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Abstract

The development of living organisms is driven by the orchestrated ex-
pression of proteins and hormones which allow cell differentiation and thus
organ formation. In plants, this role is mainly driven by the hormone auxin,
which is produced at the single-cell level and actively transported across
tissues, i.e., by the action of dedicated carriers. Among the carriers, PINs
are known to mediate the outgoing flux of auxin and display polarization
patterns across tissues. PIN polarity and therefore auxin transport is deter-
mined by the expression level of a protein kinase called Pinoid, encoded in
the gene PID which is the neighboring gene of APOLO, a long non-coding
RNA believed to be associated with changes in local epigenetic status.
A 2014 paper [1], pointed out how the transcription of APOLO drives the
state of the PID-APOLO locus, switching it on or off therefore acting as
a signed differentiator circuit, which turns on via auxin stimulus and then
spontaneously re-closes in about 24 hours, even though the auxin stimulus
is still there.
Although the past decades have seen extensive work on this subject, it is
not known yet what ensures the loop closure, whether there is a role for
basal transcription to maintain the closed loop or whether the observed
basal level is ensured by a mixture of open and closed loops which undergo
a specific dynamics of opening and closing.
The aim of this thesis is to use theoretical modelling based on dynamical
systems and ordinary differential equations combined with inference meth-
ods to answer these questions. Based on molecular biology measurements
in roots produced with APOLO overexpressors and RNAi knockdowns col-
lected by Crespi’s team at the Institut des Sciences du Végétal in Gif-sur-
Yvette, mathematical models have been constructed and fine-tuned that
attempt to provide a quantitative interpretation of the dynamics in the
gene circuit. This approach made it possible to identify the most important
interactions that shape the observed dynamics and to identify the role of
the various actors in the system.
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Chapter 1

Introduction to biological
sequences and eukaryotic gene
expression

The aim of this first chapter is to introduce the reader to all the tools
necessary to the understanding of the biological problem addressed in this
thesis project. In this first chapter, we shall define the main biological se-
quences, their structure and how they are organized inside cells as well as
the main mechanisms underlying gene expression, i.e., the production of
proteins which allow all vital functions to be carried out, and gene regula-
tion, in particular at the post-transcriptional level.

1.1 Biological sequences
The field of molecular biology studies macromolecules and the macromolec-
ular mechanisms found in living organisms, such as the molecular nature
of the gene and its mechanisms of gene replication, mutation, expression
and regulation. These macromolecules are generally biopolymers, i.e., one-
dimensional chains of building blocks called monomers, held together by
chemical bonds and playing crucial roles in the development and aging of
organisms. Biopolymers in nature can be of two different kinds: i) nucleic
acids, such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), or
ii) proteins.
The DNA carries the "genetic material", that is the information required by
an organism to function, and is transferred to the offspring. In all organisms
owing a nucleus, such as eukaryotes, the DNA is located in the nucleus it-
self whereas proteins are made in the cytoplasm, that is outside the nucleus.
The intermediate molecule transferring the genetic information out of the
nucleus, i.e., between the DNA and the protein, is called the RNA. The
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DNA normally occurs as a double-stranded helix: this means that it must
be opened in order to be read and expressed. It thus serves as a template
for the assembly of specific RNA, the messenger RNA (mRNA), which is
read by dedicated proteins inside cells into groups of three nucleotides and
then translated into proteins thanks to the action of other ribonucleic acids.
These two processes are respectively known as transcription and translation
(figure 1.1).

Figure 1.1: An overview of the flow of information from DNA to protein
in a eukaryote. First, DNA is transcribed into mRNA, then the latter is pre-
pared for export out of the nucleus. Once in the cytoplasm, the mRNA can be
used to construct a protein [2].

This information flow in biology is summarized by the "central dogma",
put forward by Francis Crick in 1958.

Central Dogma of Molecular Biology. The central dogma states that
once ’information’ has passed into protein it cannot get out again. The
transfer of information from nucleic acid to nucleic acid, or from nucleic
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acid to protein, may be possible, but transfer from protein to protein, or from
protein to nucleic acid, is impossible. Information means here the precise
determination of sequence, either of bases in the nucleic acid or of amino
acid residues in the protein. [3]

The set of processes characterizing the production of proteins is glob-
ally called gene expression and starts from the DNA. The overall idea is
that one macromolecule can be used as a template to construct another and
the information flow is unidirectional. Yet, in order to better understand
how this takes place in cells, in the following we will introduce in detail
the structure and organization of DNA, the different types of RNAs partic-
ipating into the process of gene expression, the proteins as well as all the
different mechanisms globally leading to gene expression.

1.1.1 Deoxyribonucleic acid (DNA) and Chromosomes

DNA:

The deoxyribonucleic acid is a biopolymer made of single repeated monomers
called nucleotides.
Nucleotides are composed of three subunits: i) a phosphate group, ii) a
sugar residue and iii) a nucleobase. The latter can be distinguished in turn
into four types: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T).
A and G are called purine, C and T pyramidine. Thanks to the comple-
mentarity of their geometrical shape and hydrogen-bonding, each purine
is coupled to one pyramidine according to the scheme A-T and C-G. This
property allows the DNA to assume its characteristic double-helix struc-
ture, where a first strand is paired to a complementary one running in the
opposite direction [4].

Chromosomes:

The main function of the DNA is to carry genes. A gene in molecular
biology and genetics indicates the fundamental hereditary unit of living
organisms. A gene is a portion of the nucleotide sequence of DNA that
encodes the primary sequence of an end gene product, which can be either
a structural or catalytic RNA, or a polypeptide. In eukaryotes, the DNA
is enclosed in the cell nucleus in a highly compact state. For instance,
if the double helices of human DNA could be laid end-to-end they would
reach approximately two meters, yet the nucleus is only about 6 µm in
diameter. This gives an idea of how complex is the task of DNA packaging
in cells. More specifically, specialized proteins called histones, can bind to
and fold the DNA, thus generating a series of coils and loops that provide
increasingly higher levels of organization, preventing the DNA to become an
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unmanageable tangle. The latter is divided among a series of chromosomes
within the nucleus. Each of these chromosomes consists of a single long
DNA molecule associated with proteins that package and fold it into a
more compact structure.

Chromatin:

The whole set of DNA and proteins is called chromatin. In particular, pro-
teins that bind the DNA are divided into two classes called histones and non-
histones chromosomal proteins, respectively. Partially unfolded chromatin
appears as a series of "beads on a string" if analyzed under electron micro-
scope: the string is the DNA and each bead is called nucleosome, consisting
of DNA wound around a core made of histones (figure 1.2). The nucleosome
core is composed by an histone octamer, i.e., eight histones proteins, around
which a double-stranded DNA of 147 nucleotide pairs is wound. This new
structure allows the formation of a chromatin thread about one third of
its initial length. Each of the core histones has an N-terminal amino acid
tail, which extends out from the nucleosome core. These tails are involved
in the control of critical aspects of chromatin structure and function. For
instance, chromatin rarely adopts the extended "beads on a string" form,
rather nucleosomes are packed together, generating regular arrays that make
the DNA even more compact [5].
Specifically, chromatin can be found in two states of compaction: a highly
condensed form, called heterochromatin, and a less condensed one called
euchromatin. Actually, the term heterochromatin refers to several types of
chromatin that share the common feature of being highly compacted.
The transition between these two types of chromatin is due to histone mod-
ifications. Histone modifications are reversible changes, created by one spe-
cific enzyme and removed by another. More specifically, the side chain of
histones may be subject to covalent modifications, including acetylation,
methylation of lysines, and phosphorylation of serines (occurring in the N-
terminal histone tails). Acetylation of lysines, for example, tends to loosen
the chromatin structure, reducing the affinity of the tails for adjacent nu-
cleosomes. As we will see later, the main role of this switch in chromatin
structure is that, by changing the type of packing, the production of RNA
transcripts and proteins can be interrupted or increased.

3Meiosis is a special mode of cell division, which makes haploid cells from a diploid
cell. It is essential for sexual reproduction in eukaryotes and diploid organisms and
produces gametes [7].

3Mitosis is the process by which eukaryotic cells assure the equipartition of their
chromosomes at cell division [8].
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Figure 1.2: Chromatin folding. The first level of compaction is the association
of the DNA with nucleosomes to create the 10 nm ’beads on a string structure’.
This can condense into a 30 nm diameter fiber. Further compaction of chromo-
somes is observed in vivo, 60-300 nm diameter fibers are observed at interphase,
these can be further compacted into fibers of around 700 nm diameter and finally
fully condensed mitotic chromosomes occur during mitosis 1and meiosis23 [6].
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1.1.2 Eukaryotic gene expression

Given the information so far, in this section we will go into the details of
the templating procedure allowing genes to be expressed and proteins to be
produced. Recall that by gene it is meant a portion of the DNA sequence of
nucleotides encoding the information necessary for the production of either
different RNAs or a protein.
In the following section, we will first discuss the structure of RNAs and
proteins and then the processes leading to gene expression.

Ribonucleic acid (RNA):

The ribonucleic acid (RNA), like the DNA, is assembled as a chain of nu-
cleotides. Despite this, there are three differences between the RNA and
the DNA: i) the sugar is ribose instead of 2-deoxyribose; ii) the nucleobase
Uracile (U) replaces Thymine allowing the recognition of the RNA as for-
eign to the DNA and iii) the RNA appears as single-stranded.
RNAs can be divided into different categories depending on different crite-
rions. Considering their length, it is possible to distinguish between:

• small RNA: usually shorter than 200 nt;

• long RNA: larger than 200 nt;

while considering their role:

• messenger RNA (mRNA), which is a copy of the DNA that carries
information used for translation into proteins;

• non-coding RNA (ncRNA), which does not carry any genetic infor-
mation to be expressed into protein.

Non-coding RNAs like transfer RNAs (tRNAs) have many fundamental
roles in translation or in RNA processing. Other types of ncRNAs, for
example, long-non-coding RNAs (lncRNAs) and small interfering RNAs
(siRNAs) are involved in gene regulation, which will be discussed in the
following paragraphs as they will play a central role in this thesis project.

Proteins:

Proteins are the final product of gene expression. A protein is a linear chain
of building blocks called amino acids forming a polypeptide chain. Amino
acids are kept together thanks to peptide bonds4 and are mainly composed

4Peptide bond is a covalent bond that is established between two molecules when the
carboxylic group of one reacts with the amine group of the other through a condensation
reaction (or dehydration, leading to that is, the elimination of a molecule of water).
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by an amine group –NH2 and a carboxyl group –COOH. To each molecule
a side chain R is bound, which allows the distinction of 20 different types
of amino acids.
The polypeptide chain folds onto itself forming the protein structure which
is described by four levels:

• primary structure, which refers to the amino acid sequence held to-
gether by peptide bonds, determined from the gene;

• secondary structure which refers to the formation of highly regular
substructures (α− helices and β − sheets), due to hydrogen bonds;

• tertiary structure which is the 3D structure of the fully folded peptide
chain that can include one or several domains;

• quaternary structure which is a 3D structure composed by different
polypeptide chains that form a larger protein.

Thanks to their structure, proteins are able to carry out the majority of
vital functions, e.g., catalyzing metabolic reactions, responding to stimuli
and are involved in DNA replication and structural functions amongst all.

Gene expression:

Once the main players have been introduced, we can move on to describing
the entire process of gene expression, allowing the information flow from the
DNA to the final product, proteins. The two main mechanisms by which
cells read out the genetic instructions in their genes are called transcription
and translation. The synthesis of most protein molecules takes between 20
seconds and several minutes [9], but the fact that many identical copies of
RNA can be produced by the same gene and each RNA can itself produce
many identical proteins allows the cell to make a large quantity of molecules
in a short time. Moreover, each gene can be transcribed and translated
with different efficiency, each cell can regulate the transcription of its genes,
making possible the production of large quantities of some molecules and
tiny quantities of others. The steps allowing protein production from the
DNA sequence are the following:

• transcription: the DNA is transcribed into a chain of pre-mRNA;

• pre-mRNA processing: modifications of the pre-mRNA that lead to
the mature mRNA formation;

• transport of the mRNA to the ribosomes;
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• translation: the mRNA is translated into the polypeptide chain, i.e.,
the protein.

As already stated in the Central Dogma, information is transferred from the
DNA to the proteins and not backwards.

Transcription (from DNA to RNA):

During this first step, the cell reads out the part of interest of the genetic
instructions and the corresponding DNA sequence is copied into an RNA
one. The information in the RNA is still written in the form of nucleotides,
hence the name transcription. Transcription begins with the opening of the
double helix, which exposes the bases on the two strands of the DNA, the
latter referred to as the template strand and coding strand, respectively.
Then, starting from the template strand, complementary base pairing en-
ables RNA synthesis. The role of reading the DNA before copying it is
carried out by some RNA-like enzymes called RNA-polymerases which bind
to the selected gene’s promoter locus5. Having identified the starting site,
the polymerase moves stepwise along the DNA, unwinding the helix to ex-
pose the next region for complementary base-pairing. The process ends,
when a "stop" sequence is reached. During the procedure, the RNA tran-
script is elongated one nucleotide at a time and the final sequence is exactly
complementary to the DNA template. In the end, since hydrogen bonds do
not act between RNA and DNA, the first one is immediately released as
single stranded.
The product of this phase is the pre-mRNA. It undergoes the so called
splicing that subsequently produces the mature mRNA.

Translation (from RNA to proteins):

Once the mature mRNA is ready, the next step is the production of the
corresponding protein. How is the information in a sequence of nucleotides
translated in a sequence of chemically different units, i.e., the protein amino
acids? We have seen how the transfer of information between DNA and
RNA is possible thanks to the complementarity of their units, their coding
language does not entirely change and the symbols used are closely related.
The last step between RNA and protein is more complicated though. In
this case, the two sequences are written in two different languages with
different symbols: thus a translation procedure is needed. Which are the
rules of this process? At the base of translation is the fact that nucleotides

5In genetics, a promoter is a sequence of DNA to which proteins bind to initiate
transcription of a single RNA transcript from the DNA downstream of the promoter.
Promoters are located near the transcription start sites of genes, upstream on the DNA.
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are read in consecutive groups of three, each group being called codon. The
combination of three nucleotides gives rise to 43 = 64 different codons, each
codon is associated with one of the 20 amino acids, but one amino acid can
be associated to more than one codon, and the whole process is carried out
in a specific macromolecular machinery called ribosomes. It is important to
specify that each codon is not able itself to recognize its amino acid: it is
in fact necessary the intervention of transfer RNAs that bind together both
codons and amino acids. The primary structure of the protein will be then
formed thanks to the bonds between amino acids, that will subsequently
fold into the protein functional form.

1.2 Regulation of gene expression
Multicellular organisms contain many cell types, each of them differing dra-
matically from one another in both composition and function. It is known
experimentally that this differentiation is due to changes in gene expression
rather than in the cell genome. Yet, a central question is: how do cells
differentiate? Moreover, all these types of cells must behave differently and
do so in the correct way. For a cell to function properly, the necessary pro-
teins must be synthesized at the right time and at the right amount, and
it must also respond quickly to changes in the environment. What are the
mechanisms by which the cell responds? The answer is gene regulation.

Thanks to gene regulation, each cell type has different sets of active genes
causing the presence of different concentrations of proteins. Some proteins
are abundant in specialized cells in which they have a specific function and
are completely absent in others. One example is given by hemoglobin which
is present in red blood cells but undetectable in all the others. Another fun-
damental factor in gene regulation is the response of the cell to external
factors: some cells respond to the presence of a signal, for instance a hor-
mone, changing their gene expression pattern, enhancing or reducing the
production of some specific proteins. Clearly, different cell types do not
respond to an external signal in the same way.
We have seen there are many stages to pass from the DNA to proteins. At
each stage, gene expression can be regulated by:

• transcriptional control, controlling directly the transcription of a gene;

• RNA processing control, acting on the splicing and the processing of
RNA transcripts ;

• RNA transport and localization control, which is determinant in the
spatio-temporal articulation of gene expression;
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• translational control, i.e., the selection of mRNA which is translated
into proteins;

• mRNA degradation control, i.e., the destabilization of certain mRNA
types;

• protein activity control, acting at the protein level through the inter-
vention of enzymes that lower the activation energy of protein reac-
tions.

Despite this large amount of stages, transcriptional control is the most
common and will be discussed in detail in the following paragraphs.

Gene regulatory proteins:

The transcription of each gene is controlled by a regulatory region, i.e.,
a sequence of nucleotides in the DNA close to the respective gene. These
regions act as a switch for the initiation of the DNA transcription in response
to an external signal. These switches are made of two components:

• short stretches of DNA which act as binding sites;

• gene regulatory proteins that bind to these DNA stretches.

The role of the gene regulatory proteins is to recognize specific nucleotide
sequences, complementary in shape, in the DNA double helix and turn a
specific set of genes on or off.

Transcriptional control:

How do these components work to regulate the gene transcription?
Let us introduce this topic starting with a clear example of a Transcriptional
repressor. The simplest case is indeed that of an on-off switch that respond
to a single signal. As explained in the previous section, the promoter is the
locus in which the polymerases open the DNA helix and begin synthesizing
the RNA molecule. Within the promoter, there is a region recognized by the
transcriptional repressor. When the repressor is bound to the DNA it blocks
the access to the promoter by the polymerase, preventing the transcription.
For obvious reasons, this mode of gene regulation is called negative control.
In contrast to the negative control, let us bring an example of the so called
positive control. Many gene promoters are actually marginally functional
on their own, in other words the probability for the polymerase to bind
and begin the transcription is really small. In these cases, the role of the
transcriptional activators is to bind the promoter and dramatically increase
the affinity between the former and the polymerase. The result is a larger
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probability for the polymerase to open the double helix and initiate the
transcription.
Another feature of gene regulation is so-called DNA looping. A first case is
due to the ability of the repressor to bind two different DNA sites, creating
a loop, which leads to even greater levels of repression of transcription [10],
but the same can occur with the result of activating transcription of the
gene. This process has been discovered to be fundamental in eukaryotic
gene regulation.

Usually in eukaryotes the processes leading to the gene regulation are more
complex than the previous simple cases. Typically, gene regulatory proteins
bind far away from the promoter and the DNA sequences controlling the
expression are spread over long stretches of DNA. The whole region, includ-
ing the promoter, involved in the transcriptional control is referred as gene
control region. In the case of gene activators, their main role is to attract,
position and modify the general transcription factors and the polymerase, so
the transcription can begin. In addition they can also modify the chromatin
structure to promote transcription. In practice, gene activators trough his-
tone modifications are able to make chromatin more accessible, facilitating
the assembly of transcription factors. However, even before gene regulatory
proteins have a role, many genes are "marked" to become rapidly activated.
When considering eukaryotic repressors, it is important to note that they
have many more ways to act on transcription, most of which do not directly
compete with polymerase to access the DNA, but they rather use a variety
of other mechanisms.

1.2.1 Post-transcriptional control

As discussed before, gene regulation can act at every stage of the process
from the DNA to the proteins, indeed many genes are regulated by mul-
tiple mechanisms. In the previous section we went through the transcrip-
tional control, but other controls can act after the RNA polymerase has
bound the gene promoter. This type of controls are globally are called post-
transcriptional controls. These regulatory mechanisms include the atten-
uation of the RNA transcript by premature termination, alternative RNA
splicing, RNA editing, control of transport and many others.
It is important to mention the small non-coding RNAs. Non-coding RNAs,
which have been already discussed previously, have many roles in cells, es-
pecially in gene regulation. Among the small non-coding RNAs, microRNA
(miRNA) play a crucial role inside cells. Once made and assembled with a
set of proteins, miRNAs bind to a specific complementary RNA sequence
producing several outcomes. Post-transcriptional control operated by miR-
NAs can occur through either translational repression or mRNA degrada-
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tion. It has been shown that an individual miRNA is able to control the
expression of more than one target mRNAs and that each mRNA may be
regulated by multiple miRNAs [11]. In addition to the fine-tuning of a tar-
get protein level it has been proved the role of miRNA in efficient noise
controlling of gene expression, thus conferring precision and stability to the
overall process [12, 13]. Finally, because miRNAs can interact with multiple
mRNAs, the noise control effect can be extended to multiple mRNAs that
can can influence each other’s fluctuations [14].

RNA-interference: One of the roles of small RNAs is to lead to the
degradation of some double-stranded RNAs [15]. This mechanism, called
RNA-interference, is structured as follows: a double-stranded RNA triggers
the RNAi process by attracting a protein complex that is able to cleave the
double-stranded RNA into small pieces: small interfering RNAs (siRNA).
The single-stranded siRNAs, by binding other components, are able to ex-
actly match the RNAs and lead to their destruction.
The RNA-interference mechanism is also able to interact with RNA tran-
scripts and modify nearby histones directing the spread of heterochromatin
that fatherly prevent gene expression.
Apart from regulatory and defense roles, RNA-interference has brought a
powerful experimental tool for scientists, allowing almost any gene to be
intentionally inactivated by evoking RNAi response [16].

RdDM pathway: Another epigenetic mechanism for regulating gene ex-
pression at the transcription and post-translation levels in eukaryotes is
represented by DNA methylation6. The principle of RNA-mediated epige-
netic pathway is the RNA Directed DNA Methylation (RdDM) pathway,
which mediates de novo DNA methylation of cytosine bases, using small in-
terfering RNAs (siRNAs). An important element of the RdDM pathway is
a particular protein complex in which AGO4 (argonaute 4)7 binds to small
RNAs, including siRNAs or long non-coding RNAs (lncRNAs), and cleaves
the target RNA transcripts. Moreover, AGO4 catalytic activity is impor-
tant for the creation of secondary siRNAs that strengthen its repressive
effects [17]. The protein complex guides DNA methylation at homologous
loci through binding of small RNAs to AGO4 [18]. Studies suggest that the
RdDM pathway largely participates in various physiological activities. In

6DNA methylation is a biological process by which methyl groups are added to the
DNA molecule. Methylation can change the activity of a DNA segment without changing
the sequence. When located in a gene promoter, DNA methylation typically acts to
repress gene transcription.

7Argonaute proteins are the catalytic component of the RNA-induced silencing com-
plex, the riboprotein complex responsible for the gene expression silencing process known
as RNA interference (or RNAi).
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plants for example: seed development, dormancy, fruit maturation, sexual
reproduction and coloration [19, 20, 21, 22, 23, 24].

Active DNA methylation in eukaryotes: We have seen that DNA
cytosine methylation is an important epigenetic mark and plays a central
role in the regulation of gene expression. The DNA methylation mark, be-
sides being added only through DNA methylation pathways, can also be
removed through DNA demethylation pathways. Compared to the DNA
methylation, the active DNA demethylation is less well understood in both
mammals and plants. DNA methylation can be passively lost or actively
removed, and these processes are referred to as passive DNA demethylation
and active DNA demethylation, respectively. The entire methylcytosine
base is actively removed from the DNA backbone by the action of specific
enzyme families, in the case of plants these are: ROS1/DME. The latter are
recruited to the target loci where they initiate demethylation [25]. Funda-
mental to the thesis will be the case where the action on DNA is mediated
by ROS1, DML2, and DML3 enzymes (RDD pathway), which are shown to
be triggered by auxin, a key plant hormone.
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Chapter 2

Auxin and its role in plant gene
expression: the regulation of the
PID-APOLO locus

This thesis project focuses on the modelling, the analysis and the under-
standing of the mechanisms regulating the expression of a specific gene
locus in plants. In this chapter, we will introduce the reader to the world of
plant morphogenesis, defining the main biological components involved in
the system as well as the experimental results which motivated this research
project.

2.1 Biological components
This first section is devoted to introducing the key players in the system
under consideration. Starting with auxin and its role in morphogenesis,
we will introduce the PID gene, a regulator of auxin transport, and its
neighboring gene APOLO, which is co-regulated along with PID.

2.1.1 Plant morphogenesis and the role of auxin in
plant development

The word morphogenesis represents the set of processes that characterize
the formation of organs from embryonic tissues of stem cells. These latter
are undifferentiated cells, that need to specialize for the organism to take
its shape and carry out its vital functions.
How does cell differentiation take place though? The appearance of new
tissues and organs at the right place and moment during a plant life cycle
must be guided in some way. This is the role of morphogens which, thanks
to different levels of their concentrations and gradient in the tissues, encode
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the different fundamental signals for cell differentiation. Those signals are,
in many cases, received from surrounding cells and the environment.
In the particular case of plants, that we are analyzing in this thesis, the
role of cell differentiation is fulfilled by a complex network of interactions
between various substances, one of the most important being auxin.
Deriving from the Greek auxein = to grow, it is difficult to classify auxin in
any category because of its multiplicity of roles played in plant morphogene-
sis. It was first named as an hormone and later referred as a phytohormone,
a substance produced not only in plants but also in algae. It is involved in
both development and regulatory processes, it is often seen as a signal that
triggers various reactions and can be expressed in different tissues, it can be
transported over the whole plant and influences numerous processes. For
instance, in the case of the plant A. thaliana, which will be introduced in
more detail later, auxin is involved in the development of different parts of
the plant and in different processes such as gravitropism in roots, i.e., the
ability of the plant to respond to gravity. Auxin is transported throughout
plants and this transport is critical for plant development. Its transport,
differently than other morphogens in other organisms, does not rely on
simple diffusion: in fact auxin is actively transported across tissues, i.e.,
membrane proteins mediate auxin transport inside and outside cells [26]. It
has been found that a family of these proteins, the PINs, relocalize on cell
membranes thus displaying polarized patterns across tissues which provide
directional and positional information essential for developmental processes.
Several recent studies have investigated the complex mechanisms by which
PIN-dependent and tissue-specific auxin transport creates localized gradi-
ents that are essential for plant organs or meristems8 formation, patterning,
and maintenance [26, 27].

2.1.2 PID

PIN-mediated auxin transport also appears to be regulated by the PINOID
(PID) gene. The latter encodes a regulatory kinase9 that determines the
polar localization of the PIN-FORMED auxin transporter in root cells and
is required for root development [28].

2.1.3 APOLO

As we will show in the next section, PID is co-regulated in an intricate
network of epigenetic and transcriptional factors with another gene, which

8The meristem is a type of tissue found in plants. It consists of undifferentiated cells
(meristematic cells) capable of cell division. Cells in the meristem can develop into all
the other tissues and organs that occur in plants.

9A kinase is an enzyme that adds phosphate groups to other molecules.
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is called APOLO. Long non-coding RNAs (lncRNAs) are becoming increas-
ingly important regulators of gene expression: APOLO (AUXIN REGU-
LATED PROMOTER LOOP RNA) is one example of lncRNA with multi-
ple roles in gene regulation and root development, with both positive and
negative regulatory capacity [29].

2.1.4 Arabidopsis thaliana

We conclude this section by introducing the plant taken under analysis in
this work, i.e., the model organism for plant biology: Arabidopsis thaliana.
Its genome was completely sequenced in 2000, and this is one of the reasons
why it has become so popular in genetic experiments. Other reasons are
that Arabidopsis is able to produce a large amount of seeds, has a short
intergeneration time, is quite small in size, and has a very short genome.
Arabidopsis is structured in three parts:

• apical part which includes leaves and reproductive organs;

• middle part, connecting apical and basal parts;

• basal part, situated below the surface and thus in the soil and involved
in seeking nutrients.

2.2 Noncoding Transcription by Alternative RNA
Polymerases Dynamically Regulates an Auxin-
Driven Chromatin Loop

In this second section, we will introduce the experimental results that mo-
tivated this research project. In 2014, Ariel and collaborators revealed the
molecular mechanism underlying the co-regulation of PID and APOLO [1].
Before illustrating and explaining their results, let us take up some con-
cepts that will prove useful. As explained previously, chromatin structure
can play a regulatory role by influencing DNA accessibility. Some types
of chromatin folding can put distant gene elements in close proximity with
both local and long-distance loops. In other cases, loops may be formed by
lncRNAs that participate in Polycomb-dependent repression10. lncRNAs
may also contribute to gene repression through histone modification and
DNA methylation. Finally, lncRNAs, mediated by Pol IV and Pol V, can
lead to the production of 24-nt siRNAs involved in transcriptional silencing

10The Polycomb repressive system comprises two central protein complexes, Polycomb
repressive complex 1 (PRC1) and PRC2, which are essential for normal gene regulation
and development.
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of genes by directing DNA methylation of the locus of origin.
Based on this, Ariel and coworkers demonstrated how dual transcription by
polymerases II and IV regulates the formation of chromatin loops spanning
the PID promoter. Expression of APOLO alters chromatin loop formation,
while RNA-dependent DNA methylation, active DNA demethylation and
Polycomb complexes control loop dynamics. The result is the regulation of
PID expression patterns.

PID expression depends on its neighbor lincRNA APOLO

PID and APOLO are two neighboring genes involved in divergent transcrip-
tion. APOLO was found to be transcribed by both Pol II and Pol V. Exter-
nal auxin treatment led to increased expression (RNA levels) of both genes,
indicating that PID and APOLO are co-regulated, although the transcript
levels of PID were consistently higher than its neighbor. Confirming the
hypothesis that both genes are co-regulated, RNAi-APOLO plants showed
repression of PID expression.

Plant PRC1 and PRC2 modulate the epigenetic landscape of PID-
APOLO locus

APOLO alters the epigenetic landscape: Repressive H3K27me3
and active H3K9Ac marks11 were detected during the analysis, and both
modifications were modulated during auxin treatment. Notably, the former
is highly repressed in RNAi-APOLO plants, supporting the hypothesis that
APOLO regulates the epigenetic landscape.

LHP1 protein binds PID-APOLO locus, influencing their ex-
pression: It is known that Polycomb-repressive complex 2 (PRC2) de-
posits the repressive mark H3K27me3 while PRC112 stabilizes the marks
through the chromodomain-containing protein LIKE HETEROCHROMATIC
PROTEIN 1 (LHP1). Analysis of LHP1 confirmed the result that it binds
to the APOLO locus and the PID promoter. Consistent with the removal
of H3K27me3 in response to auxin, the binding of LHP1 decreased rapidly
up to 6 hr. Finally, lhp1 mutants showed a late decay of APOLO transcript
in response to auxin, resulting in an increased PID response.

11Repressive and active marks are histone modifications that represent a hallmark of
the chromatin state that suppresses or activates gene transcription, respectively.

12Polycomb-repressive complex 1.

22



Chromatin loop encompassing PID promoter is regulated directly
by APOLO and PRC1 component LHP1

LHP1 affects loop formation: The modulation of H3K27me3 and
the dynamics of LHP1 following auxin treatment led to hypothesize the
presence of an LHP1-mediated chromatin loop. Indeed, the authors were
able to detect the loop linking PID promoter and APOLO locus, in addition
lhp1 mutant showed a basal loop formation decreased of 50%.

LHP1 binds APOLO RNA with an effect on chromatin state:
Other considerations led the authors to think that the presence of the chro-
matin loop depends partly on PRC1 and PRC2 but also on APOLO tran-
scripts.
Using RNA immunoprecipitation, it was evaluated whether LHP1 can bind
APOLO RNA directly. Indeed it did: LHP1 binds APOLO transcripts but
not PID transcripts. Finally, the delayed loop formation in the lhp1 mutant,
in conjunction with the delayed decay of APOLO levels and the enhanced
PID response, led to the hypothesis that chromatin loop formation depends
on the PRC1 component of LHP1 through binding to APOLO RNA.

RNA-mediated DNA methylation and Active DNA demethylation
influence loop formation

As mentioned above, the APOLO locus is highly methylated and, recog-
nized by Pol V, produces 24 nt siRNAs that act in Transcriptional Gene
Silencing (TGS). At the same time, auxin-induced opening of the chromatin
loop allows transcription of APOLO by Pol II. The question at this point is
whether TGS participates in loop formation. Experiments with mutants of
the TGS pathway showed no loop formation, demonstrating the role of TGS
in loop closure. In addition, an analysis of chromatin compaction showed
that the APOLO locus is more condensed in RNAi plants, while the inter-
genic region appeared more relaxed, a feature already seen at other loci in
the literature. Further analysis of DNA methylation after loop opening sug-
gested that APOLO Pol II transcripts play a role in loop reconformation
that precludes Pol II from accessing the PID promoter. Finally, experi-
ments with rdd mutants showed strongly delayed APOLO and enhanced
loop formation, clearly pointing to RDD action in loop opening.

Noncoding transcription influences local chromatin topology

As explained above, RNAi silencing of APOLO led to amplified methyla-
tion of the APOLO locus, but also to a less compacted intergenic region.
Two interpretations have been proposed to explain this phenomenon. His-
tone depletion facilitates the formation of chromatin loops, encouraging the
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hypothesis that the DNA methylation state modulated by APOLO tran-
scription shapes the nucleosome density of the intergenic region. The sec-
ond interpretation concerns RNA-dependent DNA Methylation (RdDM):
RNAi-mediated silencing of APOLO triggers RdDM, which spreads hete-
rochromatin along the APOLO gene.

Figure 2.1: APOLO Transcription by Alternative Polymerases Controls
Chromatin Loop Dynamics to Fine-Tune PID Promoter Activity (first
half)
(A) Auxin activates RDD-mediated APOLO DNA demethylation and opens the
loop encompassing the PID promoter region. (B) The H3K27me3 mark (pale
blue symbols) decreases, whereas H3K9Ac levels (pink symbols) increase. Pol
II divergent transcription leads to increased accumulation of PID and APOLO
transcripts [1].
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Figure 2.2: APOLO Transcription by Alternative Polymerases Controls
Chromatin Loop Dynamics to Fine-Tune PID Promoter Activity (sec-
ond half)
(C) Pol II APOLO transcripts gradually recruit LHP1 to mediate loop formation,
whereas Pol IV/V transcription triggers DNA methylation (red symbols), and
PRC2 likely redeposits repressive marks in the region. (D) Pol II APOLO-LHP1
mediated loop is finally conformed and maintained by Pol IV/V-dependent DNA
methylation to down regulate levels of PID transcripts [1].

Conclusions

Summarizing the results, auxin treatment was shown to activate the RDD
demethylation pathway on the APOLO locus leading to loop opening, trig-
gering divergent Pol II transcription of the two genes and recruiting Pol V
on the APOLO locus. Subsequently accumulation of APOLO transcripts
triggers siRNA-mediated DNA methylation and at the same time LHP1 is
recruited by Pol II transcripts for efficient loop formation, ensuring down
regulation of both PID and APOLO (figure 2.3). Finally, the H3K27me3
repressive mark and LHP1-chromatin interactions (which may be mediated
by APOLO RNA) on loci suggest that PRC1 and PRC2 complexes con-
tribute to loop closure.

Yet, once the biological problem is presented, some questions naturally
arise. What are the properties of this genetic circuit and how such a dy-
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(a) (b)

Figure 2.3: APOLO (fig. 2.3a) and PID (fig. 2.3b) transcript levels in wild-type
(WT), an RNAi-APOLO line, and lhp1 mutant seedlings in response to a 24 hr
auxin time course. Error bars represent the standard deviation of three biological
replicates. [1]

namics is related to the genetic circuit structure in particular with respect
to auxin perturbations? What is the role of basal APOLO and PID tran-
scriptions, if any? The goal of this thesis is to answer these questions by
the aid of theoretical modelling and mathematical analysis and validate it
by the aid and comparison to the experimental results illustrated in this
chapter.
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Chapter 3

Mathematical modeling

Given the biological introduction so far, we will now introduce the aim of
this thesis project. The goal is to build a mathematical model based on
the observations collected by Ariel et al. as well as the current biological
knowledge to understand quantitatively PID-APOLO gene regulation. In
the first section, we will introduce the theory of gene regulatory networks
which gives all tools used to translate the biological observations and hy-
potheses into mathematical equations and thus to concretely formulate the
model. The second and third sections will explain how dynamical systems
theory allows us to better understand the model and extract information
from it.

3.1 Gene Regulatory Networks and modeling
In the 1960s, genetic and biochemical experiments demonstrated the pres-
ence of regulatory sequences in close proximity to genes. It was also shown
that there are some specific proteins that can bind these regulatory regions
and control, by activating or repressing, the expression of the respective
genes.
However, these proteins are themselves encoded by genes, thus creating a
complex network of regulatory interactions. As explained in the first chap-
ter, there are many different pathways of gene regulation that also act at
different stages of gene expression thus further complicating the picture.
In recent years, the increased availability of gene expression data, accom-
panied by the flourishing of network theory (which allows the analysis of
complex systems that made of many non-trivially interacting elements), has
stimulated the use of mathematical and computational tools to understand
and model the complicated regulatory processes in cells. For these reasons,
Gene Regulatory Networks have attracted a lot of interest and many meth-
ods have been introduced for their statistical inference from gene expression
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data.
Based on these premises, the following is an interesting definition that puts
us in a perspective where data is the focus:

Definition. We call a network that has been inferred from gene expression
data a “gene regulatory network,” briefly denoted as GRN [30].

The survival of an organism requires that its cells continuously mon-
itor the environment and calculate the amount of protein needed. They
are able to sense many different signals from the environment, for example
temperature and pressure, but also nutrients or harmful chemicals, and the
production of the right proteins is the cell’s internal response. Putting our-
selves in this other perspective, however, a GRN can be defined as the set of
all the interactions between molecular species that govern gene expression
patterns by regulating the levels of mRNAs and proteins that are critical
for the proper functioning of the mentioned cells.
As anticipated, these interactions in the network can be of various types:
gene-gene, protein-gene, protein-protein (e.g., in a complex) and many oth-
ers. They also occur at different levels of the gene expression process.
All this variety, multiple molecular interactions, and multiple levels of inter-
action lead to the fact that, in general, the gene regulatory networks within
cells are extremely large and function in nontrivial ways.
To build a model that represents them, it is important to ask some ques-
tions. Is it really necessary to take all this complexity into account? An
important point is therefore to identify which interactions are of real inter-
est for the case studied. Moreover, as it turns out, gene regulation occurs on
many different scales. Identifying the scales to work on can lead to a great
simplification of the system under consideration, turning it into something
more manageable. In addition, in the large GRNs inside the cells not every
component has to be considered as fundamental for contributing to a cell’s
specific function.
Usually the role is given to some subgraphs, which contain a small part of
the network components and their interactions. These, in a more or less
complicated way, can be modeled as circuits and are called "gene regulatory
circuits". An example of a simple circuit is represented in figure 3.1.

3.1.1 Modeling gene circuits

Since the 1960s, methods drawn from mathematics and physics have been
used to more rigorously describe and simulate small gene networks.
Various theoretical models have been formulated to explain how gene ex-
pression occurs and to try to understand numerous hidden aspects in this
regard. There is always a tension between the generality and the level of
detail of a model: depending on the scale involved and the nature of the
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Figure 3.1: Representation of a simple, fictional transcription factor net-
work. All genes shown encode transcription factors that control the activity of
genes encoding transcription factors [31].

available information, an appropriate mathematical framework must be cho-
sen. In addition, situations are usually more complicated than expected and
may also involve a wide range of interactions and scales, so it may even be
necessary to use a combination of different approaches.
One way to classify models can be done according to increasing level of
detail. According to [32], it can be distinguished between: i) parts lists, a
collection, description and systematization of network elements in a biolog-
ical system (e.g., transcription factors, promoters, and transcription factor
binding sites); ii) topology models, a description of the connections between
the parts (this can be viewed as diagrams where directed or undirected
connections between genes represent different types of interactions); and
going towards a higher level of detail: iii) dynamic models, the simulation
of the real-time behavior of the network and the prediction of its response
to environmental changes, external, or internal stimuli. The following will
explain how to build a detailed model step by step, paying more attention
to topology and dynamic models.

Topology models:

Once we know all the interacting molecular species (i.e., the parts list of
the system), we can increase the level of detail and describe the regulatory
network/circuit by graphs with nodes and edges. In this kind of models, the
nodes correspond to genes, messengers or proteins and the edges represent
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regulatory interactions (activations, inhibitions or formation of complexes)
among the network components.
For the purpose of this thesis, it is important to introduce the following
types of interactions: i) activation, ii) repression, iii) degradation, iv) basal
transcription and v) complex formation.
The simplest case of activation, as well as repression, is that of transcription
factors (TFs) that bind to the gene promoter by regulating its expression.
The effect of TFs can be to increase the rate of transcription (in this case we
speak of activator) or to decrease it (repressor). Taking this as an example,
consider an edge connecting nodes A to B (genes in this case): it means
that the product of gene A can bind the promoter of gene B by influencing
its transcription. The interactions between A and B are not only repre-
sented by an arrow, but a sign is also required. In the case of activation,
the interaction is assigned the sign (+) and is represented by a regular ar-
row A B, while in the other case the sign is (−) and the interaction is
represented by a blunt-tipped arrow A B. Usually a TF acts primarily
in one mode for its target gene, as an activator or repressor, whereas a gene
can be activated by several TFs and repressed by others.
Figure 3.2 shows a simple example of a two-gene topology model with both
positive and negative regulatory interactions. That being said, we can now
consider the fact that molecular species are usually subject to degradation,
which may be, for example, related to an average lifetime of the molecule.
This event is usually considered with a common arrow that starts from the
species but points to the empty set: A ∅ , which means that A is sub-
jected to degradation.
Also, important to consider for the purpose of this thesis is the basal pro-
duction of certain RNAs, proteins, etc. This process can be due to multiple
factors, from basal transcription of a gene, to the constant external in-
jection of a molecular species into the cell. This phenomenon is usually
represented in models with an arrow indicating the species that has basal
activity: A. Finally, let us take into account the interaction between
two molecular species that leads to the creation of a complex. This is rep-
resented with an undirected edge between the species: A −− B.

Dynamic models:

The knowledge of the parts list of a network and its topology are necessary
requirements in order to expand the model to capture dynamical changes
during time.
This further step in the modeling process aims at describing and often sim-
ulating the dynamic changes in the state of the system and predicting the
network’s response to various environmental changes and stimuli. Recalling
the biological questions posed in the previous chapter, it finally becomes
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Figure 3.2: Example of a simple two-gene GRN dynamic model. Two
(X and Y ) element GRN with positive (arrowhead edges) and negative (flat end
edges) regulatory interactions [31].

clear why these kinds of models are necessary for our goal.
Again, the type of problem being considered, the available data, and many
other factors can influence the choice between the different approaches that
go by the name of dynamic modeling: quantitative versus qualitative, de-
terministic (e.g., differential equations) versus probabilistic (e.g., Markov
theory), continuous versus discrete, and many others.
For the purpose of this thesis and the analysis of the gene regulatory circuit
considered in the second chapter, we will consider continuous and deter-
ministic models based on ordinary differential equations (ODEs). These
kinds of models allow more detailed descriptions of network dynamics, by
explicitly modelling the concentration changes of molecules over time. The
result will be a system of ODEs of the following type:

d
dt
X1(t) = f1(X1, ..., Xn, θ⃗)

d
dt
X2(t) = f2(X1, ..., Xn, θ⃗)

...
d
dt
Xn(t) = fn(X1, ..., Xn, θ⃗)

. (3.1)

In this system, each equation contains in the LHS the time derivative of
the concentration of a molecular species Xi (t), while in the RHS there is
a function fi

(
X1, ..., Xn, θ⃗

)
of the concentrations of the other molecular

species and a vector of parameters θ⃗. In fact, differential models depend
on numerical parameters that are often difficult to measure experimentally
but can be estimated by inference methods. The fi (...) function, which is
often very complicated, represents the set of interactions between molecular
species that lead to the variation in time of the corresponding component Xi

of the network. The question that arises in this context is: how should this
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function be defined? How can the interactions be expressed in mathemati-
cal terms? The next section is entirely devoted to answering these questions.

3.2 From the dynamics of GRNs to ODEs
So far, we have briefly discussed how gene circuits and, more generally,
GRNs are schematized thanks to the use of graphs. The next step is the
translation into mathematical language of all the processes involved in gene
regulation. This will allow the methods of mathematics and in particular
dynamical systems theory to be used to explore in depth and in a more
quantitative way the phenomenon under consideration. In particular, the
general process of formulating ordinary differential equations (ODEs) rep-
resenting the dynamics of the gene regulatory network will be made explicit
in this section.

3.2.1 Input functions

Before starting with the actual construction of differential equations, it is
important to spend some time on the introduction of input functions. In-
deed, input functions are a key step in understanding how to mimic the
dynamics of a gene circuit with mathematical tools. The complexity of the
topic dictates that an entire section of this chapter be devoted to it.
We already considered the case in which two components of a gene cir-
cuit, A and B, influence each other production: the strength of this effect
can be quantified using an input function f(A). The interaction A B is
modeled through the regulatory function representing the concentration of
products of B per unit time as a function of the concentration of A (from
now on it will be implied in the formulas that molecular species are given
in terms of concentration). Intuitively, f(A) must be a monotonically in-
creasing function if A is an activator and decreasing in case A is a repressor.
Summarizing, we can write:

rate of production ofB = f(A).

To better grasp the mathematical meaning of these objects, let us start with
a simple example: logical input functions.

Logical input functions:

Often used as an approximation for the input functions, the essence of
these functions is that the gene is either OFF f(A) = 0 or maximally ON
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f(A) = β where β is the maximum promoter activity. There is an activation
threshold K such that for activators the input function is:

f(A) = β ·Θ(A > K),

while for repressors:
f(A) = β ·Θ(A < K)

[33]. It is clear that the parameter β is a rate of change and is expressed in
concentration over time.

Hill input functions:

Another notable example of an input function, often used to describe many
cases, is the Hill function. Although beyond the scope of this chapter, the
Hill function can be derived by considering the equilibrium binding of the
transcription factor to its site on the promoter. In the case of an activator
it is characterized by three parameters:

• K: activation coefficient that defines the concentration of A required
to significantly activate the expression. More precisely, the half-maximal
expression rate is reached by the condition A = K;

• β: maximal promoter activity reached when A≫ K;

• n: Hill’s coefficient representing the steepness of the input function;
the higher n, the steeper the Hill function is.

The functional form is as follows:

f(A) = β
An

Kn + An
Hill function for an activator. (3.2)

For a repressor, as already explained, the input function must be mono-
tonically decreasing. The formulation of the Hill function in this case is as
follows:

f(A) = β
Kn

Kn + An
Hill function for a repressor. (3.3)

It is important to note that in the last formula, the maximal promoter
activity is reached for A = 0 while f(A) = 0 only if A is really large. Again,
half of the maximal expression rate is reached for A = K.
Figure 3.3 shows an example of increasing and decreasing Hill function as n
varies. Drawing conclusions, three parameters can be assigned to each arrow
of a transcription network: β, K and n. K, for example, can be modulated
by changes in the DNA sequence of the binding site or if its position is
changed, while β may depend on mutations in the RNAp13 binding site or

13RNA polymerase (RNAp) is an enzyme that synthesizes RNA from a DNA template.
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other various factors [33].
Note that while n is an integer and K is expressed in concentration, β in this
case must be expressed in the unit such that the right-hand side represents
a rate (concentration per unit time).

(a) (b)

Figure 3.3: Increasing (3.3a) and decreasing (3.3b) Hill function as the Hill’s
coefficient changes [33].

Basal expression and multivariate input functions:

Usually the input function ranges from a zero transcription rate to a max-
imum basal expression, but sometimes it can happen that the gene has a
nonzero minimum expression called basal expression level. Basal expression
can be considered in the mathematical representation by adding a constant
term β0.
It is also important to underline that a gene can be regulated by many
transcription factors, in other words, a network node can have more than
one input arrow. Therefore, the input function must be a multivariate func-
tion. Three examples are presented below, using the logical approximation
discussed earlier. We first consider the case in which two activators must
bind the promoter to initiate transcription, much like an AND gate:

f(A1, A2) = Θ(A1 > K1) ·Θ(A2 > K2) ∼ A1 AND A2. (3.4)

The second case is where binding of one of the two activators (similar to an
OR gate) is sufficient:

f(A1, A2) = Θ(A1 > K1 OR A2 > K2) ∼ A1 OR A2. (3.5)

Finally, when both activators can act cooperatively to activate the gene, an
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SUM input function is often used in this case:

f(A1, A2) = β1A1 + β2A2 (3.6)

[33].Note that in this example the unit of β1, β2 is the inverse of time.
Clearly other kind of function are also possible.

3.2.2 Building ordinary differential equations

By constructing, step by step, an exemplary differential equation that mim-
ics the dynamics of the system, this section aims to explain the basic rules
needed to transform biological hypotheses into mathematical ODEs.

To facilitate the reader’s understanding, we will refer to a simple exam-
ple: A B (i.e., TF A activates gene B in response to a signal from the
environment). When the external signal is absent, A is inactive and B is
not produced. As soon as the signal appears, A is activated and binds the
promoter of B. The latter begins to be transcribed by RNAp, its mRNA is
produced and subsequently translated into the B protein. From the previ-
ous section, we know that the whole process from mRNA transcription to
protein translation is summarized by the input function f(A), which gives
the rate of production of protein B.
We can then write that the change per unit time of the concentration of
protein B is proportional to its production rate, i.e., the input function, as
follows:

d

dt
B = f(A). (3.7)

This is not the only process involved in the dynamics of B concentration,
in fact, it is also important to consider degradation. The degradation term
represents the loss in concentration of the B protein that can be due to a
variety of factors. Some examples may be the natural lifetime of a molecule
in the cell or the process of RNAi silencing. For simplicity, we consider only
the lifetime of the protein within the cell and define the generic degradation
rate δ as:

δ =
1

τ
, (3.8)

where τ is the average lifetime of the molecule.
It is now possible to write the full version of the equation 3.8, subtracting

35



the degradation term given by the product of the degradation rate and the
concentration of B:

d

dt
B = f(A)− δ ·B. (3.9)

This is the basic equation that forms the building block of ODE models,
but the case of basal transcription and complex formation still remains to
be modeled.
As already discussed in the section devoted to input functions, the case
of basal transcription can be taken into account adding to equation 3.9 a
constant rate (concentration over time) β0 as follows:

d

dt
B = β0 + f(A)− δ ·B.

If we start instead concerning the formation of complexes, the situation
becomes more complicated. Let us consider equation 3.9 and let us add the
possibility that the products of A and B form a complex C following the
chemical equation:

A+B
K(on)

⇀↽
K(off)

C, (3.10)

where K(on) and K(off) are the coefficient related to the creation and sep-
aration of the complex C. These represent the probability of the reaction
occurring per unit time and unit particle.
If the mass action law is assumed valid, these constants do not depend on
the number of particles. Based on this law and assuming that B and C
are subjected to the generic fluxes of concentration (incoming ν+b ,ν+c and
outgoing ν−b ,ν−c ), the equations governing the change in concentrations of
A,B and C can be written as:

d
dt
A(t) = f(A) − δ ·B −K(on)A ·B +K(off)C

d
dt
B(t) = ν+b − ν−b −K(on)A ·B +K(off)C

d
dt
C(t) = ν+c − ν−c +K(on)A ·B −K(off)C

. (3.11)

In the previous equations the terms: K(on) ·AB and K(off) ·C are the fluxes
of the chemical reactions respectively direct and inverse.
Finally, at the conclusion of this section, to make things more rigorous,
some remarks need to be made. In what follows, we will assume that the
system is normally in its stationary state in which the concentration of its
components is constant and stable. When an external signal reaches the
cell, the system responds, and the steady state is reached again only after
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some time after the signal has disappeared. Consider a simple example in
which only basal expression is present:

d

dt
B = β0 − δ ·B. (3.12)

In the stationary state, the constant concentration level is represented by

d

dt
Bss = 0 ⇐⇒ β0 − δ ·Bss = 0 ⇐⇒ Bss =

β0
δ
. (3.13)

The external signal leads the system to leave the steady state, but how is
it reached again? Suppose the system is out of equilibrium and that the
signal ceases at time t = 0, then:

B(t) = Bss − C0
e−δ·t

δ
. (3.14)

The steady state is reached again with an exponential decay e−δ·t. C0 is a
coefficient depending on the initial conditions.

3.3 Theory of dynamical systems
As anticipated, this section will explain how dynamical systems theory can
be used to study those systems of equations (e.g., equation 3.1) that repre-
sent gene regulatory networks. We will first briefly introduce the definition
of a ordinary differential equation.

Definition. an ordinary differential equation of order n is an equation

dn

dtn
y = F

(
t; y,

d

dt
y, ...,

dn−1

dtn−1
y

)
,

where F is a differentiable function defined in a domain U of a space of
dimension n+ 1 [34].

In this project we will be dealing with many coupled equations, the
so-called system of ODEs.

Definition. By a system of ordinary differential equations we shall mean a
system of equations in n unknown functions:

dni

dtni
yi = Fi (t; y, ...) , i = 1, ...n,

where the arguments of each function Fi are the independent variable t,
the dependent varibles yj, and their derivatives of orders less than nj (j =
1, ..., n) respectively [34].
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For the purposes of this thesis and the modeling of regulatory circuits, it
is sufficient to consider systems of first-order ordinary differential equations.

Solutions of ODE systems: Given the initial point, the solution of
these systems is not always simple. An ODE can have no solution, a unique
solution, or even an infinite number of solutions. Under given assumptions
there are many theorems that prove the existence and uniqueness of the
solution, which can be found either locally or globally. Two examples may
be the Peano’s existence theorem or the Cauchy-Lipschitz theorem, which
prove the uniqueness and existence of the solution [34].
Very often, these systems become too complicated to solve analytically;
instead, some numerical methods can be used to integrate the equations
numerically. This will be the case in this thesis.

3.3.1 Stationary points

Let us return to biology for a moment: it has been said that the transcription
network at rest is assumed to be in a stationary state. This state is the one
achieved by the system after a very long time and to which it tends to return
after an external signal has perturbed the cell.
The stationary condition in biology can be translated into mathematical
terms by imposing that the time derivative of the concentrations in the
system is zero:

d

dt
y = 0. (3.15)

This is exactly what is called the stationary point of a differential equation.

Definition. The point ȳ ∈ Rn is an stationary point for the differential
equation

d

dt
y = F (t,y)

if F (t, ȳ) = 0 [34].

Physical conditions of the stationary states: As explained in the
definition, the mathematical stationary can take any value on the real axis.
Obviously, the same cannot apply to the physical values of the concentra-
tions in the system. Only an stationary point belonging to the positive real
semi-axis should be considered as a biological steady state. This condition
is of fundamental importance for the results to be interpretable.
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3.3.2 Analysis of the stability

Given the respective ODEs and a set of initial conditions, the system begins
to follow a deterministic orbit in phase space, completely dependent on the
above conditions. This is exactly how the mathematical model mimics the
behavior of the real system, that is, how the gene circuit reacts to the
external signal. For these reasons, the study of the orbit provides a lot of
information and especially a quantitative analysis of the biological problem
under consideration. Many types of orbits can be found in the theory of
dynamical systems: from orbits that converge to a stationary point to orbits
that escape from it, to periodic orbits and many others. Several criteria have
been developed to tell whether an orbit belongs to one type or another.
In particular, to understand whether an orbit is stable or unstable. In the
interest of this thesis, we will mainly discuss what is known as local stability,
with a small introduction to global stability for completeness.
Let us consider an autonomous system14 ẏ = F (y(t)) with F (ȳ) = 0 (ȳ
stationary point):

Definition. An stationary point ȳ is orbitally stable if for every neigh-
borhood O of ȳ in Rn there is a neighborhood O1 of ȳ in O such that every
solution y(t) with y(0) = y0 ∈ O1 is defined and remains in O for all t > 0
[35].

Definition. If O1 can be chosen above so that, in addition to the properties
for stability, we have limt→∞ y(t) = ȳ, then we say that ȳ is asymptoti-
cally stable [35].

In other terms, a stationary point is orbitally stable if any orbit will stay
indefinitely close to it, is asymptotically stable if any orbit converges to the
point, but can also be unstable.

Definition. An stationary point ȳ that is not stable is called unstable.
This means there is a neighborhood O of ȳ such that for every neighborhood
O1 of y with O1 ⊂ O, there is at least one solution y(t) starting at y(0) ∈ O1

that does not lie entirely in O for all t > 0 [35].

Figure 3.4 shows the phase portrait of a 2D stable and an unstable sys-
tem, in the generic variables yi and yj. In the case considered in this project,
the steady state of the biological system coincides with an asymptotically
stable point, assuming it is in the positive real semi-axis.

14In mathematics, an autonomous system or autonomous differential equation is a
system of ordinary differential equations which does not explicitly depend on the inde-
pendent variable. When the variable is time, they are also called time-invariant systems.
(In this thesis the biological systems studied do not depend explicitly on time, we will
then use autonomous ODEs).
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Figure 3.4: From left to right, respectively, a phase portrait of a 2D system with
one orbitally stable and one unstable singular point [35].

Local stability

Local stability concerns what happens to an orbit in the immediate vicinity
of an stationary point.
Let us consider the equation ẏ = F (y) and suppose F (ȳ) = 0 (ȳ stationary
point). Let us assume to be close enough to ȳ such that it is possible to
expand the function F around ȳ, up to the first order. This allows us to
reduce the system to its linear part: ẏ(t) ≃ J|ȳ · (y − ȳ). The latter with a
simple change of coordinates y = ȳ+ z can be re-written as: ż(t) ≃ J|z̄ · z.
In the last expression J|ȳ is the Jacobian matrix15 of the function F evalu-
ated in the stationary point.

Thanks to this procedure, the analysis of system stability has been re-
duced to the study of the stability of a much simpler linear system. Local
stability is now completely determined by the eigenvalues λ of the Jacobian
matrix:

• if Re(λ) < 0 ∀λ then the system is asymptotically stable;

• if ∃λ such that Re(λ) > 0 then the system results to be unstable for
the local analysis.

It is important to pay attention to the fact that the same properties
are also true for the complete system16, but only near the stationary point
[34, 35].

15The Jacobian matrix of a vector-valued function of several variables is the matrix of
all its first-order partial derivatives.

16Complete system here means the system before the linearization procedure.
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Imaginary part of the eigenvalues: The real part of the eigenvalues of
the Jacobian is not the only thing that matters. It is critical to understand
the linear stability of the system, but it says nothing about how the orbit
converges (or diverges) to the stationary point. It may be the case that the
orbit simply converges to a stable point, but in some cases the orbit may
begin to oscillate around the equilibrium and reach it after a while. This
is the case when the eigenvalues of the Jacobian matrix have a nonzero
imaginary part. Depending on the stability of the stationary point, the
system may form the so-called spiral sink or source.

Global stability

Local stability is often used for its simplicity, but it has the inherent limita-
tion of being reliable only in the immediate vicinity of the stationary point.
What happens far from it? Again, there are many methods for analyz-
ing the global stability of a system, which under certain assumptions can
tell whether or not a point is stable for global dynamics. An important
example is the use of the Lyapunov function, which is a continuous, differ-
entiable function of points in phase space whose analysis provides global
stability. Global stability is usually complicated to study analytically, espe-
cially when dealing with complicated systems. For this reason, we will rely
on local stability analysis in the thesis.

3.3.3 Linear response analysis

Linearization of the system not only provides information about stability
near the stationary point, but can be incredibly informative about the re-
sponse to infinitesimal perturbations of the system. This is particularly
useful for our purpose because the system under consideration has been
perturbed through auxin treatment.
In addition, linear response analysis provides important information about
the resilience of a system. Biological resilience in fact refers to the ability
of a system to return to its initial state after being deformed or perturbed.
A quantitative measure of resilience in a model can be given by the time it
takes the system to return to its initial state after the disappearance of a
perturbation. This concept can be further explored through response anal-
ysis.
Let us suppose that for a given auxin level A0 the system reaches its (unique)
steady state. Let us call ∆C the vector containing the deviations of the
concentration in the system from the steady-state values. The linearization
already seen for local stability leads to the following differential equation
for ∆y:
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d

dt
∆y = J|ȳ ·∆y. (3.16)

Now we introduce a perturbation with respect to the previous auxin level
A(t) = A0 + ∆A(t). The latter will lead to the following modification of
3.16:

d

dt
∆y = ∆S+ J|ȳ ·∆y. (3.17)

Where ∆S is the vector containing the perturbation of auxin concentration,
taking into account the equations of the ODE system considered 17. Now,
assuming that the system is at steady state before the application of the
perturbation, we can write:

∆y =

∫ t

−∞
χ(t− t′) ·∆S (t′) , (3.18)

where χ is the matrix:

χ(t− t′) = eJ |ȳ ·(t−t′), (3.19)

χ is known as linear response function and is assumed to be χ (t) = 0 in
the range t < t′.

How can be the function χ interpreted? Let us consider the example case
in which the auxin perturbation appears only in one equation of the ODE
system and is represented by a Dirac delta pulse at time tpulse as follows:

∆S =



0
...
0

δ(tpulse)
0
...
0


(3.20)

.
Injecting the perturbation into equation 3.18 gives:

17When considering a perturbation of a system, it is not easy to determine which
equations are actually affected and which are not. It is possible that all are perturbed
or, as in the case of the system analyzed in this thesis, that only one is.
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∆y(t) = χ(t− tpulse) = eJ |ȳ ·(t−tpulse). (3.21)

In other words the linear response function represents the value of ∆y(t),
i.e., the variation of y at time t after applying a delta function pulse as
perturbation [36].
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Chapter 4

Models formulation and analysis

In this last section we will address the formulation and analysis of some
models that attempt to capture the nature of the phenomenon under con-
sideration. We will begin by considering only the minimum ingredients to
build a model as simple as possible; in the second section, however, the
simple formulations will be expanded to better capture the dynamics.

4.1 Minimal models
Returning to the biological problem, many components participate in the
entire dynamics of the system. In this section we will try to reduce the
complexity of the real system as much as possible by considering only the
main actors in the transcription network.

4.1.1 Simple model

The first model formulated is an attempt to see if the patterns of regulation
shown in the experiments can be summarized with a few simple principles
and assumptions.

Ingredients:

The two key ingredients without which comparison with experimental data
would be difficult are clearly the two RNA transcripts: PID and APOLO.
As Ariel and collaborators demonstrated in the 2014 article [1], they are co-
regulated in response to auxin and lead to loop opening. In modeling, this
intermediate process between auxin treatment and PID-APOLO expression,
was simplified by considering what we called "euchromatin state" ϵ, which
represents how compact chromatin is. The value of ϵ, which varies in the
range [0, 1] (where ϵ = 0 indicates a fully heterochromatic DNA and ϵ = 1
a fully euchromatic one), is affected initially by auxin flux into the system.
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Interactions:

As mentioned earlier, the RDD demethylation pathway plays an important
role in opening the loop in response to auxin concentration. It was hy-
pothesized that its action simply increases euchromatin state in a manner
proportional to a parameter βϵ. To account for the time required for RDD
to actually change the chromatin state, βϵ was multiplied by the auxin con-
centration but delayed in time by a constant τ : Aτ (t) = A(t− τ).
Auxin concentration in time was assumed to be a decreasing exponential
function:

Aτ (t) = A0 + CA · e−
t−τ
τA ,

where CA is a coefficient while τA is one over the mean lifetime of auxin in
the system.
To ensure that the euchromatin state extends into the range [0, 1], the in-
crease of ϵ was set to be proportional to (1−ϵ) (which clearly measures how
heterochromatic the DNA is). Proportional to ϵ, through an input function
F (ϵ), but with different maximal promoter activity (βa and βp) APOLO
and PID are transcribed. In the analysis conducted in the following sec-
tions, however, the input function was varied between linear function and
Hill function with different parameters to study the different behaviours.
The natural lifetime of PID and APOLO was considered through the degra-
dation terms: δa and δp and the basal transcription of APOLO through β0.
Finally, the action of the RdDM pathway was assumed to act directly on the
state of euchromatin ϵ and proportionally to the concentration of APOLO.
This assumption clearly simplifies the model, skipping the role of siRNA,
which will be considered later. The model can be written as follows:

d
dt
[APOLO](t) = β0 + βaF (ϵ)− δa[APOLO]

d
dt
[PID](t) = βpF (ϵ)− δp[PID]

d
dt
ϵ(t) = βϵAτ (t) (1− ϵ)− δRdDM [APOLO]ϵ

. (4.1)

Analysis:

Now that the model has been formulated, the next step is to take advantage
of what has already been explained in chapter three to better understand
its capabilities.

Parameter reduction: Although the system of ODEs considered is sim-
ple, it can be further simplified. In fact, by rescaling some quantities, some
parameters can be eliminated, thus facilitating the study of the model. In
this case, we considered the new quantities: ˜[APOLO] = [APOLO]/βa and
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˜[PID] = [PID]/βp. Finally, by rescaling the parameters β0 and δRdDM

accordingly, it is possible to write:
d
dt

˜[APOLO](t) = β̃0 + F (ϵ)− δa ˜[APOLO]
d
dt
˜[PID](t) = F (ϵ)− δp ˜[PID]

d
dt
ϵ(t) = βϵAτ (t) (1− ϵ)− δ̃RdDM

˜[APOLO]ϵ

. (4.2)

Thanks to this easy trick it was possible to eliminate two parameters (βa
and βp) from the system.

Stationary states: The analysis of the model continues with the study of
stationary states and their stability. First, it is necessary to find the points
that satisfy the steady-state condition:

d
dt

˜[APOLO](t) = 0
d
dt
˜[PID](t) = 0

d
dt
ϵ(t) = 0

. (4.3)

Solving the system of equations, it can be seen that not all three equations
are significant. By first solving the steady states of PID ( ˜[PID]ss) and
APOLO ( ˜[APOLO]ss) and then substituting the last equation, it is possible
to reduce the system to the solution of a "self-consistency" equation for ϵss:

ϵss =
βϵA

βϵA+ δϵ
F (ϵss)+β̃0

δa

. (4.4)

It is worth noting that equation 4.4 must be accompanied by the condi-
tion that all concentrations are greater than zero. The solution will provide
a value for ϵss by which ˜[PID]ss and ˜[APOLO]ss can also be calculated.
By inverting the rescaling it is possible, in the end, to obtain [PID]ss and
[APOLO]ss.
By fixing the degradation parameters (we will take care to set reasonable
values for the parameters in the calibration of the model) and varying the
parameters βϵA and β̃0, it was possible to solve the system 4.3 by the proce-
dure just explained. The solution found was unique and always acceptable18.
As expected, the steady-state value of euchromatin ϵss decreases with β0 and
increases proportionally with βϵA. Higher basal transcription of APOLO
resulted in higher levels of APOLO transcripts in the steady state, directly
affecting chromatin state. In contrast, the increase βϵA

19 leads to more
18For the condition to be acceptable, the stationary state must be positive or equal to

zero.
19βϵA can be seen as a "perceived auxin flux".
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open loops and a higher value of ϵss. Finally, the stationary value of PID
follows the behavior of euchromatin. Indeed, it is obvious that the more
euchromatic the DNA is, the higher the production of PID and vice versa
if ϵss decreases.

Analysis of the stability: Regarding stability, local dynamics were an-
alyzed. As explained in the corresponding section, in this case it is essential
to study the eigenvalues of the Jacobian matrix evaluated at the stationary
point. Continuing to work with the reduced-parameter model, it is possible
to write the entire Jacobian matrix as a function solely of ϵss:

J(ϵss) =

 −δa 0 d
dϵ
F (ϵss)

0 −δp d
dϵ
F (ϵss)

−δ̃ϵϵss 0 βϵA− δ̃ϵ
F (ϵss)+β̃0

δa

 . (4.5)

As is evident from the ODEs, the dynamics of the PID is completely depen-
dent on the other two. This is reflected in this matrix, which clearly has an
always negative (stable) eigenvalue. Taking advantage of this observation,
the Jacobian matrix can be simplified into a 2× 2 matrix:

Jreduced(ϵss) =

(
−δa d

dϵ
F (ϵss)

−δ̃ϵϵss βϵA− δ̃ϵ
F (ϵss)+β̃0

δa

)
. (4.6)

As before, the behavior was studied by fixing the degradation parameters
and varying βϵA and β̃0. The two eigenvalues, always complex conjugate,
have negative real part for each choice of the two varied parameters, con-
firming the stable nature of the steady state. Anticipating future analysis,
this will be a feature preserved in all the models we have studied, which
might suggest that it is intrinsic to this type of models. The imaginary part
of the eigenvalues, almost zero everywhere, showed a nonzero value only for
small values of βϵA and β̃0, indicative of oscillatory behaviour. In the end,
different input functions (linear and Hill with n = 1, 2, 3) resulted only in
different forms of the previously mentioned region.

Linear response analysis: In addition to the stability, we are interested
in the linear response of the system in the steady-state to a perturbation
of auxin concentration over time: A(t) = A0 + ∆A(t). Where A0 is the
value of the auxin concentration (on which the steady state was built) and
∆A(t) is the perturbation. In other words, we assume that the system is
in the steady state when the perturbation appears. Let us start with the
linearized equations: d

dt
∆y(t) = J |ss ·∆y(t) where
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d

dt
∆y(t) = J |ss ·∆y(t) where ∆y(t) =

∆[APOLO](t)
∆[PID](t)

∆ϵ(t)

 . (4.7)

In our specific case, the perturbation ∆S in the equation 3.18 acts only in
the equation for the euchromatin state, leading to:

∆S(t) =

 0
0

βϵ (1− ϵ(t)) ·∆A(t)

 . (4.8)

Once the perturbation is written, the linear response can be calculated as
explained above:

∆y(t) =

∫ t

−∞
dt′χ(t− t′) ·

 0
0

βϵ (1− ϵ(t′)) ·∆A(t′)

 , (4.9)

where χ(t− t′) = exp [J(ϵss) · (t− t′)].
The reader will recall that the auxin perturbation is delayed in time by an
amount τ , this is necessary to account for the effect of the RDD demethyla-
tion pathway. This delay causes no problem in defining the linear response;
the only effect is to shift the response in time by τ . Based on this reasoning,
the response analysis can be carried out regardless of the delay: the reader
should interpret the relative graphs as shifted in time by τ .
It was already mentioned above that the analysis was repeated with differ-
ent activation functions: linear activation and Hill activation with n = 1, 2;
and the results are explained in the following.
As already evident from the system of equations, PID and APOLO share
the same behavior and their response is completely superposed. The Hill
function leads the response to have a larger amplitude than the linear func-
tion in the n = 1 case. The Hill input function n = 2 makes things more
subtle if A0 = 0. In the graphs of figure 4.1, it can be seen that the linear
response of PID and APOLO is zero in this case: this is because the second
derivative of the Hill function with n = 2 has ϵ at the numerator, but when
calculated in the steady state with A0 = 0, where ϵss = 0, the corresponding
term goes to zero and leads to the observed behaviour.

Code: All the study explained so far has been done using the program-
ming language Wolfram Mathematica. Integration of the equation was done
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Figure 4.1: Linear response of the minimal model. PID and APOLO share
the same dynamics and their linear responses are completely superposed.
(Parameters: δa = δϵ = 1/3 and βϵ = β0 = 1 and A0 = 0).

numerically by means of the function NDSolve[ ] placing the system at time
zero at the stationary point. The latter was found by solving the system of
equations 4.3 with NSolve[ ] with the conditions ˜[APOLO], ˜[PID], ϵ ≥ 0.
Specifically, the values of β̃0 and βϵA were made to vary and, for each com-
bination of the two parameters, the system was solved with NSolve[ ]. The
same procedure was used for the Jacobian matrix and eigenvalues computed
with the integrated function Eigenvalues[ ] [37].

4.1.2 Adding siRNA

The toy model presented so far seems to be going in the right direction to
reproduce the experiments. Despite its simplicity, it is able to capture the
main features of PID and APOLO regulation in A. thaliana. The opening
of the loop is well reproduced by the rapid increase of ϵ and its subsequent
decay. Loop opening allows transcription of PID and APOLO, which are
subsequently degraded, generating the oscillating gene expression measured
by Ariel and coworkers [1]. Despite inaccuracies as in the PID-APOLO
responses that superpose, the results obtained with the toy model were en-
couraging and prompted us to continue in this direction. Once the basic
structure of the model is defined, the next step is to add more details to
make it more realistic. In the case considered so far, an important approxi-
mation was that of APOLO directly influencing the euchromatin state. As
explained in the third chapter, the actual role is played by the small in-
terfering RNA produced by APOLO. The introduction of siRNA into the
model should make it as simple as possible, however, a new equation must
be added to our ODE system to account for it.
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d
dt
[APOLO](t) = β0 + F (ϵ)− δa[APOLO]

d
dt
[siRNA](t) = βs[APOLO]− δs[siRNA]

d
dt
[PID](t) = F (ϵ)− δp[PID]

d
dt
ϵ(t) = βϵAτ (t) (1− ϵ)− δRdDM [siRNA]ϵ.

(4.10)

siRNA is produced proportionally to [APOLO], through a constant parame-
ter βs and is simply degraded with δs. The main difference from the previous
version is that now ϵ is no longer degraded proportionally to [APOLO] but
to [siRNA]. Intuitively one would expect that since siRNA is produced only
after APOLO transcription, this additional step in the process would lead
to delayed or reduced loop closure.

Comparison: The analysis already done in the previous section was also
repeated here and the results were compared. Again it is possible to re-
duce the number of parameters and simplify the ODE system. The single
stationary point turns out to be always stable, with oscillating behavior
in some regions of the βϵA-β0 plane. The overall behavior of both models
seems to be very similar, the main differences appear clear in the analysis of
the linear response (figure 4.2). First, contrary to expectation, the decay of
the euchromatin state from 1 to 0 after auxin perturbation is faster in the
presence of siRNA. This is probably because the effective steady-state level
reached by siRNA is higher than that of APOLO, contributing to faster loop
closure. At the same time, the greatest effect occurs in the expression of
PID and APOLO. Although they are still overlapping, their linear response
is reduced by a factor of 4 due to the addition of the small interfering RNA.
The latter result compared with the experimental data does not give any
further information, it is clear that to improve the model it is necessary to
differentiate the dynamics of PID and APOLO.

4.1.3 RNAi silencing APOLO

So far we have discussed many ways in which genes and transcripts are
regulated, some of which were highlighted in Ariel’s article [1] to act in A.
thaliana. With the aim of adding more and more features to the model to
make it more realistic, siRNA was introduced in the previous section. The
role of siRNA is not only to act in methylation, but also to lead to the
degradation of some RNAs. In this section, RNA-interference leading to
APOLO degradation will be added to the model.
Intuitively, the decay of APOLO due to siRNA should depend on the con-
centrations of both APOLO and siRNA; to keep things as simple as possible,
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Figure 4.2: Linear response of the toy model with siRNA.
(Parameters: δa = δs = δϵ = 1/3 and βϵ = β0 = 1 and A0 = 0).

we will consider it proportional to the product of [APOLO] · [siRNA]. The
term δs,a · [APOLO] · [siRNA] can be added in the ODEs as follows:


d
dt
[APOLO](t) = β0 + F (ϵ)− δa · [APOLO]− δs,a · [APOLO] · [siRNA]

d
dt
[siRNA](t) = βs · [APOLO]− δs · [siRNA]

d
dt
[PID](t) = F (ϵ)− δp · [PID]

d
dt
ϵ(t) = βϵ · Aτ (t) · (1− ϵ)− δRdDM · [siRNA] · ϵ

.

(4.11)

Analysis and comparison: As usual, the model parameters were re-
duced as much as possible. The steady state found is always stable, and all
dynamic characteristics are similar to previous models. Studying the linear
response reveals some important differences. Due to the RNAi term, the
dynamics of the two neighboring genes are differentiated:

• linear input function: The response of APOLO remains quite simi-
lar, while that of PID is considerably larger in amplitude. Moreover,
APOLO reaches its peak earlier than PID;

• Hill function (n = 1): PID response is still much higher than that of
APOLO, but in this case both are of much smaller amplitude than in
the linear case;

• Hill function (n = 2): because of the greater complexity of this model
than the previous version, the case of the Hill function n = 2 does not
have a null answer. In fact, it resembles the answer of n = 1.

51



This small change in the equations pushes the system toward a more re-
alistic behavior, similar to that of the experiments. This difference between
the expression of PID and APOLO is actually seen in the measurements:
as can be seen in figure 4.3, the fold change of APOLO peaks lower than
that of PID. Clearly, RNA-interference reduces the expression of APOLO,
which is less able to induce loop closure. The result is that PID transcripts
are more concentrated and peak with some delay compared with APOLO.

� �� �� ��
�

���

���

���

���

���

χAPOLO

χsiRNA

χPID

χϵ

Figure 4.3: Linear response of the toy model with RNA-interference.
(Parameters: δa = δs = δϵ = δsa = 1/3 and βϵ = β0 = 1 and A0 = 0).
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To clarify this difference, we studied the phase portrait of the dynamical
system and compared it with the previous one. The system is placed in the
steady state at A0 = 0 and then treated, for a finite time interval, with a
higher concentration of auxin: A0+∆A. The system begins to move toward
the transient state (red circle) corresponding to the new level of auxin con-
centration and, once the perturbation time τs has elapsed, returns to the
original point, which we have shown to be always stable.
Comparing the phase portrait in the ϵ-[APOLO] plane, it is clear how
regardless of the ∆A perturbation the dynamics on the APOLO axis is in-
credibly reduced in the RNAi case. The same behavior is observed for the
dynamics of [siRNA] in the ϵ-[siRNA] plane.
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(a) (b)

(c) (d)

Figure 4.4: Phase portrait comparison. Phase portrait in the plane
[APOLO]-ϵ rispectively: i) in the first formulation (addition of siRNA), with
∆A = 10 (4.4a) and ∆A = 100 (4.4c) and ii) in the second formulation (addition
of RNA-interference), with ∆A = 10 (4.4b) and ∆A = 100 (4.4d). Note that the
orbits cross in the graphs on the right since the phase portraits are projected onto
the plane in which [siRNA] = [siRNA]ss.
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4.2 Full models
The toy models studied so far encourage us to think that the path taken
may be the right one. The next step is then to expand the model, trying to
include all the biological features that contribute to make it more realistic
and able to reproduce experimental measurements. In this section we will
begin by presenting the first formulation of the complete model and then,
step by step, all the modifications and corrections needed to improve it.

4.2.1 First formulation

The first step from the toy model to the more complete one was made by
keeping as much of the old structure as possible. Clearly [APOLO], [PID],
and [siRNA] were retained, but also the general concept of euchromatin
state, which seems to work well in representing the DNA state that triggers
gene transcription.

LHP1: The fundamental addition to the model is the PRC20 component
LHP1, which has not been considered so far but has multiple roles like
binding DNA as well as APOLO transcripts. Let us construct step by
step the equation for d

dt
[LHP1] starting with its fundamental component

and continuing with the terms corresponding to the various interactions
involving [LHP1].
Its concentration was considered to grow over time with a constant basal
transcription βl and degrade with the term δl · [LHP1], defining a first
equation of the type:

d

dt
[LHP1](t) = βl − δl · [LHP1]. (4.12)

LHP1 complexes: As pointed out in the 2014 article [1], LHP1 is re-
cruited for efficient loop formation and, together with APOLO transcripts,
plays a role in precluding Pol II from accessing the PID promoter. Given
that we are maintaining the general idea of a euchromatin state (ϵ), the
simplest way to model this process is to imagine that LHP1 and APOLO
form a complex with a generic species representing chromatin. The fraction
of chromatin bound to APOLO and LHP1 influences the state of euchro-
matin, reducing the ϵ value. In other words, the LHP1-APOLO-Chromatin
complex (LAC) leads the system toward more heterochromatic DNA, en-
couraging loop formation.
What is the dynamics of this molecular complex formation? To turn this
idea into equations it is necessary to make some assumptions. We will

20Polycomb Repressive Complex.
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assume that first APOLO RNA binds chromatin and that only after this
event can the APOLO-Chromatin complex (AC) be bound by LHP1. We
assume that the formation of the two types of complexes is regulated by the
following chemical reactions:

[APOLO] + [free chromatin]
Kon

AC⇀↽
Koff

AC

[AC], (4.13)

[AC] + [LHP1]
Kon

LAC⇀↽
Koff

LAC

[LAC], (4.14)

where Kon
AC , Koff

AC and Kon
LAC , Koff

LAC are the coefficients related to the cre-
ation and degradation of AC and LAC, respectively.
How does LAC affect the state of euchromatin in the equation? As already
assumed for the RdDM pathway, the LAC complex makes DNA more het-
erochromatic (reducing ϵ), proportionally to a parameter δLAC . Finally, as
pointed out in the article [1], LHP1 is able to bind APOLO transcripts but
not PID transcripts. In this first comprehensive model, this interaction was
also considered on the basis of the following chemical equation:

[APOLO] + [LHP1]
Kon

LA⇀↽
Koff

LA

[APOLO-LHP1], (4.15)

with Kon
LA, Koff

LA as the creation/degradation coefficients.
Before introducing the equations, it is necessary to emphasize an important
concept. The total chromatin concentration in the region where APOLO
can bind can be assumed constant, let us call it [Ctot]. As assumed in the
previous lines, this total amount of chromatin can be in three different con-
ditions: free, bound to APOLO (AC) or bound to both APOLO and LHP1
(LAC). By simply calling Cfree, AC and LAC the fractions of chromatin
in the three respective states, we can write:

Cfree + AC + LAC = 1.

This means that we can write the concentration of free chromatin as: [Cfree] =
(1− AC − LAC) [Ctot] and do the same reasoning for [AC] = AC[Ctot] and
[LAC] = LAC[Ctot]. In order to simplify the equations and refer only to
chromatin fractions (Cfree, AC, LAC), we will take advantage of the fact
that [Ctot] is constant and absorb it in the coefficients: K̂on

AC = Kon
AC [Ctot],

K̂off
AC = Koff

AC [Ctot], K̂on
LAC = Kon

LAC [Ctot], K̂off
LAC = Koff

LAC [Ctot].

Once all the appropriate assumptions have been made, the complete
model equations can be written:

56





d

dt
[APOLO] = β0 + βaF (ϵ)− δa[APOLO]− δs,a[APOLO][siRNA]+

−Kon
LA[APOLO][LHP1]− K̂on

AC [APOLO] (1− AC − LAC)+

+K̂off
LA[LHP1-APOLO] + K̂off

ACAC

d

dt
[siRNA] = βs[APOLO]− δs[siRNA] + βRNAi

d

dt
[PID] = βpF (ϵ)− δp[PID] + βp,0

d

dt
[LHP1] = βl − δl[LHP1]−Kon

LA[LHP1][APOLO]+

+Koff
LA[LHP1-APOLO]− K̂on

LACAC[LHP1] + K̂off
LACLAC

d

dt
[LHP1-APOLO] = Kon

LA[LHP1][APOLO]−Koff
LA[LHP1-APOLO]

d

dt
AC = Kon

AC [APOLO] (1− AC − LAC)−Koff
ACAC+

−Kon
LAC [LHP1]AC +Koff

LACLAC

d

dt
LAC = Kon

LAC [LHP1]AC −Koff
LACLAC

d

dt
ϵ = βϵAτ (t) (1− ϵ)− δRdDM [siRNA] · ϵ− δLACLAC · ϵ

.

(4.16)

Note that i) while in the equations for [APOLO] and [LHP1], [Ctot] is ab-
sorbed in the chemical coefficients, in those for AC and LAC it can be
completely simplified; and ii) that PID’s basal transcription was introduced
with the parameter βp,0.

Mutant plants: As shown in the second chapter, many of the experimen-
tal results were obtained with mutants. With this comprehensive model,
some cases of mutant plants can also be taken into account. By setting
some parameters in certain values, corresponding to the effect of a mutant
plant type, we are able to see how the system behaves in those cases and
compare it with the experiments. The following are some examples:

• RNAi mutant: by introducing the parameter βRNAi as a kind of basal

57



siRNA transcription it is possible to reproduce WT by setting βRNAi =
0, while RNA-interference is enhanced by setting βRNAi > 0;

• lhp1 mutant: the case where LHP1 is missing can be simulated by
setting βl = 0;

• rdd mutant: the RDD pathway mutant is reproduced thanks to βϵ.
By setting it to zero, the model should reproduce the behaviour of the
mutant plant;

• mutant of the RdDM pathway: parameter δRdDM was introduced in
the simple model to consider the RdDM pathway. It is evident that
by eliminating δRdDM or, equivalently, by fixing its value to zero, the
mutant of the RdDM pathway can be considered.

Parameters reduction: The process of reducing the number of param-
eters was also repeated for the full models. By rescaling some variables
it was possible to reduce the number of parameters, although the greater
complexity of the ODE system did not allow for much reduction. the result
was a decrease from 20 parameters to 17 new parameters.

Stationary states: Next step is to find the stationary points of the ODE
system. Despite the increased complexity, again it was possible to arrive
analytically at a "consistency equation", in particular with a series of sub-
stitutions an equation for the unique [APOLO] can be written.
This equation is rather complicated (for this reason is not shown in the
text). Therefore, it was solved numerically by assigning fixed values to the
parameters. As in the case of the simple models, we let βϵA and β0 vary
while keeping the other parameters fixed and studied the results. Surpris-
ingly, the complete model also retains the same main feature as the others:
there is always an acceptable stationary point. Analysis of the values of the
stationary points as a function of the two mentioned parameters showed
that:

• as expected [APOLO]ss and [siRNA]ss grow as β0 increases;

• as before, [PID]ss is directly proportional to the "effective auxin flux"
βϵA, but it decreases when basal transcription of APOLO increases,
probably because of the resulting greater loop closure;

• not surprisingly, the [LHP1-APOLO] complex has a higher steady-
state level when the basal transcription of APOLO is increased, whereas
the level of [LHP1] idoes not depend on the two parameters:
[LHP1]ss =

βl

δl
;
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• the levels of the two complexes AC and LAC increase with both β0
and βϵA.

Analysis of the stability: Looking at the local dynamics of this com-
plete system, it is easy to see that here too, the dynamics of PID can be
neglected because it is totally dependent on the other molecular species.
Consequently, the Jacobian matrix can be written in its reduced form. The
matrix is not shown in this section so as not to burden the reading.
Excluding PID, the remaining seven eigenvalues always have a negative real
part, reflecting the stability of the stationary point in the linear regime.
The imaginary parts of the eigenvalues, often coupled together as complex
conjugates, depend on the values of βϵA and β0. Some eigenvalues have an
imaginary part that is always zero, while others assume a nonzero imagi-
nary part in specific regions of the βϵA-β0 plane, leading to oscillatory (but
always stable) behavior.

Linear response analysis: Regarding the linear response, the model still
behaves as in the simplest cases when considering the wild type: the eu-
chromatin state decays rapidly while the PID response is greater than that
of APOLO, as shown by experiments. When considering mutants, things
are different.
Let us first analyze the RNAi mutant: as explained in the corresponding
paragraph, setting βRNAi > 0 simulates the behavior of the mutant. In fact,
linear response analysis shows that by increasing the value of the parameter,
the response of PID and APOLO strongly decreases. This is probably be-
cause higher levels of siRNA in the cell rapidly degrade APOLO transcripts
and lead to loop closure.
In lhp1 plants the results were also interesting but less encouraging. Al-
though, as expected, the APOLO and PID responses decrease with increas-
ing βl, in the mutant case (βl = 0,) both APOLO shows no obvious delay in
the peak and the PID response remains about the same amplitude, contrary
to what was shown in the article.

4.2.2 Explicit DNA methylation

The ODE system analyzed so far has been the first attempt to build a
comprehensive model that tries to take into account all the features of the
biological system, but it is still an initial version that needs to be improved.
One of the crudest approximations that needs to be refined is the repre-
sentation of DNA and chromatin with the generic euchromatin state. In
this section we will introduce a new version of the full model that more
accurately accounts for DNA dynamics.
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Figure 4.5: Linear response comparison in lhp1 mutant. 4.5a, 4.5b and 4.5c
represents the cases in which βl assumes respectively the values: 0.0, 0.1 and 1.0.
βl is a concentration change rate, i.e., it is defined in units of concentraiton/time.
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The most important distinction to be made is between histone binding
molecular species (LHP1, APOLO, etc.) and methylated/unmethylated
DNA under the effect of the RdDM pathway. In more detail, while before
we considered the complexes formed by APOLO and LHP1 with a gen-
eral concept of chromatin, now it is important to specify these complexes
more precisely: Histone-APOLO (HA) and Histone-APOLO-LHP1 (HAL).
Again, they represent the fraction of histones bound to other molecular
species, in fact the following equation is true:

1 = Hfree +HA+HAL, (4.17)

where Hfree denotes the fraction of free histones. The same reasoning about
chromatin fraction and concentration is valid here for the histones.
As for methylation, on the other hand, DNA can be divided into two frac-
tions: methylated DNA (Dm) and unmethylated DNA (Dnm) satisfying:

1 = Dm +Dnm. (4.18)

The equation 4.18 allows us to equivalently write an equation for methy-
lated or unmethylated DNA. For simplicity, we will use an equation for
unmethylated DNA.

Interactions: In this paragraph we will explain how the interactions be-
tween molecular species were reviewed.

• RdDM pathway: the role of siRNAs should now be explicit in the
equation for DNA methylation. The interaction between Dnm and
[siRNA] through the parameter δRdDM increases DNA methylation
(in particular, it reduces Dnm);

• HAL in DNA methylation: the increase of the HAL complex affects
DNA methylation. In particular, it reduces unmethylated DNA with
a term proportional to both HAL and Dnm: −δHALHAL ·Dnm;

• Dnm influences HA and HAL: the greater the level of DNA methy-
lation, the greater the chance that HA and HAL complexes will be
formed. As explained earlier, we will use an equation for Dnm, which
will act equivalently with a negative term in the equation for HA and
HAL proportional to a new parameter βm.

Finally, it is crucial to replace the euchromatin state in the transcriptional
imput function of PID and APOLO. As pointed out in the 2014 work [1],
their transcription is largely influenced by chromatin loop, more specifically
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open loops enable transcripts production. In this new model, a suitable
indicator for loop opening can be the fraction of free histones:

Hfree = 1−HA−HAL,

which will be the choice for the argument of the input function: F (1−HA−HAL).
Once the new interactions have been introduced, the ODE system corre-
sponding to this second formulation of the complete model can be written:



d

dt
[APOLO] = β0 + βaF (1−HA−HAL)− δa[APOLO]− δs,a[APOLO][siRNA]+

−Kon
LA[APOLO][LHP1]− K̂on

HA[APOLO] (1−HA−HAL)+

+Koff
LA[LHP1-APOLO] + K̂off

HAHA+ βmDnm (HA+HAL)

d

dt
[siRNA] = βs[APOLO]− δs[siRNA] + βRNAi

d

dt
[PID] = βpF (1−HA−HAL)− δp[PID] + βp,0

d

dt
[LHP1] = βl − δl[LHP1]−Kon

LA[LHP1][APOLO]+

+Koff
LA[LHP1-APOLO]− K̂on

HALHA[LHP1] + K̂off
HALHAL

d

dt
[LHP1-APOLO] = Kon

LA[LHP1][APOLO]−Koff
LA[LHP1-APOLO]

d

dt
HA = Kon

HA[APOLO] (1−HA−HAL)−Koff
HAHA+

−Kon
HAL[LHP1]HA+Koff

HALHAL− βmDnmHA

d

dt
HAL = Kon

HAL[LHP1]HA−Koff
HALHAL− βmDnmHAL

d

dt
Dnm = βDAτ (t) (1−Dnm)− δRdDM [siRNA] ·Dnm − δHALHAL ·Dnm

.

(4.19)

Analysis and comparison: Again, parameter reduction is possible, al-
though not as efficient: their number can be reduced by three. The reduced
ODE system can then be solved to find the stationary states. The increased
complexity of the new version does not allow a single consistency equation
to be written for the stationary states. The only possible simplification is
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to reorganize the equations so that the problem is reduced to the solution
of three equations for [APOLO], [LHP1] and HAL.
As usual, these equations were solved numerically, fixing all parameters and
varying βDA and β0. The stationary point is still unique, and the general
results resemble the previous cases. The seven nontrivial eigenvalues indi-
cate always stable dynamics, which takes on oscillatory behavior in some
regions. It is worth noting that, unlike the last model, in this case the sta-
tionary value of LHP1 concentration is no longer constant as βDA and β0
vary.
Regarding the linear response, it is evident that in this new formulation
the peaks of [siRNA] and [APOLO] are lowered and delayed in time, while
that of PID does not seem to be affected much in its amplitude (figures
4.5c,4.7c). The same observation is confirmed when comparing the phase
portraits of the two models (figure 4.6).

(a) (b)

Figure 4.6: Phase portrait comparison between first and second formu-
lation. 4.6a and 4.6b show (respectively for the first and second model) the
phase portrait of [APOLO] with respect to ϵ and Hfree. Notice that the role of
the euchromatin state in APOLO transcription is assumed by the fraction of free
chromatin in the second formulation.

Turning to the comparison of mutants, we started to analyze the results
in RNAi plants. In both versions of the complete model, the RNAi mutation
strongly affects gene transcription. Both [APOLO] and [siRNA] responses
are disrupted, while that of [PID] is strongly reduced, as the experiments
show a delayed peak in the latter case (figure 4.8).
As for lhp1 plants, the responses of APOLO and PID are strongly reduced
contrary to the experiments and no peak delay is evident (figure 4.7).
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Figure 4.7: Second formulation: comparison of the linear responses by
varying βl. 4.7a, 4.7b and 4.7c represents the cases in which βl assumes respec-
tively the values: 0.0 (lhp1 mutant), 0.1 and 1.0. βl is a concentration change
rate, i.e., it is defined in units of concentraiton/time.
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Figure 4.8: Second formulation: comparison of the linear responses by
varying βRNAi. 4.8a, 4.8b and 4.8c represents the cases in which βRNAi as-
sumes respectively the values: 0, 1 and 10. As previously mentioned, a value
of βRNAi > 0 represents the RNAi mutation: the higher βRNAi the stronger is
RNA-interference., while βRNAi = 0 represents WT. βRNAi is a concentration
change rate , i.e., it is defined in units of concentration/time.
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4.2.3 Separate genic region

The need to improve the dynamics of the model led us to make more details
explicit in the formulation. The third test in modeling the complete system
was to definitively divide the three gene regions: APOLO, PID and inter-
genic region. Another important difference concerns the complexes formed
with histones. While in the previous case we assumed that first APOLO
binds histones and only afterwards LHP1 can bind to the HA complex, a
discussion with biologists pointed out an error in this interpretation. In
fact, it is more likely that histones are bound first by LHP1, forming HL,
and only then does APOLO interact with it in the HAL complex. This will
lead to slightly different chemical equations:

[Histones] + [LHP1]
Kon

HL⇀↽
Koff

HL

[HL]; (4.20)

[HL] + [APOLO]
Kon

HAL⇀↽
Koff

HAL

[HAL]. (4.21)

Three genic regions: There are three DNA regions of interest in the an-
alyzed biological system. So far we have considered the DNA to be unique,
which is a reasonable approximation. The results of the last model made
us think about going beyond this assumption and actually considering the
three regions as separate. The consequence in mathematical terms is the
need to introduce new equations: HL(a), HAL(a) for the APOLO locus,
HL(p), HAL(p) for the PID’s, and HL(IR), HAL(IR) for the intergenic re-
gion, but still satisfying the conditions:

1 = H
(a)
free +HL(a) +HAL(a)

1 = H
(p)
free +HL(p) +HAL(p)

1 = H
(IR)
free +HL(IR) +HAL(IR)

. (4.22)

Accordingly, it is appropriate to define three equations for D(a)
nm, D(p)

nm, D(IR)
nm .

As shown in the experiments, only the APOLO locus is subject to DNA
methylation, and therefore both D

(p)
nm and D

(IR)
nm are fixed at one. Conse-

quently, only one equation corresponding to D(a)
nm needs to be added while

the equations for HL(p), HAL(p), HL(IR) and HAL(IR) are completely in-
dependent of DNA methylation.
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APOLO region :

d

dt
D(a)

nm = βDAτ (t)
(
1−D(a)

nm

)
− δRdDM [siRNA] ·D(a)

nm

d

dt
HL(a) = Kon

HL[LHP1]
(
1−HL(a) −HAL(a)

)
−Koff

HLHL
(a)+

−Kon
HAL[APOLO]HL

(a) +Koff
HALHAL

(a) − βmD
(a)
nmHL(a)

d

dt
HAL(a) = Kon

HAL[APOLO]HL
(a) −Koff

HALHAL
(a) − βmD

(a)
nmHAL

(a)

PID region :

D
(p)
nm = 1

d

dt
HL(p) = Kon

HL[LHP1]
(
1−HL(p) −HAL(p)

)
−Koff

HLHL
(p)

−Kon
HAL[APOLO]HL

(p) +Koff
HALHAL

(p)

d

dt
HAL(p) = Kon

HAL[APOLO]HL
(p) −Koff

HALHAL
(p)

Intergenic region :

D
(IR)
nm = 1

d

dt
HL(IR) = Kon

HL[LHP1]
(
1−HL(IR) −HAL(IR)

)
−Koff

HLHL
(IR)+

−Kon
HAL[APOLO]HL

(IR) +Koff
HALHAL

(IR)

d

dt
HAL(IR) = Kon

HAL[APOLO]HL
(IR) −Koff

HALHAL
(IR)

.

(4.23)

PID/APOLO transcription: Next step is to understand how transcrip-
tion of the two genes depends on these quantities. As explained in the second
chapter, the transcription of genes in response to auxin is due to two fac-
tors: DNA compaction and loop opening. For these reasons, we will make
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PID-APOLO transcription proportional to the product of two quantities: a
measure of chromatin compaction and a probability that the loop is open.
How can chromatin compaction be measured? As already done for the min-
imal models, we will introduce a quantity ϵ that will take value 1 if the
chromatin is not compact and 0 vice versa. Clearly ϵ will be differentiated
for the three regions and proportional to the fraction of unmethylated DNA
Dnm and free histons Hfree (where Hfree = 1−HL−HAL).

ϵa(t) = H
(a)
free(t) ·D

(a)
nm(t)

ϵp(t) = H
(p)
free(t) since D

(p)
nm = 1 always

ϵIR(t) = H
(IR)
free (t) since D

(IR)
nm = 1 always

. (4.24)

Concerning the probability of the loop being open, it can be clearly defined
as:

Ploop open = 1− Ploop closed. (4.25)

In the experimental results, it was evident that the effective loop closure
was due to the increased compaction of the PID and APOLO loci, while
the intergenic region remained "relaxed." It is easy to define the probability
of loop closure as the product of the compaction measures of the PID and
APOLO loci:

Ploop closed = (1− ϵa) (1− ϵp) . (4.26)

Now that all the appropriate assumptions have been made, the equation for
the remaining molecular species can be written.
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d

dt
[APOLO] = β0 + βaϵaPloop open − δa[APOLO]+

−δs,a[APOLO][siRNA]−Kon
LA[APOLO][LHP1]+

−K̂on
HAL[APOLO]

(
HL(a) +HL(p) +HL(IR)

)
+

+K̂off
HAL

(
HAL(a) +HAL(p) +HAL(IR)

)
+

+Koff
LA[LHP1-APOLO] + βmDnmHAL

d

dt
[siRNA] = βs[APOLO]− δs[siRNA] + βRNAi

d

dt
[PID] = βpϵpPloop open − δp[PID] + βp,0

d

dt
[LHP1] = βl − δl[LHP1]−Kon

LA[LHP1][APOLO] +Koff
LA[LHP1-APOLO]+

−K̂on
HLHL[LHP1]

(
H

(a)
free +H

(p)
free +H

(IR)
free

)
+

+K̂off
HL

(
HL(a) +HL(p) +HL(IR)

)
+ βm

(
HL(a) +HAL(a)

)
d

dt
[LHP1-APOLO] = Kon

LA[LHP1][APOLO]−Koff
LA[LHP1-APOLO]

.

(4.27)

For simplicity, we consider only a linear input function in this formulation,
since we are primarily interested in the interaction between the components.
Functional dependence can be studied in a future analysis.

Stationary states and stability: The more complicated the model, the
more difficult it is to reduce the number of equations to solve. In the lat-
ter model, the solution was found by solving four equations for: [APOLO],
[LHP1], HL(a) and HAL(a). The result was used to calculate, from the
stationary values of these quantities, those of all the others. As usual, it
is not possible to do this analytically, but only by substituting the numer-
ical values of the parameters. The steady state of this new system was
always found to be stable under varying the parameters βDA and β0, and
the dependence of the molecular species on these two parameters closely
resembled the behavior of the old models.
Next, the Jacobian matrix was evaluated at the stationary point and its
eigenvalues were analyzed for local stability. As mentioned previously, a
common feature of all these models is that their steady state is always sta-
ble, and this case was no different. All eigenvalues have, in fact, a negative
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real part, while the imaginary one was non-zero in some regions of the
βDA-β0 plane.

APOLO and LHP1 conservation: Unlike the other cases, the more
complex ODE system in this section may suggest that some interactions can
contain inaccuracies. To check that everything has been well considered, a
good index is the conservation principle.
For a molecular species to be conserved over time during the integration of
the equations, all terms representing a sink or a source must be eliminated.
Let us first consider the case of [APOLO]. From the first equation of the
system 4.27 it is easy to distinguish sink/source terms from others. While
+β0, +βaϵaPloop open are sources and −δa[APOLO], −δs,a[APOLO][siRNA]
are the sinks, the others represent the binding or detachment of APOLO
from other complexes. By setting β0 = βa = δs,a = 0 the concentration of
APOLO must remain unchanged over time. By integrating the equations
with these conditions, it was possible to show that this is indeed the case.
The same discussion can be repeated with the concentration of LHP1 by
eliminating the source/sink terms by fixing βl, δl = 0. Even in this second
case, [LHP1] turns out to be conserved over time.

Fold change and issue with lhp1 mutant: So far we have analysed the
numerical integration in time of the ODE systems and their linear response
to obtain a qualitative representation of the experiements. In the paper [1],
data are collected in the form of fold change21 with respect to the steady
state of the wild type. To improve the model’s ability to replicate real
experiments, we turned to the study of fold change. After initializing the
model parameters, we calculated the steady-state values of the molecular
species and then integrated the ODE system. The obtained trajectory was
normalized by dividing it by the steady-state values, thus obtaining a fold
change prediction. Clearly, the qualitative behavior was still comparable
with the experiments, but the large number of parameters made it difficult
to approach the experimental curves quantitatively. In these cases it may
be meaningful to attempt a different approach, to calculate the best values
of the parameters that reproduce the experiments, in other words, inference
may be necessary.
As for APOLO, the results seemed interesting: compared with the wild
type, the lhp1 mutant showed a higher peak, while the RNAi mutant was
completely turnded off, exactly as in the experiments (figure 4.9a).
Regarding PID, however, while the fold change of the RNAi mutant was

21Fold change is a measure describing how much a quantity changes between an original
and a subsequent measurement. It is defined as the ratio between the two quantities; for
quantities A and B the fold change of B with respect to A is B/A.
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consistent with the measurements, the lhp1 plant showed a peculiar behav-
ior. Upon integrating the equation, PID concentration remained constant
and equal to zero regardless of auxin perturbation, leading to zero fold
change (figure 4.9b). This result highlighted a problem in modeling the
genetic circuit. In fact, in the lhp1 mutant, in which βl = 0, there is no
production of LHP1 and this causes the absence of the [LHP1-APOLO],
HL(a), HL(p), HL(IR) and HAL(a), HAL(p), HAL(IR) complexes at steady
state. Moreover, while D(a)

nm is subject to the influence of auxin, D(p)
nm = 1

always. Consequently, APOLO responds to auxin action with an increased
amplitude, caused by the absence of [LHP1-APOLO], but in the equa-
tion for PID the source term βpϵpPloop open = βp = constant always. The
result is that PID is completely indifferent to auxin perturbation and its
concentration is always fixed at the steady-state value, which is effectively
[PID]ss =

βp

δp
.
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Figure 4.9: Separate genic regions: fold change. 4.9a and 4.9b show the fold
change obtained in the simulation in the three cases: wild type (WT), lhp1 and
RNAi mutant.
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4.2.4 Considering histone marks

The separation of the three genic regions led us to acceptable results in
fold change, but at the same time highlighted a problem in modeling the
lhp1 mutant. In this last section, starting from the discrepancy with the
experiments found, the model will be further modified and extended.
One way to resolve the issue of the lhp1 mutant can be found in the intro-
duction of the hitherto neglected histone marks. Briefly summarized, the
deposition of histone marks can produce both acetylation and methylation
of DNA, which are the most common modifications of histone tails. In a very
general way, it can be stated that while acetylation decreases histone-DNA
interaction consequently activating transcription, methylation does not act
on histone-DNA interaction resulting in both repression and activation of
gene transcription [38].

Histone mark dynamics: As already done for histones in general, the
presence of histone marks can be represented with a variable Hmark that
takes a value of zero if no marks are deposited and vice versa equals one.
Clearly, all the different gene regions must be taken into account here as
well, so three equations must be introduced for: H(a)

mark, H
(p)
mark and H(IR)

mark.
Let us first consider the processes that lead to the growth of Hmark in the
system. Histone marks are deposited and removed in response to specific
enzymes called writers and erasers ; the appropriate localisation and activity
of these enzymes on chromatin is, in part, regulated by chromatin readers.
The balance between the effect of writing and deletion leads to a basal level
of markers that increases even when markers are already present. This led
us to introduce a constant basal term βm,0.
Secondly, as pointed out by Ariel and coworkers, in the case of Arabidopsis
thaliana, the Histone-LHP1 and Histone-APOLO-LHP1 complexes have
a positive effect in histone mark deposition, the effect of which can be taken
into account by letting the mark production be proportional to the HL and
HAL quantities. Third, histone modifications are not only subject to the
effect of writers/erasers, but undergo a phenomenon called spreading. It is
easy to observe that spreading can be modeled with an additional source
term, proportional to Hmark itself.
It is important to remember that the condition H

(i)
mark ∈ [0, 1] (where i =

a, p, IR) must be satisfied: therefore all three terms must be multiplied by
(1 − H

(i)
mark). Finally we make the entire positive term proportional to a

constant parameter γm. Regarding the degradation of the quantity H(i)
mark,

two components need to be considered. A basal level of deletion can be
modeled with the usual −δmH(i)

mark, while the active demethylation pathway
must be introduced not only in proportion to H(i)

mark but also to the auxin
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concentration: −δRDDAτ (t)H
(i)
mark. The new three equations can be written

explicitly:

d

dt
H

(i)
mark = γm

(
βm,0 +H

(i)
mark +HL(i) +HAL(i)

)(
1−H

(i)
mark

)
+

− (δm + δRDDAτ (t))H
(i)
mark. (4.28)

DNA methylation and histone marks: Both DNA methylation and
histone modification are involved in shaping patterns of gene repression dur-
ing development. It has recently become apparent that the DNA methyla-
tion and histone modification pathways may depend on each other: DNA
methylation can activate histone modifiers writing, while heterochromatic
histone marks are able to activate the DNA methylation pathway [39]. Due
to the introduction of histone marks into the equations, the influence of
methylated DNA in mark deposition, through the effect of the HL and
HAL complexes, becomes apparent: DNA methylation will increase the
formation of complexes in the system, which, in turn, will promote mark
deposition. This new interaction replaces the role of the HAL complex
in the equation for D(a)

nm. The equations for the three intergenic regions
become:



APOLO region :

d

dt
D(a)

nm = βDAτ (t)
(
1−D(a)

nm

)
− δRdDM [siRNA] ·D(a)

nm

d

dt
HL(a) = Kon

HL[LHP1]
(
1−HL(a) −HAL(a)

)
−Koff

HLHL
(a)+

−Kon
HAL[APOLO]HL

(a) +Koff
HALHAL

(a)+

−βmD(a)
nmHL(a)

d

dt
HAL(a) = Kon

HAL[APOLO]HL
(a) −Koff

HALHAL
(a) − βmD

(a)
nmHAL

(a)

d

dt
H

(a)
mark = γm

(
βm,0 +H

(a)
mark +HL(a) +HAL(a)

)(
1−H

(a)
mark

)
+

− (δm + δRDDAτ (t))H
(a)
mark

;

(4.29)
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PID region :

D
(p)
nm = 1

d

dt
HL(p) = Kon

HL[LHP1]
(
1−HL(p) −HAL(p)

)
−Koff

HLHL
(p)+

−Kon
HAL[APOLO]HL

(p) +Koff
HALHAL

(p)

d

dt
HAL(p) = Kon

HAL[APOLO]HL
(p) −Koff

HALHAL
(p)

d
dt
H

(p)
mark = γm

(
βm,0 +H

(p)
mark +HL(p) +HAL(p)

)(
1−H

(p)
mark

)
+

− (δm + δRDDAτ (t))H
(p)
mark

;

(4.30)



Intergenic region :

D
(IR)
nm = 1

d

dt
HL(IR) = Kon

HL[LHP1]
(
1−HL(IR) −HAL(IR)

)
−Koff

HLHL
(IR)+

−Kon
HAL[APOLO]HL

(IR) +Koff
HALHAL

(IR)

d

dt
HAL(IR) = Kon

HAL[APOLO]HL
(IR) −Koff

HALHAL
(IR)

d
dt
H

(IR)
mark = γm

(
βm,0 +H

(IR)
mark +HL(IR) +HAL(IR)

)(
1−H

(IR)
mark

)
+

− (δm + δRDDAτ (t))H
(IR)
mark

.

(4.31)

PID/APOLO transcription: The changes added to the system do not
directly affect the equations of the other molecular species in the model,
so reference can still be made to the previous ODE system 4.27. The only
two terms that need to be modified indirectly are those referring to the PID
and APOLO transcription. In the previous formulation, it was assumed that
transcripts were produced in proportion to the product between a variable
representing the "euchromatin state" and the probability that the chromatin
loop was open. Since it is known that the two signals of heterochromatin
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are represented by DNA methylation and histone marks, the only update
to be made is to consider the euchromatin state inversely proportional to
the deposition of the marks, multiplying it by (1−H

(i)
mark).


ϵa(t) = H

(a)
free(t) ·

(
1−H

(a)
mark

)
·D(a)

nm(t)

ϵp(t) = H
(p)
free(t) ·

(
1−H

(p)
mark

)
since D

(p)
nm = 1 always

ϵIR(t) = H
(IR)
free (t) ·

(
1−H

(IR)
mark

)
since D

(IR)
nm = 1 always

. (4.32)

Stationary states and stability: The large number of equations and the
increased complexity make parameter reduction not very useful. The first
step in the analysis is therefore the solution of the steady-state equations.
They can be reduced to the solution of five equations for: [APOLO], HL(a),
H

(a)
mark, H

(p)
mark and H

(IR)
mark, from which the steady-state values of the other

molecular species can be calculated. As usual, the steady state found is
unique and stable. There is no notable difference in the behavior of the
steady-state concentrations from the previous model, but it is interesting to
note that [LHP1]ss is constant regardless of the parameters βDA and β0.

Fixing issue in lhp1 mutant: The second step is to produce and study
the fold change of the new model. In the last formulation, the lack of his-
tone marks led to the null expression of PID in the lhp1 mutant. Notably,
the fact that the DNA is always unmethylated in the PID region makes the
"euchromatin state" indifferent to auxin perturbations.
The introduction of histone marks, another index of heterochromatin along
with DNA methylation, solves the problem. In fact, histone modifications
are strongly affected by auxin treatments through the RDD pathway, caus-
ing the increase in euchromatin state, which in turn produces PID tran-
scripts.
The fold change graphs (figure 4.10) show that the qualitative behavior is
now fully accounted for: the expression of PID in the mutant lhp1 is in-
deed reduced compared to WT, but not null. Ultimately, the large number
of parameters makes it really difficult to try to obtain even quantitative
similarity: an inference process is required.
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Figure 4.10: Considering histone marks: fold change. 4.10a and 4.10b show
the fold change obtained in the simulation in the three cases: wild type (WT),
lhp1 and RNAi mutant.
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Conclusions and future
developments

In this thesis, an attempt was made to obtain a quantitative modeling of the
PID-APOLO gene regulatory network with the aim of giving a qualitative
and quantitative explanation of the mechanisms regulating this network.
We began by presenting the biological background: from the basics of bi-
ological sequences to the mechanisms of gene regulation. The first chapter
aimed to provide the necessary tools for a clear understanding of the bio-
logical question.
The latter was introduced later in the second chapter. First by present-
ing the main players in the system and second by showing the work and
results obtained by Ariel and his collaborators. Briefly summarizing: PID
and APOLO genes are co-regulated in response to a perturbation of the
system by auxin. Auxin triggers the opening of the chromatin loop allow-
ing transcription of genes; when the concentration of transcripts reaches
certain levels, APOLO RNA itself leads to loop closure, halting the entire
transcription process.
Quantitative modeling of systems is not possible without mathematical
tools: the goal of the third chapter is to expose them. Starting from the
basics of transcriptional network theory, the assumptions under which bi-
ological interactions can be transformed into mathematical equations were
presented. By making use of the theory of dynamical systems, the last part
of the chapter aimed to explain the means by which mathematical equations
can be studied to extract information from them.
The fourth chapter was entirely devoted to the modeling procedure and
analysis of the system. We started by first identifying the main biological
actors in the network by studying extremely simplified models.
A toy model was constructed, adding, step by step, all the most important
components and interactions of the system. This resulted in a simple ODE
system that, despite its coarseness, qualitatively reproduces the experimen-
tal measurements. The concentrations of APOLO, PID and siRNA, as well
as an index representing DNA euchromatin, proved sufficient to encapsulate
the main features of the dynamics in the wild type. Certainly fundamen-
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tal to the dynamics are the transcription terms (which depend directly on
how euchromatic the system is) and the degradation terms, which represent
the natural lifetimes of the molecular species. However, greater interest
is captured by the active demethylation and RNA-mediated methylation
pathways, which in turn allow the chromatin loop to open in response to
auxin and ultimately to close again when siRNA transcripts increase. These
interactions are thus primarily responsible for the oscillation in measured
gene expression. Of particular relevance is the RNA-interaction of siRNA
acting on APOLO transcripts: without this term, PID and APOLO would
be identical in their expression. The result of RNA-interference is a sig-
nificantly lower response of APOLO; this led us to hypothesize that RNAi
may play a key role in explaining why APOLO expression is repressed in
amplitude in experiments compared with PID.
Statics analysis showed the obvious effect of basal transcription of β0 in
increasing the steady-state concentration of the respective APOLO gene.
The proportionality of the steady-state concentrations of both genes to the
"effective auxin flux" also emerged. Less evident is that basal transcription
of APOLO does not have a strong influence on either euchromatin state or
[PID], at least for low values of βepsilonA. Moreover, an increase in basal
transcription of APOLO would lead to a higher level of [APOLO]ss, as
explained above, but at the same time would reduce the effect of auxin
perturbation and consequently reduce the peak in fold change of APOLO
itself. In summary, it can be said that basal transcription plays a minor
role in the dynamics and statics of the system. In conclusion, the minimal
models seemed to point in the right direction, but they are still too coarse
to describe many details. For example, the behavior of mutant plants has
not been considered so far.
The second section of the fourth chapter is devoted to the formulation and
analysis of more complex models. In the first formulation we introduced
the role of LHP1 and the complexes formed with APOLO and chromatin.
Despite its complexity, the new model showed the same static and dynamic
characteristics as the previous ones. In addition, however, it allows the
consideration of mutants. Simulations of the RNAi mutant gave interesting
results from the beginning, while the lhp1 mutant did not deviate much
from WT behavior (contrary to the experiments).
The first attempt to improve the model was to challenge the assumption that
DNA dynamics can be represented by the chromatin state alone. Therefore,
the latter was first replaced by a variable representing DNA methylation,
and then the model was further extended to account for both DNA methy-
lation and chromatin state in the system. Finally, the three gene regions
of the system (PID, APOLO and intergenic) were split in the equations to
also account for the differences in methylation (at the different loci) mea-
sured in the experiments. The resulting model was shown to retain all the
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dynamic features of the previous ones, as well as the qualitative behavior
of the experiments. Despite the good results obtained, a problem emerged
during the analysis with the lhp1 mutant that produced constant PID gene
expression in the simulations. For PID to be correctly expressed, it is not
sufficient to consider only the DNA methylation of its locus. Indeed, experi-
ments showed that the PID locus was always and consistently unmethylated,
causing insensitivity to auxin stimulus in the lhp1 mutant. In this case it
was necessary to introduce histone modifications, which are another signal
of heterochromatin in the DNA. The latter addition, besides making the
system more realistic, allowed PID expression to be activated in the lhp1
mutant.

Model calibration:

As anticipated earlier, dynamical models such as those formulated contain
many parameters. Some of them can be extracted from the literature, but
many others cannot be measured experimentally. For this reason, the next
step in the study of formulated models is calibration and validation. Cal-
ibration of a model consists of looking for the unknown parameters that
allow the model prediction to fit the experimental data.
We built these models step by step by first trying to follow the qualitative
behavior of the PID-APOLO circuit. This helped us to understand the role
of different interactions in the whole system, but now we will turn to a more
quantitative analysis.
The data available are from measurements produced with APOLO overex-
pressors and RNAi Knockdowns and were collected by Crespi’s team at the
Institut de Sciences du Végétal in Gif-sur Yvette; one example was shown
in figure 2.3.
Returning to the different models analyzed, as mentioned in the correspond-
ing section, when the division into three gene regions was added to the
equations, the models began to be too complex even to extract from them a
qualitative behavior closer to reality. Below, we will show the calibration of
the first model taking into account the three gene regions on the available
fold change data.
The procedure used to fit the model to the data is based on the mini-
mization of an objective function fobj that measures the distance between
experiments and model predictions.
The fitting routine was implemented in Matlab. First, an array of param-
eters was generated according to the random distribution Γ(k, θ)22 where θ
was set equal to the value of each parameter obtained from the best man-

22Gamma distribution is usually considered in order to avoid negative initial parame-
ters.
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ual fit and k = 1. Once the initial conditions for the parameters were set,
the values of the species were initialized at time zero at the corresponding
steady state and the equations were simulated using the ode15_s() algo-
rithm23 [40].
From the integration of the ODE system, the concentrations of PID and
APOLO at time instants ti (i = 1, ...9), which are the time instants corre-
sponding to the experimental measurements, were extracted. To obtain
a fold change, once collected, these concentrations were divided by the
steady-state concentrations calculated at the beginning. We call the ex-
perimental and theoretical fold changes respectively ψth

APOLO (ti), ψth
PID (ti)

and ψexp
APOLO (ti), ψexp

PID (ti), now the objective function can be defined as
follows:

fobj =
9∑

i=1

(
ψth
APOLO (ti)− ψexp

APOLO (ti)

⟨ψexp
APOLO (tj)⟩tj

)2

+
9∑

i=1

(
ψth
PID (ti)− ψexp

PID (ti)

⟨ψexp
PID (tj)⟩tj

)2

,

(4.33)

where ⟨ψexp
APOLO (tj)⟩tj and ⟨ψexp

PID (tj)⟩tj are the average values in the time in-
terval [t1, t9]. As can be seen from the equation 4.33, the objective function
is represented by the squared Euclidean distance so as to penalize discrep-
ancies between experimental and theoretical data. After computing the
objective function, the search for minima with respect to the parameters
was carried out using the built-in function fminsearch() in Matlab, which
applies the Nelder-Mead algorithm [40, 41].
The routine was repeated 100 times until the algorithm found a minimum.
Whenever it did not, the procedure was repeated by initializing the param-
eters to the last output of the minimization algorithm.
As shown in Figure 4.11, the range of values of the minima of fobj is quite
wide. Clearly, the algorithm often got stuck in a local minimum around
fobj ≃ 0.35, but then it was able to reach a lower distribution of minima
centred around fobj ≃ 0.1.

In order to consider only the region where fobj is lowest and discard the
local minima, we cut out the whole interval fobj ≥ 0.1. For each estimated
parameter, we examined the Coefficient of Variation (CV), which is the
ratio of the standard deviation to the mean value across runs of the algo-
rithm. Figure 4.12 shows that even considering only the lower distribution
of minima, the coefficient of variation is never less than 1. One reason could
be that we are letting all the parameters vary, and the CV can probably be
made smaller by fixing some of them according to experimental estimation.

23ode15_s() algorithm is a variable step, variable order method based on Backward
Difference Formulas (BDF) for stiff systems.
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Figure 4.11: Histogram of the results of calibration. One local minimum is found
around fobj ≃ 0.35 and a distribution of lower minima at fobj ≃ 0.1.
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Figure 4.12: Coefficient of variation computed for each parameter considering
only the region fobj ≤ 0.1

In the end, the best result achieved an objective function value of fobj =
0.049172, and as shown in figure 4.13 is quite good at reproducing the
experimental data.

The parameters corresponding to the best fit are shown in Table 4.1.

β0 βa βp,0 βp βs βl βD βm βRNAi

0.0006 107.7514 0.0002 0.6839 0.0007 2.3474 24.2990 10.4319 0.0

δa δp δs δl δs,a δRdDM

0.0361 2.4121 0.2948 0.0199 2.7968 0.0762

Kon
LA Kon

HL Kon
HAL Koff

LA Koff
HL Koff

HAL

0.0537 2.2346 0.0029 0.0217 0.2411 0.1344

Table 4.1: Parameters estimates of the best fit. Respectively divided in
positive terms, negative terms and coefficients for complex formation.
β0, βa, βp, βl, βm, βRNAi,K

off
HL,K

off
HAL are expressed in terms of

concentration/time;
βs, βs, δa, δs, δp, δl,K

on
HL,K

on
HAL,K

off
LA in terms of 1/concentration;

βD, δs,a, δRdDM ,Kon
LA in terms of 1/(concentration · time).
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Figure 4.13: Comparison between the best theoretical prevision and ex-
perimental measures.

Results and future developments:

Summarizing the results, our analysis first showed that the fundamental
structure, which these models have in common, makes them all monos-
table, thus ensuring the existence of a single steady state that is achieved
regardless of the initial perturbation.
The active demethylation (RDD) and RNA-mediated methylation path-
ways can be considered to underlie the oscillation of gene expression and
thus responsible for initial growth and subsequent decay. The role of basal
transcription seems to be scaled down from expectations: while the basal
transcription of APOLO has little influence in determining DNA methyla-
tion and loop closure, that of PID seems irrelevant. Furthermore, it was
found that RNA-interference is critical in the context of the minimal mod-
els to differentiate PID and APOLO expression and reproduce experimental
results. This may not be true when considering complete models in which
interactions are more complex and the division of gene regions differentiates
the two responses at base.
To better understand these issues, new and more specific measurements
may be needed. The detailed values of [APOLO]ss and [PID]ss can indeed
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be compared with the theoretical values provided by model predictions.
This can provide more information about the basal transcription of PID
and APOLO and their influence in the system. Another aspect that can
be further investigated is the involvement of RNA-interference in differen-
tiating the response of genes, even in complete models. Here again, specific
measurements may be useful.
Turning to mutants, we can say that the modeling of RNAi mutants was
satisfactory. The basal term in the siRNA equation rapidly increases its
concentration by disrupting APOLO transcription and loop opening at the
beginning. More complicated, however, was the modeling of the lhp1 mu-
tant, in which histone modification had to be introduced. It turned out
that heterochromatin marks on histones are crucial to explain the behavior
of the lhp1 mutant. Indeed, regulation involving DNA methylation of the
PID locus does not explain the reduced but not null expression of PID in
the mutant. The lack of LHP1 in the cell affects the system at a deeper
level than the RNAi mutation. In fact, it leads to the lack of the LA, HL
and HAL complexes. While a lower concentration of LA simply increases
the expression of APOLO, the lack of HL and HAL completely blocks the
PID locus on the DNA in its initial state, shutting down at base any possi-
bility of changing the rate of expression. It is clear now that, based on the
constructed model, the experimental results can only be interpreted with
the fact that it is the histone modifications that bring the effect of auxin
and the RDD pathway to the PID locus and initiate transcription in the
lhp1 mutant.
Clearly, the previous model cannot be used to fit the available mutant data,
except for the RNAi case. It is therefore necessary to switch to calibration
of the model in the case with the addition of histone markers. This would
give more information about the model’s ability to reproduce experiments
quantitatively. In addition, the model formulation can be expanded to con-
sider the other mutant cases studied in [1], on which the calibration can be
repeated.
In the end parameters calibration showed that the model can be able to fit
the experimental measurements in Wild Type. Even though this is still at
an initial stage, the results clearly underlined that the roles of both PID
and APOLO basal transcriptions are negligible.
In the case of inference, many improvements can be achieved. First, so far
we have used only a portion of the available data. To completely validate
and calibrate the model, it will be necessary to make use of the data from
mutant experiments, as mentioned earlier. In addition, we have imposed the
model to fit the experimental mean values and thus neglected the standard
deviations associated to the data, which can be used to weight the data
points during calibration. Taking into account all these different aspects
could definitely help to obtain more robust results. Finally, an important
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step in the whole calibration procedure is to evaluate the robustness of the
fit, to see how reliable the results obtained are. One hypothesis could be
the use of the bootstrapping procedure: by using the best fit and reshuffling
the deviations between the model and the experiments, it is indeed possible
to generate new artificial data to validate the model itself.
As mentioned earlier, the inference part is still at an early stage, but we are
still working on it with the goal of completing the analysis as explained.

In conclusion of this thesis, it can be said that despite the satisfactory
results, there are still some things to be understood. Starting with a more
precise test of the mutants to see if the formulated model can predict their
behavior, one could then move on to a more in-depth analysis of the sys-
tem’s response to external stimuli. In particular, it might be interesting
to delve into the biological resilience characteristics of the system and its
ability to return to its initial stage after different types of perturbation.
The study of these circuits can lead to incredible advances in biology. First,
because of the growing interest in both i) the multiple tasks performed by
noncoding RNAs and ii) the role of DNA loop dynamics and more generally
the structural topology of the genome in regulating gene expression in or-
ganisms. Second, as anticipated, understanding the expression of PID and
how its tight control is implemented through this complicated process is
critical with regard to root development.
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