SIS
AN
,‘3;‘__,2?;;; Politecnico
(Tt iy di Torino

\
W

Master of Science in Computer Engineering

Master Degree Thesis

Optimizations and Analysis in
Firewall Anomaly Resolution

Supervisors
prof. Riccardo Sisto

prof. Fulvio Valenza
dott. Lucia Seno

dott. Daniele Bringhenti

Candidate
[laria SCHIO

ACADEMIC YEAR 2021-2022

This work is subject to the Creative Commons Licence

Acknowledgements

Pause today and notice something
you have worked hard on and
recognize yourself for it.
Acknowledge your effort.

Kristin Armstrong

This project would not have been possible without the help and assistance of
professor Fulvio Valenza and engineer Lucia Seno. I am also extremely grateful to
my friends and family who supported me through all these years.

Thank you.

Contents

List of Figures

List of Tables

Listings

1 Introduction

1.1
1.2

Thesis Introduction L

Thesis Description L oo

2 Firewalls

2.1
2.2
2.3

2.4

Firewall: General 0oL
Access Control Criteria Lo
Types of Firewalls. L.
2.3.1 Packet Filtering Firewalls
2.3.2 Circuit-Level Gateways
2.3.3 Application-Level Gateways (Proxy Firewalls)
2.3.4 Stateful Inspection Firewalls
2.3.5 Next-Generation Firewalls (NGFW)
Final

3 Conflict Analysis

3.1
3.2

3.3

Rule Relations
Anomalies
3.2.1 Sub-Optimization Anomalies
3.2.2 Conflict Anomalies
Other Solutions
3.3.1 Al-Shaer, Hamed, Boutaba, and Hasan
332 Huand Ahn

3.3.3 Cheminod, Durante, Seno and Valenzano

4

11
11
12

14
14
16
16
17
18
19
20
21
22

4 Thesis Objective

5 Problem Definition and Methodology
5.1 Which First: Simplify or Filter

5.2 Conflict Types or Configurations

3.3
5.4
3.5
2.6

Priority or not Priority . . .
Order

Counsiderations

Analysis and Considerations on Rule Relationships

6 Case Study Analysis

7 The Proposed Approach

7.1

Find the Best Rule

7.2 How to Query the Administrator

7.3

Algorithm

8 Implementation and Validation

8.1
8.2
8.3
8.4

Setup and Environment . .

Main Classes and Data Objects

Important Functions

Example with Test Case and Validation

9 Conclusion

Bibliography

Appendices

Appendix A

a

b

Initial List
Final List

Appendix B

a
b

C

Method intersect
Methods generate and helper
Method findMinPriorityRule

35

37
37
38
39
39
40
42

50

112
112
115
117
125

131

133

136

137
137
142

)

= 09

[

Method removeRuleCouple 146
Method query o 147
Method getRuleByID oL 148
Method invertPriority oL 149
Method findLastRule 0L 149
Method algorithm oL 150

List of Figures

2.1 Example of a Firewall 15
2.2 Packet Filtering Firewall 17
2.3 Circuit-Level Gateway 18
2.4 Application-Level Gateway (Proxy Firewall) 19
2.5 Stateful Inspection Firewall 20
2.6 Next-Generation Firewall (NGFW) 21
3.1 Example of Ordered List of Rules 24
3.2 Policy Tree for the Firewall in Figure 3.1 28
3.3 Architecture of FAME 30
3.4 Policy anomaly management framework of FAME 31
3.5 Example of Firewall and Firewall Sequences 33
5.1 Mirror cases of n.19o 46
5.2 Mirror casesof n.95 Lo 47
5.3 Fifth-Level Considerations Cases 49
6.1 Case 1.7 50
6.2 Casen.19 53
6.3 Case n.27 56
6.4 Casen.32 58
6.5 Casen.36 60
6.6 Casen.39 62
6.7 Casen.42 64
6.8 Casen.dd 66
6.9 Case n.47 L 69
6.10 Case n.49 oL 71

6.11 Case .07 73

6.12 Case 1.9o 75
6.13 Case n.69 77
6.14 Case n.82 79
6.15 Case n.84 81
6.16 Case n.85 83
6.17 Case n.89 85
6.18 Case 1.92 L 87
6.19 Case 1.93 L 90
6.20 Case .94 oL 92
6.21 Case n.95 L 95
6.22 Case n.97o 97
7.1 Case with 4 Rules - Configuration 104
7.2 Case with 4 Rules - Graph 105
8.1 Eclipse Logo 112
8.2 Welcome Screen of Eclipse 4.12 113
83 XML Schema 114
8.4 Graphical Representation of the Clusters 126
8.5 Solution of Cluster 1 126

List of Tables

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Example of rules inside a Firewall 125
RuleCouples generated in Clusterl 127
RuleCouples with Relation Values in Clusterl 127
Rules in the Clusterl After Querying R1 129
RuleCouples in the Clusterl After Querying R1 129
RuleCouples in the Clusterl After Querying R5 130
RuleCouples in the Clusterl After Querying R6 130

Listings

8.1 checkValueRelationFunction method 118
8.2 findBestRuleToQuery method 119
8.3 resolveConflicts method 0oL 122
1 intersect method L L 143
2 generation method L L 144
3 helper method 145
4 findMinPriorityRule method 146
5 removeRuleCouple method 147
6 query method Lo 147
7 getRuleByID method oo 148
8 invertPriority method oo 149
9 findLastRule method 149
10 algorithm method Lo oo 150

10

Chapter 1

Introduction

1.1 Thesis Introduction

Network security policies can be seen as a set of rules that describe the company’s
security controls. The purpose is to delineate the rules for allowing or denying
access to the network and also how policies are applied. Its intent is to block
malicious users from entering in the internal network and at the same time it tries
to reduce the risk of malevolent users from within. This is in the form of a very
long and complex document that has to be passed through a committee in order
to be put in place.

The security policy should also determine how policies are enforced by impos-
ing a hierarchy of access permissions, following the cybersecurity principle of ‘need
to know’: a user should only have access to some information that they are re-
quired to know.

The network security policies are then implemented inside the company by prop-
erly configure and manage the firewall and the network security controls.

This means that policies and rules are inserted inside the firewall in a certain order
by the network administrator and this implies a certain order of priority between
the rules.

The problem is that rules and policies might change over time: some rules may
have been inserted but then forgotten, others may have become obsolete, or maybe
because of some external changes inside the company the policies also need to be
updated. In our study we will only consider the case in which the administrator can
add a new rule or policy over time, but they cannot modify or re-write an already
existing one inside the list of rules. Also we assume that the administrator never
make mistakes when they write rules, but they only insert them in the wrong order.

Everytime we need to enforce the security policies inside the company we look
up to this list, but if there is some confusion in what is the action is to take, then
we need to query the administrator that will solve our doubts.

11

Introduction

In literature there are some works that address the argument of security policies,
but not with the optimization point of view of the workload of the administrator.
For example, Al-Shaer et al. developed a tool that implement a firewall anomaly
discovery algorithm and the distributed firewall policy editor: it just detects and
report the anomlies but it does not solve them; Hu and Ahn’s approach tries to
solve the anomalies but they use a greedy algorithm, so it is only sub-optimal.

The purpose of this thesis is to find an algorithm that allows us to query the
least number of times the administrator while also solving all the problems that
are present inside the list of rules. In order to define the algorithm we had to first
study how to approach the problem from a theoretical point of view, therefore an
extensive analysis of how rules interact with each other in general.

Then, we figured out a semantic to query the administrator in an efficient way,
while solving the conflicts, which is asking for the correctness of a specific rule.
This query can be translated into priority constraints that based on the response
from the administrator can be accepted and forced or have to be negated. From
these analysis we were able to design an algorithm that complied with our goals.

Before moving to the next cycle we perform some checks to verify if inside the
cluster are still present some conflicts, if we reach to a solution we can move on to
the next cluster; if instead it is not possible, we keep query the administrator. The
algorithm can be optimized with the help of a SAT solver, that would minimize
in some cases the number of queries required to reach the solution for some clusters.

The implementation that we propose in this project is done in Java language,
while we leave for future works the solution with the help of a SAT solver. Nev-
ertheless, the algorithm is able to first determine clusters of rules inside a firewall
that interact with each other, detect the potential conflicts within them and solve
the conflicts in an efficient way.

1.2 Thesis Description

Excluding this first chapter, which aims to give an overview of the overall objective,
the thesis will follow the structure described below:

e Chapter 2 - Firewalls: in this chapter we give a background knowledge
of what is a firewall and which are the most common implementations of it
nowadays.

e Chapter 3 - Conflict Analysis: in this section it will be presented which
are the definitions that will be used throughout the whole thesis about rela-
tions and conflicts, also it will show some solutions for conflict analysis taken
from literature.

12

Introduction

Chapter 4 - Thesis Objective : here, we outline in better details the
thesis purpose explaining the sub-problems that we will encounter.

Chapter 5 - Problem Definition and Methodology: in this chapter
we will describe the different approaches and methods that we considered at
the beginning and the winning resolution that we used to solve the problem.
Then given a simple problem of three rules interacting with each other, we
analyse all the possible outcomes. The analysis is divided in two: in this first
phase we perform a ‘filtering’ in which we remove the non-interesting cases.

Chapter 6 - Case Study Analysis: following the previous chapter anal-
ysis, here we present the second part of the analysis, in which we study the
remaining cases one by one.

Chapter 7 - The Proposed Approach: after the analysis we sum up the
considerations in order to extract useful information.

Chapter 8 - Implementation and Validation: here we describe the most
important functions that are used inside the implementation of the code and
we show some meaningful results.

Chapter 9 - Conclusion: finally we reach to a conclusion to our project,
we discuss the overall solution and what can still be achieved in this field.

Appendix A: we display the initial and final lists that are used in the rules’
relationship analysis.

Appendix B: in this part we present the additional code for the useful
functions that are used in the algorithm.

13

Chapter 2

Firewalls

2.1 Firewall: General

Firewalls are a cybersecurity devices that are used to filter the incoming and
outgoing traffic. They are network security controls that regulate the traversing
of packets by the definition of:

e an ordered set of rules, in which each rule R is composed by a set of conditions
C and one action a: R = (C,a)

e a default action, it is the action to apply if the packet does not meet all the
conditions of any rule

e a resolution strategy, it describes which rule’s action should be applied if
more than one rule matches the packet.

The firewall actions can be ALLOW, it forwards the packet, or DENY,, it discards
the packet. The packet is allowed or denied by a specific rule if the packet header
matches all the conditions of this rule.

There are different types of resolution strategy:

e First Matching Rule (FMR) = selects the first applicable rule in the ordered
list.

e Allow Takes Precedence (ATP) = when more rules are activated and they
have contradicting actions, you enforce the ALLOW rule over the DENY
one.

e Deny Takes Precedence (DTP) = when more rules are activated and they
have contradicting actions, you enforce the DENY rule over the ALLOW
one.

e Most Specific Takes Precedence (MSTP) — when there are two conflicting
rules that are activated, you have to select the most specific rule.

14

Firewalls

e Least Specific Takes Precedence (LSTP) = when there are two conflicting
rules that are activated, you have to select the least specific rule.

For instance, let’s imagine a firewall with the following set of rules:

Firewall

140.192.37.0 J} 161.120.33.0

Source Destination —\
Protocol Address Port Address Port Action
1: tcp, 140.192.37.20, any, * ok k % 80, deny
2: tcp, 140.192.37.*, any, * % % % 80, accept
3: tcp, * %k * * any, 161.120.33.40, 80, accept
4: tcp, 140.192.37.*, any, 161.120.33.40, 80, deny
5: tcp, 140.192.37.30, any, * ok ok % 271, deny
6: tcp, 140.192.37.*, any, * k. k % 21, accept
7: tcp, 140.192.37.%*, any, 161.120.33.40, 21, accept
8: tcp, * % % % any, * % % % any, deny
9: udp, 140.192.37.*, any, 161.120.33.40, 53, accept
10: udp, * %k * * any, 161.120.33.40, 53, accept
11: udp, 140.192.38.*, any, 161.120.35.%*, any, accept
12: udp, * % % %, any, * % % % any, deny_/

A packet arrives to it with these characteristics:

Figure 2.1: Example of a Firewall

P = (TCP,140.192.37.18, any, 161.120.33.40, 80) (2.1)

Upon its arrival, it will activate the rules: R2, R3, R4/ and RS8. Depending on the
strategy that you implemented the rule that will be applied can be different. If
you choose:

FMR = then, R2 is selected
ATP = then, R2 is selected
DTP = then, R4 is selected
MSTP = then, R4 is selected
LSTP = then, RS is selected

Usually the FMR strategy is the most used, but it still depends on the situations
and necessities of the organization network.

15

Firewalls

2.2 Access Control Criteria

The rules inside the firewall are applied also follwing two possible methods:

e whitelisting or default-allow, in general it is a mechanism which allows some
entities to access a particular service or privilege while everything else is
denied. it is a list of things that are allowed while everything that is not on
the list is denied.

o blacklisting or default-deny, in general it is a mechanism that allows the
access to everything except those that are explicitly mentioned in the list.

Normally firewalls apply the blacklisting criteria since it is safer, more secure and
it allows you to have a better precision on the rule’s definition than the whitelisting
method.

2.3 Types of Firewalls

Firewalls can be either implemented in hardware, software or in a mixed solution
with both hardware and software. It is best practice to try to achieve the maxi-
mum level of protection and safety, while not losing too much of efficiency, time
and money. Depending on the level of security that you need from the firewall
you can have different types of firewalls. Each type has its own advantages and
disadvantages, the choice is up to the organization or client based on their personal
requirements and necessities.

An hardware firewall is a dedicated physical device that it inserted between a
computer and a gateway. On the other hand, a software firewall is a particular
program that runs on a computer or on a server, as any other software application.

Firewalls can be also divided in two main categories [10]:

e Host-based Firewalls

e Network-based Firewalls

The former type is installed on each network node, it controls each incoming and
outgoing packet. It is usually a software application that is part of the operating
system, it protects each host from unauthorized access and dangerous attacks.

The latter is typically a dedicated system with proprietary software installed.
Network firewalls employ two or more network interface cards and work on the
network level.

There are many types of network-based firewall, let’s see a few of them and their
characteristics.

16

Firewalls

2.3.1 Packet Filtering Firewalls
A Packet Filtering firewall is the most basic, simplest and easiest type of firewall.
This type of firewall performs a simple check of the data packets coming through

the router, inspecting information in the packet header without inspecting its con-
tents.

Packet Filter

L |

Figure 2.2: Packet Filtering Firewall

If the packet does not pass the check, then it is dropped. It is also known as
a static firewall.

Advantages:

e it is not very resource-intensive, it does not have a big impact on system and
network performance

e it is relatively simple and inexpensive
e all the traffic could be filtered by a single device (theoretically)

e it is extemely fast and efficient in scanning the traffic, since it is not looking
in the content

Disadvantages:

e it is subject to IP spoofing attack, it does not check the payload

e since it is based on IP address and/or port information, it lacks of the “big
picture”

e the access control list can be difficult to manage and set up

e in some cases it might not be secure enough, you may need more security

17

Firewalls

2.3.2 Circuit-Level Gateways

A Circuit-Level Gateway is a firewall that provides User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP) connection security and typically oper-
ate at the session-level.

It monitors the handshakes initiation messages that are exchanged across the net-
work between the local and remote hosts to determine whether the session that is
being set up is actually legitimate. The gateway is put in between the two hosts
an exchanges TCP segments with the two without changing the contents.

Circuit Level proxy

Outside Application Application nside
Connection T e Connection
< | Transport Contro Transport Control |
Protocol » Protocol

r

A

>0

Out Side Host Internet Protocol Internet Protoco nside Host
Data Link Data Link
Physical Physical

Figure 2.3: Circuit-Level Gateway

However, as we have said, it does not look into the content of the packets, but it
just verifies the transmission control protocol (TCP) handshake.

This means that, if a packet is dangerous or contains a malware, but it has per-
formed the right TCP handshake headers, it would pass right through the firewall
undetected.

Advantages:

only processes requested transactions, all other traffic is rejected

it is easy to set up and manage

it is fast at scanning, since it does not look inside the packet contents

it is rather cheap and inexpensive
Disadvantages:

e it does not provide protection against data leakage from devices within the
firewall

18

Firewalls

e no application layer monitoring
e it requires frequent updates to keep rules up-to-date

e it provides a higher level of security than packet filtering firewalls, but this
could still not be enough for certain systems that require higher security

2.3.3 Application-Level Gateways (Proxy Firewalls)

The Application-Level Gateways can examine application layer information (i.e.
HTTP, POP, DNS, etc). It operates at the application layer as an intermediate
device to filter incoming traffic between two end systems, this is why they are also
called proxy firewalls.

They act as proxy, transferring the requests from the clients pretending to be
original clients on the web-server. This allows to protect the client’s identity,
keeping the network safe from potential attacks. Once the connection is estab-
lished, it inspects data packets coming from the source.

Figure 2.4: Application-Level Gateway (Proxy Firewall)

The proxy firewalls perform a check that looks at both the packet and at the
TCP handshake protocol, if everything is correct then the packet is forwarded,
otherwise the packet is discarded.

This type of firewalls may also perform deep-layer packet inspection, checking the
actual contents of the information packet to verify that it contains no malware.

Advantages:

e it examines also at the content of the packet, not only the headers
e it provides more specific security controls

e it assures user anonymity

19

Firewalls

Disadvantages:

e they can affect network performance and can be difficult to manage
e it is more expensive than the other type of firewalls

e it can create significant slowdown and delays in the communication

2.3.4 Stateful Inspection Firewalls

Stateful Inspection Firewalls are able to inspect each packet and they can moni-
tor and check if a packet is included or not in an established network session, for
instance a TCP session.

This solution has the advantage of being more secure than previous firewall types
as the packet filter, but of course this device demands greater costs and expenses
from the network performance.

It only allows the communication if and only if, the session is perfectly estab-

lished between two hosts, otherwise it will block the connection. This type of
firewall is also called dynamic packet filtering.

L1— —

Figure 2.5: Stateful Inspection Firewall

When a user establishes a connection, this type of firewall creates a sort of database
in which it stores everything called state table. Usually inside the state table you
store for each session all connection-related information, i.e. source and destina-
tion IP addresses and port number, etc.

These types of firewalls implement more checks and are considered more secure
than the stateless firewalls (the ones that do not keep track of the connection in-
formation).

Advantages:

e it keeps track of the entire session, at the same time it checks IP addresses
and payloads

20

Firewalls

it provides a greater level of control over the traffic

it is more secure than packet filtering and circuit-level gateways

it does not need to open a big number of ports to allow traffic in or out

it helps to prevent some attacks for exmaple DoS

Disadvantages:

e it slows down the transfer of legitimate packets through the network com-
pared to other solutions

e it increases the load and puts more pressure on computing resources
e it is more expensive

e it does not provide authentication capabilities to validate traffic sources

2.3.5 Next-Generation Firewalls (NGFW)

The Next-Generation Firewalls are also called intelligent firewalls: they can achieve
all the functions that are implemented by the previous solutions, plus some sup-
plementary features like application awareness and control, malware filtering, in-
tegrated intrusion prevention, etc.

Unlike some of the previous types, NGFWs monitor and inspect the entire trans-
action of data, so the whole packet (headers and contents), and sources.
Next-generation firewalls may include other technologies as well, such as intrusion
prevention systems (IPSs) that work to automatically stop attacks against your
network.

NG Firewall ~

Advanced
Threat Detection

Next-Generation
Malware Protection N

Next-Generation IPS @ ’

ﬁ Zesdaaass ' Iﬁ

Next-Generation Firewall

Block File

Allow File

@ _ooo

Figure 2.6: Next-Generation Firewall (NGFW)

21

Firewalls

In general, there is no single definition for this type of firewalls. An ordinary
NGEFW combines packet with stateful inspection and it also incorporates some va-
riety of deep packet inspection (DPI), but also other network security systems, for
instance IDS and TIPS and malware filtering. NGFWs have a better performance
when they are incorporated with other security systems.

Advantages:

e it combines different type of controls and check in order to provide an excel-
lent level of filtering the traffic

e it records all traffic from the network to the application layer

e it can be automatically updated to give the up-to-date context
Disadvantages:

e since NGFW performs better when integrated with other systems, it may be
very diffuclt and complex to manage

e it is more expensive than the other solutions

2.4 Final

However, in this project we will not need to use or to consider very high performing
firewalls or very specific requirements. We will be content enough with a simple
packet filter packet filter with deny as default action and the First Matching Rule
(FMR) as the resolution strategy.

Therefore, this firewall can be thought as an ordered list of rules, in which each
rule inside the firewall will be in the form of:

Ry = (I Psource, Portsource, I Paest, Port gest, Protocol, Priority, Action) (2.2)

where the
Action = ALLOW V DENY. (2.3)

This is the simplest and easiest choice that we can make in order to simplify our
arguments.

22

Chapter 3

Conflict Analysis

In this chapter we describe the basic definitions of rules, relations, anomalies and
conflicts that will be used throughout the whole thesis. The mathematical inter-
pretations and definitions of these objects are taken from Valenza and Cheminod’s
work [1].

3.1 Rule Relations

In order to analyse, detect and then solve anomalies you need to have a model for
specifying the relations between rules. Thus, in our model let’s consider four type
of relations between the condition fields:

e equivalence (f, = f,): two condition fields f, and f, are equivalent if they
have the same value (or range of values)

e dominance (f, > f,): a condition field f, dominates another one f, if it is a
generalization of the second one

e correlation (f, ~ f,): two condition fields f, and f, are correlated if they
share some values, but neither of them dominates the other one.

e disjointness (f,Lf,): two condition fields f, and f, are disjoint if they do
not share any value

Given the definition of the relationships between the fields, we can advance with
the correspondent relation among two condition sets, C, and C),. Considering two
conditions C, and Cy, only one of the following relations holds:

e cquivalence: two conditions C, and C, are equivalent if each condition field
ftin C, is equivalent to the corresponding condition element fgj in Cy so
that they exactly match the same packets: C,, = C, < fi = fZW

23

Conflict Analysis

e dominance: a condition C, dominates C, (C, > C,) if it is a generalization
of the latter. This means that it is true, if the first condition set matches
all the packet matched by the second, and some more: C, > C, & C, #
Cy A fi- f;W

e correlation: two conditions C, and C, are correlated (C, ~ C,) if they match
some common packets, but none of them includes (or dominates) the other
one: Cp ~ Cy & Cyp o Cy AN Cy £ Cy AVilfL L f where C, # C, stands for
Cy o CyNCy # C,y

e disjointness: two conditions are disjoint if they do not match any common
packet: C, LC, < Ji|fiLf,. Note that C; [C, means that C, and C, are
either equivalent, correlated or one dominant the other.

We also need to introduce the concept of priority of a rule, which is described
with the function 7(r), with r being a rule. To be more precise, the function 7 (r),
returns the position of r in the ordered rule set. We place at the top of the list
the rules with the highest priority. Thus, between any two rules r, and r, it exists
either the relation (r,) > m(r,) or the opposite 7(r,) < 7(ry).

Let’s see an example to better understand it. Given this set of ordered rules,
let’s try to determine the relations between these rules:

priority [Psrc Psrc [Pdst Pdst Proto Action
r 1 130.162.0.1 130.162.0.2 80 TCP ALLOW
r 2 130.162.1.3 130.162.2.2 g UDP ALLOW
r3 3 130.162.0.1 130.162.0.2 80 TCP DENY
r4 + 130.162.1.0/24 130.162.2.0/24 ALLOW
rs 5 130.162.1.0/24 130.162.2.0/24 80 ALLOW
I 6 130.162.3.0/24 130.162.0.0/24 DENY
ry 7 130.162.3.1 130.162.0.1 80 TCP ALLOW
rg 8 130.162.1.1 130.162.2.1 22 TCP ALLOW
Iy 9 130.162.1.4 130.162.2.5 0-1024 DENY
ro 10 130.162.3.0/24 130.162.0.0/24 DENY
i 11 130.163.3.0/24 130.162.0.0/24 DENY
default oo DENY

Figure 3.1: Example of Ordered List of Rules

e cquivalence = (R1, R3) and (R6, R10)

e dominance = (R2, R4), (R2, R5), (R4, R5), (R4, R8), (R6, R7) and (R7,

R10)

e correlation => (R1, R6), (R1, R10), (R1, R11), (R3, R6), (R3, R10), (R3,
R11), (R4, R9), (R5, R8), (R5, R9), (R7, R11) and (R10,R11)

24

Conflict Analysis

e disjointness = (R1, R2), (R1, R4), (R1, R5), (R1, R7), (R1, R8), (R1, R9),
(R2, R3), (R2, R6), (R2, R7), (R2, R8), (R2, R9), (R2, R10), (R2, R11),
(R3, R4), (R3, R5), (R3, R7), (R3, R8), (R3, R9), (R4, R6), (R4, R7), (R4,
R10), (R4, R11), (R5, R6), (R5, R7), (R5, R10), (R5, R11), (R6, R8), (RS6,
R9), (R7, R8), (R7, R9), (RS, R9), (RS, R10), (RS, R11), (R9, R10) and
(R9, R11)

3.2 Anomalies

The word anomaly is a sort of an “umbrella-term”, that includes errors and mis-
takes that may happen inside a firewall. There are various reasons why these
anomalies may happen: rules become obsolete, policies change over time, etc.

Either way, you need to consider that policies rules can be defined by more than one
person, therefore this can become a huge problem and a source of many anomalies.

In general you can distinguish two types of firewall policy anomaly:

e intra-policy (intra-firewall), if the anomaly is between two rules in the same
firewall.

e inter-policy (inter-firewall), if the anomaly is between two rules in two dif-
ferent firewalls.

In this project, we will only consider the intra-firewall policy anomalies. Further-
more, in this type of anomalies you can do another distinction between: conflict
anomalies and sub-optimization anomalies.

Formally, given two rules r, = (Cy,a;),7, = (Cy,a,), with some relation (they
are not disjoint), you have a conflict when a, # a,, otherwise you have a sub-
optimization.

The sub-optmization anomalies can be always automatically solved with the help
of a specific resolution strategy. However, the conflict anomalies require the aid of
the network administrator in order to be solved, you cannot adopt an automatic
resolution strategy for this type, without changing the behaviour of the security
policies.

Each of these categories has their own sub-types, let’s see them also with some
examples.

3.2.1 Sub-Optimization Anomalies

o Irrelevance = A policy rule r, is irrelevant if it does not match any packet
that might arrive to the firewall. This happens when either the source nor the
destination address of the rule does not match with the subnet protected by

25

Conflict Analysis

the firewall. This type of anomaly will not be considered in further analysis
since it requires external rules that state which are the subnets protected by
the firewall.

e Duplication Anomaly = A policy rule r, duplicates rule r, and vice versa if
they specify the same action and match the same packets:

Adul’<r$7 Ty) = CLK = Oy Na; = Gy (31)

If you remove the rule with the lowest priority between 7, and r,, it will not
change the policy behaviour.

e Shadow Redundancy Anomaly = A policy rule r, is shadowed by a rule 7,
if 7(r,) > m(r,), and all packets matched by r, are also matched by r,, also
they both specify the same action:

Ashawred(Tz,7y) = 7(rz) > 7(ry) Aagy = ay, ACy = Cy A a, = a, (3.2)

If you remove 7, (the rule with the lower priority), then you will not change
the overall policy behaviour.

o Unnecessary = A policy rule 7, is unnecessary with respect to rule r, when r,
and r, specify the same action, w(r,) > m(r,), all packets that are matched
by 7, also matched by r, and it does not exist a rule r, L r, with a priority
such that w(r;) > m(r,) > m(r,) and with opposite action:

A (13,1y) = 1(15) > 7(ry) AN Cy = Cp Ay = ayA
Ari|n(ry) > n(r,) > n(ry) NC, L CyAa, # a,

In this case, if you remove r,, this will not change the policy behaviour.

(3.3)

Considering the list of rules in the Figure 3.1, then we can determine the following
sub-optimization anomalies:

e duplication anomaly = (R6, R10), since they are equivalent and they have
the same action

e shadow redundancy anomaly = (R4, R5), since R4 includes R5 and they
share the same action and (R4, R8), since R4 includes R8 and the both have
the same action

e unnecessary = (R2, R4) and (R2, R5), in both R2 has a higher priority
than R4 and RS, all packets that match R2 also match R4 and R5, they all
specify the same action, plus it does not exist an intermediate rule between
these rules that have a different action.

26

Conflict Analysis

3.2.2 Conflict Anomalies

e Contradiction Anomaly = Two rules r, and r, are in contradiction if they
match the same packets but they have different actions:

Acontr(rm ry) = Cx = Cy N Gy 7é Qy (34)

To solve this conflict the administrator has to choose which one has to be
removed from the list.

o Shadowing Conflict Anomaly = A policy rule r, is shadowed by rule 7, if
w(ry) > m(ry), and all packets matched by r, are also matched by r,, also
the two rules have different actions:

Ashdwconfl(r:cary) = W(TI) > W(Ty) A Cx ~ Cy A Gy # ay (35)

In this case, the administrator can decide to: remove r, (the rule with lower
priority) or put r, just after r, (‘de-prioritization’)

e Correlation Anomaly = Two policy rules are correlated when some packets
that are matched by r, are also matched by r, but there are other packets
that are either matched by r, only or by r, only, and the two rules have
different actions:

Acorr(rmry) = Cx ~ Oy A ayg 7é Gy (36)

Here, the network administrator has three choices: leave everything as it is,
re-write r, and r, so that they are no longer in conflict or re-order the two
rules such that the rule with higher priority is now after the lower priority
one.

Considering the list of rules in the Figure 3.1, then then we can determine the
following conflicts:

e contradiction anomaly => (R1,R3), since they are equivalent and they have
different actions

e shadow conflict anomaly = (R6, R7), since R6 includes R7 and the have
different actions and (R7, R10), since R10 includes R7 and they have different
actions

e correlation anomaly = (R1, R6), (R1, R10), (R1, R11), (R4, R9), (R5, R9)
and (R7, R11), they are all correlated and they specify different actions

3.3 Other Solutions

These are some of the solutions that some of the resarchers in this field produced
in order to solve the issue about conflicts inside a network.

27

Conflict Analysis

3.3.1 Al-Shaer, Hamed, Boutaba, and Hasan

In their paper, they proposed a software tool called ‘Firewall Policy Advisor* (FPA)
[2]. This tool implements the firewall anomaly discovery algorithms (both intra
and inter) and a distributed firewall policy editor.

An interfirewall anomaly can occur if two firewalls on the network path spec-
ify different actions for the same traffic. They developed an algorithm that is able
to find the rule relations and also to discover for any two or more rules all the pos-
sible anomalies between these firewalls: it is called Interfirewall Anmaly Discovery

Algorithm.

Since on the network path that connects two subdomains there might be more
than two firewalls, you need to run this algorithm for all the firewalls on this path
in order to look for all the possible anomalies.

Once you have determined all the firewalls on the path you need to run in each one
the Intrafirewall Anmaly Discovery Algorithm, in this way you can be sure that
every single firewall is cleared from any possible intrafirewall anomaly. As we have
seen before, an intrafirewall anomaly can occur when two rules specify different
actions for the same traffic inside the same firewall.

Shadowing
Redundancy -
// "

7™ Correlation

() Generalization

.
5§

o, & %
o #
\ ¥ \
0 b
src:J;)ort src_port src_port
I I
[datlp‘ [dstlp‘
O
= \ m
8 A 3 .*;
§ % 8 &’ *
= * - = *
&\ @ g \
d b L d
‘dsi_porl‘ ‘dsi _porl‘ ‘dst_port‘ ‘dst _part‘ ldsi _porl‘ ‘dst_port‘ ‘dst _port‘ ‘dst _port‘ ‘dsi _port‘
80 21 & o o 80 * 53 53 *
/
& b d
‘ action ‘ ‘ action ‘ | action ‘ | action ‘ l action ‘ ‘ action ‘ l action ‘ ‘ action ‘ ‘ action ‘ ‘ action ‘ ‘ action ‘
deny deny deny accept accept accept accept deny aocept accept deny
{vue1 | [ries | [rie4 | {rie7 | [rie2 | | rie6 | [ries | [rie8 | | nies | {riet0 | | ruei2
12 3] 18 D ENONEEY SUMMERONRY SO P12 | i8] 42

Figure 3.2: Policy Tree for the Firewall in Figure 3.1

28

Conflict Analysis

Afterwards, starting from the most upstream firewall, you build the policy tree
and you add to it the rules of all the following firewalls in the path. Once you have
performed this process on the whole path, then the rules that could potentially
create an anomaly are reported. Also if some rules are left unmarked, then they
are declared as an irrelevant anomaly.

The algorithm continues inserting in the aggregate policy tree each rule from the
successive downstream firewalls. This is done based on the field values, so that the
current rule is inserted in the policy tree by matching the previously inserted rules.

If the rule is disjoint or correlated, it is inserted into a new branch. If the rule is
a superset match, the rule is inserted into the branches of all the subset rules. In
all the other cases, the rule is inserted in the first branch of a rule that is an exact
or superset match.

When the process terminates, the anomaly is discovered depending on the re-
lation and on the action of the currently inserted rule and the rule in the policy
tree. If an anomaly is found, the affected rules are marked and the anomaly is
reported.

The policy editor facilitate the work of the user in checking which is the cor-
rect firewall in which you should insert a new rule in order to avoid interfirewall
anomalies. It also helps to define the appropriate rule order within this chosen
firewall so that you can bypass intrafirewall anomalies.

3.3.2 Hu and Ahn

In their research, they developed a framework called Firewall Anomaly Manage-
ment Environment (FAME) [3], which can be represented with a two level archi-
tecture.

The upper layer is the visualization layer, which displays the results of the analysis
to system administrators; it is based on two visualization interfaces: policy conflict
viewer and policy redundancy viewer, which are aimed to manage policy conflicts
and redundancies.

Meanwhile, the lower level supports the basic functionalities addressed in this
framework and the relevant resources.

To better identify policy anomalies and then to be more effective in their res-
olution, they decided to propose a rule-based segmentation technique: it uses a
binary decision diagram-based data structure to describe the rules, to perform
many set of operations and also to convert a list of rules into a set of disjoint
network packet spaces.

29

Conflict Analysis

@ Administrator

ran ™
Policy Conflict Viewer Policy Redundency Viewer

Entire Snapshot of Entire Snapshot of
Snapshot of |=Groue W] Conflicts in Snapshot of |—Greup i P» Redundancies
Conflicts One Group Redundancies in One Group
Confiict | Detailed Conlflictj Rule Detailed Rk
Information of Information of
One Conflict One Rule
A A

S

Visualization Modules

v
Packet Space Risk 0 .
q Correlation Rule Assaciated Network Asset
[Segmentation { Assessment] {]
Action Constraint - Property "
[Generation] [Rule Reordering J { Asslgnment Rit:};'?w V‘}l"g{,“é"s"”

Underlying Functionalities and Resources

Figure 3.3: Architecture of FAME

In this way, you partition the whole space into a set of pair-wise disjoint segments,
then you can classify the policy segments in: non-overlapping and overlapping
segment. The overlapping segment can be additionally divided into conflicting-
overlapping and non-conflicting-overlapping.

A non-overlapping segment is associated with one unique rule. An overlapping
segment is associated with a set of rules, which might conflict with each other
(conflicting overlapping) or have the same action (non-conflicting overlapping).

When you consider a list of rules that are interacting, it may happen that:

e one overlapping segment may be associated with several rules

e one rule may overlap with multiple other rules and can be involved in a
couple overlapping segments

In the conflict detection and resolution functionality, the first thing to do is to
identify the conflicting segments, each one of them is linked with a policy conflict
and a list of conflciting rules. You also identify the correlation relationships be-
tween the conflicting segments and you derive the conflict correlation groups.

Then, for each conflicting segment you generate an action constraint by exam-
ining the characteristics of the specific conflicting segment using a strategy-based
method. The last step uses a reordering algorithm to discover a near-optimal con-
flict resolution for policy conflicts. The algorithm that is used is a combination of
a permutation and a greedy algorithm.

30

Conflict Analysis

[Packet Space Segmentation J

(| |)

Conflicting Segment
Identification & Correlation

| 1L

Action Constraint

Overlap Correlation

Genoration) Property Assignment
Conflicting Rule Redundancy Identification
Reordering and Elimination
Conflict Detection Redundancy Discovery
& Resolution & Removal

Figure 3.4: Policy anomaly management framework of FAME

In the redundancy discovery and removal funcionality, you have to identify the
segment, correlation groups first, next for each rule’s subspace you implement the
process of property assignment. Finally, you identify and remove the redundant
rules.

In order to resolve policy anomalies in an efficient way you need to identify the de-
pendency relationships between packet segments: this is because one rule may be
associated in various policy anomalies, thus isolating anomalies and solving them
might cause abrupt behaviours. Therefore, you need to introduce the concept of
correlation group, which is a set of segments with a dependency relationship.

Generating the correlation groups for anomaly analysis is convenient because the
anomalies can be examined within each group independently, since all correlation
groups are independent between each other.

The generation of action constraints for conflict segments relies on a strategy-
based conflict resolution method. The process includes automated and manual
strategy selections.

When the conflicts are found and the conflict correlation groups are identified,
you have to perform the risk assessment for conflicts, which is done using both
manual and automated strategies.

Therefore, they reached the conclusion to employ a greedy algorithm to try to
solve the conflicts that contain a larger number of correlated conflicting rules. The
only issue with this is that since it is a greedy algorithm, it is sub-optimal and
not optimal, it makes the locally optimal choice, assuming that it will bring to the
global optimum.

31

Conflict Analysis

The algorithm proceeds like this:

e calculate a resolving score for each conflicting rule, individually
e select the rule with the highest resolving score, in order to solve the conflicts
e identify a position range with the best conflict resolution for this rule

e move the selected rule to the new position (local optimal)

Repeat this cycle till all the rules in he correlation group are processed. The final
order of the correlated rules is a possible solution.

A critical part of this algorithm is the computation of the resolving score for
the conflicting rule, every time you move a rule you might change the conflicts,
thus you need to recompute the score.

Since you might want to increase the efficiency of this algorithm, they proposed a
combination of permutation and greedy algorithm: they introduce a threshold N,
if the number of conflicting rules is less than this threshold, then the permutation
algorithm is used, if not you use the greedy algorithm.

During redundancy elimination part, every rule subspace that is marked by a
policy segment is assigned with a property. They defined 4 property values:

e Removable = a rule subspace is removable. If you remove it, it would not
make any effect on the original packet space.

e Strong Irremovable = a rule subspace cannot be removed since the action of
the corresponding policy segment can be determined only by this rule.

e Weak Irremovable = if a rule inside the same subspace has a strong irremov-
able property.

e Correlated = if the action of the segment can be determined by any of the
rule inside the subspace.

FAME offers two policy views to display the outputs of the analysis. Each viewers
then provide two interfaces: one to show an entire snapshot of all the anomalies,
the other to show a partial snapshot of the anomalies that are contained inside a
specific correlation group.

32

Conflict Analysis

3.3.3 Cheminod, Durante, Seno and Valenzano

They considered the problem of an overloaded firewall and how to reduce the car-
dinality of this firewall, while balancing the workload to other firewalls within the
protected network. Thus, they presented a technique to split and migrate the
security policies on sequencial firewalls, whilst not modifying the overall security

policy [4].
They describe a single firewall fw as:

fw = (r1,72, ..., 7fw|) (3.7)

where 71,7, ... are the rules inside the firewall and |fw| is the cardinality of the
firewall.

If at least one packet matches at least one rule in fw, then the firewall fw is
complete. Every firewall defines a filtering function, which associate a packet if it
is forwarded in the same packet space or in the null space if it is instead discarded.

A firewall sequence is a list of firewalls:

fws = (fwr, fws, ..., fw)fus) (3.8)

Each firewall can be seen as a firewall sequence made of one single element. Also
a firewall sequence defines a filtering function: which is the inverted order compo-
sition of the filtering functions associated to the individual firewalls that form the
sequence.

The trivial firewall is a firewall that does not block any traffic:

fwtrim’al = (<(*>*a 7*)7ALLOW>) (39)
e r1:((CTI.C;I,...,Czl),actim’"l)

ry = ((C;Q;CEQ, ..., CR?), action™)

® e {Forge

~ ripw) = (G %, ..o %), action” 71
(c) — fun | fuwp |—
_gﬁf,JA—"'Jgﬁ—’< \ ! N _¥‘_ﬁ“‘~—_‘__¥‘

1 Cly Ca Cy Cx action 1 Ca Ca Cly Cy action
rq * 192.168.2.1-50 * 22 TCP | allow r1 * 192.168.2.40 * 80 | TCP | allow
ro * 192.168.2.1-50 * 80 TCP | allow ro * 192.168.2.35-45 * 80 | TCP deny
r3 * 102.168.2.1-50 * * TCP deny r3 * * * * * deny

ry * 192.168.3.1-50 * 20-23 | TCP | allow

TS E3 * E3 E3 * deny

Figure 3.5: Example of Firewall and Firewall Sequences

33

Conflict Analysis

Two firewall sequences are said to be equivalent if for every packet in the packet
space the filtering functions of the firewalls return the same result.

Therefore, the problem can be expressed as given a firewall sequence made of
two firewall, fws = (fwy, fws), the issue is how to compute a firewall fws, so that
the sequence fws = (fwy, fwy) satisfies the property:

fws = fws (3.10)
where fw; is the trivial firewall.

Their solution aims to delegate to fws the workload of security policies that was
originally done by fw;, this is done in order to have a better equilibrium of re-
sources between the free devices.

This problem only consider the downstream policy maigration, in which the over-
loaded firewall is the one at the beginning of the traffic path.

In order to solve the problem with the technique and algorithm that was pro-
posed in [1] as a solution, they made an observation: if a packet has a matching
rule in fw; that is a deny rule, independently of its matching rule in fws, this
packet is dropped by fws and, for the property to hold, should be also dropped
by fws.

So, the idea is to compute a set of deny rules, which eliminates all and only
packets originally eliminated by fw;. At this point, you can move these rules
before those in fw, to obtain fws.

The remaining issue how to compute the set of deny rules: it is expressed as
a union of sets, one for each deny rule, which is the result from sequences of set
subtractions, where the result of a subtraction is the minuend of the next one.

Nonetheless to improve the performance of this algorithm you might prefer to

split the security policy of fw; before defining the deny rules, in this way you
minimize the number of rules that you have to add to fws.

34

Chapter 4

Thesis Objective

This chapter outline the main objective of this thesis work and the sub-problems
that we encountered while carrying out the thesis.

As we have noted in the Chapter 2, firewalls have been designed to monitor and
control the incoming and outgoing network traffic based on some predefined rules.
They are a barricade or a hurdle in order to stop malicious traffic to reach the
trusted network.

However, these predefined rules can be wrong, or just inserted in the wrong order
or even outdated. If this happens malevolent traffic can enter or users can access
malicious sites for example, and this is not preferable in a secure network.

The main problem is rather easy to explain:

When there are too many anomalies inside the firewall, how can we
ease the workload of the administrator, in terms of number of queries
that we have to perform?

From this premise, many other small problems arise that we need to take care of.

First of all, as we have seen in the previous chapters, the term anomaly is umbrella-
term for errors or mistakes inside a firewall: to be more specific a sub-optimization
anomaly can be automatically solved by applying a precise strategy method, in-
stead a conflict anomaly requires the help of the network administrator to be
solved.

Therefore one issue to address is whether or not is advantageous to solve some
conflicts before others, or better to say if there is a distinction in terms of perfor-
mance between solving first conflicts or sub-optimization anomalies.

Hence, it is required a detailed anaysis on how the different system configura-
tions might change or not if different types of conflicts are solved in a different

35

Thesis Objective

order. This is done taking into an account a simple problem of few rules inter-
acting with each other and then considering all the possible values of relationship
between these rules, how they can generate conflicts and which types.

Then, we need to focus on another obstacle: the interaction with the administra-
tor. Thus, we need to define a syntax and a semantic to query the administrator in
such a way that they are always able to give us an answer which can be interpreted
univocally. There might be some types of questions that the administrator is not
able to answer, so they return an ambiguous response (i.e. “Do not know.”), we
cannot afford to receive these answers since we cannot extract any information.

From all of these studies and analysis we extract some suggestions and consid-
erations that are useful to design the algorithm and the methods that we need.

Finally, we generate a possible resolution algorithm that is able to achieve what
we wanted: solving conflicts inside a firewall in an optimized way, with the least
number of queries to the administrator, in order to not overwork the administrator
workload.

As said before, in this project we designed a theoretical algorithm that employes
the help of a SAT solver to enforce constraints and exit beforehand from the
querying cycle. However, in the practical implementation of the algorithm, we
developed it using only the Java language due to limited time. In the latter design
we accept some limitations because of the lack of intelligence of the algorithm, it
is missing its “brain”, the SAT solver, that would allow to exit the loop beforehand.

Nevertheless, both the algorithms are able to first determine clusters of rules inside

a firewall that interact with each other, detect the potential conflicts within them
and solve the conflicts in an efficient way.

36

Chapter 5

Problem Definition and
Methodology

As we have seen in the previous chapters, there are some solutions in literature
that try to solve or at least to reduce the conflicts.

Al-Shaer’s solution [2] allows you to discover anomalies inside firewalls but in
the end it does not solve conflicts, it just shows them where they are inside the
policy tree.

Hu’s solution [3] instead proposes a way to solve conflicts but it first divides the
regions in disjoint sub-spaces and then applies a greedy recursive algortihm.

And finally in the last solution that we presented, Cheminod’s one [1] you are
moving the problem from one firewall to another.

All of these methods are great, but still not quite what we are looking for. We
need to step further into these concepts in order to define our final algorithm.
Let’s consider the sub-problems, explaining all their possible approaches and try
to solve them one by one.

5.1 Which First: Simplify or Filter

With the term simplify, we mean rewriting the rules such that the TP address
intervals and the ports intervals of the rules are either disjoint or equal between
eachother. Hence, it may happen that you have to add new rules for which it is
correct just one single action (be it ALLOW or DENY) without a doubt.

In case First Simplify Then Filter: we perform a simplification without a pre-
viously classification or analysis of the rules, this may overwork the admin instead
of helping them, since you are giving them a huge new number of rules that now
they have to process. Also you need to consider that some of the original rules

37

Problem Definition and Methodology

may not need a rewriting operation, so you may perform a lot of work that takes
time for nothing. This is the basic concept behind the Atomic Flows used in Hu’s
solution [3], the intervals are so small that the rules are either equivalent or disjoint.

This method is not encouraged since it is very complex to determine atomic flows,
also the rules inside the firewall increases by a lot and if the firewall is a linear
one, it is not convenient.

Alternately, you may decide to First Filter Then Simplify: which means that
you perform some kind of checks before modifying the rules. A possible filter that
can be implemented is “sub-optmized or not”. The reasoning is rather simple:
sub-optmization anomalies do not require the intervention of the administrator,
therefore if you remove those anomalies earlier in the analysis they will not impact
the number of calls to the administrator.

So, let’s keep in mind that removing early on the sub-optmization anomalies can
be an advantage.

After this, the simplification of the rules is still too much work, therefore we shold
abandon the idea of rewriting rules and consider administrators that are able to
remove and in the worst case reorder rules, but never rewrite rules and adding new
ones.

This means that now, the correlation conflict can be solved either by re-ordering
the rules, in case the winning rule had lower priority, or leaving everything as it
was, in case the winning rule had higher priority.

5.2 Conflict Types or Configurations

You may decide to solve the conflicts by types or by groups (or configurations) of
rules.

By types of conflicts, it means that you solve them based on their relationship
value: so i.e. all of type A, then all of type B, etc., this implies that there is an
order of precedence between types of conflicts: that one type of conflict is more
important (and therefore it has to be solved first) than another.

By configuration, it means that you solve all the conflicts that there are inside
a group of rules that interact with each other in some way.

In their paper [1], they suggest a possible algorithm to solve this problem in a

semi-automatic way, that follows the first method. It can be summed up in these
few steps:

38

Problem Definition and Methodology

e Analyse the rules (divide them into lists)

e Cancel the irrelevance ones

e Cancel the duplicate ones

e Cancel the shadow redundance one

e Ask the admin for the contradiction ones

e Ask the admin for the shadow conflict ones
e Modify the correlation ones (eventually)

e Re-start from the beginning

e (Cancel the unnecessary ones

The first few steps are used to remove the sub-optimization anomalies, then you
query the administrator about the conflicts by type.

In the other method, you first consider groups of rules that interact with each
other, let’s call them clusters, and then for each cluster you solve all the conflicts
that are present inside by querying appropriately the administrator.

5.3 Priority or not Priority

The concept of priority is very important and it may have different connotations
depending the resolution method that you decide to use.

The rule’s priority allows you to decide and to understand whether to keep or
not a certain rule when placed in a conflict, based on the type of conflict the so-
lution to may differ. Pay attention that if you use a resolution by configuration
(or by groups), the rule’s priority may not coincide with the order in which you
query the administrator (the first rule that you query may not be the rule with
the highest priority). In this case you need to find a way to decide the order on
which to query the rules.

The conflict’s priority is instead used to decide and to understand which con-

flict has to be considered first inside the same type of conflicts. This concept is
used in a resolution by type of conflicts.

5.4 Order

In case we consider a solution by type of conflicts, order means the order of conflict
solution: find the order of precedence between the different type of conflicts. This
require a theoretical analysis between all the possible types of conlficts.

39

Problem Definition and Methodology

e CONTRADICTION VS CORRELATION: the contradiction is always solved
with the removal of one of the two rules that are in conflict, instead the
correlation is solved either re-ordering the rules or leaving everything as it
is. This means that it is convinient to always first solve the contradictions
because in the best case scenario you can remove the rule that it is also part
of the correlation conflict, thus you do not have to solve the correlation.

e CONTRADICTION VS SHADOW CONFLICT: the contradiction is always
solved with the removal of one of the two rules that are in conflict, instead the
shadow conflict is solved either re-ordering the rules or removing one of the
rules. This means that it is convinient to always first solve the contradictions
because in the best case scenario you can remove the rule that it is also part
of the shadow conflict, thus you do not have to solve the shadow conflict. Of
course there might be some cases in which if you solve the shadow conflict
first and you remove the rule that is also part of the contradiction, therefore
you do not have to solve the contradiction, but it is less likely.

e CORRELATION VS SHADOW CONFLICT: the shadow conflict is solved
either with re-ordering the rules or with the removal of one of the two rules
that are in conflict, instead the correlation is solved either re-ordering the
rules or leaving everything as it is. This means that it is convinient to
always first solve the shadow conflicts because in the best case scenario you
can remove the rule that it is also part of the correlation conflict, thus you
do not have to solve the correlation.

So the final order in which you should solve the conflicts is: contradictions, then
shadow conflicts and finally correlations. This explains the order that is used in
Valenza’s algorithm [1].

In case we consider a solution by configuration, order means order of querying
rules: find the order in which you have to query the rules, so that it minimizes the
number of calls to the administrator. This requires an analysis on all the possible
cases the rules can interact with each other (see Chapter 6), and from this we can
extract some suggestions on how the rules should be ordered.

5.5 Considerations

In order to insert the rules in the firewall it is required human interaction with
the system. This means that one could insert the sub-optimized (duplicated, ir-
relevant, unnecessary) rules in some specific positions like either at the beginning
or at the end of the list, i.e you place a duplicated rule right after the original
one. Based on this assumption, in order to optimize the rules’ analysis, you might
decide to read the list either from the top or bottom.

The problem is that this is a mere assumption of the typical human and you
always fall in the best case or in the worst case scenario, you are not able to get

40

Problem Definition and Methodology

the average case and draw some conclusions.

Also we need to change the definition of Shadow Redundancy Anomaly, if we
use the Valenza’s definition, then it’s not possible to remove the sub-optmization
properly. Thus, we introduce a new definition: a policy rule r, is shadowed by
a rule r, if w(r,;) > w(r,), all packets matched by r, are also matched by r,,
also they both specify the same action and it does not exist a rule r, such that
7(ry) > m(r,) > m(ry,), that has an opposite action and C, is not disjoint:

Ashawred(Tz,Ty) (ry) > m(ry) A ay = ayA\

Ar.|m(ry) > n(r,) > w(ry) NC, L Cy Aa, # a, (5.1)

In this way, the removal of r, is possible without changing the overall policy be-
haviour and now we actually removed the suboptmization.

As we said previously, in this work we decided to consider an administrator that
only removes or re-orders rules, but they will not re-write them or add new ones
in replacement. This means that we will not use neither the First Simplify Then
Filter nor the First Filter Then Simplify. But we will perform some kind of filter-
ing operation in order to remove the sub-optimization anomalies.

Then we decided to focus on a configuration solution for few reasons: first and
foremost it is about the issue on how to query the administrator (see Chapter 6),
if we used the by type method, it would required to ask about the single conflict
which is not an easy task, instead using the configuration one allows us to facilitate
this process.

Also there might be some cases in which it is important to consider more than
two interacting rules, if we just consider conflicts you will never see the bigger
picture, since you only aknowledge couple of rules, but with configurations you
always have the whole image on how all the rules interact with each other and also
the conflict couples.

Since we chose to study the configuration method, we need to study all the possible
cases in order to find the best order to query the rules to the administrator.

Throughout the analysis and the exploration of the graph for all the possible
outcomes, we need a SAT solver in order to analyse the responses from the admin-
istrator, given a set of rules and their conflicts. Even though we used theoretically
the SAT solver to verify the correctness of the solution, we will not implement it
in practice, but just use the Java language.

41

Problem Definition and Methodology

5.6 Analysis and Considerations on Rule Relation-
ships

In order to understand the general cases, let’s start with a simple problem and
consider only 3 rules R1, R2 and R3 that interact with each other. Then we
have 3 possible couples (R1,R2), (R2,R3), (R1,R3) that represent the relationship
between two rules. For each couple there are 4 possible values for a relation: equiv-
alence (E), dominance (DM), correlation (C), disjointness (DJ).

Since the dominance is a non-simmetric relation we can consider it with a double
value. So that, (Rx, Ry) = DM, it means that Rx includes Ry, but you also need
to consider when Ry includes Rx, because it is a different relation, therefore the
double value. In the latter case we invert the rules inside the brackets (Ry, Rx),
so that we maintain the syntax.

To get the total number of cases we need to use the formula for disposition with
repetition:
D = N* (5.2)

In which N is the number of possible values that the couple can assume, in our
case it is equal to 5, and k is the number of elements, in our case the couples are 3.
Thus, the total number is equal to 53 = 125. All these 125 cases may or may not
generate anomalies and eventually conflicts, depending on how the rules interact.

Nothing actually limits the number of rules that you can consider, you can also
do the same discussion with four or more rules, but pay attention to the number
of all possible cases.

Here is some calculations.
Given the number of rules N, then the number of possible couples of rules is given
by combination equation:

N!
- 2U(N —2)!

For each couple you can have 5 possible values of relations (equivalence, two dom-
inance, correlation and disjointness), so totalcases = 5, which means:

C (5.3)

totalcases = 57N -2 (5.4)

In case we consider ‘just‘ four rules (N = 4), then totalcases = 15625 cases, from
all these cases we need to perform the analysis and study, removing all the logically
impossible configurations and then just focusing on the ones that actually create
conflicts.

This means that it is not impossible, it is just a lot of work and time, it is better
to concentrate on just three rules in this moment, which are still a total of 125 cases.

The whole initial list given 3 rules can be seen in Appendix a.

42

Problem Definition and Methodology

First-Level Considerations

By first looking at the whole list we can do some basic considerations and with
some logic we can remove some of those cases that are either logically impossible
or that are not interesting for our study case.

In case 1: equivalent rules means that they consider the same area of pakcets,
but the actions may be different. If the all have the same action, either allow
or deny, it means that those three rules are coincident to just one rule, therefore
there is no anomaly. Instead if one rule has an opposite action, for example: R1=
ALLOW, R2 = DENY, R3 = ALLOW (actually this works for every combination
of actions), then (R1,R2) and (R2,R3) are conflict anomalies, specifically contra-
dictions. but since the third relation says that R1=R3 and as hypotesis R1 and
R3 have the same action, then it means that R1 and R3 are actually the same
rule, therefore there is only one contradiction. So there is no problem in studying
the order of conflict anomalies since there is just one conflict.

In case there are two couples with relation value = E, independently of which
they are, and the third couple has a different relation value (not equivalence):
then this case is impossible to occur. Logically the three rules are equal for the
transitive property, then this denys the value of the third couple (that is different
from equivalence). Therefore, cases 2, 3, 4, 5, 6, 11, 13, 21, 26, 51, 76 and 101
shall not be studied.

In case there is just one couple with relation value equal to E, meanwhile the
other two have different relation values like DM-C, DM-DJ, C-DJ, etc (consider
all possible dispositions): let’s consider for example the case of (R1,R2) = E,
(R2,R3) = DM, (R3,R1) = DM. Since R1 and R2 intercept the same group of
packets, then you can wirte instead of R2, R1, but the relation (R1,R3) can either
be DM or DM2, so R1 can include or be included R3 but not both at the same
time, thus this configuration is not possible logically. This argument is valid for
all similar cases, the only exceptions are cases 36 and 56, in which this ‘rule‘ does
not apply. Therefore, cases 8, 9, 10, 12, 14, 15, 17, 18, 20, 22, 23, 24, 28, 29, 30,
41, 46, 52, 54, 55, 66, 71, 77, 78, 80, 81, 86, 96, 102, 103, 104, 106, 111 and 116
shall not be studied.

In case there are two couples with relation value equal to DJ: independently of the
relation value of the third couple there is only one potentially anomaly, so there
is no problem in studying the order of conflict anomalies since there is just one
conflict. Therefore, cases 25, 50, 75, 100, 105, 110, 115, 120, 121, 122, 123 and 124
shall not be studied

In case 125: since the three rules are disjoint there will never be an anomlay,
there is no intersection between them.

At this point we have 125-60 = 65 cases.
43

Problem Definition and Methodology

Second-Level Considerations

In case 31: if R1 and R3 both intercept the same group of packets and R1 includes
R2, then also R3 includes R2 ((R3, R2)—DM), therefore this case is not possible.

In case 33: if R1 includes R2 and R2 includes R3, then R1 also includes R3,
it means that R3 is completely included inside R2 which is also completely in-
cluded inside R1, therefore is not possible that R1 is at the same time included
inside R3.

In case 34: if R1 includes R2 and R2 includes R3, then R1 also includes R3,
it means that R3 is completely included inside R2 which is also completely in-
cluded inside R1, therefore is not possible that R1 is at the same time correlated
to R3.

In case 35: if R1 includes R2 and R2 includes R3, then R1 also includes R3,
it means that R3 is completely included inside R2 which is also completely in-
cluded inside R1, therefore is not possible that R1 is at the same time disjoint
from R3.

In case 40: if R1 includes R2 and also R3 includes R2, then it means that R1
and R3 have a non empty intersection, so they cannot be disjoint. Therefore this
case is not possible.

In case 43: if R2 and R3 are correlated and R1 includes R2, then there has to
be a part of R1 that is not intersecated with R3, thus R3 does not include R1 and
therefore this case is not possible.

In case 45: if R1 includes R2 and R2 and R3 are correlated, it means that R1
and R3 have a non empty intersection, so they cannot be disjoint. Therefore this
case is not possible.

In case 48: if R1 includes R2 and R3 includes R1, then R2 and R3 have a non
empty intersection, so they cannot be disjoint. Therefore this case is not possible.

In case 61: if R1 and R3 both intercept the same group of packets and R2 in-
cludes R1, then it is not possible that R3 includes R2. Therefore this case is not
possible.

In case 62: if R2 includes R1 and R3 includes R2, then R3 also includes R1
((R3, R1) = DM) and not the opposite, therefore this case is not possible.

In case 64: if R2 includes R1 and R3 includes R2, then R3 also includes R1 ((R3,
R1) = DM), thus they cannot be correlated. Therefore this case is not possible.

In case 65: if R2 includes R1 and R3 includes R2, then R3 also includes R1
((R3, R1) = DM), thus they have a non empty intersection. Therefore this case

44

Problem Definition and Methodology

is not possible.

In case 67: if R2 includes R1 and R1 includes R3, then R3 is completely in-
cluded inside R2, so they cannot be in a correlated relation. Therefore this case is
not possible.

In case 72: if R2 includes R1 and R1 includes R3, then R2 and R3 have a non
empty intersection, so they cannot be disjoint. Therefore this case is not possible.

In case 73: if R2 and R3 both include R1, then it means that R2 and R3 share in
common at least R1 so they cannot be disjoint. Therefore this case is not possible.

In case 74: if R2 includes R1 and R1 is correlated to R3, then R2 and R3 have
a non empty intersection, so they cannot be disjoint. Therefore this case is not
possible.

In case 83: if R2 includes R3 and R3 includes R1, then R1 is completely in-
cluded inside R2, so they cannot be in a correlated relation. Therefore this case is
not possible.

In case 87: if R3 includes R2 and R1 includes R3, then R2 is completely in-
cluded inside R1, so they cannot be in a correlated relation. Therefore this case is
not possible.

In case 90: if R1 and R2 are correlated and R3 includes R2, it means that R1
and R3 have a non empty intersection, so they cannot be disjoint. Therefore this
case is not possible.

In case 98: if R3 includes R1 and R1 and R2 are correlated, it means that R2
and R3 have a non empty intersection, so they cannot be disjoint. Therefore this
case is not possible.

In case 107: if R1 and R2 both include R3, then it means that R1 and R2 share in
common at least R3 so they cannot be disjoint. Therefore this case is not possible.

In case 108: if R2 includes R3 and R3 includes R1, then R1 and R2 have a non
empty intersection, so they cannot be disjoint. Therefore this case is not possible.

In case 109: if R2 includes R3 and R1 and R3 are correlated, then R1 and R2
have a non empty intersection, so they cannot be disjoint. Therefore this case is
not possible.

In case 112: if R1 includes R3 and R3 includes R2, then R2 is completely in-
cluded inside R1, so R1 and R2 have a non empty intersection, so they cannot be
disjoint. Therefore this case is not possible.

45

Problem Definition and Methodology

In case 117: if R1 includes R3 and R2 and R3 are correlated, then R1 and R2
have a non empty intersection, so they cannot be disjoint. Therefore this case is
not possible.

The remaining cases are 65-25=40 cases.

Third-Level Considerations

In case 32 and 37: they determine the same identical scenario, therefore one of the
two case can be dropped. Let’s remove case 37.

In case 36 and 56: they determine the same identical scenario, therefore one of the
two case can be dropped. Let’s remove case 56.

At this point we have 40-2 = 38 cases.

Fourth-Level Considerations

Given these characteristics then we can notice that when the relation between the
rules is not dominance then it is possible to extract a sort of ‘class leader® to rep-
resent the group with the same configuration.

This can be done only when there is no dominance relation between the rules
because it does not matter the rule priority, therefore it is equivalent to study one

case instead of another.

To be clear, we will not remove them actually, but we will not study them since
they are just the same case but mirrored.

In cases 19, 79 and 91: they can be simpllified by just considering case 19.
In cases 95, 99 and 119: they can be simpllified by just considering case 95.
At this point we have: 38-4 cases = 34 cases.

R1=R2 o R1=R3

R3 Ra=R3 R

(a) Case n.19 (b) Case n.79 (c) Case n.91

Figure 5.1: Mirror cases of n.19

46

Problem Definition and Methodology

R3

R R3

(a) Case n.95 (b) Case n.99 (c) Case n.119

Figure 5.2: Mirror cases of n.95

Fifth-Level Considerations

In case 13: there is just one potential contradiction conflict (R1,R2). Thus there
is no problem in studying the order of conflict anomalies since there is just one
conflict.

In case 38: considering all possible action values that the rules can assume, you
always can get at most one shadow conflict (R1,R2) that still needs to be solved.
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

In case 53: there is just one potential contradiction conflict (R1,R2). Thus there
is no problem in studying the order of conflict anomalies since there is just one
conflict.

In case 58: considering all possible action values that the rules can assume, you
always can get at most one shadow conflict (R2,R3) that still needs to be solved.
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

In case 60: considering all possible action values that the rules can assume, you
always can get at most one shadow conflict (R2,R3) that still needs to be solved.
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

In case 63: this configuration does not generate any anomalies, in fact it is the
correct way to configure a firewall. Thus, there is no need to study it.

In case 68: considering all possible action values that the rules can assume, you al-
ways can get at most one correlation conflict (R2,R3) that still needs to be solved.
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

In case 70: considering all possible action values that the rules can assume, you al-
ways can get at most one correlation conflict (R2,R3) that still needs to be solved.
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

47

Problem Definition and Methodology

In case 88: considering all possible action values that the rules can assume, you al-
ways can get at most one correlation conflict (R1,R2) that still needs to be solved.
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

In case 113: this configuration does not generate any anomalies. Thus there is
no need to study it.

In case 114: considering all possible action values that the rules can assume,
you always can get at most one correlation conflict (R1,R3) that still needs to be
solved. Thus there is no problem in studying the order of conflict anomalies since
there is just one conflict.

In case 118: considering all possible action values that the rules can assume,
you always can get at most one correlation conflict (R2,R3) that still needs to be
solved. Thus there is no problem in studying the order of conflict anomalies since

there is just one conflict.

At this point we have: 34 - 12 = 22 cases.

Final List

The final list of all the cases that we need to study one by one, considering also
the actions of each rule and how they interact with each other, can be seen in
Appendix b.

48

Problem Definition and Methodology

R3 R3 Ry =R3
ey 1 R
R2
(a) Case n.13 (b) Case n.38 (c) Case n.53
R% R R3
u @
/1 [+ 1
R3
(d) Case n.58 (e) Case n.60 (f) Case n.63
R3
” s @
f L R3 RL
R
(g) Case n.68 (h) Case n.70 (i) Case n.88
B3
R R3 R3
R rL [} 2

(j) Case n.113

(k) Case n.114

(1) Case n.118

Figure 5.3: Fifth-Level Considerations Cases

49

Chapter 6

Case Study Analysis

Given a single configuration, you have to imagine which was the final idea of the
administrator when they were designing it. When we consider the actions and how
their value affect the presence of conflicts, we will not study the mirror version of
the same case, since it is the same case but just mirrored and it does not create

any additional interesting value.

CASE N.7: (R1,R2) = E — (R2,R3) = DM — (R1,R3) =

DM

Let’s call the internal area the zone defined by the in-
tercepted packets by the rule R3.

Let’s call external area the zone defined by the in-
terecepted packets by the rules R1 and R2 and not
R3.

Given these two areas the administrator may want:

e A) concordant sign, ALLOW or DENY, it does
not matter.

e B) discordant sign: external zone = ALLOW/-
DENY, internal zone = DENY /ALLOW. Then it
means that:

Figure 6.1: Case n.7

R3

— R1 and R2: it has to stay the one which has a different action from R3

— R3: has to ‘win’ against R1/R2 in order to stay ‘over‘ them

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: since you remove one between R1 and R2 because
of duplication, there is just one conflict of type shadow conflict, in case you re-
moved R2 then (R1,R3). Thus there is no problem in studying the order of conflict

50

Ri:=R2

Case Study Analysis

anomalies since there is just one conflict.

R1 = A, R2 = D, R3 = A: there is a contradiction (R1,R2) and a shadow conflict
(R2,R3). In order to obtain:

e case A, then it means that R1 needs to win the contradiction, you remove
R2 and R3 is also removed because of shadow redundancy (case A - only
R1). Or it R2 needs to win the contradiction, you can remove R1, and R3
needs to lose the shadow conflict, you remove R3 (case A - only R2).

e case B, then it means that R2 needs to win the contradiction, you remove
R1 and R3 wins the shadow conflict, you reorder the rules such that R3>R2
(case B - outsideDENY inside ALLOW).

R1 = A, R2 = D, R3 = D: there is a contradiction (R1,R2) and a shadow conflict
(R1,R3). In order to obtain:

e case A, then it means that R2 needs to win the contradiction, you remove
R1 and R3 is also removed because of shadow redundancy (case A - only
R2). Or it R1 wins the contradiction, you can remove R2, and R3 needs to
lose the shadow conflict, you remove R3 (case A - only R1).

e case B, then it means that R1 needs to win the contradiction, you remove
R2 and R3 wins the shadow conflict, you reorder the rules such that R3>R1
(case B - outside ALLOW insideDENY).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

At the first step you can either ask about R1 or R2 in order to understand which
one of the two you have to keep, we choose R1, if we would have chosen R2 the
arguments would be symmetric.

1) Q: "is R1 ok?"

If answer is YES: then all the area that is inside R1 has action which has the
same action value of R1, you can remove R2 and R3, either beacuase it loses the
shadow conflict or because it is redundant (case A - only R1).

If answer is NO: then it can be that between the contradiction (R1, R2) R2 wins
and all the area has the same action value of R2 or it could happen that the two
zones have different action values. Thus, we need to ask more questions.

2) Q: "is R2 ok?"

If answer is YES: then all the area that is inside R2 has action which has the
same action value of R2, you can remove R1 and R3, either beacuase it loses the
shadow conflict or because it is redundant (case A - only R2).

51

Case Study Analysis

If answer is NO: then it means that the internal area has a different action value
from the external area (case B). You also know that the last rule is necessarily
correct, therefore the contradiction (R1,R2) is won by the rule that has action
value opposite from R3.

= Total number of steps: Best Case = 1 Worst Case = 2

In case of querying the admin from the internal area we would not get any ad-
vantages, since we cannot get any deductions from a smaller group. So you would
have to query twice the admin, first asking for R3 and then either R1 or R2 in
order to get to a solution. In this case best and worst case are the same and they
are equal to 2.

Instead starting from the ‘outside’, there is a chance in which you can stop with
just one query.

52

Case Study Analysis

CASE N.19: (R1,R2) = E — (R2,R3) = C — (R1,R3) = C

Let’s call the central area the zone defined by the
intercepted packets by the rules R1 (or R2) and Figure 6.2: Case n.19
R3.

Let’ call the higher area the zone defined by R1=Ra
the intercepted packets only by the rules R1 and
R2.

Let’s call the lower area the zone defined by the inter-
cepted packets only by the rule R3.

Given these three areas the administrator may want:

e A) all three areas with concordant sign, ALLOW
or DENY, it does not matter.

e B) discordant sign: central area has the same ac-
tion value with the higher area. Then it means
that:

— R1 and R2: they either coincide or just one of them can stay and it has
to stay the one which has a different action value from R3
— R3: has to ‘lose’ against R1/R2
e C) discordant sign: central area has the same ac-

tion value with the lower area. Then it means
that:

— R1 and R2: they either coincide or just one of them can stay and it has
to stay the one which has a different action value from R3

— R3: has to ‘win’ against R1/R2 in order to stay ‘over’ them

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: since you remove one between R1 and R2 because
of duplication, there is just one conflict of type correlation, in case you removed
R2 then (R1,R3). Thus there is no problem in studying the order of conflict
anomalies since there is just one conflict.

R1 = A, R2 = D, R3 = A: there is a contradiction (R1,R2) and a correlation
(R2,R3). In order to obtain:

e case A, then it means that R1 needs to win the contradiction, you remove
R2 (case A).

e case B, then it means that R2 needs to win the contradiction, you remove
R1 and R3 loses the correlation (case B).

53

Case Study Analysis

e case C, then it means that R2 needs to win the contradiction, you remove R1
and R3 wins the correlation, you need to reorder the rules such that R3>R2
(case C).

R1 = A, R2 = D, R3 = D: there is a contradiction (R1,R2) and a correlation
(R1,R3). In order to obtain:

e case A, then it means that R2 needs to win the contradiction, you remove
R1 (case A).

e case B, then it means that R1 needs to win the contradiction, you remove
R2 and R3 loses the correlation (case B).

e case C, then it means that R1 needs to win the contradiction, you remove R2
and R3 wins the correlation, you need to reorder the rules such that R3>R1

(case C).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

1) Q: "is R1 ok?"

If answer is YES + R3 has the same action value of R1: then it means that
R1 wins the contradiction, you remove R2 and the lower area has the same action
value of R1 (case A).

If answer is YES + R3 has a different action value form R1: then it means that R1
wins the contradiction, you remove R2 and the lower area has a different action
value from R1 (case B)

If answer is NO: then it means that either between the contradiction (R1,R2)
R2 wins and so all area has the same action of R2 (case A), or maybe it may be
that the central area has a different sign from R1 (case B or C). Thus, we need to
ask more questions.

2) Q: "is R2 ok?"

If answer is YES + R2 has the same action value of R3: then it means that
R2 wins the contradiction, you remove R1 and the lower area has the same action
value of R2 (case A).

If answer is YES + R2 has a different action value form R1: then it means that R2
wins the contradiction, you remove R1 and the lower area has a different action
from R2 (case B).

If answer is NO: then it means that the central area has the same action value
as the lower area (case C).You also know that the last rule is necessarily correct,
therefore the contradiction (R1,R2) is won by the rule that has action value op-
posite from R3.

54

Case Study Analysis

— Total number of steps: Best Case = 1 Worst Case = 2

Starting from R2 and then asking for R1 does not change the overall number
of steps that need to be done, but only the intermediate arguments that you have
to do.

If you actually started from R3: you would solve immediately the correlation con-
flict, but you would not be able do say anything about the contradiction conflict
between (R1,R2), therefore you need at least two steps, so that the best case and
worst case are the same and equal to 2.

95

Case Study Analysis

CASE N.27: (R1,R2) = DM — (R2,R3) = E — (R1,R3) =
DM

Let’s call the internal area the zone defined by
the intercepted packets by the rules R2 and Figure 6.3: Case n.27
R3.

Let’s call external area the zone defined by the in-

terecepted packets by the rule R1 and not by R2 and pL=R3
R3.

Given these two areas the administrator may want:

e A) concordant sign, ALLOW or DENY, it does

not matter.

e B) discordant sign: external zone = ALLOW/-
DENY, internal zone = DENY/ALLOW. Then it
means that:

— R2 and R3: it has to stay the one which has a different action from R1
— RI: has to ‘lose’ against R2/R3 in order to stay ‘under‘ them

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is a contradiction (R2,R3) and a shadow conflict
(R1,R3). In order to obtain:

e case A, then it means that R2 needs to win the contradiction, you remove
R3 and R2 is also removed because of shadow redundancy (case A).

e case B, then it means that R3 needs to win the contradiction, you remove
R2 and R3 wins the shadow conflict, you reorder the rules such that R3>R1
(case B - outside ALLOW insideDENY).

R1 = A, R2 = D, R3 = A: there is a contradiction (R2,R3) and a shadow conflict
(R1,R2). In order to obtain:

e case A, then it means that R3 needs to win the contradiction, you remove
R2 and R3 is also removed because of shadow redundancy (case A).

e case B, then it means that R2 needs to win the contradiction, you remove
R3 and R2 wins the shadow conflict, you reorder the rules such that R2>R1
(case B - outsideALLOW insideDENY).

R1 = A, R2 = D, R3 = D: since you remove one between R2 and R3 because
of duplication, there is just one conflict of type shadow conflict, in case you re-
moved R3 then (R1,R2). Thus there is no problem in studying the order of conflict

56

R1

Case Study Analysis

anomalies since there is just one conflict.

Let’s query the admin in order to see with how many questions we can reach
all of these scenarios.

1) Q: "is R1 ok?"

If answer is YES: then all the area that is inside R1 has action which has the
same action value of R1, you can remove R2 (case A).

If answer is NO: then since in the external area there is no conflict but only
in the internal one, this means that the internal area has a different action value
from R1, therefore it is case B, so in the conflict (R2,R3) it wins the rule which
has a different action value from R1 and then you reorder the rules.

—> Total number of steps: Best Case = 1 Worst Case = 1

If we started querying the admin from the internal area, even though it has more
conflicts we cannot get any deductions on the external area. So if you queried "is
R2 ok?" (same thing for R3), you would only be able to solve the contradiction
conflict, but not the shadow conflict one, therefore you would need to ask also for
R1, obtaining 2 steps at least and also at most (best and worst cases are equal to
2).

o7

Case Study Analysis

CASE N.32: (R1,R2) = DM — (R2,R3) = DM — (R1,R3)
— DM

Let’s call the external area the zone defined by the in-
tercepted packets by the rule R1. Figure 6.4: Case n.32
Let’ call the central area the zone defined by the inter-
cepted packets only by the rule R2.

Let’s call the internal area the zone defined by the in-
tercepted packets only by the rule R3.

Given these three areas the administrator may want:

e A) all three areas with the same action value,

ALLOW or DENY, it does not matter. Then it
means that R1 is imposing its action on all the
region and you can remove the other two rules
because of shadow redundancy.

e B) different action values: (external area + central
area) and internal area have different action values

e () different action values: external area and (cen-
tral area + internal area) have different action val-
ues

e D) different action values: central area and (ex-
ternal area + internal area) have different action
values

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there are two shadow conflicts (R1,R3) and (R2,R3).
In order to obtain:

e case A, then it means that R1 needs to win the shadow conflict (R1,R3), you
remove R3 and R2 is also removed because of shadow redundancy (case A).

e case B, then it means that R3 needs to win the shadow conflicts (R1,R3)
and (R2,R3), you reorder the rules such that R3>R1 and R3>R2 (case B).

R1 = A, R2 = D, R3 = A: there are two shadow conflicts (R1,R2) and (R2,R3).
In order to obtain:

e case A, then it means that R3 needs to win the shadow conflict (R1,R2), you
remove R2 and R3 is also removed because of shadow redundancy (case A).

e case C, then it means that R2 needs to win the shadow conflicts (R1,R2) and
(R2,R3), you remove R3 and you reorder the rules such that R2>R1 (case
C).

598

Case Study Analysis

e case D, then it means that R2 needs to win the shadow conflict (R1,R2), you
reorder the rules such that R2>R1 and R3 wins the shadow conflict (R2,R3),
you reorder the rules such that R3>R2 (case D).

R1 = A, R2 = D, R3 = D: there are two shadow conflicts (R1,R2) and (R1,R3).
In order to obtain:

e case A, then it means that R1 needs to win the shadow conflicts (R1,R2)
and (R1,R3), you remove R2 and R2 (case A).

e case B, then it means that R1 needs to win the shadow conflict (R1,R2), you
remove R2 and R3 wins the shadow conflict (R1,R3), you reorder the rules
such that R3>R1 (case B).

e case C, then it means that R2 needs to win the shadow conflict (R1,R2), you
reorder the rules such that R2>R1 and R3 wins the shadow conflict (R1,R3),
you reorder the rules such that R3>R1 (case C).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

1) Q: "is R1 ok?"

If answer is YES: then it means that all the region has the same action value
of R1, you can remove R2 and R3 either because of shadow redundancy or be-
cause they lost the shadow conflicts (case A).

If answer is NO: then it means that at least one of the two areas have a rule
which has a different action value from R1. Thus, we need to ask more questions.

2) Q: "is R2 ok?"

If answer is YES: then it means that R2 has a different action value from R1
and the central area and the internal area have the same action value but this
is different from the external area one (case C). You may remove R3 because of
shadow redundancy.

If answer is NO + R2 has the same action value of R1: then it means that the
internal area has a different action value from the rest (case B).

If answer is NO + R2 has a different action value from R1: then it means that
the internal and the extenal area have the same action value, but this is different
from the central area (case D).

= Total number of steps: Best Case = 1 Worst Case = 2

In case of we started querying the admin from the internal rule, we would not
get any advantages, since we cannot get any deductions from a smaller group.

59

Case Study Analysis

CASE N.36: (R1,R2) = DM — (R3,R2) = DM — (R1,R3)
—E

Let’s call the internal area the zone defined by the in-
tercepted packets by the rules R2. Figure 6.5: Case n.36
Let’s call external area the zone defined by the intere-
cepted packets by the rules R1 and R3 and not by

R2.

Given these two areas the administrator may want:

e A) concordant sign, ALLOW or DENY, it does

not matter.

e B) discordant sign: external zone — ALLOW/-
DENY, internal zone = DENY/ALLOW. Then it
means that:

— R1 and R3: it has to stay the one which has a different action from R2
— R2: has to ‘win’ against R1/R3 in order to stay ‘over‘ them

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is just one conflict of type contradiction (R1,R3).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

R1 = A, R2 = D, R3 = A: since you remove one between R1 and R3 because
of duplication, there is just one conflict of type shadow conflict, in case you re-
moved R3 then (R1,R2). Thus there is no problem in studying the order of conflict
anomalies since there is just one conflict.

R1 = A, R2 = D, R3 = D: there is a contradiction (R1,R3) and a shadow conflict
(R1,R2). In order to obtain:

e case A, then it means that R3 needs to win the contradiction, you remove
R1 and R2 is also removed because of shadow redundancy (case A - only
R3) Or R1 wins the contradiction, you remove R3 and R2 loses the shadow
conflict and it is removed (case A - only R1).

e case B, then it means that R1 needs to win the contradiction, you remove
R3 and R2 wins the shadow conflict, you reorder the rules such that R2>R1
(case B - outside ALLOW insideDENY).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

60

Ri=R3

Case Study Analysis

1) Q: "is R1 ok?"

If answer is YES: then it means that all the area that is inside R1 has action
which has the same action value of R1, you can remove R3 and R2 because of
shadow conflict (case A - only R1).

If answer is NO: then it can be that between the contradiction (R1, R3) R3 wins
and all the area has the same action value of R3 or it could happen that the two
zones have different action values. Thus, we need to ask more questions.

2) Q: "is R3 ok?"

If answer is YES: then it means that all the area that is inside R3 has action
which has the same action value of R1, you can remove R1 and R2 because of
shadow redundancy (case A - only R3).

If answer is NO: then it means that the external and internal area have differ-
ent action values, so you remove the rule that has the same action value of R2, in
this case R3 and then reorder the rules such that R2>R1 (case B).

— Total number of steps: Best Case = 1 Worst Case = 2

After the first query in which you ask for R1 and you find out that R1 is in-
deed wrong, it is better not to query the admin for R2. This is because you would
be able only to solve the shadow conflict, but not the contradiction conflict: you
would be able to know that the R2’s action value is valid inside the internal area,
but you do not know the value in the external one.

Also considering that R1 = A, R2 = D and R3 = D, knowing that R1 is wrong,
then R2 can only be correct, you would never get the response from the admin
‘R2 = NO‘. When RI1 is wrong it can only be that either case A with only R3,
which has the same action value as R2, so the answer from the admin would be
still equal to YES or case B in which you need to reorder R2>>R3, but this would
still return from the admin YES as an answer.

So, in this case querying for R2 is useless and just a waste of time, therefore

you would need an additional step to reach all the possible cases, which mean that
the best case is still 1 but the worst case is increased up to 3.

61

Case Study Analysis

CASE N.39: (R1,R2) = DM — (R3,R2) = DM — (R1,R3)

= C

Let’s call the external area the zone defined
by the intercepted packets by the rules R1 and
R3.

Let’s call the internal area the zone defined by the in-
tercepted packets only by the rule R2.

Given these two areas the administrator may want:

e A) both areas with the same action value, AL-
LOW or DENY, it does not matter.

e B) different action values: external zone = AL-
LOW/DENY, internal zone = DENY/ALLOW.
Then it means that:

Figure 6.6: Case n.39

— the values of the regions of only R1 and only R3 are not that interest-
ing since they cannot have conflict, but keep in mind that their value

determine the value of the external area

— the external area can have the same action value either with the region

of only R1 or with the region of only R3.

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is a correlation (R1,R3) and a shadow con-

flict (R2,R3). In order to obtain:

e case A, then it means that R1 needs to win the correlation and R2 needs to
win the shadow conflict, you remove R3. Or R3 wins the correlation, you
reorder the rules such that R3>R1 and R3 also wins the shadow conflict and

you reorder the rules such that R3>R2 (case A).

e case B, then it means that R1 needs to win the correlation and R2 loses the
shadow conflict, you reorder the rules such that R3>R2 (case B - outside-

ALLOW insideDENY).

R1 = A, R2 = D, R3 = A: there are two shadow conflicts (R1,R2) and (R2,R3).

In order to obtain:

e case A, then it means that R2 needs to lose the shadow conflict with R1,

you remove R2 (case A).

e case B, then it means that R2 needs to win both the shadow conflicts, you
reorder the rules such that R2>R1 and R2>R3 (case B - outsideALLOW

insideDENY).
62

Case Study Analysis

R1 = A, R2 = D, R3 = D: there is a correlation (R1,R3) and a shadow conflict
(R1,R2). In order to obtain:

e case A, then it means that R1 needs to win both the correlation and the
shadow conflict, you remove R2 (case A). Or R3 wins the correlation, you
reorder the rules such that R3>R1 and R1 loses the shadow conflict and you
reorder the rules such that R2>R1 (case A).

e case B, then it means that R1 needs to win the correlation and R2 wins the
shadow conflict, you reorder the rules such that R2>R1 (case B - outside-
ALLOW insideDENY).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

1) Q: "is R1 ok?"

If answer is YES: then it means that both areas have the same action value (case
A) in which either R1 wins the correlation conflict with R3 or R1 and R3 have the
same action.

If answer is NO: then it means that either one of the two areas or both of them
have a different action from R1. Thus, we need to ask more questions.

2) Q: "is R3 ok?"

If answer is YES: then it means that both areas have the same action value (case
A) and R3 wins the correlation conflict with R1.

If answer is NO: then it means that the external and the internal area have differ-
ent actions (case B), but the exact action value of each area depends on the rule’s
action.

—> Total number of steps: Best Case = 1 Worst Case = 2

In this case as the second query we ask about R3, and not about R2 which is
the second by priority but in this case is the lowest in terms of area of packets.
This is done because asking about the smallest area does not give any additional
information in order to get to the final scenarios, so it is better to first query about
R3. We could also have started by querying with R3 and then proceed with R1.

63

Case Study Analysis

CASE N.42: (R1,R2) = DM — (R2,R3) = C — (R1,R3) =

DM

Let’s call the left area the zone defined by the inter-
cepted packets only by the rule R2.

Let’ call the right area the zone defined by the inter-
cepted packets only by the rule R3.

Let’s call the central area the zone defined by
the intercepted packets by the rules R2 and
R3.

Given these three areas the administrator may want:
e A) all three areas with the same action value, AL-

LOW or DENY, it does not matter. If the three
areas have the same action of R1 then you can

R3

Figure 6.7: Case n.42

remove the other two rules because of shadow redundancy.

e B) different action values: (right area + central
area) and left area have different actions

e C) different action values: (left area + central
area) and right area have different actions

Let’s consider the actions rules and how they can generate or not conflicts.

R1 — A, R2 — A, R3 — D: there is a correlation (R2,R3) and a shadow con-

flict (R1,R3). In order to obtain:

e case A, then it means that R1 needs to win the shadow conflict, you remove
R3 and also R2 because of shadow redundancy (case A).

e case B, then it means that R3 needs to win the correlation, you reorder the
rules such that R3>R2, and R1 loses the shadow conflict, you reorder the

rules such that R3>R1 (case B).

e case C, then it means that R2 needs to win the correlation and R3 wins the
shadow conflict, you reorder the rules such that R3>R1 (case C).

R1 = A, R2 = D, R3 = A: there is a correlation (R2,R3) and a shadow conflict

(R1,R2). In order to obtain:

e case A, then it means that R2 needs to lose the shadow conflict, you remove
R2 and also R3 becaus of shadow redundancy (case A).

e case B, then it means that R3 needs to win the correlation, you reorder the
rules such that R3>R2 and R2 wins the shadow conflict, you reorder the

rules such that R2>R1 (case B).
64

R

Case Study Analysis

e case C, then it means that R2 wins both the correlation and the shadow
conflict, you reorder the rules such that R2>R1 (case C).

R1 — A, R2 — D, R3 — D: there are two shadow conflicts (R1,R2) and (R1,R3).
In order to obtain:

e case A, then it means that R2 and R3 need to win the shadow conflicts with
R1, you reorder the rules such that R2>R1 and R3>R1 (case A). Or R1
needs to win both the shadow conflicts and you remove both R2 and R3
(case A).

e case B, then it means that R2 needs to lose the shadow conflict, you remove
R2, and R3 wins the shadow conflict, you reorder the rules such that R3>R1
(case B).

e case C, then it means that R3 needs to lose the shadow conflict, you remove
R3, and R2 wins the shadow conflict, you reorder the rules such that R2>R1
(case C).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

1) Q: "is R1 ok?"

If answer is YES: then it is the case in which all three regions have the same
action (case A) and also the areas’ action is the same as R1’s.

If answer is NO: then it might be that the three area have different values (case
B or C) or they are all the same (case A) but it has a different action value from
with R1’s. Thus, we need to ask more questions.

2) Q: "is R2 ok?"

If answer is YES + R2 has the same action value of R3: then it is the case in
which all three area have the same action (case A) but the value is different from
with R1’s.

If answer is YES + R2 has a different action value from R3: then it is the case in
which the central area has the same action value of the left area (case C).

If answer is NO: then R2 and R3 have different action values and the central
area has the same action of the right area (case B).

= Total number of steps: Best Case = 1 Worst Case = 2

65

Case Study Analysis

CASE N.44: (R1,R2) = DM — (R2,R3) = C — (R1,R3) =

C

Let’s call the left area the zone defined by the inter-
cepted packets only by the rule R2.

Let’ call the right area the zone defined by the
intercepted packets only by the rules R1 and
R3.

Let’s call the central area the zone defined by
the intercepted packets by the rules R2 and
R3.

Given these three areas the administrator may want:

e A) all three areas with the same action value, AL-
LOW or DENY, it does not matter. If the three

R%

R3

Figure 6.8: Case n.44

areas have the same action as R1 then you can remove R2 because of shadow

redundancy.

e B) different action value: (right area + central
area) and left area have different actions

e () different action value: (left area + central area)
and right area have different actions

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there are two correlations (R1,R3) and (R2,R3).

In order to obtain:

e case A, then it means that R3 needs to lose both the correlations (case A).

e case B, then it means that R3 needs to win both the correlations, you reorder

the rules such that R3>R2 and R3>R1 (case B).

e case C, then it means that R3 needs to win the correlation with R1, you
reorder the rules such that R3>R1, but R3 loses the correlation with R2

(case C).

R1 = A, R2 = D, R3 = A: there is a correlation (R2,R3) and a shadow conflict

(R1,R2). In order to obtain:

e case A, then it means that R2 needs to lose the shadow conflict, you remove

R2 (case A).

e case B, then it means that R2 needs to win the shadow conflict, you reorder
the rules such that R2>R1 and R3 wins the correlation, you reorder the rules

such that R3>R2 (case B).
66

Case Study Analysis

e case C, then it means that R2 wins both the correlation and the shadow
conflict, you reorder the rules such that R2>R1 (case C).

R1 = A, R2 = D, R3 = D: there is a correlation (R1,R3) and a shadow conflict
(R1,R2). In order to obtain:

e case A, then it means that R2 needs to win the shadow conflict with R1, you
reorder the rules such that R2>R1 and R3 wins the correlation, you reorder
the rules such that R3>R1 (case A). Or R1 needs to win the shadow conflict,
you remove R2 and R1 also wins the correlation (case A).

e case B, then it means that R2 needs to lose the shadow conflict, you remove
R2, and R3 wins the correlation, you reorder the rules such that R3>R1
(case B).

e case C, then it means that R3 needs to lose the correlation and R2 wins the
shadow conflict, you reorder the rules such that R2>R1 (case C).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

1) Q: "is R1 ok?"

If answer is YES: then it is the case in which all three regions have the same
action value (case A) and also the areas have the same action as RI.

If answer is NO: then it might be that the three area have different values (case B
or C) or they have the same action (case A) but their value is a different action
from R1’s. Thus, we need to ask more questions.

2) Q: "is R3 ok?"

If answer is YES + R3 has a different action value from R2: then it is the case in
which the central area has the same action value of the right area (case B).

If answer is YES + R3 has the same action value of R2: then it means that at
least the central and the right areas have the same action value, but you are not
sure about the left area. Thus, we need to ask more questions.

If answer is NO: then it means that it is the case in which the central area has the
same action value of the left area (case C).

3) Q: "is R2 ok?"

If answer is YES: then it is the case in which all the three areas have the same
action value but this value is different from R1’s (case A).

If answer is NO: then it is the case in which the central area has the same ac-
tion value as the right area (case B).

67

Case Study Analysis

— Total number of steps: Best Case = 1 Worst Case = 3

If you started querying from R2, you would not obtain any information on the
possible correlation (R1,R3). If you started querying from R3 you would not ob-
tain any information on the possible shadow conflict (R1,R2). Both imply that
you have to query at least twice the administrator, so the best case is equal to 2,
while the worst case is still 3.

68

Case Study Analysis

CASE N.47: (R1,R2) = DM — (R2,R3) = DJ — (R1,R3) =
DM

Let’s call the left area the zone defined by the inter-
cepted packets only by the rule R2.

Let’ call the right area the zone defined by the inter-
cepted packets only by the rule R3.

Given these two areas the administrator may want: R3

e A) both areas with the same action value, AL-

LOW or DENY, it does not matter. If the two

areas have also the same action as R1 then you

can remove them because of shadow redundancy. Figure 6.9: Case n.47

e B) different action value: the one with the same
action as R1 is removed for shadow redundancy.

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is just one conflict of type shadow conflcit
(R1,R3). Thus there is no problem in studying the order of conflict anomalies
since there is just one conflict.

R1 = A, R2 = D, R3 = A: there is just one conflict of type shadow conflict
(R1,R2). Thus there is no problem in studying the order of conflict anomalies
since there is just one conflict.

R1 = A, R2 = D, R3 = D: there are two shadow conflicts (R1,R2) and (R1,R3).
In order to obtain:

e case A, then it means that R1 needs to win both the shadow conflicts, you
remove R2 and R3 (case A). Or R2 and R3 need to win the shadow conflicts,
you need to reorder the rules such that R2>R1 and R3>R1 (case A).

e case B, then it means that only one between R2 and R3 needs to lose the
shadow conflict and the other one has to win it: either R2 loses it, you
remove R2 and R3 wins it, you reorder the rules such that R3>R1, or R2

wins it, you reorder the rules such that R2>R1 and R3 loses it, you remove
R3 (case B).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

1) Q: "is R1 ok?"

If answer is YES: then it means that both areas have the same action value (case

69

Rt

Case Study Analysis

A) and they have the same action as R1 so you can remove them.

If answer is NO: then it means that either one of the two areas or both of them
have a different actions from R1. Thus, we need to ask more questions.

2) Q: "is R2 ok?"

If answer is YES + R2 has a different action value from R3: then it means that
only one area has a different action value from R1 (case B).

If answer is YES -+ R2 has the same action value of R3: then it means that both
area have the same action values (case A), but the action is opposite from R1’s one.

If answer is NO: then it means that R1 has imposed its sign on the left area,
so the area with a different action is R3 (case B).

— Total number of steps: Best Case = 1 Worst Case = 2

If you start querying from R2 or R3 does not bring any advantage, so you would
need at least 2 queries in the best case and in the worst case 3.

70

Case Study Analysis

CASE N.49: (R1,R2) = DM — (R2,R3) = DJ — (R1,R3) =
C

Let’s call the left area the zone defined by the inter-

cepted packets only by the rule R2. Figure 6.10: Case n.49
Let’ call the right area the zone defined by

the intercepted packets by the rules R1 and R1
R3. R

Given these two areas the administrator may want:

e A) both areas with the same action value, AL-
LOW or DENY, it does not matter. If the left

area has the same action as R1 then you can re-
move R2 because of shadow redundancy.

e B) different action values: if the left area has the
same action of R1, then you can remove R2 for
shadow redundancy.

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is just one conflict of type correlation (R1,R3).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

R1 = A, R2 = D, R3 = A: there is just one conflict of type shadow conflict
(R1,R2). Thus there is no problem in studying the order of conflict anomalies
since there is just one conflict.

R1 = A, R2 = D, R3 = D: there is a shadow conflicts (R1,R2) and a correla-
tion (R1,R3). In order to obtain:

e case A, then it means that R1 needs to win both the shadow conflict and
the correlation, you remove R2 (case A). Or R2 needs to win the shadow
conflict, you reorder the rules such that R2>R1 and R3 wins the correlation,
you reorder the rules such that R3>R1 (case A).

e case B, then it means that only one between R2 and R3 needs to lose their
conflict and the other one has to win it: either R2 loses it, you remove R2
and R3 wins it, you reorder the rules such that R3>R1, or R2 wins it, you
reorder the rules such that R2>R1 and R3 loses it (case B).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.
1) Q: "is R1 ok?"

71

Case Study Analysis

If answer is YES: then it means that both the area have the action value (case A)
and this has the same action value of R1.

If answer is NO: then it means that either the two areas have the same action
value but this is opposite from R1’s or they have different action values. Thus, we
need to ask more questions.

2) Q: "is R2 ok?"

If answer is YES: then it means that R2 has won its conflict, but you do not
know anything about R3’s conflict, it could be either that both areas have differ-
ent action value from R1 or it could be the case of areas with different actions.
Thus, we need to ask more questions.

If answer is NO: then it means that R1 has imposed its action value on the left

area, and since R1 is ‘wrong’, the right area has a different action value from (case
B).

3) Q: "is R3 ok?"
If answer is YES: then it means that also R3 has won its conflcit, therefore it
is the case in which both areas have the same action value but this value is differ-

ent from R1’s (case A).

If answer is NO: then it means that R3 has lost its conflict, therefore the right
area assumes R1’s action value (case B).

— Total number of steps: Best Case = 1 Worst Case = 3
Starting querying from R2 or R3 does not bring any advantages since R2 and
R3 are disjoint, therefore you would have to query at least twice the admin in the

best case, meanwhile the worst case is still equal to 3. After asking for R1, it is
equivalent, since they are disjoint, querying first R2 or R3.

72

Case Study Analysis

CASE N.57: (R2,R1) = DM — (R2,R3) = DM — (R1,R3)
— DM

Let’s call the external area the zone defined by the in-
tercepted packets by the rule R2. Figure 6.11: Case n.57
Let’ call the central area the zone defined by the inter-
cepted packets only by the rule R1.

Let’s call the internal area the zone defined by the in-
tercepted packets only by the rule R3.

Given these three areas the administrator may want:

e A) all three areas with the same action value,

ALLOW or DENY, it does not matter. Then it
means that R2 is imposing its action on all the
region and you can remove the other two rules
because of shadow redundancy.

e B) different action values: (external area + central
area) and internal area have different action values

e () different action values: external area and (cen-
tral area + internal area) have different action val-
ues

e D) different action values: central area and (ex-
ternal area -+ internal area) have different action
values

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there are two shadow conflicts (R1,R3) and (R2,R3).
In order to obtain:

e case A, then it means that R1 needs to win the shadow conflict (R1,R3), you
remove R3 (case A).

e case B, then it means that R3 needs to win both the shadow conflicts (R1,R3)
and (R2,R3), you reorder the rules such that R3>R1 and R3>R2 (case B).

R1 = A, R2 =D, R3 = A: there is just one conflict of type shadow conflict (R2,R3).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

R1 = A, R2 = D, R3 = D: there is just one conflict of type shadow conflict
(R1,R3). Thus there is no problem in studying the order of conflict anomalies
since there is just one conflict.

73

Case Study Analysis

Let’s query the admin in order to see with how many questions we can reach
all of these scenarios.

1) Q: "is R2 ok?"

If answer is YES: then it means that all the region has the same action value
of R2, you can remove R1 and R3 because of shadow redundancy (case A).

If answer is NO: then it means that one of the two shadow conflicts is won by
R3 (case B), you can reorder R3>R1 and R3>R2.

= Total number of steps: Best Case = 1 Worst Case = 1
In case of we started querying the admin from the internal rule, we would not
get any advantages, since we cannot get any deductions from a smaller group.

So you would have to query at least twice the admin, which is already a worse
strategy than this.

74

Case Study Analysis

CASE N.59: (R2,R1) = DM — (R2,R3) = DM — (R1,R3)

= C

Let’s call the left area the zone defined by the inter-
cepted packets only by the rule R1.

Let’ call the right area the zone defined by the inter-
cepted packets only by the rule R3.

Let’s call the central area the =zone defined by
the intercepted packets by the rules R1 and
R3.

Given these three areas the administrator may want:

e A) all three areas with the same action value, AL-
LOW or DENY, it does not matter. If the three
areas have the same action of R2 then you can

R3

Figure 6.12: Case n.59

remove the other two rules because of shadow redundancy.

e B) different action values: (right area -+ central
area) and left area have different actions

e C) different action values: (left area + central
area) and right area have different actions

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is a correlation (R1,R3) and a shadow con-

flict (R2,R3). In order to obtain:

e case A, then it means that R2 needs to win the shadow conflict, you remove

R3 (case A).

e case B, then it means that R3 needs to win the correlation, you reorder the
rules such that R3>R1, and R3 wins the shadow conflict, you reorder the

rules such that R3>R2 (case B).

e case C, then it means that R1 needs to win the correlation and R3 wins the
shadow conflict, you reorder the rules such that R3>R2 (case C).

R1 = A, R2 =D, R3 = A: there is just one conflict of type shadow conflict (R2,R3).
Thus there is no problem in studying the order of conflict anomalies since there is

just one conflict.

R1 = A, R2 = D, R3 = D: there is just one conflict of type correlation (R1,R3).
Thus there is no problem in studying the order of conflict anomalies since there is

just one conflict.

75

Case Study Analysis

Let’s query the admin in order to see with how many questions we can reach
all of these scenarios.

1) Q: "is R2 ok?"

If answer is YES: then it is the case in which all three regions have the same
action (case A) and also the areas’ action is the same as R2’s.

If answer is NO: then it might be that the three area have different values (case B
or C). Thus, we need to ask more questions.

2) Q: "is R1 ok?"

If answer is YES: then it is the case in which the central area has the same action
value of the left area (case C).

If answer is NO: then it means that central area has the same action of the right
area (case B).

—> Total number of steps: Best Case = 1 Worst Case = 2

76

Case Study Analysis

CASE N.69: (R2,R1) = DM — (R2,R3) = C — (R1,R3) =

C

Let’s call the left area the zone defined by the inter-
cepted packets only by the rule R1.

Let’ call the right area the zone defined by the
intercepted packets only by the rules R2 and
R3.

Let’s call the central area the zone defined by
the intercepted packets by the rules R1 and
R3.

Given these three areas the administrator may want:

e A) all three areas with the same action value, AL-
LOW or DENY, it does not matter. If the three

Figure 6.13: Case n.69

areas have the same action as R2 then you can remove R1 because of shadow

redundancy.

e B) different action value: (right area + central
area) and left area have different actions

e () different action value: (left area + central area)
and right area have different actions

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there are two correlations (R1,R3) and (R2,R3).

In order to obtain:

e case A, then it means that R3 needs to lose both the correlations (case A).

e case B, then it means that R3 needs to win both the correlations, you reorder

the rules such that R3>R2 and R3>R1 (case B).

e case C, then it means that R3 needs to win the correlation with R2, you
reorder the rules such that R3>R2, but R3 loses the correlation with R1

(case C).

R1 = A, R2 = D, R3 = A: there is just one conflict of type correlation (R2,R3).
Thus there is no problem in studying the order of conflict anomalies since there is

just one conflict.

R1 = A, R2 = D, R3 = D:there is just one conflict of type correlation (R1,R3).
Thus there is no problem in studying the order of conflict anomalies since there is

just one conflict.

77

Case Study Analysis

Let’s query the admin in order to see with how many questions we can reach
all of these scenarios.

1) Q: "is R2 ok?"

If answer is YES: then it is the case in which all three regions have the same
action value (case A) and also the areas have the same action as R2.

If answer is NO: then it might be that the three area have different values (case B
or C). Thus, we need to ask more questions.

2) Q: "is R1 ok?"

If answer is YES: then it is the case in which the central area has the same action
value of the left area (case C).

If answer is NO: then it is the case in which the central area has the same ac-
tion value of the right area (case B).

—> Total number of steps: Best Case = 1 Worst Case = 2
If you started querying from R1, you would not obtain any information on the
possible correlation (R2,R3). If you started querying from R3 you would still need

in the best case one step and in the worst case three steps in order to reach all the
possible cases.

78

Case Study Analysis

CASE N.82: (R1,R2) = C — (R3,R2) = DM — (R1,R3) =
DM

Let’s call the external area the zone defined
by the intercepted packets by the rules R1 and
R2.

Let’s call the internal area the zone defined by the in- L
tercepted packets only by the rule R3.

Given these two areas the administrator may want:

e A) both areas with the same action value, AL- Figure 6.14: Case n.82
LOW or DENY, it does not matter.

e B) different action values: external zone = AL-
LOW/DENY, internal zone = DENY/ALLOW.
Then it means that:

— the values of the regions of only R1 and only R2 are not that interest-
ing since they cannot have conflict, but keep in mind that their value
determine the value of the external area

— the external area can have the same action value either with the region
of only R1 or with the region of only R2.

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there are two shadow conflicts (R1,R3) and (R2,R3).
In order to obtain:

e case A, then it means that R3 needs to lose the shadow conflict either with
R1 or with R2, you remove R3 (case A).

e case B, then it means that R3 needs to win both the shadow conflicts, you
reorder the rules such that R3>R1 and R3>R2 (case B - outsideALLOW
insideDENY).

R1 = A, R2 = D, R3 = A: there is a correlation (R1,R2) and a shadow conflict
(R2,R3). In order to obtain:

e case A, then it means that R1 needs to win the correlation and R3 needs
to win the shadow conflict, you reorder the rules such that R3>R2. Or R2
wins the correlation, you reorder the rules such that R2>R1 and R2 wins
the shadow conflict and you remove R3 (case A).

e case B, then it means that R2 needs to win the correlation and R3 loses the
shadow conflict, you reorder the rules such that R3>R2 (case B - outside-
DENY insideALLOW).

79

Case Study Analysis

R1 = A, R2 = D, R3 = D: there is a correlation (R1,R2) and a shadow conflict
(R1,R3). In order to obtain:

e case A, then it means that R2 needs to win the correlation, you reorder
the rules such that R2>R1 and R3 wins the shadow conflict, you reorder
the rules such that R3>R1 (case A). Or R1 wins both the correlation and
shadow conflict, you remove R3 (case A).

e case B, then it means that R1 needs to win the correlation and R3 wins the
shadow conflict, you reorder the rules such that R3>R1 (case B - outside-
ALLOW insideDENY).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.
1) Q: "is R1 ok?"

If answer is YES: then it means that both areas have the same action value (case
A) in which either R1 wins the correlation conflict with R2 or R1 and R2 have the

same action.

If answer is NO: then it means that either one of the two areas or both of them
have a different action from R1. Thus, we need to ask more questions.

2) Q: "is R2 ok?"

If answer is YES: then it means that both areas have the same action value (case
A).

If answer is NO: then it means that the external and the internal area have differ-
ent actions (case B), but the exact action value of each area depends on the rule’s

action.

— Total number of steps: Best Case = 1 Worst Case = 2

80

Case Study Analysis

CASE N.84: (R2,R1) = C — (R2,R3) = DM — (R1,R3) =

C

Let’s call the left area the zone defined by the
intercepted packets only by the rules R1 and
R2.
Let’ call the right area the zone defined by the
intercepted packets only by the rules R2 and
R3.
Let’s call the central area the zone defined by
the intercepted packets by the rules R1 and
R3.

Given these three areas the administrator may want:

R1

3}

Figure 6.15: Case n.84

e A) all three areas with the same action value, ALLOW or DENY it does not
matter. If the three areas have the same action as R2 then you can remove

R3 because of shadow redundancy.

e B) different action value: (right area + central area) and left area have

different actions

e C) different action value: (left area + central area) and right area have

different actions

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is a correlation (R1,R3) and a shadow con-

flict (R2,R3). In order to obtain:

e case A, then it means that R3 needs to lose the shadow conflict, you remove

R3 (case A).

e case B, then it means that R3 needs to win both the correlation and the
shadow conflict, you reorder the rules such that R3>R2 and R3>R1 (case

B).

e case C, then it means that R3 needs to win the shadow conflict with R2,
you reorder the rules such that R3>R2, but R3 loses the correlation with R1

(case C).

R1 = A, R2 = D, R3 = A: there is a correlation (R1,R2) and a shadow conflict

(R2,R3). In order to obtain:

e case A, then it means that R2 needs to lose the shadow conflict, you reorder
the rules such that R3>R2 and R2 loses the correlation with R1 (case A).

81

Case Study Analysis

e case B, then it means that R3 needs to win the shadow conflict, you reorder
the rules such that R3>R2 and R2 wins the correlation, you reorder the rules
such that R2>R1 (case B).

R1 = A, R2 = D, R3 = D: there are two correlations (R1,R2) and (R1,R3). In
order to obtain:

e case A, then it means that R1 needs to lose both the correlations, you reorder
the rules such that R3>R1 and R2>R1 (case A).

e case B, then it means that R1 needs to lose the correlation with R3, you
reorder the rules such that R3>R1 but R1 wins the correlation with R2
(case B).

e case C, then it means that R1 needs to win both the correlations (case C).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

1) Q: "is R2 ok?"

If answer is YES: then it is the case in which all three regions have the same
action value (case A) and also the areas have the same action as R2.

If answer is NO: then it might be that the three area have different values (case B
or C). Thus, we need to ask more questions.

2) Q: "is R1 ok?"

If answer is YES + R1 has a different action value from R3: then it is the case in
which the central area has the same action value of the left area (case C).

If answer is YES + R1 has the same action value of R3: then it means that at
least the central and the left areas have the same action value, but you are not
sure about the right area. Thus, we need to ask more questions.

If answer is NO: then it is the case in which the central area has the same ac-
tion value of the right area (case B).

3) Q: "is R3 ok?"

If answer is YES: then it is the case in which the three areas have the same
action but the value is different from R2’s (case A).

If answer is NO: then it is the case in which the central area has the same action

value of the left area (case C).

— Total number of steps: Best Case = 1 Worst Case = 3

82

Case Study Analysis

CASE N.85: (R1,R2) = C — (R2,R3) = DM — (R1,R3) =
DJ

Let’s call the left area the zone defined by
the intercepted packets by the rules R1 and Figure 6.16: Case n.85
R2.

Let’ call the right area the zone defined by the inter- R
cepted packets only by the rule R3.

Given these two areas the administrator may want:

e A) both areas with the same action value, AL-
LOW or DENY, it does not matter. If the right

area has the same action as R2 then you can re-
move R3 because of shadow redundancy.

e B) different action values: if the right area has the
same action of R2, then you can remove R3 for shadow redundancy.

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is just one conflict of type shadow conflict
(R2,R3). Thus there is no problem in studying the order of conflict anomalies
since there is just one conflict.

R1 = A, R2 = D, R3 = A: there is a shadow conflict (R2,R3) and a correlation
(R1,R2). In order to obtain:

e case A, then it means that R3 needs to win the shadow conflict with R2,
you reorder the rules such that R3>R2 and R1 wins the correlation (case
A). Or R2 needs to win the shadow conflict, you remove R3 and R2 wins the
correlation, you reorder the rules such that R2>R1 (case A).

e case B, then it means that only one between R1 and R3 needs to win their
conflict and the other one has to lose it: either R1 wins the correlation
and R2 wins the shadow conflict, you remove R3, or R3 wins the shadow
conflict, you reorder the rules such that R3>R2 and R1 loses the correlation,
you reorder the rules such that R2>R1 (case B).

R1 = A, R2 = D, R3 = D: there is just one conflict of type correlation (R1,R2).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

Let’s query the admin in order to see with how many questions we can reach
all of these scenarios.

1) Q: "is R2 ok?"
83

Case Study Analysis

If answer is YES: then it means that both the area have the action value (case A)
and this has the same action value of R2.

If answer is NO: then it means that either the two areas have the same action
value but this is opposite from R2’s or they have different action values. Thus, we
need to ask more questions.

2) Q: "is R3 ok?"

If answer is YES: then it means that R3 has won its conflict, but you do not
know anything about R1’s conflict, it could be either that both areas have differ-
ent action value from R2 or it could be the case of areas with different actions.
Thus, we need to ask more questions.

If answer is NO: then it means that R2 has imposed its action value on the right
area, and since R2 is ‘wrong’, the right area has a different action value from (case
B). 3) Q: "is R1 ok?" If answer is YES: then it means that also R1 has won its
conflcit, therefore it is the case in which both areas have the same action value
but this value is different from R2’s (case A).

If answer is NO: then it means that R1 has lost its conflict, therefore the right
area assumes R2’s action value (case B).

= Total number of steps: Best Case = 1 Worst Case = 3
Starting querying from R1 or R3 does not bring any advantages since R1 and
R3 are disjoint, therefore you would have to query at least twice the admin in the

best case, meanwhile the worst case is still equal to 3. After asking for R2, it is
equivalent, since they are disjoint, querying first R1 or R3.

84

Case Study Analysis

CASE N.89: (R2,R1) = C — (R3,R2) = DM — (R1,R3) =
C

Let’s call the left area the zone defined by the
intercepted packets only by the rules R2 and

R3
R3.
Let’ call the right area the zone defined by the R
intercepted packets only by the rules R1 and
R3.
Let’s call the central area the =zone defined by
the intercepted packets by the rules R1 and
R2.
Given these three areas the administrator may want: Figure 6.17: Case n.89

e A) all three areas with the same action value, AL-
LOW or DENY, it does not matter. If the three
areas have the same action as R3 then you can remove R2 because of shadow
redundancy.

e B) different action value: (right area -+ central
area) and left area have different actions

e () different action value: (left area + central area)
and right area have different actions

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is just one conflict of type correlation (R1,R3).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

R1 = A, R2 = D, R3 = A: there is just one conflict of type correlation (R1,R2).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

R1 = A, R2 = D, R3 = D: there are two correlations (R1,R3) and (R1,R2).
In order to obtain:

e case A, then it means that R1 needs to lose both the correlations, you reorder
the rules such that R3>R1 and R2>R1 (case A).

e case B, then it means that R1 needs to win both the correlations (case B).

e case C, then it means that R1 needs to win the correlation with R3, but R1
loses the correlation with R2, you reorder the rules such that R2>R1 (case
C).

85

Case Study Analysis

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

1) Q: "is R1 ok?"

If answer is YES: then it is the case in which the central area has the same action
value of the right area (case B).

If answer is NO: then it might be that the three area have different values (case B
or C). Thus, we need to ask more questions.

2) Q: "is R3 ok?"

If answer is YES: then it is the case in which all three regions have the same
action value (case A) and also the areas have the same action as R3.

If answer is NO: then it is the case in which the central area has the same ac-
tion value of the left area (case C).

—> Total number of steps: Best Case = 1 Worst Case = 2

86

Case Study Analysis

CASE N.92: (R1,R2) = C — (R2,R3) = C — (R1,R3) =
DM

Let’s call the left area the zone defined by the
intercepted packets only by the rules R1 and R
R3.

Let’ call the right area the zone defined by the

intercepted packets only by the rules R1 and
R2.
Let’s call the central area the zone defined by
the intercepted packets by the rules R2 and
R3.

Given these three areas the administrator may want: Figure 6.18: Case n.92

e A) all three areas with the same action value, AL-
LOW or DENY, it does not matter. If the three areas have the same action
as R1 then you can remove R3 because of shadow redundancy.

e B) different action value: (right area + central
area) and left area have different actions

e () different action value: (left area + central area)
and right area have different actions

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is a correlation (R2,R3) and a shadow con-
flict (R1,R3). In order to obtain:

e case A, then it means that R3 needs to lose the shadow conflict, you remove
R3 (case A).

e case B, then it means that R3 needs to win the shadow conflict with R2,
you reorder the rules such that R3>R2, but R3 loses the correlation with R1
(case B).

e case C, then it means that R3 needs to win both the correlation and the
shadow conflict, you reorder the rules such that R3>R2 and R3>R1 (case
C).

R1 = A, R2 = D, R3 = A: there are two correlations (R1,R2) and (R2,R3). In
order to obtain:

e case A, then it means that R2 needs to lose both the correlations, you reorder
the rules such that R3>R2 (case A).

e case B, then it means that R2 needs to win both the correlations, you reorder
the rules such that R2>R1 (case B).

87

Case Study Analysis

e case C, then it means that R2 needs to wins the correlation with R1, you
reorder the rules such that R2>R1 but R2 loses the correlation with R3, you
reorder the rules such that R3>R2 (case C).

R1 = A, R2 = D, R3 = D: there is a correlation (R1,R2) and a shadow conflict
(R1,R3). In order to obtain:

e case A, then it means that R1 needs to lose the shadow conflict, you reorder
the rules such that R3>R1 and R1 loses the correlation, you reorder the
rules such taht R2>R1 (case A).

e case B, then it means that R1 needs to win the shadow conflict, you remove
R3 and R2 wins the correlation, you reorder the rules such that R2>R1 (case
B).

e case C, then it means that R1 needs to win the correlation and R1 loses the

shadow conflict, you reorder the rules such that R3>R1 (case C).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios.

1) Q: "is R1 ok?"

If answer is YES: then it is the case in which all three regions have the same
action value (case A) and also the areas have the same action as RI.

If answer is NO: then it might be that the three area have different values (case B
or C). Thus, we need to ask more questions.

2) Q: "is R2 ok?"

If answer is YES + R2 has a different action value from R3: then it is the case in
which the central area has the same action value of the right area (case B).

If answer is YES + R3 has the same action value as R2: then it is either the case
that the central area has the same action value of the right area or all three areas
have the same action value but it is different from R1’s. Thus, we need to ask
more questions.

If answer is NO: then it is the case in which the central area has the same ac-
tion value of the left area (case C).

3) Q: "is R3 ok?"

If answer is YES: then it is the case in which the three areas have the same
action but the value is different from R1’s (case A).

If answer is NO: then it is the case in which the central area has the same ac-
tion value of the right area (case B).

88

Case Study Analysis

= Total number of steps: Best Case = 1 Worst Case = 3

89

Case Study Analysis

CASE N.93: (R1,R2) = C — (R2,R3) = C — (R3,R1) =
DM

Let’s call the left area the zone defined by the
intercepted packets only by the rules R1 and s
R3.

Let’ call the right area the zone defined by the

R

intercepted packets only by the rules R2 and
R3.
Let’s call the central area the zone defined by
the intercepted packets by the rules R1 and
R2.

Given these three areas the administrator may want: Figure 6.19: Case n.93

e A) all three areas with the same action value, AL-
LOW or DENY, it does not matter. If the three areas have the same action
as R3 then you can remove R1 because of shadow redundancy.

e B) different action value: (right area + central
area) and left area have different actions

e () different action value: (left area + central area)
and right area have different actions

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is just one conflict of type correlation (R2,R3).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

R1 = A, R2 = D, R3 = A: there are two correlations (R1,R2) and (R2,R3).
In order to obtain:

e case A, then it means that R2 needs to lose both the correlations, you reorder
the rules such that R3>R2 (case A).

e case B, then it means that R2 needs to win both the correlations, you reorder
the rules such that R2>R1 (case B).

e case C, then it means that R2 needs to win the correlation with R3, but R2
loses the correlation with R1 (case C).

R1 = A, R2 = D, R3 = D: there is just one conflict of type correlation (R1,R2).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

90

Case Study Analysis

Let’s query the admin in order to see with how many questions we can reach
all of these scenarios.

1) Q: "is R3 ok?"

If answer is YES: then it is the case in which all three regions have the same
action value (case A) and also the areas have the same action as R3.

If answer is NO: then it might be that the three area have different values (case B
or C). Thus, we need to ask more questions.

2) Q: "is R2 ok?"

If answer is YES: then it is the case in which the central area has the same action
value of the right area (case B).

If answer is NO: then it is the case in which the central area has the same ac-
tion value of the left area (case C).

—> Total number of steps: Best Case = 1 Worst Case = 2

91

Case Study Analysis

CASE N.94: (R1,R2) = C — (R2,R3) = C — (R1,R3) = C

Let’s call the R13 area the zone defined by the
intercepted packets only by the rules R1 and
R3.
Let’” call the R12 area the zone defined by the
intercepted packets only by the rules R1 and
R2.
Let’s call the R23 area the zone defined by
the intercepted packets by the rules R2 and
R3.
Let’s call the R123 area the zone defined by
the intercepted packets by the rules R1, R2 and
R3.

Given these areas the administrator may want:

Figure 6.20: Case n.94
Rt

e A) all four areas with the same action value, ALLOW or DENY it does not

matter.

e B) discordant sign: three areas with the same action value and one with a

different action value

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there are two correlations (R1,R3) and (R2,R3).

In order to obtain:

e case A, then it means that R1 needs to win the correlation with R3 and R2

wins the correlation with R3 (case A).

e case B, then it means that R3 needs to win both the correlations, you reorder
the rules such that R3>R1 and R3>R2 (case B). Or R3 needs to lose the
correlation with R1, but R3 wins the correlation with R2, you reorder the
rules such that R3>R2 (case B). Or R3 needs to win the correlation with R1,
you reorder the rules such that R3>R1, but R3 loses the correlation with R2

(case B).

R1 = A, R2 = D, R3 = A: there are two correlations (R1,R2) and (R2,R3). In

order to obtain:

e case A, then it means that R1 needs to win the correlation with R2 and R3
wins the correlation with R2, you reorder the rules such that R3>R2 (case

A).

e case B, then it means that R1 needs to win the correlation with R2 and R2
wins the correlation with R3 (case B). Or R2 needs to win the correlation

92

Case Study Analysis

with R1, you reorder the rules such that R2>R1 and R3 wins the correlation
with R2, you reorder the rules such that R3>R2 (case B). Or R2 needs to
win the correlation with R1, you reorder the rules such that R2>R1 and R2
wins the correlation with R3 (case B).

R1 = A, R2 = D, R3 = D: there are two correlations (R1,R2) and (R1,R3). In
order to obtain:

e case A, then it means that R2 needs to win the correlation with R1, you
reorder the rules such that R2>R1 and R3 wins the correlation with R1, you
reorder the rules such that R3>R1 (case A).

e case B, then it means that R1 needs to win both the correlations (case B).
Or R2 needs to win the correlation with R1, you reorder the rules such that
R2>R1 and R3 loses the correlation with R1 (case B). Or R1 needs to win
the correlation with R2 and R3 wins the correlation with R1, you reorder
the rules such that R3>R1 (case B).

Let’s query the admin in order to see with how many questions we can reach all
of these scenarios. In this case you can start from whichever one since all of them
are in the same number of possible conflicts.

1) Q: "is R1 ok?"

If answer is YES + R2 has the same action value as R3: then it means that
it is the case in which only three areas have the same action value (case B).

If answer is YES + R2 has a different action value from R3: then it means that at
least three areas have the same action value, but you are not sure if it is the case
of four areas with R1’s action value or just three areas with the same action and
one different. Thus, we need to ask more questions.

1.1) Q: "is R2 ok?"

If answer is YES + R1 has the same action value as R2: then it means that

all four areas have the same action value (case A).

If answer is YES 4 R1 has a different action value from R2: then it means

that it is the case in which only three areas have the same action value (case B).

If answer is NO + R1 has the same action value of R2: then it means that it is
the case in which only three areas have the same action value (case B).

If answer is NO + R1 has a different action value from R2: then it means that
all four areas have the same action value (case A).

If answer is NO: then you cannot say anyhting, you are still in doubt between the
case B or case A. Thus, we need to ask more questions.

93

Case Study Analysis

1.2) Q: "is R2 ok?"

If answer is YES + R2 has a different action value from R3: then it means that
it is the case in which only three areas have the same action value (case B).

If answer is YES + R2 has the same action value from R3: then it means that
you are still in doubt between the case B or case A. Thus, we need to ask more

questions.

1.2.1) Q: "is R3 ok?"

If answer is YES: then it means that all four area have the same action value
(case A).

If answer is NO: then it means that it is the case in which only three areas
have the same action value (case B).

If answer is NO: then it means that it is the case in which only three areas
have the same action value (case B).

= Total number of steps: Best Case = 1 Worst Case = 3
In this case there you can start querying the administrator from any rule that

you want, since they are all linked together by correlation. You would always
obtain the same number of steps in any order you ask the admin.

94

Case Study Analysis

CASE N.95: (R1,R2) = C — (R2,R3) = C — (R1,R3) = DJ

Let’s call the left area the zone defined by
the intercepted packets by the rules Rl and Figure 6.21: Case n.95
R2.

Let’ call the right area the zone defined by
the intercepted packets by the rules R2 and
R3.

R1

Given these two areas the administrator may want:

e A) both areas with concordant sign, ALLOW or
DENY, it does not matter.

e B) discordant sign

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is just one conflict of type correlation (R2,R3).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

R1 = A, R2 =D, R3 = A: there are two correlation conflicts (R1,R2) and (R2,R3).
In order to obtain:

e case A, then it means that R2 needs to win both the correlations, you re-
order the rules such that R2>R1 (case A). Or R2 needs to lose both the
correlations, you reorder the rules such that R3>R2 (case A).

e case B, then it means that R2 wins only one between the two correlations:
either R2 wins the correlation with R1 and loses the one with R3, you reorder
the rules such that R2>R1, or R2 wins the correlation with R3 and loses the
one with R1 (case B).

R1 = A, R2 = D, R3 = D: there is just one conflict of type correlation (R1,R2).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

Let’s query the admin in order to see with how many questions we can reach
all of these scenarios.
1) Q: "is R2 ok?"

If answer is YES: then it means that both areas have the same action (case A),
and it is the same value as R2.

If answer is NO: then it means that either the two areas have a different ac-
tion value or they have the same action but it is different from R2’s. Thus, we

95

R3

Case Study Analysis

need to ask more questions.
2) Q: "is R1 ok?"

If answer is YES: then it means that R2 has lost at least the conflict with R1,
but you do not know anything about the conflict with R3. Thus, we need to ask
more questions.

If answer is NO: then it means that the two areas have different action values
(case B).

3) Q: "is R3 ok?"

If answer is YES: then it means that R2 has lost also the conflict with R3, therefore
the two areas have the same action value but this is different from R2’s (case A).

If answer is NO: then it means that the two areas have different action values
(case B), so R2 has won the conflict with R3 but R2 has lost the conflict with R1.

= Total number of steps: Best Case = 1 Worst Case = 3

In this case it is more convinient starting querying the admin from the rule that is
part of the most conflict: if you started from R1, you would get information only
on the left area, same thing if you started from R3 you would only get information
on the right area, but since you are querying the ‘central® rule you can get hints
on both the areas, thus there is a chance on terminating the process with just one
step.

96

Case Study Analysis

CASE N.97: (R1,R2) = C — (R2,R3) = DJ — (R1,R3) =
DM

Let’s call the left area the zone defined by the inter-
cepted packets only by the rule R3. Figure 6.22: Case 0.97
Let’ call the right area the zone defined by
the intercepted packets by the rules R1 and
R2. R3

RL

Given these two areas the administrator may want:

e A) both areas with the same action value, AL-

LOW or DENY, it does not matter. If the two
areas have also the same action as R1 then you
can remove R3 because of shadow redundancy.

e B) different action values: if the left area has the
same action of R1, then you can remove R3 for
shadow redundancy.

Let’s consider the actions rules and how they can generate or not conflicts.

R1 = A, R2 = A, R3 = D: there is just one conflict of type shadow conflict
(R1,R3). Thus there is no problem in studying the order of conflict anomalies
since there is just one conflict.

R1 = A, R2 = D, R3 = A: there is just one conflict of type correlation (R1,R2).
Thus there is no problem in studying the order of conflict anomalies since there is
just one conflict.

R1 = A, R2 = D, R3 = D: there is a shadow conflict (R1,R3) and a correla-
tion (R1,R2). In order to obtain:

e case A, then it means that R1 needs to win both the shadow conflict and
the correlation, you remove R3 (case A). Or R3 needs to win the shadow
conflict, you reorder the rules such that R3>R1 and R2 wins the correlation,
you reorder the rules such that R2>R1 (case A).

e case B, then it means that only one between R2 and R3 needs to lose their
conflict and the other one has to win it: either R3 loses the shadow conflict,
you remove R3 and R2 wins the correlation, you reorder the rules such that
R2>R1, or R2 loses the correlation and R3 wins the shadow conflict, you
reorder the rules such that R3>R1 (case B).

Let’s query the admin in order to see with how many questions we can reach all

of these scenarios.
1) Q: "is R1 ok?"

97

Case Study Analysis

If answer is YES: then it means that both the area have the action value (case A)
and this has the same action value of R1.

If answer is NO: then it means that either the two areas have the same action
value but this is opposite from R1’s or they have different action values. Thus, we
need to ask more questions.

2) Q: "is R2 ok?"

If answer is YES: then it means that R2 has won its conflict, but you do not
know anything about R3’s conflict, it could be either that both areas have differ-
ent action value from R1 or it could be the case of areas with different actions.
Thus, we need to ask more questions.

If answer is NO: then it means that R1 has imposed its action value on the right
area, and since R1 is ‘wrong’, the left area has a different action value from (case
B). 3) Q: "is R3 ok?" If answer is YES: then it means that also R3 has won its
conflcit, therefore it is the case in which both areas have the same action value
but this value is different from R1’s (case A).

If answer is NO: then it means that R3 has lost its conflict, therefore the right
area assumes R1’s action value (case B).

= Total number of steps: Best Case = 1 Worst Case = 3
Starting querying from R2 or R3 does not bring any advantages since R2 and
R3 are disjoint, therefore you would have to query at least twice the admin in the

best case, meanwhile the worst case is still equal to 3. After asking for R1, it is
equivalent, since they are disjoint, querying first R2 or R3.

98

Chapter 7

The Proposed Approach

Now that we have studied all the possible cases, let’s then sum up the content,
address the issue on how to query the admin and try to find some considerations
or suggestions that may be helpful during the development of the algorithm.

7.1 Find the Best Rule

From the single case analysis we were able to extract some common patterns that
allow us to choose in an optimized way which is the best rule to query first given
a set of rules that are related. These are simply suggestions that are used in the
function’s code ‘findBestRuleToQuery’ to assign the scores to the rules:

e if there are rules that are related by the dominance relation: when you have
to query the admin it is best practice to start from the rule that includes
other rules, since therefore it is possible to deduce more information about
the configuration.

e if there are rules that related by a single correlation relation then the order
in which you query about them does not matter. If instead there is a rule
that has more correlation relations with respect to the others then you need
to query it first, since in the best case it may solve all of them at the same
time.

e it is not recommended, since it is inefficient, start querying from the most
punctual rules. This is because they enclose smaller areas of packets, thus
even if you are lucky, their scope is limited and they do not allow to have
the bigger picture of the conflicts inside the configuration.

e if there are two rules that are related by an equivalence relation, then it is
enough to know that one of them is correct in order to remove the other one,
both to solve the contradiction conflict and to solve the duplication anomaly.
Since in this case it is indifferent which one you choose, it is better to rely
on other considerations if present.

99

The Proposed Approach

e if one rule is related to other rules in a conflicted and non-conflicted way, it
is better to consider first those cases in which there are conflicts, since the
non-conflicts are not interesting from the study point of view.

Before proceeding with the code, let’s focus on a small issue. When we were con-
sidering only three rules that are related, then after querying about two of them,
does not matter which ones, and receving a negative response, it means that two
out of the three rules are wrong, but this also means that the third one is obviously
correct.

This is because of how the administrator works: they may have wrote some rules
and put in an incorrect order the rules, but they cannot write all wrong rules, so
at some point there must be a correct rule.

This is also why, after N-1 negative responses we can skip the last query and
assume that the last one is going to be correct, since there must be at least one
completely correct rule inside the configuration. So this is easy to check when you
only have at most three rules.

When you have at least four rules inside a configuration that are related to each
other then there might be some cases in which even knowing that there is one
correct rule is not enough.

We need a trick to by-pass this problem. We have came up with three differ-
ent solutions, each one has its own advantages and disadvantages. Let’s compare
them and choose one:

e Method A: when you have to solve at least two conflicts between different
rules then, if those conflicts do not affect each other (so the rules are linked
by a disjoint relation) then you can ask the administrator with a query of
type “who wins (Rx,Ry) conflict?” for all the conflict that you have.

— Advantages:

* the query type “who wins (Rx,Ry) conflict?" is very direct, easy to
understand which rule wins the conflict.

— Disadvantages:

x the query type “who wins (Rx,Ry) conflict?" is singular, punctual,
so in case one rule has multiple conflicts with different rules you
need to query multiple times the admin for the same rule.

x this method only works if and only if some rules are related by a
disjoint relation. In case all the rules inside the configuration were
related with each other this would not be possible, because solving
one conflict may affect one or more rules and therefore one or more
conflicts.

100

The Proposed Approach

e Method B: once you receive from the administrator a positive response, add
new constraints in such a way that the next query will not consider the
correct rule (and all the previously correct rules)

— Advantages:

x once you know that a rule is correct you ‘pretend’ is not there
anymore, so if a bigger rule is still wrong it must be for some other
rules.

— Disadvantages:

x it is only you who ‘pretends’ that the rules is not there anymore,
you do not actually remove it, therefore the admin still sees it.

x it requires you to enforce some additional constraints and to use a

SAT solver.

e Method C: when in doubt, you query the administrator and you ask for the
difference of areas of packets.

— Advantages:

% querying only on the difference area then it is possible to solve easily
the conflicts, since you know wihch rules win in that specific area.

— Disadvantages:

x you need to compute and detemrine the subtraction of areas of
packetes which is a huge problem computationally. The packet
areas are not simply rectangular areas, they are much more complex
therefore the subtraction is a complex operation.

Method A only works on some very specific conditions so it is not very useful in a
general case, therefore we discard it.

Method C requires a lot of computation and work in order to compute the ar-
eas to query, since it is not worth it in our opinion, we discard it.

Hence the winning choice is the method B, it does need a SAT solver in order

to work, but it is an acceptable cost with respect to the method C. Therefore,
theoretically we use to solve a SAT solver to by-pass the issues.

101

The Proposed Approach

7.2 How to Query the Administrator

Considering that we are solving the conflicts by configurations means that given
N rules that are connected to each other, we can establish a configuration between
the rules that can eventually determine some conflicts. If that is the case then you
solve this and then you move on to the next N rules.

The first issue that we have to solve is that we have to query to administrator
in such a way that it is impossible to have an ambiguous answer, we also need
to consider that the query ‘"is Rx ok?” may solve in one shot, depending on the
context, more than one conflict.

If instead, you asked “which one wins between (R1,R2)7” or similar queries, the
asministrador may not know the answer, thus they are not able to provide a cor-
rect response and you cannot proceed. The latter type of query is only possible in
case there is a third rule which is disjoint from one of the two, then the solution
of the conflict does not add any more conflicts.

So, when the administrator responds in a certain way to one of our query, we
are able to understand if the answer has solved or not a specific type of conflict
and how to act based on that and based on the constraints that are enforced with
each answered query.

When we are going to query the administrator we are going to ask them about
the correctness of a rule, this means whether or not this rule is correct for all the
packets that belong to that rule.

So, for example if R, has action value ALLOW and we query the admin about
this rule: this means asking if all the packets for which you can apply rule R,
have action value equal to ALLOW. If there is at least one packet for which this
does not apply, then the administrator will respond with ‘NO’, otherwise they will
respond with ‘YES’.

Another way to interpret the query is to consider the rule’s priority and how
they are affected during the conflict resolution, in this way when you receive a
response you may validate or not some constraints on the priorities.

Let’s remember that when you are solving conflicts you may remove some rules or
reorder them, but you never change nor modify the rules. We suppose that the
administrator has correctly written the rules, but they may have been wrongly
placed inside the firewall, in the wrong priority order.

Therefore, it is our duty to solve conflicts that may arise due to this wrong order
by querying the admin about the correctness of the rules. That is to say that
when you ask if R, is correct you are actually asking (these conditions are in a
logic AND):

102

The Proposed Approach

e knowing that R,’s priority is lower than the priority of all the other rules that
you have asked about and for which you were sure about their positioning.

e if R,’s priority is higher than the priority of all the other rules that you have
not asked about yet.

e if R,’s priority is higher than the priority of all the other rules that you have
asked about but for which you were not sure about their positioning.

If the administrator responds with:

e YES: it means that the previous statements are all correct, so R,’s priority
comes right after the rules that you have already queried and you know that
they have an higher priority, but it comes before the rules they you have
queried yet and those rules thay you have queried already but for which you
do not know the placement in the priority list.

e NO: it means that at least one of the statements is wrong, either there is one
rule that you have not queried yet that has an higher priority, or one of the
rules the you have already but for which you do not know the placement has
an higher priority that R,.

Let’s see in detail an example of this syntax.

Given four rules: R1 = ALLOW, R2 = ALLOW, R3 = DENY, R4 = DENY.
These four rules are related with each other as displayed in the Picture 7.2 (AL-
LOW = green, DENY = red); then the relations between the rules are the follow-
ing:

e (R1, R2) = dominance without conflict
e (R1, R3) = dominance with conflict

e (R1, R4) = dominance with conflict

e (R2, R3) = correlation with conflict

e (R2, R4) = correlation with conflict

e (R3, R4) — disjoint

Thanks to a specific function, we are able to know which is the best rule to query
first. Given a set of rules that are interacting with each other and that are gener-
ating some conflicts, there is a special order in which you can ask with the least
number of queries the administrator, while at the same time solving all the conflicts
inside the configuration.

103

The Proposed Approach

Figure 7.1: Case with 4 Rules - Configuration

This function is able to compute some scores for each rule given the relations
with the other rules and their actions and it is able to say which is the best rule
to query the administrator. In this case best means that it allows us to solve in
the best case the greatest number of conflicts given this configuration.

Let’s trust this function, thus it returns that the best rule to query first is the
rule R1. With every query and response from the administrator you can obtain a
graph (see Figure 7.2) that allows you to understand all the possible outcomes of
this scenario, just by following the branches from one query to the leaves you can
trace all the responses that you have received from the administrator and obtain
the final and correct order of the rules’ priority.

The first query is: "is R1 correct?”, which can be translated considering the
priorities as: m(R1) > w(R2) A m(R1) > w(R3) A m(R1) > w(R4). Actually, when
you are questioning the administrator about these constraints you are also asking
“is R1 the first rule in the priority list?”.

If the answer is YES, it means that all those constraints are valid, so: 7(R1) >
m(R2) Am(R1) > w(R3) Am(R1) > m(R4). R1 wins all its conflicts:

e (R1, R3) = R1 wins and R3 is removed (all the relations that contain R3
are also removed).

e (R1, R4) = R1 wins and nothing changes since R4 was at a lower priority
level than R1.

If those valid constraints and the results from the conflicts are inserted as input in
a SAT solver, you would get as an answer the configuration picture in the top left.
Finally, in this case, the correct priority list would be: 7(R1) > w(R2) > w(R4).

If the answer is NO, it means that one of those statement is false but you do not
know which one, so you write them as: 7(R2) > n(R1)Vw(R3) > m(R1)V7r(R4) >
m(R1). You need to further query the admin in order to find the correct priority
order. We call again the previous function and this time, it tells us that the next
best rule to query is R2.

104

y \w
%E\j yes NV
/ \RS?

7N /N
5 [t4-20]

R4? ‘j RS‘S“,R" ? R4 =yus, R1?

“j\ AN
=

C [y ReysRL2
./ N
ey iy

Figure 7.2: Case with 4 Rules - Graph

Then, the second query is: "is R2 correct?”, which can be translated consider-
ing the priorities as: 7(R2) > 7n(R1) A 7(R2) > w(R3) A m(R2) > w(R4). And
also, you are asking "is R2 the first rule in the priority list?”, since we know that
R1 is not the first on the list, we check if R2 is the one.

If the answer is YES, it means that all those constraints are valid, so: m(R2) >
m(R1) Am(R2) > w(R3) Am(R2) > m(R4). R2 wins all its conflicts:

e (R2, R3) = R2 wins and nothing changes since R3 was at a lower priority
level than R2.

e (R2, R4) = R2 wins and nothing changes since R4 was at a lower priority
level than R2.

When you insert the constraints and the results of the conflicts in the SAT solver,
it is not able to produce a final solution. We are still missing some information.
Therefore we need to query again the administrator, but now we have an addi-
tional knowledge that R2 is the first in the list of priorities.

105

The Proposed Approach

This time the function suggests us to interrogate the admin about R3. The query
this time is slightly different since we have some insights: “is R3 correct?” is
translated into constraints as:

e knowing that R2 is correct, so that: w(R2) > w(R1) A 7(R2) > m(R3) A
m(R2) > m(R4) (= R2 is the first in the list)

e is it true that (these conditions are in A):

— R3’s priority is higher than the priority of all the rules that you have
not asked about yet: 7w(R3) > w(R4)

— R3’s priority is higher than the priority of all the rules that you have
asked already but for which you are not sure the placement: 7(R3) >
m(R1)

If the answer is YES, it means that all those constraints are valid, so: 7(R3) >
m(R1) A m(R3) > w(R4). R3 wins all its conflicts (the remaining ones):

e (R1, R3) = R3 wins and you reorder the rules such that the constraint is
valid.

However in this case there are still some issues and the SAT solver is not able to
determine a solution, so we query the admin for the last remaining rule RA4.

In this query we have even some insights, so that when you ask for: "is R4 correct?”
is translated into constraints as:

e knowing that (these conditions are in A):
— R2is correct, so that: m(R2) > n(R1)Am(R2) > n(R3)Am(R2) > w(R4)
(= R2 is the first in the list)
— R3 is correct, so that: w(R3) > n(R1) A m(R3) > n(R4) (= R3 is the
second in the list)
e is it true that (these conditions are in A):
— RA4’s priority is higher than the priority of all the rules that you have
not asked about yet: NONE, we have queried about all rules.

— RA4’s priority is higher than the priority of all the rules that you have
asked already but for which you are not sure the placement: 7(R4) >
m(R1)

Since we are only verifying one constraint and therefore solving the corresponding
conflict (R1, R4), you are able to reach a solution and the corresponding final order.

In case this last query returns YES, then the final priority order is: w(R2) >
m(R3) > w(R4) > w(R1).
Otherwise, the final priority order is: w(R2) > w(R3) > w(R1) > w(R4).

106

The Proposed Approach

Instead, if the administrator returns R3 = NO, it means that one of those state-
ment is false but you do not know which one, so you write them as: 7(R1) >
m(R3) V m(R4) > w(R3). An additional consideration can be done: since R3 only
had one remaining conflict and we received NO, it means that R3 lost that conflict
and so the correct order is m(R1) > 7(R3).

However, since (R1, R3) is a shadow conflict in which R1 wins, R3 is removed,
therefore you remove also all the relations that contain R3. Now, if you put
all the remaining constraints into the SAT solver, it is able to produce a so-

lution, given there is only one possible result. The final order in this case is:
m(R2) > m(R4) > 7(R1).

In case the second query’s (‘"is R2 correct?”) response was NO, it means that
one of those statement is false but you do not know which one, so you write them
as: m(R1) > m(R2)V7w(R3) > m(R2)V7n(R4) > m(R2). You need to further query
the admin in order to find the correct priority order. We call again the previous
function and this time, it tells us that the next best rule to query is R2.

Then, the third query is: "is R3 correct?”, which can be translated considering
the priorities as: w(R3) > m(R1) A w(R3) > m(R2) A m(R3) > w(R4). And also,
you are asking "is R3 the first rule in the priority list?”, since we know that R1
and R2 are not the first on the list, we check if R3 is the one.

If the answer is YES, it means that all those constraints are valid, so: w(R3) >
m(R1) Am(R3) > w(R2) Am(R3) > w(R4). R3 wins all its conflicts:

e (R1, R3) = R3 wins and you reorder the rules such that the constraint is
valid.

e (R2, R3) = R3 wins and you reorder the rules such that the constraint is
valid.

When you insert the constraints and the results of the conflicts in the SAT solver,
it is not able to produce a final solution. We are still missing some information.
Therefore we need to query again the administrator, but now we have an addi-
tional knowledge that R3 is the first in the list of priorities.

This time the function suggests us to interrogate the admin about R4. So, now
the query is slightly different since we have some insights: "is R4 correct?” is
translated into constraints as:

e knowing that R3 is correct, so that: m(R3) > w(R1) A 7(R3) > m(R1) A
m(R3) > m(R4) (= R3 is the first in the list)

e is it true that (these conditions are in A):

— RA4’s priority is higher than the priority of all the rules that you have
not asked about yet: NONE, we have queried all the previous rules.

107

The Proposed Approach

— RA4’s priority is higher than the priority of all the rules that you have
asked already but for which you are not sure the placement: 7(R4) >
m(R1) A (R4) > w(R2)

If the answer is YES, it means that all those constraints are valid, so: 7(R4) >
m(R1) Am(R4) > w(R2). R4 wins all its conflicts:

e (R1, R4) = R4 wins and you reorder the rules such that the constraint is
valid.

e (R2, R4) = R4 wins and you reorder the rules such that the constraint is
valid.

In this case, there are no more conflicts between these rules and the final order is:
m(R3) > w(R4) > w(R1) > n(R2).

When instead the answer is NO, it means that one of those statement is false
but you do not know which one, so you write them as: 7(R1) > n(R4) V w(R2) >
m(R4) V m(R3) > w(R4).

Technically, you have queried all the rules, but with respect to the beginning
of the querying you now have an additional information: that R3 is correct, so it
makes sense to restart from the beginning with querying the administrator and
check if with this new information the answer changes (if it is able to solve the
conflicts and if the SAT solver is able to produce a final solution). Thus, the next
query is: "is R1 correct?”, which is translated into constraints as:

e knowing that (these conditions are in A):

— R3is correct, so that: m(R3) > n(R1)Am(R3) > n(R2)Am(R3) > w(R4)
(= R3 is the first in the list).

e is it true that (these conditions are in A):
— R1’s priority is higher than the priority of all the rules that you have

not asked about yet: NONE, we have queried about all rules.

— R1’s priority is higher than the priority of all the rules that you have
asked already but for which you are not sure the placement: w(R1) >
m(R2) Am(R1) > m(R4).

If the answer is YES, it means that all those constraints are valid, so: m(R1) >
m(R2) A m(R1) > m(R4). R1 wins all its conflicts (better to say, R4 loses all its
conflicts):

e (R1, R4) = R1 wins and nothing changes since R4 was at a lower priority
level than R1.

108

The Proposed Approach

e (R2, R4) = R2 wins and nothing changes since R4 was at a lower priority
level than R2.

In this case, there are no more conflicts between these rules and the final order is:
m(R3) > m(R1) > w(R2) > n(R4).
Otherwise, the final priority order is: 7(R3) > m(R2) > 7w(R4) > n(R1).

After receiving three (N-1, with N being the total number of rules) negative
answers, then you can assume that the fourth and last rule is correct, since there
must alsway be at least one correct rule in the set. This implies that R4 wins
its conflicts and that it is the first rule in the priority list: therefore it can be
translated into constraints as: 7(R4) > w(R1) Anw(R4) > n(R2) Aw(R4) > 7(R3).
R4 wins all its conflicts:

e (R1, R4) = R4 wins and you reorder the rules such that the constraint is
valid.

e (R2, R4) = R4 wins and you reorder the rules such that the constraint is
valid.

Since you have finished all the rules, you restart querying from the beginning
providing new information that R4 is correct, hence the next query is: ‘"is Rl
correct?”, which is translated into constraints as:

e knowing that (these conditions are in A):

— R4 is correct, so that: m(R4) > n(R1)Am(R4) > n(R2)Am(R4) > n(R3)
(= R4 is the first in the list).

e is it true that (these conditions are in A):

— R1’s priority is higher than the priority of all the rules that you have
not asked about yet: NONE, we have queried about all rules.

— R1’s priority is higher than the priority of all the rules that you have

asked already but for which you are not sure the placement: 7(R1) >
m(R2) A m(R1) > 7(R3).

If the answer is YES, it means that all those constraints are valid, so: 7(R1) >
m(R2) Am(R1) > w(R3). R1 wins all its conflicts:

e (R1, R3) = R1 wins and R3 is removed.

In this case, there are no more conflicts between these rules and the final order is:
m(R4) > m(R1) > 7(R2).

Otherwise, if you give as input the results and the constraints to the SAT solver,
it is able to produce the correct final priority order: m(R4) > m(R3) > w(R2) >
m(R1).

109

The Proposed Approach

7.3 Algorithm

Given the list of all the rules, you need to generate first the cluster between the
rules, this means knowing which of the rules interact with each other. This means
that you consider rules till the packet area of each rule create an intersection

(Rz(Ry # {}).

So, for example: let’s imagine that you have already read R1 and R2, and those
two area packet intersect with each other, therefore you add them to the same
cluster. At this point, you have to read R3, in order to check whether or not R3
is part of the same cluster you verify if R3((R1|J R2) # {}. If so, it means that
R3 interacts with the area packet of the cluster so now you add R3 to the same
cluster as R1 and R2. Otherwise if the check returns an empty set, R3 is completly
disjoint from Arear; |J Arears, so you ‘stop’ this cluster before R3.

Then within a cluster, you generate all the possible rule couples and you add
them to the the cluster. This is done with a generation function that uses the
combinatorial analysis, in particular the combinations of all the rules in pairs.

Once you have generated all the rule couples, each one of them is passed to a
function that returns the relation value between the two rules. This function tells
you if the two rules inside the couple are related by a relation of equivalence, dom-
inance (eventually inverts the two rules), correlation or disjointness.

The function is also able to alert if inside the rule couple there is a suboptimization
anomalies, so that is possible to easily intervene by removing the rule with lower
priority and also all the rule couples in which that rule is present.

At this point you need to solve for each cluster all of its conflicts. Till there
are no more conflicts or the SAT solver has found a solution perform a loop that
consists in:

e find the best query so that you can query the administrator about

e query the administrator about this rule, considering also that you may have
some previous knowledge about rules that you have already queried and that
are correct

— if answer is YES: then you have to solve all the conflicts that contain
that rule, making that rule the ‘winning’ rule in the conflict; add the
rule to the list of the correct rules; mark done that you have queried
this rule and that the answer is yes

— if answer is NO: then you have to mark done that you have queried this
rule and that the answer is no; then check that if you queried about
all the rules, then you have to restart from the beginning, so you have
to reset some flags; in case you have received N-1 (with N being the
total number of rules) no, then it means that the last rule is necessarily

110

The Proposed Approach

correct, therefore solve all the conflicts of that rule, add it to the list
of the correct ones and set the flags as if you queried the admin about
this rule, then reset all the necessary flag useful to restart querying the
admin with the new information

e check if there are still present some conflicts inside the cluster, if not you can
move one to the next cluster

e if instead there are still some conflcits, try using a SAT solver in which you
pass the currently known constraints and check whether or not you could
still obtain a solution. If, in fact you are able to obtain a correct solution,
solve the conflicts thanks to the final order of the priority rules that the SAT
solver is able to provide. Otherwise, keep looping till you finish the conflicts
or you find a solution.

As we said before, in the implementation we do not use a SAT solver, but in the
theoretical alogrithm it must be used to check the correctness of the solution be-
fore movig into the next cycle.

In our Java code, since we do not use this tool, the algorithm is similar but we
can exit the cycle only when we have ended all the conflicts inside the cluster or
we are sure that the conflicts inside the cluster are not dangerous (the couples are
disjoint or they have the same action).

Therefore it may happen that sometimes you query the administrator more than

the minimum since it is not able to understand earlier that all the conflicts are
solved, but the algorithm needs more queries to the admin to do that.

111

Chapter 8

Implementation and Validation

In this chapter we discuss the code implementation, starting from the enviroment
and the IDE that we chose. Then we describe briefly the main classes and the

most meaningful functions that we employed.

8.1 Setup and Environment

Eclipse

Eclipse is an Integrated Development Environment (IDE) used for programming.
It contains a base workspace and an extensible plug-in system for customizing the

environment [5].

Eclipse is mostly used for writing and develop-
ing Java applications, but it can also be used
with other programming languages through plug-
ins such as C, C++, Fortran, JavaScript, Python
and many others. The plug-in framework al-
lows the Eclipse Platform to work with typeset-
ting languages like LaTeX and networking applica-
tions such as telnet and database management systems

5]

= eclipse

Figure 8.1: Eclipse Logo

The Eclipse Software Development Kit (SDK) is free and open-source, it includes
the Java development tools and it is meant for Java developers.
Eclipse uses plug-ins to offer all the functionality within and on top of the run-time

system. Its run-time system is based on Equinox.

This architecture based on plug-ins supports writing any desired extension to the
environment, such as for configuration management. Java and CVS support is
provided in the Eclipse SDK, with support for other version control systems pro-
vided by third-party plug-ins. Users can extend its abilities by installing plug-ins

112

Implementation and Validation

written for the Eclipse Platform, like the development toolkits for other program-
ming languages, and can write and contribute with their own plug-in modules [].

With the exception of a small run-time kernel, everything in Eclipse is a plug-
in. Hence, every plug-in developed integrates with Eclipse in the same way as
other plug-ins. This is done in order to follow the principle that: all features are
"created equal".

The Eclipse SDK includes the Eclipse Java development tools (JDT), offering
an IDE with a built-in Java incremental compiler and a full model of the Java
source files. This allows for advanced refactoring techniques and code analysis.

Eclipse implements the graphical control elements of the Java toolkit called Stan-
dard Widget Toolkit (SWT). Eclipse’s user interface also uses an intermediate
graphical user interface layer called JFace, which simplifies the construction of ap-
plications based on SWT [5].

eclipse-workspace - Eclipse IDE

Always show Welcome at start up

Figure 8.2: Welcome Screen of Eclipse 4.12

Our application was developed in Eclipse version 4.23.0 and in the Java program-
ming language.

XML Schema

Extensible Markup Language (XML) is a markup language that defines a
set of rules for encoding documents in a format that is both human-readable and
machine-readable [12]. XML is designed to have few purposes: simplicity, gener-
ality, and usability over the Internet. In order to actually use XML, users need
some software to send, receive, store, etc., since XML is only information wrapped
in tags [12].

113

Implementation and Validation

We started our application design from the XML Schema that contained all
the most important objects that we were going to use in our program. Through
this we define the building blocks of an XML document.

The XML Schema has a lot of advantages for example it is able to easily val-
idate the correctness of data and to convert data between different data types.
It uses the XML syntax, so you do not have to learn a new language and it is
extensible. In order to use an XML document it must be well-formed, thus it has
to follow some XML syntax rules, but it may still contain some errors, therefore
it has to be validated [11].

name="RuleType”>

nt name="AreaPacket" type="tns:PacketAreaType"/>

nt name="ClusterID"” type="xsd:positiveInteger"”/>

>

name="rulePriority" type="xsd:positiveInteger"/>
name="action" type="xsd:positivelnteger"/>
name="response” type="xsd:boolean”/>

name="asked" type="xsd:boolean"/>

name="ruleID" type="xsd:positivelnteger" use="required"/>

nt name="firstRule" type="tns:RuleType"/>

nt name="secondRule" type="tns:RuleType"/>

>

name="coupleRelation" type="xsd:integer"/>

name="sameAction"” type="xsd:boolean"/>

name="RuleCoupleID" type="xsd:positivelnteger"” use="required”/>

Figure 8.3: XML Schema

JAXB Classes

From the XML Schema we generated the XML document and the correspond-
ing JAXB classes (Java Architecture for XML Binding). There are two basic
functions or methods when you are dealing with XML and Java: marshalling and
unmarshalling.

The marshalling operation is converting JAXB-derived Java objects into an XML
data; by default the Marshaller uses UTF-8 encoding when generating XML data.
Instead the unmarshalling is the reverse operation and it is able to convert XML
data into JAXB-derived Java objects.

Once the basic classes are generated, we added to each one the setters, getters
and toString() methods, and finally developed inside the main class our applica-
tion.

SAT Solver

A SAT solver is a computer program that has the purpose to solve the Boolean
satisfiability problem [13].

114

Implementation and Validation

As we have noted before, in the algorithm after when queried the administrator
and before moving on to the next cycle, we should use a SAT solver to check if we
reached to a solution, if the constraints are valid and if there are no more conflicts
in the cluster.

In our implementation of the program this is not done, we do not leverage the
SAT solver. However, we suppose that when we query the administrator, they are
smart enough to not give us a response that will make us incur into an ambiguous
situation (since they are knowledgeable and they can see the whole picture). Also,
we accept that in some cases there might be more queries than the minimum, since
the algorithm has no intelligence to “see the constraints” and check them.

8.2 Main Classes and Data Objects

The most important classes are: RuleType that represents a rule, RuleCouple which
represents a couple of rule with a certain relationship value, and the Cluster that
can be seen as the single configuration, so the set of the rules that are interacting
with each other plus additional information and data. Let’s see them a little more
in depth.

RuleType
A RuleType is a class (complex type for XML schema) that contains:

e rulelD is an identifier which is a positive integer that increases at every new
rule.

e AreaPacket is the packet area that this rule intercepts (it is the actual object,
not a reference).

e (ClusterID is the cluster identifier that represents the cluster to which the
rule is part of; at the beginning it is equal to -1.

e rule priority is an integer, starting from 1 as the highest priority, used to
undestand, given two rules inside the same rule, which is the one that has
to be removed /reordered.

e action is an integer that represents the action that has to be performed when
following this rule.

e response it is a flag (boolean) that stores the response from the admin when
you query them about this rule; at the beginning it is equal to false.

e asked is a flag (boolean) that allows you to understand if the rule has been
already queried.

In this work, we consider:

115

Implementation and Validation

e for the action: 0 = DENY, 1 = ALLOW.
e for the response: false = NO, true = YES.

e for the asked: false = not yet asked, true = already asked/just asked.

In general a PacketArea is the quintuplet the contains IP addresses for source and
destination, port addresses and protocol for each rule (there is also an identifier
that identifies the object).

This class implements the Comparable interface: in order to sort the elements by
the rule priority, given two rules the highest priority as the lowest integer number.

RuleCouple
A RuleCouple is a class (complex type for XML schema) that contains:

e ruleCouplelD is an identifier which is a positive integer that increases at
every new couple.

e firstRule is the first rule in the couple (it is the actual object, not a reference).

e secondRule is the second rule in the couple (it is the actual object, not a
reference).

e coupleRelation represents the relation value of the couple with an integer.

e sameAction is a flag (boolean) that tells you whether or not the two rules
have the same action value.

In this work, we consider:

e for the sameAction: false = the two rules have different actions, true = the
two rules have the same action.

The coupleRelation is an integer that is assigned by the function checkValueRela-
tionFunction. It can assume 4 different values:

e 0 = equivalence, the two rules inside the couple are equivalent (be careful,
they might have different actions).

e 1 = dominance, the first rule includes the second rule.
e 2 — correlation, the two rules are correlated.

e 3 = disjointness, the two rules are disjoint.

This class also includes two extra functions that are able to tell if a RuleCou-
ple contains a specific rule that is passed as a parameter (containsRule) and to
give us the one rule inside the RuleCouple passing the other one as a parameter
(giveOtherRuleInCouple).

116

Implementation and Validation

Cluster

A Cluster is a class (complex type for XML schema) that contains:

e (lusterID is an identifier which is a positive integer that increases at every
new cluster.

o clusterRules is the list of all the rules that are part of this cluster.

e packetArea is the list of all the packetAreas that are interecepted by the rules
inside the cluster.

o clusterRuleCouples is the list of all the rule couples that can be generated
inside this cluster.

For this class there is no additional methods that we implemented other than
setters and getters.

8.3 Important Functions

Let’s focus on some of the most meaningful functions: generate is function that
generates the RuleCouples, checkValueRelationFunction assignes the coupleRela-
tion to the RuleCouples, findBestRuleToQuery allows us to find the next rule to
query the administrator about, query is used to query the administrator, resolve-
Conflicts is used to solve the conflicts given a winning rule.

Method generation

In order to generate all the possible RuleCouples inside a Cluster given a set of
Rules, we used a combinatorial analysis method applied in Java, modifying it with
our classes and types.

The generate method prepares the ArrayList of RuleCouples and then calls the
recursive method helper that does actually the job of creating all the RuleCouples.

At the moment of the generation, a RuleCouple contains the two rules, the cou-
pleRelation is set to -1 and depending on the rule’s action the sameAction flag is
set.

The generation and the helper method are therefore not shown since are not that
relevant from the theoretical’s point of view, you can look at the code in Appendix
b.

117

Implementation and Validation

Method checkValueRelationFunction

This method tests the relationship of a single RuleCouple and assigns to each one
an integer that represents the relation’s value. There are 4 possible values that can
be assigned that correspond to the four possible relations: equivalence, dominance,
correlation and disjoint.

In case of the dominance relation we need to consider this two cases: on one
hand the firstRule includes the second one and on the other hand the firstRule is
included in the second one. In order to maintain the same syntax, in the latter
case we need to swap the two rules inside the RuleCouple.

The check is done by looking at the PacketArea of each rule and verifying if the
two have an intersection: more specifically, we only consider the IP addresses of

the PacketArea object.

Listing 8.1: checkValueRelationFunction method

public static int checkValueRelationFunction(RuleCouple rc)
{
int res=0;
RuleType first = rc.getFirstRule();
IPAddressType sourceIPl =
first.getAreaPacket () .getSourceIP();
IPAddressType destIP1 = first.getAreaPacket().getDestIP();
String protol = first.getAreaPacket().getProtocol();

RuleType second = rc.getSecondRule();
IPAddressType sourceIP2 =
second.getAreaPacket () .getSourceIP();
IPAddressType destIP2 = second.getAreaPacket() .getDestIP();
String proto2 = second.getAreaPacket().getProtocol();

if (sourceIPl.equalFields(sourceIP2) &&
destIP1l.equalFields(destIP2) && protol.equals(proto2))
rc.setCoupleRelation(BigInteger.value0f(0));
else if(sourceIPl.isIncludedIn(sourceIP2) &&
destIP1.isIncludedIn(destIP2)) //R1 is included into R2
{
rc.setCoupleRelation(BigInteger.valueOf(1));
RuleType tmp = rc.getFirstRule();
rc.setFirstRule(rc.getSecondRule()) ;
rc.setSecondRule (tmp) ;
}
else if (sourceIP2.isIncludedIn(sourceIP1) &&
destIP2.isIncludedIn(destIP1)) //R2 is included into R1
rc.setCoupleRelation(BigInteger.valueOf(1));

118

Implementation and Validation

else if(sourceIP1.isIncludedIn(sourceIP2) ||
sourceIP2.isIncludedIn(sourceIP1) ||
destIP1.isIncludedIn(destIP2)
|| destIP2.isIncludedIn(destIP1))
rc.setCoupleRelation(BigInteger.valueOf(2));
else rc.setCoupleRelation(Biglnteger.value0f(3));

if (rc.getCoupleRelation()==BigInteger.valueOf (0) &&
rc.isSameAction()==true)
res=-1;

return res;

¥

Method findBestRuleToQuery

This method is based on the considerations and suggestions that we extracted from
the study of all possible cases (see Chapter 6).

The basic idea is to assign to each rule inside the current cluster points depend-
ing on the type of relationships that this rule has with the other rules inside the
cluster. This is because, as we have seen previously, some relationships have ‘more
value’ than others, so they might generate more conflicts. At the end the rule that
has the highest score is selected to be queried by the administrator.

The single scores have been decided based on “trial and error” method: we have
tried some values with different configurations until we found the proper ones to
make the program work correctly.

Listing 8.2: findBestRuleToQuery method

private static RuleType findBestRuleToQuery(List<RuleType>
clusterRules, List<RuleCouple> clusterRuleCouples)
{
int i,index=0,max=-10;
int [] counter = new int[clusterRules.size()];
Arrays.fill(counter, 0);
for(i=0;i<clusterRules.size() ;i++)
{
RuleType rule=clusterRules.get(i);
if (rule.isAsked()==false)

{
for(RuleCouple rc: clusterRuleCouples)
{
if (rc.containsRule(rule))
{

119

Implementation and Validation

if (rc.getCoupleRelation()==BigInteger.valueOf (0))
//contradiction
counter[i]+=4;
if (rc.getCoupleRelation()==BigInteger.value0f(3))
//disjoint
counter [i]++;
if (rc.getCoupleRelation()==BigInteger.valueOf (2))
//correlation
{
if (rc.isSameAction()) //not conflict
counter[i]+=3;
else //conflict
counter[i]+=6;
}
if (rc.getCoupleRelation()==BigInteger.value0f (1))
//dominance
{
if (rc.isSameAction()) //not conflict
{
if (rc.getFirstRule () ==rule)
counter[i]+=4;
else
counter[i]+=2;
}
else //conflict
{
if (rc.getFirstRule()==rule)
counter[i]+=8;
else
counter[i]+=4;

for(i=0;i<counter.length;i++)
{
if (counter[i]>max)
{
index=i;
max=counter[i];
}
+

return clusterRules.get (index);

120

Implementation and Validation

Method query

This method interacts with the administrator in order to receive the response
about a rule. In theory after this method the algorithm should invoke a SAT
solver to prove that the solution is correct or that we reached a solution, but in
our implementation we do not use it.

So, we decided to by-pass this issue by simply printing on the standard output all
the current knowledge (all the correct rules that we are aware in the moment of
the call to this method) and then query the admin about the rule that we passed
as a parameter. Afterwards we take their input as the response assuming 0 means
NO and 1 means YES.

Since this method contains only some prints on the standard output, it is not
shown here but you can look at the code in Appendix e.

Method resolveConflicts

This method is the one that is called to solve the conflicts inside a cluster. It takes
into counsiderations:

e the rule that you have just queried (ruleToQuery), that is the “winner” rule
in the conflicts

e the whole list of conflicts that you are considering at the moment (cluster-
RuleCouples)

e the list of all the rules inside the cluster, since you may have to re-order or
remove some of them

The biggest issue in this function is that while you are reading the list and solving
the conflicts, you are also modifying the list, by removing some of the RuleCou-
ples. This is why you need the do... while structure so that you are able to stop
and restart after you have deleted all the RuleCouples that you need.

Inside this method there are some points where you call the function removeRule-
Couple: this is an auxiliary method that has the purpose to remove the couples
that contain the rule that is passed as a parameter from the list of all RuleCouples.

Throughout the function there are some prints on the standard output that aims
to show the user what is happening and which conflicts are being solved and which
ones are still inside the list.

121

Implementation and Validation

Listing 8.3: resolveConflicts method

private static void resolveConflicts(RuleType ruleToQuery,
List<RuleCouple> clusterRuleCouples, List<RuleType>
clusterRules)

int 1i,j, invert=0;
for(i=0;i<clusterRuleCouples.size() ;i++)
{
RuleCouple couple = clusterRuleCouples.get(i);
if (couple.containsRule(ruleToQuery)) //only for couple
that contain ruleToQuery

{

RuleType otherRule;

invert=0;

System.out.println("SOLVING: (" +
couple.getFirstRule() .getRuleID()+ "," +
couple.getSecondRule() .getRuleID() +") = " +
couple.getCoupleRelation());

do

{

otherRule = null;

otherRule = couple.giveOtherRuleInCouple(ruleToQuery);

if (couple.getCoupleRelation()==BigInteger.value0f (0))
{
clusterRules.remove (otherRule) ;
i--;
break;
}
else
if (couple.getCoupleRelation()==BigInteger.value0f (1))
//dominance
{
if (ruleToQuery.getRulePriority () .intValue ()<
otherRule.getRulePriority() .intValue())
{
clusterRules.remove (otherRule) ;
i--;
break;
}
else //if the winning rule has lower priority you
need to invert the rules
{
invertPriority(ruleToQuery, otherRule,
clusterRules) ;
clusterRuleCouples.remove (couple) ;

122

Implementation and Validation

invert=1;
i--3
break;
}
}

else

if (couple.getCoupleRelation()==BigInteger.value0f(2))
//correlation

{
if (ruleToQuery.getRulePriority() .intValue()>
otherRule.getRulePriority() .intValue())
{
invertPriority(ruleToQuery, otherRule,
clusterRules);
invert=1;

+

clusterRuleCouples.remove (couple) ;
i--;
break;

}

else
if (couple.getCoupleRelation()==BigInteger.value0f(3))
//disjoint

{

clusterRuleCouples.remove (couple) ;
i--;
break;

}
}while(otherRule!=null) ;

if (otherRule!=null && couple!=null)
{
if (couple.getCoupleRelation()==BigInteger.value0f (0))
//contradiction
removeRuleCouple(clusterRuleCouples,otherRule);
else
if (couple.getCoupleRelation()==BigInteger.value0f (1)
&& ruleToQuery.getRulePriority().intValue()<

otherRule.getRulePriority() .intValue() && invert==0)
{

removeRuleCouple(clusterRuleCouples,otherRule);

//this is the case of dominance and the winning
rule has higher priority

123

Implementation and Validation

else
{

System.out.println("DO NOT SOLVE: (" +
couple.getFirstRule() .getRuleID()+ "," +
couple.getSecondRule() .getRuleID() +") = " +
couple.getCoupleRelation()) ;

System.out.println("CONFLICTs remaining: ");
if (tclusterRuleCouples.isEmpty())
{ for(RuleCouple couple : clusterRuleCouples)
System.out.println(" (" +
couple.getFirstRule() .getRuleID()+ "," +
couple.getSecondRule() .getRuleID() +'")= " +
couple.getCoupleRelation());
}
else
System.out.println("NONE") ;

124

Implementation and Validation

8.4 Example with Test Case and Validation

In this part of the chapter, we will see a brief and simple example of how the
program works in order to understand it better. Let’s first consider a few rules
that belong to our firewall that are in conflicts with each other. With this set of
rules let’s run the application.

Table 8.1: Example of rules inside a Firewall

Rule | Source TP Address | Destination IP Address | Action | Priority
R1 1.1.%% 1.2.3.% ALLOW |1
R2 1.1.%* 1.2.3.% DENY 2
R3 1.1.2.1 1.2.3.2 ALLOW | 3
R4 | aloRa 2.5.4.%* DENY 4
R5 3.1.1.* 1.2.3.4 DENY 5)
R6 1.5.4.3 2.5.4.1 ALLOW | 6
R7 3.1.1.3 3.1.1.1 ALLOW | 7
R8 2.1.1.* 2.1.1.1 ALLOW | 8
R9 2.1.1.* 2.1.1.2 ALLOW | 9
R10 2.1.1.* 2.1.1.3 DENY 10
R11 4% ** 5.5.%* ALLOW | 11
R12 | 4.5.*%* Hox KK DENY 12
R13 4.5.1.1 5.9.1.1 ALLOW | 13
R14 4.2.3.1 9.9.3.7 DENY 14

The program will first divide the rules into clusters looking at the intersection
of the rule’s PacketAreas. Based on the IP addresses we will get three clusters, in
order to have a better look at them let’s use a graphical representation of each of

them.

125

Implementation and Validation

R1=R2
R3
% ke
R5
R6
R R10
(a) Cluster 1 (b) Cluster 2

Rt

R4

|:|Rﬂ

(c) Cluster 3

Figure 8.4: Graphical Representation of the Clusters

The program will cycle the cluster list, considering one cluster of rules at the
time since different clusters do not affect each others in terms of conflicts. In this
example we will only focus on Cluster 1, but the same principle can be applied to
the other two.

Now, let’s imagine that when the administrator responds to our queries, they
have in mind the following picture as the solution of the cluster’s conflicts:

Figure 8.5: Solution of Cluster 1

Ri =R2

R3

R4

]

RS

126

Implementation and Validation

After having generated the clusters, the program creates for each cluster all
the possible RuleCouples that can generated given the set of rules that belong to
the cluster. In our case of Cluster 1, since we have 7 rules we have a total of 21
(following the combination without repetition formula).

Table 8.2: RuleCouples generated in Clusterl

(RLR2) | (R1,R3) | (RL,R4) [(R1,R5) | (R1,R6) | (R1,R7) | (R2,R3)
(R2,R4) | (R2,R5) | (R2,R6) | (R2,R7) | (R3,R4) | (R3,R5) | (R3,R6)
(R3,R7) | (R4R5) | (R4,R6) | (R4RT) | (R5.R6) | (R5,R7) | (R6,RT)

Since none of them generate a sub-optimization anomaly of type duplication, we
have to consider all of them. In the next phase of the application, we have to
assign to each of the RuleCouples the relation value through the function check-
ValueRelationFunction. So now, the RuleCouples look like this:

Table 8.3: RuleCouples with Relation Values in Clusterl

(R1,R2) — 0| (R1,R3) = 1 | (R1,R4) — 2 [(R1.R5) — 2 | (R1,R6) =
(R1,R7) = 3 [(R2R3) — 1 | (R2.R4) = 2 | (R2.R5) = 2 | (R2,R6) = 3
(R2,R7) — 3 [(R3.R4) — 2 | (R3,R5) — 3 | (R3,R6) — 3 | (R3,R7) — 3
(R4,R5) = 3 [(RAR6) = 1 | (R4,R7) = 3 | (R5,R6) = 3 | (RB,RT) — 2
(R6,R7) = 3

In Table 8.3 we have also highlighted in red, those couple that are actually in
conflict. These are the conflict that we have to solve before moving on to the next
cluster.

In the next part of the application, we will have to solve the conflicts by querying
the administrator about the rules that are part of this cluster. Thanks to the
method findBestRule ToQuery, we are able to find the rule that is the most advan-
tageous to query. In our case the scores that are assigned by the method to each
rule are:

e Rl =4+4+6+6+1+1=22
e R2=4+8+3+3+1+1=20

R3=2+4+6+1+1+1-=15

R4=6+3+6+1+8+1=25

RO=6+3+1+1+1+6—18

R6=1+1+1+4+1+1=9
127

Implementation and Validation

e R7T=1+1+1+4+1+6+1=11

In the first step, the winner rule is R4, therefore we query the administrator about
it.

Knowing that the solution for this cluster is Figure 8.5, the administrator tells
us that R4 is wrong: this means that there is something inside the packet area
defined by R4 that does not follow R4’s action, which is DENY. Since we are not
able to draw any conclusions about any conflicts, the list of the remaining conflicts
is the same, we just set for R4 the flags asked and response, so that we will skip
and not query again this rule in the next cycle.

Since there are still conflicts remaining, we run again the method findBestRule-
ToQuery to find another rule: this time the function returns R1. When queried,
the administrator responds that R1 is indeed correct (see Figure 8.5), so now the
algorithm will solve the conflicts.

First thing to do is to is to set R1’s the flags asked and response, so that we
will skip and not query again this rule in the next cycle. Then the program calls
the method resolveConflicts: now all the conflicts that contain R1 will be solved
by making R1 the winner rule.

In our case, we have to solve:

e (R1, R2) = 0 — this is a contradiction conflict: R2 is removed. You also

remove all the RuleCouples that contain R2 (this is done by removeRule-
Couple).

e (R1, R3) = 1 — this is a sub-optimization anomalies of type shadow redun-
dancy: R3 is removed. You also remove all the RuleCouples that contain R3
(this is done by removeRuleCouple).

e (R1, R4) = 2 — this is a correlation conflict: nothing changes, since R1 has
already higher priority than RA4.

e (R1, R5) = 2 — this is a correlation conflict: nothing changes, since R1 has
already higher priority than R5.

e (R1, R6) = 3 — this is removed since they do not interact.

(R1, R7) = 3 — this is removed since they do not interact.

After solving all those conflicts, the current situation in the Cluster 1 is the fol-
lowing:

128

Implementation and Validation

Table 8.4: Rules in the Clusterl After Querying R1

Rule | Source IP Address | Destination IP Address | Action | Priority
R1 1.1.%% 1.2.3.% ALLOW | 1
R4 | ol 2.5.4.% DENY 4
R5 3.1.1.% 1.2.3.4 DENY 5
R6 1.5.4.3 2.5.4.1 ALLOW | 6
R7 3.1.1.3 3.1.1.1 ALLOW | 7

Table 8.5: RuleCouples in the Clusterl After Querying R1

(R4,R5) = 3

(R4R6) — 1| (R4,R7) = 3

(R5,R6) = 3

(R5,R7) — 2| (R6,R7) = 3

We still have some conflcts inside the cluster, therefore we need to keep query
the administrator once again. The findBestRuleToQuery method suggests to in-
terrogate about R5. So now, knowing that R1 is correct, hence it should not be
“considered” anymore, R5 is stated to be correct. Hence, after setting R5’s asked
and response, we solve its conflicts:

e (R4, R5) = 3 — this is removed since they do not interact.

e (R5, R6) = 3 — this is removed since they do not interact.

e (R5, R7) = 2 — this is a correlation conflict: nothing changes, since R5 has
already higher priority than R7.

Subsequently to this step, the number of rules inside the Clusterl is the same as
before and the remaining RuleCouples are:

We still have one more conflict: (R4,R6), the other two RuleCouples do not actu-
ally count, since they have coupleRelation equal to 3 which means they are disjoint.
The program also consider the case in which the only remaining RuleCouples are
disjoint, in that case a flag is set and we can exit from the cycle and switch to the
next cluster.

Finally the administrator is asked about R6, following the solution Figure 8.5,
then they answer that R6 is correct. You first set the usual R6’s flags and then
you call the resolveConflicts method.

e (R4, R6) = 1 — this is a shadow conflict: R6 has a lower priority than R4,
so we invert the two rules.

e (R6, R7) = 3 — this is removed since they do not interact.

129

Implementation and Validation

Table 8.6: RuleCouples in the Clusterl After Querying R5

(R4R6) 1| (R4.R7) = 3 | (R6,R7) = 3

Table 8.7: RuleCouples in the Clusterl After Querying R6

(R4,R7) — 3

As said before we check that even if the list of RuleCouples of Clusterl is not
empty, the RuleCouples that are present do not create any conflict. In this case
the only remaining couple (R4, R7) has a relationship value equal to 3, they are
disjoint, therefore it is safe to exit from the cycle and to proclaim that this cluster
is free from conflicts.

The same argument can be done for the other two clusters and also for other
cases of firewalls in different configurations of rules.

Just pay attention that this implementation has no “intelligence” and cannot see
nor verify the constraints between priorities. In order to do that we would need a
SAT solver.

130

Chapter 9

Conclusion

As we have stated before, in literature there were some attempts to solve the issue
of conflicts inside a firewall but, one group of solutions were only detecting the
conflicts |2], the other one tried to solve the anomalies inside the firewall, but in a
completely automatic way|3|, which it may not be the best thing to do, since you
may not follow the administrator’s design.

Throughout this study, we understood why it is not possible to automatize the
process of solving conflicts and why we need the help of the administrator. Even
though we may choose some best practise the last word has to be the administra-
tor’s one.

For these reasons, this project aimed to look for an optmized algorithm to query
the administrator when there are conflicts inside a firewall. Such that, the number
of queries that are going to be made to the administrator are the minimum and
the simplest way possible.

In order to do that, we first started to study the general theoretical problem
on how different rules interact with each other in a firewall and which are all
the possible conflicts that may arise depending on the rule’s actions. From this we
extracted some possible apporaches that were helpuful to determine the algorithm.

Afterwards, we had to face the issue on how to interact with the administra-
tor in order to query them in the “simplest” way possible. Once it was done, we
developped an algorithm that satisfies these conditions.

In the theoretical algorithm we used a SAT solver to bypass the issue of some
conflicts that may not be solved directly but thanks to the constraints applied we
know that they are already solved or correct. This means, that we interrogate the
administrator with the minimum number of queries. The constraints are forced
inside the SAT solver and it assures us the correctness of the solution, therefore
we can exit from the cycle prematurely.

131

Conclusion

However in the implementation we avoided to use a SAT solver, instead we de-
velopped only in Java language. This is a limitation but we accept that in some
cases we might not reach to the solution in the minimum number of queries and
we may need one more query to reach the final solution.

Another limitation is that we did not use efficient methods for the generation
of the RuleCouples, rather we could have adopted some library functions that are
specifically made for combinatorial analysis.

As for future development related in this field, the obvious direction is to im-
plement the algorithm with a SAT solver so that we can actually achieve the
minimum number of queries all the time and not in just specific cases.

Also, we defiined the rules in a static way, not using a database: so, another
further application would be to add databases. A further development would be
to implement REST APIs in order to interact with administrator, since in our
project we just use some prints on the standard output.

132

Bibliography

[1] F. Valenza and M. Cheminod, “An optimized firewall anomaly resolution,” J.
Internet Serv. Inf. Secur., vol. 10, no. 1, pp. 22-37, 2020. |Online|. Available:
https://doi.org/10.22667 /J1S1S.2020.02.29.022

[2] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classification
and analysis of distributed firewall policies,” IEEE Journal on Selected Areas
in Communications, vol. 23, no. 10, pp. 2069-2084, 2005.

[3] H. Hu, G.-J. Ahn, and K. Kulkarni, “Detecting and resolving firewall policy
anomalies,” IEEFE Transactions on Dependable and Secure Computing, vol. 9,
no. 3, pp. 318-331, 2012.

[4] M. Cheminod, L. Durante, L. Seno, and A. Valenzano, “An algorithm for
security policy migration in multiple firewall networks,” in Proceedings of the
Italian Conference on Cybersecurity, ITASEC 2021, All Digital Event, April
7-9, 2021, ser. CEUR Workshop Proceedings, A. Armando and M. Colajanni,
Eds., vol. 2940. CEUR-WS.org, 2021, pp. 344-359. [Online|. Available:
http://ceur-ws.org/Vol-2940/paper29.pdf

[5] Wikipedia, “Eclipse (software).” [Online]. Available: https://en.wikipedia.
org/wiki/Eclipse (software)

[6] S. Security, “The 5 different types of firewalls explained.”
[Online|. Available: https://www.techtarget.com /searchsecurity /feature/
The-five-different-types-of-firewalls

[7] Compuquip, “What is a firewall? the different firewall types &
architectures.” [Online|. Available: https://www.compuquip.com/blog/
types-firewall-architectures

[8] JavaTPoint, “Types of firewall.” [Online|. Available: https://www.javatpoint.
com/types-of-firewall

[9] GeeksforGeeks, “Types of network firewall.” [Online|. Available: https:
/ /www.geeksforgeeks.org/types-of-network-firewall

|10] spiceworks, “What is a firewall? definition,
key components, and best practices.” |Online]. Avail-
able: https:/ /www.spiceworks.com /it-security /web-security /articles/

what-is-firewall-definition-key-components-best-practices/

133

https://doi.org/10.22667/JISIS.2020.02.29.022
http://ceur-ws.org/Vol-2940/paper29.pdf
https://en.wikipedia.org/wiki/Eclipse_(software)
https://en.wikipedia.org/wiki/Eclipse_(software)
https://www.techtarget.com/searchsecurity/feature/The-five-different-types-of-firewalls
https://www.techtarget.com/searchsecurity/feature/The-five-different-types-of-firewalls
https://www.compuquip.com/blog/types-firewall-architectures
https://www.compuquip.com/blog/types-firewall-architectures
https://www.javatpoint.com/types-of-firewall
https://www.javatpoint.com/types-of-firewall
https://www.geeksforgeeks.org/types-of-network-firewall
https://www.geeksforgeeks.org/types-of-network-firewall
https://www.spiceworks.com/it-security/web-security/articles/what-is-firewall-definition-key-components-best-practices/
https://www.spiceworks.com/it-security/web-security/articles/what-is-firewall-definition-key-components-best-practices/

BIBLIOGRAPHY

[11] W3Schools, “Xml schema - intro.” [Online|. Available: https://www.
w3schools.com/xml/schema_ intro.asp

[12] GeeksforGeeks, “Xml basic.” [Online]. Available: https:
/ /www.geeksforgeeks.org/xml-basics/#: ™ :text=Extensible%20Markup%
20Language%20(XML)%20is,and %20usability %20across%20the %20Internet.

[13] Wikipedia, “Sat solver.” [Online|. Available: https://en.wikipedia.org/wiki/
SAT solver

[14] F. Valenza, S. Spinoso, C. Basile, R. Sisto, and A. Lioy, “A formal model
of network policy analysis,” in 2015 IEEE 1st International Forum on Re-

search and Technologies for Society and Industry Leveraging a better tomorrow
(RTSI), 2015, pp. 516-522.

[15] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Short
paper: Automatic configuration for an optimal channel protection
in virtualized networks,” in Proceedings of the 2nd Workshop on
Cyber-Security Arms Race, ser. CYSARM’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 25-30. [Online|. Available:
https://doi.org/10.1145/3411505.3418439

[16] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Au-
tomated firewall configuration in virtual networks,” IEEE Transactions on
Dependable and Secure Computing, pp. 1-1, 2022.

[17] F. Valenza, S. Spinoso, and R. Sisto, “Formally specifying and checking
policies and anomalies in service function chaining,” Journal of Network
and Computer Applications, vol. 146, p. 102419, 2019. [Online|. Available:
https://www.sciencedirect.com/science/article/pii/S108480451930253X

[18] D. Bringhenti and F. Valenza, “Optimizing distributed firewall reconfiguration
transients,” Computer Networks, vol. 215, p. 109183, 2022. [Online|. Available:
https://www.sciencedirect.com/science/article/pii/S138912862200281X

[19] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and J. Yusupov,
“Improving the formal verification of reachability policies in virtualized net-
works,” IEEE Transactions on Network and Service Management, vol. 18,
no. 1, pp. 713-728, 2021.

[20] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Towards
a fully automated and optimized network security functions orchestration,”
in 2019 jth International Conference on Computing, Communications and

Security (ICCCS), 2019, pp. 1-7.

[21] F. Valenza, C. Basile, D. Canavese, and A. Lioy, “Classification and analysis
of communication protection policy anomalies,” IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 2601-2614, 2017.

134

https://www.w3schools.com/xml/schema_intro.asp
https://www.w3schools.com/xml/schema_intro.asp
https://www.geeksforgeeks.org/xml-basics/#:~:text=Extensible%20Markup%20Language%20(XML)%20is,and%20usability%20across%20the%20Internet.
https://www.geeksforgeeks.org/xml-basics/#:~:text=Extensible%20Markup%20Language%20(XML)%20is,and%20usability%20across%20the%20Internet.
https://www.geeksforgeeks.org/xml-basics/#:~:text=Extensible%20Markup%20Language%20(XML)%20is,and%20usability%20across%20the%20Internet.
https://en.wikipedia.org/wiki/SAT_solver
https://en.wikipedia.org/wiki/SAT_solver
https://doi.org/10.1145/3411505.3418439
https://www.sciencedirect.com/science/article/pii/S108480451930253X
https://www.sciencedirect.com/science/article/pii/S138912862200281X

BIBLIOGRAPHY

[22] C. Basile, D. Canavese, A. Lioy, and F. Valenza, “Inter-technology conflict
analysis for communication protection policies,” in Risks and Security of In-
ternet and Systems, J. Lopez, 1. Ray, and B. Crispo, Eds. Cham: Springer
International Publishing, 2015, pp. 148-163.

[23] E. Karafili, F. Valenza, Y. Chen, and E. C. Lupu, “Towards a framework
for automatic firewalls configuration via argumentation reasoning,” in NOMS
2020 - 2020 IEEE/IFIP Network Operations and Management Symposium,
2020, pp. 1-4.

135

Appendices

136

Appendix A

In this appendix we will show the list of all possible cases that was used in Chapter
6, both at the beginning of the study and also at the end of the considerations.

a Initial List

R1,R2
R1,R2
R1,R2
R1.R2
R1,R2
R1,R2
R1,R2
R1,R2
R1,R2
10. (R1,R2
11. (RL,R2
12. (R1,R2
13. (R1,R2
14. (R1,R2
15. (R1,R2
16. (R1,R2

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
17. (R1,R2
18. (R1,R2

) B (
) B
) B (
) —E—
) B
) —E—
) B (
) B (
)~ (
) B (
) B (
) B
) —E—
) =B (
) B (
)~ (
) B (
) —E—

R2R3) = E —
R2R3) = E —
R2R3) = E —
R2R3) = E —
R2R3) = E —
R2,R3) = DM
R2,R3) — DM
R2,R3) = DM
R2,R3) = DM
R2,R3) = DM
R3,R2) = DM
R3,R2) = DM
R3,R2) = DM
R3,R2) — DM
R3,R2) = DM
R2,R3) =

R2,R3) =

R2,R3) =

(R1,R3) = E
(R1,R3) = DM
(R3,R1) = DM
(RL,R3) = C
(R1,R3) = DJ
— (RLR3) = E
— (RL,R3) = DM
— (R3,R1) = DM
~ (RLR3) = C
— (R1,R3) = DJ
— (RLR3) = E
— (R1,R3) = DM
— (R3,R1) = DM
— (RL,R3) = C
— (RL,R3) = DJ

—~C— (RLR3) = E
— C — (R1,R3) = DM
— C — (R3,R1) = DM

137

Appendix A

- Z 2
© A ﬂ T
[l [l
T 5 & EE
i R R R
— —
n(n\ m S— S— SN—
L
o U A A)
[l [l [[l [
M M M T w
o -
o (@] (@] [N [N
E 2 EE &
ol
m m 62 S m
[l [l [[l [
N N N adw
S
— — — — —
EEEEE
e = ™ o7
i N o (@] [N

24. (RLR2) = E — (R2R3) = DJ — (R1,R3) = C

25. (R1,R2) = E — (R2,R3) = DJ — (R1,R3) = DJ

26. (R1,R2) = DM — (R2,R3) = E — (R1,R3) = E

DM — (R2,R3) — E — (R1,R3) — DM

27. (R1,R2)

28. (R1,R2) = DM — (R2,R3) = E — (R3,R1) = DM

29. (R1,R2) = DM — (R2,R3) = E — (R1,R3) = C

30. (R1,R2) = DM — (R2,R3) = E — (R1,R3) = DJ

31. (R1,R2) = DM — (R2,R3) = DM — (R1,R3) = E

DM — (R1,R3) = DM

DM — (R2,R3)

32. (R1,R2)

DM — (R3,R1) = DM

DM — (R2,R3)

33. (R1,R2)

DM — (R1,R3) = C

DM — (R2,R3)

34. (R1,R2)

DM — (R1,R3) = DJ

DM — (R2,R3)

35. (R1,R2)

E

DM — (R1,R3)

36. (R1,R2) — DM — (R3,R2)

37. (R1,R2) = DM — (R3,R2) = DM — (RL,R3) = DM

38. (R1,R2) = DM — (R3,R2) = DM — (R3,R1) = DM

39. (R1,R2) = DM — (R3,R2) = DM — (R1,R3) = C

40. (R1,R2) = DM — (R3,R2) = DM — (R1,R3) = DJ

41. (R1,R2) = DM — (R2,R3) = C — (RL,R3) = E

42. (RL,R2) = DM — (R2,R3) = C — (R1,R3) = DM

43. (R1,R2) = DM — (R2,R3) = C — (R3,R1) = DM

44, (R1,R2) = DM — (R2,R3) = C — (RL,R3) = C

C— (R1,R3) = DJ

DM — (R2,R3)

45. (R1,R2)

=E

DJ — (R1,R3)

DM — (R2,R3)

46. (R1,R2)

138

Appendix A

DM

DJ — (R1,R3)

DM — (R2,R3)

47. (RLR2)

DJ — (R3,R1) = DM

DM — (R2,R3)

48. (R1,R2)

DJ — (R1,R3) = C

DM — (R2,R3)

49. (R1,R2)

DJ — (R1,R3) = DJ

DM — (R2,R3)

R1,R2)

DM — (R2,R3) = E — (R1,R3) = E

R2,R1)

DM — (R2,R3) = E — (RL,R3) = DM

R2,R1)

DM — (R2,R3) = E — (R3,R1) = DM

R2,R1)

~— Ot e’ SN

DM — (R2,R3) = E — (R1,R3) = C

54. (R2,R1)

DM — (R2,R3) — E — (R1,R3) — DJ

55. (R2,R1)

56. (R2,R1) = DM — (R2,R3) = DM — (RL,R3) = E

57. (R2,R1) = DM — (R2,R3) = DM — (RL,R3) = DM

58. (R2,R1) = DM — (R2,R3) = DM — (R3,R1) = DM

59. (R2,R1) = DM — (R2,R3) = DM — (R1,R3) = C

DM — (R1,R3) = DJ

DM — (R2,R3)

60. (R2,R1)

=E

DM — (R1,R3)

DM — (R3,R2)

61. (R2,R1)

DM — (R1,R3) = DM

DM — (R3,R2)

62. (R2,R1)

DM — (R3,R1) = DM

DM — (R3,R2)

63. (R2,R1)

DM — (R1,R3) = C

64. (R2,R1) — DM — (R3,R2)

65. (R2,R1) = DM — (R3,R2) = DM — (R1,R3) = DJ

66. (R2,R1) = DM — (R2,R3) = C — (R1,R3) = E

DM — (R2,R3) = C — (R1,R3) = DM

67. (R2,R1)

DM — (R2,R3) = C — (R3,R1) = DM

68. (R2,R1)

69. (R2,R1) = DM — (R2,R3) = C — (RLR3) = C

70. (R2,R1) = DM — (R2,R3) = C — (RL,R3) = DJ

71. (R2R1) = DM — (R2,R3) = DJ — (R1,R3) = E

72. (R2,R1) = DM — (R2,R3) = DJ — (R1,R3) = DM

DM

DM — (R2,R3) = DJ — (R3,R1)

73. (R2,R1)

=C

DJ — (R1,R3)

DM — (R2,R3)

74. (R2,R1)

139

Appendix A

DJ — (R1,R3) = DJ

DM — (R2,R3)

75. (R2,R1)

=E

E — (R1,R3)

C — (R2,R3)

76. (R1,R2)

E — (R1,R3) = DM

C — (R2,R3)

77. (R1,R2)

E — (R3,R1) = DM

C — (R2,R3)

78. (R1,R2)

E — (R1,R3) = C

79. (RL,R2) = C — (R2,R3)

E— (R1,R3) = DJ

80. (R1,R2) = C — (R2,R3)

DM

81. (R1,R2) = C — (R2,R3) = DM — (RLR3) = E
82. (R1,R2) = C — (R2,R3) = DM — (RL,R3)

83. (R1,R2) — C — (R2,R3) — DM — (R3,R1) — DM

84. (RLR2) = C — (R2,R3) = DM — (R1,R3) = C

85. (RL,R2) = C — (R2,R3) = DM — (RL,R3) — DJ

86. (R1,R2) = C — (R3,R2) = DM — (R1,R3) = E

87. (R1L,R2) — C — (R3,R2) = DM — (R1,R3) — DM

C — (R3,R2) = DM — (R3,R1) = DM

88. (R1,R2)

=C

DM — (R1,R3)

C — (R3,R2)

89. (R1,R2)

DM — (R1,R3) = DJ

C — (R3,R2)

90. (R1,R2)

E

C — (RL,R3)

C — (R2,R3)

91. (R1,R2)

C — (R2,R3) — C — (R1,R3) — DM

92. (R1,R2)

DM

93. (R1,R2) = C — (R2,R3) = C — (R3,R1)

94. (R1,R2) = C — (R2,R3) = C — (R1,R3) = C

95. (R1,R2) = C — (R2,R3) = C — (R1,R3) = DJ

96. (R1,R2) = C — (R2,R3) = DJ — (R1,R3) = E

97. (R1,R2) = C — (R2,R3) = DJ — (R1,R3) = DM

98. (R1,R2) = C — (R2,R3) = DJ — (R3,R1) = DM

99. (R1,R2) = C — (R2,R3) = DJ — (R1,R3) = C

100. (R1,R2) = C — (R2,R3) = DJ — (R1,R3) = DJ

DJ — (R2,R3) = E — (R1,R3) = E

101. (R1,R2)

E — (R1,R3) = DM

DJ — (R2,R3)

102. (R1,R2)

140

Appendix A

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

(R1,R2) = DJ — (R2,R3) = E — (R3,R1) — DM
(R1,R2) = DJ — (R2R3) = E — (R1,R3) = C
(R1,R2) = DJ — (R2R3) = E — (R1,R3) — DJ
(R1,R2) = DJ — (R2,R3) = DM — (R1,R3) — E
(R1,R2) — DJ — (R2,R3) — DM — (R1,R3) — DM
(R1,R2) = DJ — (R2,R3) — DM — (R3,R1) — DM
(R1,R2) — DJ — (R2,R3) — DM — (R1,R3) — C
(R1,R2) = DJ — (R2,R3) — DM — (R1,R3) — DJ
(R1,R2) = DJ — (R3,R2) = DM — (R1,R3) — E
(R1,R2) = DJ — (R3,R2) — DM — (R1,R3) — DM
(R1,R2) = DJ — (R3,R2) — DM — (R3,R1) — DM
(R1,R2) = DJ — (R3,R2) = DM — (R1,R3) = C
(R1,R2) = DJ — (R3,R2) = DM — (R1,R3) — DJ
(R1,R2) = DJ — (R2,R3) = C — (RL,R3) = E
(R1,R2) = DJ — (R2,R3) = C — (R1,R3) — DM
(R1,R2) — DJ — (R2,R3) — C — (R3,R1) — DM
(R1,R2) = DJ — (R2R3) = C — (RL,R3) = C
(R1,R2) — DJ — (R2R3) — C — (R1,R3) — DJ
(R1,R2) = DJ — (R2,R3) = DJ — (R1,R3) — E
(R1,R2) = DJ — (R2,R3) — DJ — (R1,R3) — DM
(R1,R2) = DJ — (R2,R3) — DJ — (R3,R1) = DM
(R1,R2) = DJ — (R2,R3) = DJ — (R1,R3) = C

(R1,R2) = DJ — (R2,R3) = DJ — (RL,R3) — DJ
141

Appendix A

b Final List

7. (R1,R2)

19.
27.
32.
36.
39.
42.
44.
45.
47.
49.
57.
29.
69.
82.
84.
85.
89.
92.
93.
94.
95.
97.

R1,R2
R1,R2
R1,R2

=

1,R2

=

1,R2

=]

1,R2

=]

1,R2

=

1,R2

]

1,R2

=]

1,R2

T X

2.R1
R2,R1

j=9]

1.R2
R1,R2
R1,R2
R1,R2
R1,R2
R1,R2
R1,R2

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(R1,R2
(

) =
) =
)
)
)
)
)
)
)
)
2,R1)
)
)
) =
) =
) =
) =
) =
) =
) =
) =
) =

R1,R2

142

— E — (R2,R3) = DM — (R1,R3) = DM
E— (R2R3) = C — (R1,R3) = C
DM — (R2,R3) = E — (R1,R3) = DM
— DM — (R2,R3) = DM — (R1,R3) = DM
— DM — (R3,R2) = DM — (R1,R3) = E
— DM — (R3,R2) = DM — (R1,R3) = C
— DM — (R2,R3) = C — (R1,R3) = DM
— DM — (R2,R3) = C — (R1,R3) = C
— DM — (R2,R3) = C — (R1,R3) = DJ
— DM — (R2,R3) = DJ — (R1,R3) = DM
— DM — (R2,R3) = DJ — (R1,R3) = C
— DM — (R2,R3) = DM — (R1,R3) = DM
— DM — (R2,R3) = DM — (R1,R3) = C
— DM — (R2,R3) = C — (R1,R3) = C
C — (R2,R3) = DM — (R1,R3) = DM
— (R2,R3) = DM — (R1,R3) = C
— (R2,R3) = DM — (R1,R3) = DJ
— (R3,R2) = DM — (R1,R3) = C
— (R2,R3) = C — (R1,R3) = DM
— (R2,R3) = C — (R1,R3) = DM
— (R2,R3) = C — (R1,R3) = C
~ (R2,R3) = C — (R1,R3) —
— (R2,R3) = DJ — (R1,R3) = DM

Appendix B

In this appendix we will show and discuss all the methods and functions that are
used in the implementation of our program in further details.

a Method intersect

This method is used in order to determine the clusters of rules: we keep reading
and adding Rules to the same cluster if it does not belong to any other cluster
(ClusterID = -1) and if the current Rule’s PacketArea has an intersection with
Cluster’s Packet Area. So, you need to check it for all the Rules that belong to the
cluster.

An intersection can occur if the two rules have an equivalent IP address inter-
val, either just source or destination addresses or both, but also if one IP address
interval includes the other one.

Listing 1: intersect method

public static boolean intersect (Cluster cluster, RuleType rule)
{
boolean res=false;
for (PacketAreaType CLareaPacket : cluster.getPacketArea())
{
IPAddressType clusterIPS
IPAddressType clusterIPD

CLareaPacket.getSourceIP();
CLareaPacket.getDestIP();

IPAddressType rulelPS
IPAddressType rulelIPD

rule.getAreaPacket () .getSourceIP();
rule.getAreaPacket () .getDestIP();

if (ruleIPS.equalFields(clusterIPS) &&
ruleIPD.equalFields(clusterIPD))
{
res=true;
break;
}
else if(ruleIPS.equalFields(clusterIPS) ||
ruleIPD.equalFields(clusterIPD))

143

Appendix B

{
res=true;
break;
+
else if(ruleIPS.isIncludedIn(clusterIPS) ||
ruleIPD.isIncludedIn(clusterIPD))
{
res=true;
break;
+
else if(clusterIPS.isIncludedIn(ruleIPS) ||
clusterIPD.isIncludedIn(ruleIPD))
{
res=true;
break;
}
}

return res;

}

b Methods generate and helper

These two methods are displayed together since they are tightly linked: generate
is the wrapper function that calls the recursive method helper that generates all
the possible RuleCouples following the combinatorial analysis formula of the com-
bination without repetition.

These functions were taken from the internet and then modified for our purposes.

Considering that they are recursive, they might not be the most efficient solu-
tion, but in our case we accept their cost since they are easy to use. Also you
might want to consider to use libraries such as CombinatoricsLib, Guava and
ApacheCommons, that are specifically designed to perform combinatorial calculus
and analysis, therefore more efficient and performant.

Listing 2: generation method

public static ArrayList<RuleCouple> generate(int n, int k, int
cl)
{
ArrayList<RuleCouple> combinations = new ArrayList<>();
helper(combinations, new RuleTypelk], 0, n - 1, 0, cl);
return combinations;

144

Appendix B

Listing 3: helper method

private static void helper(ArrayList<RuleCouple> combinations,

RuleType datal[l, int start, int end, int index, int clusterID)
{

if (index == data.length)
{
RuleTypel[] combination = data.clone();
RuleCouple rc = new
RuleCouple (BigInteger.valueOf (combinations.size()+1));
rc.setFirstRule(combination[0]);
rc.setSecondRule(combination[1]);
rc.setCoupleRelation(BigInteger.valueOf(-1));
if (combination[0] .getAction()==combination[1].getAction())
rc.setSameAction(true);
else
rc.setSameAction(false) ;

combinations.add(rc);
} else {
int max = Math.min(end, end + 1 - data.length + index);
for (int i = start; i <= max; i++) {
datal[index]=
allcluster.get(clusterID) .getClusterRules() .get(i);
helper(combinations, data, i + 1, end, index + 1,
clusterID);

145

Appendix B

¢ Method findMinPriorityRule

This method is an auxiliary function that is used to find the rule with a lower
priority inside a RuleCouple (passed as a parameter). The method returns this
rule.

It is used after generating assigning the relationship value to the RuleCouple, if
the method checkValueRelationFunction returns 1, then it is the case of a sub-
optimization anomaly of type duplication and we need to remove it. So, we elim-
inate the rule with a lower priority in the RuleCouple, in order to find this Rule
we use this method.

Listing 4: findMinPriorityRule method

public static RuleType findMinPriorityRule(RuleCouple rc)
{
RuleType rulel = rc.getFirstRule();
RuleType rule2 = rc.getSecondRule();
if (rulel.getRulePriority() .intValue()
<rule2.getRulePriority() .intValue())
return rule2;
else
return rulel;

d Method removeRuleCouple

This method is called to remove all the RuleCouples that contain a certain Rule
otherRule. Hence, it must be used when there is:

e duplication anomaly = you remove the lower priority Rule, then you must
remove also all the RuleCouples that contain that Rule.

e contradiction = you remove the loser Rule, then you must remove also all
the RuleCouples that contain that Rule.

e shadow conflict = the winning rule has a higher priority, therefore you must
remove the lower priority Rule and also all the RuleCouple that contain that
Rule.

146

Appendix B

Listing 5: removeRuleCouple method

private static void removeRuleCouple(List<RuleCouple>
clusterRuleCouples, RuleType otherRule)
{
int 1i;
ArrayList<RuleCouple> listToRemove = new
ArrayList<RuleCouple>();
for (RuleCouple couple: clusterRuleCouples)
{
if (couple.containsRule (otherRule))
listToRemove.add(couple);
}
clusterRuleCouples.removeAll (1istToRemove) ;

}

e Method query

This method was mentioned in Chapter 8.3, now we can have a look at the code
implementation.

Listing 6: query method

private static int query(Scanner input, RuleType ruleToQuery,
List<RuleType> correctRules, List<RuleType> clusterRules)
{
System.out.println("Given the fact that these rules are
correct:");
if (correctRules!=null)

{
for (RuleType rule: correctRules)
{
String action="";
if (rule.getAction() .intValue()==0)
action="DENY";
else
action="ALLOW";
System.out.println("RuleID: " + rule.getRuleID() + " -
action: " + action);
}
}
else
{
System.out.println("NONE") ;
}

147

Appendix B

System.out.println("Is R" + ruleToQuery.getRuleID()+"
correct?");
System.out.print ("Admin, please answer (yes=1/no=0): ");
int answer = input.nextInt();
return answer;

f Method getRuleByID

This method is used to retrieve the index inside the list of the Cluster’s Rules of
the Rule that you have to query. It is used right after the method query.

Listing 7: getRuleByID method

public static int getRuleByID (BigInteger ruleID, int indexCL)
{
int i,index=0;
RuleType find=null;
for(RuleType rule: allrules)
{
if (rule.getRuleID()==rulelD)
{
find=rule;
break;
}
}
for(i=0;
i<allcluster.get (indexCL) .getClusterRules() .size() ;i++)
{
if (find==allcluster.get(indexCL) .getClusterRules() .get(i))
index=1i;
}
return index;

+

148

Appendix B

g Method invertPriority

This method is used to swap the priorities of two rules when the winner rule in a
conflict has a lower priority. We use the method sort to reorder the Rules inside
the cluster.

Listing 8: invertPriority method

private static void invertPriority(RuleType winner, RuleType
loser, List<RuleType> clusterRules)
{
BigInteger tmp = loser.getRulePriority();
for(RuleType rule: clusterRules)
{
if (rule==winner)
rule.setRulePriority(tmp) ;
else if(rule==loser)
rule.setRulePriority(winner.getRulePriority());
}
Collections.sort(clusterRules);

}

h Method findLastRule

When the program has received from the administrator N-1 negative responses,
then we can avoid asking the last remaining rule since we know for sure that this
is going to be correct. However we still need to find the Rule that is still to not
queried, in order to solve its conflicts as if we received a positive response from the
administrator.

Listing 9: findLastRule method

private static RuleType findLastRule(List<RuleType> clusterRules)

{
for(RuleType rule: clusterRules)

{
if (rule.isAsked()==false)
return rule;

}

return null;

}

149

Appendix B

i Method algorithm

This is the main code of the application in which the methods are called.

Listing 10: algorithm method

private static void algorithm()

{
int 1i,j, cluster_count=0, issafe=0, queriedAll=0,notconflict=0;
Scanner input = new Scanner(System.in);

//1. clusters’ creation
for(i=0;i<allrules.size() ;i++)
{
if (allrules.get (i) .getClusterID() == BigInteger.valueOf(-1))
{
RuleType rule = allrules.get(i);
cluster_count++;
Cluster cl = new
Cluster(BigInteger.valueOf (cluster_count));
cl.getClusterRules() .add(rule);
rule.setClusterID(BigInteger.valueOf (cluster_count)) ;
cl.getPacketArea() .add(rule.getAreaPacket());
for(j=i+1;j<allrules.size();j++)
{
if (allrules.get(j) .getClusterID()==
BigInteger.valueOf(-1) &&
intersect(cl,allrules.get(j)))
{
cl.getClusterRules() .add(allrules.get(j));
allrules.get(j).setClusterID(BigInteger.
valueOf (cluster_count)) ;
cl.getPacketArea() .add(allrules.get (j) .getAreaPacket());
}
}
allcluster.add(cl);
}
}

//2. RuleCouple’s generation inside each cluster
for(i=0;i<allcluster.size();i++)
{
int ¢l = 1i;
ArrayList<RuleCouple> rulecouples =
generate(allcluster.get (i) .getClusterRules() .size(),2,cl);
RuleType ruleToRemove;
do

150

Appendix B

{
ruleToRemove = null;
for(RuleCouple rc: rulecouples)
{
if (rc.getCoupleRelation().signum() < 0)
{
int res= checkValueRelationFunction(rc);
if(res == -1)
{
ruleToRemove = findMinPriorityRule(rc);
break;
}
}
}

if (ruleToRemove != null)

{
allcluster.get (i) .getClusterRules () .remove (ruleToRemove) ;
removeRuleCouple (rulecouples,ruleToRemove) ;

+
}while (ruleToRemove != null);

allcluster.get (i) .getClusterRuleCouples() .addAl1l(rulecouples);
}

/*print to see the relationship values, used to check if
everything is correctx*/
for(Cluster cluster : allcluster)
{
for (RuleCouple couple : cluster.getClusterRuleCouples())
System.out.println("COUPLES: (" +
couple.getFirstRule() .getRuleID()+ "," +
couple.getSecondRule() .getRuleID() +") = " +
couple.getCoupleRelation());

//3. solve the conflicts in each cluster
for(i=0;i<allcluster.size() ;i++)
{
issafe=0; //reset flag
ArrayList<RuleType> correctRules = new ArrayList<RuleType>();
while((!allcluster.get(i).getClusterRuleCouples() .isEmpty())
&& issafe==0)
{

151

Appendix B

RuleType ruleToQuery =
findBestRuleToQuery(allcluster.get (i) .getClusterRules(),
allcluster.get (i) .getClusterRuleCouples());

int answer = query(input,ruleToQuery,correctRules,
allcluster.get (i) .getClusterRules());

int index= getRuleByID(ruleToQuery.getRuleID(),i);

if (answer==1) //the rule is correct
{
allcluster.get(i).getClusterRules() .get (index)
.setAsked (true);
allcluster.get (i) .getClusterRules() .get (index)
.setResponse (true);
resolveConflicts(ruleToQuery,
allcluster.get (i) .getClusterRuleCouples(),
allcluster.get (i) .getClusterRules());
correctRules.add(ruleToQuery) ;
//new order of rule priority:
for (RuleType rule: allcluster.get(i).getClusterRules())
System.out.println('"rule: "+ rule.getRuleID() + "
priority: " + rule.getRulePriority());

}

else //the rule is wrong

{
allcluster.get (i) .getClusterRules() .get (index)

.setAsked(true);
allcluster.get (i) .getClusterRules() .get (index)
.setResponse(false);
queriedAll=0;
for(RuleType rule: allcluster.get(i).getClusterRules())
{
if (rule.isAsked()==false)
queriedAll=1;
}
if (queriedAl11==0) //if you queried all rules, then you
have to restart
{
for (RuleType rule: allcluster.get(i).getClusterRules())
{
if (rule.isResponse()==false)
rule.setAsked(false);
}
}
int count=0;
//check how many negative answers you received
for (RuleType rule: allcluster.get(i).getClusterRules())

152

Appendix B

{
if (rule.isAsked()==true && rule.isResponse()==false)
count++;

//if count == N-1 then you may skip the last query
if (count==allcluster.get (i) .getClusterRules() .size()-1)
{
RuleType winningRule =
findLastRule(allcluster.get (i) .getClusterRules());
resolveConflicts(winningRule,
allcluster.get (i) .getClusterRuleCouples(),
allcluster.get(i).getClusterRules());
correctRules.add(winningRule) ;
allcluster.get(i).getClusterRules() .get (index)
.setAsked (true) ;
allcluster.get (i) .getClusterRules() .get (index)
.setResponse(true) ;
for (RuleType rule: allcluster.get(i).getClusterRules())
{
if (rule.isResponse()==false)
rule.setAsked(false) ;

//if there are no more conflict

if (allcluster.get (i) .getClusterRuleCouples() .isEmpty())
issafe=1;

notconflict=1;

//print the remaining conflict in the cluster
for(RuleCouple couple :
allcluster.get (i) .getClusterRuleCouples())

{

System.out.println("REMAINING CONFLICT: (" +
couple.getFirstRule() .getRuleID()+ "," +
couple.getSecondRule() .getRuleID() +") = " +
couple.getCoupleRelation()) ;

if (couple.isSameAction()==false &&
couple.getCoupleRelation() != BigInteger.valueOf(3))

{

notconflict=0;
}
}

if (notconflict==1)

153

Appendix B

issafe=1;
}
b
input.close();
System.out.println("No more conflicts in the firewall!");

154

	List of Figures
	List of Tables
	Listings
	Introduction
	Thesis Introduction
	Thesis Description

	Firewalls
	Firewall: General
	Access Control Criteria
	Types of Firewalls
	Packet Filtering Firewalls
	Circuit-Level Gateways
	Application-Level Gateways (Proxy Firewalls)
	Stateful Inspection Firewalls
	Next-Generation Firewalls (NGFW)

	Final

	Conflict Analysis
	Rule Relations
	Anomalies
	Sub-Optimization Anomalies
	Conflict Anomalies

	Other Solutions
	Al-Shaer, Hamed, Boutaba, and Hasan
	Hu and Ahn
	Cheminod, Durante, Seno and Valenzano

	Thesis Objective
	Problem Definition and Methodology
	Which First: Simplify or Filter
	Conflict Types or Configurations
	Priority or not Priority
	Order
	Considerations
	Analysis and Considerations on Rule Relationships

	Case Study Analysis
	The Proposed Approach
	Find the Best Rule
	How to Query the Administrator
	Algorithm

	Implementation and Validation
	Setup and Environment
	Main Classes and Data Objects
	Important Functions
	Example with Test Case and Validation

	Conclusion
	Bibliography
	Appendices
	Appendix A
	Initial List
	Final List
	Appendix B
	Method intersect
	Methods generate and helper
	Method findMinPriorityRule
	Method removeRuleCouple
	Method query
	Method getRuleByID
	Method invertPriority
	Method findLastRule
	Method algorithm

