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Summary

Quantum entanglement in optomechanical systems plays a vital role in the progress
of quantum science and technology, such as exploring fundamental physics and
quantum information processing. Although the physical laws of quantum mechanics
do not specifically limit the size of objects that carry the entangled states, the
experimental preparation and detection of quantum entanglement in the macro
world still face great challenges. Fortunately, with the practical advances in
recent years, several pioneering works have demonstrated non-local correlation
and entanglement among mechanical oscillators or between electromagnetic fields
mediated by a mechanical oscillator. In this perspective, we have summarized a
part of the theoretical and experimental progress related to the macro entanglement
states in optomechanical systems and the outlook on its future direction and
potential applications.
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1 Introduction

Quantum optomechanics has its roots in the study of the mechanical action of light that goes
back to the 19th century. More relevant to this century, it is an example of an emerging capabil-
ity to engineer quantum systems de novo. Engineered quantum systems use modern fabrication
techniques to enable the construction of macroscopic systems designed to exhibit novel quantum
behavior in collective degrees of freedom. To fully understand the basics of quantum optome-
chanics, we must first understand how light, at both macro and microscopic levels, interacts with
matter. The relationship of light to the mechanical motion of matter is a long and convoluted
story in the Western philosophical tradition. The Greek atomists regarded light as particulate
and all atoms could participate in the motion. In 55 B.C. the Roman epicurean poet Lucretius
elegantly wrote in his De Rerum Natura: “The light and heat of the sun; these are composed of
minute atoms which, when they are shoved off, lose no time in shooting right across the inter-
space of air in the direction imparted by the shove”. In opposition to the Corporealists, Aristotle,
Plato, and the Neoplatonists argued that light was incorporeal. How light could interact with
matter, for example, in refraction, then required some explanation. It is often claimed that
Kepler gave the first statement of the mechanical action of light in his explanation of why comet
tails point away from the Sun [1]. Indeed, in discussing refraction Kepler viewed the action of
light as mechanical, likening it to the action of a missile striking a panel.
The first unambiguous experimental demonstrations of the radiation-pressure force predicted by
Maxwell were performed using a light mill configuration, in 1901 by Lebedew and Nichols & Hull
[2, 3]. A careful analysis of these experiments was required to distinguish the phenomenon from
thermal effects that had dominated earlier observations. The first indication of the quantum na-
ture of light came in 1900 when Planck discovered he could account for the spectral distribution
of thermal light by postulating that the energy of a simple harmonic oscillator was quantized.
Further evidence was added by Einstein who showed in 1905 [4] that the photoelectric effect
could be explained by the hypothesis that the energy of a light beam was distributed in discrete
packets later known as photons.
As early as 1909, Einstein derived the statistics of the radiation-pressure force fluctuations acting
on a movable mirror [5], including the frictional effects of the radiation force, and this analy-
sis allowed him to reveal the dual wave-particle nature of blackbody radiation. Einstein also
contributed to the understanding of the absorption and emission of light from atoms with his
development of a phenomenological theory in 1917. This theory was later shown to be a natural
consequence of the quantum theory of electromagnetic radiation.
Despite this early connection with the quantum theory, physical optics developed more or less
independently of quantum theory. An early attempt to find quantum effects in an optical inter-
ference experiment by G.I. Taylor in 1909 gave a negative result. Taylor’s experiment was an
attempt to repeat Young’s famous two-slit experiment with one photon incident on the slits. The
classical explanation was based on the interference of electric field amplitudes, while the quan-
tum version on the interference of probability amplitudes, and they both correctly explained the
phenomenon.
Indeed, in Young’s interference experiments, typically one does not distinguish between the pre-
dictions of the classical theory and the quantum theory. It is only in higher-order experiments,
involving the interference of intensities, that differences between the predictions of classical and
quantum theory arise. In these cases the probability amplitudes to detect a photon from two
different fields interfere with a detector. The first experiment in intensity interferometry was the
famous one of R. Hanbury Brown and R.Q. Twiss [6] in 1956, where they studied the correlation
in the photocurrent fluctuations for two detectors. While these results may be derived from a
classical and quantum theory, the quantum theory made additional unique predictions. This was
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first elucidated by R.J. Glauber in his quantum formulation of optical coherence theory in 1963
[7], such that he was later jointly awarded the 2005 Physics Nobel Prize for this work.
Furthermore, in the 1970s Ashkin [8] demonstrated the fact that laser beams can be used to
trap and control dielectric particles, which also included (feedback) cooling. This discovery later
informed the development of optical tweezers, which has had a big impact in Biology. In the
same spirit, following the non-conservative nature of the radiation-pressure force, the possibility
to use this interaction for cooling atomic motion was first pointed out by Hänsch and Schawlow
[9] and Wineland and Dehmelt [10], both in 1975. Laser cooling was subsequently realized
experimentally in the 1980s (Stenholm, 1986 [11]) and has since become an extraordinarily im-
portant technique in Quantum Optics, for example, allowing cooling of ions to their motional
ground state. Many applications have been enabled by laser cooling, e.g. by Metcalf and van
der Straten in 1999 [12], including optical atomic clocks and precision measurements of position
detection, which are essential for gravitational wave detectors such as LIGO or VIRGO.
Usually, interferometers worked by merging two or more sources of light to create an interference
pattern, which can be measured and analyzed. The interference patterns contain information
about the object or phenomenon being studied, and they are often used to make very small mea-
surements that are not achievable any other way. This is why they are so powerful for detecting
gravitational waves, in the case of LIGO’s interferometers, for example, they are designed to
measure a distance 1/10.000th the width of a proton.
Back in the 1990s, several aspects of quantum optomechanical systems started to be explored
theoretically. These include the squeezing of light, performed by Fabre et al. in 1994 [13], and
Mancini & Tombesi in 1994 [14]. It was also pointed out that for extremely strong optomechan-
ical coupling the resulting quantum non-linearities could give rise to non-classical and entangled
states of the light field and the mechanics (Bose, Jacobs, and Knight, 1997 [15]; Mancini, Man’ko,
and Tombesi, 1997 [16]). Furthermore, feedback cooling by radiation pressure was suggested by
Mancini, Vitali, and Tombesi in 1998 [17]. Around the same time, in a parallel development,
laser cooling was proposed as a method to cool the motion of atoms and molecules by Hechen-
blaikner et al. in 1998 [18], and Vuletic & Chu in 2000 [19].
On the experimental side, optical feedback cooling based on the radiation-pressure force was
first demonstrated by Cohadon, Heidmann, and Pinard (1999) [20] for the vibrational modes of
a macroscopic end mirror. This approach was later taken to much lower temperatures and, at the
same time, to miniaturize the mechanical element. Producing high-quality optical Fabry-Pérot
cavities below a certain scale, however, turned out to be very challenging. In this way, it became
extremely important to model a theory of engineered quantum systems.
Engineered quantum systems represented, and represent, a new paradigm for the study of quan-
tum physics. Despite the difficulty in reconciling quantum theory with our classical intuitions, it
is a remarkably successful theory. However, quantum theory does not contain within it any law
that forbids us from applying it to bigger things, even the entire universe in the case of quantum
cosmology. The quantum-classical border is not co-located with the microscopic–macroscopic
border. Until recently the possibility of quantum phenomena manifesting themselves in the or-
dinary everyday world of macroscopic physics could be safely confined to gedanken experiments.
The last decade or so has finally changed this [21].
A key feature of the theory of engineered quantum systems is how the the quantum description
is given. This is because, typically, one does not solve the Schrödinger equation for every atomic
or molecular constituent of the macroscopic system. On the contrary, one begins with a classical
description of the relevant macroscopic degrees of freedom and quantizes these collective degrees
of freedom directly. This works if the macroscopic system can be so designed that the relevant
collective degrees of freedom largely decouple from the microscopic degrees of freedom, which
remain only as a source of noise and dissipation.
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This approach was first pioneered in the field of superconductor circuits and championed by
Tony Leggett in the 1980s [22]. He pointed out that the quantum theory of such circuits could
begin with a direct quantization of the classical circuit equations. This approach was justified
by the landmark experiment of Martinis, Devoret, and Clarke in 1987 [23]. For example, in
quantum optomechanics, one often begins with the classical continuum mechanics, and then this
continuum field is directly quantized. Essentially this is an effective quantum field theory.
Engineered quantum systems hold the promise of new technologies based on designing complex
systems to exhibit functional quantum behavior. In the case of optomechanics, this might in-
clude a gain in sensitivity to external forces and fields. A fascinating possibility arises when the
mechanical system becomes sufficiently large that gravitational interactions need to be included.
This holds the promise of better determinations of the Newtonian gravitational constant and
even the possibility of experimental evidence for how quantum theory and gravity might be rec-
onciled.
On the other hand, with the development of the fabrication and measurement technology, this
field has grown since the demonstration of optomechanical entanglement in a microwave optome-
chanical system [24]. The interaction of electromagnetic radiation with the motion of objects
has an array of implications and manifestations, and further achievements have been reached
since the proof-of-principle experiments that demonstrated the use of light to dampen the mo-
tion of relatively large mechanical oscillators [25]. For example, the quests to reach the quantum
ground state of a mechanical oscillator, and to entangle two mechanical oscillators have all been
completed. It is now time to look ahead at how optomechanical devices may be applied in forth-
coming quantum technologies and as the basis for new experiments.
More advanced measurement technology makes people look forward to the entanglement between
macroscopic objects. Encouragingly, a mechanical mode of a mirror with a weight of 10 kg has
recently been cooled down close to its quantum ground state [26], which makes the boundary
between quantum and classical much thinner. How big can an object observed in quantum me-
chanics phenomena be? This question awaits future scientific research. At present, experimental
implementations are still eager to expand and upgrade because of the short time that optome-
chanical experiments are in the quantum regime. The technology of squeezed light and cryogenic
refrigeration also becomes more mature nowadays, which is conducive to further experimental
exploration, from the fundamental research of inseparability to quantum information technology.
As a versatile interface, a mechanical oscillator is able to interact coherently with various of
quantum physical platforms. This makes mechanical oscillators suitable to interconnect different
physical qubits in hybrid quantum network systems. Currently, microwave and light conversion
has been studied in many physical systems, and optomechanics is one of the outstanding systems.
The combination of this technique and the entanglement discussed here is significant. However,
quantum teleportation is needed for the high-fidelity transfer of quantum states based on quan-
tum repeaters.
Recently, the conversion of a microwave-frequency excitation of superconducting qubit into an
optical photon has been achieved [27, 28], enhancing the prospects of hybrid quantum systems
based on mechanical interfaces. The light-matter interface is valued in both long-distance quan-
tum communication and distributed quantum computing. An essential step towards those quan-
tum networks is the demonstration of optomechanical quantum teleportation [29] that achieves
the full functionality of a single quantum repeater node. Last but not least, developing schemes
to reduce the impact of thermal noise, will surely help to ease the experimental requirements and
to reflect more practical value. It is worth noting that experiments in cryogenic environments
will occupy the central position of experimental research of this field for an extended period in
the future. In this way, maintaining quantum properties in a more ordinary environment will be
the focus of the practical application in quantum optomechanics.
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This thesis work is organized as follows: in Chapter 2 we will introduce the theoretical framework
of Open Quantum Systems to develop the derivation of Quantum Langevin Equation (QLE).
Chapter 3 is an overview of optical fields and their detection, concepts that are then interwoven
together in Chapter 4 in which we focus on the entanglement measures, with an introduction
of Bell’s inequalities. In Chapters 5 and 6 we apply what we saw previously in the specific
field of optomechanical systems, focusing on the interaction between light and matter, cooling
of mechanical motion, amplification of input signals, and mechanical squeezing. Furthermore,
in Chapter 7 we analyze in detail two-mode optomechanical systems, going to investigate en-
tanglement properties between two cavity modes first and then between two mechanical modes.
Finally, in Chapter 8, conclusions are drawn and an outlook is discussed. This work aims to
introduce to the reader some of the modern developments in Quantum Optomechanics, from
both an experimental and a theoretical standpoint, supplying a comprehensive treatment that
incorporates the most recent advances and points the way toward future challenges.
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2 Open Quantum System

The observation and experimental control of characteristic quantum properties of physical sys-
tems are often strongly hindered by the coupling of the system to a noisy environment. On the
other hand, if you don’t couple, you can’t measure. In this way, the dynamical behavior of open
quantum systems plays a key role in many applications of quantum mechanics, such as in quan-
tum condensed matter theory, quantum transport, and quantum information. The unavoidable
interaction of the quantum system with its surroundings generates system-environment corre-
lations leading to an irretrievable loss of quantum coherence. In this sense, realistic quantum
mechanical systems are open systems governed by some time development which describes all
features of the dynamics such as relaxation to a thermal equilibrium, dissipation of energy, and,
as mentioned, decay of quantum coherence and correlations (see [30, 31, 32]).
The dynamics of open quantum systems are therefore well established in the sense that all open
systems’ time evolution is described by a master equation, a first-order differential equation for
the reduced density matrix of the open systems.
We could define an open quantum system as composed of two different subsystems: S (that will
be the one under our analysis) and its bath (also called environment) B. So the total Hilbert
space S +B is given by the tensor product

HSB = HS ⊗HB, (2.1)

where HS and HB denote the Hilbert spaces of S and B, respectively. Pure states of the total
system are represented by positive trace class operators ρSB on HSB with unit trace, satisfying
ρSB ≥ 0 and trρSB = 1. In this way the systems, given a state of the total system, the
corresponding states of subsystems S and B are obtained by partial traces over HS and HB,
respectively we have ρS = trBρSB and ρB = trSρSB .
We suppose that the total system S + B is closed (namely trρ2SB = 1) and governed by a
Hamiltonian of the general form

H = HS ⊗ IB + IB ⊗HB +HI , (2.2)

with HS , HB taking the role of the free Hamiltonian for the system and for the bath, while HI

takes simply into account the interaction between the two previous ones.
An important concept in the theory of open quantum systems is that of a dynamical map. To
explain this concept we assume that the initial state of the total system is an uncorrelated tensor
product state

ρSB(0) = ρS(0)⊗ ρB(0),

which leads to the following expression for the reduced open system state at any time t ≥ 0:

ρS = trB
{
U(t)ρS(0)⊗ ρBU

†(t)
}

(2.3)

where the corresponding unitary time evolution operator is given by

U(t) = e−
i
h̄Ht.

In this sense, if we consider a fixed initial environmental state ρB(0) and any fixed time t ≥ 0,
Eq.(2.3) defines a linear map

Φt : S(HS) → S(HS) (2.4)
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on the open system’s state space S(HS) which maps any initial open system state ρS(0) to the
corresponding open system state ρS(t) at time t:

ρS(0) 7−→ ρS(t) = ΦtρS(0).

Φt is called a quantum dynamical map, and it is easy to verify that it preserves the Hermiticity
and that it is a positive map, i.e. it maps positive operators to positive operators. In this way,
Φt maps physical states to physical states. A further important property of the dynamical map
Φt is that it is not only positive but also completely positive. Without entering into technical
details of this, that it is not the purpose of our work (we, therefore, leave the discussion to [33]),
completely positivity is a stronger property of Φ that ensures not only all physical states of S are
mapped into physical states of S, but also that all physical states of S + R, of a larger system
described by ρS , are mapped to physical states of S + R. Broadly speaking, this fact assures
that are involved only positive probabilities.
However, from now on, we will simply focus our attention on the mathematical derivation of
the Quantum Langevin Equations (QLEs), which will give us the tools for understanding the
system-bath interaction in open quantum systems. In this sense, we are going to follow what
has been done in [34] and [35] for the analytical treatment of system-bath coupling, and also
[36, 33, 37] for the QLEs derivation. We will also keep in mind that our discussion is aimed at the
study of optomechanical systems, where QLEs are constantly derived and used to understand
the dynamics of the problem (for example made by Giovannetti and Vitali [38]).

2.1 Derivation of Quantum Langevin Equations

In the previous section, we have seen the system-bath interaction. This kind of discussion is
at the center of the investigation of quantum physics of noise. We will focus on analyzing the
dynamics of an open quantum system, introducing the Langevin equations (QLEs) as a tool to
model this type of system. It follows that the main idea will be to couple the system to a bath,
often it will be a thermal state (but not necessarily), composed of an infinitely large number,
within the thermodynamic limit, of harmonic oscillators (as shown in figure 1). For this reason,
in Hamiltonian (2.2) the bath could be assumed to be a bosonic set of non-interacting particles.
To derive the QLEs, the particles do not need to be bosons, since they can also be fermions.
Obviously, for the purpose in which this work is applied, and for the systems under analysis, it
is a necessary condition. With this in mind, let us recall the expressions, concerning the ladder
operators, of the position and momentum (both for system and bath operators):

q̂ = xzp(c
† + c)

p̂ = ipzp(c
† − c)

q̂k = xzp,k(b
†
k + bk)

p̂k = ipzp,k(b
†
k − bk)

(2.1.5)

with the zero-point motion and zero-point momentum of the harmonic oscillator written as

xzp =

√
h̄

2mω

pzp =

√
h̄mω

2

9



Figure 1: Schematic representation of the system-environment coupling. A quantum mechanical
oscillator with mass m and resonance frequency ωm is coupled to its environment. The coupling
is obtain via springs with spring constant kj , part of a large ensemble of environmental oscillators.

where m simply represents the mass of the k-th oscillator. Considering the following general
expression for ĤI in Eq.(2.2)

ĤI =
∑
k

[
p̂2k
2mk

+
gk
2
(q̂k − q̂)2

]
(2.1.6)

where gk is a parameter that measures the strength of the interaction with the k-th bath harmonic
oscillator. Generally in quantum optics and optomechanics, to draw a meaningful distinction of
system-bath interaction, the bath coupling rate is much smaller than other important system’s
rates. Therefore this is the reason why is commonly convenient to perform the so-called Rotating
Wave Approximation (RWA) on the Hamiltonian of Eq.(2.1.6), i.e. to neglect the terms that do
not conserve energy, and rewrite a new rotating wave QLE.
These non-energy conserving terms are the ones that create or destroy two quanta at the same
time (also known as counterrotating terms), as they are strongly non-resonant, i.e. applying
these terms to a state would change the total energy by a much larger amount than the coupling
itself.
In this sense, plugging the former expressions of (2.1.5) into Eq.(2.1.6), neglecting the counter-

rotating terms cc, c†c†, bkbk and b†kb
†
k, we finally end up with the following

ĤRWA =
∑
k

[
h̄ωkb

†
kbk + gk

(
ĉ†b̂k + b̂†k ĉ

)]
, (2.1.7)

with the usual parameter gi to estimate the strength of each coupling between system and bath,
and ĉ is one of several possible system operators which describes the interaction between system
and bath. It is not necessary to specify what the operator ĉ is but b̂k is again supposed to be a
bosonic operator. For sake of simplicity, we got rid of the zero-point energy terms of the bath
as they simply bring additive contributions to our Hamiltonian, and from now on we also set
h̄ = 1. Rotating Wave Approximation will prove to be particularly useful in future chapters,
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such as Chapter 5 when we are going to derive the linearized optomechanical Hamiltonian, and
we will see that most of the discussion in this work will be based on the results derived from this
approximation.
At this point, we can add ĤRWA to Eq.(2.2) to build up the full problem Hamiltonian

Ĥ = ĤS +
∑
k

ωk b̂
†
k b̂k +

∑
k

gk

(
ĉ†b̂k + b̂†k ĉ

)
,

where ĤS is the Hamiltonian of the system. Now, we can write down the Heisenberg equations
of motion for another arbitrary system operator â, one can imagine this as a bosonic annihilation
operator that we will use throughout our discussion, and for the bath operator b̂k. In this way,
the latter read

ȧ(t) = i[H, a] = i[Hsys, a] + i
∑
k

gk

(
[c†, a]bk + b†k[c, a]

)
(2.1.8)

ḃk(t) = i[H, b] = −iωkbk − gkc (2.1.9)

Equation (2.1.9) can be solved with an initial condition t = 0, giving

bk(t) = bk(0)e
−iωkt +−igke−iωkt

∫ t

0

eiωkt
′
c(t′)dt′

then we can plug this into equation (2.1.8) which leads to

ȧ(t) =i[Hsys, a] + i
∑
k

gk

(
[c†, a]bk(0)e

−iωkt + b†k(0)e
iωkt[c, a]

)
+
∑
k

g2ke
−iωkt

(
[c†, a]

∫ t

0

eiωkt
′
c(t′)dt′ −

(∫ t

0

e−iωkt
′
c(t′)dt′

)
[c, a]

)
We have reached this point without any assumptions yet. If it is supposed that the system-
bath interaction is independent of the frequency of a bath mode, one can make a significant
simplification. This is called the first Markov assumption as it will lead to time-local dissipation.
In this way let us suppose that g2k = γ

2πD where D is the modes density, i.e. ωk = kD, and γ is
some dissipation constant stemming from the coupling with the bath. In the last term we can
write

∑
k e

iD(t−t′)k = 2π
D δ(t − t′) assuming infinite number of modes k. The resulting integral

is somewhat problematic as it requires evaluation of the Dirac delta function at the integration
limit. If we consider the Delta function to be the result of a limiting procedure in which, for
instance, the variance of Gaussian distribution is taken to zero we have∫ t

t0

dt′f(t′)δ(t− t′) =

∫ t1

t

dt′f(t′)δ(t− t′) =
1

2
f(t)

when t0 < t < t1 and f is a smooth function. It is a reasonable interpretation in this case since
it produces the same result even if we were integrating backwards in time. Finally, we end up
with the QLE

ȧ(t) = i[Hsys, a]− [a, c†]

[
γ

2
c+

√
γain(t)

]
+

[
γ

2
c† +

√
γa†in(t)

]
[a, c] (2.1.10)
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in which the input mode is

ain = −i
√
D

2π

∑
k

bk(0)e
−iωkt. (2.1.11)

The terms proportional to 1
2γc and

1
2γc

† are in practice damping terms, and arise without any
particular assumption on the thermal state of the reservoir. Furthermore, the simple example of
c = a gives

ȧ = −iω0a−
γ

2
a−√

γain(t),

with ω0 being a proper system’s frequency stemming from Hsys. We notice that the damping
is Markovian, i.e. the damping term depends only on the system operators evaluated at time
t, and this arises from the first Markov approximation. On the other hand, the ain operator is
called input operator because the Heisenberg equations are solved forward in time, i.e. with some
initial condition bk(0). Similarly one can solve the equation backwards in time which essentially
changes only γ → −γ and ain → aout. The output operator is defined similarly

aout = −i
√
D

2π

∑
k

bk(0)e
−iωkt (2.1.12)

Carrying on the same procedure we arrive at the version of the Langevin equation written with
respect to output operator

ȧ(t) = i[Hsys, a]− [a, c†]

[
γ

2
c+

√
γaout(t)

]
+

[
γ

2
c† +

√
γa†out(t)

]
[a, c] (2.1.13)

The input and output are related by

aout − ain =
√
γa(t) (2.1.14)

from which the naming convention follows. This relations will be very useful in Chapter 5 where
we will specify the actual form of our system Hamiltonian.

2.1.1 Input, output and causality

The previous equations (2.1.14) can be interpreted as a boundary condition, relating output,
input, and internal modes. If the equation (2.1.10) is solved to give values of the system operators
in terms of their past values and those of ain(t), then it is clear that a(t) is independent of ain(t

′)
for a certain time t′ > t; i.e. the systems variables do not depend on the input variables in the
future. This can be expressed as

[a(t), ain(t
′)] = 0 if t′ > t (2.1.1.15)

but on the other hand is possible to show, using previous results, that also

[a(t), aout(t
′)] = 0 if t′ < t. (2.1.1.16)

Now, if we define a step function u(t)

u(t) =


1, t > 0
1
2 , t = 0

0, t < 0
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using Eqs.(2.1.14) we can obtain

[a(t), ain(t
′)] = u(t− t′)

√
γ[a(t), c(t′)]

[a(t), aout(t
′)] = u(t′ − t)

√
γ[a(t), c(t′)].

(2.1.1.17)

Having now a complete description of the system in terms of input-output, we notice that the
commutation relations (2.1.1.17) provide us with an actual description of causality, meaning that
only the future motion of the system is affected by the present input, and that only the future
value of the output is affected by the present values of the system.
The obtained results in the previous paragraph are not yet stochastic results, since no assump-
tions have been made concerning the density operator of the bath. We will now develop the
formalism [39] by defining white noise input as the idealised noisy input, similar to classical
white noise.
The ain(t) field defined above will provide the input to our system described by Hsys. Of course
there will always be some quantum noise arising from the zero point fluctuations of the input,
and depending on the input state, there may be additional noise, such thermal noise [34].
The input state, which corresponds closely to a classical white noise input, is not for the moment
a thermal state, but one in which the input density operator ρin is such that

Tr
{
ρina

†
in(t)ain(t

′)
}
≡ ⟨a†in(t)ain(t

′)⟩ = N̄δ(t− t′) (2.1.1.18)

Tr
{
ρinain(t)a

†
in(t

′)
}
≡ ⟨ain(t)a†in(t

′)⟩ = (N̄ + 1)δ(t− t′) (2.1.1.19)

which in frequencies phase-space is

⟨a†in(ω)ain(ω
′)⟩ = N̄δ(ω − ω′)

⟨ain(ω)a†in(ω
′)⟩ = (N̄ + 1)δ(ω − ω′)

(2.1.1.20)

This corresponds to a state in which the number of quanta per unit bandwidth is constant, and
this is not the case in a thermal state, in which in (2.1.1.20) N̄ would be replaced by N̄(ω) given
by

N̄(ω) = 1/[exp(h̄ω/kT )− 1]

Thus, to an even larger extent than in classical stochastics, quantum white noise is an idealization,
not actually attained in any real system.
Now, to define quantum stochastic integration, we define the quantum Wiener process by

B(t, t0) =

∫ t

t0

ain(t
′)dt′

which allows us to write

⟨B†(t, t0)B(t, t0)⟩ = N(t− t0) (2.1.1.21)

⟨B(t, t0)B
†(t, t0)⟩ = (N + 1)(t− t0) (2.1.1.22)

[B(t, t0)B
†(t, t0)] = t− t0. (2.1.1.23)

In addition we specify that the distribution of the density operator is

ρ(t, t0) = (1− e−κ)exp

[
−κB

†(t, t0)B(t, t0)

t− t0

]
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in which

N =
1

eκ − 1

and it is clear that any normal-ordered moment of order n in B(t, t0) and B†(t, t0) will be a
constant times (t− t0)

n
2 , a crucial factor for manipulating stochastic differentials.

2.2 Power spectral density and Harmonic Oscillator dynamics within
RWA

Before proceeding with our excursion into optomechanical systems it is first worthy recalling
some analytical tools that will be particularly useful in future computations. For example, the
input operator ain(t) and its adjoint a†in(t) obey the commutation relations

[ain(t), a
†
in(t

′)] = δ(t− t′)

[ain(t), ain(t
′)] = [ain†(t), a†in(t

′)] = 0
(2.2.1)

being δ(t) the Dirac delta function.
Recalling now the expression for the dimensionless bath position and momentum operators (we
will use this type of notation throughout the entire work):

Q̂in =
(a†in + ain)√

2

P̂in =
i(a†in − ain)√

2

(2.2.2)

from Eqs.(2.1.1.20) and (2.2.1) one can show that the same holds for the bath position and
momentum

[Q̂in(t), P̂in(t
′)] = iδ(t− t′)

[Q̂in(t), Q̂in(t
′)] = [P̂in(t), P̂in(t

′)] = 0

⟨Qin(t)Qin(t
′)⟩ = ⟨Pin(t)Pin(t

′)⟩ =
(
n̄+

1

2

)
δ(t− t′)

⟨Qin(t)Pin(t
′)⟩ = −⟨Pin(t)Qin(t

′)⟩ = i

2
δ(t− t′)

(2.2.3)

where n̄ is the average number of phonons stored in the mechanical resonator n̄ = ⟨b†b⟩. From
these the corresponding frequency domain can be commutation and correlation relations could be

obtained straightforwardly with the substitution t → ω and Qin(ω) =
(a†

in(−ω)+ain(ω))√
2

, Pin(ω) =

i(a†
in(−ω)−ain(ω))√

2
.

From what we have discussed above, we can now write down the expression for the power
spectral densities for Qin, Pin within RWA. Knowing the definition for a general operator Ô, the
expectation value reads

SOO(ω) ≡ lim
τ→∞

1

τ

〈
Ô†(ω)Ô(ω)

〉
.
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Then the Wiener-Khinchin theorem states that for an operator with stationary statistics

SOO(ω) =

∫ ∞

−∞
dτeiωτ

〈
Ô†(t+ τ)Ô(t)

〉
t=0

=

∫ ∞

−∞
dω′

〈
Ô†(−ω)Ô(ω′)

〉
. (2.2.4)

In this way, the power spectral densities1 can be obtained

SQinQin(±ω) = SPinPin(±ω) = n̄+
1

2

SQinPin
(±ω) = −SPinQin

(±ω) = i

2

(2.2.5)

where SQin(±ω)Pin
(±ω) and SPin(±ω)Qin

(±ω) are cross-spectral densities between the bath posi-
tion and momentum operators.
These results have a more rooted physical meaning than one might think, in fact they reflect an
uncertainty principle between bath position and momentum operator in the way

SQinQin
(ω)SPinPin

(ω) ≥ 1

4

which can be confirmed from Eq.(2.2.5) for a vacuum state with n̄ = 0.

2.3 Amplification Theory

To conclude this second Chapter we introduce the concept of an amplifier. It will be a concept
that we will analyze in much more detail in Section 7.2, where we will rely on what has been
done, for example, by Massel, Sillanpää, and collaborators [40] for the analysis of optomechanical
systems that operate as amplifiers. To do so we should define what such devices are, and which
is the theory behind their functionality.
In the most general way, an amplifier is any device that takes an input signal, carried by, in our
case, a collection of bosonic modes (electromagnetic field), and processes the input to produce
an output signal, also carried by a collection of bosonic modes. In this spirit, a linear amplifier is
an amplifier whose output signal is linearly dependent on its input signal. Following Caves [41],
we can now ask ourselves ”How much noise does quantum mechanics require a linear amplifier
to add to a signal it processes?”. From a quantum point of view, an amplifier can be seen as
a collection of non-interacting modes, each labeled by a parameter α and characterized by a
frequency ωα. It is commonly denoted I the set of (bosonic) input modes, and O the set of
(bosonic) output modes. There is no necessary relationship between I and O: they can have
some modes in common or they can be completely disjoint. In the Heisenberg picture (used
throughout the following), the creation and annihilation operators for mode α evolve from ”in”
operators a†α, aα, before the interaction, to ”out” operators b†α, bα after the interaction. Notice
that each annihilation operator can be independently multiplied by a phase factor, i.e.

ãα = e−iφαaα

b̃α = e−iφαbα

without changing the commutation and anti-commutation relations. The operators a†αaα, b
†
αbα

are the number operators for mode α before and after the interaction.

1Notice that for a power spectral density of quantum variable it is not always true that SOO(ω) = SOO(−ω)

since Ô(ω) and Ô(ω′) do not necessarily commute. On the other hand, for a classical variable the power spectral
density is always frequency symmetric.
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2.3.1 Linear Amplifier

In a linear amplifier the equations for the out operators take the general form;

bα =
∑
β∈I

(Mα,βaβ + Lα,βa
†
β) + Fα, α ∈ O (2.3.1)

where the C-numbersMα,β , Lα,β depend only on the in operators of the internal modes; therefore,

they commute with the aβ , a
†
β for β ∈ I. The linearization procedure that yields to Eqs.(2.3.1)

usually requires assumptions about the size of the input signal and the nature of the operating
state. For further detail in this we recommend reading what was done in [41, 36, 37]. For our
purpose of discussion we focus the attention on the operators Fα. They clearly are responsible
for the amplifier’s additive noise, i.e. the noise that the amplifier adds to the output signal,
that cannot be neglected, regardless of the level of the input signal. Furthermore we’ll see that
the fluctuations in Fα, not the mean values, are of interest, and so nothing is lost by assuming
⟨Fα⟩ = 0.
Equally clear is a connection between the amplifier’s gain and the C-numbers Mα,β , Lα,β . These
numbers determine the gain, and their fluctuations produce fluctuations in the gain. Gain fluctu-
ations introduce multiplicative noise into the output signal, i.e. noise which depends on the level
of the input signal; such multiplicative noise inevitably degrades the amplifier’s performance. As
far as we are concerned, our interest is in limits on the performance of the best possible ampli-
fiers, so we assume throughout the following that the fluctuations in Mα,β , Lα,β are negligible.
In this way, Eqs. (2.3.1) become the basic linear equations:

bα =
∑
β∈I

(Mα,βaβ + Lα,βa
†
β) + Fα, α ∈ O (2.3.2)

It is now easy to apply the requirement that the input-mode operators and the output-mode
operators obey the bosonic commutation relations ([aα, a

†
β ] = 0 and [aα, a

†
β ] = δα,β). The

resulting unitarity conditions are

0 =
∑
µ∈I

(Mα,µLβ,µ + Lα,µMβ,µ) + [Fα,Fβ ] (2.3.3)

δα,β =
∑
µ∈I

(Mα,µM
∗
β,µ + Lα,µL

∗
β,µ) + [Fα,F†

β ] (2.3.4)

for every α, β ∈ O. Equations (2.3.2)-(2.3.4) are necessary conditions for a bosonic linear ampli-
fier, and they are sufficient for the investigation of quantum limits. In order to do so, we better
consider the so-called narrow band regime, in which the restriction to narrow-band amplifiers
allow us to treat the input and output signals as being carried out by single modes. From this
point of view, the input and output signals are nearly sinusoidal oscillations with frequencies
ωI , ωO, both with bandwidth ∆ω/2π ≪ ωI/2π, ωO/2π. In this situation for single-mode input
and output, the linear evolution equations (2.3.2) become

bO =MaI + La†I + F (2.3.5)

and the unitary conditions collapse into

1 = |M |2 − |L|2 + [F ,F†]. (2.3.6)
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Fortunately, for an investigation of quantum limits, the complexities buried in the noise term
need not be exhumed, and the only important property of F2 is the unitarity condition (2.3.6),
which places a lower limit on its fluctuation

|∆F|2 ≥ 1

2
|1− |M |2 + |L|2| (2.3.7)

where we have exploited the fact that for any general Hermitian operator Â the following hold:

|∆Â|2 ≥ 1

2
|⟨[Â, Â†]⟩|

with the definition |∆Â|2 = ⟨Â2⟩ − ⟨Â⟩2 for Hermitian operators.
We can now investigate the consequences of the latter result. To do this, it is convenient to
introduce the fundamental notion of phase sensitivity, defining first what is meant by a phase-
insensitive amplifier. The property of a phase-insensitive linear amplifier is that when the input
signal has phase-insensitive noise, the output, both in terms of the signal and the noise, shows
no phase preference; the only effect of a phase shift of the input is an equivalent phase shift of
the output. This idea is formalized by defining a phase-insensitive linear amplifier as one that
satisfies two conditions.
Condition I.
The expression for ⟨bO⟩ is invariant under any arbitrary phase transformations φ = φI = θO
(phase-preserving amplifier) or φ = φI = −θO (phase-conjugating amplifier).
Condition II.
If the input signal has phase-insensitive noise, then the output signal also has phase-insensitive
noise, namely

⟨b2O⟩ = ⟨bO⟩2 if ⟨a2O⟩ = ⟨aO⟩2.

Condition I means that a phase shift of the input signal produces the same (phase-preserving) or
the opposite (phase-conjugating) phase shift of the output signal, on the other hand, Condition
II means that the noise added by the amplifier is distributed randomly in phase. An amplifier
that fails to meet conditions I and II is called a phase-sensitive linear amplifier.
The consequences of these two conditions are that I implies

L = 0 if phase preserving

M = 0 if phase conjugating,

and II that

⟨F2⟩ = 0.

On the other hand, the output of a phase-sensitive linear amplifier depends effectively on the
phase of the input. Nevertheless, from Eq.(2.3.5), one can define the mean gain of the amplifier
as

G ≡ |M |2 + |L|2, (2.3.8)

where we immediately see that obtained gain has no dependence on the noise term in this
situation. This set two important conditions that we will keep in mind later, the first one is
that only for a phase-preserved amplifier we have to add the noise term, and the second one
that not in any amplifier it is impossible to disregard the term of quantum noise added from the
measurement itself. The latter, as we have seen, could play an important role in the intrinsic
nature of a phase-insensitive amplifier.

2We also point out that throughout this work we assumed that the noise is Gaussian, namely ⟨F⟩, so that it
can be characterized completely by its second moments.
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3 Optical Fields: Coherent States and Detection

In this chapter correlation functions for the electromagnetic field are introduced, from which a
definition of optical coherence may be formulated. Furthermore, we will give a characterization
of coherent states, squeezed states, and optical field detection techniques, both homodyne and
heterodyne, following the same type of analysis also done by Walls, Milburn, Bowen in [35, 42]
and Zhang [43].
In 1926, Schrödinger first proposed the concept of what is now called ”coherent states” [44] in
connection with the classical states of the quantum harmonic oscillator. It is worth to note
that the birth of the expressions of these states coincides with the birth of quantum mechanics,
meaning the indispensability of one from the other.
In the early years of quantum mechanics the study of coherent states remained in a sort of
”dormancy” period, only to be awakened by Glauber and Sudarshan in 1962-63 ([7, 45, 46]). In his
two essential papers, in which the term coherent states was first coined, Glauber constructed the
eigenstates of the annihilation operator of the harmonic oscillator to study the electromagnetic
correlation functions, a subject of great importance in quantum optics. Roughly at the same time
as Glauber and Sudarshan, Klauder in his work [47, 48], developed a set of continuous states in
which the ideas of coherent states for arbitrary Lie groups were contained. In the same vein, but
ten years after, the complete construction of coherent states, with various properties similar to
the harmonic-oscillator, was achieved by Perelomov [49] and Gilmore [50] in 1972. The general
aim of this development was to connect the coherent states intimately with the dynamical group
for each physical problem.

3.1 Field Correlations and Optical Coherence

We begin our work by recalling the concept of field correlations, following the exhaustive analysis
made by Glauber [7]. In this sense, the electromagnetic field, due to its intrinsic nature, may
be regarded as a dynamical system with an infinite number of degrees of freedom. In the most
accurate preparation of the state of a field usually, an indefinitely large number of parameters
must be regarded as random variables. Our actual knowledge of the state of the field is fully
specified by employing a density operator ρ (with its known properties) which is constructed as
an average, over these random variables.
These considerations lead us to state that the quantity in which we are interested is of the form

tr {ρE−(r, t)E+(r, t)} (3.1.1)

where E−(r, t) and E+(r, t) simply stem from the separation of the electric field operator E(r, t)
into its positive and negative frequency parts (it’s obvious that E(r, t) = E−(r, t) + E+(r, t)).
This separation is easily obtained when the operator is represented by a Fourier integral as

E(r, t) =

∫ ∞

−∞
dωe(ω, r)eiωt (3.1.2)

where the two separated parts will correspond to the regime integration [0,∞] and [−∞, 0].
Immediately following that the two parts, regarded separately, are not Hermitian operators and

E−(r, t) = E†
+(r, t)

In the more general expression, the fields E−,E+ are evaluated at different space-time points.
Expectation values of the latter type give us a measure of the correlations of the fields at separated
positions and times. We shall define such a correlation function G(1) as

G(1)(rt, r′t′) = tr {ρE−(r, t)E+(r
′, t′)} (3.1.3)
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where these field correlations may be extended over considerable intervals of distance and time,
and is essential to the idea of coherence, which we shall discuss later on. We can generalize the
previous expression not only to quadratic correlations, but also to higher orders, for example by
defining a correlation function to the second-order as

G(2)(r1t1, r2t2; r3t3, r4t4) = tr {ρE−(r1, t1)E−(r2, t2)E+(r3, t3)E+(r4, t4)} (3.1.4)

and consequently applying the same reasoning to n photons that we want to detect (we denote
the pair coordinates rj , tj by xj)

G(n)(x1, . . . , xn;xn+1, . . . , x2n) = tr {ρE−(x1) . . .E−(xn)E+(xn+1) . . .E+(x2n)} (3.1.5)

These correlations have several simple properties. The first is that if we interchange the argu-
ments we obtain

G(n)(x2n, . . . , xn+1;xn, . . . , x1) =

[
G(n)(x1, . . . , xn, xn+1, . . . , x2n)

]∗
and secondly, they satisfy the same inequalities for our discussion, for example (we left the
demonstration of these to [7]):

G(n)(x1, . . . , xn;xn . . . x1) ≥ 0

In this way, the simplest of the quadratic inequalities takes the form

G(1)(x1, x1)G
(2)(x2, x2) ≥ |G(1)(x1, x2)|2 (3.1.6)

and the same holds for higher n-order correlations. One should notice that when the number
of quanta present in the field is bounded, the sequence of functions G(n) terminates. Thus if
the number of photons is smaller or equal than to a certain value N , the properties of E(±) as
annihilation and creation operators show that G(n) = 0 for any n > N .
On the other hand, if we would have restricted the character of ρ to describe only stationary
fields (e.g [ρ,H] = 0), then our first correlation G(1) would depend on the difference of two times
t− t′.
In light of the above let us now consider the concept of coherence. As first coined by Glauber,
this term in quantum optics is ”used to denote a tendency of two values of the field at distantly
separated points or greatly separated times to take on correlated values”.
To discuss coherence in quantitative terms it is worthy to introduce normalized forms of the
correlation functions. For example the first-order function

g(1)(r, t, r′, t′) =
G(1)(rt, r′t′)

[G(1)(rt, rt)G(1)(r′t′, r′t′)]1/2
(3.1.7)

with g(1) that obeys the following inequality thanks to (3.1.6)

|g(1)(r, t, r′, t′)| ≤ 1 (3.1.8)

of course for r = r′, t = t′ we obtain g(1) ≡ 1. Therefore the normalized forms for n-th order are
defined as

g(n)(x1, . . . , x2n) =
G(n)(x1 . . . , x2n)∏2n
j=1[G

(1)(xj , xj)]1/2
(3.1.9)

19



(note that for n ≥ 1 these functions are not in general restricted as g(1) in (3.1.8)).
Consequentially we can state that the condition for being a fully coherent field is rooted in the
magnitude of the correlation functions, namely

|g(n)(x1, . . . , x2n)| = 1 n = 1, 2, , 3 . . . (3.1.10)

However, this condition is not respected by all the fields that we normally define, or have defined,
”coherent”. We shall state as a necessary condition for first-order coherence that

|g(1)(r, t, r′, t′)| = 1

or more generally for a field to be characterized by n-th order coherence we shall require

|g(j)(r, t, r′, t′)| = 1 j ≤ n

Of course, one can not expect that this relation holds exactly for all points in space and time.
We shall therefore employ the n-th order coherence to mean that the first n coherence conditions
are accurately satisfied over intervals as x1 = x2 = x3 = · · · = x2n. It is only within such ranges,
and therefore as an approximation, that we can speak of coherence at all.

3.2 Field coherent states

In the previous section we have seen how, in the most general way possible, the concepts of
coherent field and optical coherence are defined. Our discussion now will have a slightly different
emphasis on how the field coherent states can be constructed from the dynamical group of the
system: the Heisenberg-Weyl group. As we are going to see, there are three equivalent ways to
construct the coherent states for such a dynamical group. However, Glauber [7] showed that
such states are enormously useful for describing the physics of quantum optics. Physically, they
turn out to be eigenstates of the coherence (correlation) function of the electromagnetic field.
Consequently, he named these states field coherent states.
According to Glauber [45], the field coherent states can be constructed starting from any of the
following three mathematical definitions.

Definition 1 : The coherent states |α⟩ are quantum states with a minimum-uncertainty rela-
tionship

(∆p)2(∆q)2 =
1

4

with the position and momentum operators defined as

q̂ =
1√
2
(a+ a†)

p̂ =
1

i
√
2
(a− a†)

and generic variance and expectation value

(∆A)2 ≡ ⟨α|(Â− ⟨Â⟩)2|α⟩
⟨Â⟩ = ⟨α|Â|α⟩.
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Definition 2 : The coherent states |α⟩ are eigenstates of the harmonic-oscillator annihilation
operator a,

a|α⟩ = α|α⟩

where α is a complex number.

Definition 3 : The coherent states |α⟩ can be obtained by applying a displacement operator
D(α) on the vacuum state of the harmonic oscillator,

|α⟩ = D(α)|0⟩

where the displacement operator D(α) is defined as

D(α) = exp(αa† − α∗a).

We shall point out that the first definition does not provide a unique solution for (∆p,∆q),
as shown in Fig.2, where (a) represents the uncertainty circle for field coherent state (with
∆p = ∆q = 1

2 ) and (b) the uncertainty ellipse for the so-called squeezed states, which will be
discussed in detail in Sec. 3.2. Glauber’s original approach was entirely motivated by the physical

(a)

Δp

▲

▲

▲

▲

▲

▲

▲

▲▲▲ ▲▲

(b)
p p

Δq Δq

q q

Δp

Figure 2: The uncertainty picture in the coherent states.

consideration of factorizing to all orders the electromagnetic field correlation functions.
To this end, he constructed the field coherent states by using the harmonic oscillator (HO)
algebra. Nevertheless, we will analyze these three definitions, and how they can be met if we
focus our attention on the case of HO. For this discussion in the future subsections, we will rely
on what has been done from Penna in [51], following the steps that fit our analysis.

3.2.1 Minimum Uncertainty Coherent States

In quantum optics the simplest example from which the field coherent states are uniquely defined
is precisely the harmonic oscillator. In this respect its Hamiltonian

H =
p2

2m
+ ω2m

2
q2

is associated to the so-called Schrödinger algebra

AS = {I, q, p} , [q, p] = ih̄, [I, q] = [I, p] = 0

generated by I, q, and p. In this sense, the commutators relevant to I, q, p contain the information
determining its quantum character. As we know, the Heisenberg uncertainty principle states that

(∆q)2(∆p)2 ≥ h̄/4
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(with the former variance definition). At this point our aim is to show that Minimum Uncertainty
Coherent States (MUCS) are states that minimize Heisenberg principle, i.e. (∆q)2(∆p)2 = h̄/4.
This can be done as follows: consider first two generic non-commmutating hermitian operators
A,B

[Â, B̂] = iĜ

where G is another general operators. The fact that they are hermitian ensures that G is too,
namely G = −i[A,B] = i(BA − AB) = i(AB − BA)† = (−i[A,B])† = G†. In this way, the
Heisenberg principle claims

∆Â∆B̂ ≥ |⟨G⟩|2/4 (3.2.1.1)

Taking now into account non-hermitian operator defined as Â + iσB̂, where σ = ⟨Ĝ⟩
2∆2

B
(for

simplicity we will denote ∆B := ∆B), we are going to prove that the eigenvalues of this operator
are characterized by minimum uncertainty, i.e. Eq.(3.2.1.1) is a strict equality:

(A+ iσB)|ψ⟩ = λ|ψ⟩ → ∆A∆B =
⟨G⟩
2

where ψ is some physical state of the system. This is immediately obtained noticing that the
eigenvalue λ = ⟨A⟩+ iσ⟨B⟩. Therefore we can rewrite the eigenvalue equation as

(A− ⟨A⟩)|ψ⟩ = −iσ(B − ⟨B⟩)|ψ⟩

and then if the term (A− ⟨A⟩) acts on both side we find

(A− ⟨A⟩)2|ψ⟩ = −iσ(A− ⟨A⟩)(B − ⟨B⟩)|ψ⟩

with the product (A− ⟨A⟩) that can be manipulated as

(A− ⟨A⟩) = [A− ⟨A⟩, B − ⟨B⟩] + (B − ⟨B⟩)(A− ⟨A⟩) = iG+ (B − ⟨B⟩)(A− ⟨A⟩) (3.2.1.2)

where we have used [A− ⟨A⟩, B − ⟨B⟩] = [A,B] = iG. Our eigenvalue equation thus became

(A− ⟨A⟩)2|ψ⟩ = σG|ψ⟩+ (iσ)2(B − ⟨B⟩)2|ψ⟩,

and we just need to project |ψ⟩ on the latter equation to determine the variance

∆2
A = ⟨ψ|(A− ⟨A⟩)2|ψ⟩ = −iσ⟨ψ|iG+ (B − ⟨B⟩)(A− ⟨A⟩)|ψ⟩ = σ⟨ψ|G|ψ⟩ − σ2⟨ψ|(B − ⟨B⟩)2|ψ⟩ = ⟨G⟩2

∆2
B

from which the direct equality is now proven

∆2
A∆

2
B =

⟨G⟩2

4
.

3.2.2 Annihilation operator coherent states

Let us now resume the Hamiltonian of an harmonic oscillator,

H =
p2

2m
+ ω2m

2
q2
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which we now know to be associated with the above mentioned Schrödinger algebra AS . The
latter is said to be the Hamiltonian generating algebra for the HO in that it can be expressed
as a quadratic function of the algebra generators q, and p. In this way, AS is the Hamiltonian
generating algebra for any one-dimensional potential system described by H = p2/2m + V (q)
(where V (q) as potential energy) or, more in general, for any system whose Hamiltonian is such
that H = F (q, p). In this sense it is appropriate introducing the annihilation operator as

a =
mqω − ip√

2mh̄ω
(3.2.2.1)

since it allows us to rewrite

q =

√
h̄

2mω
(a† + a)

p =

√
mh̄ω

2
(a† − a)

and the Hamiltonian as

H = h̄ω

(
n+

1

2

)
(3.2.2.2)

with the number operator n̂ = a†a and where we used the commutation relation [a, a†] = I.
Equation (3.2.2.2) puts into evidence that the so called Weyl-Heisenberg algebra, generated by

AWH =
{

I, a†, a
}

is also an Hamiltonian generating algebra for the HO, in that H can be expressed in terms of
quantities (I, a, and a†) with well defined commutators

[a, n] = [a, a†]a = a, [a†, n] = a†[a†, a] = −a†.

Observing these relations, one, in principle, can recognize that H can be written within a more
general algebraic structure, namely the Weyl algebra. Indeed, this algebra will turn out to be
a dynamical algebra, ie. if an algebra is such that some Hamiltonian can be written as a linear
combination of its generator, then such an algebra is referred to as the dynamical algebra for the
Hamiltonian under examination. However, entering in details of this is not our purpose, and we
leave the complete discussion to [51].
Equation (3.2.2.2) also tells us that solving the eigenvalue problem for HO, adds up to diagonal-
izing the number operator n. This can be done by exploiting the commutation relations. In fact,
denoting by |s⟩ a generic (normalized) eigenstate of n (n|s⟩ = s|s⟩), and by using commutator
[a, n] = a one has

n|s⟩ = (an− a)|s⟩ = as|s⟩ − a|s⟩ = (s− 1)a|s⟩

showing that a|s⟩ is an eigenstate of n with eigenvalue s−1. Using the communtator [a†, n] = −a†,
one can repeat the same procedure obtaining

na†|s⟩ = (s+ 1)a†|s⟩

proving that a†|s⟩ is an eigenstate of n with eigenvalue s + 1. Imposing the normalization
condition ⟨s± 1|s± 1⟩ = 1 yields to a|s⟩ =

√
s|s1−⟩, and a†|s⟩ =

√
s+ 1|s+ 1⟩. The latter ones
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can be recast as

am|s⟩ =
√
sam−1|s− 1⟩ =

√
s!

(s−m)!
|s− 1⟩

(a†)m|s⟩ = · · · =
√

(s+m)!

s!
|s+ 1⟩.

Therefore, we can now take expression (3.2.2.1), and have a look at the eigenstates of the anni-
hilation operator [51]

a|α⟩ = α|α⟩,

expanding these states on the eigenfunctions basis to get

a|α⟩ = a

∞∑
n=0

fn|n⟩ =
∞∑

n=1

√
nfn|n− 1⟩ =

∞∑
n+1

√
n+ 1fn|n+ 1⟩ = α|α⟩ = α

∞∑
n=0

fn|n⟩

where the coefficients fn of the series are related by the recursive relation
√
nfn = αfn−1. In

this way, we end up with

fn =
α√
n
fn−1 =

α2

√
n
√
n− 1

fn−2 = · · · = αn

√
n!
f0

that leads to

|α⟩ = f0

∞∑
n=0

αn

√
n!
f0

with f0 determined due to the normalization condition

1 = ⟨α|α⟩ = |f0|2
∑
n

|α|2n
n!

= |f0|2e|α|
2

from which

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩ (3.2.2.3)

The last step now consists in evaluating the uncertainty relation of q and p over the eigenstates
(3.2.2.3):

⟨q⟩ = h̄

2mω
(α+ α∗)

⟨p⟩ = i
h̄mω

2
(α+ α∗)

⟨q2⟩ = h̄

2mω
[(α+ α∗)2 + 1]

⟨p2⟩ = h̄

2mω
[1− (α− α∗)2]
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from which finally

∆2
q = ⟨q2⟩ − ⟨q⟩2 =

h̄

2mω

∆2
p = ⟨p2⟩ − ⟨p⟩2 =

h̄ωm

2

⇒ ∆2
q∆

2
p = h̄/4 (3.2.2.4)

Equation (3.2.2.4) exactly shows how the annihilation operator’s eigenstates |α⟩ are minimum
uncertainty states, namely they are annihilation operator coherent states (AOCS). This means
that AOCS → MUCS.

3.2.3 Displacement operator coherent states

Finally, let’s have a closer look at the definition of a coherent state as the result of the displace-
ment operator on the vacuum state of the HO

|α⟩ = D(α)|0⟩

with the already defined displacement operator D(α) = exp(αa† − α∗a). Using the operator
identity (Baker-Campbell-Hausdorff) [45]

eA+B = eAeBe−[A,B]/2

which only holds when

[A, [A,B]] = [B, [A,B]] = 0

we can write D(α) as

D(α) = e−
|α|2
2 eαa

†
e−α∗a (3.2.3.1)

Now, since a|0⟩ = 0 implies that also eα
∗a|0⟩ = 0 we can easily evaluate the action of the operator

on the ground state

D(α)|0⟩ = |α⟩ = e−
|α|2
2 eαa

†
|0⟩ = e−

|α|2
2

∞∑
k=0

αk

k!

√
k!|k⟩ = e−

|α|2
2

∞∑
k=0

αk

√
k!
|k⟩

where we notice that the last expression is precisely the same as Eq.(3.2.2.3). We also would like
to point out some important general properties of the displacement operator

D†(α) = D−1(α) = D(−α)
D†(α) a D(α) = a+ α

D†(α) a† D(α) = a† + α∗

D(α+ β) = D(α)D(β)e−iIm{αβ∗}

(3.2.3.2)

Furthermore one could also evaluate the subsequent action of two displacement operators using
this last property

D(α1)D(α2) = eα2a
†−α2aeα1a

†−α1a = D(α1 + α2)e
−iIm{α2α

∗
1}

where the latter result adds up to say that the application of a displacement operator on a
coherent state results, up to a phase factor, into another coherent state:

D(α2)|α1⟩ = D(α2)D(α1)|0⟩ = e−iIm{α2α
∗
1}|α1 + α2⟩
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This shows us how actually D(α) displaces the complex number which labels the coherent state.
In this sense, the set of all the possible coherent states that come from the action of displacement
operators on the ground state, is referred as

{|α⟩ = D(α)|0⟩, α ∈ C}

also called coherent-state manifold. This entail that, from the above definitions of the field
coherent states, one sees that the displacement operator is a finite transformation operator in
the complex α plane, that is, one to one correspondence between the coherent states |α⟩ and
points in the complex α plane.

|α>

← ←
α

Figure 3: One to one correspondence between |α⟩ and points in the complex α plane.

3.3 Squeezed states

The uncertainty principle has posed a question to quantum physicists: is it possible to ”beat”
it? As far as we know this, for example, could be a limit in situations where we want to code
and transmit information. However, if we think about it, the uncertainty principle is simply a
statement about areas in phase space, and noise levels in different quadratures are statements
about intersections of uncertainty ellipses with these axes. Any procedure that can deform, or
squeeze, the uncertainty circle to an ellipse can in principle be used for noise reduction in one of
the quadratures. Such squeezing does not violate the uncertainty principle; rather, it places the
larger uncertainty in a quadrature not involved in the information transmission process. In this
sense, a general class of minimum-uncertainty states is known as squeezed states. The procedure
for squeezing the error ellipse that we will follow is given by Caves in 1981 [52], although he was
not the first to give it, it is fair to mention the work of Yuen in 1976 [53] and Hollenhorst in 1979
[54] that introduced the term ”squeezed states”, and, of course, the pioneer worked in 1926 of
Schrödinger [44], in connection with the classical states of the quantum harmonic oscillators.
We shall begin our discussion considering the properties of a single-mode field. We may write
the annihilation operator a as a linear combination of two Hermitian operators

a =
√
2X1 + i

√
2X2 (3.3.1)

obeying the following commutation relation

[X1, X2] = i.

The expectation values of X1 and X2 represent the real and imaginary parts of the complex
amplitude, and they give dimensionless amplitudes for the two quadratures. Clearly it follows
that the resulting uncertainty principle is ∆X1∆X2 ≥ 1/4. The complex amplitude of a single
mode is a constant of the motion, i.e. it is constant in the Heisenberg picture, thus, in Eq.(3.3.1),
X1, X2 and a are Heisenberg-picture operators. There is a phase factor in the relation between
the complex amplitude and the annihilation operator; this phase corresponds to the freedom to
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make rotations in the complex-amplitude plane, since we can define them as

X1(θ) =
1√
2

(
a†eiθ + ae−iθ

)
X2(θ) =

i√
2

(
a†eiθ − ae−iθ

)
What we have previously seen is that the coherent state |α⟩, which has mean complex amplitude
⟨α⟩, is conveniently represented by an ”error circle” in a complex-amplitude plane whose axes
are X1, and X2. On the other hand, the squeezed states have less noise in one quadrature than
in the other. For this reason, they are represented by an ellipse on the quadrature planes, as
shown in Fig.(2). Such states may be generated by using the unitary squeezing operator

S(ϵ) = exp[1/2ϵ∗a2 − 1/2ϵa†2], ϵ = reiθ (3.3.2)

where ϵ is an arbitrary complex number. Note the squeezing operator obeys the relations

S†(ϵ) = S−1(ϵ) = S(−ϵ)

and acts on the raising, lowering and quadrature operators as

S†(ϵ)aS(ϵ) = a cosh r − a†eiθ sinh r

S†(ϵ)a†S(ϵ) = a† cosh r − ae−iθ sinh r

S†(ϵ)(Y1 + iY2)S(ϵ) = Y1e
−r + iY2e

r

where

Y1 + iY2 = (X1 + iX2)e
−iθ/2

is a rotated complex amplitude. The squeezing operator thus squeezes one component of the
(rotated) complex amplitude, and it amplifies the other one. The degree of attenuation and
amplification is determined by r = |ϵ|, which will be called the squeezing factor. In this sense,
the squeezed state |α, ϵ⟩ is obtained by first squeezing the vacuum and then displacing it

|α, ϵ⟩ = D(α)S(ϵ)|0⟩ (3.3.3)

To conclude, a squeezed state has the following expectation values and variances

⟨X1 + iX2⟩ = ⟨Y1 + iY2⟩eiθ/2 = α

∆Y1 =
1

2
e−r, ∆Y2 =

1

2
er

⟨N⟩ = |α|2 + sinh2 r

(∆N)2 = |α cosh r +−α∗eiθ sinh r|2

(3.3.4)

Note that the squeezed state |α, ϵ⟩ has the same expected complex amplitude as the corresponding
coherent state |α⟩, and it is a minimum uncertainty state for Y1 and Y2. The difference lies in its
unequal uncertainties for Y1, Y2. In the complex plane, as already shown in Fig.(2), the coherent-
state error circle has been squeezed into an error ellipse of the same area. Squeezed states are
constantly used in quantum optics for various applications, and as we will see in Chapter 5 it
is possible to obtain a reduction of quantum noise (output squeezing) by radiation pressure in
optomechanical system [14].
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3.3.1 Multimode squeezed states

Multimode squeezed states are important since many devices produce light which is correlated
at the two frequencies ω1 and ω2. In this way, the squeezing exists not in the single modes but
in the correlated state formed by the two modes. A two-mode squeezed state may be defined by
[55, 56]

|α1, α2⟩ = D1(α1)D2(α2)S(ξ)|0⟩ (3.3.1.1)

where the displacement operator is

Dj(α) = exp

(
αa†j − α∗aj

)
, j = 1, 2.

and the two-mode squeezing operator is

S(ξ) = exp

(
ξ∗a1a2 − ξa†1a

†
2

)
As a generalization of the previous section, it follows the squeezing operator transforms the
annihilation operators as

S†(ξ)a1,2S(ξ) = a1,2 cosh r − a†2,1e
iθ sinh r, ξ = reiθ

and gives the following expectation values

⟨a1,2⟩ = α1,2

⟨a1,2a1,2⟩ = α2
1,2

⟨a1a2⟩ = α1α2 − eiθ sinh r cosh r

⟨a†1,2a1,2⟩ = |a1,2|2 + sinh2 r.

(3.3.1.2)

Thanks to these, one can immediately compute the mean and variance of the quadrature operator
X̂ in a two-mode squeezed state

⟨X̂⟩ = 2(Re {α1}+Re {α2}) (3.3.1.3)

Var(X̂) =

(
e−2r cos2

θ

2
+ e2r sin2

θ

2

)
(3.3.1.4)

where the quadrature is generalized in the two-mode case to

X̂ =
1√
2

(
a1 + a†1 + a2 + a†2

)
.

Actually, this definition is a particular case of a more general one. It corresponds to the de-
generate situation in which the frequencies of the two modes are set to be equal. These results
for two-mode squeezed states will be used in the analyses of optomechanical systems given in
Chapter 7. Furthermore, it is very interesting to see that squeezed states can have an immense
range of situations where they are used. For example, it was shown in [57] that the vacuum quan-
tum state in a black-hole space-time is given, for each mode, by a two-mode squeezed vacuum,
showing us the close relationship between the theory of particle creation in external fields and
the theory of quantum-mechanical squeezed states. In 1990 Grishchuk and Sidorov explained
how primordial perturbations, created from zero-point quantum fluctuations in the course of
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cosmological evolution, should be in squeezed states. Generally speaking, one can say that the
variable gravitational field of the cosmological evolution is a ”phase-sensitive amplifier which
squeezed the vacuum”. The important feature attributed to the phenomenon of squeezing, is
that the variances in the amplitude distribution of gravitational waves are very large, while the
variances in the phase distribution are practically equal to zero. It is known that to achieve
squeezing, in the case of light generated under laboratory conditions, requires some experimental
effort. In contrast with this, the squeezed gravitational waves are produced, are given for free
and with a much greater amount of squeezing. Unfortunately, the electromagnetic waves cannot
be squeezed in the course of cosmological expansion in a similar way, since they do not interact
with the external gravitational field in the same manner as the gravitational waves do.
Grishchuk and Sidorov in 1990, and Kiefer in [58], also pointed out how Hawking’s process of
black-hole evaporation [59] is tightly linked with, again, two-mode squeezed states, turning out
that these two areas of research are intimately related.

3.3.2 Einstein-Podolsky-Rosen paradox

To conclude this section, we would like to make a small introduction to what we will see in
the next chapter, and also in Chapter 8, where we will work with squeezed states which will
turn out to be entangled states. It is therefore necessary to mention the Einstein-Podolsky-
Rosen paradox, which has been a fundamental work for studying entangled states, and in which
they asked themselves: ”Can Quantum-Mechanical Description of Physical reality be considered
complete ?” [60]. In their article, the essential step was to introduce correlated pure states of
two particles (or photons) of the form

|Ψ⟩ =
∑
n

pn|an⟩1 ⊗ |bn⟩2, (3.3.2.1)

where pn are numerical coefficients that sum up to 1, and |an⟩1, |bn⟩2 are orthonormal eigenstates
for some operators Â1 and B̂2 of particles 1 and 2, respectively. Suppose now someone was
measuring operator Â1 on particle 1 long after the interaction between the particles has ended,
and the two particles were space-like separated. If the result is some eigenvalue an, particle 1
must therefore be considered to be in the state |an⟩1, while particle 2 must be in the state |bn⟩2,
because of the collapse of the wave function. As the state of particle 2 is now an eigenstate of B̂2,
we can predict with probability one that the physical quantity represented by B̂2 if measured,
will give the result bn. Thus we can predict the value of this physical quantity for particle 2
without in any way interacting with it.
Suppose, however, that instead of measuring Â1 on particle 1 we measured some other observable,
call it Ĉ1, with eigenstates |cn⟩1, for which holds [Â1, Ĉ1] ̸= 0. We then have to rewrite the state
in (3.3.2.1) as

|Ψ⟩ =
∑
n

|cn⟩1 ⊗ |dn⟩2 (3.3.2.2)

where now |dn⟩2 is an eigenstate of some other operator D̂2 for particle 2. If the result cn is
obtained from the measurement on particle 1, particle 2 must be in the state |dn⟩2 for which
a measurement of D̂2 must give exactly dn as the result. Thus depending on what we choose
to measure on particle 1 the state of particle 2 after the measurement, can be an eigenstate of
two quite different operators. The EPR argument now raises one very important question. Is
it possible that the two operators on particle 2, B̂2 and D̂2, do not commute? If this were the
case the EPR argument establishes that, depending on what is measured on particle 1, we can
predict with certainty the values of physical quantities, represented by non-commuting operators
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without in any way interacting with this particle. By explicit construction Einstein, Podolsky
and Rosen showed that this is indeed possible.
EPR claimed that “if without in any way disturbing a system, we can predict with certainty (i.e.
with probability equal to unity), the value of a physical quantity, then there exists an element
of physical reality corresponding to that quantity”.
Assuming that the wave function does contain a complete description of the two-particle system
it would seem that the argument of EPR establishes that it is possible to assign two different
states (|bn⟩2 and |dn⟩2) to the same reality. Nevertheless, two physical quantities represented by
operators which do not commute cannot have simultaneous reality. The EPR paradox concluded
that the quantum mechanical description of physical reality given by the wave function is not
complete.

3.4 Linear Detection of optical fields

To detect optical fields, the most common detection techniques are linear, i.e. they provide signals
that are proportional to the intensity of the optical field. Such techniques can be understood
through the example of direct detection of a bright field. The most common devices in practice
involve a transition where a photon is absorbed. This has important consequences since this
type of counter is insensitive to spontaneous emission. At this stage, we shall assume we have
an ideal detector working on an absorption mechanism which is sensitive to the field E(+)(r, t)
at the space-time point (r, t). We will follow the treatment of Glauber [7] and the mathematical
description given by [35].
The transition probability of the detector for absorbing a photon at position r and time t is
proportional to

Tif = |⟨f |E(+)(r, t)|i⟩|2 (3.4.1)

where |i⟩ and |f⟩ are the initial and final states of the field. We do not measure the final state
of the field but only the total counting rate. To obtain the latter we must sum over all states of
the field which may be reached from the initial state by an absorption process. We can extend
the sum over a complete set of final states since the states which cannot be reached (e.g., states
|f⟩ which differ from |i⟩ by two or more photons) will not contribute to the result as they are
orthogonal to E(+)(r, t)|i⟩. In this way, the total counting rate or average field intensity is

I(r, t) =
∑
f

Tfi =
∑
f

⟨i|E(−)(r, t)|f⟩⟨f |E(+)(r, t)|i⟩

= ⟨i|E(−)(r, t)E(+)(r, t)|i⟩,

where we have used the e completeness relation relation
∑

f |f⟩⟨f | = 1. The above result assumes
that the field is in a pure state |i⟩. As we know, the result may be generalized to a statistical
mixture state by averaging over initial states with the probability pi, i.e.

I(r, t) =
∑
i

pi⟨i|E(−)(r, t)E(+)(r, t)|i⟩.

This can be recast as

I(r, t) = tr
{
ρE(−)(r, t)E(+)(r, t)

}
with ρ density operator defined by

ρ =
∑
i

pi|i⟩⟨i|.
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If, for example, the field is initially in the vacuum state

ρ = |0⟩⟨0|,

then the intensity is

I(r, t) = ⟨0|E(−)(r, t)E(+)(r, t)|0⟩ = 0.

The normal ordering of the operators (that is, all annihilation operators are to the right of all
creation operators) yields zero intensity for the vacuum. This is a consequence of our choice of
an absorption mechanism for the detector. Had we chosen a detector working on a stimulated
emission principle, problems would arise with vacuum fluctuations. More generally the correla-
tion between the field at the space-time point x = (r, t) and the field at the space-time point
x′ = (r′, t′) may be written as the correlation function

G(1)(x,x′) = tr
{
ρE(−)(x)E(+)(x′)

}
,

where the first-order correlation function of the radiation field is sufficient to account for classical
interference experiments, such as Young’s interference experiment the shows how a definition of
first-order optical coherence arises from considerations of the fringe visibility. Moreover, such a
total rate is to be interpreted as a probability per unit time that one photon is recorded at r at
time t and another at r′ at time t′.

3.5 Phase-referenced tecniques: Homodyne and Heterodyne detection

Homodyne and Heterodyne are two phase-referenced detection techniques that find wide use in
coherent communications, quantum optics, quantum optomechanics, and also microwave elec-
tronics. This techniques are well compared to direct detection in Fig.(4). As we can notice the

Figure 4: Sketch of direct (a), homodyne (b), and heterodyne (c) detection of an optical field,
where a(t) is the input field to be measured and Iph the resulting photo-electron current. In
homodyne detection the input field is interfered on a 50/50 beam splitter with a bright local
oscillator that has the same optical carrier frequency. The phase of the local oscillator αLO

determines the measured optical quadrature. In heterodyne detection an offset local oscillator
carrier frequency is used, resulting in a temporally oscillating phase relative to the input field.
The measured optical quadrature therefore also oscillates with time.

main difference between direct and phase-referenced detection, is that in the second one the de-
tected field is interfering with a bright local oscillator field. Specifically, in homodyne detection,
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the local oscillator field (LO) has the same carrier frequency, while in heterodyne detection is
used a carrier frequency that is offset from the detected field frequency by ∆LO.
Starting with homodyne detection, consider two fields E1(r, t) and E2(r, t) of the same frequency,
combined on a beam splitter with transmittivity η. We can expand the two incident fields into
their positive and negative frequency components

E1(r, t) = i

√
h̄ω

2V ε0
(a1e

i(k·r−ωt) − a†1e
−i(k·r−ωt))

E2(r, t) = i

√
h̄ω

2V ε0
(a2e

i(k·r−ωt) − a†2e
−i(k·r−ωt))

where a1, a2 are boson operators which characterise E1 and E2, respectively. Both fields are
taken to have the same sense of polarization. The total field after combination is given by

ET = i

√
h̄ω

2V ε0
(cei(k·r−ωt) − c†e−i(k·r−ωt))

where

c =
√
ηa1 +

√
1− ηa2

The photon detector, of course, responds to the moments of c†c, and we thus define the number
operator N̂ = ⟨c†c⟩. In this sense, the mean photo-electron current in the detector is proportional
to ⟨c†c⟩ which is given by

Iph ∝ ⟨c†c⟩ = η⟨a†1a1⟩+ (1− η)⟨a†2a2⟩+ η(1− η)(⟨a†1a2⟩+ ⟨a1a†2⟩). (3.5.1)

Let us take the field E2 to be the local oscillator and assume it to be in a coherent state of large
amplitude β ∈ R. Then we may neglect the first term in (3.5.1) and write Iph in the form

Iph ∝ ⟨c†c⟩ ≈ (1− η)|β|2 + η(1− η)
√
2β⟨X̂(θ)⟩

with the quadrature operator

X̂(θ) ≡ 1√
2
(a1e

−iθ + a†1e
iθ) (3.5.2)

and θ is the phase of β. This is an important result, as it shows us that the mean photo-current
in the detector is proportional to the mean quadrature phase amplitude of the signal field defined
with respect to the local oscillator phase. If we also change θ → θ + π/2 we can determine the
mean amplitude of the two canonically conjugate quadrature phase operators (namely X̂ and
P̂ ). We now shall make a consideration of the fluctuations in the photo-current. For a local
oscillator in a coherent state the variance of c†c is

Var(N̂) = (1− η)2|β|4 + 2η2(1− η)2|β|2Var(X̂θ). (3.5.3)

The first term here represents reflected local oscillator intensity fluctuations. If this term is
subtracted out, the photo-current fluctuations are determined by the variances in X̂θ, i.e. the
measured quadrature-phase operator. To subtract out the contribution of the reflected local
oscillator field balanced homodyne detection may be used. In this scheme, the output from both
ports of the beam splitter is directed to a photodetector, and the resulting currents are com-
bined with appropriate phase shifts before subsequent analysis. Balanced homodyne detection
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realizes direct measurement of the signal field quadrature-phase operators [61]. Alternatively,
the contribution from the local oscillator intensity fluctuations may be reduced by making the
transmissivity η ≈ 1, in which case the dominant contribution to Var(N̂) comes from the second
term in (3.5.3).
Heterodyne detection is essentially equivalent to the homodyne case, except that the frequency of
the local oscillator field is offset from the frequency of the field to be detected by ∆LO = ωLO−ωL

(ωL is the detected field frequency). Analogously, one could show that

Ihetph ∝ ⟨X̂(θ −∆LOt)⟩ (3.5.4)

meaning that the output signal of the probed field by heterodyne detection, oscillates in time at
a frequency given by the detuning of the local oscillator.
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4 Entanglement measures

When two quantum systems come to interact, some quantum correlation is established between
the two of them. This correlation persists even when the interaction is switched off and the two
systems are spatially separated. If we measure a local observable on the first system, its state
collapses in an eigenstate of that observable. In the ideal case of no environmental decoherence,
the state of the second system is instantly modified. The question then arises about what is
the mechanism responsible for this action at a distance. In this sense, quantum entanglement
refers to correlations between the results of measurements made on subsystems of a system
that cannot be explained in terms of classical statistical correlations. For example, one may
argue that this system contains quantum correlations if the observables, associated with the
different subsystems, are correlated and their correlations cannot be reproduced with purely
classical means. This implies that some form of inseparability or non-factorizability is necessary
to properly take into account those correlations, as in the case of a pure quantum state, where
the entanglement is defined as the impossibility of factorization of that state. Nevertheless, in
the real world, we usually meet physical systems which interact with the environment getting
then entangled with it. This process, changing the state of our system from pure to mixed one,
decreases the internal entanglement of the system sometimes even destroying it completely. Thus
one usually faces the following process

|Ψ⟩⟨Ψ| −→ ρAB (4.1)

However it has been shown [62, 63] that there are cases when the system in a mixed state ρAB still
possesses entanglement, and the density matrices of those systems are called inseparable. Math-
ematically, ρAB , defined on the Hilbert space H = HA ⊗HB , is called inseparable (separable)
if it cannot (can) be represented as a convex combination of product states [64, 65]

ρAB =

N∑
i=1

piρ
i
A ⊗ ρiB , (4.2)

where ρiA and ρiB are subsystems’ states and of course
∑N

i=1 pi = 1.
The simplest example [66] of such a state is the Bell state with the two 1

2 - spin particles labeled
by A and B

Ψ =
1√
2
= (| ↑⟩A| ↓⟩B − | ↓⟩A| ↑⟩B), (4.3)

or any state which can be obtained from the above one by means of product unitary trans-
formation. The properties of the states of this kind are responsible for profoundly non-classical
phenomena like quantum cryptography via Bell inequalities [67, 68], which will be discussed later
on in Chapter 9.
Let us now take into account the paradigmatic situation of two observers Alice and Bob being
in two distant laboratories. There is a source of pairs of particles between two laboratories
which sends one member of any pair to each of them. Alice and Bob are allowed to perform any
quantum operations on particles in their laboratories and communicate with each other via some
classical channel (e.g. by telephone). Usually, they are also allowed to discard some particles.
We shall refer to all those operations as to LQCC ones (Local Quantum Operations and Classical
Communication). Since Alice and Bob can only interact classically, then some operations are cer-
tainly unavailable for them. For example, if they share a pair of particles that are non-entangled,
it is impossible to entangle those particles with each other. Now the basic task is to find the best
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Alice and Bob can do under the above restrictions to reverse somehow the process (4.1). This
leads to the so-called idea of distillation of noisy entanglement via local quantum operations and
classical communication [69, 66]. We now rapidly describe some of the entanglement measures
introduced by [70, 65], but from Sec. 4.1 we will focus particularly on one specific obtained result
in the context of separability criteria, namely the Peres–Horodecki condition [71, 72], qualifying
and quantifying entanglement in Gaussian states for continuous-variable systems.
In this way, referring to the paradigmatic situation of two distant laboratories, to quantify the
entanglement of any quantum state ρAB , there arise natural postulates which must be satisfied
by any measure of entanglement E:

• E(ρAB) ≥ 0 and E(ρAB) = 0 if ρAB is separable,

• E(ρAB) is invariant under the product unitary operations UA ⊗ UB ,

• E(ρAB) cannot be increased by any LQCC operation.

It is now well understood that entanglement in a pure bipartite quantum state |Ψ⟩ is equivalent
to the degree of mixedness of each subsystem. Accordingly, it can be properly quantified by the
entropy of entanglement EV (|Ψ⟩), defined as the von Neumann entropy of the reduced density
matrices. We first introduce the latter as a measure of the degree of information contained in
a quantum (Gaussian) state, which corresponds to the amount of knowledge that we possess a
priori on predicting the outcome of any state’s measure. Therefore, the von Neumann entropy
of a quantum state ρAB is defined as

S(ρAB) = −trρAB log ρAB

In this way, the entropy of entanglement reads 3

EV (Ψ⟩) = S(ρiA)S(ρ
i
B) = −

d∑
k=1

λ2k log λ
2
k (4.4)

where ρiB = trA
{
|Ψi

AB⟩⟨ψi
AB |

}
and viceversa for ρiA. As already mentioned, it can be shown [73]

that EV (|Ψ⟩) cannot increase under LQCC performed on the state |Ψ⟩. Moreover, the entropy
of entanglement is by definition invariant under local unitary operations

EV ((Û1 ⊗ Û2)|Ψ⟩) = EV (|Ψ⟩).

On the other hand, if we deal with a mixed quantum state the difficulty lies in the fact that the
decomposition of equation (4.2) is not unique: apart from pure states, there exist infinitely many
decompositions of a generic ρAB , meaning that the mixed state can be prepared in infinitely
many different ways. This has important consequences on the determination of mixed-state
entanglement.

4.1 Mathematical description of continuous-variable systems and Gaus-
sian States

Before analyzing the Peres–Horodecki criteria, we prefer to introduce a mathematical description
of Gaussian states for continuous-variable (CV) systems. To this end, we will rely on what has
been discussed in [74].
A continuous-variable (CV) system of N canonical bosonic modes is described by a Hilbert

3Notice that the purity of a state ρ is given by tr(ρ2) =
∑

k λ2
k, with λk eigenvalues.
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space H =
⊗N

k=1 Hk resulting from the tensor product structure of infinite-dimensional Fock
spaces Hk’s, each of them associated with a single mode. For instance, one can think of the
non-interacting quantized electromagnetic field, whose Hamiltonian describes a system of an
arbitrary number N of harmonic oscillators of different frequencies ωk. We have already seen
the expressions of the quadrature phase operators (position and momentum) for each mode, but
now we want to collect them together in the vector

R̂ = (q̂1, p̂1, . . . , q̂N , p̂N )T ,

which enables us to write in compact form the bosonic commutation relations between the
quadrature phase operators,

[R̂k, R̂j ] = iΩk,j

where Ω is the symplectic form

Ω =

N⊕
k=1

ω, ω =

(
0 1
−1 0

)
In this way, the space Hk is spanned by the Fock basis {|n⟩k} of eigenstates of the number

operator n̂k = â†kâk.
States with central importance in quantum optics and quantum information are the Gaussian
states. The set of Gaussian states is, by definition, the set of states with Gaussian characteristic
functions and quasi-probability distributions on the quantum phase space. Gaussian states in-
clude coherent, squeezed, and thermal states, and the most general Gaussian state is precisely a
thermal squeezed displaced state. Their entanglement properties will thus be the main subjects
of these sections. From the definition, it follows that a Gaussian state ρ is completely character-
ized by the first and second statistical moments of the quadrature field operators, which will be
denoted, respectively, by the vector of first moments R = (⟨R̂1⟩, . . . , ⟨R̂N ⟩) and by the covariance
matrix (CM) σ of elements

σi,j =
1

2
⟨R̂iR̂j + R̂jR̂i⟩ − ⟨R̂i⟩⟨R̂j⟩.

Furthermore, the Wigner function of a Gaussian state can be written as follows in terms of
phase-space quadrature variables

W (R) =
e−

1
2Rσ−1RT

π
√
Detσ

,

where R stands for the real phase-space vector (q1, p1, . . . , qN , pN ) belongs to the phase space Γ.
Therefore, despite the infinite dimension of the associated Hilbert space, the complete description
of an arbitrary Gaussian state is given by the 2N × 2N covariance matrix. In the following, σ
will be assumed indifferently to denote the matrix of second moments of a Gaussian state or the
Gaussian state itself. In the language of statistical mechanics, the elements of the CM are the
two-point correlation functions between the 2N canonical continuous variables.
We also notice that the entries of the CM can be expressed as energies by multiplying them by
the level spacing h̄ωk, where ωk is the frequency of each mode. In this way, trσ is related to
the mean energy of the state. Since σ contains the complete locally invariant information on
a Gaussian state, we can expect some constraints existing to be obeyed by any CM, reflecting,
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in particular, the requirements of positive semidefiniteness of the associated density matrix ρ.
Indeed, such condition together with the canonical commutation relations implies

σ + iΩ ≥ 0. (4.1.1)

Eq.(4.1.1) is the necessary and sufficient condition the matrix σ has to fulfil to be a CM cor-
responding to a physical Gaussian state. We note that such a constraint implies σ ≥ 0. For
future convenience, let us define the CM σ1...N of N -mode Gaussian state in terms of two-by-two
submatrices as

σ1...N =


σ1 ε1,2 . . . ε1,N

εT1,2
. . .

. . .
...

...
. . .

. . . εN−1,N

εT1,N . . . εTN−1,N σN

 . (4.1.2)

Each diagonal block σk is respectively the local CM corresponding to the reduced state of mode
k, for all k = 1, . . . , N . On the other hand, the off-diagonal matrices εi,j encode the correlations
between subsystems i and j. We shall mention the explicit form of the CM for a two-mode
squeezed state (with squeezing factor r), since, as we will see in Chapter 8, two-mode squeezed
states are of key importance as entangled resources for practical implementations of CV quantum
information protocols. The CM thus will be

σi,j(r) =


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r
sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

 . (4.1.3)

In the limit of infinite squeezing (r → ∞), the state approaches the ideal EPR state [60], a
simultaneous eigenstate of total momentum and relative position of the two subsystems, which
thus share infinite entanglement. The EPR state is not normalizable and unphysical. However,
in principle, an EPR state can be approximated with an arbitrarily high degree of accuracy by
two-mode squeezed states with sufficiently large squeezing.

4.2 Separability Criterion for density matrices

The Peres–Horodecki criterion (PH) [71, 64] is based on the operation of partial transposition of
the density matrix of a bipartite system, obtained by performing transposition with respect to
the degrees of freedom of one subsystem only. PH criterion states that if a state ρ is separable
then its partial transpose ρT1 (with respect, e.g., to subsystem S1) is a valid density matrix,
in particular positive semidefinite, ρT1 ≥ 0. Obviously, the same holds for ρT2 . Positivity
of the partial transpose (PPT) is therefore a necessary condition for separability. Note that
the converse (i.e. ρT1 ≥ 0 → ρ separable) is in general false, but it has been proven true for low
dimensional systems, e.g. bipartite systems with Hilbert state space of dimensionality 2 × 2. The
PPT criterion has been generalized to continuous-variable systems by Simon [75], who showed
how, in infinite-dimensional Hilbert spaces, the PPT criterion is necessary and sufficient for the
separability of all N -mode Gaussian states. Under partial transposition, the CM σA|B , where
subsystem SA groups NA modes, and subsystem SB is formed by NB modes, is transformed into
a new matrix

σ̃A|B ≡ θA|BσA|BθA|B ,
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with

θA|B = diag

1,−1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
2NA

, 1, 1, 1, 1, . . . , 1, 1︸ ︷︷ ︸
2NB

 .

Referring to the notation of equation (4.1.2), the partially transposed matrix σ̃A|B differs from
σA|B by a sign flip in the determinants of the internal correlation matrices, Detεij , with modes
i ∈ SA and modes j ∈ SB . In this way, the PPT criterion yields that a Gaussian state σA|B
(with NA = 1 and NB arbitrary) is separable if and only if the partially transposed σ̃A|B satisfies
the uncertainty principle equation

σ̃A|B + iΩ ≥ 0. (4.2.1)

This property in turn reflects the positivity of the partially transposed density matrix ρTA associ-
ated with the state ρ. We have therefore demonstrated the existence of ‘bisymmetric’ (NA+NB)-
mode Gaussian states for which PPT is equivalent to separability.

4.2.1 Negativity and inseparable mixed states

An important class of entanglement measures is defined by the negativities [76], which quantify
the violation of the PPT criterion for separability, i.e. how much the partial transposition of ρ
fails to be positive. The negativity N (ρ) [77, 78] is defined as

N (ρ) =
||ρTi ||1 − 1

2
, (4.2.1.1)

where

||Ô||1 = tr
√
Ô†Ô

is the trace norm of the operator Ô. The negativity has the advantage of being a computable
measure of entanglement, being

N (ρ) = max

{
0,−

∑
k

λ−k

}
, (4.2.1.2)

where
{
λ−k

}
are the negative eigenvalues of the partial transpose. The negativity can be defined

for CV systems as well [78], even though a related measure is more often used, the logarithmic
negativity EN (ρ)

EN (ρ) = log ||ρTi || = log[1 + 2N (ρ)]. (4.2.1.3)

The logarithmic negativity is an additive quantity and consists of an upper bound for the distil-
lable entanglement. Both the negativity and the logarithmic negativity fail to be continuous in
trace norm on infinite-dimensional Hilbert spaces; however, this problem can be circumvented by
restricting to physical states of finite mean energy [79]. The great advantage of the negativities is
that they are easily computable for general Gaussian states; they provide a proper quantification
of entanglement, directly quantifying the degree of violation of the necessary and sufficient PH
criterion for separability.
We conclude this section discussing the characterization of the prototypical entangled states of
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CV systems, i.e. the two-mode Gaussian states. For these states, let us recall the expression of
their CM in a general way as (e.g, see 4.1.3)

σ =

(
α γ
γT β

)
=


a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b

 . (4.2.1.4)

For two-mode states, the uncertainty principle in Equation (4.1.1) can be recast as a constraint
on Detσ and ∆(σ) = Detα+Detβ + 2Detγ [80],

∆(σ) ≤ 1 + Detσ. (4.2.1.5)

The eigenvalues of a two-mode Gaussian state will be denoted as ν− and ν+, where ν− ≤ ν+,
and they will be obtained by the following

2ν2∓ = ∆(σ)∓
√
∆(σ)2 − 4Detσ.

In this way, the PPT condition for separability, equation (4.2.1), has a very simple form for
two-mode Gaussian states. In these terms, partial transposition corresponds to flipping the sign
of Detγ, i.e.

σ =

(
α γ
γT β

)
ρ→ρTi

−−−−→ σ̃ =

(
α γ̃

γ̃T β

)
,

with Detγ = −Detσ̃. Accordingly, ∆(σ) is mapped into ∆(σ̃) = Detα+Detβ− 2Detγ, and the
eigenvalues will be given by

2ν̃2∓ = ∆(σ̃)∓
√
∆(σ̃)2 − 4Detσ.

In this sense, the state σ is separable if and only if ν̃− ≥ 1. Therefore, the logarithmic negativity
equation reads

EN = max {0,− log ν̃−} , (4.2.1.6)

as for the biggest eigenvalue of the partial transpose one has ν̃+ > 1 for all two-mode Gaus-
sian states. Note that from previous equations the following necessary condition for two-mode
entanglement follows

σ entangled =⇒ Detγ < 0.

4.3 Inseparability Criterion for CV Systems: Duan bound violation

The last criterion we want to analyze is directly linked to the inseparability of a CV system, and
it will be the one utilized in all the calculations of Chapter 8. The Duan bound violation [81] is
an inseparability criterion based on the total variance of a pair of Einstein-Podolsky-Rosen type
operators, for continuous variable systems, providing a sufficient condition for entanglement of
any bipartite state. Furthermore, for all Gaussian states, this criterion turns out to be a necessary
and sufficient condition for inseparability.
As we have already seen, a quantum state ρ of two modes 1 and 2 is separable if, and only if, it
can be expressed in the following form

ρ =
∑
i

piρ
i
1 ⊗ ρi2,
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where where we assume ρi1 and ρi2 to be normalized states of the modes 1 and 2, respectively,
and pi ≥ 0 to satisfy

∑
i pi = 1. In this sense, a maximally entangled continuous-variable

state can be expressed as a co-eigenstate of a pair of EPR type operators, such as x̂1 + x̂2 and
p̂1 + p̂2. Of course, the maximally entangled continuous-variable states are not physical, but
for the physically entangled continuous-variable states, the two-mode squeezed states, the total
variance of these two operators will rapidly tend to zero by increasing the degree of squeezing.
We consider the following type of EPR-like operators:

û = |a|x̂1 +
1

a
x̂2

v̂ = |a|p̂1 −
1

a
p̂2

(4.3.1)

with the assumption that a is an arbitrary (nonzero) real number. In this way, we can state the
following sufficient criterion for inseparability [81]:

• For any inseparable quantum state ρ, the total variance of a pair of EPR-like operators
defined by Eqs. (4.3.1) with the commutators [x̂j , p̂j′ ] = iδjj′ satisfies the inequality

⟨(∆û)2⟩ρ + ⟨(∆v̂)2⟩ρ < a2 +
1

a2
(4.3.2)

with the variances ⟨(∆û)2⟩ := ⟨û2⟩ − ⟨û2⟩ and ⟨(∆v̂)2⟩ := ⟨v̂2⟩ − ⟨v̂2⟩. We leave the proof
of latter result in the Appendix A.

A natural question could be how strong is this bound. Is it strong enough to ensure that, if
inequality in the form of Eq.(4.3.2) is satisfied, the state necessarily becomes inseparable? It
is very difficult to consider this problem for arbitrary continuous variable states. However, in
experiments and protocols for quantum communication [82, 83, 84], continuous variable entan-
glement is generated by two-mode squeezing or by beam splitters, and all of these processes lead
to Gaussian states. So, we will limit ourselves to consider Gaussian states only, which are of
great practical importance. Regarding this, we find out that the inequality 4.3.2 indeed gives a
necessary and sufficient inseparability criterion for all of the Gaussian states.
Regarding our work, in Chapter 8 we will exploit these criteria for studying optomechanical
entanglement, focusing particularly on two-mode systems [85, 86, 87], for which it was first
demonstrated for a superconductive microwave optomechanical system in 2013 by Palomaki,
Teufel et al [24], and for massive mechanical oscillators in 2018 by Massel, Ockeloen-Korppi et
al [88].

4.4 Bell Inequalities and non-locality: the Alain Aspect Experiment

In Quantum Physics, non-locality refers to the phenomenon by which the statistical measure-
ment of a multi-partite quantum system does not admit an interpretation in terms of a local
realistic theory. Quantum nonlocality has been experimentally verified under different physical
assumptions [89, 90, 91, 92]. Any physical theory that aims at superseding or replacing quantum
theory should account for such experiments and therefore cannot fulfill local realism; quantum
nonlocality is a property of the universe that is independent of our description of nature.
Already the early days of quantum mechanics were characterized by debates over the applica-
bility of established classical concepts to the new formulation of mechanics. The issues became
quite distinct in the protracted exchange between A. Einstein and N. Bohr, culminating with
the EPR-paper [60] and Bohr’s response in 1935 [93].
Thereafter the matter rested until 1964 when J.S. Bell [67] opened up the possibility of directly

40



testing the consequences of the EPR premises. In the following, we will discuss the analysis of
Bell in the context of correlated photon states, as treated in [35].
As we have seen in the EPR argument, it would seem necessary to search for a more com-
plete physical theory than quantum mechanics. To obtain such a theory, quantum mechanics
should be supplemented by additional, perhaps inaccessible, variables. Bell’s argument consists
of considering a system in which correlated photon polarization states are produced, as shown
in Fig.(5). The two photons are emitted in opposite directions (by conservation of momentum)

1 2^ ^
S

θ2θ1

+

-

+

-

Figure 5: Sketch of the experiment of Aspect et al. [89] to test the Bell’s inequality. S is a source
of two polarised photons. 1 and 2 label polarisation analysers, with orthogonal output channels
labelled + and −. The polarisation analysers are set at angles θ1, θ2.

with correlated polarisation states. Each photon passes through separate polarisation analyzers,
emerging in either the horizontal (+) channel, or the vertical channel (−) of each analyzer. Ini-
tially let us assume that the horizontal polarisation is chosen to be orthogonal to the plane of the
experiment. Let a±(b±) be the annihilation operator for the horizontally (+) or vertically (−)
polarised mode for the field travelling to analyser 1 or analyser 2. The state of the two photons
may be written as Bell’s state

|Ψ⟩ = 1√
2
= (a†+b

†
+ + a†−b

†
−)|0⟩,

with |0⟩ as vacuum state.
Using the notation |n1, n2, n3, n4⟩ to denote n1 photons in mode a+, n2 photons in mode a−, n3
photons in mode b+ and n4 photons in mode b−, the state may be rewritten as

Ψ⟩ = 1√
2
(|1, 0, 1, 0⟩+ |0, 1, 0, 1⟩).

If the photon in analyser 1 is detected in the (+) channel, the state of the photon directed
towards 2 must be polarised in the horizontal direction. This correlation is thus precisely of the
kind required for the EPR experiment. Of course, we are free to measure the polarisation in
any direction simply rotating the analysers through the angles θ1 and θ2 for detector 1 and 2,
respectively. The detected modes in this case are orthogonal transformations of the modes a±
and b±;

c+ = a+ cos θ1 + a− sin θ1

c− = −a+ sin θ1 + a− cos θ1

d+ = b+ cos θ2 + b− sin θ2

d− = −b+ sin θ2 + b− cos θ2

(4.4.1)

In this way, the detectors placed after the polarisers measure the intensities ⟨I±1 ⟩ and ⟨I±2 ⟩, while
the correlators measure ⟨I+1 I

+
2 ⟩, and so on. Indeed, for the two-photon state ⟨I±i ⟩ = P±

i is the
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probability for one count in the + or − channel of detector i (obviously these moments depend
on θ1 and θ2).
At this point, what Bell does is to suppose that in a complete theory these functions also depend
on a variable λ which remains hidden from direct determination. This variable is distributed
according to some density ρ(λ). In general, we may write

⟨I±1 I
±
2 ⟩ =

∫
ρ(λ)I±1 (θ1, θ2, λ)I

±
2 (θ1, θ2, λ)dλ

where I+1 denotes the expected intensity at detector 1 given a value for λ, i.e.

I+1 (θ1, θ2, λ) =

∫
I+1 ρ(I

+
1 |(θ1, θ2, λ))dI+1 .

It is reasonable to assume that for a given value of λ the results at 1 cannot depend on the angle
θ2 chosen at 2, (and conversely). This is the “locality assumption”, and can be written as

I+1 (θ1, θ2, λ) = I+1 (θ1, λ)

I+2 (θ1, θ2, λ) = I+2 (θ2, λ).

Considering now the correlation functions

E(θ1, θ2) =
⟨(I+1 − I−1 )(I+2 − I−2 )⟩
⟨(I+1 + I−1 )(I+2 + I−2 )⟩

, (4.4.2)

and assuming a local hidden variable theory we may write

E(θ1, θ2) = N−1

∫
f(λ)S1(λ, θ1)S2(λ, θ2)dλ,

where

S1(λ, θ1) =
I+1 (λ, θ1)− I−1 (λ, θ1)

I1(λ)

S2(λ, θ2) =
I+2 (λ, θ2)− I−2 (λ, θ2)

I2(λ)

f(λ) = ρ(λ)I1(λ)I2(λ)

Ij(λ) = I+j (λ, θj) + I−j (λ, θj) j = 1, 2.

The latter equations correspond to the intensity of light measured at 1 or 2 when the polarisers
are removed. The normalisation N is

N =

∫
f(λ)dλ.

The functions |S1(λ, θ1)| and |S2(λ, θ2)| are bounded by

|S1(λ, θ1)| ≤ 1

|S2(λ, θ2)| ≤ 1.
(4.4.3)

To obtain a statistical quantity we need to consider how E(θ1, θ2) changes as the orientation of
the polarisers are changed. With this in mind, consider E(θ1, θ2)−E(θ1, θ

′
2). This quantity can
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be expressed as

E(θ1, θ2)− E(θ1, θ
′
2) = N−1

∫
dλf(λ)S1(λ, θ1)S2(λ, θ2)[1± S1(λ, θ

′
1)S2(λ, θ

′
2)]

−N−1

∫
dλf(λ)S1(λ, θ1)S2(λ, θ

′
2)[1± S1(λ, θ

′
1)S2(λ, θ2)].

Then using (4.4.3)

|E(θ1, θ2)− E(θ1, θ
′
2)| ≤ N−1

∫
dλf(λ)[1± S1(λ, θ

′
1)S2(λ, θ

′
2)]

+N−1

∫
dλf(λ)[1± S1(λ, θ

′
1)S2(λ, θ2)]

= 2± [E(θ′1, θ
′
2) + E(θ′1, θ2)].

Finally, we obtain the Bell inequality

|B| ≤ 2 (4.4.4)

with

|B| = E(θ1, θ2)− E(θ1, θ
′
2) + E(θ′1, θ

′
2) + E(θ′1, θ2).

This particular Bell inequality is known as the Clauser–Horne–Shimony–Holt (CHSH) inequal-
ity. It is worthy to mention that there are states of the field which violate the inequality (4.4.4).
However,if state of the field can be represented by a positive, normalisable Glauber–Sudarshan
P-representation, no violation of this inequality is possible. For simplicity, we leave the demon-

+1

-1

+45°-45°

quantum

classical

E(θ)

θ

Figure 6: Comparison of the correlation of polarisations as a function of the relative angle of the
polarisation analysers. Quantum mechanical prediction against classical one. For ideal polarisers
the curves would reach the values ±1.

stration of this to [35]. The correlation function E(θ1, θ2) may be evaluated directly for the Bell’s
state using Eq.(4.4.1). One finds,

E(θ1, θ2) = cos 2ψ
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where

ψ ≡ θ1 − θ2.

In this sense, if we choose

ψ = θ2 − θ1 = θ′1 − θ2 = θ′1 − θ′2 =
1

3
(θ1 − θ′2),

we end with

B = 3 cos 2ψ − cos 6ψ.

When ψ = 22.5°, B = 2
√
2 showing showing a clear violation of the Bell inequality |B| ≤

2. This violation has convincingly been demonstrated in the experiment of Aspect [68]. In
this experiment the polarisation analysers were essentially beam splittters with polarisation-
dependent transmittivity. Ideally, one would like to have the transmittivity (T+) for the modes
a+ and b+ equal to one, and the reflectivity (R−) for the modes a− and b− also equal to one.
However, in the experiment the measured values were T+

1 = R−
1 = 0.950, T−

1 = R+
1 = 0.007 and

T+
2 = T−

2 = 0.930, T−
2 = R+

2 = 0.007. The observed value was 2.697 ± 0.015, in quite good
agreement with quantum theory and a clear violation of the Bell inequality. The above Fig.(6)
shows a plot of the theoretical and experimental results as a function of ψ.
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5 Optomechanical Systems

In optomechanical systems, an electromagnetic field is used for the measurement and control
of one or more mechanical resonators. This field is usually confined within a cavity, providing
resonant enhancement of the field strength and sensitivity to mechanical displacements. The
coupling with the mechanical oscillator can be done in different ways, such as through the effects
of radiation pressure, optical gradient forces, the Doppler effect, or photothermal forces.
Radiation pressure is a scattering force that arises due to the reflection of light, owing to the
momentum associated with it. Optical gradient forces (also known as dipole forces) arise from
the spatial variation of optical intensity. The Doppler effect is typically very weak [94], requiring
a mirror with a strong dependence of reflectivity on wavelength [95]. Further, photothermal
effects, arising from temperature gradients induced by the uneven absorption of light, are inher-
ently dissipative [96]. In the following we shall focus on radiation pressure, following also the
mathematical treatment in [42, 97, 25, 37, 11].
We shall begin by deriving the full interaction Hamiltonian for dispersive optomechanics within
an optical cavity, and we then examine the dynamics of dispersive optomechanics. We then de-
rive the linearised optomechanical Hamiltonian and finally introduce quantum optomechanical
parameters.

5.1 Basic radiation pressure interaction

Radiation pressure was first demonstrated experimentally over one hundred years ago [3, 2]. The
static effect of radiation pressure on an optomechanical cavity is bistability [98]. The dynamic
effect of radiation pressure, associated with a finite cavity lifetime, is a frequency shift and
modified damping of the mechanical resonator [99, 100, 16].
At its most basic level, the radiation pressure interaction between light and matter involves an
exchange of momentum between light and a mechanical degree of freedom. Before examining
this interaction in detail, it is worthwhile to consider the basic example of a single photon
reflecting from the mirrored surface of a mechanical harmonic oscillator. The impact of the
photon on the oscillator will cause a momentum kick which will start oscillating. From a quantum
perspective, the regime in which the maximum displacement of the oscillator is larger than its
zero-point motion xzp = (h̄/2mωm)1/2 is clearly interesting. Since the momentum of a photon
with wavelength λ is h̄/λ, in the simple case where the photon reflects from the mechanical
oscillator, it imparts a 2h̄/λ momentum kick to the oscillator. After a quarter period this
momentum kick results in a displacement of ∆q = 2h̄/λmωm = 8πx2zp/λ. Therefore, we arrive
immediately at the condition

xzp
λ

>
1

8π

for the recoil to exceed the oscillator zero-point motion. Notice that the latter equation is only
intended to give a rough indication of a regime where quantum mechanics plays a role in the
interaction between a field and a mechanical oscillator. A more rigorous treatment would include
additional constraints, and it should be recognized that, for a high-quality mechanical oscillator,
measurements should be made over many cycles of the oscillator rather than just one.

5.2 Quantisation

We have introduced the idea that quantum mechanics can play a significant role in the interaction
between light and a macroscopic material object. Usually, we treat the mechanical displacement
in terms of a simple scalar displacement field u(x, t), where x labels a point in the space. Typically
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the interaction is elastic and the displacement field obeys a linear wave equation. In that case,
we expand the scalar field in terms of harmonic modes

u(x, t) =
∑
k

αk(t)ϕk(x) + α∗
k(t)ϕk(x)

where ϕk(x) are a suitable set of spatial mode functions. The amplitudes αk(t) obey equations
of motion equivalent to those of independent harmonic oscillators

α̇k(t) = −iωkαk(t).

In passing to the quantum description, we simply replace each of these harmonic oscillators with
a quantum harmonic oscillator using

αk(t) → âk(t)

α∗
k(t) → â†k(t)

with canonical commutation relations [âk(t), â
′†
k (t)] = δk,k′ . In most cases, we can restrict the

discussion to the response of a single mode a0 with frequency ω0. As usual, we may introduce
canonical position and momentum operators for this mode by

q̂ =

√
h̄

2m0ω0
(a0 + a†0)

p̂ = −i
√
h̄m0ω0

2
(a0 − a†0)

where m0 is the effective mass of this particular harmonic mode.

5.3 Dispersive optomechanics (Fabry–Pérot cavity)

In dispersive optomechanics, the position of the mechanical oscillator is parametrically coupled
to the resonance frequency of an optical cavity or microwave resonator. Radiation pressure
imparted by the optical or microwave field allows the motion of the oscillator to be controlled,
while the field leaving the cavity or resonator carries information about the resonance frequency
and therefore the mechanical position. The interaction Hamiltonian describing the parametric
interaction between the mechanical oscillator and the field can be easily established by considering
the change in optical cavity4 resonance frequency of a Fabry–Pérot cavity induced by a change
in mechanical position.
In this way, let us consider a Fabry–Pérot cavity of bare length L with one end mirror forming
part of a mechanical oscillator, as shown in Fig.(7). The motion of the mechanical oscillator
shifts the length of the cavity with L(q) = L− q, where q is the displacement of the mechanical
oscillator away from its equilibrium position and the minus sign is arbitrary, defining only the
positive direction of mechanical motion. In a Fabry–Pérot cavity of length L(q), the longitudinal
optical modes have wavelengths

λj =
2(L− q)

j
,

4Note that in this chapter we will discuss the physics of cavity optomechanical systems concerning optical
cavities. However, it should be kept in mind that the physics is equally applicable to microwave resonators.
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Figure 7: Representation of a canonical cavity optomechanical system. κ and L, are the cavity
decay rate and bare length, respectively; while m,ωm, and γ are respectively the effective mass,
resonance frequency, and damping rate of the mechanical oscillator. a and q̂ are the annihilation
operator for the cavity field and the position operator for the mechanical oscillator, respectively;
and ain and aout are the annihilation operators for the incident and output fields.

where j is the mode number. The mode frequencies are therefore

ωc,j(q) =
2πc

λj
=

πcj

L− q
≈ ωc,j(1 +

q

L
)

where the approximation is valid as long as q ≪ L, which is appropriate for the vast majority
of cavity optomechanical systems, c is the speed of light, and ωc,j ≡ ωc,j(0) is the bare optical
resonance frequency of the cavity, with the subscript c used to label the cavity’s resonance
frequency. We see that the motion of the mechanical oscillator acts to linearly shift the optical
resonance frequency. The frequency shift per meter is quantified by the optomechanical coupling
strength G

G ≡ δωc(q)

δq

=
ωc

L
(Fabry-Pérot cavity)

(5.3.1)

where we have omitted the mode number subscript j.
We can now proceed to the description of the interaction between the cavity field and the
mechanical element. The energy of the light in a particular cavity mode is given by the energy
per quantum, h̄ωc, times the number, n̂(t), of photons in the cavity

Hc = h̄ωc(q)n̂

where we have explicitly included the dependence of the cavity frequency on the displacement of
the mechanical oscillator. In the absence of the radiation pressure interaction, the energy of the
mechanical oscillator is

Hm =
p2

2m
+
mω2

m

2
q2,

where ωm denotes the resonance frequency of the mechanical oscillator, and p and m are its
momentum and mass, respectively. The total classical Hamiltonian is H = Hc +Hm.
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The quantum description of the system is then given by replacing the classical variables with
the corresponding operators q → q̂, p → p̂, n → a†a which satisfy the canonical commutation
relations. The quantum optomechanical Hamiltonian is then

Ĥ =
p̂2

2m
+
mω2

m

2
q̂2 + h̄ωc(q̂)a

†a. (5.3.2)

Introducing the raising and lowering operators for the mechanical excitations as b† and b, which
also satisfy the Boson commutation relation, enables us to write

Ĥ = h̄(ωc +Gq̂)a†a+ h̄ωmb
†b

= h̄ωca
†a+ h̄ωmb

†b+ h̄g0a
†a(b† + b),

(5.3.3)

where to arrive at Eq.(5.3.3) we have used the definition q̂ = xzp(b
† + b), and we have defined

the vacuum optomechanical coupling rate

g0 ≡ Gxzp

which has units of [s−1]. The single-photon optomechanical coupling rate, g0, is one of the
central parameters in the field of quantum optomechanics. It can be interpreted as the optical
frequency shift induced by a mechanical displacement equal to the mechanical zero-point motion.
Conversely, the radiation pressure from a single photon within the cavity acts to displace the
mechanical oscillator. The ratio g0/ωm quantifies this displacement in units of the mechanical
zero-point motion. Throughout the entire work we will use the annihilation operators a and b,
respectively, for the cavity field and mechanical oscillator, and position and momentum operators
p̂ and q̂ for the mechanical oscillator.
In the majority of cavity optomechanics experiments, since the optical cavity (or microwave res-
onator) resonance frequency ωc is much larger than all other system rates, a situation commonly
encountered is where the cavity is strongly driven to some large coherent amplitude α ≡ ⟨a⟩.
For now, suppose that the cavity is driven at a frequency ωp, detuned from the cavity resonance
frequency. It is convenient to move into a rotating frame at the incident ωp, and thereby remove
the fast oscillations of the optical field. In this way, we can transform the terms in Eq.(5.3.3),
with the result

Ĥ = −h̄∆a†a+ h̄ωmb
†b+ h̄g0a

†a(b† + b), (5.3.4)

where here a is now in the rotating frame, and we have defined the detuning ∆ between the
optical cavity and the incident pump frequency as

∆ ≡ ωp − ωc.

We shall keep in mind this form of the optomechanical Hamiltonian, as it will be at the center
of our calculations in further sections.

5.4 Linearisation of optomechanical Hamiltonian

Let us make a small step back from Eq.(5.3.4), and take again the general optomechanical
Hamiltonian

Ĥ = h̄ωca
†a+ h̄ωmb

†b+ h̄g0a
†a(b† + b).
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Starting from here, we can write down the QLEs for the cavity and the mechanical mode,

ȧ(t) = −iωca− ig0a(b
† + b)− κ

2
a+

√
κain (5.4.1)

ḃ(t) = −iωmb−
γ

2
b+

√
γbin − ig0a

†a (5.4.2)

where we have taken κ as external dissipation for our cavity, γ as dissipative constant of the
mechanical resonator, and for simplicity of calculus we set h̄ = 1.
We can now expand, up to the first order, the cavity and the mechanical modes

a(t) = α0(t) + δa

b(t) = β0(t) + δb.

This leads us to write down our equation (for the moment) up to zero order:

α̇0(t) = −iωcα0(t)− ig0α0(t)(β
∗
0 + β0)−

κ

2
α0(t) +

√
κain

β̇0(t) = −iωmβ0(t)−
γ

2
β0(t)− ig0|α0(t)|2 +

√
γbin.

Furthermore, to manipulate the equation of motion for α0, we can switch to an interaction
picture that rotates with ωp, meaning that α0(t) = αI,0e

−iωpt. For simplicity, we just drop out
the I-index. In this way, we obtain

α̇0(t) + i(ωc − ωp)α0(t) = −ig0α0(t)(β
∗
0 + β0)−

κ

2
α0(t) +

√
κain

β̇0(t) = −iωmβ0(t)−
γ

2
β0(t)− ig0|α0(t)|2 +

√
γbin

by calling ∆ := ωp − ωc, the latter can be recast as

α̇0(t)− i∆α0(t) + ig0α0(t)(β
∗
0 + β0) +

κ

2
α0(t) =

√
κain

β̇0(t) = −iωmβ0(t)−
γ

2
β0(t)− ig0|α0(t)|2 +

√
γbin.

At this point, we can impose stationary conditions α̇0(t) = 0, β̇0(t) = 0, to find out

α0 =

√
κ

−i∆+ ig0(β∗
0 + β0) +

κ
2

ain (5.4.3)

β0 =

√
γ

iωm + γ
2β0 + ig0|α0|2

bin (5.4.4)

Now, we plug them into the previous ones and rewrite them up to the first order including also
the deviations, keeping in mind α̇0(t) = 0, β̇0 = 0. We end up with

δȧ(t) = −iωcδa−
κ

2
δa− ig0α0(t)(δb

∗ + δb)− ig0δa(β
∗
0 + β0) +

√
κeδain,e +

√
κδain (5.4.5)

δḃ(t) = −iωmδb−
γ

2
δb− ig0

[
α0(t)δa

∗ + α∗
0(t)δa

]
+

√
γδbin. (5.4.6)

We are left with some choices to make to extrapolate some physics out of our last equations.
First of all, we can consider two types of reference systems, respectively for the cavity and the
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mechanical resonator. We thus choose a frame that oscillates at ωc for the optical cavity, while
another one that oscillates at ωm for the mechanical resonator. In this sense, we named:

δa −→ a

δb −→ b,

and our equations become:

ȧ(t) = −iωca−
κ

2
a+

√
κain − ig0α0e

−iωpt(b† + b) (5.4.7)

ḃ(t) = −iωmb−
γ

2
b+

√
γbin − ig0[α0a

† + α∗
0a]. (5.4.8)

Let us first focus on the frame that rotates with ωc for the optical cavity. In this picture, we
will have a = aIe

−iωct, where the index stems from the interaction frame. From now on, we will
drop it. Our (5.4.7) will thus be

ȧ(t) = −κ
2
a+

√
κain − ig0α0e

i(ωc−ωp)t(b† + b),

and using ∆ = ωp − ωc, b = bIe
−iωmt we obtain

ȧ(t) = −κ
2
a+

√
κain − ig0α0e

−i∆t(b†eiωmt + be−iωmt). (5.4.9)

We can notice that in our expression we have terms like

b†e−it(∆−ωm)

be−it(∆+ωm),

which when ∆ ≃ ωm (i.e.ωp ≃ ωc+ωm) allow us to cancel out the term be−it(∆+ωm) by Rotating
Wave Approximation. On the other hand, when ∆ ≃ −ωm (i.e. ωp ≃ ωc − ωm) we can get rid
of the term b†e−it(∆−ωm), always by RWA.
The same procedure can be applied to the mechanical mode, focusing on the frame that rotates
with ωm. In this case, we find out

ḃ(t) = −γ
2
b+

√
γbin − ig0

[
α0a

†e−it(∆−ωm) + α∗
0ae

it(∆+ωm)

]
. (5.4.10)

Analogously, we can distinguish the two cases depending on ∆:

• when ∆ ≃ ωm the term α∗
0ae

it(∆+ωm) will be the one suppressed by RWA;

• when ∆ ≃ −ωm the term α0a
†e−it(∆−ωm) will be the one suppressed by RWA.

At this point, we can collect our equations depending on the choice of ∆. When ∆ ≃ ωm our
equations motion will be of the form of

ȧ(t) = −κ
2
a+

√
κain − ig0α0b

† (5.4.11)

ḃ(t) = −γ
2
b+

√
γbin − ig0α0a

†, (5.4.12)
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and when ∆ ≃ −ωm

ȧ(t) = −κ
2
a+

√
κain − ig0α0b (5.4.13)

ḃ(t) = −γ
2
b+

√
γbin − ig0α

∗
0a. (5.4.14)

We have now obtained two sets of linearized equations of motion, depending on the detuning
parameter ∆. The particular choice of ∆, as we can see, can give rise to two very distinct
cases of fundamental importance in the study of optomechanical systems. Indeed, Eqs.(5.4.11)
and (5.4.12) are referred as the blue detuning case. They could be thought as generated by
HB = h̄g(a†b†+ab), also called down-conversion Hamiltonian, with the linearised optomechanical
coupling rate g = −g0α0 measuring the strength of the coupling in this regime. On the other
hand, Eqs.(5.4.13) and (5.4.14) are known as the the red detuning case, where the generating
Hamiltonian is of the kind HR = h̄g(a†b+ ab†), also called beam splitter Hamiltonian.
In this way, we can rewrite our full linearized Hamiltonian as:

Ĥ = −h̄∆a†a+ h̄ωmb
†b+ h̄g(a+ a†)(b+ b†). (5.4.15)

Hamiltonian (5.4.15) will be the starting point in Chapter 7, in particular, using RWA, we will
solve the equations of motion in the two cases. To do it, we will work into the Fourier space, and
we will thus see the consequences of doing blue/red detuning to our optomechanical system.

5.5 Consequences of the Optomechanical Interaction

As an introduction for further sections, it is now convenient to introduce useful regimes in which
we work with our optomechanical parameters. These regimes, called resolved sideband, large
cooperativity, and strong coupling regime, can be summarised as follows:

• Resolved sideband regime when ωm ≫ κ;

• Large cooperativity regime when the cooperativity C = 4g2

γκ ≫ 1;

• Strong coupling regime when g ≫ γ, κ.

The first two are the most used to implement RWA to cool down the mechanical motion, down
to its ground state, while the last one is the source of normal mode splitting. Both phenomena
will be exhaustively treated in Sec. 6.1.1-6.1.2.

5.5.1 Standard Quantum Limit

To better understand these latter regimes, is worthwhile to explore which are the basic conse-
quences of the optomechanical interaction. To do this, we follow what has been done by Bowen
& Milburn [42].
Our aim is to describe the linearised interaction between light and a mechanical oscillator in a
cavity optomechanical system, and quantify how the optical output field can be used to moni-
tor the quantum state of the mechanics. Our purpose is to show that continuous measurement
results in a quantum back-action that heats the mechanical oscillator and introduces a standard
quantum limit on the accuracy of the measurement itself. Before introducing the effects of quan-
tum measurement on the dynamics of the optomechanical systems, it is illustrative to consider
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the simple example of quantum measurement of the position of a free mass.
Specifically, we wish to determine the position of the mass after some time τ by performing two
sequential position measurements and we are interested in the effect of measurement back-action
on the precision [101, 102, 103, 104]. This is a scenario [105, 106, 107] that is relevant, for exam-
ple, in interferometric gravitational wave observatories that seek to observe ripples in space-time
via the length changes that they induce in an interferometer. If the initial measurement localizes
the position of the mass with a standard deviation σ[q̂(0)], the Heisenberg uncertainty principle
tells us that the measurement must also introduce quantum back-action on the momentum of
the oscillator, increasing its uncertainty to at least

σ[p̂(0)] =
h̄

2σ[q̂(0)]
.

The mass will then freely evolve until the second measurement is performed at time τ . This
evolution is, of course, governed by the free-particle Hamiltonian

Ĥ =
p̂2

2m
,

which yields the evolution

q̂(τ) = q̂(0) +
τ

m
p̂(0).

In this way, the uncertainty in the measurement outcome is then entirely specified

σ2[q̂(τ)] = σ2[q̂(0) +
τ

m
p̂(0)]

= σ2[q̂(0)] +

(
τ

m

)2

σ2[p̂(0)]

= σ2[q̂(0)] +

(
h̄τ

2m

)2
1

σ2[q̂(0)]
.

Here, by simply taking the sum of the uncertainty contributions from the position and momen-
tum, we are assuming that the position and momentum of the mass are not correlated after the
first measurement 5. Indeed, no such correlations can exist if the mass is in a minimum uncer-
tainty state, as described by σ[p̂(0)] = h̄

2σ[q̂(0)] . The regime in which this assumption breaks down

is interesting and can allow improved measurement precision. Since the last equation contains
terms that scale both as σ2[q̂(0)] and as σ−2[q̂(0)], it is clear that an optimal measurement is
the one that maximizes the accuracy of the measurement. It is straightforward to show that this
optimum is

σsql[q̂(0)] =

√
h̄τ

2m
,

which leads us to a standard quantum limit for position measurement of a free mass

σsql[q̂(τ)] =

√
h̄τ

m
.

We see therefore that the presence of quantum measurement back-action provides a fundamental
limit to the precision of position measurements. To make an example, since gravitational waves
cause an oscillation in the relative length of the two arms of an interferometer, a differential
position measurement is most sensitive to them if the first measurement is made when one arm
of the interferometer is fully extended and the second is made when it is fully contracted.

5Specifically, ⟨q̂(0)p̂(0) + p̂(0)q̂(0)⟩ − 2⟨p̂(0)⟩⟨q̂(0)⟩ = 0.
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5.5.2 Radiation pressure shot noise

We can now consider the effect of fluctuations in radiation pressure due to optical shot noise on
the dynamics of a mechanical oscillator. This radiation pressure shot noise is the unavoidable
quantum back-action on the oscillator. In general, shot noise is a type of noise which can be
modeled by a Poisson process distribution. In optics, shot noise describes the fluctuations of
the number of photons detected due to their occurrence independent of each other. This is
therefore a consequence of discretization of the energy in the electromagnetic field in terms of
photons. As we have seen in Chapter 3, in the case of photon detection, the relevant process
is the random conversion of photons into photo-electrons, where only for squeezed state the
number of photons measured, per unit time, can have fluctuations smaller than the square root
of the expected number of photons counted in that period of time. Of course there are other
mechanisms of noise in optical signals which often dwarf the contribution of shot noise. When
these are absent, however, optical detection is said to be ”photon noise limited” as only the shot
noise (also known as ”quantum noise”) remains. In this case, the fluctuations in a photo-current
scale as the square-root of the average intensity:

(∆Iph)
2 := ⟨(Iph − ⟨Iph⟩)2⟩ ∝ Iph.

In optical homodyne detection, the shot noise in the photodetector can be attributed to either
the zero point fluctuations of the quantised electromagnetic field, or to the discrete nature of
the photon absorption process [108]. However, shot noise itself is not a distinctive feature of
quantised field and can also be explained through semiclassical theory. Shot noise also sets a
lower bound on the noise introduced by quantum amplifiers which preserve the phase of an
optical signal.
Throughout our discussion, we consider only the linearized dynamics of the optomechanical
system (as discussed in Section 5.4). We therefore take the Markovian limit where the bath
has no memory, for both the optical field and the mechanical oscillator, and make the Rotating
Wave Approximation on the optical field, taking the cavity resonance frequency to be much
higher than any other rates in the problem. In this regime, linearised equations of motion for
the mechanical oscillator and optical field can be derived from the Hamiltonian of Eq.(5.4.15),
using the Quantum Langevin Equations. The resulting equations of motion are

˙̂
X = −κ

2
X̂ +

√
κX̂in

˙̂
Y = −κ

2
Ŷ +

√
κYin +−2gQ̂

˙̂
Q = ωmP̂

˙̂
P = −ωmQ̂+ γP̂ +

√
2γP̂in − 2gX̂,

where we have taken the case of on-resonance optical driving (∆ = 0) for simplicity, and we
remind that throughout this work X̂ and Ŷ refer to the optical amplitude and phase quadratures,
Q̂ and P̂ refer to the dimensionless mechanical position and mechanical momentum, κ and γ
are optical and mechanical decay rates and g is the optomechanical coupling rate. On the other
hand, the non-zero detuning case, as we will see in the next chapter, is also very interesting
and allows for cooling and entanglement. Because we have chosen to drive the optical cavity
on resonance (∆ = 0), the quantum stochastic equations describing the optical amplitude and
phase quadratures are independent. This is not the case for the mechanical oscillator, where the
last two equations are easily combined into a single second-order differential equation

¨̂
Q+ γ

˙̂
Q+ ω2

mQ̂ =
√

2γωmP̂in − 2gωmX̂.
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This linear system of equations can then be solved directly in the frequency domain. Taking the
Fourier transform, we obtain the steady-state solutions

X̂(ω) =

√
κX̂in

κ/2− iω
(5.5.1)

Ŷ (ω) =

√
κŶin − 2gQ̂

κ/2− iω
(5.5.2)

Q̂(ω) = χ(ω)

(√
2γP̂in − 2gX̂

)
(5.5.3)

where we have defined the mechanical susceptibility as χ(ω) ≡ ωm/(ω
2
m−ω2−iωγ). Substituting

Eq.(5.5.1) for the optical amplitude quadrature into Eq.(5.5.3), we arrive at the expression for
the mechanical position

Q̂(ω) =
√
2γχ(ω)

(
P̂in −

√
2CeffX̂in

)
,

where we have introduced the effective optomechanical cooperativity

Ceff(ω) ≡
C

(1− 2iω/κ)2

with C being the optomechanical cooperativity

C ≡ 4g2

κγ
.

As we have just seen, the radiation pressure interaction perturbs the motion of a mechanical
oscillator, introducing noise. This noise can be understood to be a direct consequence of the
Heisenberg uncertainty principle between position and momentum. The interaction encodes
position information on the optical field, leading to an increase in noise on the mechanical
momentum.
Furthermore, we notice that, through radiation pressure, the optical shot noise contributes a
heating term to the mechanical oscillator dynamics, with magnitude dependent on the effective
optomechanical cooperativity. We see that this heating is attenuated at frequencies above the
cavity linewidth (ω > κ) since the incident optical fluctuations at these frequencies are off-
resonance and therefore partially screened by the cavity. Particularly in the resolved sideband
regime where ωm ≫ κ this attenuation has the effect of reducing the optomechanical interaction
strength. Radiation pressure effects are widely seen in experiments with cold atomic gases. For
instance, the radiation pressure back-action heating was first observed only in 2008 [109], in that
case using a collective mechanical mode of a cloud of 9,000 ultracold atoms. In 2013 radiation
pressure shot noise was observed for the first time for a mechanical resonance of a macroscopic
mechanical oscillator using a 7 ng silicon nitride membrane [110].
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6 Interaction phenomena between light and mechanics: cool-
ing and amplification

In the previous chapter, we examined the linearised radiation pressure interaction between the
optical field and mechanical oscillator in a cavity optomechanical system in the case that the
optical cavity is coherently driven on resonance (∆ = 0). In this chapter, we introduce radi-
ation pressure coherent coupling between light and a mechanical oscillator, that occurs when
an optical detuning is introduced. We discuss effects such as resolved sideband cooling, normal
mode splitting, amplification, optomechanical entanglement between a cavity and mechanical
oscillator, and also mechanical squeezing that arise from this coherent interaction.
We have previously seen how on-resonance (∆ = 0) optical probing of mechanical motion showed
that radiation pressure shot noise heats the mechanical oscillator. This back-action heating is a
consequence of the fact that information about the mechanical motion is imprinted on the phase
of the optical field, and is necessary to ensure that the Heisenberg uncertainty principle is not
violated. However, the presence of back-action heating does not necessarily preclude an overall
optical cooling effect on the mechanical oscillator. Indeed such a cooling mechanism can arise
when a non-zero detuning (∆ ̸= 0) is introduced, and it is based on dynamical back-action. The
essential idea is that, when the optical cavity is detuned, the mechanical position is imprinted on
the amplitude of the optical field which then back-acts through radiation pressure upon the me-
chanical oscillator. Since the cavity also induces a delay in the optical response, this dynamical
back-action is retarded, with a component of the optical force being proportional to the velocity
of the mechanical oscillator. Depending on the sign of this component, it either damps/cools or
amplifies/heats the mechanical motion [99, 111].
An alternative approach to understanding optomechanical cooling, is via an energy level dia-
gram, as shown in Fig.(8). Here we observe that downwards going phonon number transitions
are resonantly enhanced when the optical driving tone is red detuned, while upwards going tran-
sitions are enhanced by blue detuning. We will see that these two operations can be thought of,
respectively, as beam splitting and down-conversion operations between the light and mechanical
oscillator, with the former allowing cooling while the latter can be used to generate optomechan-
ical entanglement.
Furthermore, we mention that optomechanical coupling between a moving mirror and the radi-
ation pressure of light first appeared in the context of interferometric gravitational wave experi-
ments. The pioneering work of V.Braginsky [112] predicted that the radiation pressure of light,
confined within an interferometer (or resonator), gives rise to the effect of dynamic back-action.
The resulting phenomena, which are the mechanical amplification and optomechanical back-
action cooling, represent two sides of the same underlying “dynamic back-action” mechanism.
In the following analysis of this mechanism, we attend to the same notation and derivation of
the work done in [42, 97, 25, 111].

6.1 Red detuning: optomechanical cooling of mechanical motion

The optical field can be thought of as a thermal bath for the mechanical oscillator in a cavity
optomechanical system, with radiation pressure shot noise introducing a random driving force.
We know, from the quantum fluctuation-dissipation theorem, that the temperature of a quantum
oscillator, that is linearly forced by a bath, is governed by the ratio of bath power spectral
densities [35]

SFF (ωm)

SFF (−ωm)
= exp

{
h̄ωm

kBT

}
. (6.1.1)
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Figure 8: Energy level diagram for (optical) cooling of mechanical motion. |n,m⟩ : n-phonon, m-
photon state. ωc: cavity resonance frequency, ωL: laser resonance frequency. Three processes can
be distinguished. First, a photon can be absorbed by the cavity leaving the states unchanged
(carrier transitions). Second, the photon can create a phonon (corresponding to absorption
on the upper motional sideband). Third, the photon leads to the annihilation of a phonon
(corresponding to a photon being absorbed by the lower motional sideband). Appropriate red
detuning of the laser can lead to effective suppression of the first two processes and efficient
cooling.

This relationship provides an elegant approach to determining the effect of the optical field on
the temperature of the oscillator, as first observed in [113].
To understand the effect of the optical field on the temperature of the mechanical oscillator, it is
useful to consider first the zero dissipation case of the mechanical oscillator (γ → 0), or where,
at least, the heating from the optical field dominates the heating from the mechanical bath 6.
In this case, the optical force makes the only significant contribution. We can find the optical
force F̂c in a cavity optomechanical system in the linearised regime by taking the derivative of
the optomechanical Hamiltonian to q̂. Here, we use the non-linearised Hamiltonian of Eq.(5.3.3)
to obtain the force

F̂c(t) =
∂Ĥ

∂q̂
= h̄g0a

†a.

The power spectral density of this force can be found from its autocorrelation function, which is
given by

⟨F̂c(t+ τ)F̂c(t)⟩t=0 = h̄2g20⟨a†(t+ τ)a†(t+ τ)a†(t)a(t)⟩t=0

≈ h̄2g2

x2zp

[
α2 + nc + 2⟨X̂(t+ τ)X̂(t)⟩t=0

]
,

6That is, in the regime where radiation pressure shot noise dominates mechanical thermal noise.
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where we have made the substitution a → α + a to displace away the coherent amplitude of
the cavity field, linearised the resulting expression by neglecting the term that does not contain
the coherent amplitude α, substituted αg0/xzp = g/xxp, and used the relation ⟨a†(t)a(t)⟩ = nc
with nc being the thermal occupancy of the displaced optical field. As usual, X̂ is the amplitude
quadrature of the cavity field.
We have to specify that, for an optical field in thermal equilibrium with its environment, nc
is essentially zero. Here we retain the optical occupancy explicitly, motivated both by the aim
of clarifying the effect of a non-zero optical bath temperature and by the fact that, in realistic
experiments, technical noise often raises the optical occupancy above its equilibrium value.
Therefore, using Eq.(2.2.4)

SOO(ω) =

∫ ∞

−∞
dτeiωτ

〈
Ô†(t+ τ)Ô(t)

〉
t=0

=

∫ ∞

−∞
dω′

〈
Ô†(−ω)Ô(ω′)

〉
the optical force power spectral density can then be directly calculated as

SFcFc
(ω) =

∫ ∞

−∞
dτeiωτ

〈
F̂c

†
(t+ τ)F̂c(t)

〉
t=0

=

∫ ∞

−∞
dτeiωτ h̄

2g2

x2zp

[
α2 + nc + 2⟨X̂(t+ τ)X̂(t)⟩t=0

]
=
h̄2g2

x2zp
[(α2 + 2nc)δ(ω) + 2SXX(ω)].

Using again Eq.(2.2.4) the power spectral density of the cavity field can be expressed in terms
of frequency domain annihilation and creation operators as

SXX(ω) =

∫ ∞

−∞
dω′⟨X̂†(−ω)X̂(ω′)⟩

=
1

2

∫ ∞

−∞
dω′⟨(a(ω)a†(−ω))(a†(−ω′)a(ω′))⟩.

(6.1.2)

To find an analytical expression for this power spectral density, we must determine a(ω) and
a†(ω). To do this we use the Hamiltonian of Eq.(5.3.4) in the rotating wave quantum Langevin
equation. We simplify the problem by making one substantial approximation, that is the cavity
optical field is not affected by the motion of the mechanical oscillator (i.e. setting g0 = 0). This
may seem like an unreasonable approximation, however, it is appropriate as long as the optical
cavity decay rate κ is sufficiently large to remove the fluctuations introduced to the optical field
by the interaction with the mechanical oscillator. We will consider the case where this is not
true in the next section, where we find that the approximation is reasonable as long as κ is large
enough that the optomechanical system is not operating within the strong coupling regime.
Returning to our problem, setting g0 = 0 and taking the Fourier transform of the equation of
motion for the cavity field, we find

a(ω) =

√
κ

κ/2 + i(∆− ω)
ain(ω) = χc(ω)ain(ω),

where, in the same way as the mechanical susceptibility χ(ω), we define the cavity susceptibility

χc(ω) =

√
κ

κ/2− i(∆ + ω)
.
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Substituting these equations into Eq.(6.1.2) and using the correlation relations of the cavity field,
which are valid for our model since we have done the RWA, we then find that

SXX(ω) =
1

2
[nc|χc(−ω)|2 + (nc + 1)|χc(ω)|2].

Note that this spectral density is asymmetric in frequency. As discussed in Chapter 2, this is a
key sign that the bath is acting to heat or cool the mechanical oscillator. Neglecting the coherent
driving term at ω = 0, which acts only to statically displace the mechanical oscillator, we can
now establish an analytical expression for the optical force power spectral density:

SFcFc
(ω) =

h̄2g2

x2zp
[nc|χc(−ω)|2 + (nc + 1)|χc(ω)|2].

At this point, using again the quantum fluctuation-dissipation theorem, one can determine the
mechanical occupancy nm and the optically induced mechanical decay rate γopt as follows:

γopt =
x2zp
h̄

(
SFcFc(ωm)− SFcFc(−ωm)

)
= g2

[
|χc(ωm)|2 − |χc(−ωm)|2

]
nm =

SFcFc
(−ωm)

SFcFc(ωm)− SFcFc(−ωm)
=

g2

γopt

[
nc|χc(ωm)|2 + (nc + 1)|χc(−ωm)|2

]
=
nc|χc(ωm)|2 + |χc(−ωm)|2

|χc(ωm)|2 − |χc(−ωm)|2
.

To understand these relations, it is worthwhile to consider three specific scenarios:

• If the optical driving field is on resonance (∆ = 0), |χc(ω)| = |χc(−ω)|, so that the optically
induced rate γopt = 0 and nb = ∞. As already seen, in this regime the optical field causes
heating and does not affect the mechanical damping rate.

• If the optical field is blue detuned (∆ > 0), each photon impinging on the optical cavity
carries more energy than a cavity photon. To enter the cavity, a scattering process must
occur whereby the mechanical oscillator takes up some of the photons’ energy (see Fig.(8)).
As a result, the optical field coherently adds energy to the mechanical oscillator, providing
gain (or negative damping) to its motion.

• If the optical field is red detuned (∆ < 0), we have to take into account the reverse
situation to that discussed above, with each incident optical photon carrying less energy
than a cavity photon. As a result, scattering processes cause net optical damping of the
mechanical oscillator, which then reaches a finite positive equilibrium occupancy.

It can be seen that the maximum damping/amplification occurs near detunings equal to ∆ =
∓ωm, indeed in these cases the scattering process that transfers energy between the optical field
and the mechanical oscillator is resonant. Taking this special resonant case while driving on the
red (cooling) side of the optical resonance (∆ = −ωm), we find

γopt =
4g2

κ

[
1 +

(
κ

4ωm

)2]−1

(6.1.3)

nm = nc +

(
κ

4ωm

)2

(2nc + 1) (6.1.4)
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This is exactly the scenario we will consider in Section 7.1.2, where we will show that with this
detuning, the state of the optical field and mechanical oscillator swap at the rate of 2g.
Furthermore, we find that this results in the cooling of the mechanical oscillator. Indeed observing
Eq.(6.1.4), in the resolved sideband regime (κ≪ ωm), we recognize that the mechanical oscillator
equilibrates to the occupancy of the optical field (nm = nc), with additional heating introduced as
the resolved sideband factor decreases. On the other hand, if light is shot-noise limited (nc = 0),
this additional heating introduces the fundamental limit [113, 114]

nm =

(
κ

4ωm

)2

(6.1.5)

on the mechanical occupancy. Thus, we see that the presence of the cavity causes the field to
act like a non-zero temperature bath for the mechanical oscillator.
Nevertheless, in most scenarios, it is not realistic to neglect the coupling of the mechanical
oscillator to its mechanical bath. In general, if the oscillator is coupled to two independent baths
(called A and B), the total force power spectral density is simply

SFF (ω) = SA
FF (ω) + SB

FF (ω)

and so (using again FDT) the equilibrium phonon occupancy of the oscillator is then the weighted
mean

nm =

(
xzp
h̄

)2[
SA
FF (−ωm) + SB

FF (−ωm)

γA + γB

]
=
γAn

A
b + γBn

B
b

γA + γB
(6.1.6)

where nAb and nBb , and γA and γB , are the phonon occupancies and damping rates, respectively,
that would be obtained if the baths were individually coupled to the oscillator, as previously
defined. If we substitute the optical and mechanical parameters into Eq.(6.1.6), it is then possible
to analytically determine the equilibrium mechanical occupancy in the presence of both optical
and mechanical baths, remembering that the result is only valid outside of the optomechanical
strong coupling limit (specifically in the regime where κ≪ g).
Summarizing these considerations, we have seen that net optical heating occurs for ∆ > 0,
while net cooling of the mechanical oscillators occurs for ∆ < 0, and is strongly peaked near
∆ = −ωm. In this resonant cooling regime, if the optical field is treated as nc = 0, we find that
the mechanical occupancy is

nm = nb +
(κ/4ωm)2(nb + C)

1 + C + (κ/4ωm)2

where nb is the mechanical bath occupancy. Furthermore, in the limit where the resolved sideband
factor (κ/ωm)2 ≪ {nb/(nb + C), 1 + C}, this can be approximated as (see Sec.6.1.1)

nm =
nb

1 + C
, (6.1.7)

while in the alternative limit that the optomechanical cooperativity C dominates all other terms,
the mechanical occupancy reaches the fundamental limit set by optical radiation pressure heating
given in Eq.(6.1.5). Generally when nm < 1 we speak of being “close to the ground state”. With
this definition, we see that in the first of the above limit the ground state can be approached for
C > nb + 1.
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6.1.1 Resolved sideband regime

In this section, we use a quantum Langevin approach to include the ideal resolved sideband
regime κ ≪ ωm. In the resolved sideband regime the interaction term in the Hamiltonian
in Eq.(5.3.3) may then be simplified by making a rotating wave approximation that neglects
the fast oscillating terms (ab and a†b†). A way to justify this assumption is by considering the
optomechanical energy level diagram in Fig.(8). It is clear that the scattering processes described
by ab and a†b† are off-resonance and therefore suppressed if κ≪ ωm. With this approximation,
the Hamiltonian becomes

Ĥ = h̄ωma
†a+ h̄ωmb

†b+ h̄g(a†b+ ab†).

This is a beam splitter Hamiltonian that acts to swap excitations between the mechanical os-
cillator and the optical field. We can solve the QLE in the Fourier space, to find equations of
motion for both a and b, valid within RWA:

a

(
−iω +

κ

2

)
=

√
κain + igb

b

(
γ

2
− iω

)
=

√
γbin + iga

If we define the cavity and the mechanical susceptibilities as χc =

(
κ
2−iω

)−1

, χm =

(
γ
2−iω

)−1

we can write a unique linear matrix equation(
χ−1
c −ig

−ig χ−1
m

)(
a
b

)
=

(√
κain√
γbin

)
which solutions are

a(ω) =
χc

1 + g2χcχm

√
κain +

χcχmig

1 + g2χcχm

√
γbin (6.1.1.1)

b(ω) =
χm

1 + g2χcχm

√
γbin +

χcχmig

1 + g2χcχm

√
κain (6.1.1.2)

At this point, we can manipulate Eq.(6.1.1.2) considering the limit case where κ ≫ γ. In this
way, for the mechanical mode, we obtain

b(ω) =
√
γχeffbin + igχeffχc

√
κain,

in which we have defined χeff = 1
γ
2 −iω+ 2g2

k

. Furthermore, upon calling first γ
2 + 2g2

κ =
γeff

2 , we

can proceed to compute the mechanical occupancy:

nm =

∫ ∞

−∞

dω

2π
⟨b†−ωbω⟩ =

γ

γeff
nb +

(4g2/κ)

γeff
nc (6.1.1.3)

Hence, in the usual limit where the optical bath occupancy is much lower than the mechanical
bath occupancy (nc ≪ nb), the optomechanical coupling results in cooling and we exactly recover
the same expression as (6.1.7). Indeed Eq.(6.1.1.3) is telling us that the occupancy in our
mechanical oscillator strictly depends on the ratio γ

γeff
, meaning that it is cooling down due to

red detuning dynamics.
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A selection of cooling experiments in the optical domain was performed in 2006 in different works
by Heidmann, Schliesser and Aspelmeyer [115, 116, 117]. While cooling via radiation-pressure
in resolved sideband regime was achieved by Schliesser [118], Park [119] and Teufel [120] in
2008. However, we mention that the first experimental attempts of cooling by radiation-pressure
dynamical were carried out by Braginsky and Manukin in 1970 [101], and also by Ashkin in 1978
[8].
Furthermore, resolved sideband cooling experiments that approached the ground state (nm < 1)
were first achieved in 2011, using a photonic-phononic crystal architecture [121] by Chan et al.
and using a superconducting electromechanical system by Teufel et al [122].

6.1.2 Normal-mode splitting

As we mentioned in Sec.5.5, in the strong coupling regime g ≫ {γ, κ} we can observe normal
mode splitting, i.e. the state of the optical field and mechanical oscillator swap at the rate 2g.
In this regime, we can just consider again the linearized Hamiltonian

Ĥ = −h̄∆a†a+ h̄ωmb
†b+ h̄g(a+ a†)(b+ b†).

We already know that in red-detuned regime, where ∆ = −ωm, we can employ the RWA obtaining
the beam-splitter Hamiltonian Ĥ = h̄g(a†b+ ab†). This Hamiltonian is then easily diagonalized,
with the eigenmodes representing excitations between the mechanical oscillations and the driven
cavity mode, around the strong coherent amplitude. Their eigenfrequencies are

ω± =
ωm −∆

2
±

√
g2 +

(
ωm +∆

2

)2

,

and right at ∆ = −ωm, one a splitting of ω+ − ω− = 2g between the two excitation branches.
At this point, the eigenmodes are symmetric and antisymmetric superpositions of light and
mechanics, with new annihilation operators (â± b̂/

√
2). On the other hand, far from resonance,

one recovers the two bare frequencies −∆ and ωm, and the excitations become again of purely
optical and mechanical nature, respectively. Of course, this picture cannot be observed in the
opposite case, namely g ≪ κ where the two peaks at ω± merge, as shown in Fig.(9). In this
spirit, one can address the cooling problem in the strong coupling regime. To do it, we have to
rewrite the linearized equations of motion for the cavity and the mechanical mode, in the regime
∆ = −ωm, and solve them for the complex eigenvalues ω±. We prefer leaving the mathematical
derivation to [25]. What it turns out is that we end up with Eq.(6.1.4), already introduced in
Sec.6.1., showing us that cooling becomes less efficient when one approaches the strong-coupling
regime.
The peak splitting in the strong-coupling regime, and the resulting modification to cooling, was
predicted by Marquardt & Girvin in 2007 [113]. It was also studied in 2008 in a collection
of different works by Kippenberg, Wilson-Rae, Rossi & Vitali and Marquardt [123, 124, 125,
126, 127, 128]. In addition, the first experimental observation was made by Aspelmeyer in 2009
[129]. Nowadays, there are cooling schemes that follow a different strategy, for example using
an incoherent thermal source [130] or a coherent mechanical resonator [131]. In the latter case,
Schliesser et al. [131] realize an ultracoherent electromechanical system based on a soft-clamped
silicon nitride membrane, which was capacitively coupled to a microwave mode, strong enough to
enable ground-state-cooling of the mechanics (they reached the value of nm = 0.76± 0.16). On
the other hand, Naseem [130] propose a scheme for simultaneous cooling of multiple mechanical
resonators to their quantum ground-state. As opposed to standard laser cooling schemes, where
coherence renders the motion of a resonator to its ground-state, they consider an incoherent
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Figure 9: Mechanical frequency spectrum as a function of laser detuning, for a strongly coupled
optomechanical system. An avoided crossing, with a splitting of size 2g, appears when the
negative detuning equals the mechanical resonance frequency (Credit from Aspelmeyer et al.
Physical Review 2014). [25]

thermal source to achieve the same aim. They use a complementary approach, namely “cooling
by heating”, where an incoherent thermal drive removes energy from the quantum system only
to dump it in another bath at a lower temperature.

6.2 Blue Detuning: linear amplification and entanglement

In the previous section, we have seen how red detuning implies cooling of the mechanical motion.
Analogously, we now aim to describe the opposite case, where ∆ > 0 provides a gain to the
mechanical oscillator motion. As seen in Chapter 2, this gain is directly linked to a mechanism
of linear amplification. We study here in detail this regime, following the analysis made by
Lehnert in 2008 [132] and especially by Massel et al. in 2011 [40]. We focus on these two works
because they offer us the opportunity to shape our analysis in the microwaves domain, and not
in the optical one anymore.
Let’s recall the blue-detuned Hamiltonian obtained in Sec.5.4:

Ĥ = g(a†b† + ab).

As usual, we can derive and solve the QLE for the cavity and the mechanical degrees of freedom.
In this case, we would like to consider a slightly different situation than before, but very useful
later on. In general, the field ain represents an input field to the optical cavity, and is often
coherently populated αin ≡ ⟨ain⟩ ̸= 0. However, the dissipation from the cavity occurs through
several channels, including an experimentally accessible channel which we call input port, and
other loss channels due, for instance, to absorption, and scattering, which we treat as loss port.
In practice, it is important to account separately for these two different types of channels. This
can be done via the substitution

κain −→
√
κia

I
in +

√
κea

E
in,
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where κi and κe are the dissipation rates through the input and loss ports, respectively, with
the total dissipation rate κ = κi + κe, and in the substitution aIin and aEin are the fields entering
through each port. Typically, for an optical cavity at room temperature, the field entering
through the loss port can be well treated as a vacuum state so that ⟨aEin⟩ = 0.
In this way, leaving the calculation to [40], we obtain an expression for the output cavity field in
the Fourier space

aout(ω) =M(ω)ain(ω) + L(ω)a†in +MI(ω)a
I
in(ω) + LI(ω)a

I†
in (ω) +Q(ω)ξ(ω)

where aIin(ω) and ξ(ω) represent the noise introduced by the internal losses of the cavity and the
mechanical bath, while M and L are the amplitude gains for the input signal, and MI , LI , Q
those for the input noise. Without writing explicitly these expressions [40], one can show that
the key role in the amplification is played by the factor

Γ(ω) =
ω2
m − ω2 − iγω

ω2
eff − ω2 − iγeffω

,

which depends on the effective resonant frequency and the effective damping coefficient, respec-
tively ωeff and γeff, induced by the coupling of the mechanical resonator with the cavity. At
resonance ω = ωm, a decrease of γeff → 0 leads to Γ ≫ 1, and since M(ω), L(ω) ∝ Γ we obtain
an amplification of the input signal. Furthermore, the amplifier equations can be written in
terms of the quadrature fields (dropping here the added-noise terms)

Xout = (|M |+ |L|)Xin

Yout = (|M | − |L|)Yin ,

which generates the expression of the power gains [41]

GX = (|M |+ |L|)2

GY = (|M | − |L|)2.

Such microwave amplification mechanisms, where the interaction of a micro-mechanical device
with radiation pressure can be used to amplify weak electrical signals, have been extensively
studied in the past years. From a theoretical point of view, this set-up represents one of the
simplest realizations of a quantum amplifier that could potentially operate at the noise limit
set by the Heisenberg uncertainty principle. Furthermore, in Chapter 7 we will see a case of
microwave input amplification in a two-mode cavity optomechanical system [133].

6.2.1 Entanglement between a cavity and mechanical oscillator

We now want to investigate optomechanical entanglement between the cavity field and the me-
chanical oscillator. Starting from the linearized optomechanical Hamiltonian

Ĥ = −h̄∆a†a+ h̄ωmb
†b+ h̄g(a+ a†)(b+ b†),

if the cavity is blue detuned, namely ∆ = ωm, one can apply the same procedure of Sec.5.4 for the
QLE, using the rotating wave approximation to obtain Eqs. (5.4.13, 5.4.14), and simplifying the
interaction to a down-conversion process (which is known to generate bipartite entanglement).
At this point, the covariance matrix (CM) of the Gaussian state of the bipartite system, can be
obtained as (with the technique of Chapter 4)

σ =


σ11 0 0 σ14
0 σ11 σ14 0
0 σ14 σ33 0
σ14 0 0 σ33

 ,
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where

σ11 = nm +
1

2
+

g2κ(nm + 1)

(γ + 2κ)(2γκ+ g2/2)

σ14 =
1

2
+

g2γ(nm/2 + 1/2)

(γ + 2κ)(2γκ+ g/2)

σ33 =
gγκ(

√
2nm +

√
2)

(γ + 2κ)(2γκ+ g/2)
.

However, one can show that in the RWA limit the amount of achievable optomechanical en-
tanglement is seriously limited by the condition g <

√
κγ. Since one needs a small mechanical

dissipation rate γm to see quantum effects, this means a very low maximum value for g. The
logarithmic negativity EN , that quantify our entanglement, is an increasing function of the ef-
fective optomechanical coupling7 g and therefore the above condition puts a strong upper bound
also on EN . It is possible to prove that the following bound on EN exists

EN ≤ ln

[
1 + (g/

√
κγ)

1 + nm

]
,

showing that EN ≤ ln 2 (see Eq.(4.2.1.6)) and above all that entanglement is extremely fragile
with respect to temperature in the RWA limit because, due to the above condition, EN vanishes
as soon as nm ≥ 1. Entanglement between mechanical motion and cavity fields was both ob-
served and predicted in optical and microwave domains, as by Genes in 2008 [134] (optical), and
Palomaki in 2013 [24] (microwave).

6.3 Mechanical squeezing

Previously, we have seen how different phenomena, such as cooling, amplification, and entangle-
ment, can occur in optomechanical systems. However, there is another phenomenon, that we
have introduced in Chapter 3, which can be observed under certain conditions.
In this last section, we aim to address the mechanical squeezing problem in optomechanical sys-
tems. We would like to follow here two particular works in our discussion, i.e. Schwab et al. in
2015 [135], and Massel et al. in the same year [136].
We know that in the quantum ground state, the mechanical oscillator has position fluctuations
divided equally between its two quadratures, X̂1 and X̂2. Additionally, the ground-state fluctu-
ations minimize the uncertainty relation given by the quadratures’ commutator

⟨∆X̂2
1 ⟩⟨∆X̂2

2 ⟩ ≥
1

4
|⟨[X̂1, X̂2]⟩|2 = x4zp,

where xzp =
√
h̄/2mωm is the amplitude of the zero-point fluctuations. Given this uncertainty

relation, it is possible to squeeze the zero-point noise such that fluctuations in one quadrature are
reduced below the zero-point level at the expense of increasing noise in the orthogonal quadrature.
Now, in the usual optomechanical setup, the scheme consists of applying two pump tones to an
optical (or microwave) cavity coupled to a mechanical resonator. The pumps are detuned from
the cavity frequency ωc by the mechanical frequency ±ωm, with the red-detuned pump at a
higher power than the blue-detuned pump, as in Fig.(10). The squeezing effect of the drives

7We can note this from the definition of logarithmic negativity [76] EN = max[0,− ln 2ν−] where we have

ν− ≡ 1√
2

[
∆(σ)− [∆(σ)2 − 4 detσ]1/2

]1/2
, with ∆(σ) = detα+ detβ + 2detγ and σ the 2x2 block CM.

64



Figure 10: Sketch showing frequencies of squeezing drive tones relative to the cavity frequency.

can be understood as damping of both quadratures by the excess red-detuned power, similar to
that of sideband cooling, but with less back-action noise added to X̂1 than the zero-point noise
associated with the damping. Here, we take the cavity (mechanics) to be coupled to a bath with
thermal occupation nc (nm) at a rate κ (γ). For optical systems, nc is usually indistinguishable
from 0, but for microwave systems, a non-zero nc is commonly observed at high pump powers.
We also define the pumps as ω± = ωc ± ωm, and the optomechanical coupling rates for the blue

and red pumps as G±, with the effective optomechanical coupling rate G =
√
G2

− −G2
+. The

presence of the pumps at ω± generates (coherent) intracavity photon occupations n±p , which are
proportional to both the pump power applied at the input of the system, and to the pump power
measured at the output. This notation will also hold throughout Chapter 7.
In this way, the linearized interaction Hamiltonian is given by

Ĥ = −h̄a†(G+b
† +G−b+G+be

−2iωmt +G−b
†e2iωmt) + h.c.

In the so-called good-cavity limit (ωm ≫ κ), and when κ ≫ γ, the quadrature fluctuations are
then given by (Appendix B)

⟨∆X̂2
1,2⟩ = x2xp

[
γ

κ

(4G2 + κ)

(4G2 + γκ)
(2nm + 1)

4(G− ∓G+)
2

(4G2 + γκ)
(2nc + 1)

]
.

For both ∆X̂2
1 and ∆X̂2

2 , the first term is proportional to 2nm + 1 and has a prefactor that is
less than 1 for all G > 0. This term represents the damping of both quadratures due to the
red-detuned power. The second term is proportional to 2nc + 1 and is due to the backaction
from the cavity field. We see that the back-action is reduced for ∆X̂2

1 and increased ∆X̂2
2 . It is

thanks to this reduction that we can reduce ∆X̂2
1 below x2zp.

Although a squeezed thermal state always has a positive Wigner function, when the fluctuations
in one quadrature are reduced below the zero-point level, the squeezed state no longer has a well-
behaved P representation, i.e. it cannot be represented as a mixture of coherent states [137]. For
this reason, a quantum squeezed state is considered a non-classical state. The bath occupations
and the quadrature variances are plotted in Fig.(11). We find that, at the lowest point, we are
squeezed to ⟨∆X̂2

1 ⟩/x2zp = 0.797± 0.034, below the zero-point fluctuations [135].
Analogously, also Pirkkalainen et al. [136] in their work found squeezing of one quadrature
amplitude of 1.1±0.4 dB, below the standard quantum limit. In their work, they obtained a first
realization of squeezing of motional state of a macroscopic body, designed as a micromechanical
resonator measuring 15 microns in diameter. To achieve this result, Pirkkalainen used the idea
of dissipative squeezing [138], where the system is allowed to cool towards a squeezed low-energy
state. This scheme does not rely on any explicit measurement, instead it uses a dissipative
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Figure 11: (a-Left) Calculated quadrature noise for ⟨∆X̂2
1 ⟩ (red circles) and ⟨∆X̂2

2 ⟩ (purple
squares). The shaded region indicates squeezing. (a-Right) Close-up of the boxed area showing
data with X̂1 fluctuations below the zero-point level. The lowest point has ⟨∆X̂2

1 ⟩/x2zp = 0.797±
0.034. (b) Values of nc (yellow circles) and γnm (blue squares) obtained from Bayesian analysis
of the spectra (Credit from Schawb et al. 2015 [135]).

mechanism with an optomechanical cavity, driven on the red and blue mechanical sideband
with different laser amplitudes, acting as an engineered reservoir which only couples to a single
mechanical quadrature. It can equivalently be viewed as a coherent feedback process, obtained
by perturbing the quantum measurement of a single quadrature. This method has the great
advantage of being able to create unconditional squeezing in the steady-state, being in contrast
to many other plausible methods of squeezing [139, 140, 141].
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7 Two modes optomechanical systems

Up to now we almost exclusively considered one cavity mode coupled to one mechanical mode.
This is the “minimal model” of cavity optomechanics, captured by the Hamiltonian (5.3.3). In
this chapter, we are going to deal with two mode optomechanical systems, namely two cav-
ity mode coupled with one mechanical oscillator, or two mechanical resonators coupled with
one cavity mode. We use the mathematical formalism of two-mode squeezed states (TMSS),
and two-mode coherent states (TMCS), introduced by Caves & Schumaker [142, 143] (see also
Sec.3.3.1).
In the following, we thus discuss some scenarios and features where it becomes crucial to go
beyond the minimal model. To do it, we first rely on the work done by Massel et al. in 2016
[133].
Our setup consists of two electromagnetic cavities with different resonant frequencies, simul-
taneously coupled to a single mechanical resonator. In the presence of appropriately external
pump tones (as shown in Fig.12), the mechanical resonator mediates the interaction between
the cavities, enabling entanglement between these two. Moreover, as shown in [133], this scheme

Figure 12: Schematic representation of the setup. Two microwave cavities with a shared mechan-
ical oscillator generate two entangled output fields. X indicates the mechanical displacement, γ
denotes the mechanical loss rate and κ1,2 the cavity loss rates.

supports amplification, namely, a signal incident in one cavity can irradiate out from the other
cavity, and be amplified until it reaches the SQL. The two-mode amplifier is created by injecting
two pump tones, one at the blue mechanical sideband of cavity 1 (ωP+

), and the other at the red
sideband of cavity 2 (ωP−). Thus, the Hamiltonian describing the optomechanical interaction
can be written as

Ĥ = ω1a
†a+ ω2c

†c+ ωmb
†b+ (g1a

†a+ g2c
†c)(b† + b), (7.1)

for simplicity, we set h̄ = 1. Here, a and c represent the cavity modes for cavity 1 and 2 with
resonant frequencies ω1 and ω2, while b(b

†) is the lowering (raising) operator associated with the
mechanical resonator, with resonant frequency ωm. The coupling between the cavities and the
mechanics is described in terms of radiation pressure interaction with coupling constants g1 and
g2. We follow [144] and consider below the experimental situation where the pump frequencies
satisfy ωP− = ω2 − ωm and ωP+

= ω1 + ωm, as shown in Fig.13. In the rotating frame with

respect to cavity frequencies, the first quantum corrections are described by Ĥ = Ĥ0+ĤI , where
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Figure 13: Experimental setup. a) Schematic of the device, showing the two microwave cavities
(ω1, ω2) both coupled to a central mechanical drum resonator (ωm). Signals (ωs1, ωs2) and
pumps (ωP+

, ωP−) are fed to the cavities as shown. The output of cavity 1 is measured with a
signal analyzer. b) Representation of the cavity modes and pump frequencies used to realize a
two-port amplifier. As an example, an input signal with frequency ωs2 is injected to cavity 2,
with the amplified output emerging from cavity 1. Credit from Ockeloen-Korppi et al. Physical
Review X 2016 [133].

the uncoupled Hamiltonian is Ĥ0 = ωm(b†b + c†c − a†a). Retaining only the resonant terms in
the remaining linearized interaction yields the coupling Hamiltonian

ĤI = (G−c
† +G+a)b+ h.c.,

whereG− = g2
√
n2, G+ = g1

√
n1, and n2 and n1 are the photon numbers for the red-detuned and

blue-detuned pumping tones for cavity 2 and 1, respectively. Applying the two-mode squeezing
operator

S(ξ) = exp
{
ξc†a† − ξca

}
,

to the cavity operators

ηA = S†(ξ)aS(ξ) = cosh ξa+ sinh ξc†

ηC = S†(ξ)cS(ξ) = cosh ξc+ sinh ξa†,

the Hamiltonian HI can be recast as the usual beam-splitter Hamiltonian

ĤI = G(ηCb† + η†Cb),

where we have defined

cosh ξ = G−/G, sinh ξ = G+/G, with G2 = G2
− −G2

+,
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with G− > G+. Note how ηA is a mechanically dark mode (i.e. it does not couple to the
mechanics). Assuming the standard dissipation mechanism for the cavities and the mechanics,
with dissipation coefficients given by κ (equal for both cavities) and γ, the quantum Langevin
equations for ηA and ηC can be solved to give [40, 144]

ηA = χc

√
κ cosh ξain + χ∗

c

√
κ sinh ξc†in

ηC =
χ−1
m

χ−1
m χ−1

c + G2

√
κηC −

iG√γ
χ−1
m χ−1

c + G2
bin,

where χm = [γ/2−iω]−1 and χc = [κ/2−iω]−1 are the bare mechanical and cavity susceptibilities
in the rotating frame. Transforming ηA and ηB back to a and c,

a = S(ξ)ηAS
†(ξ) = cosh ξηA − sinh ξη†C

c = S(ξ)ηCS
†(ξ) = cosh ξηC − sinh ξη†A,

and, taking into account the input-output relations for the cavity fields [145],

aout + ain =
√
κea

cout + cin =
√
κec

we can write the expression for the output fields a and c. It reads

aout = (−κeAaa − 1)ain − κeAacc
†
in −

√
kikeAaaaI,in

−
√
kikeAacc

†
I,in + i

√
γκe

G+

(χcχm)−1 + G2
b†in (7.2)

cout = (κeAcc − 1)cin + κeAcaa
†
in +

√
kikeAcccI,in

+
√
kikeAcaa

†
I,in − i

√
γκe

G−

(χcχm)−1 + G2
bin (7.3)

where

Aaa = (χe
c sinh

2 ξ − χc cosh
2 ξ)∗

Acc = χe
c cosh

2 ξ − χc sinh
2 ξ

Aca = A∗
ac = (χe

c − χc) cosh ξ sinh ξ

and χe
c = χc(1 + G2χcχm)−1 represents the effective cavity response in the presence of the

two-tone optomechanical drive. In Eqs.(7.2, 7.3), we have explicitly included the possibility of
internal cavity losses (and noise) for both cavities by introducing the operators aI,in, cI,in, and√
κ =

√
κe +

√
κi (see Chapter 6). Finally, from the latter equations, one can write the explicit

amplification form for the output field of cavity 1

aout = Adain +Axc
†
in + F,

with

Ad = −κeAaa − 1

Ax = −κeAac,

and similar for cout of cavity 2. Here, Ad is the direct gain of signals ain incident on cavity 1, and
Ax is the cross gain of signals incident on cavity 2. Operator F̂ describes the added noise due
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to the internal modes of the device (as seen in Chapter 2). Maximum amplification is achieved
in the strong pumping regime 4G2

− ≫ γκ, with the further assumption G+ ≃ G− (the term −1
in Eq.(7.2) can be neglected). In this case, the direct and cross gains are approximately equal

|Ad|2 ≈ |Ax|2 ≈
∣∣∣∣2κeκ 4G2

−/κ

γeff

∣∣∣∣,
where γeff = γ + 4G2/κ is the effective damping of the mechanical oscillator. Similar to op-
tomechanical amplifiers powered by a single blue-detuned pump [40], the amplification band-
width is associated with the effective mechanical damping γeff. Moreover, the gain-bandwidth
G = |Ad|γeff is determined by G−, and is not fundamentally limited. The direct gain is plotted
in Fig.14.

Figure 14: Two-mode amplifier performance. Direct gain |Ad|2 versus signal frequency for fixed
G− and various values of G+ (colored lines, legend shows G/2π) together with theory fits (black
lines). Credit from Ockeloen-Korppi et al. Physical Review X 2016 [133].

7.1 Two modes squeezing and entanglement

In this section, we would like to use the previous optomechanical model to search for entanglement
between the two cavities interacting with the mechanical resonator. This type of analysis was first
conducted by Clerk andWang in 2013 [144], where they considered the possibility of entanglement
via reservoir engineering, and, more recently, by Fink et al. in 2019 [146], where they didn’t use
any additional reservoir but the two cavities were simply coupled with one mechanical oscillator
in the microwave domain. What they did is analyzed hereafter.
Let us take into account again Hamiltonian (7.1):

Ĥ = h̄ω1a
†a+ h̄ω2c

†c+ h̄ωmb
†b+ h̄(g1a

†a+ g2c
†c)(b† + b),
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where, in the rotating frame, retaining only the resonant terms in the linearized interaction yield
the coupling Hamiltonian

ĤI = h̄G+(ab+ b†a†) + h̄G−(cb
† + bc†),

with usual G+ = g1
√
n1 and G− = g2

√
n2 for cavities 1 and 2, respectively. The full quantum

treatment of the system can be given in terms of the quantum Langevin equations in which we
add to the Heisenberg equations the quantum noise acting on the mechanical resonator (bin with
damping rate γ), as well as the cavities’ input fluctuations (aex and cex, with rates κex, plus the
intrinsic losses of the resonator modes (aI,in and cI,in, with loss rates κin). These noises have the
following correlation functions

⟨aex(t)a†ex(t′)⟩ = ⟨a†ex(t)aex(t′)⟩+ δ(t− t′) = (nTa + 1)δ(t− t′)

⟨aI,in(t)a†I,in(t
′)⟩ = ⟨a†I,in(t)aI,in(t

′)⟩+ δ(t− t′) = (nina + 1)δ(t− t′)

⟨bin(t)b†in(t
′)⟩ = ⟨b†in(t)bin(t

′)⟩+ δ(t− t′) = (nm + 1)δ(t− t′),

where nTa , n
in
a , nm are the Planck-law thermal occupancies of each bath. Analogously the same

holds for cex and cI,in, yielding to nc and ninc . Therefore, the resulting Langevin equations are

ȧ = −κ
2
a− iG+b+

√
κexaex +

√
κinaI,in

ċ = −κ
2
c− iG−b

† +
√
κexcex +

√
κincI,in

ḃ = −γ
2
b− iG+a

† − iG−c+
√
γbin.

At this point, one can solve the above equations in the Fourier domain to obtain the microwave
variables, however, we prefer leaving this discussion to [146]. Instead, to quantify entanglement,
let us first determine the covariance matrix σ (CM) of our system in the frequency domain,
which can be expressed as [144]

σi,j =
1

2
⟨uiuj + ujui⟩,

where

u = [X1, Y1.X2, Y2]
T ,

is the vector of quadratures

X1 = (a+ a†)/
√
2

Y1 = (a− a†)/i
√
2

X2 = (c+ c†)/
√
2

Y2 = (c− c†)/i
√
2.

Now, by substituting the solutions of equations of motion into the corresponding input-output
formula for the variables, i.e., aout =

√
kexa− aex (similarly for cout), we obtain the CM for the

quadratures of the outputs

σ(ω) =


σ11 0 σ13 0
0 σ11 0 −σ13
σ13 0 σ33 0
0 −σ13 0 σ33

 , (7.1.1)
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note that Eq.(7.1.1) is the typical CM of a two-mode squeezed thermal state, where the elements
of the CM can be written in terms of photon numbers ni, squeezing angle φ and squeezing
parameter ξ, reads

σ11 =
(1 + n1 + n2) cosh 2ξ + (n1 − n2)

2

σ33 =
(1 + n1 + n2) cosh 2ξ − (n1 − n2)

2

σ13 =
(1 + n1 + n2) sinh 2ξ cosφ

2
,

when ni = 0 the Gaussian state is called two-mode squeezed vacuum. Squeezing in the two-mode
squeezed thermal state can be determined by the following expression [74, 147]

S(φ) = σ11 + σ33 − 2σ13 =
1

2
(1 + n1 + n2)(cosh 2ξ − sinh 2ξ cosφ),

which for φ = 0 and ni = 0 gives the maximum squeezing S(0) = e−2ξ/2. Furthermore, the
degree of two-mode squeezing is best visualized using the quasi-probability Wigner function

W (ψ) =
exp

{
− 1

2 (ψσ
−1ψ†)

}
π2

√
detσ

with the state vector ψ = (X1, P1, X2, P2). Fig.(15) shows the Wigner function of the squeezed

Figure 15: Wigner function of the squeezed state (blue) compared with the ideal vacuum state
(red) for two non-local quadrature pairs, where the other two quadratures are integrated out.
Solid lines indicate a drop by 1/e of the maximum value. Credit from Fink et al. Nature 2019
[146].

state (blue) compared with the ideal vacuum state σvac = I/2 in red (I is the identity matrix)
for two quadrature pairs, while the other two quadratures are integrated out. The {X1, X2} and
{P1, P2} projections clearly show cross-quadrature two-mode squeezing below the quantum limit
in the diagonal directions.
Finally, to verify the existence of entanglement between the two output modes we can either use
the Duan criterion [81], or the log-Negativiy [76]. We already know that EN = max[0,− ln 2ν−],
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Figure 16: (Left) Measured variance of the EPR basis states as a function of the detector angle φ
of channel 1. The green area shows the region of vacuum squeezing. (Right) The measured Duan
non-separability measure ∆EPR as a function of cooperativity difference, C− − C+. Theoretical
values are shown without (solid) and with (dashed) pump noise. The green area indicates the
region of entangled states and the blue area shows the unstable region where the theory breaks
down and the measured squeezing values exceed the range of the plot. Credit from Fink et al.
Nature 2019 [146].

where ν− is the smallest partially-transposed symplectic eigenvalue of the covariance matrix σ,
given by

ν− ≡ 1√
2

[
∆(σ)− [∆(σ)2 − 4 detσ]1/2

]1/2
,

with

∆(σ) = detα+ detβ + 2detγ.

Substituting the expression for the CM we can obtain

ν− =
1√
2

[
σ2
11 + σ2

33 + 2σ2
13 −

√
(σ2

11 − σ2
33)

2 + 4σ2
13(σ11 + σ33)2

]1/2
.

On the other hand, using the Duan bound criterion the two-mode Gaussian state is entangled if
∆EPR ≡ ⟨X̂2

−(φ)⟩ + ⟨P̂ 2
+(φ)⟩ < 1, and it is exactly in a vacuum state for ∆EPR = 1. The EPR

operator pair are defined as follow:

X̂− =
1√
2
(X̂2 − X̂1)

P̂+ =
1√
2
(P̂2 + P̂1),

consequently

⟨X̂2
−(φ)⟩ =

σ11 + σ33 − 2σ13
2

⟨P̂ 2
+(φ)⟩ =

σ11 + σ33 + 2σ13
2
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The measured variance of the EPR basis states û(φ) and v̂(φ) as a function of the angle φ is
shown in Fig.(16). We also show the results obtained in [146], where they reported measurements
of ∆EPR for the optimal angle φ as a function of the calculated difference between the red and
blue cooperativities, C− − C+ (where C∓ = 4G2

∓/κγ).

7.1.1 Two mechanical oscillators coupled with one cavity mode

In the previous section, we have seen how it is possible to generate entanglement between cavity
fields, while they are simultaneously coupled to a mechanical oscillator. Therefore, we want now
to describe the other case around, where two movable mirrors (massive mechanical oscillators) are
incorporated into a resonant optical cavity, and radiation pressure forces inside the cavity can be
tailored so that the motion of the mirrors becomes highly correlated and even entangled. There
exist several proposals for this kind of system, for example, in [148, 149, 150, 151]. To describe
this system, we initially assume for simplicity that the two oscillators have equal radiation-
pressure coupling strengths, g and that the pump tones are applied at the red- and blue-sideband
frequencies ω− = ωc − ω1 and ω+ = ωc + ω2, respectively. As in the previous section, ωc is the
cavity’s frequency, while ωj is the j-th oscillator’s frequency. Moreover, throughout the following
we will indicate the two mechanical modes with the notation b1 and b2, while the cavity one with
a. Details of the theoretical model, including non-idealities, are discussed in the Supplementary
material of the paper by Ockeloen-Korppi et al. [88]. The pump tones enhance the radiation-
pressure interaction, yielding an effective optomechanical coupling rate G± = gα±, where α±
are the field amplitudes induced in the resonator by the pump ω±. Now, it is useful to introduce
the mechanical Bogoliubov modes, which are obtained by a two-mode squeezing transformation
(see Chapter 5) on the original mechanical annihilation operators, i.e.

β̂1 = b1 cosh ξ + b†2 sinh ξ

β̂2 = b2 cosh ξ + b†1 sinh ξ

where ξ is the two-mode squeezing parameter, given by tanh ξ = G+/G−. By defining Ω =
(ω2 −ω1)/2 and working in a rotating frame (at frequency ωc +Ω for the cavity and (ω2 +ω1)/2
for each mechanical oscillator), the linearized optomechanical Hamiltonian becomes

Ĥ = −Ωa†a+Ω(β†
2β2 − β†

1β1) + G[a†(β1 + β2) + a(β†
1 + β†

2)], (7.1.1.1)

with G =
√
G2

− −G2
+. Hamiltonian (7.1.1.1) describes the cavity cooling of the Bogoliubov

modes towards their ground state, which corresponds to a two-mode squeezed state of the bi-
partite mechanical system. Now, if we introduce a second oscillator, we can rewrite the four
collective quadrature operators as

X̂± =
1√
2
(X̂2 ± X̂1)

P̂± =
1√
2
(P̂2 ± P̂1),

where

X̂j =
b̂j + b̂†j√

2

P̂j =
−i(b̂j − b̂†j)√

2
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are the individual mechanical oscillator quadrature operators, for j = 1, 2. Equivalently to
the previous section, here the Duan bound [81] ensures that a state is entangled if ∆EPR =
⟨X̂2

+⟩+ ⟨P̂ 2
−⟩ < 1.

What Ockeloen-Korppi did in their work [88], is to use a single driven cavity mode both to prepare
a correlated state of two mechanical oscillators and to directly measure fluctuations in the X̂+

collective quadrature, and inferred those in P̂−. Their device was designed with the two oscillators
separated by 600µm having no direct coupling, and with resonance frequencies ω1/(2π) ≈ 10
Mhz and ω2/(2π) ≈ 11.3 MHz. The microwave cavity, with a frequency of ωc/(2π) ≈ 5.5 GHz,
had separate input and output ports. All the input signals were applied through a port having
coupling rate of κinE/(2π) ≈ 60 kHz, whereas the output was strongly coupled at κoutE /(2π) ≈ 1.13
MHz. They also included internal losses of the cavity with a rate of κI/(2π) ≈ 190 kHz, and the
sum of all the loss channels gave a total rate of κ/(2π) ≈ 1.38 MHz. In this way, for the mechanical
oscillators quadrature fluctuations they founded ⟨X̂2

+⟩ ≈ 0.41 ± 0.04, and ⟨P̂ 2
−⟩ ≈ 0.42 ± 0.08.

Therefore, this shows that the system is in an entangled state with ⟨X̂2
+⟩+⟨P̂ 2

−⟩ ≈ 0.83±0.13 < 1
of the (center of mass) motion of two mechanical oscillators.
In Fig.17 is displayed the Duan quantity for entanglement as a function of the probe tone phase
ϕ, and as a function of the strength of the red-detuned pump tone. This is because, in the main
experiment, they have used two pairs of tones, namely, the pump and probe tones. The pump
tones are used to create entanglement, while the probe tones enable the measurement of the
collective quadrature operators of the mechanical state. The ability to control the relative phase
ϕ of the two probe tones allowed them to infer the variance of a general collective quadrature
X̂ϕ

+ = X̂+ cosϕ+ P̂+ sinϕ.

Figure 17: Fluctuations of collective quadratures. (Left) The Duan quantity for entanglement
as a function of the probe tone phase φ. (Right) The Duan quantity for the optimal value of φ,
as a function of the strength of the red-detuned pump tone. The black and red solid lines are
theoretical fits to the corresponding datasets, obtained using the bath temperatures determined
by the pump spectra. The blue horizontal line marks the quantum zero-point fluctuations level.
The error bars denote statistical confidence of two standard deviations. Credit from Ockeloen-
Korppi et al. Nature 2018 [88].

Moreover, we know that an oscillator is squeezed if the fluctuations of either of the quadrature-
amplitude operators X̂1 and P̂1 is smaller than the quantum zero-point fluctuation level. This
is exactly our case, as shown in Fig.18, where the sum of the X̂ quadratures, and the difference
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Figure 18: Correlations in two-mode squeezing, shown in terms of fluctuations (shaded) of the
quadrature amplitudes. Left, the sum of the X̂ quadratures of the two oscillators fluctuates less
than the zero-point level xzp. Right, the difference between P̂ quadratures is similarly localized
below the zero-point fluctuation level pzp.

between the P̂ quadratures, of the two oscillators fluctuates less than the zero-point level xzp.
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8 Conclusions

Quantum entanglement in optomechanical systems plays a vital role in the progress of quan-
tum science and technology, such as exploring fundamental physics and quantum information
processing. Although the physical laws of quantum mechanics do not specifically limit the size
of objects that carry the entangled states, the experimental preparation and detection of quan-
tum entanglement in the macro world still face great challenges. Fortunately, with the practical
advances in recent years, several pioneering works have demonstrated non-local correlation and
entanglement among mechanical oscillators or between electromagnetic fields mediated by a me-
chanical oscillator.
In this thesis, we have analyzed the main features of optomechanical systems, starting from
the basic interaction between light and matter, and concluding with the study of the entangle-
ment properties between various mechanical or cavity modes. We have also given a perspective
of the mathematical foundations with which these phenomena are described; providing a the-
oretical overview of how open quantum systems are defined, how Gaussian states (including
continuous variables states) are used, and in particular how entanglement measurements are
performed. We have thus formally introduced as criteria for the separability of Gaussian states
the Peres–Horodecki criterion, and we also have demonstrated the Duan bound violation, the
one that we have used throughout our analysis.
During the discussion of the properties of optomechanical systems, we have seen how we can
amplify a signal of an output cavity field aout (relying on the amplification theory explained by
Caves [41], and on the results obtained by Ockeloen-Korppi et al [40]), and on the other hand
how it is possible to cool down the motion of the mechanical mode down to its ground state (ex-
ploiting the works done by Teufel et al [122], and by Schliesser et al [118]). As we have noticed,
both results actually depend on the choice we make on the ∆ detuning (blue or red respectively)
performed on our system. In this sense, we have further explored which are the consequences of
the optomechanical interaction according to the regimes of parameters we have worked on.
In our case, for example, resolved sideband, large cooperativity, and strong coupling regime,
were the three situations analyzed which allowed us to implement Rotating Wave Approxima-
tion techniques (to cool the mechanical motion down to its ground state), and to achieve normal
mode splitting. In this way, in the last chapters, we have set together all these requirements in
order to analyze two modes optomechanical systems, going into details of two-mode squeezing
and two-mode (mechanical/cavity) entanglement.
Therefore, we now expect that the research landscape will increasingly focus on refining the
applications of optomechanical devices in quantum technologies, on the one hand, and on under-
standing fundamental phenomena such as those above, on the other. Cross-fertilization between
these two branches will probably remain a hallmark of the field, bringing new insight and ad-
vances to materials science, nano and micro-structure fabrication, and fundamental quantum
science, to investigate among other topics the emergence of new physics. There is nothing in
quantum mechanics to suggest that there is any limit to how large and complex a device can be
before it fails to be described by quantum mechanics. Of course it will not be easy to develop
the technology to control the quantum probability amplitudes of such systems. One thing will
always remain the case: no matter how large and how complex a quantum system becomes, its
quantum character will be revealed by comparing classical stochastic control signals with clas-
sical stochastic measurement records. The classical-quantum border will remain, but where we
will put it will be a function of our engineering capability alone.
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A Inseparability Criterion for CV Systems: Duan bound
violation

This appendix is mostly based on the derivation in the paper by Duan [81],so its role is to provide
some additional information that can help to better understand the proof of the Duan bound
criterion.
The inseparability criterion for continuous variables systems states that a quantum state ρ of
two modes 1 and 2 is separable if and only if it can be expressed in the following form:

ρ =
∑
i

piρi,1 ⊗ ρi,2, (A.1)

where ρi,1 and ρi,2 are assumed to be normalized states of the modes 1, and pi ≥ 0 to satisfy∑
i pi = 1. We have seen that an entangled continuous variable state can be expressed as a

co-eigenstate of a pair of EPR-type operators [60], such as x̂1 + x̂2 and p̂1 − p̂2. In this way, for
maximally entangled states the total variance of these two operators reduces to zero. In fact, if
we consider the following type of EPR-like operator:

û = |a|x̂1 +
1

a
|x̂2| (A.2)

v̂ = |a|p̂1 +
1

a
|p̂2|, (A.3)

for a (nonzero) arbitrary real number, the Duan bound criterion ensures that for any separable
quantum state the total variance of a pair of EPR-like operators satisfies the inequality

⟨(∆û)2⟩ρ + ⟨(∆p̂)2⟩ρ ≥ a2 +
1

a2
. (A.4)

Proof . We can directly compute the total variance of the û and v̂ operators using the relation
(A.1) of the density operator ρ, and get the following result

⟨(∆û)2⟩ρ + ⟨(∆p̂)2⟩ρ =
∑
i

pi(⟨û2⟩i + ⟨v̂2⟩i)− ⟨û2⟩ρ − ⟨v̂2⟩ρ

=
∑
i

pi

(
a2⟨x̂21⟩i +

1

a2
⟨x̂22⟩i + a2⟨p̂21⟩i +

1

a2
⟨p̂21⟩i

)
+ 2

a

|a|

(∑
i

pi⟨x̂1⟩i⟨x̂2⟩i −
∑
i

pi⟨p̂1⟩i⟨p̂2⟩i
)
− ⟨û2⟩ρ − ⟨v̂2⟩ρ (A.5)

∑
i

pi

(
a2⟨(∆x̂1)2⟩i +

1

a2
⟨(∆x̂1)2⟩i + a2⟨(∆p̂1)2⟩i +

1

a2
⟨(∆p̂2)2⟩i

)

+
∑
i

pi⟨û⟩i −
(∑

i

pi⟨û⟩i
)2

+
∑
i

pi⟨v̂⟩i −
(∑

i

pi⟨v̂⟩i
)2

.

In the former equation, the symbol ⟨· · · ⟩i denotes the average over the product density operator
ρi,1⊗ρi,2. Therefore, it follows from the uncertainty relation that ⟨(∆x̂j)2⟩i+⟨(∆p̂j)2⟩igeq|[x̂j , p̂j ]| =

1 for j = 1, 2, and by applying the Cauchy-Schwarz inequality

(∑
i pi

)(∑
i pi⟨û2i ⟩

)
≥

(∑
i pi|⟨û

⟩
i |
)2

,

we ensure that the last line of Eq.(A.5) is bounded from below by zero. Hence, the total variance
of the two EPR-like operators is bounded from below by a2 + 1

a1 for any separable state. This
completes the proof of the criterion.
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B Interaction phenomena between light and matter: one-
mode mechanical squeezing

In this appendix we would like to give an extensive derivation of the quadrature squeezing result
obtained in Section 6.3.
To derive the mechanical quadrature spectrum, we shall consider the so-called good-cavity limit
(ωm ≫ κ), including also the case of κ≫ γ. In this sense, it is convenient to define the vectors

V =

(
â, â†, b̂, b̂†

)T

V in =

(
âin, â

†
in, b̂in, b̂

†
in

)T

(B.1)

W =

(√
κ,

√
κ,

√
γ,

√
γ

)
.

We then find the following solution to the quantum Langevin equations in frequency space:

V̂ [ω] = χ[ω] ·W · V̂ in,

where

χ[ω] =


κ
2 − i(ω +∆) 0 −iG− −iG+

0 κ
2 − i(ω −∆) iG+ iG−

−iG− −iG+
γ
2 − i(ω +∆) 0

iG+ iG− 0 κ
2 − i(ω −∆)


−1

. (B.2)

Now, we can compute the output cavity spectrum through âout(ω) using the input-output relation
âout(ω) = âin(ω)−

√
κâ(ω). This yields

âout(ω) = âin(ω)− κ

(
χ[ω]

)
11

âin − κ

(
χ[ω]

)
12

â†in − κγ

(
χ[ω]

)
13

b̂in − κγ

(
χ[ω]

)
14

b̂†in. (B.3)

In this way, the symmetric power spectral density is given by

S̄[ω] =
1

2

∫
dt

〈{
â†out(0), âout(t)

}〉
eiωt =

1

2
+ S[ω] (B.4)

with

S[ω] =
1

2

∫
dt

〈
â†out(0), âout(t)

〉
eiωt

= κ2
∣∣∣∣χ[ω]11∣∣∣∣2nc + κ2

∣∣∣∣χ[ω]12∣∣∣∣2(nc + 1) + κγ

∣∣∣∣χ[ω]13∣∣∣∣2nm + κγ

∣∣∣∣χ[ω]14∣∣∣∣2(nm + 1).

Thus, for ∆ = 0 and G2 := G2
− − G2

+, the mechanical quadrature spectra are considerably
simplified as

S̄X1,2 [ω] =
1

2

∫
dt

〈{
X̂1,2(t), X̂1,2(0)

}〉
eiωt

= 4x2zp
4κ(G− ∓G+)

2(nc + 1/2) + γ(κ2 + 4ω2)(nm + 1/2)

(4G2 + γκ)2 + 4ω2(γ2 + κ2 − 8G2) + 16ω4
. (B.5)
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The mechanical quadrature fluctuations are obtained by integrating the mechanical quadrature
spectra 〈

X̂2
1,2

〉
=

∫
dω

2π
S̄X1,2

(ω)

= x2zp
4κ(G− ∓G+)

2(2nc + 1) + γ[4G2 + κ(κ+ γ)](2nm + 1)

(κ+ γ)(4G2 + γκ)
, (B.6)

and therefore we have recovered the expression of Section 6.3.
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