
POLITECNICO DI TORINO
Master Degree course in Physics of Complex Systems

Master Degree Thesis

HGF.jl: a Julia package for Hierarchical
Gaussian Filter fitting and simulation.

Supervisors
Prof. Christopher Mathys
Prof. Andrea Pagnani

Candidate
Jacopo Comoglio

Academic Year 2021-2022

Acknowledgements

I would like to thank my colleague Peter Thestrup Waade who worked with me on the
development of this package, my supervisor prof. Chris Mathys who introduced me to
the model and gave me the possibility to join him to work on it, and all the staff at
Aarhus University interacting mind centre for the amazing work environment.
I would like to also thank all the professors of the master in Physics of Complex Sys-
tems both in Paris and Torino for their support and understanding. In particular prof.
Alessandro Pelizzola, prof. Jean-Baptiste Fournier and prof. Julien Tailleur without
whom I would have never been able to come this far and I would have probably already
regretfully left this field.
Last I would like to thank my friends and my family who believed in me even when I had
stopped for a long time.

2

Abstract

The Hierarchical Gaussian Filter has been used for several years now as a good middle
ground between Bayesian Inference and Reinforcement Learning models when it comes
to estimating how an agent updates its beliefs when presented with new information.
Our Julia package will provide a new environment to run such analysis endorsed with
a more user friendly structure allowing both a faster and smoother workflow and the
possibility to implement bigger and more complex HGF structures just as easily.
It also makes it finally possible to use sampling techniques to fit the model parameters
once given both the inputs and the responses.
After a short introduction to HGF models and Julia, this thesis will provide a list ex-
plaining the functions making up the package and a couple of usage examples showing
the workflow in action both in a testing case and a real research task.

Contents

1 Introduction 3

2 Brief introduction to HGF models 5
2.1 The HGF structure . 5
2.2 The HGF update equations . 6
2.3 Variational Bayesian approximation . 7
2.4 Action Models . 8
2.5 Value and volatility coupling . 8
2.6 HGF main features and motivations summary 9

3 The Julia programming language 11

4 Package overview 13
4.1 General overview . 13
4.2 The core Structs . 13
4.3 Initialization functions . 15
4.4 Updating functions . 17
4.5 Fit functions . 18
4.6 Plotting functions . 19
4.7 Utility functions . 20

5 The CHF-USD exchange rate 23
5.1 Simulating the agent . 24
5.2 Fitting the agent parameters . 28

6 The alien task 33
6.1 model fitting and simulations . 34
6.2 multiple datasets analysis . 37

7 Discussion and Future updates 39

Bibliography 41

A Minimal Julia glossary 43

2

Chapter 1

Introduction

This thesis’ purpose is to present the newly developed HGF.jl Julia package which was
published in September 2022 1 . This new release is meant to improve the pre-existing
MatLab toolbox by making it easier to create and run complex HGF structures and run-
ning different samplers without the need to move to a separate program or language (e.g.
Stan or R). The package is in fact fully written in native Julia and so are all the used
external packages. This allowed us to remove the need to rely on a paid platform like
MATLAB while adding new functionalities and, most importantly, a way to fit model
parameters.
The first section of this paper will run through the main features of HGF models to give
the reader some context on the premises of the model this package aims to run. For
a more detailed theoretical presentation on HGF models please refer to [6] and [7] or
even [2] for a fully detailed explanation.
A second short introductory section will provide some context and motivation on why
the Julia programming language was chosen for this new release. If the reader is not
accustomed to this relatively young programming language, please refer to appendix A
for a fast overview of some concepts and standards that were used in the package.
After these preliminary sections, the package itself will be presented by introducing first
the structure hierarchy on which it is based and then listing and describing all the main
functions included in this release.
Please note that as this thesis is being written the package is still a work in progress: the
1.0 version was officially made available to the public in September 2022, but some of its
features are still subjected to fixes and expansions in the future releases. The most up to
date description of the functionalities for the last releases will be available on the project
Github page.
The last part includes two case studies aimed at providing some examples, accompanied
by code, for the package usage in different research contexts.
In the example data on the US dollar-Swiss Franc exchange rate are used to exemplify

1note: curently the package is published split in two separate packages called "HierarchicalGaussian-
Filtering.jl" and "ActionModels.jl"

3

Introduction

what kind of analysis our package is capable of performing in terms of fluctuations de-
tection and parameter retrieval.
In the second example instead some analysis is performed on data drawn from an actual
behavioural research study "The Alien Task" 2 where participants were required to guess
the amount of gold hidden in a cave when presented with the image of an alien whose
features noisily correlated with the value of the reward.
To download the current version of the package please refer to the official GitHub reposito-
ries https://github.com/ilabcode/HierarchicalGaussianFiltering.jl and
https://github.com/ilabcode/ActionModels.jl.

2Soon to be published but not available yet.

4

https://github.com/ilabcode/HierarchicalGaussianFiltering.jl
https://github.com/ilabcode/ActionModels.jl

Chapter 2

Brief introduction to HGF models

2.1 The HGF structure
The Hierarchical Gaussian Filter (HGF) is a family of models introduced for the first time
in [6] to describe how an agent (in its broadest sense, i.e. a human being, an artificial
intelligence, the stock market...) learns about the value of a quantity that varies in time.
Its basic structure consists of a series of Gaussian random walks hierarchically organized
in which the variance of the walk at the lower level is determined by the value assumed
by the walk one level up.

Assuming x1 is any environmental varying quantity the agent wants to know, the
model assumes it will vary as a Gaussian random walk around its value at the previous
time step. In formulas, calling k the time step:

xk
1 ∼ N (xk−1

1 , θ) (2.1)
Where here θ is the variance.

In principle however there is no reason why the variance of this random walk would be
constant over time, hence we consider it to vary in time as a function f(x2) of another
random walk value x2 that we consider to be at a higher level on the hierarchy.
The model enriched with a second level can now be written as

xk
1 ∼ N (xk−1

1 , f(x2)) (2.2)
xk

2 ∼ N (xk−1
2 , θ2) (2.3)

Again the assumption that the variance θ2 of x2 is constant in time can be relaxed by
adding a third layer with variable x3 just as we did before, with the model now being:

xk
1 ∼ N (xk−1

1 , f(x2)) (2.4)
xk

2 ∼ N (xk−1
2 , f(x3)) (2.5)

xk
3 ∼ N (xk−1

3 , θ3) (2.6)

In this way, we described a situation where not only the value of x1 can vary in time
but also its volatility may change.

5

Brief introduction to HGF models

To further clarify why this may be useful, think about an agent who is trying to deter-
mine the position of a leaf blowing in the wind. Not only the position of the leaf will vary
in time but also the wind strength my change and so how much the position of the leaf
fluctuates.
In principle there is no limit to how many levels we could add in this way to our hierar-
chy, but, as we will see later in the case study section, we will see that if we add more
layers than needed, the value for those layers will become approximately constant in time
hinting that adding more of them became pointless.

The last point in the basic model definition is the specification of the form for the
function f(x) for the variance. The most common choice is

f(x) = eκx+ω (2.7)

Where κ and ω are parameters of the model. Notice that since f(x) represents a variance
a positive function must be chosen.

2.2 The HGF update equations
In this subsection we will now sketch the procedure used to extract the update equations
for an agent belief on the hidden states xi when being presented with the a series of
inputs uk which value is to be predicted by the first layer x1.
To run this kind of Bayesian inference we should first of all state the generative model
implied by our structure. In our example of a 4-level HGF (3 hidden levels plus one input
one) this would amount to

p(uk, xk
1, xk

2, xk
3, xk−1

2 , xk−1
3 , ω, κ, θ)
= p(uk|xk

1)p(xk
1|xk

2)p(xk
2|xk−1

2 , xk
3, κ, ω)

p(xk
3|xk−1

3 , θ)p(xk−1
2 , xk−1

3)p(ω, κ, θ) (2.8)

where p(uk|xk
1) can be a deterministic relationship between sensory input and percep-

tive state or encode the perceptual uncertainty of the agent. Rewriting the generative
density as

p(uk, xk
1, xk

2, xk
3, xk−1

2 , xk−1
3 , ω, κ, θ)

= p(uk, xk
1, xk

2, xk
3, ω, κ, θ|xk−1

2 , xk−1
3)p(xk−1

2 , xk−1
3) (2.9)

we can highlight the Markovian nature of this process. (i.e. xk−1
2 and xk−1

3 are the two
variables carrying all the information about the previous timesteps inputs:
p(xk−1

2 , xk−1
3 |u(1,...,k−1)) = p(xk−1

2 , xk−1
3)).

Integrating then over xk−1
2 and xk−1

3 we obtain p(xk, uk, χ|u(1,...,k−1)) (where xk is a
shorthand for the set of x at timestep k and χ = {θ, ω, κ} is the set of parameters.) After
uk is observed it can be plugged in to obtain

p(xk, χ|u(1,...,k)) (2.10)

6

2.3 – Variational Bayesian approximation

the posterior distribution we were looking for. The last thing needed for the posterior
probability over the states xk is a choice for the parameters’ priors.
In the HGF model this choice amount to delta functions priors for all the parameters,
meaning that those parameters are considered to be fixed or at least to vary at a much
longer timescale compared to the states.
Agent’s internal states, in fact, are considered to vary during the learning process (e.g.
during an experiment) while parameters represent agent’s individual characteristics that
may only vary in a time much longer than the duration of an experiment. This priors
choice give the model the possibility to represent variability between different agents with
the differences in their sets of parameters.
While in principle these equations could be sufficient to invert the model and update it
by marginalizing over x2 and x3 at the previous timestep to compute the new one, this
would involve computationally expensive integrals that would make the model not only
hard to compute but also not biologically plausible.
Hence the choice to resort to a Variational Bayesian mean-field approximation.

2.3 Variational Bayesian approximation

We will now go through the main steps and features of the approximation used in the
HGF model to derive the update equations. For more details on the computational aspect
please refer to appendix B and C of [2].
The Variational Bayesian approach allows us to derive an approximated posterior dis-
tribution by minimizing the negative surprise on the data, given a model. We will then
choose for our approximation a mean-field class of models, allowing us to factorize the
distribution at the different levels. We will furthermore choose a single form for the indi-
vidual levels distributions. This choice will be guided by the maximum entropy principle
for it to be the less arbitrary possible. One last simplification comes from the assump-
tion that the distribution will be represented only by its first two moments, not only to
simplify the computations but to make them plausible in a biological setting. In the case
of nodes where x takes continuous values, this distribution will then be the Gaussian
distribution. Solving the variational problem with the mean-field approximation gives as
a result the fact that the distribution should be proportional to the exponential of the
variational energy (I(xk

i)).

q̂((xk
i)) ∝ e(I(xk

i)) (2.11)

where q̂((xk
i)) is the distribution at level i in its "unconstrained" form. To enforce the form

of q we mentioned beforehand (i.e. Gaussian for "continuous" levels), taking into account
the already exponential form of the q̂ distribution, it is enough to take a second degree
expansion of the variational energies. Concerning the expansion point, after scrapping
the idea of using the maximum (since, being it unknown, it would be add computational
complexity estimating it), the choice was to expand around the value of x at the previous
time step xk−1. The result of this series of approximations is a set of one-step update
equations, the form of which can be easily interpreted as a precision weighted prediction

7

Brief introduction to HGF models

error update, reminiscent of Reinforcement Learning theories.

∆µk
i ∝ κi−1

π̂k
i−1
πk

i

δi−1 (2.12)

This is the fundamental equation for the HGF model that is implemented in our package
and it can be interpreted as this: the update ∆µk

i on the mean at level i is proportional
to the prediction error δi−1 one level below weighted by the ratio between the prediction
precision one level below π̂k

i−1 and the posterior precision at level i, πk
i . The coefficient

κi−1 can be thought as a parameter representing the coupling between the two levels.

2.4 Action Models
In an experimental setting while we know (and usually even have control) over the input
series given to the subject (agent), we cannot access any of their hidden internal states x.
What we can observe instead are only the "actions" taken by the agent (even when there
is no actual "action" modifying the environment we can take as actions the responses
we can observe from the agent). This is what is known as the "observing the observer"
framework [3]. To model this we then need to pair our perceptual model (the HGF in
our case) with an appropriate action model of our choice (the package provide a good
selection of premade ones). This pair HGF-Action Model is what constitutes an "agent"
in our model and are the two things to be initialized when creating an agent instance in
our package.

2.5 Value and volatility coupling
To allow for more generality and flexibility of use, our package implements a slightly more
advanced version of the HGF model with respect to the one introduced before.
This version is known as the "generalized HGF" (for short gHGF) and can be found in
detail in chapter 4 of [4].
In this framework nodes who are one level above another one are called his parents (and
the lower level node their child).
For the scope of this thesis and for the usage of the package, the only substantial difference
with respect to the previous version is the introduction, together with the parent-child
relationship we introduced before, called from now on "Volatility Coupling", a new hier-
archical relationship called "Value Coupling".
This new relationship is reflected in different ways in the equations depending on the fact
that the child node represents an internal state or an input.
Value coupling for input children amount to assuming that those inputs were drawn from
a Gaussian distribution with the parent’s value as mean.
Value coupling for state children amounts instead to considering a Gaussian distribution
whose mean is determined by the sum of the value of the state at the previous time-
step and the value of the parent state multiplied by the coupling coefficient. Figure 2.1
presents an example of a structure with both volatility and value parents showing the
mathematical form for the assumed distributions.

8

2.6 – HGF main features and motivations summary

Figure 2.1. Generalized HGF structure. Circles represent state nodes, squares input
nodes. Solid lines connect value parent-child couples and dashed lines variance parent-child
couples. Close to every node it is possible to read the distribution implied by the structure.

2.6 HGF main features and motivations summary
The HGF model differs from other models for inference and learning in a series of features
that constitutes the main strengths of this framework:

• It has a Reinforcement Learning like set of analytical one-step equations but, at odds
with usual RL models, these equations have a strong mathematical basis rooted in
Bayesian Statistics.

• At odds with common Bayesian models its update does not involve complex inte-
grals, making it a reasonable candidate to model real-time computations in biolog-
ical systems.

• Parameters and states used in the model have a clear meaning and so are easy to
make sense of.

• The set of parameters is considered fixed or to vary at a much slower rate with
respect to the states, allowing using it to model individual differences between
agents or differences in value for a single agent at different moments. This can be
used e.g. to link abnormal values of the parameters to pathological conditions.

On a strictly practical level, for the package user, the main take-aways from this
theoretical introduction on HGF models must be:

• The agent structure, being composed by a perceptual model (in our case the
HGF) with its (internal, inaccessible) states nodes representing the way the agent

9

Brief introduction to HGF models

believes on the outside world are filtered and organized and the input nodes storing
the sensory inputs given by the outside world (remember that sensory uncertainty
is modelled by the relationship between the input and the first state level) and an
action model that may depend on internal state values and gives an output that
may influence or modify the external world and that we can observe.

• The fact that all the parameters for the perceptual model (evolution rates, ini-
tial state values, coupling constants) and the action model are used to represent
differences between agents or for a same agent in two separate times.

10

Chapter 3

The Julia programming language

This newly developed Julia [1] package was meant to replace and expand the previously
existing MatLab HGF Toolbox. The advantages of writing this new package all in native
Julia mainly amount to the following:

• Julia is open source, this will remove the need for a paid software as MatLab was.

• Julia is both fast and high-level, it was designed for performances and, unlike e.g.
Python, is a compiled language. Nevertheless being it high level allowed us to code
an easy and straightforward framework for the final user.

• Julia "multiple dispatch" features are particularly useful to code a modular structure
such as the HGF model allowing the user to code big HGFs in a much easier way
than before.

• The Turing [5] Julia package for model sampling is very efficient thanks to Auto-
matic Differentiation and offers a wide variety of state-of-the-art samplers such as
the No U-Turns Sampler (NUTS).

• Julia package management systems make it very easy for the final user to install
our package once it will be listed in the official General Registry.

All of this factors concurred in making Julia our language of choice to develop a tool that
could be at the same time very powerful but easy to use even without a deep knowledge
on the underlying mathematics and without the need for advanced programming skills.
We hope in this way to open the path to the usage of more advanced computational and
mathematical models in fields where they traditionally struggle to settle.
If the reader is not accustomed to this relatively young programming language we in-
vite them to read the appendix A before moving to the next section since, even if Julia
commands and keywords are pretty straightforward and similar to other high-level lan-
guages (e.g. Python), there are some standards and peculiarities that is worth knowing
in advance for a better understanding.

11

12

Chapter 4

Package overview

4.1 General overview
The purpose of this new Julia package is to make it intuitive and easy to implement HGF
models and run inference on data also for researchers without a deep understanding of
the Mathematics behind it or extensive coding experience.
The package includes both generic low-level functions, allowing the more experienced
users to define their own models in full detail, as well as a series of utility functions to
speed up the workflow and help even the less experienced users successfully run this tool.
The package backbone is constituted by a structure architecture designed to efficiently
implement the HGF structure and take advantage of Julia’s multiple dispatch. We will
now present an overview of this structure. Please note that the final user will pretty
much never interact directly with this since a series of utility functions will do all the
work providing a more intuitive front-end.

4.2 The core Structs
Taking a top-down approach at the widest level we found the AgentStruct, it represents
the agent and its fields are:

• action model: the function defining the chosen action model for our agent.

• params: a dictionary specifying the action model parameters.

• state: a dictionary memorizing the current states given by the action model.

• history: a dictionary saving the previous states and action taken by the action
model.

• action: saving the current value for the action.

• perception_struct: the perceptual model assigned to the agent. This is the field
where an HGFStruct can be put (but in principle also other perceptual models).

13

Package overview

This corresponds to the agent we defined in the theory section, its two main components
"action model" and "perceptual model" are passed in the two corresponding fields.
The HGF per se is coded as an HGFStruct to be passed to an AgentStruct or to be
used by itself when no response is needed (this may be the case when we just want to
observe the evolution of internal state without the need to fit them against the agent
actions).
Its fields are:

• perception_model: a function used to update the model at each time-step (for
the classic HGF this will be update_HGF! but in principle other user-defined
functions can be used).

• all_nodes: A dictionary containing the all nodes of the HGF model used when
there is no need to distinguish by node type.

• input_nodes: A dictionary containing the input nodes of the HGF model defined
as InputNode structures.

• state_nodes: A dictionary containing the input nodes of the HGF model defined
as StateNode structures.

• ordered_nodes: A convenience vector of InputNode and StateNode used to
pass the update order when it is nontrivial.

The last building bricks in our structure hierarchy are the InputNode and StateN-
ode structures both in their continuous and binary version. They represent the states
and inputs of the HGF structure as "nodes" connected by parent-child relationships that
are summarized inside the nodes themselves. Nodes of the binary type are used to de-
scribe inputs that can assume only binary values (e.g. if the light is on or off, if a sound
was played or not) or to describe states whose statistic is assumed to be described by a
logistic function for the probability of that state to be "on" CHECK.
Binary nodes are defined as a different custom type so that the program, when running
the update equations can recognize them and automatically select the correct formulas.
In future releases also Categorical nodes are planned to be implemented in a similar fash-
ion to represent quantities that take values in a finite, discrete set. The fields are, for
StateNode:

• name: the name assigned to the node

• value_parents: a list of the higher-level nodes coupled to the node by value.

• volatility_parents: a list of the higher-level nodes coupled to the node by volatil-
ity.

• value_children: a list of the lower-level nodes coupled to the node by value.

• volatility_children: a list of the lower-level nodes coupled to the node by volatil-
ity.

14

4.3 – Initialization functions

• params: a dictionary containing the node parameters such as evolution rate and
all the value and volatility couplings to the other nodes (this are the θ, κs and ωs
from section 2.

• state: a dictionary containing the variables related to the current state of the node,
such as prediction and posterior means and precisions and prediction errors.

• history: a dictionary saving in a vector the variables related to the state of the
node at all time-steps.

For InputNode instead:

• name: the name assigned to the node

• value_parents: a list of the higher-level nodes coupled to the node by value.

• volatility_parents: a list of the higher-level nodes coupled to the node by volatil-
ity.

• params: a dictionary containing the node parameters such as evolution rate and
all the value and volatility couplings to the other nodes.

• state: a dictionary containing the variables related to the current state of the node,
such as input values, prediction errors, and predicted precision.

• history: a dictionary saving in a vector the variables related to the state of the
node at all time steps.

Note that, at odds with state nodes, the input nodes lack a field for value and volatil-
ity children. This is due to the fact that inputs are always placed at the lowest levels in
an HGF hierarchy since they represent the perceptual data fed to the agent.

The binary versions BinaryStateNode and BinaryInputNode have exactly the
same fields, they are separate structures purely for multiple dispatch usage.

This structure is diagrammatically summarized in figure 4.1.

4.3 Initialization functions
This subsection includes functions whose purpose is to create HGFStruct and AgentStruct
in a more user friendly way together with functions to generate automatically the most
used models.

• init_HGF(node_defaults, input_nodes, state_nodes, edges, update_order
= false, verbose = true,): this function is used to create an HGF structure
with the maximum generality. It also runs a series of checks to ensure the defined
structure it’s a legitimate HGF.
In the node_defaults argument can be passed a named tuple with the parameters

15

Package overview

Figure 4.1. Diagram summarizing the main structures of the package. Note that the
"state_node" and the "input_node" fields in the HGFStruct may contain multiple StateN-
ode and InputNode structs as well as their binary versions.

to be used for every node if not differently specified.
The input_nodes and state_nodes arguments are given lists of named tuples
stating the node names and, optionally, their parameters.
In the edges field are specified, by mean of a list of named tuples, the directed
graph edges between parent and child nodes.
The update_order keyword can be given a list specifying a particular update
order or be set to false for it to be determined automatically.
The verbose keyword can be changed to false to turn off the warnings.

• premade_HGF(model_name::String, params_list = (;), starting_state_list
= (;)): this function allows to create the most widely used HGF model in the fastest
possible way by simply calling the model name.
The model_name field has to be given one of the available keywords to ini-
tialize the corresponding model. Calling the special keyword "help" will instead
show a list of all the implemented keywords. Currently the working keywords are
"continuous_2level", "binary_2level", "binary_3level", "JGET".
The params_list and starting_state_list optional arguments allows to pass a
list of named tuples specifying the parameters and starting states for each node in
the preset configuration1.

• init_agent(action_model::Function, perception_struct, params, states):

1Note: in newer versions params_list and starting_state_list have been unified in a single
params_list argument

16

4.4 – Updating functions

this function creates an AgentStruct based on a user-defined action model in a more
user-friendly way. The action_model argument takes a function used to compute
the action.
In the perception_structure field a perceptual model can be passed (if working
with HGF this will be an HGFStruct).
The params argument receives a named tuple with the action_model parameters
values. The states argument receives a named tuple with the action_model states
if any.

• premade_agent(model_name::String, perception_model = (;), params
= Dict(), states = Dict(),): this function allows to initialize an AgentStruct
without having to create a new action model but using the premade ones that can be
called by passing the respective keyword to the model_name argument. All the
other arguments work the same way as in init_agent. Calling the special keyword
"help" will instead show a list of all the implemented keywords. Currently working
premade agents keywords are hgf_gaussian_action, hgf_binary_softmax_action,
hgf_unit_square_sigmoid_action

4.4 Updating functions
The functions in this subsection are at the core of HGF simulation, we will now present
only the main ones since the user will never have to deal with the most low level ones
(and also very rarely with all but the give_inputs! function).

• give_inputs!(HGF::HGFStruct, input::Number): function to perform one
update step on an HGF with the provided input. This functions calls the up-
date_HGF! function which takes case of calling all the hierarchy of update equa-
tion in the right order for the created structure.

• give_inputs!(HGF::HGFStruct, inputs::Array): this function calls the pre-
vious one multiple times to evolve the HGF on the whole array inputs.

• give_inputs!(HGF::HGFStruct, inputs::Dict{String,Vector}): same as be-
fore but this time the inputs are provided as vectors in a dictionary (useful when
working with multiple input nodes).

• give_inputs!(agent::HGFStruct, input::Number): this is the main function
for agent simulation. It extracts the HGF structure from the agent and evolves
it but it also utilizes the result to generate action/response following the agent
action_model and returns it.

• give_inputs!(agent::AgentStruct, inputs::Array): this function calls the pre-
vious one multiple times to evolve the agent on the whole array inputs returning
actions/responses as an array.

• give_inputs!(agent::AgentStruct, inputs::Dict{String,Vector}): same as
before but this time the inputs are provided as vectors in a dictionary and action-
s/responses returned as such (useful when working with multiple input nodes).

17

Package overview

• update_HGF!(HGF::HGFStruct, inputs): this function is the core of the
HGF evolution and simulation. It takes the HGF structure and evolves it on
inputs by extracting the node update order and running for all nodes (relying
on multiple dispatch to distinguish between state and input nodes) the functions
implementing the mathematical equations such as:

– update_node_prediction!(self::StateNode)
– update_node_posterior!(self::StateNode)
– update_node_prediction_error!(self::StateNode)
– update_node_input!(self::InputNode)
– update_node_prediction!(self::InputNode)
– update_node_prediction_error!(self::InputNode)

Note that all of this functions are present also with their binary version, taking as in-
puts BinaryStateNodes and BinaryInputNodes and implementing the appropriate
versions for the equations.

4.5 Fit functions
This section functions are related to parameters estimation given both input and re-
sponses to an agent model. The fitting takes advantage of the Turing package for sampling
and Automatic Differentiation.

• fit_model(agent::AgentStruct, inputs::Vector{Float64},
responses::Union{Vector{Float64},Missing},
params_priors_list = (;)::NamedTuple{Distribution}, fixed_params_list
= (;)::NamedTuple{String,Real}, sampler = NUTS(), iterations = 1000,
): this function is the core of the model fitting in the HGF.jl package. It creates a
Turing model from an agent structure, run its sampling given input and responses
to get the parameters posterior distributions and runs a series of operation in or-
der to preserve the given AgentStruct and make the returned Turing chain object
more readable. The function takes the AgentStruct agent, stores its parameters,
then substitutes the ones listed in the fixed_params_list given named tuple with
their provided values. It then proceeds to create a Turing @model macro where the
parameters to be estimated, listed in the named tuple params_priors_list, are
declared to be distributed accordingly to the given (hyper)priors. It then reset the
agent (this is important since during the sampling the agent will go trough a com-
plete cycle of updates multiple times) and then evolves the agent on the given input
array with the sampled parameters extracting the distribution for the response at
each time step and declaring that the given observed responses come from that
distribution. This declared model is then sampled with the given sampler for the
given number of iterations and the resulting Turing chain is returned (after some
clean-up to improve readability). The function also restores the previous param-
eters at the end and resets the agent history since the Automatic Differentiation

18

4.6 – Plotting functions

used in Turing sampling converts everything to dual numbers, not suitable if the
user wants to do more analysis with the same model.

4.6 Plotting functions
This subsection includes custom plotting functions created for the HGF.jl package.
They have been defined as Plot Recipes using the RecipesBase package. This allowed
us to define new plotting functions without the need of adding heavy dependencies on
plotting packages and allowing also the user to choose their favourite plotting backend.
This unfortunately had a small cost in code readability having to define macros and
not functions but for the final user, no substantial difference will occur. We will then
present now these plotting recipe macros with the signature they would have if they were
functions (since the user would ultimately use them as if they had this signature.) Note
that due to Julia’s multiple dispatch more functions with the same name but different
type signatures in the arguments can be defined.

• HGF_trajectory_plot(agent::AgentStruct, node_name, property, error_type):
this function plots the chosen property for the node node_name. If no prop-
erty is provided it will plot the posterior mean for the selected node with its error
ribbon. If in the property argument is are passed the keywords "posterior" or
"prior" the posterior/prior mean will be plotted for the selected node with its error
ribbon.
Non-continuous quantities will be automatically plotted as scatter plots (with error
bars if applicable).
The error_type argument can be used to choose between plotting the standard
deviation or a confidence interval in the applicable cases.
Being this a plot recipe it also accepts all the supported keywords of the chosen
plotting backend (such as colours, marker shapes, axis and graph titles, etc.)

• HGF_trajectory_plot(agent::AgentStruct, action_property): this func-
tion its used to plot the history for the action model’s states and actions. As before
being this a plot recipe it accept also all the supported keywords of the chosen
plotting backend.

• HGF_trajectory_plot(HGF::HGFStruct, node_name, property, error_type):
this function works exactly like the first one but it takes directly an HGFStruct as
argument instead of extracting it from the agent.

• posterior_parameter_plot(chain, params_prior_list, label_list): this func-
tion takes a chain resulting from Turing simulation and the params_prior_list
containing the estimated parameters that one wants to plot. It creates a plot where
each subplot shows the median value, the chosen quantiles, and the distribution
shape for both the given priors on parameters and the posterior estimated during
the simulation.
The optional field label_list takes as argument a named tuples containing the
name to display as titles in the subplots. If nothing is given the default names are

19

Package overview

used.
The following special keywords can be used in addition to all the keywords normally
supported by the chosen backend (the value after the equal sign is the default.)

– prior_offset = 0: vertical offset for prior x axis.
– posterior_offset = 0.01: vertical offset for posterior x axis. (It is suggested

to have slightly different offsets for prior and posterior to avoid poor graph
readability if the quantiles bars superimpose.

– prior_color = :green: sets the colour for the prior distribution.
– posterior_color = :orange: sets the colour for the posterior distribution.
– interval_1 = 0.5: sets the quantile to be shown by the thicker error bar.

Specify it using decimal number (e.g. 0.5 for 50% quantile.)
– interval_2 = 0.8: sets the quantile to be shown by the thinner error bar.
– distributions = true: changing this flag to false allows to plot only the

medians with the quantiles without superimposing the distributions.
– plot_width = 900: sets the width of the single subplots.
– plot_height = 300: sets the height of the single subplots.

• predictive_simulation_plot(agent::AgentStruct, chain::Chains, state::String,
iterations::Int, inputs): this function takes as inputs an AgentStruct and a
chain resulting from a Turing fit, draws for the chosen number of iterations a
set of parameters from the posterior distributions stored in chain and plots the
evolution of the agent on the given inputs with a thin grey line with an alpha of
0.1 to make the regions with the most trajectories appear darker.
It will furthermore draw a colored line for the trajectory corresponding to the me-
dian values of the parameters.

• predictive_simulation_plot(agent::AgentStruct, prior_list::NamedTuple,
state::String, iterations::Int, inputs): this function takes as inputs an AgentStruct
and a NamedTuple containing a set of prior distributions for the parameters (usu-
ally the one used for the fitting with Turing), draws for the chosen number of iter-
ations a set of parameters from the give prior distributions and plots the evolution
of the agent on the given inputs with a thin grey line with an alpha of 0.1 to make
the regions with the most trajectories appear darker.
It will furthermore draw a colored line for the trajectory corresponding to the me-
dian values of the parameters.

4.7 Utility functions

This section contains a variety of functions designed to make it easier to retrieve infor-
mation from an HGF or Agent structure or to modify them. Most of them were defined
on different classes of inputs by multiple dispatch and exploit this feature to simplify the
design of the wider scope ones by calling inside more specific one (e.g. functions accepting

20

4.7 – Utility functions

an array of inputs using the version for just a single input inside them.).
These multiple dispatched functions will be listed multiple times with their different pos-
sible signature and eventual important differences in the description.

• get_params(HGF::HGFStruct): it returns a named tuple with the value of all
the HGF parameters.

• get_params(agent::AgentStruct): it returns a named tuple with both the value
of all the agent’s HGF parameters and its response model.

• get_params(chain::Chains): it returns a named tuple with the median value
for all the estimated values on the corresponding simulations.

• get_states(HGF::HGFStruct, feat::String): it returns the current value of
the state feat of an HGFpassed as the string representing its name.

• get_states(HGF::HGFStruct, feats::Array{String}): same as before but it
returns a named tuple with the values of all the requested feats.

• get_states(HGF::HGFStruct): same as before but for every available state of
the passed hfg.

• get_states(agent::AgentStruct, feat::String): same as before but it extracts
the HGF from the AgentStruct and it is possible to ask as feat a state or action
from the response model.

• get_states(agent::AgentStruct, feats::ArrayString): same as before but re-
turning the named tuple.

• get_states(agent::AgentStruct): same as before but returning every available
state for both the HGF and the response model.

• get_history(HGF::HGFStruct, feat::String): it returns a vector with the
history of the state feat of an HGF passed as the string representing its name.

• get_history(HGF::HGFStruct, feats::Array{String}): same as before but
returns a named tuple with all the requested feats.

• get_history(HGF::HGFStruct): same as before but for every available state of
the passed hfg.

• get_history(agent::AgentStruct, feat::String): same as before but it extracts
the HGF from the AgentStruct and it is possible to ask as feat a state or action
from the response model.

• get_history(agent::AgentStruct, feats::Array{String}): same as before but
returning the named tuple.

• get_history(agent::AgentStruct): same as before but returning every available
state for both the HGF and the response model.

21

Package overview

• set_params!(agent::AgentStruct,
params_list = (;)::NamedTuple): it changes the agent’s parameters that are
keys in the named tuple params_list to the corresponding assigned values.
The syntax of the names in the give named tuple is the same one as the one given by
the get_params function and it consist (for parameters involving just one node)
in nodename + _ + featname where nodename is the name chosen for the node
whose feature is relative to and featname is one of the possible parameters or start-
ing states such as (evolution_rate, posterior_mean, posterior_precision).
For parameters involving two nodes (e.g. coupling_strength) instead the syntax
must be childnodename + _ + parentnodename + _ + featname.

• reset!(HGF::HGFStruct): it resets the HGF to its starting values.

• reset!(agent::AgentStruct): same as above but for the whole agent.

• lognormal_params(µ, σ): it takes as arguments the wanted mean µ and stan-
dard deviation σ and returns a named tuple with the mean and standard deviation
std to be put as parameters in the normal distribution in the lognormal to have
the requested mean and standard deviation in the overall distribution.
This utility becomes pretty useful in the context since the lognormal distribution
is often used as prior for positive only parameters (e.g. initial precisions).2

2This function will be probably moved to a separate package for statistical utilities in future releases.

22

Chapter 5

The CHF-USD exchange rate

The first use example we will now present is an analysis regarding the exchange rates
data from Swiss franc to US dollar in the the two years 2010 and 2011. This task has
always played the role of a "test" for any HGF computer implementation up to now so it
was an obvious choice for us to check if the package was working as expected.
This analysis will also provide a first tutorial for the future users and a first basic example
of the HGF workflow.
In this example, we consider an agent (that in this case may represent a single ForEx
trader as well as the currency market as a whole) who is trying to guess the value of the
exchange rate by updating their internal HGF states given as inputs the historical time
series. This "guess" will then be modeled as a Gaussian response model with the mean
given by the predicted value for x1 and a parameter that may vary from agent to agent
as standard deviation.

23

The CHF-USD exchange rate

Figure 5.1. 2 level HGF structure. Circles represent state nodes, squares input
nodes. Solid lines connect value parent-child couples and dashed lines variance
parent-child couples.

5.1 Simulating the agent

In this first part of our example/sanity check, we will initialize our agent with a set of
chosen parameters and evolve it on the given inputs so to have them generate a vector
of responses we will use in the second part to try and estimate back the correct parameters.

We start our code by importing the HGF package and creating a continuous two level
HGF structure using the premade_HGF command.

This structure consist of one input node u representing the given exchange rate value
which is connected to a value parent x1 who has itself a volatility parent x2 estimating
its variance as shown in figure 5.1.
Note that the same result could have been obtained by manually creating the structure
with the following code. The premade_HGF function saves the user a lot of time and
lines of code but it is still possible to create more structure in complete freedom.

✞ ☎
node_defaults = (

params = (; evolution_rate = 3),
starting_state = (; posterior_precision = 1),
coupling_strengths = (; value_coupling_strength = 1),

)

24

5.1 – Simulating the agent

#List of input nodes to create
input_nodes = [(name = "u", params = (; evolution_rate = 2))]

#List of state nodes to create
state_nodes = [

(name = "x1", params = (; evolution_rate = 2)),
(

name = "x2",
params = (; evolution_rate = 2),
starting_state = (; posterior_mean = 1, posterior_precision = 2),

),
]

#List of child-parent relations
edges = [

(child_node = "u", value_parents = "x1"),
(child_node = "x1", volatility_parents = "x2"),

]

#Initialize an HGF
myHGF = HGF.init_HGF(node_defaults, input_nodes, state_nodes, edges);✝ ✆
The next step is to initialize the agent by mean of the function premade_agent.

We pass it the just created HGF and chose the Gaussian response as the response model,
selecting as the mean for the response the posterior mean of state x1.

✞ ☎
my_agent = HGF.premade_agent(

"HGF_gaussian_response",
my_HGF,
Dict("action_noise" => 1),
Dict(),
(; node = "x1", state = "posterior_mean"),

);✝ ✆
Now to give the agent the chosen parameters and starting states we just need to create

a named tuple with the desired values and call the function set_params with the agent
and the tuple as arguments. We also call the reset! function in order to have the new
starting values correctly placed in the structure. Note: the parameters value could have
been passed already during the creation of the HGF and agent but this procedure makes
the code tidier and easier to read and interpret step by step.

✞ ☎
params_list = (

u_x1_coupling_strenght = 1.0,
x1_x2_coupling_strenght = 1.0,
u_evolution_rate = -log(1e4),
x1_evolution_rate = -13,
x2_evolution_rate = -2,
x1_posterior_mean = 1.04,
x1_posterior_precision = 1 / (0.0001),
x2_posterior_mean = 1.0,
x2_posterior_precision = 1 / 0.1,
action_noise = 0.01,

)

25

The CHF-USD exchange rate

HGF.set_params(my_agent, params_list)

HGF.reset!(my_agent)✝ ✆
Now it is finally possible to give the agent the inputs and have it evolve while saving

the generated responses in a vector to be used in the second part.

✞ ☎
inputs = Float64[]
open("data//canonical_input_trajectory.dat") do f

for ln in eachline(f)
push!(inputs, parse(Float64, ln))

end
end
responses = HGF.give_inputs!(my_agent, inputs)✝ ✆
The evolution of the states and responses can now be output with the command

get_history or directly plotted.
Note that we can use freely any normal plotting option thanks to the implementation of
plots as recipes. Also using an exclamation mark after the command will have it plotted
on the same graph as per Julia standards.
The results of the plotting are shown in images 5.2, 5.3 and 5.4.

✞ ☎
using Plots
using LaTeXStrings

HGF_trajectory_plot(my_agent, "u",
size=(1300,500),
xlims = (0,615),
markerstrokecolor = :auto,
markersize=3,
markercolor = "green2",
title ="Agent simulation",
ylabel="CHF-USD exchange rate"
)

HGF_trajectory_plot!(my_agent, "x1", "posterior_mean",
color="red",
linewidth=1.5)
HGF_trajectory_plot!(my_agent, "action",
size=(1300,500),
xlims = (0,614),
markerstrokecolor = :auto,
markersize=3,
markercolor = "orange",
)

HGF_trajectory_plot(
my_agent,
"x2",
color = "blue",
size = (1300, 500),
xlims = (0, 615),
title = L"Posterior\:expectation\,of\,x_{2}",

)✝ ✆
26

5.1 – Simulating the agent

Figure 5.2. The values of the CHF-USF exchange rate given as inputs to the HGF

Figure 5.3. The inputs (green) together with the mean of the state x1 (red) and the
generated responses (orange).

27

The CHF-USD exchange rate

Figure 5.4. The value of the mean of x2 with its inverse precision as error ribbon. Note
the two spikes corresponding to April 2010 and September 2011.

We can observe how the posterior mean of x1 follows closely the given inputs in figure
5.3 and it is also interesting to note how in figure 5.4 the posterior mean of x2 presents
two sharp peaks around April 2010 and September 2011. In the first period, in fact, the
Greek default happened while the second one correspond to the decision of the Swiss
government to put a limit on how much the value of the Euro could drop with respect
to the Franc. These two events caused a sharp increase in the uncertainty of the future
values of the exchange rates and this is clearly reflected in the hidden states of our agent
that perceives the increased volatility and changes their way to adapt beliefs to keep
estimating the correct values.

5.2 Fitting the agent parameters

The second part of this example consists in estimating via the Turing sampling package
the values of some of the agent parameters trying to recover the ones used in the first
part.
First of all, we import the Turing package and we create a named tuple with the parameter
we want to fix to an educated guess.

✞ ☎
using Turing

first_input = inputs[1]
first20_variance = Turing.Statistics.var(inputs[1:20])

fixed_params_list = (
u_x1_coupling_strenght = 1.0,
x1_x2_coupling_strenght = 1.0,
action_noise =0.01,
x2_posterior_mean = 1.,
x1_posterior_precision = 1/first20_variance

28

5.2 – Fitting the agent parameters

)✝ ✆
Then we create a second named tuples containing the hyperpriors on the parameters we
would like to recover.
We use normal priors for the parameters that can take both positive and negative values
and lognormal priors for the positive only parameters. The mean and standard deviations
for the priors are again educated guesses developed by frequent users of the model.

✞ ☎
params_prior_list = (
u_evolution_rate = Normal(log(first20_variance),2),
x1_evolution_rate = Normal(log(first20_variance),4),
x2_evolution_rate = Normal(-4,4),
x1_posterior_mean = Normal(first_input,sqrt(first20_variance)),
x2_posterior_precision = LogNormal(HGF.lognormal_params(10,1).mean,HGF.

lognormal_params(10,1).std),
)✝ ✆
Now to start the sampling it is enough to call the function fit_model and pass it the

inputs, the responses computed in the first part, the two named tuples for the parameters,
and the agent itself. We store the resulting Turing chain object in a variable for future
analysis. The last two arguments let us choose the sampler and the number of iterations
(in this case No U Turn Sampler and 1000 iterations).

✞ ☎
chain = HGF.fit_model(

my_agent,
inputs,
responses,
params_prior_list,
fixed_params_list,
NUTS(),
1000,

)✝ ✆
We can now extract the median for the fitted parameters with the function get_params

and compare their values with the ones chosen at the beginning (this is reported in table
5.1.)
We can also compare the prior distribution for the parameters with the posterior one by
calling posterior_parameter_plot on the chain and the prior list. The result of this
plot is shown in figure 5.5.
Note: what is now called "x1_posterior_mean" is the parameter representing the
initial value for the mean of the node x1 and in future releases will be then called
"x1_initial_value" (the old name is due to the fact that the initial value is stored
as the posterior value during the first update).

✞ ☎
fitted_params = HGF.get_params(chain)

posterior_parameter_plot(chain,params_prior_list)✝ ✆
29

The CHF-USD exchange rate

Real Value Fit Value
u evolution rate -9.21 -9.21
x1 evolution rate -13 -12.62
x2 evolution rate -2 -2.53
x1 posterior mean 1.04 1.035

Table 5.1. Real model parameters to fitted ones comparison.

30

5.2 – Fitting the agent parameters

Figure 5.5. Comparison between the prior distributions used for the sampling and the
posterior distributions for the parameters.

31

32

Chapter 6

The alien task

This second example utilizes data from a real cognitive task whose results are soon to be
published.
Participants in the task were presented with the image of an alien in front of a cave and
were asked to guess the amount of gold in it by moving a slider. The amount of gold was
drawn from a Gaussian distribution whose mean would jump to a different value from
time to time and also its variance varied between two values. These values also noisily
correlated with the presented alien features.
In this analysis, we will reproduce some of the results obtained in the original paper
using the MatLab toolbox using our new package. In particular, we will fit the agent
parameters for one subject in one session using the real values of the gold amount as
inputs and the subject guesses as responses.
The agent will be modeled with a so-called JGET (Jumping Gaussian Estimation Task)
HGF structure characterized by one input node u with one value parent x_1 having itself
one volatility parent x_2 on one side and one volatility parent x_3 which has itself a
higher level volatility parent x_4 (the structure is schematized in figure 6.1).
The idea behind the choice of this structure is that the two branches generating from the
input nodes try to estimate respectively the actual value of the input and its variance
but since both these quantities vary in time they both have a volatility parent trying to
model this variation.
As a response model instead it will again be used as above a Gaussian response with the
x1 mean as the mean value.

33

The alien task

Figure 6.1. The JGET model. As usual circles represent state nodes, squares in-
put nodes. Solid lines connect value parent-child couples and dashed lines variance
parent-child couples.

6.1 model fitting and simulations

Just as before the first thing we need to do is to import the package and initialize the
HGF model. Since, even if this is a more complex model, it is still a pretty standard one
we can then just create it with the premade_model function. We can then initialize
the agent with the created HGF just as before.

✞ ☎
using HGF

my_HGF = HGF.premade_HGF("JGET");

my_agent = HGF.premade_agent(
"HGF_gaussian_response",
my_HGF,
Dict("action_noise" => 1),
Dict(),
(; node = "x1", state = "posterior_mean"),

);✝ ✆
Notice that also this more complex model could have been defined by the user if it

would have not been preemptively added to the function. For example with a code like

34

6.1 – model fitting and simulations

this.

✞ ☎
#List of input nodes to create
input_nodes = [(name = "u1", params = (; evolution_rate = 2))]

#List of state nodes to create
state_nodes = [

"x1",
"x2",
"x3",
"x4",

]

#List of child-parent relations
edges = [

(child_node = "u1", value_parents = "x1", volatility_parents = "x3"),
(child_node = "x1", volatility_parents = "x2"),
(child_node = "x3", volatility_parents = "x4"),

]

#Initialize an HGF
myHGF = HGF.init_HGF(node_defaults, input_nodes, state_nodes, edges);✝ ✆
Now, without any need to initialize our parameters since were are gonna fix or estimate

them in the fitting, we declare the two lists of fixed values and priors for the fitting and
run the fit_model function on the inputs and responses vectors for one session of one
subject that we extracted from the experiment data frame.

✞ ☎
inputs = subject_20_inputs["1"]
responses = subject_20_responses["1"]
firstinput = inputs[1]

fixed_params_list = (u_x1_coupling_strenght = 1.0,
u_x3_coupling_strenght = 1.0, x1_posterior_mean = firstinput,
x1_posterior_precision = exp(-1.0986), x1_x2_coupling_strenght = 1.0,
x4_posterior_mean = 1.0, x4_posterior_precision = exp(2.306),
x2_posterior_mean = 3., x2_posterior_precision = exp(2.306),
x4_evolution_rate = -10.0, x3_posterior_mean = 3.2189,
x3_posterior_precision = exp(-1.0986), x3_x4_coupling_strenght = 1.0,
u_evolution_rate = 1.0,
)

prior_params_list = (
action_noise = Truncated(Normal(100,20), 0, Inf),
x1_evolution_rate = Normal(-3,5),
x2_evolution_rate = Normal(-7,5),
x3_evolution_rate = Normal(-3,5),

)

chain = HGF.fit_model(my_agent,inputs,responses,prior_params_list,
fixed_params_list,NUTS(0.65),1000)✝ ✆

Now we can visualize the results of the fitting by plotting the prior and posterior
distributions for all the parameters using the function posterior_parameter_plot.
The result is displayed in figure 6.2.

35

The alien task

Figure 6.2. Comparison between the prior distributions used for the sampling and the
posterior distributions for the parameters.

36

6.2 – multiple datasets analysis

To look at the evolution of the agent using the median value for the fitted parameters
we can give it the parameters by calling twice set_parameters once with the fixed
one and once with the medians of the fit results extracted with get_params and then
resetting the agent to load the correct starting values. Then with give_inputs! we
evolve our agent.

✞ ☎
fitted_params = HGF.get_params(chain)

HGF.set_params(my_agent,fitted_params)
HGF.set_params(my_agent,fixed_params_list)
HGF.reset!(my_agent)

HGF.give_inputs!(my_agent, inputs)✝ ✆
Now, using the plotting function of the package, we can show how the internal state

of the agent evolved given the inputs in figures 6.3.

Figure 6.3. Input values given to the subject (green), plotted together the mean value for
the state x1 (red) estimating them.

6.2 multiple datasets analysis

With our new package, it is easy to analyze and fit all datasets for all subjects sessions
and store all the information o the posterior distributions in a dictionary that could be
then used to extract and save median values and all the needed quantiles. It amounts
just to a couple of nested for loops.

✞ ☎
for ID in keys(inputs_dict)

for session in keys(inputs_dict[ID])
inputs = inputs_dict[ID][session]
responses = inputs_dict[ID][session]
firstinput = inputs[1]

37

The alien task

fixed_params_list = (u_x1_coupling_strenght = 1.0,
u_x3_coupling_strenght = 1.0, x1_posterior_mean = firstinput,
x1_posterior_precision = exp(-1.0986), x1_x2_coupling_strenght = 1.0

,
x4_posterior_mean = 1.0, x4_posterior_precision = exp(2.306),
x2_posterior_mean = 3., x2_posterior_precision = exp(2.306),
x4_evolution_rate = -10.0, x3_posterior_mean = 3.2189,
x3_posterior_precision = exp(-1.0986), x3_x4_coupling_strenght = 1.0

,
u_evolution_rate = 1.0,

)
prior_params_list = (

action_noise = Truncated(Normal(100,20), 0, Inf),
x1_evolution_rate = Normal(-3,5),
x2_evolution_rate = Normal(-7,5),
x3_evolution_rate = Normal(-3,5),

)

chain = HGF.fit_model(my_agent,inputs,responses,prior_params_list,
fixed_params_list,NUTS(0.65),1000)

chains_dict[ID][session] = chain
end

end✝ ✆
This shows, even more, the convenience of our package since before any of this analysis

would have involved multiple files and passing through multiple programs (MatLab, Stan,
R).

38

Chapter 7

Discussion and Future updates

As stated in the beginning, this project is still a work in progress even if we made the
first version available to the public in September 2022 during the presentation in Zurich.
At its current status, it is possible to use it to create a wide range of HGF structures with
just a few lines of code and modify them at pleasure. Simulating and fitting this kind of
agents was made possible in a much simpler way than before and it requires much less
technical expertise from the user.
We hope this will encourage researchers already working in this framework to experiment
more with the possibilities given by bigger and more complex networks while new re-
searchers who may have been discouraged before by the mathematical complexity of this
model could now start using it together with (or in substitution to) purely Bayesian or
Reinforcement Learning based models.
While the main structure of the package is defined, there is still room left for new fea-
tures and improvement. New releases will include functions to create new types of nodes
together with their set of update equations (e.g. categorical nodes), but also new features
and utilities such as functions to add and remove nodes, new premade HGF structures
and action models, as well as a new section of functions for model comparison.
We are also working on optimizing the fitting functions as much as possible and planning
on adding support for parallelization.
We are currently working to have our project approved as an official package and have
it registered in the Julia Registry as soon as possible so to make as easy as possible for
whoever would like to try it out to install it on their computers.
After this first release we are currently waiting for researcher to put at test our package
in order to collect suggestions on new requested features, improvements on the already
present ones and possible bugs that need to be fixed.

39

40

Bibliography

[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh
approach to numerical computing. SIAM review, 59(1):65–98, 2017.

[2] Mathys D, Christoph. Hierarchical Gaussian filtering: Construction and variational
inversion of a generic Bayesian model of individual learning under uncertainty. PhD
thesis, ETH Zurich, 2012. Artwork Size: 213 p. Medium: application/pdf Pages: 213
p.

[3] Jean Daunizeau, Hanneke E. M. den Ouden, Matthias Pessiglione, Stefan J. Kiebel,
Klaas E. Stephan, and Karl J. Friston. Observing the observer (i): Meta-bayesian
models of learning and decision-making. PLOS ONE, 5(12):1–10, 12 2010.

[4] Weber E, Lilian A. Perception as Hierarchical Bayesian Inference - Toward non-
invasive readouts of exteroceptive and interoceptive processing. PhD thesis, ETH
Zurich, 2020. Artwork Size: 291 p. Medium: application/pdf Pages: 291 p.

[5] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: a language for flexible proba-
bilistic inference. In International Conference on Artificial Intelligence and Statistics,
AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain,
pages 1682–1690, 2018.

[6] Christoph Mathys, Jean Daunizeau, Karl J. Friston, and Klaas E. Stephan. A
Bayesian foundation for individual learning under uncertainty. Frontiers in Human
Neuroscience, 5, 2011.

[7] Christoph D. Mathys, Ekaterina I. Lomakina, Jean Daunizeau, Sandra Iglesias,
Kay H. Brodersen, Karl J. Friston, and Klaas E. Stephan. Uncertainty in perception
and the Hierarchical Gaussian Filter. Frontiers in Human Neuroscience, 8, November
2014.

41

42

Appendix A

Minimal Julia glossary

This aim of this appendix is not to give a complete description of Julia programming
language but only to highlight some concepts and standards peculiar of this language
and that were used extensively while writing the package.
Please refer to Julia official website https://julialang.org/ if you would like to
learn more about this language.

• :: : the double colon is used in Julia to specify the type requirement for a specific
argument of a function (e.g. sum(x::Float64, y::Float64) would return an error if
the two argument are for example integers).

• struct: Julia function to define new types, partially analogous to a class definition
in other programming language. "Methods" for this "class" are defined using the
type signature and multiple dispatch.

• Multiple dispatch: by multiple dispatch we mean the way in which Julia dispatch
different calls of a function based on the type of their arguments. This allows to
redefine a function with the same name but different type signature. It is then
possible to wrap up a variable in a new user defined type using struct so that a
function will act in a different way on it.

• ! : by Julia standards an exclamation mark is added after the name of a function
if its arguments may be modified.

• Plots backends: In Julia multiple plotting packages are available and are grouped
by the Plots package as backends. Most common backends are GR, Plotly and
Pyplot.

• (;) : a way to initialize an empty named tuple.

• Named Tuple: Data structure similar in concept to a dictionary but immutable
and more efficient. It performs better than dictionaries for quantities that do not
change or change rarely. As a dictionary it pairs a key of type Symbol to a value.

43

https://julialang.org/

	Introduction
	Brief introduction to HGF models
	The HGF structure
	The HGF update equations
	Variational Bayesian approximation
	Action Models
	Value and volatility coupling
	HGF main features and motivations summary

	The Julia programming language
	Package overview
	General overview
	The core Structs
	Initialization functions
	Updating functions
	Fit functions
	Plotting functions
	Utility functions

	The CHF-USD exchange rate
	Simulating the agent
	Fitting the agent parameters

	The alien task
	model fitting and simulations
	multiple datasets analysis

	Discussion and Future updates
	Bibliography
	Minimal Julia glossary

