
Master’s Degree in Computer Engineering

Master Degree Thesis

Automating the Deployment of Security
Functions in Virtualized Networks

Supervisors
Prof. Riccardo SISTO
Prof. Fulvio VALENZA
Prof. Daniele BRINGHENTI

Candidate
Yasser HOBBALLAH

Academic Year 2021-2022

Summary

New frameworks that are developed daily must adhere to a specification, meaning
that the framework should ensure certain expectations are satisfied.Usually, a
developer goes through a process to establish the correct operation of a particular
framework. This process, verification and validation, is typical in software to ensure
that the software acts as expected. There are many techniques for verification and
validation, one of which is software testing. Others may include testing at the logical
level or even deploying the framework/software to be tested in specific conditions
that replicate the conditions of a production real environment. However, regarding
virtual environment creation, there is no standard process in the literature to create
such an environment, and it largely depends on where the testing is performed.
Some organizations may reproduce the whole physical environment (thus paying a
lot of costs) to test a framework. Other organizations with limited resources may
need to find alternative solutions such as virtual machines or containers. Building a
virtual environment comes with many challenges, and a complexity that is difficult
to manage. This thesis will target this challenges and try to solve them.

This thesis contributes to developing and testing VEREFOO (VErified REFine-
ment and Optimized Orchestration), a framework that aims to provide a Security
Automation approach. Currently, the VEREFOO framework supports mainly the
firewall feature of security automation. The thesis focuses primarily on the following
aspects, testing the low-level configurations of firewalls produced by the framework,
then developing a testing environment that is cost-effective, dynamic, and can be
deployed with minimal resources to test such framework correctly. Although the
designed virtual environment is explicitly tailored to test firewall configurations
produced by the framework, it can be further extended to test other frameworks.
Furthermore, we combine the different stand-alone parts (GUI-virtual environment-
VEREFOO firewall output...) of the VEREFOO framework into a single process
through a demo demonstration.

This thesis will show how framework testing in virtual environments can be
improved, extended, and better classified concerning automation aspects. The main
contribution lays in the investigation of, and the improvement in, issues related to
achieving a high level of automation, which will be evident at the end of this thesis

ii

by presenting a developed translator algorithm customized for creating a virtual
environment exploiting automation to the maximum.

iii

Acknowledgements

I would like to acknowledge everyone who played a role in my academic accomplish-
ments. Firstly, my parents, who supported me since the beginning of my studies.
Secondly i would like to thank my academic supervisors Riccardo Sisto, Fulvio
Valenza and Daniele Bringhenti, which of whom have provided patient advice and
guidance throughout the research process. Thank you all for your unwavering
support.

Yasser Hobballah

iv

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Background: VEREFOO Framework 3
2.1 Introduction . 3
2.2 VEREFOO Objectives . 4
2.3 VEREFOO High-Level Operation 5
2.4 Limitations of the VEREFOO . 6

3 Background: Virtual Environment 8
3.1 Virtual Environment For Testing 8
3.2 Virtualization Technologies Key Concepts 9
3.3 Comparing Virtualization Technologies 11
3.4 Tools . 13

3.4.1 Vbox Manage . 15
3.4.2 OpenStack Automation with Ansible 18
3.4.3 Docker Container CLI . 19
3.4.4 Docker Compose . 21
3.4.5 Kuberneutes and Kompose 22

3.5 Firewall Testing Tools . 22
3.5.1 Injection Tools . 22
3.5.2 Sniffing Tools . 23

4 Thesis Objective 25
4.1 Exhaustive Testing . 25
4.2 Demo Presentation And Translator Algorithm 26

vi

5 Verification and Validation of low level configuration output 27
5.1 Testing Purpose . 27
5.2 Testing Approach . 27
5.3 Finding Test Cases Abstractions . 28

5.3.1 Finding firewall Parameters 28
5.3.2 Test Case Abstractions . 31

5.4 Test Case Generation based on Reference Topology 34
5.4.1 Finding the Right Topology 34
5.4.2 Test Case Generation . 36

5.5 Correction of translation Code . 41
5.6 Building of Test Environment . 42

5.6.1 Implementation of Virtual Environment 44
5.6.2 Testing using Hping3 . 47
5.6.3 Tests evaluation . 48
5.6.4 Environment Fidelity Effect 49

5.7 Routing in Virtual Environment (Enhancement) 51
5.7.1 Routing Functionalities in Containers 51
5.7.2 Dynamic Routing Algorithm and Tool 52
5.7.3 RIP Routing Protocol . 54
5.7.4 Rip Protocol in Virtual Environment 57

6 VEREFOO Demo And Translator Algorithm 59
6.1 Background . 59
6.2 Full Demo Topology . 61
6.3 Full Demo Components . 63
6.4 Full Virtual Environment . 65
6.5 Running the Demo . 68
6.6 Translator Algorithm . 69

6.6.1 Introduction . 69
6.6.2 Network Topology Knowledge 70
6.6.3 Building The Algorithm . 72
6.6.4 Firewall Allocation schema Input 73
6.6.5 Implementation of Translator 76
6.6.6 Advantages And Limitations 82
6.6.7 Translator Testing . 83

7 Conclusions 86
7.1 Achieved Objectives . 86
7.2 Future Work . 87

Bibliography 88

vii

A Open Issues 91
A.1 Test Replication . 91
A.2 Open Issues . 92

viii

List of Figures

2.1 Verefoo Process . 5

3.1 Virtual Machines . 9
3.2 Container on host operating system 10
3.3 Compare different building blocks for virtual network 13

5.1 XML element schema . 29
5.2 Policy Trees . 31
5.3 small-business network-topology figure depicted from 35
5.4 Reference Network Topology . 35
5.5 Reference Network Topology . 43
5.6 Open Virtual Switch Topology . 45
5.7 Fidelity Vs Relative Fidelity . 50
5.8 Network Topology . 57

6.1 Verefoo Process . 60
6.2 Allocation Graph . 61
6.3 Allocation Graph Functionalities 62
6.4 Network Security Functionality . 62
6.5 Firewall Allocation Schema . 63
6.6 Firewall Rules . 63
6.7 Firewall Network Topology . 65
6.8 XML node schema . 70
6.9 Web Server XML element . 73
6.10 Allocation Place forwarder XML element 73
6.11 forwarder XML element . 74
6.12 Load Balancer XML element . 75
6.13 NAT XML element . 75
6.14 firewall XML element . 76
6.15 Translatable Load Balancer . 77
6.16 Translatable Web Client . 78

ix

6.17 Remove Forwarder . 79
6.18 Firewall Network Topology . 80
6.19 Test Case with 26 nodes to be translated 84
6.20 Scalability for increasing number of Nodes 85

x

List of Tables

5.1 TC1 policies . 37
5.2 TC2 policies . 37
5.3 TC3 policies . 38
5.4 TC4 policies . 39
5.5 TC5 policies . 39
5.6 TC6 policies . 40
5.7 TC7 policies . 41
5.8 Router and Container Functionalities 52

6.1 Comparison Router and Container Functionalities 66

xi

Chapter 1

Introduction

Software testing has evolved in recent years from manual testing to automated
testing. There are several testing tools, techniques, and frameworks available today
that are crucial to the error-free development of software. Software testing is
simply the skill of examining software to make sure that the quality being tested is
consistent with the functional requirements and flaws in the system are identified
effectively. New technologies are constantly changing the way we perform our
testing, one of these technologies is virtualization. Virtualization simplified a lot
of the functions, rather than spending high costs on physical infrastructure to
perform specific software testing, we can create a virtual environment that mimics
a particular real physical environment. With the conventional method, specific
hardware had to be installed in order to provide services like load balancing and web
caching. However, with the advent of these cutting-edge networking technologies,
virtualizing network operations may soon become commonplace. Actually, virtual
functions can be installed dynamically on servers and started or stopped as needed.

The problem which arises, is that currently an automatic process to build the
virtual environment functions to deploy in order to satisfy conditions for testing
software does not exist. Given the need for precise testing of software in a network
environment and the unwillingness to bear its costs, the thesis discovers the different
possible methods and proposes an approach for testing that exploits the capabilities
of virtualization technology to build a virtual network environment which is similar
to the real network environment and automate such process achieving high levels
of automation. Furthermore, this thesis focuses on proposing a methodology using
white box testing to find best test cases to achieve an error-free software.

Although there is no standard approach of testing, different methodologies
are present but it all depends on the availability of resources and technologies.
However, what is certain, is the need to achieve a high degree of verification and
validation of software. White box testing, which is the first technique employed in
this dissertation, is the state-of-the-art testing approach that the tester must choose

1

Introduction

from when determining which are the best technique to use. This thesis offers a
possible methodology to employ whit box testing in an effective way and provide a
good test bed to effectively ensure high degree of verification and validation. After
performing the first phase of testing that is software testing of code using test cases,
then follows testing in virtual environment.

Tester must run the software under specific conditions that mimic the environ-
ment that the software will be deployed on. This requires building such environment
which largely depend on the availability of physical resources. Due to high cost of
physical replication of resources in most cases, the last resort would be virtualization.
In fact, it largely depend on the type of software to test. Building an automated
virtual environment requires a good analysis of the purpose of the environment. De-
pending on the purpose, the complexity of building such environment may increase
or decrease. In the context of virtualized networks, the exact replication of the
physical environment is very complex due to the network variables that may exist
in the real environment but may not be present in a contained virtual environment.
In addition to the difficulty of virtual network management, there is the issue
of automation. Automating the virtual network creation and functioning may
require a lot of effort in different aspects, most of the automation is done to avoid
human errors and repetitive tasks. A high degree of automation, ensures a better
working environment that is more robust and behaves as expected. Until now, in
the literature there is no standard approach to automation of such environment,
this dissertation will offer a possible approach for building and automating such
virtualized network using different possible virtualization techniques.

In this thesis, the testing is done in two phases; first phase is standard software
testing of code and second is testing in a virtual environment correct functioning
of software. The above mentioned methodologies are applied to the already
exiting framework VEREFOO (VErified REFinement and Optimized Orchestration)
which is developed in order to achieve a policy refinement in Network Function
Virtualization environment. This thesis will focus on the testing of the already
developed features of the framework. Moreover, it will automate the testing in a
virtual environment.

2

Chapter 2

Background: VEREFOO
Framework

2.1 Introduction
New emerging technologies like Network Functions Virtualization (NFV) and
Software-Defined Networking (SDN) are intended to improve networking manage-
ment and add possible features to networking flexibility [1] [2] [3]. NFV provides
virtualized network functionalities placed on standard general purpose servers
in the cloud, and SDN permits the defining of the paths that traffic flows must
cover. Through the use of Service Graphs (SGs), which represent the related
service functions and their connections, these capabilities enable service designers
to specify the planned network services. The SG have enabled a new level of
abstraction that leads to decoupling of the computing and physical infrastructures.
It is a virtual network’s logical representation that is separate from the physical
infrastructure. In other words, there is no need to include the low level details of
the physical infrastructure when performing analysis as the logical level, this opens
new possibilities.

These ideas can also be used for network security functions (NSFs), such as the
packet filter firewall and the intrusion detection system (IDS) exploiting abstractions.
In fact, these NSFs are best deployed as virtual services on-demand to enable a
quicker response to incoming attacks. Additionally, to relieve the service designer’s
workload, their configuration could be automated through the use of a distribution
process, whose job it is to develop the necessary policy rules to abide by the
Network Security Requirements (NSRs), which stand for the security requirements
that must be met, such as the requirement for isolation between a server and a
group of hosts. The focus of the following methodology is on packet filters, which
represent the most common firewall technology and the most frequently exploited

3

Background: VEREFOO Framework

security defense in networks.
In the context of packet filters, How to enforce the Network Security Require-

ments (NSRs) that an SG should meet becomes a challenge in this situation.
Traditionally, Network Security Functions (NSFs) configuration is frequently done
manually. This method not only requires a lengthier response time when network
attacks are discovered, but it is also vulnerable to human error, which can result in
the creation of vulnerabilities. For instance, the security manager can forget to
define one of the hundreds of rules necessary to apply a specific isolation policy,
rendering isolation ineffective. In this context, the articles [4] [5] [6] [7] proposes
a new methodology that addresses the open issues. The goal is to provide an
automatic way to allocate packet filters in a SG defined by the service designer,
and to create firewall rules automatically, so as to satisfy the specified security
requirements. The approach is founded on a formal model that offers confidence
that the ultimate solution truly satisfies the security requirements. Another goal
of this approach is: minimizing the number of firewalls to be allocated and the
number of rules to be configured in each one of them increases the performance of
the overall architecture, while reducing its cost in terms of employed resources.

2.2 VEREFOO Objectives
The VEREFOO (VErified REFinement and Optimized Orchestrator) is a framework
developed to offer an automatic method of allocating packet filters—the most
popular and traditional firewall technology—in a Service Graph defined by the
service designer, as well as an auto-configuration technique to create firewall rules
with respect to the specified security requirements.

The previous section describes the main purpose of VEREFOO framework which
is discussed in articles [8] [5] [6] [7], that is implementing security automation.
Currently, the framework mainly supports firewall deployment. The previous defined
methodology to achieve automation in allocating firewalls and there respective
rules, satisfying the required NSRs, is achieved using VEREFOO framework [9].
This framework intends to offer automatic network function deployment inside a
specified group of nodes. In order to ensure proper enforcement of the nodes, it
additionally optimizes the positions of the various nodes by using z3 as a solver
for the MaxSMT problem [10] [5] [6]. It may generate the appropriate number of
firewalls required and retrieve a configuration made up of abstract rules defined
using the Medium Security Policy Language [1] (which is the second layer of policy
abstraction) syntax given a set of isolation and reach-ability requirements for a
Virtual Network system.

The issue addressed by the framework is how to automatically determine the
best allocation strategy and configuration of packet filtering firewalls in an SG

4

Background: VEREFOO Framework

while satisfying a set of NSRs. This was discussed previously in [5] [11]. More
precisely, the idea is to formulate the problem as a partial weighted Maximum
Satisfiability Modulo Theories (MaxSMT) problem and solve it accordingly [11].
Solving the MaxSMT will analyze the service graph (or Allocation Graph) and
with mathematical calculations that offer formal correctness, it will find the optimal
solution to allocate the firewalls with respective firewall rules. The next section
defines the high level operation of VEREFOO.

2.3 VEREFOO High-Level Operation
The Service Graph (SG) is the a high level abstraction of the definition of the
network topology, along with the Network Security Requirements (NSRs) which are
the security constraints that the network behavior must implement. The technique
focuses on connection requirements, that is the definition of which traffic flows must
be allowed (or disallowed) between any pair of end points in the SG. These security
limitations serve as the framework’s second input (first input is the SG) and are
distinguished by two features: A set of specific Network Security Requirements
(NSRs), each of which specifies whether a traffic flow must be allowed (reachability
requirement) or must be blocked by a firewall; and A general behavior representing
the default rule applied to traffic flows for which the user does not specify any
further indication (isolation requirement).

Both the SG and the NSRs are used as input the VEREFOO Framework as an
XML file. The framework solves a huge issue in security configuration of firewalls,
that traditionally is a time consuming and error prone security task that could
be made easier by automating the creation of firewall rules and deploying there
positions in the network. The following Figure summarizes the steps that the
framework undergo.

Figure 2.1: Verefoo Process

In Figure 2.1. First, there is the input Service Graph (SG) XML file. The
Service Graph defines the network topology in an XML file manner with different
XML elements. The SG could also be an Allocation Graph, which contains AP

5

Background: VEREFOO Framework

(Allocation points; that are possible positions in the network graph where firewalls
could be deployed). If the SG was chosen as input the framework will automatically
convert it to Allocation Graph with Allocation points. Also the Network Security
Requirements (NSRs) are defined. Translation from medium-level policies (MLP),
will output a Firewall Allocation Schema (FAS) along with Firewall Medium Level
Rules (FMLR). Then, after the FAS generation, the output XML file is used as
input to the second part of the framework, which is responsible for translating the
medium-level firewall rules to low-level rules specific to a firewall type (tables -
openvswitch ...). The output files are Configuration files ready to be deployed on
firewalls.

Moreover, the translation that is done from Medium Level Polices (AG and
NSRs) to the Firewall Allocation Schema is the output of the calculations done by
the solving the MaxSMT problems, this ensures the correctness of the allocated
firewalls and there respective policies written in XML. However, for the low level
translation there is the usage of trans-compiling to turn the medium level policies
into low level configuration files, this is discussed in [1]. This summarizes the high
level operation of VEREFOO.

The Firewall Allocation Schema output of the framework is already verified
and validated with extensive testing in the framework. but the low level rules
translation is not, this thesis will concentrate on testing of this translation by
various methods like white box testing or testing in virtual environment to validate
the correct operation of the firewalls.

2.4 Limitations of the VEREFOO
As specified previously, some parts of the framework are not tested yet. Specifically
the translation from medium level policies to low level configuration files is not
verified and validated yet at different levels. In addition to that currently the
framework is a collection of stand-alone parts. This thesis solves this issues related
to verification and validation of the low level configurations of the framework and
demonstration of the different stand-alone parts of the framework.

Currently the framework produces low level firewall configuration files in the
form of scripts ready to be deployed on firewalls. However, there is nothing to
guarantee the correctness of the these configuration files, previous testing that was
done was limited and did not achieve high coverage. Furthermore, the previous
testing was done only at the software level, there was no creation of environment
to test firewalls in.

To overcome these limitations and solve them, a dedicated analysis should be
done. Verification and validation of this part of the framework requires understand-
ing well what are the best methods to choose in order to achieve best results. Of

6

Background: VEREFOO Framework

course, taking into consideration the available resources.

7

Chapter 3

Background: Virtual
Environment

3.1 Virtual Environment For Testing

In general, before deploying any software or framework into production, the frame-
work must be extensively tested by using the well know verification and validation
approach. Usually the well-known white box testing approach used in software
testing is adopted. But in some cases this is not enough, the framework may behave
as expected in terms of software testing but when subjecting it to real production
conditions results may vary due to many external factors. For that reason, in
addition to white box testing approach, it is suggested to deploy frameworks in
virtual environments and extensively test the framework in such environment before
deploying it to production.

According to NIST [12] quoting, “Testing should be completed on a test network
without connectivity to the production network. This test network should attempt
to replicate the production network as faithfully as possible, including the network
topology and network traffic that would travel through the firewall”. So the virtual
environment should be able to replicate the real physical environment with real
conditions as faithfully as possible. Obviously, the best way is to replicate the
whole physical environment, but that requires alot of cost which is not feasible in
most cases. The alternatives are using virtual machine or containers to replicate
the environment which are more reasonable in terms of cost.

The next section will briefly introduce the possible virtualization technologies
used in this thesis and how they are useful for building a virtual environment.

8

Background: Virtual Environment

3.2 Virtualization Technologies Key Concepts
The most well-known virtualization technologies in this era are virtual machines
and containers. They are used for different cases, each technology have its own
advantages and disadvantages. Based on these technologies characteristics, they
could be used in different scenarios.

In order to run applications and run programs, a virtual machine (VM) uses
software as opposed to a physical computer. On a physical "host" machine, one
or more virtual "guest" machines are active. Even when they are all running on
the same host, each virtual machine has its own operating system and operates
independently of the others. This implies that a physical PC may, for instance,
host a virtual Linux system or even a windows operating system. As mentioned in
Figure 3.1, using a hypervisor that runs on top of the infrastructure or host OS, it
is possible to create multiple virtual machines, each with its own operating system.
Each virtual machine operating system is called guest OS.

Figure 3.1: Virtual Machines

There are several application cases for virtual machine technologies in both
on-premises and cloud contexts. In order to provide more cost-effective and flexible
computation, public cloud services have more recently started employing virtual
machines to deliver virtual application resources to multiple users simultaneously.

9

Background: Virtual Environment

Virtual machines are known to be:

• Flexible where each vm has its own OS so that allows for multiple OS type
support

• Can spawn in matters of seconds to minutes

• Can store data without losing them when creating a virtual disk

• flexible can support different flavors of operating systems

• isolation where each virtual machine is isolated from other machines running
on same host also good from security point of view

• performance is not native and not fast as an operating system running on
bare metal

The virtual machine technology is largely used in enterprises for deploying
applications or creating test environment for certain products before deploying in
production.

On the other hand, Docker is a platform for launching applications in software
containers. Docker is a tool that can package an application and its dependencies
into an isolated containers, which can be run on any server or anywhere. Docker
removes repetitive tasks and is used throughout the development life cycle for easy
and portable application development. So it is directed toward application and
software development.

Figure 3.2: Container on host operating system

10

Background: Virtual Environment

As specified by the docker documentation [13] and shown in Figure 3.2 which
is taken from the documentation. An isolated docker container runs on top of a
operating system with lightweight virtualization layer. All the containers share the
same host operating system kernel but have different file systems. This allows each
container to run an application with certain configurations. Containers are known
to be:

• Very lightweight (consume much less resources than virtual machines)

• Fast to boot where it can boot up in matters of seconds

• easily created and destroyed, as they are highly volatile

• flexible can support different flavors of Linux operating systems

An application can be deployed using collection of containers where each con-
tainer does a specific part of the application. The huge advantages of docker
containers is the ability to run anywhere, since if it works on one machine it will
work on every machine, this is what allows portability and containment.

Docker is tailored toward application development, but can also be used in order
to create a virtual environment. The advantages it offers in terms of limited resource
consumption makes it a good candidate for replicating the real environment using
containers. In case of VEREFOO framework, a test environment would include
the replication of network node functionalities like firewalls, routers, endpoints...
Although docker isn’t specifically built to emulate networks, it is possibly to use
it in building a network environment based on containers. This is only possible
because of the flexibility that docker containers offer and the ability to emulate
different network topology using Linux operating systems.

3.3 Comparing Virtualization Technologies
Creating a virtual environment requires specifying the testing environment’s re-
quirements to correctly reproduce the actual environment in which the firewall will
be present. Following the NIST recommendation reproducing a network similar
to the real-production network is not easy, as it requires a lot of resources. The
environment is created in its most simple possible scenario yet sufficient one that
satisfies our needs.

In general, when it comes to building a contained virtual environment, a lot of
aspects must be considered. The most relevant ones:

1. Where the virtual environment will be reproduced and the availability of
resources: one of the essential things to consider is resources availability, if

11

Background: Virtual Environment

the environment will be deployed on a cluster of servers or the cloud, or even
locally on a single PC. This determines the number of resources available that
can be reserved for a particular environment building.

2. target platform: The platform where the environment will be built determines
if certain features are available to the environment. For example, in some
cases the virtual environment could be deployed on a host Linux OS.

3. Flexibility and scalability: Flexibility of the virtual environment is of impor-
tance and the ability to manipulate it quickly to make changes to it without
changing too much in code. For scalability, a topology may contain 12 nodes,
But what if the testing extended toward a more ramified network with much
more nodes (30+ nodes) in the environment to be simulated, Keeping that in
mind helps us choose an environment that is capable of scaling up becoming
more ramified for more complex testing. But other limitations for scalability
exist, like routing (of course, static routing becomes too much for a large
complex network).

4. Effort for producing environment and Fidelity of the environment: Finding a
virtual network environment that replicates the real physical one as much as
possible. The well-known building blocks to reproduce a virtual environment
are:

(a) Physical topology reproduced
(b) Network emulation software (GNS3. . .)
(c) Virtual machines
(d) Containers

To pick out of the four options, different factors must be considered. The
most important one is the Environment purpose. Consider that the virtual
network Environment is needed for testing firewalls, so most of the work will
be at the firewall level. The firewall nodes will do most of the computation
and be our primary focus. Endpoints, on the other hand, are just there for
basically two things, Receiving an IP address and pinging another endpoint for
firewall testing these two functionalities are minimal. There is no need for the
application to be run on endpoints. Same for routers that only require route
packets in the topology to reach the destination. At least for our topology,
routers also are minimal. In the future, routers may become more complex
since many of their network functionalities are discarded here (no dynamic
routing, no Access lists at the router level, no NAT . . .).
First, Network emulation software are discarded as they are not considered
an option in this work. As for the three other options, they are classified as
follows.

12

Background: Virtual Environment

Figure 3.3: Compare different building blocks for virtual network

As seen in Figure 3.3, showing the comparison of three possible mechanisms
in terms of effort and fidelity, where effort is the resources and time needed to
reproduce the environment using a specific mechanism. And fidelity represents
to what extent the virtual environment replicates the actual physical topology.
As stated in the figure, physical topology reproduced, of course, has the
highest fidelity as it mimics the actual physical topology, but it also requires
the most effort. Then comes VMs, which replicate the actual topology in most
of the functionalities and require much less effort to be reproduced. Finally,
there is containers requiring the slightest effort to reproduce, which is a huge
advantage but also has the lowest fidelity as it represents the actual topology
with minimal similarities.

After specifying the different aspects to be considered when deciding on a
suitable tool for building the virtual network, the next section displays the different
tools that can be used in for virtualization with their advantages/disadvantages.

3.4 Tools
This section explains how previous technologies are used, and what tools allows us
to use them effectively for the purposes of building a virtual network environment.
The tools to be used for virtualization should manage the:

13

Background: Virtual Environment

1. The target of the testing environment

2. Limited amount resources allocated for the environment

3. Automation and reproducibility, so that the environment is reproduced auto-
matically each time the testing needs to be done

Satisfying the previous conditions requires to overcome many challenges that
one must face in order to ensure the correct creation of an error free virtual network
environment. Ensuring that the environment is error free is important, since the
testing environment should not affect the test results that are produced when
testing a particular framework or product in this environment. In order to build
such environment, it is possible to state the open-source and free tools advantages
and disadvantages:

1. First there is the Network Emulation Software (e.g. GNS3 ..) which are
widely used in the market. The most important thing is that they cover a lot
of features and uses Network operating systems that allows the usage of more
functionalities. Emulation softwares are characterized by:

+ build specifically for network emulation
+ free versions are available
+ has user interface (drag and drop)
+ has dedicated network operating systems on nodes like routers and switches

that facilitate complex network operations to be done in other environment
− heavy to open and run
− harder to automate using CLI
• usage of network emulation softwares is not considered in our case

2. Second there is Virtual Machine Orchestrators (e.g. OpenStack ..) and
Orchestrators are used to launch a couple of virtual machines together rather
than configuring each one and launching it. They are used to facilitate the
process of launching virtual machines also they can be couple with different
play books to define VMs using declarative language. They are characterized
by :

+ Are common to use in medium and large enterprises since they are proven
to replicate real environment with high fidelity.

+ resembles real-topology
+ each vm has its own OS so that allows for multiple OS type support
+ using the right OS can limit the amount of to be consumed

14

Background: Virtual Environment

+ no problem with data persistence in case the environment was to be saved
− performance is slower than the native physical nodes or containers
− Consume a lot of resources compared to other more lightweight solutions
− Not purpose built for network topology virtualization, so many unnecessary

functionalities may be present on the nodes.
• boot time of VMs is higher than containers but can be over looked for

now

3. Finally there is Containers (e.g. docker or docker compose for launching
couple of containers together), they are characterized by :

+ lightweight, can spawn many nodes on a single machine without any
performance issues

+ flexible and scalable in terms of resources, can handle virtualization of a
more complex and ramified network without worrying about resourcese
running out

+ can be automated using CLI
+ fast to deploy and remove (boots in seconds)
− problem with data persistence in case the environment was to be saved
− Not purpose built for network emulation, so alot of network functionalities

would be hard to emulate using containers
− No user interface, must of work done through CL and terminals
− doesn’t support variety of OS, since all containers share the same kernel

The reasonable technologies are VMs and containers (since the usage of network
emulator softwares is not free and not always open-sources), and we will see the
available methods to automate and create the virtual environment. The next
sub-sections will discuss some of the different open source tools and their way
of automating the building of a virtual environment. Nevertheless, in our case,
the virtual environment is built using one of them. Note that the development
environment is Linux as other platforms offer many limitations to development.

3.4.1 Vbox Manage
The first tool that comes to our mind when using VMs is the oracle virtual box,
but the oracle virtual box uses a GUI to deploy VMs, so how to automate the
VM deployment. In fact, Oracle’s VM Virtual Box has all the needed features in
the back end of the virtualization server: the automated creation of VMs with
scripting and easy networking of virtual machines. Can easily be done using Vbox

15

Background: Virtual Environment

Manage, the Command line part of oracle Vbox. Vbox manage can automate Vms
deployment by Using a bash script with a series of commands that are used to
build the environment from scratch to run the environment. After running it for
the first time, the VMS will be spawned. The environment will be persistent (i.e.
after turning off the VMS no need to re-run the build of the environment script),
or it can be deleted by another bash script that deletes the newly created testing
environment (deletes all VMS and network created).

Next there is an overview of the automated building of a virtual network
environment using Vbox Manage. Step-by-step procedure is followed for creating
a VM using vbox manage and deleting it. After specifying the commands for
creating one VM and attaching it to one internal network that is also created using
the command line, the whole process can be automated by putting a series of
commands to be executed inside a bash script to create VMS and networks then
attach VMS to specifically created networks.

Pros and Cons:

+ automated deployment

+ persistant, once created no need to re-create it unless environment is deleted

+ each vm has its own OS so that allows for multiple OS type support

+ can support firewall types iptables- bpf_firewall-ipfirewall-openvswitch

− environment creation is slow as alot of nodes need to be created and deployed
each with its own os

− needs high resources compared to containers so not suitable for large number
of nodes, if the virtual environment is produced on single machine

− no UI of how nodes connections are done

− not flexible in terms of networking as we have to manually attach vms to
networks using CLs

− too much Command line usage for automation so it is hard to trace when
developing a larger and more ramified environment with many nodes.

− even when environment is created re-launching environment for testing require
time, as each node has its own OS to boot unlike containers where launch
time can reach milli seconds.

− flexibility is limited, since adding a node and removing a node requires entering
alot of commands to ensure all the environment creation is done without
conflicts

16

Background: Virtual Environment

Example Deployment of one VM using VBox Manage for more information refer
to the manual [14]. The following commands configure the VM settings. Note that
Vbox Manage installation is required.

$ VBoxManage createvm --name ubuntutest --ostype Ubuntu_64 --register #
create and register the vm

$ VBoxManage createmedium --filename /home/mibeyki/VirtualBox VMs/ubun-
tutest/ubuntutest.vdi --size 10240 # create a storage medium for VM

$ VBoxManage storagectl ubuntutest --name SATA --add SATA --controller
IntelAhci # add a SATA controller to VM

$ VBoxManage storageattach ubuntutest --storagectl SATA --port 0 --device
0 --type hdd --medium /home/mibeyki/VirtualBox VMs/ubuntutest/ubun-
tutest.vd # add a SATA controller to VM

$ VBoxManage storagectl ubuntutest --name IDE --add ide # define storage
for IDE ATA support CD-ROM

$ VBoxManage storageattach ubuntutest --storagectl IDE --port 0 --device 0
--type dvddrive --medium /home/mibeyki/Downloads/iso/Debian/ubuntu-18.04-
server-amd64.iso # attach iso image

$ VBoxManage modifyvm ubuntutest --memory 1024 --vram 16 # define VM
resources

$ VBoxManage modifyvm ubuntutest --nic1 bridged --bridgeadapter1 wlan0
--nic2 nat # assign VM two NICs, NAT and Bridged for NIC1 and NIC2 respec-
tively
Now we the VM is ready to be auto installed and launched

We can define alot of other VM settings, but the configuration requires time and
is more complex and less flexible than other solutions that use declarative approach
like yaml file. Basically we are replicating the steps to create a VM in GUI using
a command line approach and then adding automation. Furthermore, for each
node functionality we create a different configuration for the virtual machine, for
example a virtual machine acting as firewall will have different configuration (for
example have IP tables installed) than virtual machine acting as router. This is
not the adopted solution in this work.

17

Background: Virtual Environment

3.4.2 OpenStack Automation with Ansible
OpenStack is a free, open standard cloud computing platform. theoretically it
have the same advantages and disadvantages of Vbox Manage, but management of
VMs become easier using a VM orchestator like openStack, also there is possibility
to automate VM deployment using Ansible for example. where Ansible uses a
declarative language to describe a desired system configuration. Here are some
Possible advantages and disadvantages:

+ automated deployment

+ persistent, once created no need to re-create it unless environment is deleted

+ each vm has its own OS so that allows for multiple OS type support

+ can support firewall types iptables- bpf_firewall-ipfirewall-openvswitch

+ there is a dashboard and GUI

+ less command line scripting if we use Ansible

+ more flexible as adding nodes and removing can be done using the playbook

+ using an orchestrator ensures that the desired state is achieved, and this is
advantageous with respect to other solutions that do not gaurantee a correctly
running environment

− environment creation is slow as alot of nodes need to be created and deployed
each with its own os

− needs high resources compared to containers so not suitable for large number
of nodes, if the virtual environment is produced on single machine

− even when environment is created re-launching environment for testing require
time, as each node has its own OS to boot unlike containers where launch
time can reach milli seconds.

Using the OpenStack-ansible documentation [15], a virtual machine connected
to a network could be deployed. After deploying one VM and one network and
attaching the VM to it using Ansible, It is easy to replicate the work in order
to automate the deployment of a whole collection of virtual machines in order
to construct the environment. This approach is not adopted, due to the limited
resources for deploying 10+ VMs even with lightweight operating system, it is too
much compared to what is really needed for representing nodes in a virtual network.
Below is an example of launching one virtual machine using Ansible playbook,
this could be replicated in order to build the whole environment. For each node

18

Background: Virtual Environment

functionality the configurations of the virtual machine changes. When the whole
yaml file is created, the virtual environment could easily be launched by executing
the yaml file. The following is a basic example is just for running a virtual machine
instance using declarative Ansible approach.

- name: Launch a compute instance
hosts: localhost
tasks:
- name: Launch a VM
os_server:
image: Ubuntu 20.04 LTS x64
name: myvm
key_name: mykeypair
availability_zone: nova
flavor: 22
state: present>
network: floatingIPv4

To maintain the desired state of the designated VM, the Ansible module os
server executes commands on your local machine. Thus, the play book is applied
on the localhost. The os server module makes sure the provided VM is present or
not (depending on the state parameter to ensure correct enforcement of desired
state). As stated in the playbook above, we can provide the specifics of the VM
we wish to boot. There, we specified that the new virtual machine’s name will be
myvm, that it will boot from the Ubuntu 20.04 image in the nova availability zone
with the keypair mykeypair, flavor cloudcompute.s, and an IP address assigned
from the floatingIPv4 network, and that it will have these configurations. After this
definition, we could execute the playbook and check dashboard to ensure the virtual
machine is running. Replicating this declaration with different configurations (or
even mount configurations to virtual machines) according to the network node
functionality to be emulated, then the virtual network will be built.

Moreover, the best advantage of declaring virtual machine using playbook is the
flexibility (where we can create virtual machine that emulate different network
node functionalities) and robustness that adds a level of confidence that the virtual
network environment will be up and running even if an error occur openstack will
ensure its correct functioning.

3.4.3 Docker Container CLI
Docker is relatively much easier to create containers and deploy a virtual environ-
ment than using other CL approaches for creating VMs. Docker CLI allows to
easily create a container and spawn it in less than a second with a specific image.

19

Background: Virtual Environment

Docker offers high flexibility of what images to deploy, and the different operating
system flavors. The most important advantage is that Docker containers are highly
lightweight and require very minimal resources to operate, making them suitable
for our case. Docker CLI is good for creating a container using the command line.
It is possible to implement the virtual network with docker CLI using scripting.
The following is a basic example of creating a docker container and a network, then
attaching the docker to the network.

docker network create –driver=bridge –subnet=192.168.2.0/24 –
gateway=192.168.2.10 mynetwork
docker run –network=mynetwork –ip 192.168.2.2 -itd -v Config-
Files:/mnt –name=webclient alpine

The above commands first creates a network called mynetwork with a IP address
range 192.168.2.0/24 and a docker gateway 192.168.2.10. Then launches a container
called webclient with an alpine image, attaches the container to mynetwork assigned
to it the IP address 192.168.2.2 and mounts a volume ConfigFiles to the container.
The volume mounted is used to configure the containers when they start, for
example the mounted volume could a configuration files for firewalls, so container
executes them and it behaves like a firewall.

However, what if there is a need to build a new image that contains all the
packages required to emulate a certain network node. In this case, Docker file
becomes useful. Docker file is used in order to build images in a flexible way, which
allows to design images according to the needs of the network nodes. For example
the following Docker file builds an image that contains iptables that is the module
used to emulate an iptables firewall.

FROM alpine:latest
tcpdump is only for debugging purposes
RUN apk update
RUN apk add iptables sudo
RUN apk add tcpdump
RUN apk add bash
RUN apk add –no-cache quagga
&& touch /etc/quagga/zebra.conf
&& touch /etc/quagga/vtysh.conf
&& touch /etc/quagga/ripd.conf

Starting from alpine base image, the docker files contains sequence of commands
to build a new image that represent the image of an iptable firewall, since alpine
base image doesn’t contain native iptables module, it must be installed in order
to use it, the other commands are useful in the image for different purposes like
debugging or using dynamic routing ...

20

Background: Virtual Environment

3.4.4 Docker Compose
Docker-compose is a container orchestration technology intended to run several
containers on a single host machine. Docker-compose is excellent for development
environments. But the problem that arise from using Docker compose to virtualize
an environment is docker-compose is not a good fit for that purpose, in fact it is
not a technology that is tailored to create virtual networks. Docker compose is
used to create applications not virtual networks, this will present challenges that
need to be managed. Below is the pros and cons of Docker compose.

+ automated deployment

+ flexible, environment can be deployed and removed in seconds

+ can support firewall types iptables- bpf_firewall-openvswitch

+ declarative approach for creating network topology

+ very light weight so it is possible to extend created network to a more ramified
network easily

• each time testing must be done the environment must be recreated from
scratch (but it takes seconds)

− FreeBSD OS not supported so ip firewall type can not be tested

− No GUI

− Not built-specifically for purpose of testing network topologies
The following example shows a container acting as firewall defined in a declarative

manner using docker compose yaml file.

firewall1: # iptables firewall
container_name: firewall1
hostname: firewall1
image: router_firewall_rip
cap_add:
- NET_ADMIN
volumes:
- ./RouterFirewallConfig:/mnt:ro
command: sh -c "mnt/staticroutes/fw1routes && tail -F anything "
networks:
lb-fw1:
ipv4_address: 20.0.0.2
fw1-cache:
ipv4_address: 20.0.1.1

21

Background: Virtual Environment

In the above declaration, a container called firewall1 is declared with image
router_firewall_rip that is specific image built using docker file based on alpine
flavor. The container will mound at start time the RouterFirewallConfig files and
executes the required scripts at startup. Finally the container is attached to two
predefined network called lb-fw1 and fw1-cache.

Using this approach it is relatively easy to declare a couple of containers in a
simple manner with less errors and more flexibility. Docker compose is usually
used for development purposes and not for production environments, in the latter
case kuberneutes (which is an orchestration tool that manages containers and
applications in a more flexible and robust manner) is usually used.

3.4.5 Kuberneutes and Kompose
Kubernetes runs containers in the data center over a cluster of servers. But is
specified here to open the possibility for future migration from docker-compose
to Kubernetes. In case our reference topology was to expand to hundreds of
nodes there is then a need to deploy the virtual environment into a cluster of
servers using Kubernetes. For a that we keep migration from docker-compose to
Kubernetes as a possibility, and fortunately, this is another advantage of using
docker-compose, If in the future the topology developed using docker-compose
became huge and required to be deployed over a set of servers. Using Kompose we
can easily convert docker-compose files into other container orchestrators such as
Kubernetes or openshift. Although again kuberneutes is not built for the purpose
of network topology virtualization so limitations exist.

3.5 Firewall Testing Tools
Since the focus will be on testing firewalls configuration. In this section, several
open-source security tools and libraries are introduced that contribute to firewall
testing. Software packages that are suitable to form the basis of our testing tool
are defined. The programs of interest can be divided into either packet generation
and injection tools or sniffing and logging tools for debugging purposes.

3.5.1 Injection Tools
There are a lot of packet generation and injection tools that are open sources and
free.

1. Nemesis: Nemesis is a command line-based. It provides a possibility to craft
packets type according to our needs and sends them to a target destination.
It can craft packet types like ARP, Ethernet, ICMP, IP, TCP, and UDP. In

22

Background: Virtual Environment

addition to that, the packet parameters are adaptable, and user can change
them as he likes. Unfortunately, nemesis has no sniffing functionality, so we
will choose another tool to handle capturing packets.

2. Hping: Hping is a command-line tool. The interface is inspired by the ping
command in Unix, but hping is not only able to send ICMP echo requests.
It supports TCP, UDP, ICMP, and raw IP protocols, has a traceroute mode,
and many other features. Hping can be used for port scanning, network
testing, remote OS fingerprinting, and firewall testing. As hping provides the
functionality we are looking for, it is a notable tool that can be converted into
a more specific firewall testing tool.

3. Nmap: Is a free, open-source tool for network scanning. It is mainly used
to scan large networks. Nmap uses IP packets to determine what hosts are
available on the network, what services those hosts are offering, what operating
systems they are running, what type of packet filters or firewalls are in use, and
many other characteristics. The difference between Nmap and hping is that
hping is an all-round tool sending user-defined packets to user-specified hosts.
In contrast, Nmap provides a list of scanning techniques (TCP connect(), TCP
SYN (half-open)), and advanced features (such as remote OS-detection, stealth
scanning or TCP/IP fingerprinting) that allow the user to run sophisticated
attacks against a specified network or host. In other words, Nmap provides
a complete and handsome list of scanning techniques, but the user loses the
facility to craft and sends self-made packets.

3.5.2 Sniffing Tools
1. Libpcap: The packet capture library provides a high-level interface to packet

capture systems. All packets on the network, even those destined for other
hosts, are accessible through this interface. Libpcap is a de-facto standard
in packet capture programming. We leave the possibility to use libcap in our
situation, but it is unnecessary. A simple solution like tcpdump is enough.

2. Tcpdump: dumps the traffic on a network. It is related to libpcap in that they
are maintained by the same group, and tcpdump heavily relies on libpcap.
Tcpdump is the most common way to visualize the packets libpcap captures
by printing them directly to the console or logging them in a file. When
tcpdump finishes packet capture, it reports how many packets have been
received, dropped, and processed. Tcpdump is appropriate for packet capture.

After observing the different tools out there, for example, hping3 could be used
for injection since it is more effective for firewall testing. For sniffing, tcpdump

23

Background: Virtual Environment

could be used on routers and firewalls to check the type of packets arriving at each
node. Fortunately, there was the possibility of a container that checks all the traffic
passing in the virtual environment.

24

Chapter 4

Thesis Objective

In view of motivations to verify and validate the low level translation of VEREFOO
framework, in this thesis we propose testing based on virtualized networks to
provide validation to the complete translation from medium-level language to
low-level in the VEREFOO framework. The objective of this thesis is decomposed
into three different aspects explained in the following sections.

4.1 Exhaustive Testing
First part of this thesis aims at the exhaustive testing of the low level translation
in the VEREFOO framework. As mentioned before, this part of VEREFOO is not
fully validated and verified. Chapter 5 will discuss the best methodology to test
this part of the framework using the well-known white box approach. Furthermore,
after exhaustively testing this part, the result firewall configuration files will be
deployed in a created virtual network to additionally verify the correctness of such
configurations in a virtual environment. This chapter will go through the details
of developing a virtual network environment that faithfully replicates the actual
physical network environment, this effort requires high level of automation and
assurance that the environment does not contain any errors. The testing focuses
on verifying the correctness of the VEREFOO module capable of performing a
multi-language translation among several packet filters that are available in the
market.

Testing will include two phases. Phase one is to ensure the correctness of the
translation code; phase two is testing in a pre-produced virtual environment which
will be produced to verify not only the correctness of the translation code but
the satisfaction of the Network Security Requirements defined at the input of the
VEREFOO framework. The testing in a virtual environment allows to detect issues
that may be hidden and solve them.

25

Thesis Objective

4.2 Demo Presentation And Translator Algorithm
Another goal of this thesis is to demonstrate the complete functioning of VEREFOO,
combining the different stand-alone parts of the framework and presenting them as
a single process to the user.

Then finally, to achieve maximum automation, a demonstration will be done
of a simple algorithm that does the translation of the output Firewall Allocation
Schema of the VEREFOO framework to configuration files to start the virtual
environment corresponding to the FAS. This algorithm could be used in the future
to facilitate the repetitive process of creating virtual networks for testing. Each time
a new Firewall Allocation Schema is produced rather than building the network
environment from scratch, it is possible to input the FAS XML file in to the
translator and immediately the algorithm creates the required configuration files
to start the environment for testing.

26

Chapter 5

Verification and Validation
of low level configuration
output

5.1 Testing Purpose
The focus is to test the translation of medium-level firewall rules to low-level
configurations of the already developed portion of VEREFOO [1]. So it is expected
that the MLPs (Medium Level Policies) generated by the VEREFOO framework are
correct. There is a need to achieve certain confidence about the code correctness that
translates from the medium-level policy in XML format to low-level configuration
produced as bash scripts ready to be deployed on firewalls. The optimal set of test
cases that covers possible scenarios of a firewall deployment are created to ensure
the correctness of translation.

The generation of the test cases should not be random but rather more specific
and extensive to find possible issues in the translation code. The more accurate the
test cases are in finding errors, the more robust the framework will be. And be able
to produce an error-free low-level translation. Next is explained the methodology
followed to create test cases.

5.2 Testing Approach
To start generating test cases, the right testing approach must be found. In partic-
ular, according to [16] , there is 3 general approaches for firewall testing,penetration
testing, testing of firewall implementation, and testing of firewall rules. In summary,
Penetration testing is performed to check the firewall for potential breaches of

27

Verification and Validation of low level configuration output

security that can be exploited using various tools, which is not of interest here.
Testing of the firewall implementation focuses on the firewall Configuration de-
tails. Different firewall types have different configuration languages. The firewall
implementation testing approach evaluates if the firewall rules correspond to the
action the firewall performs (for example, a firewall policy blocks a packet but
the firewall allows it, or the configuration file of a specific firewall produces a rule
that is different from the policy expressed in the MLPs in our case). Testing of
the firewall rules checks if the security policy is correctly enforced by the firewall
rules or not. Each approach corresponds to a different methodology for generating
the test cases. For example, generating test cases and tools used for penetration
testing differs from test cases and tools used to test firewall implementation.

The focus here is testing the correctness of the translation of a security policy (
presented in XML format) into firewall rules written in a specific vendor language.
The output configuration must be compared to the input security policies to
determine if they match. Otherwise, an error is obtained in the translation process.
This means Testing the firewall implementation approach must be performed, and
generate the test bed accordingly. As shown in section 5.3 .

The firewall implementation testing is achieved through defining test cases and
translating test cases to MLP using XML. Then the resulting XML is used as input
to the translation code. Furthermore, the output configuration files are checked
for correctness through static verification, and later testing is done in a virtual
network environment.

5.3 Finding Test Cases Abstractions
It is easy to lose focus on the objective of testing. The testing should primarily
verify translation to low-level configurations. Therefore, the testing is Not directed
toward finding policies that are dis-joint, good, or verified... this is done at the
medium level policy generation that VEREFOO generates. The MLPs should be
correct, verified, and follow the guidelines of building policies based on a particular
formal model (ex: FIREWALL POLICY MODELLING like in [17] where Ehab S.
Al-Shaer and Hazem H. Hamed define a specific model to detect anomalies in firewall
policies). Test cases generated have policies that may not be disjoint nor perfect
since they are directed toward the translation part of VEREFOO. Test cases focus
more on the syntax than the logical part of firewall policies. Then subsequently, the
proper enforcement of policies into firewalls in the virtual environment is tested.

5.3.1 Finding firewall Parameters
For generating test cases, an academic approach is followed. As in the literature,
there has been no alternative method developed yet. First, an abstraction of the

28

Verification and Validation of low level configuration output

TCs will be created, to be populated later by the correct values for testing the output
of the TCs on a virtual environment. According to [18], in his software engineering
book, Pressman states that test cases must guarantee that all independent paths
within a module are executed at least once, execute all possible logical decisions,
execute all loops at their boundaries, all of that can be defined using white box
testing methods (in context of software engineering). The same principles can be
applied in our case to ensure all possible cases are covered. So white-box testing
approach is used to test all possible cases, which in our case is feasible due to the
limited number of parameters to be changed.

Using this academic approach, start from the possible parameters that the
medium-level policy can have, as shown in Figure 5.1 is an XML element schema
representing a policy to be enforced with all its possible parameters that can be
used as input to the translation code.

Figure 5.1: XML element schema

So the parameters with there possible values in parenthesis are:

1. Action (deny – allow)

2. Source IP (specific IP – range IP)

3. Destination IP (specific IP – range IP)

4. Protocol (TCP – UDP – ANY)

5. Source PORT (specific port – range port - *)

6. Destination PORT (specific port – range port - *)

29

Verification and Validation of low level configuration output

7. Priority (number - * - not present)

8. Directional (true – false – not present)

In addition to the default action parameter of the firewall (default deny or
default allow), the total is nine parameters. Then the test cases are created
by manipulating the parameters to cover all possible combinations. It is worth
noting that here the testing is directed to the function that creates the firewall rule
implementation at the software code level.

This type of testing is possible since the number of parameters of a policy
firewall is limited (8 parameters) in the NFV element so that it can be extensively
tested, and test cases can be generated manually. Nevertheless, in the future, if
the number of parameters to generate test cases increases, maybe this is not the
best way to go, but it is a base for an automated test generation. (give input, and
perhaps in an automated way, test cases are generated by shuffling all parameters
). Related work has already developed [16] a firewall tool to automate firewall
implementation testing by packet injection.

Test Cases will cover the correct translation of specific elements in a policy, each
test case target a particular set of values taken by a parameter to check its correct
translation. So generally there are:

• Default action

• Policy action

• Specific source IP to specific destination IP

• Specific source IP to range destination IP (and vice versa)

• Range source IP to range destination IP

• Protocols TCP, UDP, ANY.

• Specific source PORT to specific destination PORT

• Specific source PORT to range destination PORT

• Range source PORT to range destination PORT

• Directional

• Priority

30

Verification and Validation of low level configuration output

5.3.2 Test Case Abstractions
We could generate a TC for each of the previous values. However, it will be
repetitive and time-consuming, so it is better if each TC targets a couple of values
of a particular parameter which would be a more reasonable number of TCs. for
example, TC1 could cover testing of the IP parameter with all of its possible values
(Specific src IP to specific dest IP-Specific src IP to range dest IP (and vice versa
)- Range src IP to range dest IP), and same for the rest of TCs. This is possible
since the translation of each parameter at the code level is done independently from
other parameters. For example, the values of source IP and destination IP do not
affect the translation of port numbers. To organize TCs in order to effectively test
and target the correct translation of each parameter alone, the generation of test
cases must be done in with each parameter targeted alone, following this approach:

Figure 5.2: Policy Trees

In Figure 5.2 we can target each parameter alone to be used to generate the test
cases. For example, first focus on IP alone and ignore the rest of the parameters (
fixing them with general values). then change the IP parameter alone to check
the correct translation of each possible policy. It is worth noting that there is no
need to do input validation since we assume that the firewall medium-level rules
are semantically correct and verified at a higher abstraction of VEREFOO (source
IP is always expected to be in format xx.xx.xx.xx/xx, it is not possible to have an
input like 1000.2322.112.2 from medium level rules as the validation is done at a
higher level). Finally, we end up with these seven TCs:

1. Test Case 1 in black list mode (default = allow): TC1 is the simplest one,
as it targets only the IP parameter. This TC will focus on changing the IP
source and destination to cover all possible values format. The rest of the

31

Verification and Validation of low level configuration output

parameters are omitted (priority and directional) or put to ANY (protocol
type and ports). TC1 covers:
- specific (host) IP to specific IP
- specific IP to range IP
- range IP to range IP
Example:

Action Src IP Dst IP
deny 10.0.1.1 30.0.5.1
deny 10.0.0.1 10.0.2.0/24
deny 10.0.2.0/24 10.0.0.1
deny 10.0.1.0/24 10.0.2.0/24

2. Test Case 2 in black list mode (default = allow): TC2 extends TC1 and
cover the the PORT/protocol parameter, it focuses on manipulating values
of protocols with the source ports and destination ports. The priority and
directional parameters are omitted here. TC2 covers: - TCP, UDP, ANY
protocols - specific PORT to specific PORT - specific PORT to range PORT -
range PORT to range PORT
Example: Src IP and Dst IP can be of any values

Action Src IP Dst IP Protocol Src Port Dst Port
deny * * TCP 2000 80
deny * * TCP 2000 500-600
deny * * UDP 400-500 500-600
deny * * ANY * *

3. Test Case 3 in black list mode (default = allow): Finally TC3 extends TC2
to cover the Directional and Priority parameters. TC3 covers:
- Directional
- Priority
Example: IP and PORTs can be of any value

Action Directional Priority
deny yes 5
deny yes 10
deny no *
allow yes *

32

Verification and Validation of low level configuration output

Note: The same work flow is followed in case of black list mode where the
default action is deny and policy actions are mostly allow. This leave results
with the following:

4. Test Case 4 in white list mode (default = deny) covers:

- specific IP to specific IP

- specific IP to range IP

- range IP to range IP

5. Test Case 5 in white list mode (default = deny) covers:

- TCP,UDP,ANY protocols

- specific PORT to specific PORT

- specific PORT to range PORT

- range PORT to range PORT

6. Test Case 6 in white list mode (default = deny) covers:

- Directional

- Priority

7. Test Case 7:

Is just an additional test case used to simulate real-world policies for checking
the correct translation of all of the parameters together.

Now that this abstraction is created for the Test Cases, next populate these TCs
with values to input them into the framework and check the resulted output. To
do that, there is two options. First, populate TCs with random but correct values
and translate TCs to an NFV element as an input to the Firewall Serializer class.
Then check statically by scanning the output configuration files and comparing the
output of the files with the corresponding input policies. The translation is correct
if the functionality of the commands in the configuration file corresponds to that
of the input policy. The second option, create TCs with their values based on a
reference network topology, which will then be deployed in a testing environment
to run live tests on the firewalls configured by the produced output. In our case, we
will build a virtual testing environment, so the second option will be adopted. The
firewall policies will be generated based on a reference network topology shown in
the next section.

33

Verification and Validation of low level configuration output

5.4 Test Case Generation based on Reference
Topology

This section will show the choice of the right topology to be taken as reference.
Then thanks to the test case abstractions found before, we can easily generate the
test cases to be used as input to the framework low-level translator.

5.4.1 Finding the Right Topology
In order to find the reference topology, start searching for the optimal one. Due to a
lack of physical machines and resources, the virtual environment will be reproduced
and deployed locally. The optimum Network topology must:

1. Covers all possible test cases

2. be lightweight, so it can be reproduced locally in terms of resources, So we
need to have a sufficient and limited number of nodes in the topology.

3. simulates a real-world network topology pattern

So this limits how many test cases are produced and their coverage. The problem
here is to find a network topology that is ramified enough to cover all test cases yet
small enough to consume as few resources as possible. The best way to continue is
to start from the most common pattern of a firewall network topology. According
to NIST [12], "Organizations should use firewalls wherever their internal networks
and systems interface with external networks and systems, and where security
requirements vary among their internal network" adding "firewalls should be placed
at the edge of logical network boundaries", then explained that the most common
way to protect a network of a business offering services to the internet is using a
DMZ concept, where there is an external network, internal network and a DMZ
where servers should be positioned (as in Figure 5.3).

A demilitarized zone network is a perimeter network that protects and adds
an extra layer of security to an organization’s internal local-area network from
external, not trusted traffic. A common DMZ is a network that sits between the
external and internal networks in a Company. The DMZ is usually used for servers
(like a Web server and a Mail server) that should be accessible both from the
outside (Internet) and from the internal network (intranet) and thus are governed
by a more relaxed policy than the internal network that should be protected from
external threats.

What is interesting in Figure 5.3 is the three different areas in the topology, the
internal, external, and the DMZ areas. Build a topology similar to Figure 5.3 small-
business topology, where we add a couple of endpoints inside the internal network,

34

Verification and Validation of low level configuration output

Figure 5.3: small-business network-topology figure depicted from

two firewalls also acting as routers, and a couple of servers in the DMZ network.
Also, for the external network, we add two endpoints, each with a different network,
to have various external clients coming from different IP subnets. Therefore we
could set up our network topology to look like Figure 5.4.

Figure 5.4: Reference Network Topology

For now, layer 2 connectivity is not of interest. Lets focus on network assignment
and position of firewalls/routers. first start by the Assigning to the topology the
following networks:

• External Network:

35

Verification and Validation of low level configuration output

1. Network 10.0.0.0/24 (e3): represents external web clients that need access
to web server or email server

2. Network 10.0.1.0/24 (e4): another external network that require access to
servers

• DMZ 30.0.5.0/24 (e5 and e6): network where all servers that require public
access are located.

• Network 10.0.2.0/24 (e1 and e2): internal Network for employees connected
to the internal network of the company.

Both external networks are connected to Router 2, which is the entry point to
the company network protected by a first firewall (External Firewall 1). Router
1 is considered the point of routing external and internal traffic. It is connected
to Firewall 1 and Firewall 2 in addition to the DMZ 30.0.5.0/24, as shown in
Figure 5.4. We can also observe the positions of the firewalls where enforcement
of policies takes place. To simplify the example, we considered that external web
clients have private IPs (10.0.0.0/24 or 10.0.1.0/24), and the point-to-point links
between routers and firewalls are of sub-net /24. of course, in a real scenario they
are of /30 sub-net that is assigned to point to point (p2p) links. In any case, this
could be changed for other types of testing.

Now that we have found our simple network topology, it will be used as a
reference for all the work that follows, from generating test cases to building the
virtual environment for testing. Using the test cases abstraction done in section 5.3,
we can easily populate each test case from TC1 to TC7 with policies created using
the reference topology respecting each test case rule defined earlier. The policies
to be generated will target firewall 1 (external firewall) and firewall 2 (internal
firewall), So each TC is expected to have policies related to firewalls 1 and 2. In
other words, we will obtain in each test case; TC1-Ex (test case 1 policies for
external firewall), and TC1-In (test case policies for internal firewall) similarly
to the rest of the test cases.

5.4.2 Test Case Generation
Now that we have the reference topology lets Start by creating the first TC1,
note that its creation will be done to correspond with the work flow defined in
subsection 5.3.2.

■ TC1
The first test case covers the parameter IP in white list mode with its different
values (IP - IP , IP - range , range - range). The tables represent the firewall
policies of external and internal firewall according to our reference topology.

36

Verification and Validation of low level configuration output

Ex = External firewall policy; In = Internal Firewall policy. Default Action =
Allow

Firewall Action Src IP Dst IP Protocol Src PORT Dst PORT Priority Directional
1 External deny 10.0.1.1 30.0.5.1 ANY * * * no
2 External deny 30.0.5.1 10.0.1.1 ANY * * * no
3 External deny 10.0.1.1 30.0.5.2 ANY * * * no
4 External deny 30.0.5.2 10.0.1.1 ANY * * * no
5 External deny 10.0.0.1 10.0.2.0/24 ANY * * * no
6 External deny 10.0.2.0/24 10.0.0.1 ANY * * * no
7 External deny 10.0.1.0/24 10.0.2.0/24 ANY * * * no
8 External deny 10.0.2.0/24 10.0.1.0/24 ANY * * * no
9 Internal deny 10.0.2.1 30.0.5.1 ANY * * * no
10 Internal deny 30.0.5.1 10.0.2.1 ANY * * * no
11 Internal deny 10.0.0.1 10.0.2.0/24 ANY * * * no
12 Internal deny 10.0.2.0/24 10.0.0.1 ANY * * * no
13 Internal deny 10.0.2.0/24 10.0.1.0/24 ANY * * * no

Table 5.1: TC1 policies

• 1-2-3-4-9-10 tests IP to IP translation
• 5-6-11-12 tests IP to range translation
• 7-8-13 tests range to range translation

■ TC2
The Second test case covers the protocol and PORT parameters in white
list mode with its different values. The tables represent the firewall policies
of external and internal firewall according to our reference topology. Ex =
External firewall policy; In = Internal Firewall policy. Default Action = Allow

Firewall Action Src IP Dst IP Protocol Src PORT Dst PORT Priority Directional
1 External deny 10.0.0.1 30.0.5.1 TCP 2000 80 * no
2 External deny 30.0.5.1 10.0.0.1 TCP 80 2000 * no
3 External deny 10.0.0.1 30.0.5.2 TCP 2000 500-600 * no
4 External deny 30.0.5.2 10.0.0.1 TCP 500-600 2000 * no
5 External deny 10.0.1.0/24 30.0.5.1 TCP * 80 * no
6 External deny 30.0.5.1 10.0.1.0/24 TCP 80 * * no
7 External deny 10.0.1.0/24 30.0.5.1 TCP * 400-500 * no
8 External deny 30.0.5.1 10.0.1.0/24 TCP 400-500 * * no
9 Internal deny 10.0.2.1 30.0.5.2 TCP 2000-3000 0-1000 * no
10 Internal deny 30.0.5.2 10.0.2.1 TCP 0-1000 2000-3000 * no
11 Internal deny 10.0.2.2 30.0.5.2 UDP * * * no
12 Internal deny 30.0.5.2 10.0.2.2 UDP * * * no
13 Internal deny 10.0.2.3 30.0.5.2 ANY * * * no
14 Internal deny 30.0.5.2 10.0.2.3 ANY * * * no

Table 5.2: TC2 policies

37

Verification and Validation of low level configuration output

As we can see here the main focus was testing the PORT/protocol parameter.
The policies number:

• 1-2 tests PORT to PORT translation
• 3-4-5-6 tests PORT to range translation
• 7-8-9-10 tests range to range translation
• all tests verify the translation of TCP/UDP/ANY protocols

■ TC3
The Third test case covers the directional and priority parameters in white
list mode with its different values. The tables represent the firewall policies
of external and internal firewall according to our reference topology. Ex =
External firewall policy; In = Internal Firewall policy. Default Action = Allow

Firewall Action Src IP Dst IP Protocol Src PORT Dst PORT Priority Directional
1 External deny 10.0.0.1 30.0.5.1 TCP 2000 80 * yes
2 External deny 10.0.0.1 30.0.5.2 TCP 2000 500-600 * yes
3 External allow 10.0.1.0/24 30.0.5.1 TCP * 443 5 yes
4 External deny 10.0.1.0/24 30.0.5.1 TCP * 400-500 10 yes
5 Internal deny 10.0.2.1 30.0.5.2 TCP 2000-3000 0-1000 * yes
6 Internal deny 10.0.2.2 30.0.5.2 UDP * * * yes
7 Internal deny 10.0.2.3 30.0.5.2 ANY * * 5 yes
8 Internal allow 10.0.2.3 30.0.5.2 ANY 1000 400 1 yes

Table 5.3: TC3 policies

As we can see here the main focus was testing the Directional/Priorirty
parameters with different IP and PORT numbers. The policies number:

• all policies cover directional parameter
• 3-4-7-8 covers priority with different PORT numbers

■ TC4
The fourth test case covers the parameter IP in black list mode with its
different values (IP - IP , IP - range , range - range). The tables represent
the firewall policies of external and internal firewall according to our reference
topology. Ex = External firewall policy; In = Internal Firewall policy. Default
Action = deny

38

Verification and Validation of low level configuration output

Firewall Action Src IP Dst IP Protocol Src PORT Dst PORT Priority Directional
1 External allow 10.0.1.1 30.0.5.1 ANY * * * no
2 External allow 30.0.5.1 10.0.1.1 ANY * * * no
3 External allow 10.0.1.1 30.0.5.2 ANY * * * no
4 External allow 30.0.5.2 10.0.1.1 ANY * * * no
5 External allow 10.0.0.1 10.0.2.0/24 ANY * * * no
6 External allow 10.0.2.0/24 10.0.0.0/24 ANY * * * no
8 Internal allow 10.0.2.0/24 10.0.0.1 ANY * * * no
9 Internal allow 10.0.0/24 10.0.2.0/24 ANY * * * no
10 Internal allow 10.0.0.2.0/24 30.0.5.0/24 ANY * * * no
11 Internal allow 30.0.5.0/24 10.0.2.0/24 ANY * * * no

Table 5.4: TC4 policies

As we can see here the main focus was testing the Src/Dst IP parameter. The
policies number:

• 1-2-3-4 tests IP to IP translation
• 5-7 tests IP to range translation
• 6-9-10-11 tests range to range translation

■ TC5
The fifth test case covers the protocol and PORT parameters in black list mode
with its different values. The tables represent the firewall policies of external
and internal firewall according to our reference topology. Ex = External
firewall policy; In = Internal Firewall policy. Default Action = deny

Firewall Action Src IP Dst IP Protocol Src PORT Dst PORT Priority Directional
1 External allow 10.0.0.1 30.0.5.1 TCP * 80 * no
2 External allow 30.0.5.1 10.0.0.1 TCP 80 * * no
3 External allow 10.0.0.1 30.0.5.2 TCP * 500-600 * no
4 External allow 30.0.5.2 10.0.0.1 TCP 500-600 * * no
5 External allow 10.0.1.0/24 30.0.5.1 TCP * 80 * no
6 External allow 30.0.5.1 10.0.1.0/24 TCP 80 * * no
7 External allow 10.0.1.0/24 30.0.5.1 TCP * 400-500 * no
8 External allow 30.0.5.1 10.0.1.0/24 TCP 400-500 * * no
9 Internal allow 10.0.2.1 30.0.5.2 TCP 2000-3000 0-1000 * no
10 Internal allow 30.0.5.2 10.0.2.1 TCP 0-1000 2000-3000 * no
11 Internal allow 10.0.2.2 30.0.5.2 UDP * * * no
12 Internal allow 30.0.5.2 10.0.2.2 UDP * * * no
13 Internal allow 10.0.2.3 30.0.5.2 ANY * * * no
14 Internal allow 30.0.5.2 10.0.2.3 ANY * * * no

Table 5.5: TC5 policies

39

Verification and Validation of low level configuration output

As we can see here the main focus was testing the PORT/protocol parameter.
The policies number:

• 1-2-5-6 tests PORT to PORT translation
• 3-4-7-8 tests PORT to range translation
• 9-10 tests range to range translation
• all tests verify the translation of TCP/UDP/ANY protocols

■ TC6
The sixth test case covers the directional and priority parameters in black
list mode with its different values. The tables represent the firewall policies
of external and internal firewall according to our reference topology. Ex =
External firewall policy; In = Internal Firewall policy. Default Action = deny

Firewall Action Src IP Dst IP Protocol Src PORT Dst PORT Priority Directional
1 External allow 10.0.0.1 30.0.5.1 TCP 2000 80 * yes
2 External allow 10.0.0.1 30.0.5.2 TCP 2000 500-600 * yes
3 External deny 10.0.1.0/24 30.0.5.1 TCP * 443 5 yes
4 External allow 10.0.1.0/24 30.0.5.1 TCP * 400-500 10 yes
5 Internal allow 10.0.2.1 30.0.5.2 TCP 2000-3000 0-1000 * yes
6 Internal allow 10.0.2.2 30.0.5.2 UDP * * * yes
7 Internal allow 10.0.2.3 30.0.5.2 ANY * * 5 yes
8 Internal deny 10.0.2.3 30.0.5.2 ANY 1000 400 1 yes

Table 5.6: TC6 policies

As we can see here the main focus was testing the Directional/Priority param-
eters with different IP and PORT numbers. The policies number:

• all policies cover directional parameter
• 3-4-7-8 covers priority with different PORT numbers

■ TC7
The seventh test case represents a possible real-world configuration of firewalls
with certain common practices performed commonly, like blocking a specific
IP from external malicious client to access we b server, or allowing a specific
port from external to reach internal client, this TC is here to ensure the
correct translation of everything. The tables represent the firewall policies
of external and internal firewall according to our reference topology. Ex =
External firewall policy; In = Internal Firewall policy. Default Action = deny

40

Verification and Validation of low level configuration output

Firewall Action Src IP Dst IP Protocol Src PORT Dst PORT Priority Directional
1 External allow * 30.0.5.1 TCP * 80 10 yes
2 External allow * 30.0.5.1 TCP * 443 10 yes
3 External allow 10.0.0.0/24 30.0.5.2 TCP * 587 * yes
4 External deny 10.0.1.1 30.0.5.1 TCP * 80 5 yes
5 External deny 10.0.1.1 30.0.5.1 TCP * 443 5 yes
6 External allow 10.0.0.1 10.0.2.4 TCP 50000 53 * yes
7 External allow 10.0.0.1 10.0.2.4 UDP 50001 53 * yes
8 External allow 10.0.0.1 10.0.2.1 ANY * * * yes
9 Internal allow 10.0.0.1 10.0.2.4 TCP 50000 53 * yes
10 Internal allow 10.0.0.1 10.0.2.4 UDP 50001 53 * yes
11 Internal allow 10.0.2.1 10.0.0.1 ANY * * * yes
12 Internal allow 10.0.2.1 30.0.5.0/24 ANY * * * yes
13 Internal allow 10.0.2.2 30.0.5.0/24 ANY * * 10 yes
14 Internal deny 10.0.2.2 30.0.5.1 ANY * * 5 yes

Table 5.7: TC7 policies

Finally this TC provides an additional assurance that the code will produce
an error-free translation. TC7 validates all previous TCs.

5.5 Correction of translation Code
To test the code, first translate the policies in TCs produced into an XML format
that the code accepts as an input. So the file TestCases.xml is generated, written
in it all the TCs. It is located in /verefoo/testfile/Others. Also, another file
called TestCases-bpf is created which include test cases specific to bpf firewall.
It is basically the same as TestCases.xml but with reduced PORT ranges. For
example, a TC with a policy having source PORT 2000-3000 will be converted to a
policy with source PORT range 2-3 omitting all the zeros, so that the PORT range
becomes small, and so on for the rest (400-600 becomes 4-6). This is done just
in case of bpf firewall since according to their documentation [19], although it is
an iptables-like syntax, they didn’t specify a PORT range command that allows
covering a whole range of PORTs [1]. and in VEREFOO code the translation is
done according to an algorithm that takes the PORT range and translates each
PORT in the range into a single command. So a PORT range 2000-3000 would
produce 1000 lines of commands, each line configures a single PORT, which will
be too much in our case, so just for the case of bpf firewall, the PORT range is
reduced as mentioned earlier.

Starting from the TestCases.xml file, we input the file to the translation code
and check the results. having 7 test cases, each TC has an external and internal
firewall configuration so for each firewall type we should expect an output of 14

41

Verification and Validation of low level configuration output

configuration files. For example, Iptables translation code produced 14 configuration
files, named as follows:

■ "Firewall Type"_"TC Number"-"Ex or In"_"File Number" where Ex stands for
External firewall configuration and In stand for Internal firewall configuration
firewall.

The generated files for each firewall type were checked statically for errors, and the
code was fixed accordingly. At this point the correction was done by comparing
input policies with produced commands to check syntax correctness. but still the
code isn’t fully correct until it is tested practically in virtual environment to check
additional possible problems. Now that the code is corrected statically, there is
a little bit of confidence that the framework will produce error free translation.
There is still a need to test in a virtual environment in order to be sure of the
frameworks output.

5.6 Building of Test Environment

Now that the test cases are generated, it is time to create a testing environment.
Due to the lack of physical machines to perform the testing. We will build our
virtual network environment exploiting automation as much as possible so that
the environment can be reproduced easily each time the testing needs to be done
without needing to rebuild it again. Many factors contribute to the choice of
the environment and the ability of our firewall types to be reproduced in such
an environment. Building the virtual environment begins with defining the tools
that will be required. To achieve that, the possibility of virtualizing network
typologies is explored using several methods. As there is no standard way to
virtualize a testing environment for networks, many possibilities exist, from using
VMs to containers or software emulators. Different frameworks were developed
to facilitate the deployment of a testing environment, but until now, there is no
standard way or general approach to building a virtual environment. As specified
in the background chapters, the best way to go when using virtualization is docker
containers, specifically when there is a lack of resources (in case there was more
resources working with virtual machines may be better). Again the topology is
shown in Figure 5.5.

42

Verification and Validation of low level configuration output

Figure 5.5: Reference Network Topology

As seen in Figure 5.5, It is necessary to count how many nodes our virtual
environment will have. As the primary goal is firewall testing, we will assume
that endpoints and servers have the same configuration since there is no special
configuration needed for servers. The outcome of our environment is simply a
couple of endpoints pinging each other or pinging servers. So the complexity occurs
at the firewall/router level, specifically at the firewall level where different firewall
types should be deployed, so we have to manage the compatibility of the firewall
type that are being deploying with the node that represents the firewall (for
example, ipfirewall needs a FREEBSD OS that Can not run inside containers). In
the topology, We distinguish three kinds of nodes:

1. endpoint and server nodes: need to perform simple tasks, just as pinging using
UDP and TCP flags. so their functionality is quite simple and doesn’t need a
complex node setup.

2. routers are expected to be a little more complex than endpoints as they need
to run an additional routing functionality and must be configured accordingly
to router packets correctly inside the network. Also, here we discard the
router’s complex functionality like NAT or having access lists or other complex
networking functionalities. we just consider the routing part, as the others are
not important right now. (maybe these functionalities could be extended in
the future, for example dynamic routing to facilitate the routing configuration
inside the virtual network environment)

3. firewalls act as routers with firewall rules. They filter incoming traffic before
routing them to the next hop. So they should implement the functionality of
routing and filtering. The complexity of deploying firewalls in our environment
depends on the type of firewall used.

43

Verification and Validation of low level configuration output

Layer two connectivity is ignored as they are not of interest right now (we assume
that they are up and working ex: bridge mechanism), but for the openVswitch
firewall, there is a need to dive deeper into L2 connectivity to apply such filtering
at L2 level for that the reference topology may have minimal changes according
to the used firewall type. In terms of the number of nodes, there is 12 nodes to
be deployed (consider in each endpoint sub network there is two endpoints that
must be emulated). This must be taken into considerations, in order to manage
resources to be reserved for the virtual environment.

5.6.1 Implementation of Virtual Environment
After deciding that the environment is built using containers, specifically Docker-
Compose. As discussed earlier, the nodes in the virtual network environment are
required to do minimal network functionalities and are not complex. In order to
maximize efficiency and decrease as much as possible resources the following OS
are chosen for the deployment of each of the nodes:

• Servers and endpoints containers will have an image based on an alpine image
that is a very stripped down OS (only 6 MB). The alpine image contains most
of the functionalities needed for endpoints/servers but misses just the tool
hping3 that will be used for testing (explained later). The tool is installed
and a new image is created using the docker file.

• For routers again, for the sake of resources optimization, we use the base
alpine image, which is sufficient for the router to perform routing. We install
an addition of tcpdump package on routers for debugging purposes.

• For firewalls, the image depends on the type of the firewall. also the imple-
mentation of firewall differs. Lets go through each firewall type:

1. iptables-firewall: is the easiest to deploy, since all it requires is an alpine
image with iptables installed on it. This makes the iptables virtual
network environment the most light weight and consumes incredibility
low resources.

2. bpf-firewall: is a bit more complex than deploying iptables since it re-
quires a larger image and consumes more resources. We could use an
ubuntu base image to build the bpf-firewall on base metal but this will
generate an image of 2.7 GB large. This happens because bpf-firewall
requires alot of dependencies before launching the container. Fortunately
there is a possibility to run bpf-firewall as a container by just pulling
"polycubenets/polycube" image that is more light weight (270 MB).
However, bpf-firewall container requires linux kernel headers in order to

44

Verification and Validation of low level configuration output

launch correctly the container thats why we mount the Linux header at
container startup. Also, the "polycubenets/polycube" image had some
functionalities that were installed using a docker file in order to make the
container complete.

3. openvswitch: openvswitch works at the level L2, which makes it a little
bit more tricky since the L2 connectivity is managed by docker bridges,
so we have to modify the bridges at the host OS level in order to change
the normal L2 bridges to openvswitches. This is done in startScript file,
where it setup the L2 openvswitch as shown Figure 5.6.

Figure 5.6: Open Virtual Switch Topology

The L2 connectivity is now manipulated at the host OS level, but to
preserve the network topology, we left the external and internal firewalls
now they just act as regular routers and forward traffic.

Now that it is decided to deploy our network using Docker Compose The next
step will be to implement and run the environment. All the commands specified
are extracted from the manual of docker compose [13].

To run the virtual environment, it is required to enter the install docker engine
and Docker-Compose for that refer to Docker Documentation. Now that the
requirements are installed to run the environment, start from the Folder "vnetwork"
which contains all the code developed in order to reproduce the environment. Let
us explore the different files inside the project:

1. startScript: This file is what runs the whole environment simply by executing
the script ./startScript in the working directory of the project (/vnetwork
). Then the whole environment will be reproduced but before the user must

45

Verification and Validation of low level configuration output

choose which type of firewall is required to reproduce in the environment.
iptables, bpf-firewall, or openvswitch. Moreover, the user also specify the
corresponding TestCase to run, since everything is packaged inside the project,
the environment will be reproduced and it only takes seconds before it is ready
for testing.

2. endScript: After finishing the testing, stops and removes all created containers
and networks. user just execute ./endScript.

3. docker-compose-bpf.yml: file responsible for creating the virtual network
topology of our reference network having bpf-firewall as firewall type. It has a
declarative syntax, we can easily remove/add a container/network and attach
the newly added container to a network.

4. docker-compose-iptables.yml: file responsible for creating the virtual network
topology of our reference network having iptables-firewall as firewall type. It
has a declarative syntax. developer can easily remove/add a container/network
and attach the newly added container to a network.

5. docker-compose-openvswitch.yml: file responsible for creating the virtual
network topology of our reference network having openvswitch-firewall as
firewall type. It has a declarative syntax, developer can easily remove/add a
container/network and attach the newly added container to a network.

6. endpoints_build: contains the Docker file for creating the image of end-
points/servers in the environment with required packages.

7. firewall_build_bpf: contains the Docker file responsible for building the bpf
firewall image with required packages.

8. routerfirewall_build_iptables: container Docker firewall that generates an
image for routers and iptables firewall with required packages.

9. RouterFirewallConfig: contains the configurations of routers (static routes)
and scripts of test cases.

10. startwireshark: starts a container that runs a wireshark image used for debug-
ging purposes. It opens on the local host.

11. Hping Tests: The directory Contains a couple of tests to be done in the virtual
environment.

12. README.md: contains some useful docker commands.

Example of Starting iptables virtual environment:

46

Verification and Validation of low level configuration output

• Make sure docker service is up and running by

$ service docker status
$ service docker start # if the service is down

• Enter the vnetwork Directory and execute ./startScript, then Input firewall
type "iptables"

• Input the TestCase number to be deployed from ’1’ to ’7’

• if it is the first time running the environment, it will take some time to pull
all required images for the containers and build the Docker Files.

• Now when all containers are created and started, terminals will automati-
cally open corresponding to different nodes of the environment, and now the
environment is ready for the testing.

• You can use for testing the commands specified in HpingTests directory, or
create your own tests according to the firewall policies. Also tcpdump can be
used on firewalls and routers in order to sniff packets for debugging.

• when the testing is done, simply execute the ./endScript to shutdown all of
the environment and delete all containers/networks.

Now that the virtual environment is built for each firewall type, it is ready to
be started and tested.

5.6.2 Testing using Hping3
According to [20], “Although injection based firewall testing is accepted as an
inefficient way of testing firewall implementations in the literature. There has been
no alternative method developed yet”. Manual injection of packets is adopted to
test the firewall implementation in the virtual environment. Now that the virtual
environment up and running let’s start the testing using Hping3 commands. Here is
specified the general commands that are useful for testing. Leaving the possibility
to manipulate these commands as desired for testing.

1 $ hping3 de s t i na t i on IP −s sourcePORT −p destinationPORT −k −c
numberOfPackets # This command sends TCP type packets

2

3 where −s : s p e c i f y source PORT, −p : s p e c i f y d e s t i n a t i o n PORT,
4 −k : s p e c i f y to keep source port as i t i s f o r each ping , −c : s p e c i f y

number o f packets to be send .

47

Verification and Validation of low level configuration output

5

6 $ hping3 −2 de s t i na t i on IP −s sourcePORT −p destinationPORT −k −c
numberOfPackets # This command sends UDP type packets

7

8 where −s : s p e c i f y source PORT, −p : s p e c i f y d e s t i n a t i o n PORT,
9 −k : s p e c i f y to keep source port as i t i s f o r each ping , −c : s p e c i f y

number o f packets to be send .
10

11 Examples :
12 $ hping3 3 0 . 0 . 5 . 2 −s 2000 −p 80 −k −c 7 # Send 7 TCP packets to

d e s t i n a t i o n IP 3 0 . 0 . 5 . 2 with port source 2000 and d e s t i n a t i o n port
80 keeping the source port as i t i s always .

13

14 $ hping3 −2 3 0 . 0 . 5 . 2 −s 2000 −p 80 −k −c 7 # Send 7 UDP packets to
d e s t i n a t i o n IP 3 0 . 0 . 5 . 2 with port source 2000 and d e s t i n a t i o n port
80 keeping the source port as i t i s always .

Using these commands we can generate all packets of type TCP or UDP that
are of interest to us in our testing. After the firewall is deployed, we test it in
each virtual environment, verifying that the firewall configurations are correct, and
imposing policies flawlessly. The testing is done through terminal, where each
terminal represent a specific container and the possible outcome of the testing is
either success or fail of ping request, from this simple result we could ensure the
correctness of firewall configurations. There is another possibility to do tests and
inject packets rather than simple packet sending manually and that is discussed
in [20] which is testing done toward implementation of already developed firewall
rules.

5.6.3 Tests evaluation
According to [16]. This is how to perform firewall testing: (1) identify appropriate
test cases, (2) derive the test packets, (3) send the test packets to the firewall and
(4) evaluate the reaction of the firewall. and this is what is done so far. If the
firewall does not react as intended, one of the following failures occurred:

1. The test case is faulty and predicts a wrong firewall reaction (e.g. the security
policy specifies to block a packet but the test case indicates that the firewall
forwards the packet).

2. The firewall rules do not implement the security policy (e.g. the security
policy specifies to block a packet but the firewall rules let it pass).

3. The firewall implementation is erroneous and the rules do not correspond to
the actions of the firewall (e.g. the firewall rule specifies to block the packet
but the firewall forwards the packet).

48

Verification and Validation of low level configuration output

4. The test environment has bugs or limitations. This is sometimes due to
the low fidelity ratio between the real physical topology and the virtual one.
where the virtual topology misses some characteristics that are relevant to the
testing, for example, dynamic routing is not present in the virtual environment
this reduces fidelity ratio (since probably in a real physical scenario dynamic
routing will be present) but does not affect the outcome of testing of firewalls
as static routing is enough, unlike other cases where if one functionality is
missing that reduces the fidelity, this leads to wrong test results.

5.6.4 Environment Fidelity Effect
So testing fails not only because the rules in the firewall are not implemented or
at fault, but sometimes tests fail because the virtual environment created does
not perfectly replicate the real physical scenario and has some limitations due to
fidelity (check Figure 3.3). Like in our case, one test that fails. If we send a UDP
packet to a server specified in the environment, which is allowed by the firewall,
the expected response from the server is a UDP packet. Rather an ICMP packet is
sent, which is blocked by the firewall. To solve this issue, the environment must be
manipulated by finding alternative ways to represent a UDP server that accepts
UDP connections. For the UDP case, it is suggested to follow this approach: When
sending a UDP packet from an endpoint to a server, the UDP packet is allowed
to pass, but the response is an ICMP packet from the server container that the
firewall drops, so it appears as if the test fails. Proposed Solution: use "nc" tool to
create a client-server model and allow send of UDP and receive of UDP packets.
EX: - "nc -u -l -p 1000 -s 30.0.5.1" -> server listening in UDP mode on port 1000
at address 30.0.5.1.

- "nc -u 30.0.5.1 1000" -> client. connect to server 30.0.5.1 at port 1000.
Using this proposed solution, the virtual network topology replicates the real one

more faithfully, adding a higher degree of fidelity (similarity between virtual and
real environment). The more relevant functionalities to the virtual environment, the
more fidelity ratio increases. Optimally, we would like to reach a fidelity ratio near
1 (virtual environment replicates real environment exactly), but that is unrealistic
and also not needed. We need to maximize the relevant fidelity ratio, that is, the
functionalities that must be added to the virtual environment that directly affect
firewall testing. If these functionalities are not present, this may lead to misleading
test results. Other functionalities like dynamic routing do not affect the outcome
of test results. Note that this is a qualitative approach, and not quantitative. In
case quantitative results are needed a study must be done to see the set of all
functionalities of physical environment and see how much is replicated exactly in
the virtual environment,

To fully understand the concept of fidelity and relative fidelity the following

49

Verification and Validation of low level configuration output

example is demonstrated:

Figure 5.7: Fidelity Vs Relative Fidelity

In Figure 6.6, suppose that fidelity is measured in percentage, and the values
here are just for the sake of the example. Let us break down each one:

• The base environment (without adding dynamic routing and nc functionality
as discussed before) has the fidelity of nearly 40% which means that the
virtual environment replicates 40% of the real physical environment with
all its conditions (dynamic routing-physical characteristics of real nodes-
functionalities of each node-applications mounted on each node-real type of
operating systems on each node...) A virtual environment can never have
100% replicas of the physical one. While Relative fidelity, which is higher,
corresponds to the similarity of the virtual environment with respect to an
ideal virtual environment where firewall test conditions are the same as the real
environment. Obviously, this percentage is higher since the functionalities that
need to be supported by the virtual environment need to be affected directly
by firewall testing, which is much lower than all functionalities supported by
a real environment. (for example, dynamic routing presence does not affect
the testing of firewall results, while having NAT functionality does affect since
there is a change in packet headers).

• when adding to the base virtual environment dynamic routing, notice that
the fidelity increases. However, the relative fidelity stays the same since this

50

Verification and Validation of low level configuration output

functionality is not in the space of required functionalities for proper firewall
testing.

• when adding to the base virtual environment the previous nc UDP server
functionality (server node acting as a real server listening on UDP port), notice
that the fidelity increases, as well as relative fidelity.

Finally, the goal is to maximize the relative fidelity to minimize the errors that
can occur from testing in a fault virtual environment. The same methodology
suggested here could be applied in other cases, where first, we define the space
of minimal functionalities that are sufficient for performing testing in a virtual
environment. We create the environment trying to achieve maximized relative
fidelity.

5.7 Routing in Virtual Environment (Enhance-
ment)

As seen in previous sections, the testing environment was built using docker
containers. Exploiting their main advantage, which is a lightweight environment
and flexibility. However, the environment was pre-produced from scratch, and
everything was configured statically. Main focus here is on routing. From a routing
point of view, in the previous network topology, the routes were built statically,
which means the configuration files were written from scratch that configure static
routes on each node in the network, which is time-consuming and error-prone. In a
larger test topology with more than 20 nodes, writing static routing configuration
files is not the best way to go. For that, this section will explore the possibility of
using dynamic routing in a docker container environment and its advantages and
disadvantages.

5.7.1 Routing Functionalities in Containers
Complex and redundant networks require different routing policies from those
typically found in small networks. Ideally, the routers will know all the paths that
lead to the target, but configuring them manually can quickly become confusing
and lead to mistakes. In containers, the layer two networks are managed by docker,
so no need to worry about it. Focus here on the layer three routing possibilities.
Inherently in docker, there is no possibility for dynamic routing, nor is there a
way to declare dynamic routing in docker-compose files or generally using docker
management interfaces. So the only for us to establish dynamic routing was using
the containers themselves. In other words, the containers now should act as routers
more broadly. Previously, containers were already acting to some extent as routers.

51

Verification and Validation of low level configuration output

They were forwarding packets, routing packets, and filtering packets according to
some rules (firewalls). However, the containers’ functionality are to be extended to
resemble more routers. Of course, routers having network operating systems are
more complex and offer a broad set of functionalities that containers with Linux
operating systems can mimic to a particular limitation. Shown in the following
tables, some of the functionalities that router offers and what Linux containers
acting as routers have offered until now in our test environment.

Functionality Router Linux Container
Forwarding packets yes yes
multiple interfaces yes yes
Packet filtering yes yes
Dynamic Routing yes no
Nat Forwarding yes no
load balancing yes no
DHCP module yes no
QOS yes no
Bandwidth control yes no
...

Table 5.8: Router and Container Functionalities

Moreover, as the list of router functionalities goes on, one can easily see that our
containers that ’act’ as a router have minimal router functionalities. Nevertheless,
that is the point; there is no need for all these router functionalities for our type
of test environment, we focus on the minimal router functionalities that can be
emulated as a Linux container to satisfy our need in such a testing environment,
and like this, resources consumption is minimized of our environment.

As you have noticed in Table 5.8, the dynamic routing functionality is not yet
supported by Containers in our case. To add dynamic routing, first find the right
tools to be installed on containers to allow this possibility. Furthermore, the right
dynamic routing algorithm will be chosen.

5.7.2 Dynamic Routing Algorithm and Tool
The solution to static routing is to distribute dynamically changing route informa-
tion automatically. The web world has developed special dynamic routing protocols
for this, usually only found on routers by Cisco or Juniper. The most famous tool
used to add such functionality to Linux machines/servers is called Quagga, which
is the one used.

Quoting [21], “Quagga gives IT administrators the option of participating in
the world’s largest group of routers with a Linux computer. The Quagga project

52

Verification and Validation of low level configuration output

originated with the Zebra Routing Daemon by Japanese developer Kunihiro Ishiguro.
The software is included in all popular Linux distributions”. Quagga does not
handle the routing since it is still the domain of the underlying operating system
kernel. However, it does provide several routing protocols – Routing Information
Protocol (RIP), RIPng, Open Shortest Path First (OSPF) for IPv4 and IPv6,
Border Gateway Protocol (BGP), and Intermediate System to Intermediate System
(IS-IS) – and it modifies the kernel routing table on the routes it learns. So Quagga
is the software that installs on Linux that allows the possibility of dynamic routing
on a Linux machine or, in our case, a Linux container. Quagga uses Zebra daemon
to connect to the daemon. vtysh is used to connect through Unix sockets.

Note that Quagga includes several daemons: One service exists for each routing
protocol. The various routing daemons are managed by a master daemon – known
as Zebra. Every daemon has its configuration file and can be configured on a
separate port. The Zebra control daemon controls and coordinates the whole thing.
Using Alpine containers, Quagga is installed using the Docker file, which creates
a new image with Quagga pre-installed. After installing Quagga, containers are
configured to start the Zebra daemon with the corresponding Routing protocol
immediately when the container starts. In such a way, the routing protocol with
the running daemon is started automatically when the virtual environment starts,
and routes are generated immediately.

To Start the daemon with the routing protocol, At run time, zebraStart.sh
configuration file is mounted to containers that is executed when the latter starts.
The zebraStart.sh file is written as follows without starting the routing protocol.

1 #!/ bin /ash
2 echo " S ta r t i ng Daemon"
3 / usr / sb in / zebra −d −f / e t c /quagga/ zebra . conf
4 f o r name in $@
5 do
6 i f [$name = " zebra "]
7 then
8 echo "Daemon a l ready running "
9 e l i f [−s "/ usr / sb in /$name "]

10 then
11 i f [! −f "/ e t c /quagga/$name . conf "]
12 the
13 echo " Creat ing empty c o n f i g f o r $name daemon . . . "
14 touch / e tc /quagga/$name . conf
15 f i
16 echo " S ta r t i ng $name daemon . . . "
17 / usr / sb in /$name −d −f / e t c /quagga/$name . conf
18 e l s e
19 echo "Unknown daemon : $name "
20 f i

53

Verification and Validation of low level configuration output

21 done
22 zebra −d

This configuration file starts the zebra daemon in an alpine container. Now that
the Zebra daemon has started, we have to choose the routing protocol that we need
to start on every container acting as a router to allow the correct functioning of
the routing protocol.

5.7.3 RIP Routing Protocol
Quagga offers the following dynamic routing protocol:

1. Routing Information Protocol (RIP): The Routing Information Protocol (RIP)
is an old distance vector routing protocol that uses the hop count as the
routing metric. The largest number of hops allowed for RIP is 15, limiting
the size of networks that RIP can support. In most networking environments,
RIP is not the preferred choice of routing protocol, as its time to converge
and scalability are poor compared to other protocols. However, it is easy to
configure because RIP does not require any parameters, unlike other protocols.

2. Open Shortest Path First (OSPF): Is a routing protocol for Internet Protocol
(IP) networks. It uses a link-state routing (LSR) algorithm and falls into
the group of interior gateway protocols (IGPs), operating within a single
autonomous system (AS). OSPF gathers link state information from available
routers and constructs a topology map of the network. OSPF is widely used in
large enterprise networks. IS-IS, another LSR-based protocol, is more common
in large service provider networks.

3. Border Gateway Protocol (BGP): Is a standardized exterior gateway protocol
designed to exchange routing and reachability information among autonomous
systems (AS) on the Internet. It is not interesting in our case.

After checking some of the routing protocols offered by Quagga, we can see clearly
that the best one is either RIP or OSPF (with their different versions). OSPF
is more widely used in real networks as it is more scalable but requires more
configuration effort than RIP. Using OSPF in our case will be too much in terms
of configuration for just a relatively small network topologies. For our case, RIP is
used. Although it is not used much now in networks, it is the best choice in our
virtual environment since it is easy to configure, and RIP simplicity is sufficient
for relatively small networks with 20 to 60 nodes. Note that RIP uses the User
Datagram Protocol (UDP) as its transport protocol and is assigned the reserved
port number 520 as we need to always open UDP port 520 on firewalls to allow
the routing protocol to function correctly.

54

Verification and Validation of low level configuration output

Now, after choosing the best routing protocol, containers are configured to act
as routers with the rip protocol at the startup of the virtual environment. To do
that, zebraStart.sh configuration file is modified to add rip protocol configuration
where the configuration of rip is taken from the official documentation of cisco rip
[22] . So that file could become as follows.

1

2 #!/ bin /ash
3 echo " S ta r t i ng zebra daemon . . . "
4 / usr / sb in / zebra −d −f / e t c /quagga/ zebra . conf
5 f o r name in $@
6 do
7 i f [$name = " zebra "]
8 then
9 echo " zebra daemon i s a l r eady s t a r t e d −> sk ip "

10 e l i f [−s "/ usr / sb in /$name "]
11 then
12 i f [! −f "/ e t c /quagga/$name . conf "]
13 then
14 echo " Creat ing empty c o n f i g f o r $name daemon . . . "
15 touch / e tc /quagga/$name . conf
16 f i
17 echo " S ta r t i ng $name daemon . . . "
18 / usr / sb in /$name −d −f / e t c /quagga/$name . conf
19 e l s e
20 echo "Unknown daemon : $name "
21 f i
22 done
23 zebra −d
24 r ipd −d
25 hs=‘hostname ‘
26 i f [[$hs == ∗" route r1 "∗]] ; then
27 vtysh −c " c o n f i g u r e te rmina l " −c " route r r i p " −c " network

2 0 . 0 . 0 . 0 / 2 4 " −c " network 2 0 . 0 . 1 . 0 / 2 4 " −c " network 3 0 . 0 . 5 . 0 / 2 4 " # −
c " t imers ba s i c 30 1200 1200"

28 f i
29 i f [[$hs == ∗" route r2 "∗]] ; then
30 vtysh −c " c o n f i g u r e te rmina l " −c " route r r i p " −c " network

2 0 . 0 . 2 . 0 / 2 4 " −c " network 1 0 . 0 . 0 . 0 / 2 4 " −c " network 1 0 . 0 . 1 . 0 / 2 4 " # −
c " t imers ba s i c 30 1200 1200"

31 f i
32 i f [[$hs == ∗" f i r e w a l l 1 "∗]] ; then
33 vtysh −c " c o n f i g u r e te rmina l " −c " route r r i p " −c " network

2 0 . 0 . 2 . 0 / 2 4 " −c " network 2 0 . 0 . 1 . 0 / 2 4 " # −c " t imers ba s i c 30 1200
1200"

34 f i
35 i f [[$hs == ∗" f i r e w a l l 2 "∗]] ; then

55

Verification and Validation of low level configuration output

36 vtysh −c " c o n f i g u r e te rmina l " −c " route r r i p " −c " network
1 0 . 0 . 2 . 0 / 2 4 " −c " network 2 0 . 0 . 0 . 0 / 2 4 " # −c " t imers ba s i c 30 1200
1200"

37 f i

As is evident in the previous we manually are detecting the container of our
reference topology (in chapter 2) and configure the rip protocol on each interface.
This is a sufficient approach to achieve dynamic routing for a pre-produced network
topology, where we know all nodes and the environment is static (doesn’t change)
which is our case. But it could be made more automated, for example, the
configuration file could detect automatically the network interfaces attached to
the container and their respective IP addresses that need to be added to the rip
protocol. this automation allows configuring rip protocol for whatever topology,
no need for nodes to be known apriori. For now, this advantage may seem not
quite useful. But this advantage will be evident in the next chapters to follow. The
zebraStart_automated.sh becomes as follows.

1 #!/ bin /ash
2 echo " S ta r t i ng zebra daemon . . . "
3 / usr / sb in / zebra −d −f / e t c /quagga/ zebra . conf
4 f o r name in $@
5 do
6 i f [$name = " zebra "]
7 then
8 echo " zebra daemon i s a l r eady s t a r t e d −> sk ip "
9 e l i f [−s "/ usr / sb in /$name "]

10 then
11 i f [! −f "/ e t c /quagga/$name . conf "]
12 then
13 echo " Creat ing empty c o n f i g f o r $name daemon . . . "
14 touch / e tc /quagga/$name . conf
15 f i
16 echo " S ta r t i ng $name daemon . . . "
17 / usr / sb in /$name −d −f / e t c /quagga/$name . conf
18 e l s e
19 echo "Unknown daemon : $name "
20 f i
21 done
22 zebra −d
23 r ipd −d
24 ip_addresses=$ (hostname − i)
25 ip_addresses=(${ ip_addresses //" "/ })
26 f o r i in " ${ ip_addresses [@] } " ; do
27 new=""
28 IFS = ’ . ’ read −ra ADDR <<< " $ i "
29 f o r ((j =0; j <3; j++)) ;

56

Verification and Validation of low level configuration output

30 do
31 new+="${ADDR[$ j] } . "
32 done
33 new+="0/24"
34 vtysh −c " c o n f i g u r e te rmina l " −c " route r r i p " −c " network $new "
35 done
36 vtysh −c " c o n f i g u r e te rmina l " −c " route r r i p " −c " t imers ba s i c 30

1800 1800"

Now that everything is ready for deploying rip protocol, we will test this
deployment of rip routing protocol into our virtual environment already developed
in previous chapter.

5.7.4 Rip Protocol in Virtual Environment
After finding the tool and writing the configuration files, the virtual environment
is ready to be deployed for testing that supports rip as a dynamic routing protocol.
This section points out the advantages and disadvantages of using a dynamic
routing protocol and more precisely using RIP protocol. First, let’s recall the
reference network topology with the containers used and their images.

Figure 5.8: Network Topology

Again to summarize the containers purposes, recall three kinds of nodes: 1.
endpoint and server nodes: Performs simple tasks like pinging. For that, docker
image "endpoint" is used, a simple alpine image with an additional "hping3" package
installed. 2. routers: used to apply forwarding of packets according to routes in
routing tables, but now with additional functionality that is dynamic routing. For
that, the docker image "router_firewall_rip" is used which is an Alpine image with
some packages that include Quagga software installed. 3. firewalls: Also required
to perform routing plus filtering, again now with additional functionality that

57

Verification and Validation of low level configuration output

is dynamic routing, so the docker image "router_firewall_rip" is used that is an
Alpine image with some packages that include Quagga software installed. But for
firewalls, note that every firewall should have port 520 UDP open for the correct
functioning of the rip protocol. Note Here. ONLY iptables is used as firewall types
other firewall types are not yet supported.

Now start the virtual environment with the configuration file zebraStart.sh that
is mounted and executed by routers and firewall containers at the start of the
environment. As soon as the environment is up, checking the routing table of any
firewall or router container, notice that the rip protocol has populated the routing
tables of the containers by routes that are learned using the protocol. The routes
are accurate and correct, and now there is no need to worry about routes and
their correctness as is done before using static routes. In general, after testing the
environment, we observe the advantages and disadvantages of using a dynamic
routing protocol, specifically RIP:

+ Easier to create, rather than writing static routes every time a new environment
is created.

+ less error prone, and saves time

+ rip is easy to configure and simpler than other routing protocol

+ can adapt to environmental changes in case a new container was attached or
detached.

+ decouples virtual environment from routing process, so if a new network
topology is created, there is no need to find static routes and write them.

− additional functionality that needs to be maintained.

− needs to open the UDP port on firewalls for the protocol to function.

− additional CPU consumption by environment as a result of deploying the rip
protocol (but the additional overhead is minimal and not significant)

Finally, implementing new functionality in the virtual environment is a continu-
ous process. A lot of functionalities can be added to make the environment more
robust and error-free and to facilitate the creation of more nodes in a topology
(scalability and flexibility). Each time a new functionality is added it should be
tested and ensure that it doesn’t interfere with other functionalities implemented
in the environment.

58

Chapter 6

VEREFOO Demo And
Translator Algorithm

The previous chapters focused on a specific component of VEREFOO. Precisely,
on verifying the translation of Firewall Medium Level Rules (FMLR) to Firewall
Low-Level Rules (FLLR). Then a sample network topology was created to test
these firewalls in a virtual environment. But the first part of VEREFOO was
ignored, the refinement of medium-level policies (MLP) to firewall allocation scheme
(FAS) and firewall medium-level rules (FMLR). This chapter will demonstrate how
VEREFOO operates as a single process from the Allocation Graph (AG) input to
the Firewall Allocation Schema (FAS) output with the firewall rules and also the
low-level configuration files. To do this demonstration, a Full Demo approach is
used with a certain pre-defined network topology that will be more ramified and
include more functionalities than the previous network reference topology.

6.1 Background

The following Figure summarizes the steps that an input Allocation Graph XML
follows until reaching the deployment of output configuration files in a virtual
environment, as the whole process is described in detail in [5].

59

VEREFOO Demo And Translator Algorithm

Figure 6.1: Verefoo Process

So let us break Figure 6.1. First, start from the Service Graph (SG) created
by the network administrator. The Service Graph defines the network topology
in an XML file manner with different XML elements. Along with the SG, the
Network Security Requirements (NSRs) are also defined. When the SG is taken
as input to the framework, Allocation Places will be automatically added to the
Graph (APs are located at each point-to-point link where firewalls may be possibly
allocated). Alternatively, AG and NSRs will be used immediately as input to the
framework. The first part of the framework, which is responsible for translation
from medium-level policies (MLP), will output a Firewall Allocation Schema (FAS)
along with Firewall Medium Level Rules (FMLR). The FAS and FMLR are in the
same output XML file, similar to the input one but with a firewall allocated along
with their firewall rules. Then, after the FAS generation, it is used as input to the
second part of the framework, which is responsible for translating the medium-level
firewall rules to low-level rules specific to a firewall type (tables - openvswitch ...).
The output files are Configuration files ready to be deployed on firewalls. Finally,
After the configuration files are generated, the pre-produced virtual environment is
launched based on containers for testing purposes.

From the brief description of the process, currently, the framework is decomposed
into two parts, in addition to the third part, which is deploying in a virtual
environment. What is done in the next sections is generate a Full Demo that
allows the whole parts of the framework to be seen as one—automating the whole
process where the user inputs the AG and NSRs and immediately gets the firewall
configurations deployed in a virtual environment. There will be two versions of the
demo, one version that contains an explanation of the whole process at each step
and another demo where there are no instructions, and the final result is generated
immediately.

60

VEREFOO Demo And Translator Algorithm

6.2 Full Demo Topology

This section will show best topology to represent the Demo. For that, the topology
already presented by the TDSC paper [11] is chosen that is also tested with the
VEREFOO framework. The topology chosen is great for our demo since it already
represents a well-ramified network and covers a set of additional functionalities with
respect to chapter 2 reference topology to be emulated in the virtual environment
to be developed (NAT - Loadbalancing). This is also a good example to test the
scalability of docker containers in terms of resource consumption.

The following is the Allocation Graph topology depicted from the TDSC paper
[11].

Figure 6.2: Allocation Graph

And the following are the functionalities of each node in the Allocation graph,
note that aij is allocation place where a firewall could be possibly allocated.

61

VEREFOO Demo And Translator Algorithm

Figure 6.3: Allocation Graph Functionalities

Finally the Network Security Requirements are defined, that are according to
TDSC [11], set of the user-provided NSRs assumed to be anomaly-free and no
conflicts between them.

Figure 6.4: Network Security Functionality

Also the example provided by the paper is already tested in VEREFOO, but
limited to generation of Firewall Allocation Schema and firewall medium level rules.
Which are shown in Figure 6.5 and Figure 6.6.

62

VEREFOO Demo And Translator Algorithm

Figure 6.5: Firewall Allocation Schema

Figure 6.6: Firewall Rules

but low-level configuration files weren’t produced and are not yet tested in a
virtual environment. Here the complete demo includes the whole process of verefoo
from translation to FAS and FMLR to the deployment of configuration files in a
virtual environment for testing. Ultimately, the input AG ready with the NSRs to
be the used in the complete demo, next section will show the build of the demo
using a script that automates the whole process for the user to test.

6.3 Full Demo Components
The Demo will be assumed to run on an Ubuntu Machine (20.04 LTS). The Main
components of the Demo will be:

• startfull.sh : Script that runs the full demo with instructions at each step. This

63

VEREFOO Demo And Translator Algorithm

type of demo shows using the terminal the whole process of interacting with
VEREFOO framework using curl commands. This demo with the example
provided in it is intended to explain the whole process in an easy and automated
manner to users.

• GUI : Directory responsible for having the gui of the framework.

• vererfoo : Directory responsible for having the framework where jar file is to
be generated.

• demo-vnetwork : Directory responsible for having the virtual environment of
the FAS of the previous example that is already mentioned.

• testfiles-images: Where all testfile and images related to demo are saved

Let’s dive into the details of each component and there functioning. First start
with the "startfull.sh", it is decomposed mainly into 3 parts.

1. Demo visualization functions: Are the functions responsible for how commands
are visualized and for demonstration purposes.

2. step functions: Are the functions that compose the demo itself, each step in
the demo is demonstrated by one step function. This also include a function
that check if required packages are installed before starting the demo.

3. Demo start: Which are series of commands to execute the demo in an ordered
manner.

To run the demo successfully (i.e execute ’startfull.sh’), there is a number of
packages that are required to be installed. In any case, the demo will fail to launch
in case any requirement to run the demo is missing. The requirements are:

1. Linux Ubuntu 20.04 LTS Virtual Machine

2. Docker Engine for ubuntu

3. Docker-Compose for ubuntu

4. java openjdk-1.8 (for framework launching)

5. node.js (for GUI launching)

6. curl package

7. pv package

64

VEREFOO Demo And Translator Algorithm

8. z3 library must be installed for ubuntu, and must be located in /home/z3
directory (to launch framework correctly). in addition to changing /etc/envi-
ronment for library path.

After all the requirements are met, you are ready to run the demo to demonstrate
the process of running VEREFOO and using GUI. The next component is the GUI
developed explicitly for the VEREFOO framework. Using the GUI, The drag-and-
drop approach can be used to create dynamic network topologies and allocation
graphs. Once the topology has been created, the GUI could be used to specify the
Network Security Requirements. Finally, sending the created topology with the
NSRs to the framework is possible, and the returned FAS is visualized using the
GUI. The third component is the framework itself, which takes as input AG and
NSRs, and outputs FAS in addition to firewall rules and low-level configuration
files. The following subsection will discuss the component of interest for this thesis
work which is the Virtual Environment.

6.4 Full Virtual Environment
The Last component is the ‘demo-vnetwork‘ where the virtual environment is stored.
The virtual environment will be based on a docker container and using docker-
compose as the declarative language for running multiple containers in parallel.
The Network topology built is shown in Figure 6.5 and Figure 6.6. However, the
previous topologies miss the low details of a Network topology like point-to-point
link network and IP addresses assignment, for that, the following topology is
designed with all the missing details.

Figure 6.7: Firewall Network Topology

As shown in Figure 6.18, the endpoint networks were replaced by two hosts for

65

VEREFOO Demo And Translator Algorithm

each network, just for the sake of representation. For example network 192.168.1.-1
is represented by host 192.168.1.1 and host 192.168.1.2.

As discussed earlier in Chapter 2 the nodes in the virtual network environment
are required to do minimal network functionalities and aren’t complex. It is already
discussed some docker images used to run the environment, particularly in Chapter
2 environment the functionalities that are addressed were endpoints (web clients
and web servers), containers acting as routers with limited functionalities, and
firewalls (iptables - bpf - openvswitch in layer 2). But now the topology is more
complex as two more functionalities were added which are the load balancer and
NAT.

To create these two functionalities, recall Table 5.8. Currently our Linux
container represents some of the real router functionalities, chapter 3 added the
Dynamic routing functionality, and now we will add the NAT Forwarding and load
balancing functionalities.

Functionality Router Linux Container
Forwarding packets yes yes
multiple interfaces yes yes
Packet filtering yes yes
Dynamic Routing yes yes
Nat Forwarding yes yes
load balancing yes yes
DHCP module yes no
QOS yes no
Bandwidth control yes no
...

Table 6.1: Comparison Router and Container Functionalities

NAT stands for network address translation, It’s a way to map multiple local
private addresses to a public one before transferring the information. So there
is a need to translate the Private IP of our network to public IP which is at the
interface of the NAT. Fortunately, using iptables it is possible to emulate NAT
behavior in a container. So for that there is already have a docker image that is
based on alpine and have iptables installed, that is the same image used to emulate
iptables firewalls. For example, in our case we need to create a NAT that shadows
networks 192.168.1.0/24 and 192.168.2.0/24, so any packet with an IP address from
any of these networks must be translated to Nat’s IP address, to do that simply
write:
$ sudo iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -j SNAT - -to-source
220.124.30.1
$ sudo iptables -t nat -A POSTROUTING -s 192.168.2.0/24 -j SNAT - -to-source
220.124.30.1

66

VEREFOO Demo And Translator Algorithm

like this we have the Nat container configured, to translate any IP address from
192.168.1.0/24 or 192.168.2.0/24 to 220.124.30.1 which is the interface IP of the
Nat.

For the Load balancer functionality it is a bit more complex, as there is a couple
of ways to emulate a load balancer, and according to [], "load balancing refers to the
process of distributing a set of tasks over a set of resources, to make their overall
processing more efficient", so in our case, distribute packets reaching 130.10.0.4 load
balancer among the three servers available. For the sake of this example, Round
Robin Algorithm will be implemented as in [23]. In summary, this algorithm takes
two different parameters: every (n) and packet(p). The rule will be evaluated for
every n packet starting at the packet p. To load balance between three different
hosts you will need to create those three rules:

$sudo iptables -A PREROUTING -t nat -p tcp -d 130.10.0.4 - -dport 80 -m
statistic - -mode nth - -every 3 - -packet 0 -j DNAT - -to-destination 130.10.0.1:80
$sudo iptables -A PREROUTING -t nat -p tcp -d 130.10.0.4 - -dport 80 -m
statistic - -mode nth - -every 2 - -packet 0 -j DNAT - -to-destination 130.10.0.2:80
$sudo iptables -A PREROUTING -t nat -p tcp -d 130.10.0.4 - -dport 80 -j DNAT
- -to-destination 130.10.0.3:80
$sudo iptables -A POSTROUTING -t nat -p tcp -d 130.10.0.1 - -dport 80 -j SNAT
- -to-source 130.10.0.4
$sudo iptables -A POSTROUTING -t nat -p tcp -d 130.10.0.2 - -dport 80 -j SNAT
- -to-source 130.10.0.4
$sudo iptables -A POSTROUTING -t nat -p tcp -d 130.10.0.3 - -dport 80 -j SNAT
- -to-source 130.10.0.4

This will distribute traffic that reaches the load balancer at 130.10.0.4 into the
three servers server1,server2, and server3 at addresses 130.10.0.1, 130.10.0.2, and
130.10.0.3 respectively. and the distribution will be done every nth packet. It is
important for us to emulate these two functionalities (Nat and load balancing)
since for testing the firewall, we need to ensure that any packet modification in
terms of the route (load balancer) or packet headers (Nat) is represented correctly
so the testing in the environment is closest to a real-life scenario.

Now that all functionalities are ready to be deployed let’s review the docker
images with their main packages used to deploy such an environment.

• end points (web client and web servers): Docker image is based on alpine with
hping3 package installed for testing.

• firewalls: First for iptables, images is based on alpine with iptables installed.
Then for openvswitch, since it acts at layer 2, the firewalls containers in this
case act as routers only and firewall is deployed at layer 2. finally for bpf
firewall, we use the image

67

VEREFOO Demo And Translator Algorithm

• Forwarders (containers acting as routers this include webcache and moni-
tor): For this we use simple docker image based on alpine with forwarding
mechanisms enabled.

• NAT: simple alpine image with iptables.

• Load Balancer: simple alpine image with iptables.

And like this, all images built using Docker files are ready to run the environment
using Compose file in a declarative manner. In addition to the docker-compose file
there is all the other required configuration files that are mounted to containers at
startup time and executed automatically, this includes firewall configuration files,
routes configuration files (or dynamic routing configuration file, if it is enabled),
Nat configuration file, Load Balancer configuration file, Docker files to build images
with required packages, and finally startScript and endScript to start and shutdown
environment. Like this the environment can be launched and as in Chapter 2
specified, we could start testing to verify that the NSRs are satisfied using various
tools like hping3, tcpdump for debugging, iptables commands to check correct
configuration deployment... Finally, it’s good to note that the environment even
with running 20+ containers each doing different functions, is still lightweight and
can be easily run locally on a machine.

6.5 Running the Demo
Now it is time to combine all the components of the Demo to run. The goal of the
demo is to demonstrate how user can use the framework starting from an example
input Allocation Graph with the Network Security Requirements defined, reaching
the goal of allocating firewall into a topology with their configuration files. A
user can run the Demo and understand how to use the framework along with its
GUI. Furthermore, the advantage of such a Stand-alone demo is the step-by-step
approach that is followed that allows the user to understand the different elements
of the process with the commands executed. Generally, the Demo has 6 steps:

1. Step 0: Display to the user the Allocation Graph along with the Network
Security Requirements through images or xml file.

2. Step 1: Demonstrate to user how to generate the jar file that runs the
framework, Although in our case the jar file is already generated for ease of
usage of demo.

3. Step 2: Run the framework using SPRING.

68

VEREFOO Demo And Translator Algorithm

4. Step 3: Demonstrate how to Interact using REST API with the framework to
generate the firewall Allocation Schema and display the file generated along
with image of the new topology.

5. Step 4: Demonstrate how to get the configuration files of a specific firewall
type using REST APIs.

6. Step 5: Demonstrate how to launch the virtual environment, and do testing
in it to verify that NSRs are satisfied.

7. Step 6: Final step requires user to interact with the GUI, and see the possibility
of using GUI to create using drag and drop approach Allocation Graphs and
defining NSRs, then sending them to the framework to get back the FAS.

After running the demo, the user is expected to understand the process of
how VEREFOO works. Furthermore, the user can use such demo to integrate
VEREFOO framework to his own environment.

6.6 Translator Algorithm
This section extends what’s already done in previous chapters and particularly in
previous section when building the Demo virtual network. In terms of building a
contained virtual environment for firewall testing. By creating an algorithm, used
to automatically create virtual environments.

6.6.1 Introduction
Previous chapter began with a simple common topology, for which there was
internal/external networks and DMZ where servers are placed. For the first time,
forwarding and filtering capabilities were introduced. Also, docker containers were
chosen to represent the environment mainly due to resource limitations. Then in
chapter 4, we developed a more complex topology with additional functionalities,
and that requires more resources (running more than 20 containers). All of that
gave us the basis for developing network topologies using containers. However,
rather than writing the configuration files for the virtual environment (where
firewalls must be tested) from scratch, the process could further automate the
process of producing a virtual environment. An algorithm was created that takes
the Firewall Allocation schema as input and produces the required configuration
files to convert the Firewall allocation schema topology into a real network topology
with containers. To achieve that, the Algorithm must be able to extract information
from the FAS XML file and translate them into configuration files that are used to
start up the environment. This comes with limitations, and the limitations emerge

69

VEREFOO Demo And Translator Algorithm

from the fact that the FAS XML file contains very limited information about the
real network topology it contains a very high-level abstraction of network topology
with very little information about the real topology. The following sections will
demonstrate the possibilities of creating such a translator algorithm. The following
questions will be answered, is it possible, is it effective, what are the limitations,
what are the benefits to the framework, and finally, what future possibilities could
be gained from such a feature. Note that all the work done in this chapter will
mainly focus on iptables firewall type.

6.6.2 Network Topology Knowledge
Before building the algorithm, first we define what intelligence can be extracted
from the FAS XML file. How much does the FAS provide details about the real
network topology, what are the missing pieces of information that FAS does not
provide, and how to generate these missing information. To begin, let us look at
what the firewall allocation schema provides.

Figure 6.8: XML node schema

In the Figure 6.8, A typical XML node contains the following general information:

1. name is usually an IP identifier, but this doesn’t represent the node’s IP.
The reason is that if we have a router (FORWARDER) with a couple of IP

70

VEREFOO Demo And Translator Algorithm

interfaces„ how do we know the IPs attached to each interface. This IP may
be useful to identify endpoints as endpoints have only one IP to be attached
to them.

2. id: the id of the node in the XML, but for our case, it isn’t important since
no information that helps in building topology could be extracted from it.

3. functional_type: this helps us to identify the functionality that the node
must support in the real topology. For example, a FORWARDER could
inform us that the container representing this node will simply act as a router
with several interface and forwarding capabilities, Or a firewall/NAT/load
balancer container will require certain configuration files. So with this, based
on functional type each container will have a certain image. Furthermore, the
topology connections will be based on nodes’ functional types.

4. list of neighbors: each neighbor is represented by a name which is the IP
identifier of the neighbor node. This is used to represent links in VEREFOO,
but in network topology, the information provided by neighbor names is not
useful. It is useful to build the topology in terms of nodes’ position with
respect to each other. But it doesn’t provide real details about the link-
to-link connectivity and the assignment of IP addresses to each container
interface. Using the information provided by neighbour names and adding
logic to it, the algorithm could assign IP addresses effectively to interfaces of a
specific container to ensure point-to-point connectivity between two adjacent
containers.

5. Configuration: This is useful only in the case of NAT and loads balancer
containers. Using information about Nat source IP addresses that are shadowed
by NAT or pools of addresses that load balancer use to load balancer traffic.
This information is used to generate the configuration files of NAT and load
balancer nodes.

Mainly those are the elements that could be present in a node. The challenges
to overcome are:

• when the Allocation places (AP) are defined in the input Allocation Graph
(AG), the VEREFOO framework will allocate firewalls in some of the AP, and
the rest of the AP, FORWARDERS nodes will be defined, which are quite
useless for the defining the real network topology. It is therefore necessary to
find a way to get rid of unneeded nodes in the FAS. To solve this issue, either
implement the removal of forwarders at the algorithm level or at the VEREFOO
level, where the output FAS doesn’t contain such unneeded forwarders.

71

VEREFOO Demo And Translator Algorithm

• we need to define a methodology, to determine the IP addresses assigned to
each interface of each container, and in case a container requires multiple
interfaces, what are the IP addresses to be assigned to them.

• how to determine what IP addresses to be attached to containers based on
node name and neighbor names. also, we need to find a way to define new
network sub-nets for point-to-point links.

• Routing: How to decide statically the routes before knowing the topology
apriori, this issue is solved thanks to the possibility of dynamic routing
explained in chapter 3.

There are a lot of challenges to overcome, and building an algorithm that
translates FAS to a virtual environment that handles the randomness and lack of
information about real network topology in the FAS is somewhat complex and, to
some extent, impossible to cover all possibilities. Even if an algorithm was build to
cover all such scenarios, it would be relatively inefficient and unnecessarily complex.
From here, there are two possibilities. First, we could manipulate the FAS that
the VEREFOO framework outputs, so it provides more information about the
real topology. For example, nodes can now provide a list of NIC addresses to
be attached to containers. Such improvement will make the translator algorithm
more uncomplicated and more straightforward. The idea here is that the more
information injected into the FAS and the more standard the FAS XML file is
(standard format), the simpler and error-free the translation algorithm would be.
The second possibility is to leave FAS as it is and make the Algorithm more complex
in a way that it can handle as many scenarios as possible with a high success rate
in translation, and this is rather complex and isn’t addressed here. This chapter is
instead offers a compromise what will be discussed is to, force some limitations
on the input FAS XML file, and make the algorithm a little bit complex. If those
limitations are not met, the algorithm will fail the translation.

The main takeaway is the idea, that the more information we have in the FAS
XML file, the better the translation is. We can not extract from FAS full real
topology knowledge, so approximations must be made. This leads to a specific
success rate.

6.6.3 Building The Algorithm

This sub section will demonstrate how the algorithm operates. But before, as
anticipated previously, we will express the limitations that the FAS XML file must
satisfy to achieve high confidence with the translation.

72

VEREFOO Demo And Translator Algorithm

6.6.4 Firewall Allocation schema Input
While developing the algorithm, the same topology as chapter 4 is used, which is
in Figure 6.18. The algorithm will be based on this topology. In other words, in
the end, the algorithm should correctly translate the FAS XML file that represents
Figure 6.5 and Figure 6.6, into Figure 6.18 built by containers with all IP addresses
assigned correctly. So any topology that has a similar structure as this FAS example,
the algorithm should be able to translate it correctly. Lets break down the FAS
XML file, that represent Figure 6.5 and Figure 6.6. Mainly the input XML is
decomposed into 6 main types of nodes that are distinguished during translation.

Figure 6.9: Web Server XML element

Starting from Web clients and Web servers, which are the endpoints of our
topology, and they are easiest to translate since the name of the web client or web
service XML node is the same IP address that will be attached to the container
that will represent it. And there is only one neighbor name, which will represent
the gateway for these endpoints. Endpoints have no limitations and they are not
required to be in a specific format for the translation since they are simple. Note
that the IP of endpoints in virtual environment must be the same as the XML
input file for correct testing.

Figure 6.10: Allocation Place forwarder XML element

73

VEREFOO Demo And Translator Algorithm

Second is the first type of FORWARDER, when the AG is inputted to the
framework, as output in the FAS Allocation places is replaced by firewalls allocation,
and the rest of the APs are replaced by forwarders at each point-to-point link,
so these forwarders are at all point to point links. This makes the translation
harder since such forwarders are useless and need to be removed, they just represent
that traffic must be forwarded at the point-to-point links, but we won’t create a
container acting as a router for each forwarder, it will be too much and waste of
resources. Such forwarders will be removed by the VEREFOO framework, so the
input FAS XML will not have such forwarders anymore. This issue is solved at the
FAS level not at the algorithm level, this leads to easier translation algorithm and
more efficient.

Figure 6.11: forwarder XML element

Third is the Second type of FORWARDER (web cache - traffic monitor ...),
these forwarders must be translated to containers acting as routers and they should
forward traffic. Depending on neighbouring node, a point-to-point link address is
attached to the forwarder container. Note here the name of the forwarder isn’t
taken to consideration, it is ignored to make the algorithm less depended on user
input in terms of forwarder node name.

74

VEREFOO Demo And Translator Algorithm

Figure 6.12: Load Balancer XML element

Fourth is the load balancer, the only difference between a load balancer and a
container acting as a router, is that the load balancer must have a configuration
file that load balances traffic between the servers. To generate the load balancer
configuration file the pool elements are used which are the servers to distribute
traffic.

Figure 6.13: NAT XML element

Fifth is the NAT, the only difference between NAT and a container acting as
a router, is that the NAT must have a configuration file that shadows the IP
addresses of private networks. To generate the NAT configuration file we use the
source elements which are the private addresses to shadow.

75

VEREFOO Demo And Translator Algorithm

Figure 6.14: firewall XML element

Finally is the firewall. The firewall will filter packets, and route unfiltered packets,
the configuration files for the firewall are already generated by the framework, so
the firewall configuration part of the XML node is ignored.

Finally, before going into algorithm implementation, let’s summarize what is
expected to be the input FAS:

1. Allocation places (firewalls) must have only two neighbours not more which is
the usual case.

2. For simplicity all sub-net are considered /24. other sub-nets are not supported
currently

3. In terms of links, the algorithm doesn’t expect to have two adjacent NAT
connected to each other or two adjacent load balancers for example, this would
lead to errors. It is expected that the input FAS XML represent a usual
network topology with no unexpected connections.

Such assumptions facilitate the algorithm’s operation, in the future, the algorithm
could be improved to handle more general cases of FAS, or if the FAS was made
more standardized the algorithm could be improved accordingly.

6.6.5 Implementation of Translator
let’s explain the concepts related to the algorithm, which are translatable XML
and non-translatable XML. Simply a translatable XML is a series of XML nodes
(or XML file), where the meaning of the name and neighbor name of a node are
redefined internally in the algorithm, where the IP addresses of name/neighbor
names are simply IP addresses of NICs to be attached to the container. Explicitly:

1. firewalls: neighbour names are NICs addresses to attach to container (ignore
node name).

76

VEREFOO Demo And Translator Algorithm

2. endpoints: name of node is NIC address to attach to container, and neighbour
name is the gateway of the endpoint.

3. loadbalancer: name and neighbour names are addresses of NICs to attach to
containers.

4. NAT: name and neighbour name are addresses of NICs to attach to containers.

5. forwarder: ignore node name and attach only neighbour names as NICs to
containers.

While non-translatable XML is simply the input FAS, where node names and
neighbor names are not related to the real network topology, they are just high-
level definitions of nodes.

This distinction is offered for various advantages, first advantage is this makes
the translation part (which translates XML to docker-compose configuration file)
of the algorithm rather easy and direct. Furthermore, this offers decoupled stages
of the algorithm, where the translation part of the algorithm is decoupled from
the pre-processing part of the algorithm. In other words, the algorithm first takes
as input a FAS XML and transforms it into a translatable XML and this is the
pre-processing step, then the translatable XML is given as input to another part of
the algorithm which formulates direct one-to-one translation with no complexity,
just simple translation where each node written in XML format is translated into
a container written in a docker-compose file using declarative language with all
NICs to be attached to a container are pre-defined.

For example, let’s look at the following figures, those figures represent the load
balancer node and the web client node of Figure 6.18 Network topology. Let us see
what is a non-translatable XML and a translatable one.

Figure 6.15: Translatable Load Balancer

77

VEREFOO Demo And Translator Algorithm

In Figure 6.15, it is shown that the neighbours of the load balancer are all
discarded, and a new neighbour name was assigned to it which is "20.0.0.1", this is
the IP address of the NIC attached to the load balancer container connected on the
same network as firewall1 as shown in Figure 6.18. After having the translatable
load balancer node, it is possible now translate it directly to container written in
docker-compose having IP addresses "130.10.0.4" and "20.0.0.1"

Figure 6.16: Translatable Web Client

In Figure 6.16, it is shown that the neighbor of the web client is discarded
(since it is not important), and a new neighbor name was assigned to it which is
"40.40.41.100", in the context of the web client and web servers this is the default
gateway of the endpoint Or in case of a load balancer connected to web servers it
is supposed that the load balancer node name is on same subnet as the web servers
so there is no need to assign a "40.40.41.100", the neighbour name is kept as it is.

The Algorithm is mainly decomposed into two main java classes, "Vnetwrok-
Translator" and "IptablesVnetwork". First, the "VnetwrokTranslator" implements
the logic behind understanding the input FAS and extracting knowledge that is
useful in building the topology, then transforming the input XML file from a non-
translatable file to a translatable file. After the "VnetwrokTranslator" outputs a
translatable XML, it takes these XML nodes and inputs them to "IptablesVnetwork"
which does the direct translation and produces the configuration files to build the
virtual environment.

The logic implemented by "VnetwrokTranslator" is the pre-processing step to
translation (i.e prepare the XML nodes for translation). The logic implemented is
as follows (to be explained in the following sections):

78

VEREFOO Demo And Translator Algorithm

Algorithm 1 Processing Algorithm
1: procedure First Scan(Assign neighbours to nodes)
2: For each node in the Node list
3: If node is web client OR web server AND node neighbour name is not

on same sub-net then
4: replace neighbour name with x.x.x.100
5: Else If node is Forwarder or Load Balancer or NAT then
6: For each neighbour name different from 20.0.x.x
7: if neighbour name is on same sub-net as node name then
8: remove neighbour name
9: else if neighbour name end with x.x.x.-1 then

10: replace x.x.x.-1 with x.x.x.100
11: else if neighbour name is firewall
12: else assign p2p addresses from 20.0.x.x pool of addresses
13: end procedure

The complexity of the algorithm comes from covering the different possibilities
in a chain of if...else decisions, or yes...no choices. To demonstrate by example
what the Algorithm in "VnetwrokTranslator" does. But note that before this step,
there is a step of removing unwanted forwarders which is done at the VEREFOO
level. The output FAS XML file of the VEREFOO framework will have already
removed unwanted forwarders. As in Figure 6.17

Figure 6.17: Remove Forwarder

and this is done for all the nodes, removing unwanted forwarders and replacing
neighbor names accordingly.

For the scan, the algorithm starts analyzing the location of nodes with respect
to each other and accordingly takes a decision whether to change a neighbor name,

79

VEREFOO Demo And Translator Algorithm

add a point-to-point link from the 20.0.x.x pool of addresses, or remove a neighbor
name. Taking into consideration that each neighbor’s name will be a NIC address
that will be attached to a container. Optimally the algorithm covers all simple
scenarios, but for more complex scenarios, the algorithm needs to be improved.
To make it simple the Scan in the algorithm is built to cover as many as possible
scenarios. In other words, we list all possible decisions that the algorithm can
face and ensure that there is an answer for every case. We will explicitly list all
the cases that the algorithm takes into consideration according to the topology in
Figure 6.18.

Figure 6.18: Firewall Network Topology

To simplify the understanding cases, the possible decisions are:
1. if node is endpoint (web server or web client), then possibilities are:

- if neighbour is on same sub-net as the node name –> leave it as it is (it is
the default gateway and this is the case when we have a load balancer and
web servers).
- if neighbour is on different sub-net –> change neighbour to sub-net of node
(x.x.x.100) which will be default gateway.

2. if node is Forwarder, or load balancer then possibilities are:
- if neighbour is on same sub-net as the node name –> remove neighbor from
neighbor list (usually in load balancer only).
- if neighbour is a firewall or forwarder –> replace neighbor name to an IP
address from sub-net 20.0.x.x/24, and replace neighbor name of firewall to
another IP address of same sub-net (to form p2p link)
- if neighbour is a network of web clients (neighbor name end with x.x.x.-1)
then replace neighbor name with x.x.x.100

80

VEREFOO Demo And Translator Algorithm

3. if node is NAT, then:
- For NAT, we expect that only one forwarder is connected to it and is the
interface to the outer world. we just change the neighbor node IP to attach a
NIC IP to it that is on same subnet as NAT node name.

4. if node is firewall, then possibilities are:
- if neighbor is x.x.x.-1 –> change to x.x.x.100
- ignore all other cases –> automatically managed by the logic above

And this is the logic implemented by the 2nd scan, it checks which condition is
valid and acts accordingly, optimally it would cover all cases, which are limited and
feasible in our example topology, but with more testing to be done cases would be
modified or added.

Next, there is the "IptablesVnetwork" class, where the translation logic is de-
veloped, this translation is simple and doesn’t need any complex logic. This class
takes as input a list of nodes, which are expected to be translatable, and generates
the different configuration files needed for the environment to be built. It generates
the following scripts

1. Docker-compose: which contains the definition of containers and the respective
networks, simply the translator performs the one-to-one translation. in other
words, it scans a node and checks the Functional type, name of the node,
and list of neighbor names of the node, Then it uses the functional type
to determine the docker image with the required configuration files of the
container, also it uses the name of the node and its neighbors to directly
attach NICs to a container with there IP addresses.

2. NAT - Load Balancer Configuration files: If a node is of functional type
NAT or Load Balancer the corresponding scripts to configure containers are
generated

3. other scripts: the scripts startScript, endScript, and zebraStart Configuration
files are static and don’t change if the network topology changes. so they are
generated the same always independent of the input list of nodes.

The main idea of the whole algorithm implementation in such methodology, is
to reduce the dependency of the translation on the user input of IP, and increase
dependency on functional types of nodes. So using only functional types to build
the topology while adding our own IP addresses rather than depending on user to
provide them from node names which may lead to errors. Obviously, the algorithm
must use IP of endpoints as provide in FAS and they must not be ignored, or the

81

VEREFOO Demo And Translator Algorithm

testing of firewalls will be wrong. However, for the forwarders and firewalls they
are ignored.

Next section will display the results of testing the algorithm on FAS represented
in chapter 4, its advantages and disadvantages, and the possibilities of such features
with respect to the VEREFOO framework.

6.6.6 Advantages And Limitations
The algorithm was tested on Figure 6.18 and was able to correctly translate the FAS
into a virtual environment for iptables firewall type only, for now, other parts are
ignored. In fact, the algorithm is able to translate correctly FASs that are similar
to this example, if the FAS XML file has a similar format respecting the limitation
of the input XML then the translation will be correct. However, the algorithm is
general enough to cover most possibilities of a FAS, but there is limitations in case
an unexpected input topology format is provided. For example, two neighboring
NATs is not expected to be in such FAS, or even two neighboring load balancer.
As long as the input network topology is reasonable the translation is correct, in
case of unexpected format the program will rise an exception.

The Limitations of such translation algorithm are:

• Algorithm can correctly translate certain FAS format, with limitations already
mentioned

• Algorithm expects the input FAS to describe a reasonable network topology
and not random. otherwise exception will be raised.

For the advantages part, we differentiate between advantages of the current
algorithm and advantages of future work based on this algorithm.

• Algorithm is rather fast, as will be shown in testing section, the algorithm can
translate 40 node topology with less than 200 ms.

• automates the process of testing in a virtual environment, rather than every
time a new FAS is created and testing need to be done, the virtual environment
can created dynamically allowing the test of the output firewall configurations
in a virtual environment.

• Since there is a decoupled translation, where pre processing the input XML
is done at one class, and the translation is done at another class, there is a
possibility for the user to manually create a translatable FAS and directly
input it to the 2nd part of the algorithm which is the translation only.

82

VEREFOO Demo And Translator Algorithm

• this algorithm adds a feature to the framework, that is the ability the test the
output of the framework (what ever it is) before deploying it to real conditions
or environment. Rather than manually re-creating everything in the virtual
environment every time testing is needed before deployment.

• flexible as other firewall type could be added in the future due to its flexible
organization.

Finally, this algorithm is just a possibility of what could be done regarding
dynamic testing in the VEREFOO framework using containers. It could always
be made better and improved. In any case, the algorithm needs to be maintained
and improved to ensure its robustness. The main takeaway from this algorithm
is something to be built upon in the future, as there are two ways to go from
here, either make the algorithm more complex, or work on the input FAS XML
to contain more information about actual network topology, thus making the
algorithm more straightforward. The next section will check the test cases used to
test the algorithm.

6.6.7 Translator Testing
After implementation the algorithm, we have to ensure its robustness by creating
a couple of test cases that cover most scenarios that the algorithm will possibly
translate in the future. The generation of test cases will be based on white box
testing, where we try to cover as much cases as possible. Then finally we will
perform one performance test which consist of translating 40 nodes to assess the
algorithm performance. The test cases will be generated based on combination
of possible functional types neighboring each other. We have six functional types
(web client-web server-load balancer-firewall-NAT-forwarder), so the test cases to
be generated must cover the following scenarios (we also take into consideration
some not possible cases):

1. Web Client: test cases must cover translation of web client having possible
neighbor node that are forwarder, firewall, load balancer, and nat. it is not
possible to have another web client or web server as neighbor to web client

2. Web Server: test cases must cover translation of web server having possible
neighbor node that are forwarder, firewall, load balancer, and nat. it is not
possible to have another web client or web server as neighbor to web client

3. Forwarder: test cases must cover translation of forwarder having possible
neighbor node that are another forwarder, firewall, load balancer, nat, web
client, and web server.

83

VEREFOO Demo And Translator Algorithm

4. Firewall: test cases must cover translation of firewall having possible neighbor
node that are forwarder, load balancer, nat, web client, and web server. Two
firewalls connected to each other is not allowed.

5. Load Balancer: test cases must cover translation of load balancer having
possible neighbor node that are forwarder, firewall, and web server. It is not
possible to have neighbor that is web server, or load balancer connected to
load balancer.

6. NAT: test cases must cover translation of NAT having possible neighbor node
that are forwarder, firewall, web client, web server, and load balancer. It is
not possible to have two nats connected to each other.

As mentioned before these scenarios must be covered by the generated test
cases to ensure translation correctness with high confidence that the translation
algorithm will not produce any errors. Six test cases were generated, each covering
a certain number of nodes. Specifically, each test case cover certain number of the
above mentioned scenarios. The algorithm was able to translate all of the six test
cases correctly. Here the main one is only mentioned that cover most scenarios.

Figure 6.19: Test Case with 26 nodes to be translated

As is shown in Figure 6.19, the network in this test case is sufficiently ramified
to cover most of the previous scenarios. When we input this topology as a FAS
written in XML file to the translator, we immediately get all the configuration
files required to run the virtual environment, but we only need to provide the

84

VEREFOO Demo And Translator Algorithm

firewall configuration files in iptables directory in the produced directories. The
other test cases also verified the correct functioning of the program. After testing,
we are confident that any possible combination of network nodes similar to such
test case the algorithm will correctly translate it. In terms of performance, the
following graph indicate the efficiency of the algorithm in terms of execution time
and number of nodes. Note that All the test instances have been solved on a
machine with an Intel core i7-8557U CPU at 3.40 GHz, 20GB of RAM.

Figure 6.20: Scalability for increasing number of Nodes

The scalability of the approach has been evaluated varying the number of nodes
in the input FAS XML file. As evident in the Graph 6.20, when increasing the
number of nodes the computation time increases slightly, most of the time the
algorithm will not translate more than 40 nodes due to limitations in virtualization
of containers using a single machine, but in any case the algorithm have proven to
work well for 60+ nodes for computation time less than 300 ms.

85

Chapter 7

Conclusions

7.1 Achieved Objectives

This research is intended to perform an analysis of the best method to verify
and validate the VEREFOO framework in its different components and ensure
there correctly functioning together. The focus was developing the right testing
methodology to achieve confidence in the framework correct operation. Thanks to
the preliminary work done studying in literature along with the results obtained
in this thesis, the framework can now be assumed error-free in terms of low level
translation of Medium Security Policy Language into firewall configuration written
in specific vendor firewall type. The Verification and Validation that was done at
different levels. First using software testing with white box approach generating
the optimal test cases that ensures correct testing. Second level is testing in virtual
environment, the work in this thesis was able to research the different tools and
possibilities to develop the best virtual environment with the available resources.
The work done in this thesis regarding developing virtual environment used for
testing can be extended to different framework, where the idea behind building
such environment is the same for every framework that need to be tested in a
virtual environment with limited resources.

Moreover, after testing the low level translation of the framework, we focused
in an incremental manner on increasing the automation in different aspects. For
example, the pre-produced virtual environment where testing is done required
minimal effort from the user to launch it. With a simple script all the environment
is up and running and ready to start testing. Furthermore, to add a layer in
automation for building the virtual environment we introduced dynamic routing
which increases the efficiency of building more virtual environments for future
testing. All of this work and results have accumulated to lead to the development
of a translation algorithm. Each time a new network topology with new firewall

86

Conclusions

configurations needs to be tested, there is no need anymore for building the virtual
environments from scratch and writing them. Simply from the Firewall Allocation
Schema that VEREFOO outputs, we can immediately obtain a virtual environment
that is automatically built by an algorithm that takes the Firewall Allocation
Schema as an input.

Furthermore, we integrated the different parts of VEREFOO into a single
process that is demonstrated to the user. Where the user can interact with the Full
Standalone developed demo and understand how to interact with the VEREFOO
framework at different levels, this allows users who are interested in using this
framework in understanding how they could integrate to their own environment.

However, during this research, there were several limitations. The first one is
the firewalls supported by the translation algorithm, currently only iptables firewall
is supported. Another was the limitations of virtual environment and how much
faithfully does the virtual environment replicates the real physical environment
with minimal errors.

7.2 Future Work
As for future development related to this research, it is possible to choose different
directions. One of the advantages of the methodology used to develop the virtual
environment in its different aspects, is flexibility. The environment could be
extended, manipulated, and improved in various ways to adapt to future needs. If
new Security features were added to VEREFOO, the virtual environment could be
extended also to test these features. Furthermore, in the future while integrating
the framework with open sources orchestrator, the virtual environment could be
handy in testing this integration. This thesis have gave the basis for building
environment for testing that could be useful in future studies as the framework
progresses.

87

Bibliography

[1] Riccardo Sisto, Fulvio Valenza, and Antonio Amoroso. «Automated Policy
Enforcement in Software Defined Networking and Network Function Virtual-
ization Environment». In: () (cit. on pp. 3, 4, 6, 27, 41).

[2] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio Valenza.
«Short paper: Automatic configuration for an optimal channel protection in
virtualized networks». In: Proceedings of the 2nd Workshop on Cyber-Security
Arms Race. 2020, pp. 25–30 (cit. on p. 3).

[3] Fulvio Valenza, Serena Spinoso, and Riccardo Sisto. «Formally specifying and
checking policies and anomalies in service function chaining». In: Journal of
Network and Computer Applications 146 (2019), p. 102419 (cit. on p. 3).

[4] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. «Towards a fully automated and optimized network
security functions orchestration». In: 2019 4th International Conference on
Computing, Communications and Security (ICCCS). IEEE. 2019, pp. 1–7
(cit. on p. 4).

[5] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. «Automated optimal firewall orchestration and configu-
ration in virtualized networks». In: NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium. IEEE. 2020, pp. 1–7 (cit. on pp. 4,
5, 59).

[6] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. «Introducing programmability and automation in the
synthesis of virtual firewall rules». In: 2020 6th IEEE Conference on Network
Softwarization (NetSoft). IEEE. 2020, pp. 473–478 (cit. on p. 4).

[7] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Serena Spinoso, Fulvio
Valenza, and Jalolliddin Yusupov. «Improving the formal verification of
reachability policies in virtualized networks». In: IEEE Transactions on
Network and Service Management 18.1 (2020), pp. 713–728 (cit. on p. 4).

88

BIBLIOGRAPHY

[8] Ignazio Pedone, Antonio Lioy, and Fulvio Valenza. «Towards an efficient man-
agement and orchestration framework for virtual network security functions».
In: Security and Communication Networks 2019 (2019) (cit. on p. 4).

[9] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio Valenza. «A
novel approach for security function graph configuration and deployment». In:
2021 IEEE 7th International Conference on Network Softwarization (NetSoft).
IEEE. 2021, pp. 457–463 (cit. on p. 4).

[10] Guido Marchetto, Riccardo Sisto, Fulvio Valenza, Jalolliddin Yusupov, and
Adlen Ksentini. «A formal approach to verify connectivity and optimize
VNF placement in industrial networks». In: IEEE Transactions on Industrial
Informatics 17.2 (2020), pp. 1515–1525 (cit. on p. 4).

[11] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. «Automated firewall configuration in virtual networks».
In: IEEE Transactions on Dependable and Secure Computing (2022) (cit. on
pp. 5, 61, 62).

[12] John Wack, Ken Cutler, and Jamie Pole. Guidelines on firewalls and firewall
policy. Tech. rep. BOOZ-ALLEN and HAMILTON INC MCLEAN VA, 2002
(cit. on pp. 8, 34).

[13] Docker Documentation. Introduction to Docker. url: https://docs.docker.
com/reference/ (cit. on pp. 11, 45, 91).

[14] oracle. oracle. url: https://www.virtualbox.org/manual/ch08.html
(cit. on p. 17).

[15] openstack. openstack. url: https://docs.openstack.org/openstack-
ansible/latest/ (cit. on p. 18).

[16] Gerry Zaugg. «Firewall testing». In: ETH Zurich (2005) (cit. on pp. 27, 30,
48).

[17] Ehab S Al-Shaer and Hazem H Hamed. «Discovery of policy anomalies in
distributed firewalls». In: Ieee Infocom 2004. Vol. 4. IEEE. 2004, pp. 2605–
2616 (cit. on p. 28).

[18] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave
macmillan, 2005 (cit. on p. 29).

[19] Polycube Documentation. Introduction to Polycube. url: https://polycube-
network.readthedocs.io/en/latest/intro.html (cit. on p. 41).

[20] Tugkan Tuglular. «Test case generation for firewall implementation testing
using software testing techniques». In: Proceedings of the International Con-
ference on Security of Inform. and Networks. 2008, pp. 196–203 (cit. on pp. 47,
48).

89

https://docs.docker.com/reference/
https://docs.docker.com/reference/
https://www.virtualbox.org/manual/ch08.html
https://docs.openstack.org/openstack-ansible/latest/
https://docs.openstack.org/openstack-ansible/latest/
https://polycube-network.readthedocs.io/en/latest/intro.html
https://polycube-network.readthedocs.io/en/latest/intro.html

BIBLIOGRAPHY

[21] Quagga-Routing. Quagga-Routing. url: https://www.admin- magazine.
com/Articles/Routing-with-Quagga (cit. on p. 52).

[22] rip-cisco. rip-cisco. url: https://www.cisco.com/c/en/us/td/docs/ios/
iproute_rip/command/reference/irr_book/irr_rip.html (cit. on p. 55).

[23] Scalingo. Scalingo. url: https://scalingo.com/blog/iptables (cit. on
p. 67).

90

https://www.admin-magazine.com/Articles/Routing-with-Quagga
https://www.admin-magazine.com/Articles/Routing-with-Quagga
https://www.cisco.com/c/en/us/td/docs/ios/iproute_rip/command/reference/irr_book/irr_rip.html
https://www.cisco.com/c/en/us/td/docs/ios/iproute_rip/command/reference/irr_book/irr_rip.html
https://scalingo.com/blog/iptables

Appendix A

Open Issues

In this appendix will be explained all the techniques used to set up the environment
for replicate the tests. In addition, we will specify some open issues that could be
improved in the framework.

A.1 Test Replication
In this appendix will be explained all the techniques used to set up the environment
for replicate the tests. They were performed on a virtual machine having:

• Ubuntu 20.04.1 LTS as 64-bit operating system

• Hard disk of 30GB

• Intel Core i7-8550 as processor.

• RAM installed equal to 8 GB.

The virtual machine used for development is vritualized using virtual box. In
terms of software, in order to run the virtual environment on the virtual machine,
it is required to install docker and docker compose. In fact, there is three setups
for running the virtual environment to do testing:

1. Running the standard virtual environment (https://gitlab.com/negroup/thesis/2022-
hobballah/-/tree/vnetwork): In this case, we run the virtual environment
that is used to test the low level translations from medium level policies to
low level configuration files. For this case we use the previously mentioned
configurations (Ubuntu virtual machine), in addition to that we install on the
virtual machine Docker and Docker compose (see [13].). Then after setting
up this environment all that is required to do is to run ./startScript.sh and
automatically the environment will be up and running.

91

Open Issues

2. Full Demo (https://gitlab.com/negroup/thesis/2022-hobballah/-/tree/fullDemo
): For the demo that integrates VEREFOO as a single process, the set up
environment was also done on Ubuntu following the previous specification.
However, in this case more resources are needed to run different aspects of the
demo (VEREFOO framework - virtual environment - GUI ...). To correctly
run the demo we require the following to be installed:

(a) Docker Engine and Docker Compose
(b) java openjdk-1.8 (for framework launching)
(c) node.js (for GUI operation)
(d) curl and pv packages are required
(e) make sure that you download z3-glibc library from z3 library newer

versions after 4.8.15 may have some problems with the framework. After
download it, extract it and then copy the z3 directory to /home in the
machine (this is important for correct execution of the framework).

3. Translation Algorithm Operation : To setup the environment for using the
translator, we could use the virtual machine already specified or we could
use windows operating system with Docker Desktop that has a Dash Board
useful to see all containers up and running. All that is need to be done is
input Firewall Allocation Schema XML file and the translator will generate
directory call "vnetwork_" where all configuration files required to run the
virtual environment are present. Note that in order to correctly launch the
environment it is required to manually copy the firewall configuration file into
the directory "./vnetwork_/FirewallConfig/iptables/" and the format must be
"iptablesFirewall_1_1".

The initial virtual environment specified in Chapter 2 and the Full Demo can
be run only in Ubuntu, Since of the firewall types OpenvSwitch and BPF firewall
types that require Linux kernel headers for containers to run. While iptables can
be run cross platform in Ubuntu Linux Or Windows OS.

NOTE: When cloning the virtual environment repositories, please give execution
permissions in case of errors. (does not always happen)

A.2 Open Issues
We discuss some of issues that could be added in the framework in future work.
It is worth noting that the test bed that was carried in chapter two was done
targeting the features produced by configuration files are limited to the input of
the nfv element that the framework supports. The TCs focuses strictly on the

92

Open Issues

features supported by the input nfv element (8 parameters specified previously)
only. So there is always possibility to add more features like:

1. Adding a protocol other than TCP/UDP, like ICMP since the input nfv
element right now supports only TCP-UDP-ANY values, and doesn’t have
ICMP support. and this will be more evident when testing in the virtual
environment where the PING test will always work and bypass the firewalls
in case of white list mode. Since if the default of a firewall is Allow, we need
to specifically deny the ICMP traffic by mentioning a deny policy which is
not supported by VEREFOO at this moment. in case of black list mode the
default action is deny will deny all traffic unless explicitly specified and ICMP
will be dropped by default but in case we need to allow ICMP for any reason
by a rule, there should be support for ICMP element.

2. In more specified firewall configurations there could be more specific cases
where protocols other than TCP-UDP-ICMP be added (telnet -smpt ...), we
leave this possiblity open for now.

3. The Firewall serializer class accepts as input only one firewall type at a time,
so it isn’t possible to have 2 firewall types in the same graph.

4. the translation code targets the Forward Chain the other chains follow the
same configuration as the default action, this limitation is offered since there
is no way to specify in input NFV element the target chain (FORWARD-
INPUT-OUTPUT) to implement in it a certain policy in a firewall.

5. SSH to firewall is not configured, since for SSH to be enabled in black list
mode the firewall should explicitly allow SSH traffic in the INPUT chain of
the firewall which is not currently supported.

6. issue: other features that could be added are vendor specific, for example (
dropping packets based on logs can be found in one firewall type but not in
another)

7. Test cases of UDP: the policy that allows UDP packets through firewall in
black listing mode, face a problem while tested in virtual environment. Since
when sending a udp packet from an endpoint to server the udp packet is
allowed to pass but the response is an ICMP packet from the server container
that is dropped by the firewall, so it appears as if the test fails.
Proposed Solution: use "nc" tool to create a client-server model and allow
send of udp and receive of udp packets. EX:
- "nc -u -l -p 1000 -s 30.0.5.1" -> server listening in udp mode on port 1000 at
address 30.0.5.1.

93

Open Issues

- "nc -u 30.0.5.1 1000" -> client. connect to server 30.0.5.1 at port 1000. The
list isn’t extensive and additional stuff could be found.

94

	List of Figures
	List of Tables
	Introduction
	Background: VEREFOO Framework
	Introduction
	VEREFOO Objectives
	VEREFOO High-Level Operation
	Limitations of the VEREFOO

	Background: Virtual Environment
	Virtual Environment For Testing
	Virtualization Technologies Key Concepts
	Comparing Virtualization Technologies
	Tools
	Vbox Manage
	OpenStack Automation with Ansible
	Docker Container CLI
	Docker Compose
	Kuberneutes and Kompose

	Firewall Testing Tools
	Injection Tools
	Sniffing Tools

	Thesis Objective
	Exhaustive Testing
	Demo Presentation And Translator Algorithm

	Verification and Validation of low level configuration output
	Testing Purpose
	Testing Approach
	Finding Test Cases Abstractions
	Finding firewall Parameters
	Test Case Abstractions

	Test Case Generation based on Reference Topology
	Finding the Right Topology
	Test Case Generation

	Correction of translation Code
	Building of Test Environment
	Implementation of Virtual Environment
	Testing using Hping3
	Tests evaluation
	Environment Fidelity Effect

	Routing in Virtual Environment (Enhancement)
	Routing Functionalities in Containers
	Dynamic Routing Algorithm and Tool
	RIP Routing Protocol
	Rip Protocol in Virtual Environment

	VEREFOO Demo And Translator Algorithm
	Background
	Full Demo Topology
	Full Demo Components
	Full Virtual Environment
	Running the Demo
	Translator Algorithm
	Introduction
	Network Topology Knowledge
	Building The Algorithm
	Firewall Allocation schema Input
	Implementation of Translator
	Advantages And Limitations
	Translator Testing

	Conclusions
	Achieved Objectives
	Future Work

	Bibliography
	Open Issues
	Test Replication
	Open Issues

