributions, however combining them and generalizing (3.1) is
not trivial.

Pij(t) = pijPi(t) +
Ú t

0
pikPk(t′)pkjPj(t′′)δ(t − t′ − t′′) dt′dt′′... (3.2)

Where pij is the ratio between rate kij and the sum of all other rates going out of
node i. Every term of the infinite sum is a convolution. Using the property of the
Laplace transform that the transform of the convolution of 2 or more functions is
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From a 5-state system to a 3-state one

the product of the transforms of these functions:

P̃ij(s) = pijP̃i(s) + pikP̃k(s)pkjP̃j(s)... (3.3)

The sum is infinite, and if the chain doesn’t have any sink the probability of
reaching node j from node i in an infinite time must be equal to 1. Recalling the
definition of the Laplace transform:

P̃i(s) =
Ú ∞

0
Pi(t)e−st dt (3.4)

We can find the functional form of this Laplace transforms:

P̃i(s) = λi

Ú ∞

0
e−λite−st dt = λi

λi + s
(3.5)

and evaluating it in s = 0 we have:

P̃i(s = 0) =
Ú ∞

0
Pi(t)e0 dt = 1 (3.6)

Now that we know all the ingredients in (3.3) we know the pdf of the i-j transition.
Finding the mean passage time it’s now only a matter of taking an expectation
value:

τij =
Ú ∞

0
tPij(t) dt = −∂sP̃ij(s = 0) (3.7)

Once obtained the mean passage time, we can define the coarse-grained rate as the
inverse of the mean passage time of the i-j transition.

kij = 1
τij

(3.8)

3.3 Recursive method
Now we can proceed to calculate all the terms of the sum (3.3).

First we want to separate the infinite sum (3.3) in two subsets, for example for
Pco(t):

P̃co(s) = P̃ D
co (t) + P̃ T

co(t) (3.9)
Where the first term is the sum of all the paths that do not use edge kT

co while the
second is the sum of all terms that do. Let’s focus on P T

co(t).
The first contribution to the sum is the shortest path to state CT:

P T
co(t) = pT

coPCT (t) + .... (3.10)
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From a 5-state system to a 3-state one

Figure 3.2: The five states model diagram (with no empty state)

where pT
co = kT

co

kT
co+kh

= kT
co

kCT

The second term corresponds to the path that goes to state CD, back to CT
and finally to OT. It’s important to notice that the cycle CD-CT can be repeated
infinite times. Another possible cycle is the jumping back and forth from state CD
to OD. We are almost ready to write the recursive relation that solves our sum,
defining some functions to make notation lighter:

z = phpsP̃CT (s)P̃CD(s)

q = pD
ocp

D
coP̃CD(s)P̃OD(s)

P̃ T
co(s) = pT

coP̃CT (s) + z

A ∞Ø
n=0

qn

B
P̃ T

co(s) (3.11)

In this equation the memory-less property of Markov processes was used: once
the path is back in the initial state, no matter how long it already has been, the
probability P̃ T

co(s) is unchanged, and therefore we can multiply by it. It’s important
to notice that the second term in the sum is actually a collection of infinite terms:
each one has a different integer power of q . This can be understood in the following
way: if a cycle of type z is performed, in the middle of it infinite cycles of type q
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From a 5-state system to a 3-state one

can happen. Solving for P̃ T
co(s)we get:

P̃ T
co(s) = pT

coP̃CT (s) 1
1 − z

1−q

(3.12)

P̃ D
co (s) has a slightly different expression. In this case the shortest path is made

out of 3 edges: kh kD
co kDT . The recursive relation reads:

P̃ D
co (s) = +z

A ∞Ø
n=0

qn

B
P̃ D

co + phP̃CT pD
coP̃CDpDT P̃OD

A ∞Ø
n=0

qn

B
(3.13)

Solving it, we obtain:

P̃ D
co (s) = 1

1 − q − z
phP̃CT pD

coP̃CDpDT P̃OD

The recursive relations for the o → c rates are very similar and follow the same
scheme. As explained in the previous section we now find the mean passage time
as a derivative of the Laplace transform of the the pdf.

τco = −∂sP̃co(s)|s=0 = −∂s(P̃ D
co (s) + P̃ T

co(s))|s=0 (3.14)

k̃D
co = τ−1

co P̃ D
co (0) (3.15)

k̃T
co = τ−1

co P̃ T
co(0) (3.16)

For the c → o rates we finally get:

k̃T
co = kco,T (kDT (kco,D + ks) + kskoc,D)

kDT (kco,D + kh + ks) + kh (kco,D + koc,D) + kskoc,D

(3.17)

k̃D
co = kDTkhkco,D

kDT (kco,D + kh + ks) + kh (kco,D + koc,D) + kskoc,D

(3.18)

Instead for o → c we have:

k̃T
oc = koc,T (kDT (kco,D + ks) + kskoc,D)

kDT (kco,D + ks) + kTD (kco,D + koc,D) + ks (koc,D + kTD) (3.19)

k̃D
oc = kskTDkoc,D

kDT (kco,D + ks) + kTD (kco,D + koc,D) + ks (koc,D + kTD) (3.20)

19



From a 5-state system to a 3-state one

3.4 The ParS rates
In experiments [5] it is observed that the ParS gene in DNA manages to catalyze
the opening-closure reaction. The presence of this catalysis site is essential for
the diffusion of ParB dimers over DNA and in turn for chromosome separation in
bacteria. Fig. 3.1 is an explicative figure showing the main reactions at play.
For this reason in this model we will consider that these rates are scaled by a factor
γD and γT respectively for the D and T states. All the other reaction rates will
remain the same.
The coarse-graining procedure is exactly the same of the one for the non specific
rates.

S̃k
T

co = γT kco,T (kDT (γDkco,D + ks) + γDkskoc,D)
kDT (γDkco,D + kh + ks) + γD (kh (kco,D + koc,D) + kskoc,D) (3.21)

S̃k
D

co = γDkDTkhkco,D

kDT (γDkco,D + kh + ks) + γD (kh (kco,D + koc,D) + kskoc,D) (3.22)

S̃k
T

oc = γT koc,T (kDT (γDkco,D + ks) + γDkskoc,D)
kDT (γDkco,D + ks) + γDkTD (kco,D + koc,D) + ks (γDkoc,D + kTD) (3.23)

S̃k
D

oc = γDkskTDkoc,D

kDT (γDkco,D + ks) + γDkTD (kco,D + koc,D) + ks (γDkoc,D + kTD) (3.24)

Clearly the structure of these expression is the same of the NS rates, with γ factors
showing up every time that an opening-closure rate shows up.

3.4.1 Thermodynamic force after the coarse-graining
Plugging in the previous expressions it’s trivial to check that the thermodynamical
force of cycle (fig.3.2) is the same of the coarse grained system.

kskTDkco,T koc,D

kDTkhkco,Dkoc,T

= k̃T
cok̃

D
oc

k̃T
ock̃

D
co

(3.25)

This is very important from an out-of-equilibrium perspective: the system, even
if coarse grained, dissipates the same amount of energy every time it completes a
cycle.
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Chapter 4

The discrete model and the
continuous limit

While in chapter 2 the conformational changes of the ParB dimer have been
explained, in this chapter a model will be built in order to describe the interaction
and spatial distribution of these dimers on DNA. Many qualitative models have
been proposed in [6] to explain this spatial distribution. This thesis focuses on the
model known as "Clamping and Sliding" which describes the tendency of the ParB
dimers to attach to DNA (clamping) and than move laterally on it (sliding).

Figure 4.1: An image showing the clamp and slide model [6]
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The discrete model and the continuous limit

4.1 The discrete model
The model proposed in this thesis considers a long chain of sites (the DNA). Every
site of the lattice can be in one of these 3 states: empty (e), occupied by an open
ParB dimer (o) and occupied by a closed ParB dimer (c).

P o
i + P c

i + P e
i = 1

In this section the model will be solved in the most general fashion. Later biology-
based simplifications will be made in order to have a better understanding of the
solution.
Dimers which are present in the solution can occupy an empty site with rate ko

on

or kc
on. This attaching flux depends on the ParB concentration in the solution

surrounding the DNA. The relation is the following:

J = kon[ParB]P e
i = wonP e

i (4.1)

At the same way dimers can detach from DNA with rates ko
off and kc

off .
Both open and closed ParB dimers can diffuse on the chain. The hopping rate
between sites is respectively qo and qc for the two states.
Finally dimers are also allowed to transition from the open to closed state with
rates koc and kco.

Ṗ o
i = qo

2 (P o
i+1 + P o

i−1) − qoP o
i + kcoP c

i − kocP
o
i − ko

off P o
i + wo

onP e
i

Ṗ c
i = qc

2 (P c
i+1 + P c

i−1) − qcP
c
i − kcoP c

i + kocP
o
i − kc

off P c
i + wc

onP e
i

Ṗ e
i = − qo

2 (P o
i+1 + P o

i−1) + qoP o
i + ko

off P o
i − ko

onP e
i − qc

2 (P c
i+1 + P c

i−1) + qcP
c
i + kc

off P c
i − wc

onP c
i

(4.2)
Taking the time derivative of the normalization property of probability we have

that Ṗ e
i = 1 − Ṗ o

i − Ṗ o
i clearly meaning that the equation for the empty state it’s

a linear combination of the other two equations. Substituting P e = 1 − P o − P c,
rearranging terms and writing the two equations in a compact vector notation:

⃗̇Pi = Q

2 (P⃗i+1 + P⃗i−1 − 2P⃗i) − Wtot(i)P⃗i + WonP⃗i + c⃗ (4.3)

with:
Q =

A
Qo 0
0 Qc

B
(4.4)

and
−Wtot =

A
−ko

off − koc +kco

+koc −kc
off − kco

B
(4.5)

Won =
A

−wo
on −wo

on

−wc
on −wc

on

B
(4.6)
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The discrete model and the continuous limit

c⃗ =
A

wo
on

wc
on

B
(4.7)

4.1.1 The opening-and closure rates
Experimental data show a very different behaviour of ParB dimers around the ParS
gene. The latter is positioned in the origin of the system. In order to emphasize
this different behaviour of the system in the origin we introduce W, being the
matrix of the rates that holds everywhere except in the origin (in the non-specific
DNA)

Wtot = W + (Wtot − W ) = W + W0 (4.8)

Noticing that W0 is zero everywhere except in the origin (ParS site), therefore we
can write:

Wtot = W + δi,0W0 (4.9)

Finally we obtain:

⃗̇Pi = Q

2 ( ⃗Pi+1 + ⃗Pi−1 − 2P⃗i) − (W + δi,0W0)P⃗i + WonP⃗i + c⃗ (4.10)
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The discrete model and the continuous limit

4.2 Continuous limit
The justification for the decision to take a continuous limit of the previously
discussed discrete model is two-fold: the first one is to have an analytical solution
whose parameter can be easily tuned and their relation studied. The second one is
due to the desire to connect with [1] and propose a model which is a generalization
of the one previously proposed in the literature. The former model is very coarse
grained and it describes the distribution of dimers on DNA regardless their shape
or nucleotide they are bound to (in experiments it is not possible to observe the
shape of the dimer). The diffusion equation that governs this coarse grained picture
has only few parameters:

∂ρ(x, t)
∂t

= D∆ρ(x, t) + Rδ(x) − ρ(x, t)U (4.11)

D is the diffusion constant, U is the unbinding constant, uniform on all DNA and
finally R is a parameter that quantifies the strength of the source, therefore creating
a spike around this source which is the ParS sequence of DNA.
This equation tries to fit experimental density distribution found in [7]
The model developed in this thesis aims to describe this system more faithfully. In
order to do so we will consider a less coarse grained system where we are still able to
distinguish between open and closed conformations of the dimer. This new degree
of freedom permits of to characterize the effect of the ParS on the distribution of
the ParB proteins (the creation of large clusters around the sequence) in a different
way. This more general way to write the model will be explored in the next chapters.

In order to perform the continuous limit we will consider that each site has
size a and on each of them there is a constant continuous distribution ρi such that:

Pi = aρi (4.12)

Substituting the former relation in the equation, and dividing by a

⃗̇ρi = Qa2

2 ( ⃗ρi+1 + ⃗ρi−1 − 2ρ⃗i

a2 ) − (W + δi,0W0)ρ⃗i + Wonρ⃗i + c⃗

a
(4.13)

Setting the lattice site size a to zero we get the following equation:

⃗̇ρ = Dρ⃗ − (W + f0(x)W0)ρ⃗ + won (4.14)

In the next subsections the continuous limit will be fully explained.
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The discrete model and the continuous limit

4.2.1 Space derivative and diffusion constant
The first term is the diffusive part of the master equation. When a vanishes we get
the continuous diffusion constant.

Do = lim
a→0

Qoa
2

2

Dc = lim
a→0

Qca
2

2
The parenthesis in the first term is the second spatial derivative of the density

function.

4.2.2 The won rates
It is really important to focus on the last two terms of the equation. For the open
state they read:

−wo
onρo

i − wo
onρc

i + wo
on

a
(4.15)

It is crucial to analyze the dependence of won on a. This dependence can be
understood by means of Smoluchowski equation for chemical rates. From (??)
we understand that this rate depends on the sum of the reacting particle size.
Performing the continuum limit and therefore setting a to zero means to set both
the DNA site (particle 1) and the dimer (particle 2) size to zero. This means that
won ∝ a.

lim
a→0

−wo
onρo

i − wo
onρc

i + wo
on

a
= w̃o

on (4.16)

We have two consequences from this result: the first one is that w̃o
on is now a density

(for the sake of short notation this density will be called won), the second one is
that the entire Won matrix vanishes in the continuum limit. An even even deeper
consequence is that in the continuous limit an interaction is lost: in the discrete
model, when a site has an high density (sum of open and closed almost equal to
one) this would result in an overall lower binding-rate. This does not happen in
the continuum limit: the won rate is the same everywhere regardless of the density.

4.3 The Kronecker delta term
The term multiplied by the Kronecker delta is incredibly important because it is
the one linked to the interaction of the proteins with the ParS sequence. How this
term is treated in the continuous limit is both delicate and crucial for this model.
Two main approaches have been tried in this thesis.
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4.3.1 Finite size ParS
A different approach is to consider ParS a finite region of DNA. This approach
basically divide DNA in two parts, the centromere region (whose length is denoted
with d), and the rest of DNA, often called Non Specific DNA. In these two regions
the equations have the same structure but they have different opening/closure
rates. This approach will be investigated in the next chapter.
This way to rewrite the model is believed to be more general since it should be
possible to find the previous approach as a limit to d → 0. So far computing this
limit has been attempted but it proved challenging.

4.3.2 Infinitely small ParS
This is the first approach attempted and it highly inspired by [1]. Indeed this
way to build the model aims to be a generalization of [1]. ParS is considered to
be infinitely small in size but still able to have a finite influence on the system.
Therefore the natural modelling choice for such an element is through a Dirac
Delta.

δi,0 → lP arBδ(x) (4.17)

Where the lP arS is the ParB protein footprint. The Master Equation written in
this way has been solved (in the next chapters) and also found a limit where the
more general equations (4.14) reduce to the equations of [1].

Finally we have:

⃗̇ρ = D
∂2ρ⃗

∂x2 − (W + δ(x)W0)ρ⃗ + c⃗ (4.18)

where:
D =

A
Do 0
0 Dc

B
(4.19)

Up to this day, this model creates some nonphysical behaviours that are not yet
understood.

4.4 Global steady state conditions
It is very interesting to study the integral conditions that solution 6.13 has to fulfill
in order to be a steady state. In such a state clearly the total number of dimers
has to remain constant in time. For this reason the total flux (over all the DNA
considered in the domain) of ParB attaching has to equal the one of the dimers
detaching:

won

Ú
dx = koff

Ú
dx (ρo

∞ + Πo(x)) (4.20)
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Both won and koffρo
∞ are not space dependent, and they are equal to each other,

thus canceling each other out. We are left with:

δN o =
Ú

dxΠ(x) = 0 (4.21)

Since this function varies in space we have that this density has to be negative in
some parts of the domain. This is acceptable as long as ρ(x) = Π(x) + ρ∞ ≥ 0.
Concerning the opening and closure rates the steady state must fulfill:Ú

koc(x) (ρo
∞ + Πo(x)) dx =

Ú
kco(x) (ρc

∞ + Πc(x)) dx (4.22)

the opening and closure rates are vary in space and they have the following form:

koc(x) = koc + δ(x)∆koc (4.23)

Exploiting the fact that the flat distribution is an equilibrium distribution and also
using (??):

kS
ocρ

o
∞ + (kS

oc − koc)Πo(x = 0) = kco∆N c + kS
coρ

c
∞ + (kS

co − kco)Πc(x = 0) (4.24)
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Chapter 5

Finite size ParS

5.1 The square function ParS
We will consider ParS a small finite region of DNA of size ls (experiments shows
that the sequence is 16bp long). This region of DNA has different opening/closure
rates.
In particular, for x ∈ [−d, +d] ks

oc = γockoc

ks
co = γcokco

(5.1)

Elsewhere: koc

kco

(5.2)

In this model all the other rates (binding, unbinding,..) remain the same regardless
if they are in the centromere section or in the rest of the DNA. This choice is
justified by the fact that the only difference between the ParS sequence and the
rest of DNA that has been observed in experiments is an increase in the closure
rate (koc). Finally we obtain two different equations for the centromere region and
for the rest of the DNA, respectively:

D
∂2ρ⃗

∂x2 − Wρ⃗ + ϕ = 0

D
∂2ρ⃗

∂x2 − Wsρ⃗ + ϕ = 0

For Non Specific DNA we have:Do
∂2ρo

∂x2 − kocρo + kcoρc − koffρo + ϕ = 0
Dc

∂2ρc

∂x2 + kocρo − kcoρc = 0
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Finite size ParS

For the ParS interval:Do
∂2ρo

∂x2 − ks
ocρo + ks

coρc − koffρo + ϕ = 0
Dc

∂2ρc

∂x2 + ks
ocρo − ks

coρc = 0

The structure of the solutions is clearly the same for both set of equations,
indeed the ParS solution is obtained taking the solution of Non Specific DNA and
adding the γ multiplying factor. We than perform decompose the solution in a
space dependent and in a space constant part:

ρ⃗(x) = (ρ⃗(x) − ρ⃗∞) + ρ⃗∞ = Π⃗(x) + ρ⃗∞ (5.3)

It’s important to notice that the constant part is the solution of the equation
deprived of the diffusive term:

ρ⃗∞ = W −1ϕ⃗ (5.4)

ρ⃗s
∞ = W −1

s ϕ⃗ (5.5)

is also the equilibrium distribution, which therefore does not dissipate energy. Such
decomposition of the solution leads us to an equation for the space dependent part
Π(x):

D
∂2Π⃗
∂x2 − W Π⃗ = 0 (5.6)

This decomposition is performed for both the ParS subset and the Non-Specific DNA.
Introducing matrix B = D−1W calling v⃗i its eigenvectors and λi its eigenvalues
the solution is Imposing the symmetry of the distribution around the origin, the
solution can be rewritten as as linear combination of hyperbolic cosinesρ⃗ = b1v⃗1 cosh

√
λ1x + b2v⃗2 cosh

√
λ2x + ρ⃗∞

ρ⃗s = bs
1v⃗

s
1 cosh

√
λs

1x + bs
2v⃗

s
2 cosh

√
λs

2x + ρ⃗s
∞

(5.7)

Where c⃗ is:
ρ⃗∞ = won

koff

A
1

koc

kco

B
(5.8)

And c⃗s is:
ρ⃗s

∞ = won

koff

A
1

koc

kco

γoc

γco

B
(5.9)

While the constant parts are the same for the open state, they are not for the
closed one. Experiments show a higher closing rate in ParS meaningγoc

γco
> 1.

Solutions in (5.7) has 4 free parameters. Since the two functions (ρ and ρs) describe
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Finite size ParS

one unique density function, we need to impose continuity and differentiability.
The four coefficients will be determined "gluing" together the two functions. We
have therefore 4 equations for the 4 parameters

ρo(x = d) = ρs
o(x = d)

ρc(x = d) = ρs
c(x = d)

d
dx

ρo(x = d) = d
dx

ρs
o(x = d)

d
dx

ρc(x = d) = d
dx

ρs
c(x = d)

(5.10)

Figure 5.1: The two solutions are tangent in x = d/2, ensuring continuity of both
the function and its derivative

These equations have been symbolically solved. These analytical solutions are
very long and therefore will not be transcribed in this thesis. One important
property of these coefficients is that they are all proportional to (γoc − γco) meaning
that if the two opposite rates are accelerated by the same factor we have a flat
solution.
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Finite size ParS

Figure 5.2: The solution for the open-state dimers, we can obserbe that the open
state, close to the ParS region is almost depleted due to the accelerated closure
reaction (γoc > γco)

Figure 5.3: The closed-state distribution of dimers is peaked
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Finite size ParS

Figure 5.4: This grapsh is the sum of the two previous graphs. This distribution is
of great importance because it is the one that can be compared to experiments, since
there is no experimental way to distinguish between open and closed configurations
when measuring the density. Here the height of the spike is almost 7 times the
height of the flat solution baseline.

5.2 Using a finite ParB concentration
So far this model has been worked out in the approximation that the binding of
ParB dimers on DNA does not affect the solution concentration. While this could
be a reasonable approximation if the concentration is very high, experiments show
that this is not the case. In fact it has been observed ([5]) that the number of
dimers is around N = 50/100. In this chapter is shown that introducing a fixed
number of dimers cause the differential equation to become non-local and therefore
long-range interaction emerge.

The relatively low total number of dimers per cell can be divided in the ones
clamped to DNA and the one that are free in the cell:

N = NDNA + Nsol (5.11)

Once introduced this variables one can see the approximation of the previous
section with perspective: there was no fixed N number of dimers, and the number
of dimers in solution was considered fixed:ṄDNA ∝ +konNsol − koffNDNA

Ṅsol = 0
(5.12)
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Once we release this assumption the master equation for the number of ParB
becomes: ṄDNA ∝ +konNsol − koffNDNA

Ṅsol ∝ −konNsol + koffNDNA

(5.13)

The two differential equation sum to zero, stemming from the conservation (6.21).
In particular we have that:

NDNA =
Ú

dx (Πo(x) + Πc(x) + ρo
∞ + ρc

∞) = δN + 2Lρ∞ (5.14)

Where δN = δN o + δN c is the sum of the integrals over the whole domain
respectively of Πo and Πc. Another remark has to be done about δN : being the
integral of the density over the whole domain, it also includes the ParS region:

δN = δNNS + δNP arS (5.15)

5.2.1 The won rate and the constant distribution
In this formulation of the model we need a more accurate definition of the binding
rate won. In fact, in accord with (5.13) we have that the binding rate depends
on the dimer-concentration of the solution. Treating this concentration as an
homogeneous linear concentration (we consider DNA as mono-dimensional) we
have:

won = kon[ParB]sol (5.16)

The approximation that makes the concentration of dimers in the solution homo-
geneous in space is justified by the fact that the diffusion constant Dsol is orders
of magnitude higher than the diffusion constant DDNA that we considered in the
previous section.

[ParB]sol = kon
N − NDNA

2L
= kon

N − δN − 2Lρ∞

2L
(5.17)

Where 2L is the size of the system. An important characteristic of the equation
that is obtained through this definition of won = won(δN) is that the differential
equation for the space dependent function Π(x) becomes non local since it depends
on its definite integral.

Solving the equation in the ParS-less limit, and for a constant solution, expression
(6.14) is found:

ρ⃗∞ = won

koffkco

A
kco

koc

B
(5.18)

33



Finite size ParS

ρ∞ is a function of won which in turn (6.25) is a function of ρ∞. Considering the
sum of the entries of the vector we have an equation where ρ∞ appears in both
sides:

ρ∞ = ρo
∞ + ρc

∞

we have a:
ρ∞ = kon(koc + kco)

koffkco2L
(N − δN − ρ∞2L) (5.19)

defining the constant α,

α = kon

koffkco + kon(koc + kco)

the solution is:
ρ∞ = α

2L
(koc + kco)(N − δN) (5.20)

the ρ∞ vector is finally found and it is:

ρ⃗∞ = α

2L
(N − δN)

A
koc

kco

B
(5.21)

at the same way we find ρ⃗s
∞:

ρ⃗s
∞ = α

2L
(N − δN)

A
koc

kco
γoc

γco

B
(5.22)

5.2.2 Finding δN

We now proceed to solve the equations and to glue them together (5.10) exactly as
in the previous section. The main difference is that, once found the 4 bi coefficients
present in 5.7 they all depend on δN . Recalling its definition:

δN =
Ú

dxΠo(x) +
Ú

dxΠc(x) (5.23)

Also recalling 5.15 we can decompose the integral in the two contribution coming
from the two domains:

δNNS =
Ú L

d
dx (Πo(x) + Πc(x)) (5.24)

We have to be careful for the integral around the origin. We need to sum the special
constant distribution and subtract the NonSpecial one. For the open distribution
the integral reads:

δN o
P arS =

Ú d

0
dx
1
Πo

s(x) + ρs
∞,o − ρ∞,o

2
(5.25)
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Recalling that the integral of an hyperbolic cosine is:

Ú
cosh

1√
λx
2

dx =
sinh

1√
λx
2

√
λ

+ c (5.26)

We can finally sum all these contribution to find the expression of δN which
also depends on itself since the expression of the flat distributions ρ∞ do (5.21).
Therefore we get an equation where δN appears on both sides:

δN = f(δN)

Solving the equation above for δN we finally find its expression. Substituting this
new expression in all the the expression that depend on it, we finally arrive to the
solution of this model. The plots of the spatial distributions found are represented
below:

Figure 5.5: The solution for the open-state dimers, we can obserbe that the open
state, close to the ParS region is almost depleted due to the accelerated closure
reaction (γoc > γco)

This model succeeds in concentrating the dimers in the non constant solution
(lowering the baseline). However experiments [7] show that the peak should orders
of magnitude wider than the size of the ParS sequence fig.(5.8).
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Figure 5.6: The closed-state distribution of dimers is also peaked here, however
the peak, when compared to the baseline of the flat distribution, is considerably
higher. This is due to the fact that, having a finite number of dimers, if most of
them are clustered around ParS in the space varying part of the solution they can
not be in the flat distribution.

Figure 5.7: This graph is the sum of the two previous graphs. It’s very easy
to notice that it strongly resembles the closed-state distribution, implying that
the letter it is the dominant term among the two. This distribution is of great
importance because it is the one that can be compared to experiments, since there
is no experimental way to distinguish between open and closed configurations when
measuring the density.
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Figure 5.8: [7] This experimental distribution shows that the width of the spike
is around 500 bp while the size of ParS is around 20bp
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5.3 Maximization of the spike
In the previous section an analytical solution for this system has been found.
The great advantage to have an analytical solution (even if its structure is too
complicated to be easily studied) is that we can study and plot how some significant
quantities vary with the parameters. In particular this section will focus on δN .
This quantity is the number of dimers present in the non-flat solution:

Ntot = NDNA + Nsolution = δN + Nflat + Nsolution (5.27)

Experiments show that during chromosome separation almost all dimers cluster
around the ParS sequence, meaning that both the solution (Nsolution) and the flat
solution (Nsolution) are almost depleted.
Studying how these quantity varies with the parameter is an incredibly challenging:
it is a function of 8 variables and navigating such phase space is hard. In order to
understand how δN varies along with some of these parameters, we gave values to
all of them but on or two, in order to generate meaningful plots.
In particular the focus of this section is on the 2 parameters that have been found
influencing the most δN : the two diffusion constants. In particular it has been
found that when the closed state constant is much smaller than the open-state
high values of δN (meaning that they tend to Ntot) are obtained.

Figure 5.9: In this plot all parameters are fixed to the values that generated all
the plots above, except the closed-state coefficient of diffusion Dc (re scaled). The
=1 vertical line shows the case where Do = Dc. As we can see values of Do/Dc

smaller than 10−2 bring almost the entirety of the dimers in the Non-constant
solution
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Figure 5.10: Fixing all parameters except both diffusion constants
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Figure 5.11: Same graph as before but represented through a color map
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Chapter 6

Modelling ParS with a Dirac
Delta

This first approach has been the first one tried and the one which has been
more vastly explored. The next chapter describes an interesting alternative way
to consider this problem which finds an interesting connection with the model
proposed in [1].

6.1 Solving the equation with diagonalization
Considering the limit for x → ∞ we have that the derivative vanishes, and so does
the delta. Setting the time derivative to zero (Steady State) the equation becomes:

Wρ⃗ = c⃗

ρ∞ = W −1c⃗ (6.1)

which is clearly a constant solution. Decomposing the density in a space dependent
term and the former constant one:

ρ(x) = (ρ(x) − ρ∞) + ρ∞ = Π(x) + ρ∞ (6.2)

The equation simplifies in:

D
∂2Π⃗
∂x2 − (W + δ(x)W0)Π⃗ − δ(x)W0ρ⃗∞ = 0 (6.3)

Where the last term could be the analog of the source term in [1].
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Modelling ParS with a Dirac Delta

This system of ODE needs to be eigen-decomposed. Multiplying by D−1 and
decomposing:

D−1W = UΛU−1

and defining Π′ = U−1Π

∂2Π⃗′

∂x2 − ΛΠ⃗′ − δ(x)U−1D−1W0(Π⃗ + ρ⃗∞) = 0

Fourier transforming the expression we have:

−k2Π⃗′(k) − ΛΠ⃗′(k) − U−1D−1W0(Π⃗(x = 0) + ρ⃗∞) = 0

We finally get to the Fourier transform of the solution:

Π⃗′(k) = −(k2I + Λ)−1U−1D−1W0(Π⃗(x = 0) + ρ⃗∞) (6.4)

Focusing on the k-dependent diagonal matrix:

(k2I + Λ)−1 =
A

k2 + λ1 0
0 k2 + λ2

B−1

=
A 1

k2+λ1
0

0 1
k2+λ2

B
(6.5)

In order to get the desired expression in the position space:
Ú

eikx(k2I + Λ)−1 dk =
 1

2
√

λ1
e−

√
λ1|x| 0

0 1
2
√

λ2
e−

√
λ2|x|

 = 1
2Q(x) (6.6)

Remembering that Π′ = U−1Π and multiplying by U we finally get:

Π⃗(x) = −1
2UQ(x)U−1D−1W0(Π⃗(x = 0) + ρ⃗∞) (6.7)

The structure of this solution is the linear combination of the two exponentials.
Defining

A(x) = 1
2UQ(x)U−1D−1 (6.8)

Π⃗(x) = −A(x)W0(Π⃗(0) + ρ⃗∞) (6.9)
and setting x to zero and solving for Π(x = 0) we find:

Π(0) = −(I + A(0)W0)−1A(0)W0ρ∞ (6.10)

Substituting 6.10 in 6.9 and collecting terms, we get:

Π⃗(x) = A(x)[W0(I + A(0)W0)−1A(0) − I]W0ρ∞ (6.11)

Condensing all matrices together we have:

Π⃗(x) = T (x)ρ⃗∞ (6.12)

42



Modelling ParS with a Dirac Delta

6.1.1 The solution
The solution is a vector, where both components are linear combination of the
same exponentials:

ρ⃗ =
A

co
1e

−
√

λ1|x| + co
2e

−
√

λ2|x| + ρ∞o

cc
1e

−
√

λ1|x| + cc
2e

−
√

λ2|x| + ρ∞c

B
(6.13)

The model developed so far is very general, and as a price for its generality
it has many parameters. The higher number of parameters make the analytical
solution hard to interpret.
For this reason, a simpler model is sought. Many simplifications inspired by
experiments can be made.
First of all we will consider that only dimer in the open state can attach and detach
from DNA. This corresponds to setting kc

off = kc
on = 0. Under this assumption the

expression of ρ∞ is:

ρ∞ = won

koffkNS
co

A
kNS

co

kNS
oc

B
(6.14)

6.1.2 The role of the ParS locus and the dissipation of
energy

Probably the most crucial element of this model is the ParS site. Various ex-
periments show large clusters of dimers around it. It is evident that this locus
(positioned in the origin of the model) interacts with the dimers. Experiments show
([5]) that this DNA segment is able to act as a catalyst for the opening and closure
reactions.

In order to understand the role of this gene in the model we will focus on the
matrix vector product:

W0ρ∞ =
A

−(kS
oc − kNS

oc ) +(kS
co − kNS

co )
+(kS

oc − kNS
oc ) −(kS

co − kNS
co )

B
won

koffkNS
co

A
kNS

co

kNS
oc

B
(6.15)

If we decompose the matrix: W0 = MS − MNS we get that MNSρ∞ = 0 which
implies:

W0ρ∞ = W Sρ∞ = won

koffkNS
co

1
+kS

ock
NS
co − kS

cok
NS
oc

2A −1
+1

B
(6.16)

The expression that appears in the parenthesis has an important physical interpre-
tation: it is the product of the rates (of the reaction graph below) in one direction
minus the ones in the opposite (the hopping q rates cancel out):
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Figure 6.1: Reaction graph for ParS locus and one of the two neighbor sites

Using relation (1.32) we rewrite:1
+kS

ock
NS
co − kS

cok
NS
oc

2
=
1
kS

cok
NS
oc

23
e

− F
kbT − 1

4
(6.17)

Finally we can write:
Π(x) ∝

3
e

− ∆G
kbT − 1

4
(6.18)

This last proportionality has a profound physical meaning: the non constant
solution can exist only if the system is out of equilibrium and thus dissipates free
energy. The cycle that is linked to the energy consumption of this model is the one
of fig.6.1.

6.1.3 The 2 branches
Recalling chapter 3, the opening and closure rates are just the sum of the two
branches D and T. 

koc = koc,D + koc,T

kS
oc = γDkoc,D + γT koc,T

kco = kco,D + kco,T

kS
co = γDkco,D + γT kco,T

(6.19)

Substituting this relations in the model we obtain that

Π(x) ∝ won (γD − γT ) (kco,T koc,D − kco,Dkoc,T )
koff (kco,D + kco,T ) (6.20)
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The former relation gives a more detailed description of the out of equilibrium
properties of this system. The first parenthesis at the numerator tells us that
in order to have a non-flat solution two different scaling constants are needed
for the D and T branch. The second parenthesis it has the same structure of
(6.17) but there is a crucial difference: all the rates that appear are Non Specific
(before it was half specific, and half non specific). This implies that there will be a
thermodynamical force dissipating energy all over DNA. It’s really important to
notice that the coarse-graining technique developed in chapter 4 does conserve this
particular thermodyanamical force (3.25).
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6.2 Finite ParB concentration
So far this model has been worked out in the approximation that the binding of
ParB dimers on DNA can not affect the the solution concentration. While this
could be a reasonable approximation if the concentration is very high, this is not
the case. In fact it has been observed [5] that the number of dimers is around
N = 60.

N = NDNA + Nsol (6.21)

Once introduced this variables one can define the previous approximation in the
following way: ṄDNA ∝ +konNsol − koffNDNA

Ṅsol = 0
(6.22)

where L is the length of the system. This approximation clearly does not obey
relation (6.21) if N is fixed.
Once we release this assumption the master equation for the number of ParB
becomes: ṄDNA ∝ +konNsol − koffNDNA

Ṅsol ∝ −konNsol + koffNDNA

(6.23)

In particular we have that:

NDNA =
Ú

dx (Πo(x) + Πc(x) + ρo
∞ + ρc

∞) = δN + Lρ∞ (6.24)

Where δN = δN o + δN c is the sum of the integrals over the whole domain
respectively of Πo and Πc. In the differential equation for Π the term won =
kon[ParB]sol (we consider the concentration as linear concentration).

won = kon[ParB]sol = kon
N − NDNA

L
= kon

N − δN − Lρ∞

L
(6.25)

The equation for the space dependent part Π(x) depends on its definite integral
δN over the whole domain.

6.2.1 The equation for ρ∞

Solving the equation in the ParS-less limit, and for a constant solution, expression
(6.14) is found:

ρ⃗∞ = won

koffkNS
co

A
kNS

co

kNS
oc

B
(6.26)
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ρ∞ is a function of won which in turn (6.25) is a function of ρ∞. Considering the
sum of the entries of the vector we have an equation where ρ∞ appears in both
sides:

ρ∞ = ρo
∞ + ρc

∞

we have a:
ρ∞ = kon(koc + kco)

koffkcoL
(N − δN − ρ∞L) (6.27)

defining the constant α,

α = kon

koffkco + kon(koc + kco)

the solution is:
ρ∞ = α

L
(koc + kco)(N − δN) (6.28)

the ρ∞ vector is finally found and it is a function of :

ρ⃗∞ = α

L
(N − δN)

A
koc

kco

B
(6.29)

6.2.2 Solving the equation
Recalling structure of the solution (6.9):

⃗Π(x) = −A(x)W0
1
Π⃗(0) + ρ⃗∞(δN)

2
(6.30)

This solution depends both on it’s value at the origin and its definite integral.
Integrating both sides we have:A

δN o

δN c

B
= −BW0

1
Π⃗(0) + ρ⃗∞(δN)

2
(6.31)

where B is the integral of A(x). The integral of the matrix is trivial since it’s the
integral of exponentials. L is considered big enough to justify the approximation
the integral on domain [−L

2 , L
2 ] with [−∞, +∞]. Summing the two equation an

equation in δN is obtained and it will be solved in such variable:

δN = −
Ø

i=o,c

1
BW0Π⃗(0)

2
i
−
Ø

i=o,c

(BW0ρ⃗∞(δN))i (6.32)

Solving for δN we find:

δN =
q

i=o,c

1
BW0Π⃗(0)

2
i

1 − α
L

q
i=o,c

1
BW0k⃗

2
i

(6.33)
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We finally found the expression of δN as a function of Π(0). Substituting in ρ∞ in
turn it becomes dependent solely on Π(0). Setting x=0 we we find a generalization
of equation (6.10) where now the only unknown is Π(0). Solving the equation for
Π(0) finally solves the system.

6.3 Sum and current equation
The aim of this thesis is to develop a model whose solution is as close as possible
to the density function observed in experiments. For this reason the 5-state model
was developed. Seeking for a model which can be more easily treated analytically
we wrote down the equations of the 3-state systems, and derived the rates with the
Coarse-graining procedure described in chapter 4. In this chapter the same model
is solved in a slightly different way: rather than writing the equations for the open
and closed state density distributions, we will combine them to find the equation
for the sum of the two distributions and the current between the them (which is a
weighted difference). These two quantities have both a physical interpretation. The
goal of this chapter is to find an equation for the sum-distribution that depends
only on itself and not on both itself and the current-distribution. The equation
found in this way is a generalization of the phenomenological one present in [1].

In order to highlight some important properties of the 3-state system we will
perform a change of variables. We will pass from the open and closed state densities
to: ρ = ρo + ρc

ϕ = kocρo−kcoρc

koc+kco
= kocρo−kcoρc

K

(6.34)

The first density is the sum of the two, the second one is the current between
open and closed states divided by the sum of the rates. For sake of simplicity we
will define K = koc + kco.
The opposite change of variables is given by:ρo = kco

K
ρ + ϕ

ρc = koc

K
ρ − ϕ

(6.35)

Starting from:

I
ρ̇o = Do∂2

xρo + kcoρc − kocρ
o − koff ρo + won + δ(x) (+∆kcoρc − ∆kocρ

o)
ρ̇c = Dc∂

2
xρc − kcoρc + kocρ

o + δ(x) (−∆kcoρc + ∆kocρ
o)

(6.36)

At first we will consider the sum equation (ρ̇o + ρ̇c ). Clearly this equation does
not depend on the opening-closure rates because the cancel out. Performing the
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change of variables relations (6.35) the and defining some constants we get:

D∂2
xρ + ∆D∂2

xϕ + won − koff (kco

K
ρ + ϕ) = 0 (6.37)

Where: 
D = kcoDo+kocDc

K

∆D = Do − Dc

D∗ = kcoDc+kocDo

K

Considering the current equation: kocρ̇o−kcoρ̇c

K
and performing the same change of

variables we get:

kockco

K2 ∆D∂2
xρ + D∗∂2

xϕ − kockco

K2 ρ −
A

K + kockoff

K

B
ϕ+

+δ(x)
A

−∆kockco + ∆kcokoc

K

B
ρ + −δ(x)(∆koc + ∆kco)ϕ = 0 (6.38)

6.3.1 Solving the sum equation
In order to solve this system of equations we will proceed again decomposing the
space-dependent part from the constant part of the solution.ρ = δρ(x) + ρ∞

ϕ = δϕ(x) + ϕ∞
(6.39)

In the the previous chapter (in the open-close basis) it was found that the constant
solution was:

ρold_coordinates
∞ = won

koffkco

A
kco

koc

B

Finding the sum and current associated to this distribution we find:

ρ∞ =
A

wonK
koff kco

0

B
(6.40)

Where it is found that ϕ∞ = 0 thus implying that δϕ = ϕ. This vector solves the
system when both diffusive terms and Dirac delta terms are set to zero. The sum
equation becomes (from now on ρ and R will be the sum and current of the):

D∂2
xδρ + ∆D∂2

xϕ − koff (kco

K
δρ + ϕ) = 0 (6.41)
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While the current one:

kockco

K2 ∆D∂2
xδρ + D∗∂2

xϕ −
A

K + kockoff

K

B
ϕ + δ(x)

A
−∆kockco + ∆kcokoc

K

B
δρ+

−kockco

K2 δρ + δ(x)(ρo
∞ + ρc

∞)
3−∆kockco + ∆kcokoc

K

4
− δ(x)(∆koc + ∆kco)ϕ = 0 (6.42)

The won term disappeared from the sum equation, and an additional term appeared
in the current equation. Fourier transforming both equations:

−q2Dδρ(q) − q2∆Dϕ(q) − koff

A
kco

K
δρ(q) + ϕ(q)

B
= 0

and

−q2 kockco

K2 ∆Dδρ(q)−q2D∗ϕ−
A

K + kockoff

K

B
ϕ(q)+

A
−∆kockco + ∆kcokoc

K

B
δρ(x = 0)+

−kockco

K2 δρ(q) + (ρo
∞ + ρc

∞)
3−∆kockco + ∆kcokoc

K

4
− (∆koc + ∆kco)ϕ(x = 0) = 0 (6.43)

Finding the expression of ϕ(q) from (6.3.1):

ϕ(q) = −kcokoffδρ(q) − DKq2δρ(q)
K (koff + ∆Dq2) (6.44)

Substituting this expression in the current equation we find an equation that now
only depends on ρ(q). Solving for ρ(q) and arranging terms we get:

K2 !koff + ∆Dq2" 1−ρ∞(∆kcokoc−kco∆koc)
K − ρ0(∆kcokoc−kco∆koc)

K + ϕ0 (∆kco + ∆koc)
2

q2 (D∗Kkcokoff − 2∆Dkcokockoff + DKkockoff + DK3) + q4
1
DD∗K2 − ∆D2kcokoc

2
+ K2kcokoff
(6.45)

This long expression has the same functional form of:

δρ(q) = dq2 + g

aq4 + bq2 + c
(6.46)

The roots of the second order equation associated to the denominator (after
performing a change of variables y = q2) are the inverse of the length scales found
in chapter 5 (

√
λ1 and

√
λ2).
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6.3.2 The sum equation in Real Space (structure)
In order to find the sum equation in real space we will start from the expression of
ϕ(q) found by solving the current equation (6.3.1):

− ∆Dq2kcokocδρ(q)
K (D∗Kq2 + kockoff + K2)+ρ∞ (K∆kcokoc − Kkco∆koc)

K (D∗Kq2 + kockoff + K2) +δρ0 (K∆kcokoc − Kkco∆koc)
K (D∗Kq2 + kockoff + K2) +

− kcokockoffδρ(q)
K (D∗Kq2 + kockoff + K2) + ϕ0 (−K2∆koc − K2∆kco)

K (D∗Kq2 + kockoff + K2)
The structure of ϕ(q) is:

ϕ(q) = 1
a + q2

1
cR0 + cρ0 + cρ∞ + c0δρ(q) + c2q

2δρ(q)
2

(6.47)

With:
a = kockoff + K2

D∗K
= kockoff + K2

kcoDc + kocDo

(6.48)

The function that multiplies the parenthesis is a Lorentzian and its Inverse Trans-
form is:

F−1( 1
a + q2 ) = 1

2
√

a
e−

√
a|x| = Λ(x)

The last term of (6.47) is

F−1
A

q2

a + q2

B
= δ(x) − 1

2
√

ae−
√

a|x| = δ(x) − aΛ(x) (6.49)

Taking the inverse Fourier transform of (6.47) we get:

ϕ(x) = (cR0 + cρ0 + cρ∞)Λ(x) + c0F−1 (Λ(q)ρ(q)) + c2F−1
A

q2

a + q2 ρ(q)
B

Using the Convolution theorem for inverse Fourier transform, and computing the
convolution with the Dirac’s delta, and rearranging terms:

ϕ(x) = (cR0 + cρ0 + cρ∞)Λ(x) + (c0 − ac2) (Λ ∗ δρ) (x) + c2δρ(x) (6.50)
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Modelling ParS with a Dirac Delta

When we substitute the space dependent expression of (6.50) in (6.41) we finally
obtain a non-local differential equation since the convolution operator is non-local.

D∂2
xδρ + b1∂2

x (Λ ∗ δρ) (x) + b2δρ + b3 (Λ ∗ δρ) (x) + c(ϕ0, δρ0, ρ∞) (a1Λ + a2δ(x)) = 0
(6.51)

Notice that the second derivative of Λ generated a Dirac delta term:

∂2
xΛ(x) = aΛ(x) − 2

√
aδ(x)Λ(x)

This is a remarkable property. Summarizing what happened, we formulated a
model where there was not an explicit source of dimers (only a region of DNA where
some reactions where catalysed). The manipulation of the equations that leads to
find an equation that depends only on the sum of the distributions generated a
pure source term that was not present before. Equation (6.51) is a generalization
of the diffusion equation (4.11) proposed in [1].
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Chapter 7

Conclusions and the future
the project

ParABS systems drive chromosome separation in most species of bacteria. Un-
derstanding the interaction between two of these components and in particular
having a physical model for the spatial distribution of ParB dimers on DNA is
therefore of great importance. The continuous model proposed in this thesis aims
to reproduce the experimental ParB distribution found in [7]. The solution of
the Master Equation found in chapter 5 recreates the correct shape but it is too
peaked around the ParS gene. The model proposed in chapter 6 has also the correct
spiked shape, however it creates some nonphysical behaviours that are still not
understood. Fixing both models’ flaws will be the first next step of this project.
The probability distributions found will than be compared with each other through
a Kullback-Leibler divergence [8] [9] in order to have an estimate about the energy
dissipation of the Non-equilibrium steady state.

In section 6.2 the master equation has been manipulated in a way that con-
nects this model with the one presented in [1] which partially succeeds in recreating
the correct shape of the distribution however ignoring many physical features of
the system. Many aspects are still to be studied. One of these is the suspected
attractive interaction between open dimers [10] which permits the diffusion of the
dimers even in the presence of DNA roadblocks. Another interesting concept that
could be investigated and applied to this system is the one of ultra-affinity [11]:
the phenomenon that enhances binding through energy consumption.
Much work has been done on this project and much more is needed. However the
prospect of publishing (with or without the addition of in vitro experiments) is
concrete.
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