
Master of Science Thesis
Department of Applied Sciences and

Technology

Master Degree in
Physics of Complex Systems

Enhancing blood clot simulations by
Deep Learning and Model Order

Reduction techniques

Candidate:

Alessandro Longhi

Supervisors:

Didier Lucor, LISN laboratoire
Amélie Fau, ENS Paris-Saclay

Rodrigo Rojano, Cornell University
Andrea Gamba, Politecnico di Torino

October 25th, 2022

Necessity, weight, and value are three concepts inextricably bound: only necessity
is heavy, and only what is heavy has value ∼ M. Kundera

Acknowledgements

I start with a sincere thank you to my advisors Didier, Amélie and Rodrigo. You
helped me going through my thesis work with helpful suggestions and enthusiasm,
never judging but always supporting and giving me confidence. It has been a great
first research experience.

I will always be grateful to my family, for blindly believing in me (sometimes
a bit too much) and supporting psychologically and economically every decision I
have made. These are two things I have always taken for granted, but they are not.

To the new friends from PCS and from the semester in Paris, thank you for all
the time spent together, you made the (insane) Parisian semester unforgettable and
worth experiencing.

To my old friends from home, thank you for always being present despite the
long absences and all changes.

To Sofia Sofi, thank you for being the best person I know. Thank you for your
(deep) lightness and optimism, I could not wish for someone better at my side.

Abstract

Thrombus formation in blood vessels is a medical problem which manifests itself
both spontaneously and after the insertion of medical devices inside human bodies.
Around 500000 people die in the EU each year because of it, it is thus crucial to
develop robust computational methods to predict its formation. This work shows
how Deep Learning and Model Order Reduction techniques can be applied in order
to enhance physical simulations of blood clots formation. A few simulations were
carried out with the software OpenFoam, to solve the Navier-Stokes equations for
the blood flow and a set of parametrized PDEs, which couple the concentrations
of the biochemical species with the velocity field of blood. Our aim is finding a
method which allows to predict the evolution in time and space of some selected
biochemical species giving as input the parameters on which the PDEs depend,
without solving numerically the biochemical and mechanics equations. At this
regard, we show how Proper Orthogonal Decomposition (POD) and a Neural
Network (NN) architecture that combines a Convolutional Autoencoder (CAE)
and a Deep Feed-Forward Neural Network (DFNN) can be exploited to give a
good approximation of the PDEs solution. We then analyze some limitations of
the method, such as the difficulty at making good predictions in time when the
blood flow changes rapidly, and we propose some modifications to overcome these
drawbacks.

1

Contents
1 Thrombus Simulations 3

1.1 Introduction and objectives . 3
1.2 Geometry . 4
1.3 Mathematical model . 5

2 Deep Learning and Model Order Reduction 8
2.1 Proper Orthogonal Decomposition (POD) 8
2.2 Deep Feed-Forward Neural Networks (DFNN), Convolutional Neural

Networks (CNN) and Autoencoders (AE) 9
2.3 Problem formulation . 12
2.4 Deep Learning - Reduced Order Model (DL-ROM) 12
2.5 POD-DL-ROM . 15

2.5.1 Architecture . 17

3 Results 18
3.1 Training and Data preparation . 18
3.2 Initial analysis of Data . 19
3.3 Predictions in time and parameters 23
3.4 Localized reduced order models . 27

4 Localized-POD-DL-ROM 30
4.1 Clustering . 30
4.2 NN classifier . 32
4.3 Results . 32
4.4 Independent training . 34

5 Conclusion 36

References 37

2

1 Thrombus Simulations

1.1 Introduction and objectives

Thrombosis is an hemostatic process characterized by the formation of blood clots
in a localized point within a blood vessel [1], preventing blood from circulating
normally. A significant number of thrombosis cases happens when patients are
treated with medical devices which are in contact with blood. This is due to the
fact that artificial surfaces lack the anti-thrombotic properties of the endothelium
[2]. Clot formation in implantable devices can lead to device failure or, if the clot
breaks off, result in neurological or pulmonary damage (ischemic stroke). Better
devices with improved blood compatibility are needed to reduce the incidence of
adverse events. Computer simulations are a great tool to design the structure of
these medical devices without conducting experiments. The simulations are used
to identify and suppress blood stagnation zones or non-physiological forces that
promote platelet activation and thrombosis. This work is based on computational
fluid dynamic (CFD) simulations of thrombus formation inside a medical device.

Computational fluid dynamic methods are extremely costly in terms of time, and
this poses a big limitation to the use of numerical simulations to test the efficacy
of medical devices. More specifically, there is a multi-scale problem: the order of
magnitude of the time step required to solve unsteady blood flows is 10 microseconds
while the thrombus growth might take up to 6 hours. When using a time step of 10
microseconds thrombosis simulations cannot be used to optimize devices, since the
simple fact of doing one accurate simulation considering unsteady flows is in itself a
major achievement. Furthermore, current thrombosis simulations can involve up to
one hundred biochemical species, and for each species a supplemental Convection-
Diffusion-Reaction (CDR) equation must be solved, increasing the computational
cost of the simulation. This problem is amplified (in time terms) when there is
the need to test what happens by changing the parameters on which the equations
describing the model depend, since in principle the simulations should be run for
every set of parameter. In this work we will present a method which makes it
possible to avoid performing a simulation for every parameter instance.

In the current study, the thrombosis simulations of [3] were used to develop a
model order reduction [4] through deep learning methods. The medical device is
used for the simulations is the platelet function analyzer PFA-100®, a coagulation
testing device used to asses the primary hemostasis response [5], useful for screening
for von Willebrand’s disease. The quantities of interest which are given by the
simulations are the biochemical species present in Table 1, whose concentrations are
coupled with the blood flow. Obtaining the values of those species in time and space,
is crucial to understand if and how the thrombus will grow. Some of them are more
important for the creation of the thrombus, such as the activated platelets (AP)
and the von Willebrand factor (vWF). For example the presence of the thrombus
would affect the concentration of AP, making its concentration decrease where the
thrombus is growing. vWF instead unfolds in response to strong flow gradients and
facilitates rapid recruitment of platelets in flowing blood [6]. Two states of vWF are
considered: collapsed vWFc and stretched vWFs.

Although the final goal of this project is being able to predict with high accuracy

3

Species Concentration
RP 216× 103 PltµL−1

AP 2.16× 103 PltµL−1

vWFc 1000 nmol m−3

PT 1.1× 106 nmol m−3

TB 0 nmol m−3

AT 2.844× 106 nmol m−3

ADP 0 nmol m−3

TxA2 0 nmol m−3
APd 0 nmol m−3

RPd 0 nmol m−3

vWFs 0 nmol m−3

Table 1: Biochemical species and their inlet concentrations.

the blood flow and the change in time and space of the biochemical species in
order to predict the growth of the thrombus, what will be shown here regards the
time interval just before the thrombus formation. The reason for this choice is to
ensure that the computational and mathematical tools used work, and thus a simpler
problem is tackled at first: we will focus on developing tools to get good predictions
of the biochemical species in time and space before the thrombus formation, given
the parameters of the model as input. The computational methods, the biological
considerations and the model presented can be found in [3].

1.2 Geometry

In Figure 1 a cross-section of PFA-100®is presented, whose main component is a
bio-active membrane with a central orifice of 147 microns diameter. The blood is
aspirated through a capillary towards the membrane, and as blood flows through the
central orifice of the membrane, a thrombus forms until occlusion is achieved. The
membrane is coated with collagen and epinephrine or Adenosine diphosphate (ADP)
to promote thrombus formation. When the orifice is fully occluded a Closure Time
(CT) is obtained which is the quantity used to diagnose patients. PFA-100®has a
cylindrical shape, with a smaller diameter Dc for the capillary and a bigger diameter
Dr for the reservoir. The clot is expected to form in between the two membranes.
Because of the cylindrical symmetry, we reduce the 3D problem to a 2D problem.
Moreover, we assume that taking only one side of the axis of symmetry does not
affect the result. In Figures 3 and 4 the shape of the ’reduced’ geometry used
in the simulation is shown, along with the concentration of vWFs and AP at 3
different seconds for a given set of the PDEs parameters. The computational mesh
is composed of 68650 hexahedral cells with a finest resolution of ∆x = 3µm located in
the membrane orifice. The mesh is non uniform, meaning that the space between cell
points becomes smaller in the proximity of the membrane orifice. A dual time step
method is used to improve the computational cost of the simulations. A time step of
∆tCDR = 1×10−3 s is used to solve the species equations and the thrombus growth,
while the blood flow equations are solved with a time step ∆tCFD = ∆tCDR/rflow =

4

Figure 1: Cross section of PFA-100® testing cartridge showing the capillary, the central
membrane with orifice, and reservoir. As whole blood is aspired through the cartridge
blood constituents aggregate in the coated membrane orifice. The dimensions of the PFA-
100®cartridge as considered in the simulations are: Dc = 200µm, Dm = 147µm, Dr =
1200µm, H1 = 1000µm, H2 = 400µm, H3 = 1200µm, and Hm = 200µm. Image from [3].

1× 10−8 s, to ensure the Courant–Friedrichs–Levy stability condition [7].

1.3 Mathematical model

The mathematical model behind the simulations aims at describing two coupled
phenomena: the blood flow and the evolution in time and space of the biochemical
species of Table 1. The pressure and velocity fields p and u are obtained by solving
the equations of conservation of mass and linear momentum:

∇ · u = 0 (1)

ρ(
∂u
∂t

+ u · ∇u) = −∇p+ µ∇2u − C2

(1− ϕ)
f(ϕ)u (2)

where µ is the asymptotic dynamic viscosity of blood and ρ is the density. The
scalar field ϕ represents the volume fraction of thrombus which comprises deposited
platelets and fibrin. To avoid a singularity in the source term, the denominator is set
as (1−ϕ) ∈ [ϵ, 1], where ϵ is a small number. C2 is the hindrance constant introduced
by Wu et al. [8], which assumes that the thrombus is composed of densely compact
spherical particles. f(ϕ) is the hindrance function. The biochemical species are
modeled using a set of Convection-Diffusion-Reaction (CDR) equations to quantify
their spatial and temporal dynamics:

∂ci
∂t

= ∇ · (Di∇ci)− vf · ∇ci + ri (3)

with ci the concentration of species i, Di the diffusion coefficient, vf the velocity
vector field and ri the reaction source term that accounts for biochemical interac-

5

Figure 2: A)Diagram of platelet activation and deposition in the thrombosis model. krpd,b
and kapd,b are the rate for the deposition to the surface of resting and activated platelets.
Mechanical shear or the combination of ADP, TxA2 and thrombin can activate resting
platelets. B)Representation of vWF unfolding and vWF-mediated platelet deposition and
aggregation. Stretched vWFs amplify the deposition rate of free-flowing platelets by ak
and increase the resistance of deposited platelets to shear cleaning by aτ . Image from [3].

tions. Figure 2 shows a schematic representation of vWFs unfolding due to high
shear rate , which causes an increase in platelet deposition.

These parametrized CDR equations are the ones that depend on the parameters
that we want to vary, and later a method which combines Deep Learning and Model
Order Reduction will be described to avoid solving these PDEs numerically for a
given parameter instance. The full list of parameters on which the CDR equations
depend can be found in [3]. In this work we considered only the 5 most influential
parameters shown in Table 2, in order to face a simpler problem. For a more detailed
analysis on how the parameters of the model enter in the CDR equations through
the reaction source term we refer to [8]. Before running the thrombosis simulations,
a steady blood flow was obtained to improve stability at the first instants of the
thrombosis simulation. This means that every new simulation has a new set of
parameters µµµ that leads to a different concentration in time and space of the bio-
chemical species, not of the blood flow. However, the way the concentrations evolve
affects the way the thrombus grows. This ultimately will affect also the blood flow.
Thus the parameters change acts indirectly on the blood flow. Notice that we have

Parameter Definition Interval
γ̇vWF Critical shear rate for vWF unfolding [3300 7700] s−1

tvWF vWF relaxation time [0.03 0.07] s
Wieff,hyst Wieff hysteresis value [0.1896 0.4424] dimensionless
vWF crit

s Critical vWFS concentration value [30 70] m−3

tact Platelet characteristic activation time [0.05 0.5] s

Table 2: Parameters varied in the simulations (uniformly distributed).

two sets of quantities: the parameters of Table 2 and the biochemical species

6

of Table 1, that are not to be confused: the former are the parameters of the CDR
equations (3) that we want to vary, the latter are the fields of interest that we want
to predict at the variation of those parameters, without running the simulations.

Figure 3: Concentration of vWFs at t = 7 s, 22 s, 41 s of the simulation.

Figure 4: Concentration of AP at seconds t = 2 s, 15 s, 41 s of the simulation.

In Figure 3 and 4 two examples of the vWFs and AP fields at different times, for a
given instance of parameters. The dimensions of the medical device can be seen in
Figure 1.

7

2 Deep Learning and Model Order Reduction
Many methods have been developed to avoid solving a parametrized system of
PDEs by means of a full order model (FOM), that is by solving directly the PDEs
of the model [9]. Many of these methods fall under the category of reduced order
models (ROM): the idea is to replace the FOM with a ROM, which features a much
lower dimension, but is still able to represent the most important physical features
described by the FOM. The ROM is sometimes referred to as the surrogate model.
Often these methods are based on the assumption that the reduced order approxi-
mation is given by a linear combination of vectors of a basis, which can be found
starting from a set of solutions obtained from the FOM, usually called snapshots.
One of the most famous and deployed technique is the Proper Orthogonal Decom-
position (POD), which finds a linear basis of vectors, which we refer to as modes,
on which approximate the FOM solutions. In this case the degrees of freedom (de-
pending both on time and parameters) of the POD modes are obtained from the
solution of a low-dynamical system, given by a (Petrov-)Galerkin projection onto
a linear test subspace. This approach relies on a training and on a testing stage:
once the training has been completed the low-dimensional space is computed, and
during the testing stage an approximation of the FOM can be given for every new
parameter instance. This method has some drawbacks: if the problem is highly
nonlinear a large number of modes is required, leading to computational problems
in order to find the coefficients of the basis [10]. Thus two new approaches has been
proposed, exploiting Neural Networks (NN), on the wake of what has been done with
Convolutional AutoEncoders (CAE) in [11]: DL-ROM [12] and POD-DL-ROM [13].
DL-ROM exploits a CAE coupled with a Deep FeedForward neural network, look-
ing for the PDEs solutions in a nonlinear subspace. POD-DL-ROM is built upon
the same structure, but takes advantage of an a priori model order reduction stage
(through POD) to make the training stage less computationally costly. We will show
how thanks to those methods it is possible to build a model that, once trained, is
able to construct the fields (the biochemical species of the thrombosis model) in
time and space for a given parameter instance.

2.1 Proper Orthogonal Decomposition (POD)

Since POD is crucial to POD-DL-ROM, we briefly present the mathematics on
which it is built upon [14]. POD was firstly introduced by Lumley [15], with the
goal of decomposing the random vector field of a turbulent fluid motion into a
set of deterministic functions, such that each of them highlighted a part of the
total turbulent flow. The core idea was to separate the main coherent structures
that altogether give raise to the turbulent flow. Let us call u′(x, t) the fluctuating
velocity of the field depending on time and space, with u′ the velocity vector U
minus its temporal mean. The aim of POD is to find a collection of deterministic
spatial functions ΦΦΦk(x) (the modes) and random time coefficients αk(t) such that

u′(x, t) =
∞∑
k=1

αk(t)Φk(x). (4)

8

The way the coefficients are selected is such that the sum
∑N

k=1 αk(t)Φk(x) maxi-
mizes the kinetic energy that can be captured by the first N modes. Furthermore
the modes are orthogonal, thus constituting an orthogonal basis. A common way to
practically construct the orthogonal basis makes use of Singular Value Decomposi-
tion (SVD) through the snapshot method [16]. We start by considering a collection
of snapshots {x1,x2, . . . ,xns} for a given field. Every snapshot xj ∈ RNh (obtained
from a simulation, for example via a finite volume method) is a solution of the sys-
tem dynamics at different time and/or for different set of parameters. Nh is the size
of the mesh on which the simulations are performed. The next step is to build the
so called snapshot matrix SNh×ns , whose jth column is given by xj. SVD is then
computed on S, so that

S = UΣΣΣYT (5)

where the columns of the matrix U ∈ RNh×ns are the left singular vectors of S
and the columns of Y ∈ Rns×ns are its right singular vectors. ΣΣΣ ∈ Rns×ns =
diag(σ1, σ2 . . . σns), such that σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

ns
≥ 0 are called the singular

values of S, and each of them represents the amount of energy expressed by its
associated left singular vector (σ1 is associated to the first left singular vector and
so on). The first N left singular vectors (the modes) form the POD basis VN , which
is orthogonal. The POD basis is said "optimal", since among all the orthonormal
basis of size N , it is the one which minimizes the least squares error of snapshot
reconstruction,

min
VN∈RNh×N

||X−VNV
T
NX||2F = min

VN∈RNh×N

ns∑
i=1

||xi −VNV
T
Nxi||22 =

ns∑
i=N+1

σ2
i . (6)

From 6 we can say that the square error is given by the sum of the squares of the
singular values corresponding to the left singular vectors not in VN . Thus in order
to choose the first N left singular vectors, N is usually chosen such that∑N

i=1 σ
2
i∑ns

i=1 σ
2
i

> ϵ (7)

with ϵ arbitrary. Refer to [17] for a detailed analysis of POD reconstruction error.
Once the POD basis VN has been computed, the next step is to find the right
coefficient to give to the basis in order to reconstruct u′(x, t) as a linear combinations
of VN . As it will be explained better in what follows, in this work the idea is to
collect a series of snapshots, which vary both in time and parameters, from the
thrombosis simulation. The task of finding the correct coefficients for VN , given
time and a certain set of parameters as input, will be left to Neural Networks.

2.2 Deep Feed-Forward Neural Networks (DFNN), Convolu-
tional Neural Networks (CNN) and Autoencoders (AE)

What follows 1 is a brief introduction to some Machine Learning (ML) structures
important for this work, a detailed theoretical explanation is out of the scope of this

1The images used in this section are taken from [18].

9

Figure 5: A dense DFNN architecture. Every neuron of every layer takes as input the
output of the previous layer and applies to it a linear transformation followed by a non-
linear one.

report and can be found in [19], [20], [21] and [22]. The Neural Network (NN) archi-
tecture we use is made up of two main components: a DFNN and a Convolutional
AE. DFNN are neural-inspired nonlinear models for supervised learning. They are
able to mimic the behavior of any non-linear function if enough data are provided.
The basic unit of a NN is a ’neuron’ i, which receives as input a vector of k features
x = (x1, x2, . . . , xk) and gives as output a scalar ai(x). A collection of neurons forms
a layer, and a series of layers makes a NN, with the output of a layer serving as the
input for the next. The first layer is the input layer, the middle layers are the hidden
layers and the final layer is the output layer. The transformation ai is composed of
two parts: an initial linear mapping that weights the importance of each feature,
and a non-linear mapping σi. The linear mapping is a simple dot product followed
by a re-centering with a neuron-specific bias bi:

zi = ωωωi · x+ bi. (8)

After this the non-linear function is applied, so ai(x) = σi(z
i). If the layers are

dense, see Figure 5, each neuron of a layer takes as input the output of the previous
layer and applies to it the scalar product of its own weights together with its own
non-linear transformation (which is usually the same for all the neurons of a given
layer). The power of neural networks lies in the universal approximation theorem
which states that a neural network with a single hidden layer can approximate any
continuous, multi-input/multi-output function with arbitrary accuracy.

Convolutional Neural Networks were invented primarily for computational rea-
sons in the field of image recognition: as the number of pixels increases, the cost of
using dense neural networks becomes prohibitive (i.e. there are too many unknown
parameters to determine). As it is said in [19], Convolutional neural networks are
simply neural networks that use convolution in place of general matrix multiplica-
tion in at least one of their layers. Convolutional networks have sparse interaction,
meaning that the input image may have millions of pixel, but the output may occupy
only hundreds of pixels, thanks to the use of filters which detect the real important
features of the images (such as edges or particular shapes). The mathematical tool
exploited is finite convolution, which is realized through the use of filters, as it is

10

Figure 6: The application of convolution through the use of a kernel (filter), followed by a
non linear transformation σ.

Figure 7: Padding with a stride of 1.

shown in Figure 6. The kernel (filter) is here a 3 × 3 matrix, as it is customary in
CNN architecture, although only by trying is it possible to find which kernel size
gives the best accuracy. Letting m be the kernel height and n its width, applying
the filter on a section of the Input gives the following scalar: y′ =

∑m
i=1

∑n
j=1 ωi,jxi,j.

Here ωi,j is the weight associated to the element i, j of the kernel and xi,j the pixel
in position i, j of the Input. Subsequently, a bias b is sum to y′ and a non-linear
transformation σ is applied to it, so that y = σ(y′ + b). By making the kernel slide
on the Input a final output is obtained, whose dimension is determined by two CNN
parameters: the stride and the padding. The stride defines of how many pixel the
kernel moves at each move (a stride of two will reduce by two the output size), while
the padding determines if all the pixels are taken into consideration (to make it
possible to perform a convolution on the pixels on the border some zeroes are added
outside the image as in Figure 7). At every convolutional layer many different filters
can be applied, and at the end the goal is to get a final image which contains the
most important features of the initial Input.

AutoEncoders are a NN structure built on the idea of reconstructing the input
given. This may be useful in case there are some images with noise and we want
to re-build them without the noise. In Figure 8 we can see how in the Encoder the
image input gets reduced in size more and more until the latent space, where the
important features of the original image should be recognized. Subsequently the
Decoder reconstructs the original image from the latent space, but only displaying
its main features (without the noise). The layers that make the AutoEncoder can be
whatever, although (as in this work) they are usually convolutional, because of their
computationally efficiency and ability at recognizing patterns. In this case they are

11

Figure 8: Structure of an AutoEncoder.

called convolutional AutoEncoders.
To conclude, no matter the architecture chosen, it will depend on a lot of un-

known parameters (present in layers, filters, etc. in form weights, biases, etc.) to
be determined. This is done during the training stage, thanks to the loss function
(which compares the ML output with a known expected result) and algorithms such
as Stochastic Gradient Descent and Adaptive Moment Estimation (which change
the parameters to push the loss function towards a minimum) [23].

2.3 Problem formulation

Introducing one discretization technique, such as the Finite Element method [4], the
FOM can be described as a nonlinear parametrized dynamical system. Given a set
of parameters µµµ (in our case Table 2), we want to solve the initial value problem:{

u̇h(t,µµµ) = f(t,uh(t;µµµ);µµµ) t ∈ (0, T),

uh(0;µµµ) = u0(µµµ)
(9)

where uh is the parametrized solution of (9) (the field), u0 is the initial condition
and f is a nonlinear function which describes the system dynamics (in our case
(3)). We define Nh as the dimension of the FOM, which corresponds to the finite
discretization of the space (the number of points that make up the mesh on which
the simulations are performed). We want to achieve a numerical approximation of
the set

Sh = {uh(t,µµµ)|t ∈ [0, T),µµµ ∈ P ⊂ Rnµ} ⊂ RNh , (10)

of solutions of (9) when (t;µµµ) varies in [0, T) × P. If we assume that the problem
admits a unique solution, then the intrinsic dimension of (10) is at most nµµµ +
1 << Nh, with nµµµ being the number of parameters, counting time as an additional
parameter. We will refer to the approximation of uh(t,µµµ) as to ũh(t,µµµ).

2.4 Deep Learning - Reduced Order Model (DL-ROM)

DL-ROM [12], is a method that aims at finding nonlinearly a ROM starting from
a FOM. It is a non-intrusive method, meaning that it does not need to really enter

12

Figure 9: DL-ROM architecture, composed of two interacting branches: a CAE and a
DFNN. Notice the loss function is made up of two components. Image from [12].

into the details of the FOM. As a matter of fact, in principle it can be used without
even knowing on which equations the simulations are based on: we only need the
snapshots from the simulations. As stated initially we want to be able to generate
the fields in time and space of some biochemical species giving as inputs only the
time and the parameters on which the PDEs (CDR equations (3)) depend. DL-ROM
is an attempt to solve this problem exploiting a CAE and a DFNN, as it can be seen
in Figure 9. This method differs from the POD method, where the approximation
of the real solutions of (9) is

uh(t,µµµ) ≈ ũh(t,µµµ) = VNuN(t,µµµ), (11)

where VN is the matrix with the singular vectors of the SVD (5) decomposition,
uN are the coefficients of the linear basis and N is the dimension of the basis. In
POD based approach, as it will be clear in POD-DL-ROM, the most difficult part
is finding the coefficients uN . In DL-ROM instead, the approximation is:

uh(t,µµµ) ≈ ũh(t,µµµ,θθθDF , θθθD) = fDh (ΦDF
n (t;µµµ,θθθDF);θθθD). (12)

In order:

• ϕϕϕDF
n (.; .;θθθDF) : Rnµ+1 → Rn is a DFNN which takes as argument a vector (t;µµµ)

of dimension nµµµ+1 which contains time and parameters (this is exactly the aim
of this work: giving as input time and parameters of the PDEs and getting the
field in space). The DFNN is responsible for the reduced dynamics learning, i.e.
it gives the intrinsic coordinates, un(t;µµµ,θθθDF), of the ROM approximation in
a reduced nonlinear manifold (as opposed to the POD which exploits a linear
manifold). Notice that the DFNN is used both at training and testing stage.

13

• fD(.;θθθD) : Rn → RNh is the decoder of the CAE, which depends on an ensemble
of weights and biases θθθD. The decoder is responsible for the reduced trial
manifold learning, i.e. it reconstructs the final field, ũh(t;µµµ,θθθDF , θθθD), from
the intrinsic coordinates from the DFNN.

• Finally fEn (.;θθθE) is the encoder, which depends on parameters θθθE. Its job is
to be able to capture the main features, ũn(t;µµµ,θθθE), of the input uh(t,µµµ),
i.e. a snapshot from the FOM (obtained from the simulations). The snapshot
is reshaped as shown in [9] as a square image before feeding the encoder,
in order to exploit the CNN layers. The encoder does not appear in (12)
since it is discarded at testing time: once the parameters of the structure
represented in Figure 9 have been obtained in the training, at testing stage
only the vector (t;µµµ) of the DFNN is given as input. The main role of the
encoder is to connect through one piece of the loss function ũn(t;µµµ,θθθE) with
un(t;µµµ,θθθDF), i.e. the main features of the input snapshot with the intrinsic
coordinates of the dynamical system (which are the output of (t,µµµ) through
the DFNN). The main features are enclosed in the latent vector of the encoder,
whose dimension is close to nµµµ + 1 << Nh.

In practice during the training two inputs are given at the same time: the snap-
shot obtained by the FOM uh(t,µµµ) and its associated vector (t;µµµ). The former is
reshaped into a square image and goes through some convolutional and dense layers
until ũn(t;µµµ,θθθE) while the latter goes through some dense layer until un(t;µµµ,θθθDF).
The first part of the loss function (internal error) is then computed, Lint(t

k,µµµi;θθθ) =
||ũn(t

k;µµµi, θθθE)−un(t
k;µµµ,θθθDF)||2. Subsequently the output of the DFNN un(t;µµµi, θθθDF)

is given as input to the Decoder, until ũh(t;µµµ,θθθDF , θθθD). Then the second part of the
loss function (reconstruction error) can be computed: Lrec(t

k,µµµi;θθθ) = ||uh(t
k;µµµi)−

ũh(t
k;µµµi, θθθDF , θθθD)||2. At the end of this iteration we get the total loss function as:

L(tk,µµµi;θθθ) =
ωh

2
Lint(t

k,µµµi;θθθ) +
(
1− ωh

2

)
Lrec(t

k,µµµi;θθθ). (13)

Since this process is done for all the snapshots of the training (for one epoch in ML
jargon), what we want to minimize in order to find the best parameters for the CAE
and for the DFNN is:

J(θθθ) =
1

Ns

Ntrain∑
i=1

Nt∑
k=1

L(tk,µµµi;θθθ), (14)

where Ns is Ntrain ×Nt.
The DL-ROM method is tested on several test-cases by the authors in [12],

but the 2D examples present, as they remark, deal with a mesh of a dimension of
the order of maximum 104, and it still takes a lot of time in the training stage.
Computational inefficiency in the training is the reason why POD-DL-ROM [13]
was later proposed. In our case the mesh has 68650 points, and when we attempted
to use DL-ROM on our data from thrombosis simulations, it took almost 2 hours to
do 140 epochs (with 4000 data-points) and the loss function was still of the order of
102, Figure 10.

14

Figure 10: Loss function of DL-ROM algorithm applied to thrombosis data. In blue the
validation loss and in orange the training loss as a function of the epoch.

Figure 11: POD-DL-ROM architecture. The difference with DL-ROM (9) is in the input
given. Image from [13].

2.5 POD-DL-ROM

POD-DL-ROM [13] has the same identical purpose of DL-ROM, but relies on a prior
dimensionality reduction stage that aims at improving the DL-ROM training
stage. The prior dimensionality reduction is performed through POD. As the authors
say in [13] at pag. 16, comparing DL-ROM and POD-DL-ROM performances for a
given test case, the training stage required 23.5 hours for the former and 2.5 hours
for the latter, given a mesh of 10657 (we have 68650 points). As it can be observed
in Figure 11, the architecture is exactly the one of DL-ROM, but the encoder input
now is different: before the encoder inputs reshaped in images were the snapshots
from the simulations, while now they are the coefficients of the linear basis of the
POD on which every snapshot is projected. In other words, here the approximation
is, as in the POD approach,

uh ≈ ũh(t;µµµ,θθθDF , θθθD) = VN ũN(t;µµµ,θθθDF , θθθD) (15)

and we want to find the coefficients ũN(t;µµµ,θθθDF , θθθD). So we give as input to the
encoder the VTuh. The procedure is the following:

15

• A snapshot matrix SNh,Ns and a parameter matrix M(nµ+1),Ns are created, such
that the jth column of S is a snapshot from a simulation with parameters (t,µµµ)
and the column jth of M contains the same parameters (t,µµµ). Nh is the mesh
size of the simulations and Ns is the number of snapshots from the simulations.

• A SVD (5) is computed on S as explained in the POD section and the matrix
VN is obtained, with the first N singular vectors of the SVD as columns.

• Every snapshot of SNh,Ns is projected onto VN , i.e. we do the mapping
uh(t;µµµ) → VT

Nuh(t;µµµ).

• All the process that comes after is the same as described for DL-ROM. Of
course the only formal difference is that the external error of the loss function is
now: Lrec(t

k,µµµi;θθθ) = ||VT
Nuh(t

k;µµµi)−ũN(t;µµµi, θθθDF , θθθD)||2, where ũN(t;µµµi, θθθDF , θθθD)
are the predicted coefficients for the basis (we are now comparing not the fields
but the coefficients that will give the fields once combained with V). In fact
at the end the prediction of the field will be given by VN ũN(t;µµµi, θθθDF , θθθD).

The crucial aspect here is that the dimension N of V is chosen by us: the input
dimension of the encoder is equal to the dimension of the POD basis. This is the
main improvement: we go from an input dimension with DL-ROM of the order of
105 to an order of 102, as it will be shown in the ’Results’ section. This implies a
further subtle aspect: we are using CNN layers to recognize patterns in images which
are no more ’real images’ (i.e. images of the fields in space as in DL-ROM), but
they are a visual representation of the coefficient of the POD basis. In other words,
what the ML architecture must learn, is to give the right weights ũN(t;µµµi, θθθDF , θθθD)
to the POD modes (singular vectors) given a certain (t,µµµ). Although there is a
clear gain in computational complexity, it is natural to wonder if the fact of using
a prior dimensionality reduction method can affect the final result. The effect of
POD results in loss of information that cannot be retrieved by DL-ROM alone. In a
sense, DL-ROM cannot see what has been lost by POD. This aspect is very central
and will be discussed in Section (3).

We conclude the theory part with a specification on the way POD is performed:
when the snapshot matrix S becomes large traditional SVD becomes too compu-
tationally costly, and thus alternative POD methods have been proposed, such as
randomized POD [24], which is used in this work.

16

2.5.1 Architecture

The results that follow are obtained from the hyperparameters of Tables 3, 4, as
in [12]. In Tables 3, 4 the input and output dimensions depend on the size of the
layer 1 (N), but the Kernel size, Filters and Stride do not change. The DFNN is
composed of 4 dense layers each of them with 100 neurons. We set ωh = 1 in (13)
as done in [12].

Layer Input Dimension Output Dimension Kernel Size Filters Stride Type
1 [16, 16, 1] [16, 16, 8] [7, 7] 8 1 CL
2 [16, 16, 8] [8, 8, 16] [7, 7] 16 2 CL
3 [8, 8, 16] [4, 4, 32] [7, 7] 32 2 CL
4 [4, 4, 32] [2, 2, 64] [7, 7] 64 2 CL
5 N 256 Dense
6 256 n Dense

Table 3: Characteristics of the encoder layers, where n = nµµµ + 1 and N is the size of the
POD basis. ’CL’ stands for ’Convolution Layer’

Layer Input Dimension Output Dimension Kernel Size Filters Stride Type
1 n 256 Dense
2 256 N Dense
3 [2, 2, 64] [4, 4, 32] [7, 7] 64 2 (T)CL
4 [4, 4, 32] [8, 8, 16] [7, 7] 32 2 (T)CL
5 [8, 8, 16] [16, 16, 8] [7, 7] 16 2 (T)CL
6 [16, 16, 8] [16, 16, 1] [7, 7] 8 1 (T)CL

Table 4: Characteristics of the decoder layer, where n = nµµµ + 1 and N is the size of the
POD basis. ’(T)CL’ stands for ’Transposed Convolution Layer’

17

3 Results
In what follows we show the results of the application of the POD-DL-ROM method
to the thrombosis simulation described in Section (1). As already said we want to
predict in time and space the fields of some biochemical species, giving as input
(t,µµµ), i.e. time and PDEs parameters. We will focus mainly on one biochemical
specie, vWFs, since it is relevant for thrombus formation and its prediction poses
some challenges as we will show. The data we use for the training and testing come
from 100 simulations in which a snapshot is saved every second, from t = 2 s to
t = 41 s, for a total of 40 seconds per simulation. For every simulation a set µµµ of
parameters is sampled uniformly, accordingly to the intervals in Table (2). We will
firstly discuss about how data are prepared and normalized, and we will look at
the POD basis and coefficients, which are the core of the method. We will then
present the results both for fixed parameters and varying time and for fixed time
and varying parameters. The problem of early time predictions for weak flows will
be then addressed and a possible solution proposed.

3.1 Training and Data preparation

For every result shown a fraction 0.8 of the dataset (100 simulations of 40 snapshot
each) is used for training and a 0.2 for the testing. A fraction 0.2 of the training
data is used as validation set. The training set is divided in batches of size 40 and
a maximum of 10000 epochs (i.e. cycles on the all training set) are performed. An
early stop criterion is imposed, i.e. the training is stopped if the loss function of the
validation set has not decreased for 500 epochs. We use the ADAM algorithm as an
optimizer [25].

Firstly, for a given biochemical species, the snapshot matrix SNh,Ns is assembled,
where Nh is the mesh size (68650 elements) and Ns is the number of simulations ×
the length (in seconds) of every simulation (100× 40), such that:

S = [uh(t
1;µµµ1)|...|uh(t

Nt ;µµµ1)|...|uh(t
1;µµµNtrain

)|...|uh(t
Nt ;µµµNtrain

)]. (16)

So the first 40 columns are the 40 snapshots of a simulation with a certain set of
parameters µµµ1, the columns from 41 to 80 are the 40 snapshots of a simulation with
a certain set of parameters µµµ2 and so on. Then the parameter matrix M(nµµµ+1),Ns is
assembled, such that:

M = [(t1,µµµ1))|...|(tNt ,µµµ1))|...|(t1,µµµNtrain
)|...|(tNt ,µµµNtrain

)]. (17)

Notice that the length of every column of M is (nµµµ +1), i.e. we are simply treating
time as an additional parameter. In this way one can find in the jth column of
M the parameters (including time) that generate the snapshot presented in the jth
column of S. Subsequently we divide S and M in [Strain,Stest] and [Mtrain,Mtest],
with a splitting [0.8, 0.2], i.e. 3800 data-points will be used for the training and 200
for the testing (we recall that only Mtest will be used as input during the testing
stage. In fact Stest will only be used to compare the predictions made). In this way
we can observe what happens when we try to predict from a set of parameters µ̃̃µ̃µ
that has never been seen in the training. We can also test on some snapshots taken

18

from a t different from the ones given in the training (if it stays in the interval of
time used in the training.)

We then perform the random SVD on Strain in order to get the matrix VN of
singular vectors, and we project every snapshot of Strain onto the basis VN . In this
way we obtain the final Input matrix of coefficients IN,Ns which will be given as
input to the encoder. In doing so we passed from a (snapshot) matrix of vectors of
dimension Nh to a (coefficient) matrix of vectors of dimension N .

Given IN,Ns and Mtrain, which are respectively the inputs of the encoder and of
the DFNN, we normalize them, in order to bring every element in the range [0 1]:

• As far as I is concerned, we define Imax = max
i=1...Ns

max
j=1...N

Ii,j and Imin = min
i=1...Ns

min
j=1...N

Ii,j.

We then rescale every element of I according to the following mapping:

Ii,j →
Ii,j − Imin

Imax − Imin

. (18)

In practice, we look for the max and the min of I across all the elements of
every column and we rescale everything given them as it is done in [11].

• As far as Mtrain is concerned, we define Mk
max = max

i=1...Ns

Mtrain
k,i and Mk

min =

min
i=1...Ns

Mtrain
k,i , i.e. we obtain the max and the min of every row. We then

apply the following mapping:

Mtrain
i,j →

Mtrain
i,j −Mi

min

Mi
max −Mi

min

. (19)

In words, we normalize every element according to the max and the min of the
feature class to which it belongs (we no more look for the global max and global
min as for I). This is important because different class of parameters (every
feature) have different ranges, sometimes varying of orders of magnitude, as it
can be seen in Table (2).

During the testing stage we will use the same statistics, i.e. the same max and
min values found, to normalize Mtest and to ’inverse normalize’ (i.e. applying the
inverse formula of (18)) the predicted coefficients ũN(t;µµµi, θθθDF , θθθD). We remark that
it is fundamental to use at testing time the same statistics used to normalize the
elements for the training.

Before finally using the columns of I as inputs, they must be reshaped into images
as showed in Figure 11. The way it is done is the following: a vector x of dimension
d is reshaped into a square image X

√
d,
√
d. In practice the first

√
d elements become

the first row of X, the second
√
d elements the second row and so on. If d ̸= 4m with

m ∈ N, the input is zero-padded [19]. Notice that in this way the input of the 5th
layer of the encoder and the output of the 2nd layer of the decoder have dimension
exactly N (Table 3,4).

3.2 Initial analysis of Data

To start with, let us understand by visualization what are the inputs we are using.
In Figure 12 we can see the normalized images that are given as input to the encoder,

19

Figure 12: Normalized image input of the encoder (training stage) for vWFs, for a fixed
set of parameters at varying time. Notice that a large number of POD modes are necessary
at the initial time steps, whereas only the first POD mode is activated at the end of the
simulation (t > 30 s).

for vWFs. In this case N = 256 (the size of the POD basis VN), and so the images
are of size

√
256×

√
256. We recall that these images are a visual representation of

the coefficients obtained by projecting a given snapshot onto VN . In a sense, these
images give an idea of which modes are the most important for a certain snapshot
at time t and parameters µµµ. As we can observe in Figure 12, t = 2 s has as biggest
coefficient the one in the 142nd position: this means that the 142nd mode is the
most similar to the snapshot of t = 2, among all the ones in VN . From t = 3 s to
t = 5 s instead the important modes become sparser, while towards the end of the
simulation the first mode is the only one that really matters. Since those images are
the ones that go through the convolutional layers, it appears logical that the last
seconds of the simulations will be more easily predicted, since there is only one clear
coefficient to be determined. (However this is not a problem of classification: the
algorithm does not have to recognize ’the most important mode’, but it has to give
it the right weight, and this weight will vary, for fixed time, at the variation of µµµ).

A natural question follows: in Figure 12 we see only the input images for a fixed
µµµ, but in which way do those images change when µµµ is varied? In other words, will
the shape of vWFs change for fixed time at the variation of µµµ, or there will be only
a variation in its concentration? In the first case we would have also a variation
in the ’most important’ modes, while in the second case they will be the same but
with a different assigned weight. Figure 13 shows the normalized standard deviation
across the 100 simulation for t = 12 s and t = 41 s and the corresponding snapshot
from one random simulation: we can see how the variation indeed appears mainly
in the concentration, not in the shape. Thus what we expect is that the inputs of
Figure 12 for different simulations will select the same ’important’ coefficients but
with different weights. This makes sense physically: what we are simulating, up to
t = 41 s is before the thrombus formation. Thus the blood flow is the same for every

20

Figure 13: Standard deviation normalized of vWFs across the 100 simulations, compared
with random snapshot at the same t. The normalization is done similarly to (18), whit the
max and the min taken over the values of the standard deviation performed at fixed time
across simulations.

simulation, bringing to a similar shape for a chosen biochemical specie across the
simulation. However what we expect is that a different value in concentration will
lead to a different shape of the thrombus, which ultimately will result in a different
shape of blood flow and thus of the biochemical specie.

We have looked at the coefficients and to the snapshot of the FOM, now let us
have a better intuition about the singular vectors which are the columns of VN .
As explained in Section (2.1), at every singular vector j we can associate a singular
value σj, which quantifies how much ’energy’ is associated to the jth mode, i.e. how
much information it gives about the global flow. Notice that if we performed the
SVD on a snapshot matrix at varying time but at fixed µµµ, the modes would show
the main flows in time. Here we have a snapshot matrix (16) at varying time and
parameters, so also the main variations in parameters are encoded in the modes.
In Figure 14 the normalized singular values of AP and vWFs are plotted. We can
see that there are 5 singular values > 103 are for AP, while 10 for vWFs. This
means that we can expect a greater variability in vWfs (although we cannot say a
priori if the greater variability is in time or in parameters). To conclude, we plot
in Figure 15 the first, the second and the 142th mode of vWFs, which according to
Figure 12 should be close in shape to the snapshots respectively at the end, at the
middle and at the beginning of a fixed simulation (remember that this reasoning
makes sense since we have variability across simulations in concentration but not
much in shape). Figure 15 suggests that t = 41 s will be easier to predict than the
previous snapshots, since there is a mode (the first), which is really close in shape to
it. Be aware that this analysis is deeply system dependent: varying the biochemical
species analysed will surely result in a different Figure 12.

21

Figure 14: Normalized singular values of AP and vWFS. AP has 5 singular values associ-
ated with energy > 10−3, vWFs has 10.

Figure 15: Modes 1, 2 and 142 compared to snapshots of a random simulation of t =
41 s, 22 s and 2 s.

22

3.3 Predictions in time and parameters

Here we show the predictions made using the POD-DL-ROM algorithm. The data
are taken from 100 simulations and the snapshots are saved every second from
t = 2 s to t = 41 s, before the thrombus formation. The parameters varied randomly
(uniformly) in every simulation are the ones in Table (2). In Figure 16 we show the
POD-DL-ROM predictions at different times next to the FOM testing snapshots,
with N = 64, where N is the size of the POD basis. We recall that the predictions
are the output of the input (t,µµµ), and the FOM testing snapshot (obtained by
the simulations) is used to compare the prediction and does not play any role in
the POD-DL-ROM prediction (since we are at testing time). The relative error
displayed is a vector quantity specific for a given snapshot of a given simulation:

ϵϵϵk =
|uk

h(µµµtest)− ũuuk
h(µµµtest)|√

1
Nt

∑Nt

k=1∥uk
h(µµµtest)∥2

. (20)

We will use also another metric, the global error, which is a scalar value used to
asses globally the validity of the predictions in time and parameters:

ϵG(uh, ũh) =
1

Ntest

Ntest∑
i=1

√∑Nt

k=1∥uk
h(µµµtest,i)− ũuuk

h(µµµtest,i)∥2√∑Nt

k=1∥uk
h(µµµtest,i)∥2

, (21)

where k is the time chosen, µµµtest refers to a specific set µµµ of parameters used for
testing, Nt is the number of seconds per simulation and Ntest is the number of
different simulations kept for the testing stage. We recall that uh is the testing
snapshot from the FOM (obtained via a simulation), and ũh is its POD-DL-ROM
prediction. We can also define the relative error per second:

ϵsec(ut
h, ũ

t
h) =

1

Ntest

Ntest∑
i=1

∥ut
h(µµµtest,i)− ũuut

h(µµµtest,i)∥
∥ut

h(µµµtest,i)∥
, (22)

which is equal to (21) but with only one k, the one of the second t considered (so in
the internal sum we sum only on one element). In Figure 17 we see the relative error
in time per second for N = 64, 256, 1024. The global error in the three cases varies as
ϵG = 0.0323, 0.0364, 0.3663. So we have that overall the algorithm performs better
in the case N = 64, although Figure 17 shows that the case N = 256 gives better
results for the early times and slightly worse for the last seconds. N = 1024 instead
gives worse results both overall and at every second. This is surprising, as we would
expect that having a bigger basis would lead to a better performance. However we
should not forget that we are training a ML algorithm, whose accuracy may vary if
the Input data given in the training are different. Let us look at the lowest value
of the loss function during the training: respectively for N = 64, 256, 1024 it is:
3.812−5, 4.24−5, 1.0556−4. So, although the size of VN is increasing, the accuracy of
the ML algorithm is decreasing, probably because since the input image is becoming
bigger more parameters have to be determined in the training and thus more data
are required. But then why does N = 256 performs better than N = 64 at early

23

Figure 16: Comparison of vWFs snapshots for a fixed testing µµµ between POD-DL-ROM
prediction and FOM, at initial, middle and final seconds. The size of the POD basis is
N = 64.

24

Figure 17: Relative error per second (22) for N = 64, 256, 1024, and global error ϵG (21)
(in the legend).

times but worse at late times? Looking at Figure 12 we can see how the first
seconds, especially t = 2, need modes that are beyond N = 64, and that we have
only with N = 256. So having more modes is more beneficial than having a greater
ML accuracy. The last seconds instead only need the first mode, and so they are
predicted with almost equal precision by the three test cases. From these results it
looks like there are two main different regimes captured by the POD modes: the
initial concentration which rapidly stretches towards the membrane of the device
and the final stationary shape well captured by the first mode. Since there are a
only a few seconds (the early times) in the training set which need the lonely 142nd
mode or a big combination of initial modes, the ML algorithm sees them as outliers
and struggles to give them the correct coefficients. Furthermore, if we look closely at
the real values of the coefficients in Figure 12, we can see how, for a given snapshot,
the coefficient values change from one to the other at the fourth decimal point! At
the contrary, the last seconds coefficient vary at the fourth decimal point. This is
due to the normalization (18), which normalizes every element of the input matrix I
by the global maximum and global minimum: in our case the early time coefficients
are much smaller than the late times coefficients, and thus they become even smaller
after the normalization. For this reason it is difficult for the CNN layers to extract
correctly features from the early times images, as opposed to the late ones. We
now show the predictions for a fixed time (t = 41 s) and different parameters from
different testing simulations in Figure 18. The predictions are good both in the
concentration and in the shape. In fact the different values of concentrations are
well respected, but also the little differences in shape, as the little stripe in the
bottom-right of the first simulation which is absent in the last.

To understand whether the bad initial predictions are due to a biochemical specie
which varies too abruptly in time, we can look at one, vWFc, which evolves more
gradually in time. In Figure 19 we see its image coefficient inputs for a given

25

Figure 18: vWFs predictions for fixed time t = 41 s and varying parameters of Table 2.

26

Figure 19: Normalized images inputs (of the encoder) for vWFc, for a fixed simulation
(fixed µµµ) at varying time.

simulation. In this case we do not have anymore t = 2 with a very far principal
mode, but rather a mixture of only the first 16 modes. In addition, we can see how,
for a given snapshot, the different coefficients now vary also for the early times at
the first/second decimal point. In Figure 20 we can see how better the predictions
are in in this case also at early times. The idea that we need few and well defined
coefficients as input images to get good results is what justifies the idea of next
section.

3.4 Localized reduced order models

In this section we will change slightly the way we perform POD before the training,
in order to make the early time inputs of vWFs to look like the inputs of vWFc. The
idea is simple: the problem of POD is that it encodes in the modes the variations (in
time and parameters) of the snapshots given in a hierarchical order: the first modes
are the ones that enclose the biggest variations. In our case time is the parameter
that gives a lot of variability both in concentration and in shape. In the case of
vWFs, early times are characterized by weaker and very localized flows that appear
for a small interval of time: to be correctly represented they require a big mixture of
POD modes. To avoid this we need to create two different time windows as follows:

• Instead of having one snapshot matrix SNh,Ns , we create two snapshot matrices
SNh,Ns1

1 , SNh,Ns2

2 , where Ns1 = Ntrain × Nt1 and Ns2 = Ntrain × Nt2 . In what
follows Nt1 goes from t = 2 s to t = 5 s and Nt2 goes from t = 6 s to t = 41 s.
So Nt1 = 4 and Nt2 = 36.

• After the creation of the two snapshot matrices we perform the POD on both
of them: in this way we have two different POD basis V1

N and V2
N . N is

the same since it refers to the size of the POD basis, the difference is that the

27

Figure 20: Error in time and global error of vWFc predictions for N = 64, 256.

modes of V1
N can be used to predict only snapshots in the range t = 2 to t = 5,

while the modes of V2
N for the snapshots in the range t = 6 s to t = 41 s.

• So following this distinction we create one input matrix IN,Ns , which has the
same dimensions as in Section 3.3, but the coefficients are obtained projecting
every snapshot onto the correct basis (depending on t).

• We now normalize IN,Ns , but we will look for [max1,min1] and [max2,min2],
i.e. we have a max and a min for every time window, and we normalize
according to Equation (18) (the snapshots from t = 2 to t = 5 normalized
with [max1,min1] and vice versa). The parameter matrix M instead, which
is the input for the DFNN is constructed as usual.

Of course at testing time we will use one set of max,min or the other according
to the time window in which the time we want to predict follows. We do not expect
the fact of having coefficients belonging to different vector basis to confuse the deep
neural network, as every ’class’ of coefficients has associated its corresponding second
t as input to the DFNN. In Figure 21 we can observe the results of the two time
window approach: vWFs is now well predicted also at early times. Let us look at the
relative error per second confronted with the previous method in Figure 22: there is
a clear gain in the early times, but it performs worse for the last seconds, resulting
in a slightly worse global error. Also it is worth noticing the ’jump’ in the error from
t = 5 s to t = 6 s, which indicates the passage from base V1

N to V2
N . The idea of

having multiple localized reduced order models seems promising, since we do not
want the POD to make us lose the information about the different regimes (in time
and/or space) that a system can have. We are currently trying to make this idea
more rigorous using clustering methods such as k-means [26] and the fuzzy c-means
[27]. It is important to rely on robust methods to do the cut in time or parameters
as it is not always possible to see a clear separation in physical regimes, especially
if it is not in time but in some other parameter.

28

Figure 21: Predictions of vWFs with separation in time windows. N = 64

Figure 22: Comparison of relative and global error between full interval and two intervals
methods for vWFs. N = 64 in both cases. The red line denotes where the cut in time for
the two intervals is made.

29

4 Localized-POD-DL-ROM
On the wake of the insights gained in the previous section, we tried to make the
localized reduced order model method quantitative, avoiding the need to decide
empirically where to make the cut(s) in time and/or parameters. Taking inspiration
from the work proposed in [28], we decided to rely on a clustering method in order
to identify the regimes existing in time and/or parameters. This new procedure,
which we will refer to as to the Localized-POD-DL-ROM, during the training
stage is made up by 3 steps:

1. Clustering step: we divide the snapshots in k clusters, which will contribute
to the construction of k snapshots matrices and thus k POD basis.

2. Classification step: We train a classification NN, which learns the mapping
(t,µµµ) → x ∈ χχχ, where χχχ = {0, 1, 2, ..., k − 1}. In this way we can map an
instance of parameters (t,µµµ) which has never been seen by the clustering onto
the correct POD basis.

3. POD-DL-ROM step: As it is done in section 3.4 we construct the Input
matrix I, which will contain the POD coefficients obtained by projecting every
snapshot onto one of the k POD basis to which it belongs, according to the
clustering of step 1.

At the end of this training stage we have two NN models: a NN Classifier and
a Convolutional AutoEncoder together with a Deep FeedForward NN. The
latter has exactly the purpose of the previous sections, the former is needed since
at testing time we need to know to which cluster k the parameter instance (t,µµµ)
belongs. This means that during the testing stage we have the 3 following steps:

1. DL-ROM step: the testing parameter instance (t,µµµ) is given as input to the
DFNN, and the Decoder gives as output a set of POD coefficients uN(t,µµµ).

2. NN classifier step: the same testing parameter instance (t,µµµ) is given as
input to the NN Classifier, which will give as output the cluster to which the
input belongs.

3. Reconstruction step: we recover the field uh(t,µµµ) by the approximation
uh(t,µµµ) ≈ ViuN(t,µµµ), where Vi is the POD basis obtained from the cluster
of snapshots i (chosen in step 2).

We will now show in more detail the methods employed.

4.1 Clustering

Following the work done in [28], we decided to use the Fuzzy C-means clustering
algorithm (FCM) [27]. We applied the FCM algorithm not directly to the snapshots
u(t,µµµ) but to their POD coefficients vectors uN(t,µµµ) for two reasons: first of all
by going from a space of 105 dimensions to one of N dimensions (N ≈ 101) we
make the FCM computation cheaper. Secondly, it makes more sense to act on the

30

Figure 23: Clustering on POD coefficients for k = 3 at the variation of the dimension of
the POD coefficients vectors (N).

POD coefficients vectors space instead of on the field space, since we are feeding
the Encoder with the former. Be careful to make a distinction here: we are now
doing a POD operation on all the snapshots in time and parameters as it is done in
Section 3. This is needed for the two reasons above, but we will not use those POD
coefficients for the DL-ROM procedure, they are just needed for the clustering step.
We remind that the goal is to group in clusters similar POD coefficients vectors,
since thanks to the previous sections we realized that when they are too different
it creates difficulty in the DL-ROM procedure. After this step we will group in
k clusters the snapshots (accordingly to how the corresponding POD coefficients
vectors are grouped) and we will compute k POD basis. Thanks to those k POD
basis we will get the final POD coefficients vectors which will feed the Encoder.
The last technical point regards the normalization of the POD coefficients vector
before implementing the clustering: since the clustering is used to group snapshots
based on which POD modes are important for their reconstruction, we normalize
every POD coefficients vector by their own maximum and minimum, by subtracting
the minimum and dividing by the difference between maximum and minimum.

31

In Figure 23 we show the effect of the clustering at the variation of N with
k = 3. This means that we are projecting the fields uh(t,µµµ) on a linear vector space
of dimension N , with N ∈ {10, 70, 160, 264} and we apply the FCM algorithm on
POD coefficients vectors of dimension N . We chose k = 3 since we recognized 3
regimes in time for the previous sections.The first immediate comment about Figure
23 is that the clustering acts mainly on the space of time, meaning that time is the
main parameter that causes variation in this dynamical system. In fact in all the
4 figures we see that given a second if we go through the simulation axis we do
not see a change in clusters, except for the seconds near the two boundaries and
some exceptions. Another comment is related to the difference between the case
N = 10 and the others: first of all the snapshots with t = 2 s belong to the red
cluster number 2, while they belong to cluster number 1 in the others. Secondly we
see how two the cuts are shifted towards the left from N = 10 to the others. It is
difficult to establish why all this changes happen when N becomes larger. For sure
the snapshots with t = 2 s are much more different from the others, as we discussed
in Figure 12, and this difference becomes clearer while N grows. We conclude this
section by remarking that we used the FCM algorithms on 4000 POD coefficients
vectors (40 seconds from 100 simulations). In what follows we choose the dimension
of the POD coefficients vector on which it is done the clustering to be N = 5,
since from Figure 23 it appears that with low N we get a more regular classification,
especially for the snapshots with t = 2 s.

4.2 NN classifier

The second step of the training stage regards the construction of a NN classifier, in
what follows with k = 3. This object is needed since at testing time we will only
have an instance of parameters (t,µµµ) and we will want to know to which POD basis
it belongs. The Classifier is made up by 4 hidden layers of 50 neurons each. We use
a ReLu activation function on all layers and a Softmax function on the last one. We
train the network on 3200 samples, giving as input the 6−dimensional vector (t,µµµ)
and getting as output the corresponding cluster. The loss function used is the Sparse
Categorical Cross Entropy. In Figure 24 we see the result of the application of the
NN Classifier on the testing instance of parameters, with an accuracy of 0.9825.
We used 3200 snapshots for the training and 800 for the testing. The prediction
works well probably because time is the main driver for the grouping of clusters,
and thus the model only needs to look at it. We conclude by explaining why we are
training with 3200 samples while we used all the 4000 for the clustering: there is not
danger of overfitting, since using all the data available for the clustering only makes
it more accurate to find the centers of the k clusters, since the classification is
later trained on the NN Classifier by using the first 3200 samples.

4.3 Results

After the clustering and classification step, we can finally use the POD-DL-ROM
method as in Section 3. The architecture is the same discussed in 2.5.1. The
difference now is that the Encoder is fed with POD coefficients vectors coming from

32

Figure 24: Predictions of the NN Classifier

k POD basis. At this regard, a small note about the normalization of the inputs: we
proceed in the same way as in 3.1, but now we have I1, I2, ..., Ik, coefficient matrices,
and thus k Iimax and Iimin. This means that we apply equation 18 paying attention
to use the correct Iimax and Iimin. Of course at testing time when we use the inverse
normalization, we keep track of the right Iimax and Iimin. In Figure 25 we see the
relative error per second of the three methods compared: standard POD-DL-ROM,
Empirical POD-DL-ROM with only one cut in time recognized empirically (section
3.4) and Localized-POD-DL-ROM with k = 3. We used N = 64. Notice how the
standard POD-DL-ROM outperforms the other methods given the ϵG (Equation
21). However for the first seconds both the Empirical and the Localized methods
give better results than the Standard POD-DL-ROM. We remind that with the
Localized POD-DL-ROM method we have an additional source of error: the
one caused by the NN Classifier. In fact since its accuracy is high but still not
one, if the prediction of the cluster is wrong it assigns the POD coefficients to a
wrong POD basis, causing a major increase in the relative error per second and in
ϵG. This happens often towards the ’cuts’, as it can be seen around second 26 of
Figure 25. In fact if we look at the case N = 10 of Figure 23 (we recall here we
used N = 5 for the clustering), we see the second cut is around t = 26 s. Finally, it
should be noticed that the global metric we use, that is Equation (21), gives much
more importance to the snapshots with greater norms. This comes from the
subtle difference between the denominators of Equations (21) and (22): the first
one takes into consideration the sum of the squared norms of all the snapshots of
a given testing simulations, while the latter only the squared norm of the snapshot

33

Figure 25: Comparison of the relative error per second of the 3 methods: Standard POD-
DL-ROM, Empirical POD-DL-ROM and Localized POD-DL-ROM. N = 64 for all the 3
cases.

at time t. It follows that for the first metric it does not matter much how the
predictions work for the initial seconds, since the norms of those vectors is small,
compared to the late seconds. On the opposite the second metric only considers
the norm of the snapshot of time t. This means that accordingly to ϵG, it is much
more important to perform well towards the last seconds of the simulations than the
initial ones. This is why following ϵG the standard POD-DL-ROM performs better
than the empirical one as it is shown in Figure 25, although the initial seconds are
much better predicted in the latter than the late seconds by the former.

4.4 Independent training

We conclude with a final experiment: we use the clustering with k = 3 to understand
how the snapshots are grouped in time and then we set the boundaries: we make
by hands cuts at t = 14 s and t = 26 s. This means now we are not using a NN
Classifier, we just use the clustering to decide where to put the cuts. Of course this
is not very rigorous as in Figure 23 we see that the clusters are not exactly only in
time, but especially at the boundaries we have some irregularities. Then we train
independently three models: we create 3 Input matrices I1, I2, I3 based on the two
cuts in time and we use them to train 3 independent POD-DL-ROM models. This
is different from Empirical POD-DL-ROM (Section 3.4), where we created multiple
POD basis but only one Input matrix, obtaining at the end only one POD-DL-ROM
model. In Figure 26 we see how this method performs better (according to ϵG) than
the others.

Overall, we see how the Localized POD-DL-ROM method performs poorly, com-
pared to the others. This is due for sure to the error introduce by the NN Classifier
and to the fact that the convolutional layers of the CAE are given some images

34

Figure 26: Comparison of the relative error per second of the 4 methods: Standard POD-
DL-ROM, Empirical POD-DL-ROM and Localized POD-DL-ROM and Independent POD-
DL-ROM . N = 64 for all the 4 cases.

which look similar but belong to different POD basis. However the experiment done
with the independent training showed how the insight of using an initial clustering
to separate the regimes may point in the right direction, although it is still not clear
how to concretise everything in a unique NN model.

A final theoretical open question, related to the internal structure of the DL-
ROM method: how is it theoretically justifiable to use convolutional layers on POD
coefficients vector, when these are independent? Convolutional layers are much
effective, for example in image classification, since they learn the spatial correlations
internal to objects, but this should not be the case in our system, where the Encoder
inputs are POD coefficients. This topic is partially addressed in the paper [29], in
which the very strong analogy between the DL-ROM / POD-DL-ROM techniques
and the DPIM method is studied. Because of this strong similarity the authors are
led to say that in POD-DL-ROM the POD modes are combined with each other
through nonlinear functions of the latent variables. However this still conflicts with
the independence of the POD modes, and when the presence of POD coefficients
from different POD basis is added, this becomes even more difficult to explain on
a theoretical basis. It would be interesting to see how the performance of POD-
DL-ROM would change if the convolutional layers were replaced by dense layers,
although the training would be slower.

35

5 Conclusion
In this work we showed how to construct a reduced order model of blood throm-
bosis simulations using the POD-DL-ROM method. We focused on the prediction
in time and space of one biochemical specie, vWFs, which is chosen since it is the
one that makes the prediction difficult for some time instances. We were able to
get good results at the variation of both time and parameters, with the exception of
some cases that we presented. We found out that, although POD is an essential tool
to reduce the dimensionality of the problem, it poses a huge conceptual limitation
to the objective of the work: it limits the approximation of the fields to a linear
combination of vectors, which is non-ideal when the PDEs are nonlinear. It is true
that this problem may be partially solved increasing the size of the linear basis,
but as we showed in Figure 17, this implies a bigger number of parameters to be
learned by the algorithm and thus a bigger number of data-points for the training.
In addition, POD modes favor the variations in time and parameters which carry
the biggest amount of energy, and thus it is difficult to find the correct linear combi-
nation of modes which can result in a good approximation of the field. To overcome
this limit we showed in Section 3.4 an example of (empirical) localized model order
reductions. We separated the snapshots in two time intervals, but the separation in
general should not be limited to time: there may be systems characterized by differ-
ent regimes not at the variation of time but of some other parameter. For this reason
we introduced the Localized POD-DL-ROM, which relies on a prior clustering step
in order to find the different regimes in time and/or parameters in a quantitative
(non empirical) way. However this method does not lead to better results when
compared to the others proposed. It would however be worth it to try to improve
it, because of its non-intrusive nature and its potentiality to deal with big variations
in time and/or parameters inside a physical simulation. To confirm the usefulness
of an initial clustering, we showed how training k independent POD-DL-ROM
models from snapshots divided by the clustering outperforms the traditional POD-
DL-ROM, although in this way we renounce to a single NN model. Future lines
of research may also point in the following direction: finding a substitute of POD
which is a linear approximation, by exploring nonlinear dimensionality reductions
such as KPOD [30].

Source code: the code for POD-DL-ROM and Localized POD-DL-ROM is available at
https://github.com/Aleartulon/rom4clot

36

https://github.com/Aleartulon/rom4clot

References
[1] P. Nagareddy and S. Smyth, “Inflammation and thrombosis in cardiovascular

disease. current opinion in hematology,” 2013.

[2] Jaffer and et al., “Acta biomater,” 2019.

[3] R. M. Rojano, D. Lucor, and et al., “Uncertainty quantification of a thrombosis
model considering the clotting assay pfa-100®,” 2021.

[4] T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza, “Model order reduction
in fluid dynamics: Challenges and perspectives,” pp. 235–273, 2014.

[5] P. Harrison, M. Robinson, R. Liesner, and et al., “A potential rapid screen-
ing tool for the assessment of platelet dysfunction,” Clinical and Laboratory
Haematology, 2002.

[6] M. Zhussupbekov, R. Méndez Rojano, W.-T. Wu, and J. Antaki, “Von wille-
brand factor unfolding mediates platelet deposition in a model of high-shear
thrombosis,” 2022.

[7] P. Zhang, J. Sheriff, S. Einav, and et al., “A predictive multiscale model for
simulating flow-induced platelet activation: Correlating in silico results with in
vitro results.,” 2021.

[8] W. Wu, M. Jamiolkowski, W. Wagner, and et al., “Multi-constituent simulation
of thrombus deposition.,” 2017.

[9] P. Benner, M. Ohlberger, A. Cohen, and K. Willcox, Model reduction and ap-
proximation: theory and algorithms. SIAM, 2017.

[10] M. Ohlberger and S. Rave, “Reduced basis methods: Success, limitations and
future challenges,” arXiv: Numerical Analysis, 2015.

[11] K. Lee and K. T. Carlberg, “Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders,” Journal of Computational
Physics, 2020.

[12] S. Fresca, L. Dede, and A. Manzoni, “A comprehensive deep learning-based
approach to reduced order modeling of nonlinear time-dependent parametrized
pdes,” Journal of Scientific Computing, 2021.

[13] S. Fresca and A. Manzoni, “Pod-dl-rom: Enhancing deep learning-based re-
duced order models for nonlinear parametrized pdes by proper orthogonal de-
composition,” Computer Methods in Applied Mechanics and Engineering, 2022.

[14] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based model
reduction methods for parametric dynamical systems,” SIAM Review, 2015.

[15] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decompo-
sition in the analysis of turbulent flows,” Annual Review of Fluid Mechanics,
1993.

37

[16] L. Sirovich, “Turbulence and the dynamics of coherent structures. i - coherent
structures. ii - symmetries and transformations. iii - dynamics and scaling,”
Quarterly of Applied Mathematics, 1987.

[17] M. Rathinam and L. Petzold, “A new look at proper orthogonal decomposition,”
SIAM J. Numerical Analysis, 2003.

[18] CNRS, “Formation introduction au deep learning,” Available at https://
gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home.

[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Adaptive compu-
tation and machine learning, MIT Press, 2016.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” (Red Hook, NY, USA), Curran Associates
Inc., 2012.

[21] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher, and
D. J. Schwab, “A high-bias, low-variance introduction to machine learning for
physicists,” Physics Reports, 2019.

[22] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description length
and helmholtz free energy,” (San Francisco, CA, USA), Morgan Kaufmann
Publishers Inc., 1993.

[23] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization methods from
a machine learning perspective,” IEEE Transactions on Cybernetics, 2020.

[24] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decomposi-
tions,” SIAM Review, 2011.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Inter-
national Conference on Learning Representations, 2014.

[26] D. Pelleg and A. Moore, “Accelerating exact k-means algorithms with geometric
reasoning,” 1999.

[27] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means clustering
algorithm,” 1984.

[28] R. Geelen and K. Willcox, “Localized non-intrusive reduced-order modelling
in the operator inference framework,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 2022.

[29] G. Gobat, S. Fresca, A. Manzoni, and A. Frangi, “Virtual twins of nonlinear vi-
brating multiphysics microstructures: physics-based versus deep learning-based
approaches,” 05 2022.

[30] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a
kernel eigenvalue problem,” Neural Computation, 1998.

38

https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home

	Thrombus Simulations
	Introduction and objectives
	Geometry
	Mathematical model

	Deep Learning and Model Order Reduction
	Proper Orthogonal Decomposition (POD)
	Deep Feed-Forward Neural Networks (DFNN), Convolutional Neural Networks (CNN) and Autoencoders (AE)
	Problem formulation
	Deep Learning - Reduced Order Model (DL-ROM)
	POD-DL-ROM
	Architecture

	Results
	Training and Data preparation
	Initial analysis of Data
	Predictions in time and parameters
	Localized reduced order models

	Localized-POD-DL-ROM
	Clustering
	NN classifier
	Results
	Independent training

	Conclusion
	References

